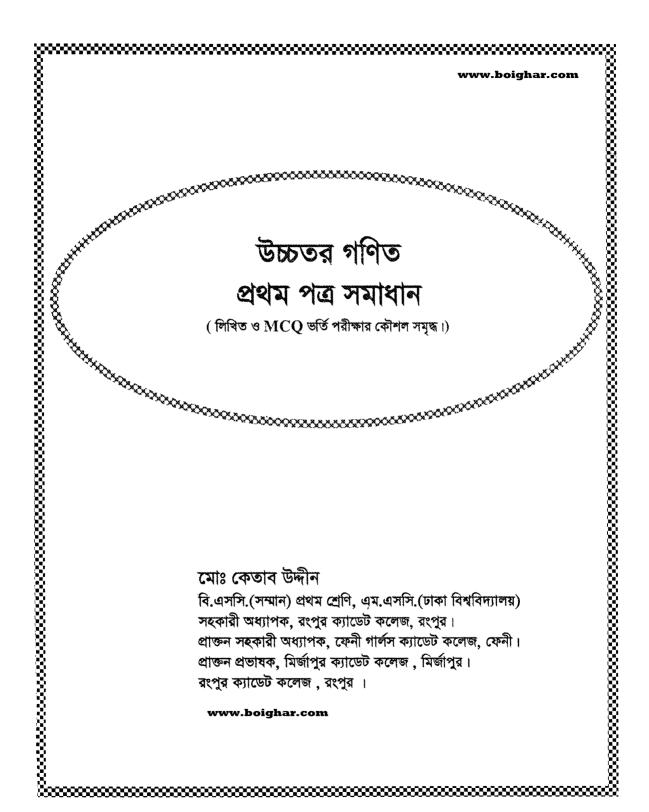


মোঃ কেতাব উদ্দীন



প্রকাশনায় ঃ তারীফ-নাজিম, ঢাকা । মোবাইল : ০১৯১২৫৮৩৩৭৬ [এই পুস্তকের গ্রন্থস্বত্ব লেখক কর্তৃক সংরক্ষিত।] প্রথম প্রকাশ : জুন, ২০১৩ প্রথম সংস্করণ: ২০১৪ দ্বিতীয় সংস্করণ: মে, ২০১৫ মূল্য ঃ ২৬০.০০ টাকা মাত্র। কম্পিউটার কম্পোজ ও কভার ডিজাইন : লেখক, মোঃ কেতাব উদ্দীন । মোবাইল : ০১৫৫৮৩৬৬৬১০, ০১৬২০২১৩০২৫ মুদ্রণে : সাজু প্রিন্টিং প্রেস , ২৭ , সিরিশ দাস লেন, বাংলাবাজার , ঢাকা-১১০০ সাজু প্রিন্টিং প্রেস ও পাবলিকেশন প্রাপ্তিস্থান : পরিচালনায় মোঃ কেতাব উদ্দীন ৩৮, বাংলাবাজার (৩য় তলা), ঢাকা-১১০০। মোবাইল : ০১৭১৮৮১৪০৪৮, ০১৬৮৯১৯৩৬৪৩

BOTGHAR Please Give Us Some

UST

If You Don't Give Us

Any Credits, Soon There II

Nothing Left To Be Shared!

Don't Remove

This Page!

Visit Us at boighar.com

Credit When You Share

Our Books!

বিস্মিল্লাহির রাহ্মানির রাহিম

লেখকের কথা www.boighar.com

" উচ্চতর গণিত ১ম পত্রের সমাধান পুস্তকখানি মোঃ নজর্ল ইসলাম ও মোঃ কেতাব উদ্দীন রচিত " উচ্চতর গণিত ১ম পত্র পুস্তকখানির সম্পূর্ণ সমাধান। সংক্ষিপ্ত পদ্ধতি ও ক্যালকুলেটর ব্যবহারের অপূর্ব সমন্বয়ে অতি দ্রুত প্রশ্ন সমাধানের কৌশলসহ পুস্তকখানির প্রতিটি অধ্যায়ে বিভিন্ন বিশ্ববিদ্যালয়ে ভর্তি পরীক্ষার গণিত MCQ সংযোজন করা হয়েছে। এর মাধ্যমে শিক্ষার্থীরা এইচ.এস.সি. পরীক্ষার প্রস্তুতির সাথে সাথে ভর্তি পরীক্ষার পূর্ব-প্রস্তুতি নেওয়ার সুযোগ পাবে। পুস্তকখানি সকল ইঞ্জিনিয়ারিং নিশ্ববিদ্যালয় এবং ঢাকা বিশ্ববিদ্যালয়সহ অন্যান্য বিশ্ববিদ্যালয়ে ভর্তি হতে ইচ্ছুক ছাত্র-ছাত্রীদের স্বন্ধ পূরণে সহায়ক ভূমিকা পালন করবে বলে আমার দৃঢ় বিশ্বাস্য

এ বইয়ে একই ধরনের সমস্যা বিভিন্ন নিয়মে সমাধান করেছি যেন পুস্তকখানি একজন শিক্ষার্থীকে বিশ্ববিদ্যালয়ে ভর্তি পর্যন্দর যথাযথভাবে সাহায্য করতে পারে।

যাঁরা প্রত্যক্ষ ও পরোক্ষভাবে এ পুস্তকখানি প্রণয়নে সহযোগিতা করেছেন তাঁদের সকলের প্রতি কৃতজ্ঞতা প্রকাশ করছি। পরিশেষে যাদের প্রয়োজনের দিকে নজর রেখে মূলত এ পুস্তকখানি প্রণয়নে ব্রতী হয়েছি, পুস্তকখানি তাদের নিকট আদৃত হলেই আমার শ্রম সার্থক বলে মনে করব

নিবেদক

মোঃ কেতাব উদ্দীন।

		সূচিপত্র	
	বিষয়বস্তু	প্রশ্নমালা	পৃষ্ঠা
প্রথম অধ্যায়	ম্যাট্রিক্স ও নির্ণায়ক	IA হতে IB	Ś
	অতিরিক্ত প্রশ্ন (সমাধানসহ) ও জ	র্ভর্ত পরীক্ষার MCQ	২১
দ্বিতীয় অধ্যায়	ভেক্টর	II A হতে II C	২৯
	ভর্তি পরীক্ষার MCQ	•	¢0
তৃতীয় অধ্যায়:	সরলরেখা	III A হতে III D	62
	অতিরিক্ত প্রশ্ন (সমাধানসহ) ও জ	র্ভর্ত পরীক্ষার MCQ	٩٥
		IIIE	٩٩
	অতিরিক্ত প্রশ্ন (সমাধানসহ)		አኦ
		III F হতে III G	৯০
	অতিরিজ্ঞ প্রশ্ন (সমাধানসহ) ও ভর্তি পরীক্ষার \mathbf{MCQ}		১২০
চতুর্থ- অধ্যায়	বৃত্ত	IV A	১২৯
	অতিরিক্ত প্রশ্ন (সমাধানসহ)		১৪২
		IV A	\$8 ¢
	অতিরিজ প্রশ্ন (সমাধানসহ) ও জ	ভর্তি পরীক্ষার MCQ	১৬৬
পঞ্চম অধ্যায়	বিন্যাস ও সমাবেশ	VA VB	১৬৮
	অতিরিক্ত প্রশ্ন (সমাধানসহ) ও ত	ভর্তি পরীক্ষার MCQ	২০১
ষষ্ঠ অধ্যায়	ত্রিকোণমিতিক অনুপাত	VI A	২০৭
	অতিরিজ প্রশ্ন (সমাধানসহ)		২১১
		VI B	২১৩
	ভর্তি পরীক্ষার MCQ		২ ২৪
সপ্তম অধ্যায়	সংযুক্ত ও যৌগিক কোণের		
	ত্রিকোণমিতিক অনুপাত	VII A হতে VII G	২২৬
	ভর্তি পরীক্ষার MCQ		২৮৪
অষ্টম অধ্যায় :			২৯৪
	অতিরিজ্ঞ প্রশ্ন (সমাধানসহ) ও জ	ভর্তি পরীক্ষার MCQ	৩১৯
নবম অধ্যায়	অন্তরীকরণ	IX A	৩২১
	ভর্তি পরীক্ষার \mathbf{MCQ}		৩৩৪
		IX B হতে IX H	৩৩৬
	অতিরিজ্ প্রশ্ন (সমাধানসহ) ও	ভর্তি পরীক্ষার MCQ	390
		IX I	৩৭৭
	অতিরিজ প্রশ্ন (সমাধানসহ) ও	ভর্তি পরীক্ষার MCQ	80९
দশম অধ্যায়	অন্তরীকরণ	X A হতে X C	৪১৩
	অতিরিজ্ঞ প্রশ্ন (সমাধানসহ) ও	ভর্তি পরীক্ষার MCQ	880
		X D	8¢8
	অতিরিক্ত প্রশ্ন (সমাধানসহ)		৪৬৩
		XE	8৬৮
	ভর্তি পরীক্ষার MCQ		870

1. (a) $A = \begin{bmatrix} 8 & 4 & -1 \\ 0 & 1 & 3 \\ 5 & 4 & 8 \end{bmatrix}$ are $B = \begin{bmatrix} -4 & 6 & 2 \\ 1 & 3 & 7 \\ 5 & 4 & 1 \end{bmatrix}$ ম্যাট্রিক্স দুইটির সমষ্টি ও অসম্বর নির্ণয় কর। [কু.'০৫;দি.'১১] $= \begin{bmatrix} 8-4 & 4+6 & -1+2 \\ 0+1 & 1+3 & 3+7 \\ 5+5 & 4+4 & 8+1 \end{bmatrix} = \begin{bmatrix} 4 & 10 & 1 \\ 1 & 4 & 10 \\ 10 & 8 & 9 \end{bmatrix}$ $\mathbf{A} - \mathbf{B} = \begin{bmatrix} 8 & 4 & -4 & 6 & 2 \\ 0 & 1 & -1 & 3 & 7 \\ 5 & 4 & 8 & -5 & 4 & 1 \end{bmatrix}$ $= \begin{bmatrix} 8+4 & 4-6 & -1-2 \\ 0-1 & -3 & 3-7 \\ 5-5 & 4 & 4 & -1 \end{bmatrix} = \begin{bmatrix} 12 & -2 & -3 \\ -1 & -2 & -4 \\ 0 & 0 & 7 \end{bmatrix}$ 1(b) A= $\begin{bmatrix} 3 & 1 & -1 \\ 2 & 3 & 4 \\ -4 & 5 & 6 \end{bmatrix}$ \Im B = $\begin{bmatrix} 1 & -4 & 6 \\ 2 & 0 & -7 \\ 3 & 5 & 0 \end{bmatrix}$ [ৰু.'০২] হ**লে**, 7A – 5 B নির্ণয় কর। সমাধান 37A - 5B = $7\begin{bmatrix}3 & 1 & -1\\2 & 3 & 4\\-4 & 5 & 6\end{bmatrix} - 5\begin{bmatrix}1 & -4 & 6\\2 & 0 & -7\\3 & 5 & 0\end{bmatrix}$ $= \begin{bmatrix} 21 & 7 & -7 \\ 14 & 21 & 28 \\ -28 & 35 & 42 \end{bmatrix} - \begin{bmatrix} 5 & -20 & 30 \\ 10 & 0 & -35 \\ 15 & 25 & 0 \end{bmatrix}$ $= \begin{bmatrix} 21-5 & 7+20 & -7-30\\ 14-10 & 21-0 & 28+35\\ -28-15 & 35-25 & 42-0 \end{bmatrix}$ $= \begin{bmatrix} 16 & 27 & -37 \\ 4 & 21 & 63 \\ -43 & 10 & 42 \end{bmatrix}$ (Ans.) $2(\mathbf{a}) \mathbf{A} = \begin{bmatrix} 1 & 6 \\ -3 & 5 \end{bmatrix} \triangleleft \mathfrak{R} \quad \mathbf{B} = \begin{bmatrix} 4 & 0 \\ 2 & -1 \end{bmatrix} \mathfrak{C}(\mathfrak{R}),$ AB 3 BA (A) a a বি.'০৯] পত্র) নহাগেল-১ ۍ.

সমাধান $AB = \begin{bmatrix} 1 & 6 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} 4+12 & 0-6\\ -12+10 & 0-5 \end{bmatrix} = \begin{bmatrix} 16 & -6\\ 2 & -5 \end{bmatrix}$ (Ans.) $\mathbf{BA} = \begin{bmatrix} 4 & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 3 & 5 \end{bmatrix}$ $= \begin{bmatrix} 4+0 & 24+0\\ 2+3 & 12-5 \end{bmatrix} = \begin{bmatrix} 4 & 24\\ 5 & 7 \end{bmatrix}$ (Ans.) $2(b) A = \begin{bmatrix} 3 & -4 & 2 \\ -2 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{bmatrix} \text{ con}$ দেখাও থে, $AB = BA = I_3$ ক.'or; ति.'oe, 'so; য.'or; 51'so; 5.'se; মা.'ss! $\text{example AB} = \begin{bmatrix} 3 & -4 & 2 \\ -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ 2 & 5 & -4 \end{bmatrix}$ $= \begin{bmatrix} 3-8+6 & 6-20+14 & -6+16-10 \\ -2+2+0 & -4+5+0 & 4-4+0 \\ -1-2+3 & -2-5+7 & 2+4-5 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{I}_3$ $BA = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{bmatrix} \begin{bmatrix} 3 & -4 & 2 \\ -2 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}$ $= \begin{bmatrix} 3-4+2 & -4+2 + 2 + 2 + 2 - 2 \\ 6-10+4 & -8 + 5 + 4 & 4+0-4 \\ 9-14+5 & -12+7+5 & 6+0-5 \end{bmatrix}$ $= \begin{vmatrix} 0 & \pm & 0 \\ 0 & 0 & 1 \end{vmatrix} = I_3$ $AB = BA = I_3$ (Showed)

ર

উচ্চতর গণিত : ১ম পত্র সমাধান বইঘব কম

 $2(c) \Lambda = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} \text{ GR} \quad B = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$ [U].'OC; D.'OF] হলে দেখাও থে . AB = BA $\textbf{equiv}: AB = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$ $= \begin{bmatrix} 6-0-5 & -2+0+2 & 2+0-2 \\ 15-15+0 & -5+6+0 & 5-5+0 \\ 0-15+15 & 0+6-6 & 0-5+6 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\mathbf{BA} = \begin{vmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{vmatrix} \begin{vmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{vmatrix}$ $= \begin{bmatrix} 6-5+0 & 0-1+1 & -3+0+3 \\ -30+30+0 & 0+6-5 & 15+0-15 \\ 10-10+0 & 0-2+2 & -5+0+6 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $AB = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = BA$ (Showed) $3(a) A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 2 \\ 1 & 2 \\ 0 & -1 \end{bmatrix} \text{ even},$ (i) AB ও BA निर्णत कता। [রা.'০৮ ; সি.'১২.'১৪; চ.'১০; য.'১২;দি.'১৩; মা.'১২] (ii) (Hale (4), $AB \neq BA$ [য. '09; ব. '09; চা. '0৮; সি. '১২] (i) সমাধান : AB = $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 1 & 2 \\ 0 & -1 \end{bmatrix}$ $= \begin{bmatrix} 0+2+0 & 2+4-3 \\ 0+5+0 & 8+10-6 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 5 & 12 \end{bmatrix}$ $BA = \begin{bmatrix} 0 & 2 \\ 1 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$

 $= \begin{bmatrix} 0+8 & 0+10 & 0+12 \\ 1+8 & 2+10 & 3+12 \\ 0-4 & 0-5 & 0-6 \end{bmatrix} = \begin{bmatrix} 8 & 10 & 12 \\ 9 & 12 & 15 \\ -4 & -5 & -6 \end{bmatrix}$ 3(b) A = $\begin{bmatrix} 2 & 1 \end{bmatrix}$ and B = $\begin{bmatrix} 1 & -2 & 0 \\ 4 & 5 & -3 \end{bmatrix}$ even , **AB** निर्णय कत्र । বি.'০৩] সমাধান : AB = $\begin{bmatrix} 2 & 1 \end{bmatrix} \begin{vmatrix} 1 & -2 & 0 \\ 4 & 5 & -3 \end{vmatrix}$ = [2+4 - 4+5 0-3] = [6 1 -3](Ans.) $3(c) A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \text{ even},$ (i) AB এবং BC নির্ণর কর ৷ বি. মা. '০৯;য.'১৩] (ii) দেশাও (AB)C = A(BC)[য.'০8] (i) সমাধান $*AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} 4+4 & 3+2\\ 12+8 & 9+4\\ 0+2 & 0+1 \end{bmatrix} = \begin{bmatrix} 8 & 5\\ 20 & 13\\ 2 & 1 \end{bmatrix}$ (Ans.) $BC = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ $= \begin{bmatrix} 4+6 & 8+9 \\ 2+2 & 4+3 \end{bmatrix} = \begin{bmatrix} 10 & 17 \\ 4 & 7 \end{bmatrix}$ (Ans.) (ii) প্রমাণ * AB = $\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ $= \begin{vmatrix} 4+4 & 3+2 \\ 12+8 & 9+4 \\ 0+2 & 0+1 \end{vmatrix} = \begin{bmatrix} 8 & 5 \\ 20 & 13 \\ 2 & 1 \end{vmatrix}$ $BC = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ $= \begin{bmatrix} 4+6 & 8+9 \\ 2+2 & 4+3 \end{bmatrix} = \begin{bmatrix} 10 & 17 \\ 4 & 7 \end{bmatrix}$ $\Delta \forall \forall (AB)C = \begin{bmatrix} 8 & 5 \\ 20 & 13 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$

 $= \begin{bmatrix} 8+10 & 16+15\\ 20+26 & 40+39\\ 2+2 & 4+3 \end{bmatrix} = \begin{bmatrix} 18 & 31\\ 46 & 79\\ 4 & 7 \end{bmatrix}$ $A(BC) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 10 & 17 \\ 4 & 7 \end{bmatrix}$ $= \begin{bmatrix} 10+8 & 17+14\\ 30+16 & 51+28\\ 0+4 & 0+7 \end{bmatrix} = \begin{bmatrix} 18 & 31\\ 46 & 79\\ 4 & 7 \end{bmatrix}$ \therefore (AB)C = A(BC) (Showed) 4(a) $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 0 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$ হলে দেখাও যে, (AB)C =A(BC) [তা. '০২; য. '০৬] প্রমাণ : AB = $\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ 2 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1+2 & 3+0 & 0+1 \\ 0+4 & 0+0 & 0+2 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 0 & 2 \end{bmatrix}$ $BC = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 2+9+0 \\ 4+0+1 \end{bmatrix} = \begin{bmatrix} 11 \\ 5 \end{bmatrix}$ এখন , (AB) C = $\begin{bmatrix} 3 & 3 & 1 \\ 4 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$ $= \begin{vmatrix} 6+9+1\\8+0+2 \end{vmatrix} = \begin{vmatrix} 16\\10 \end{vmatrix}$ A (BC) = $\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 11 \\ 5 \end{bmatrix} = \begin{bmatrix} 11+5 \\ 0+10 \end{bmatrix} = \begin{bmatrix} 16 \\ 10 \end{bmatrix}$ (AB) C = A (BC)(Showed) $4(\mathbf{b})\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 0 & 2 \\ 1 & 2 \\ 0 & -1 \end{bmatrix} \cong \mathbf{C} = \begin{bmatrix} -1 & 2 \\ 0 & 4 \\ 3 & 6 \end{bmatrix}$ হলে, (i) AB এবং AC নির্ণয় কর। (ii) দেখাও যে , AB + AC = A (B + C). (i) সমাধান : AB = $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 1 & 2 \\ 0 & -1 \end{bmatrix}$

$$= \begin{bmatrix} 0+2+0 & 2+4-3 \\ 0+5+0 & 8+10-6 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 5 & 12 \end{bmatrix}$$

$$AC = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 0 & 4 \\ 3 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} -1+0+9 & 2+8+18 \\ -4+0+18 & 8+20+36 \end{bmatrix} = \begin{bmatrix} 8 & 28 \\ 14 & 64 \end{bmatrix}$$
(ii) $\exists n \forall i : AB = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 1 & 2 \\ 0 & -1 \end{bmatrix}$

$$= \begin{bmatrix} 0+2+0 & 2+4-3 \\ 0+5+0 & 8+10-6 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 5 & 12 \end{bmatrix}$$

$$AC = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 0 & 4 \\ 3 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} -1+0+9 & 2+8+18 \\ -4+0+18 & 8+20+36 \end{bmatrix} = \begin{bmatrix} 8 & 28 \\ 14 & 64 \end{bmatrix}$$

$$B + C = \begin{bmatrix} 0 & 2 \\ 1 & 2 \\ 0 & -1 \end{bmatrix} + \begin{bmatrix} -1 & 2 \\ 0 & 4 \\ 3 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} 0-1 & 2+2 \\ 1+0 & 2+4 \\ 0+3 & -1+6 \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 1 & 6 \\ 3 & 5 \end{bmatrix}$$

$$d^{a_{1}}\overline{n}, AB + AC = \begin{bmatrix} 2 & 3 \\ 5 & 12 \end{bmatrix} + \begin{bmatrix} 8 & 28 \\ 14 & 64 \end{bmatrix}$$

$$= \begin{bmatrix} 2+8 & 3+28 \\ 5+14 & 12+64 \end{bmatrix} = \begin{bmatrix} 10 & 31 \\ 19 & 76 \end{bmatrix}$$

$$A(B + C) = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} -1 & 4 \\ 1 & 6 \\ 3 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} -1+2+9 & 4+12+15 \\ -4+5+18 & 16+30+30 \end{bmatrix} = \begin{bmatrix} 10 & 31 \\ 19 & 76 \end{bmatrix}$$

$$AB + AC = A (B + C) \quad \text{(Showed)}$$
4. (c) $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, B = \begin{bmatrix} 0 & 2 \\ 1 & 2 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 7 & 2 \\ 0 & -1 \end{bmatrix}$

উচ্চতর গণিত : ১ম পত্র নমাধাল বর্ট্যার ক্য

(i) সমাধান $*AB = \begin{bmatrix} 37 & 0 & -1 \\ 4 & 5 & 6 & 1 & -1 \end{bmatrix}$ $= \begin{bmatrix} 0+2+0 & 2^{\bullet} 4 & 3\\ 0+5+0 & 8 & 10-6 \end{bmatrix} = \begin{bmatrix} 2 & 3\\ 5 & 12 \end{bmatrix}$ Ans $\mathbf{BA} = \begin{bmatrix} 0 & 2 \\ 1 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $= \begin{bmatrix} 0+8 & 0+1000 \\ 1+8 & 2+100 \\ 0-4 & 0 \end{bmatrix} = \frac{1}{2}$ $= \begin{bmatrix} 58 & 10 & 1 \\ 9 & 12 & 15 \\ -4 & 5 & 6 \end{bmatrix}$ (ii) প্রমাণ : $AB = \begin{bmatrix} 2 \\ 5 \end{bmatrix}_{12}^{3}$ $BA = \begin{bmatrix} 8 & 10 & 12 \\ 9 & 12 \\ -4 & -5 & 6 \end{bmatrix}$ $AB \neq BA$ (Showed) $4(\mathbf{d})\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 4 \\ 6 \\ -1 \end{bmatrix} \otimes$ C = [1 2 - 5 6] হলে, (i) দেখাও যে, (AB)C = A(BC)[बू.')२] (ii) (AB)C নির্ণায় কর। [রা. '১১, '১৩; ব., য. '১০; ঢা. '১১, '১৩; দি. '১২] (i) প্রমাণ * AB = $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 4 & 6 \\ 6 & -1 \end{bmatrix}$ $=\begin{bmatrix} 4+12-3\\16+30-6\end{bmatrix} = \begin{bmatrix} 13\\40\end{bmatrix}$ $BC = \begin{bmatrix} 4\\6\\-1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -5 & 6 \end{bmatrix}$ $= \begin{bmatrix} 4 & 8 & -20 & 24 \\ 6 & 12 & -30 & 36 \\ 1 & 2 & 5 & 6 \end{bmatrix}$

 $(AB)C = \begin{bmatrix} 3^{-1} \end{bmatrix}$ 2678 89 $24 - 6 \qquad 60 + 15 \qquad 24 + 72 - 18 \\ + 60 - 12 \qquad -80 - 156 + 30 \qquad 96 + 180 - 36 \end{bmatrix}$ $=\frac{4}{15}$ $= \begin{bmatrix} 13 & 26 & -65 & 78 \\ 40 & 80 & -200 & 240 \end{bmatrix}$ (AB)C = A(BC) (Showed) (ii) সমাধান .: AB = $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 4 \\ 6 \\ -1 \end{bmatrix}$ $=\begin{bmatrix} 4+12-3\\16+30-6\end{bmatrix} = \begin{bmatrix} 13\\40\end{bmatrix}$ $(\mathbf{AB})\mathbf{C} = \begin{bmatrix} 13\\40 \end{bmatrix} \begin{bmatrix} 1 & 2 & -5 & 6 \end{bmatrix}$ $= \begin{bmatrix} 13 & 26 & -65 & 78 \\ 40 & 80 & -200 & 240 \end{bmatrix}$ (Ans.) 4(e) A = $\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix}$, B = $\begin{bmatrix} 1 & -2 & -5 \\ 3 & 4 & 0 \end{bmatrix}$ **E** [阴.'50] দেখাও যে, $AB \neq BA$. সমাধান : AB = $\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & -5 \\ 3 & 4 & 0 \end{bmatrix}$ $= \begin{bmatrix} 2-3 & -4-4 & -10+0\\ 1+0 & -2+0 & -5+0\\ -3+12 & 6+16 & 15+0 \end{bmatrix}$ $= \begin{bmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{bmatrix}$ $BA = \begin{bmatrix} 1 & -2 & -5 \\ 3 & 4 & 0 \end{bmatrix} \begin{vmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{vmatrix}$ $= \begin{bmatrix} 2-2+15 & -1+0-20 \\ 6+4+0 & -3+0+0 \end{bmatrix} = \begin{bmatrix} 15 & -21 \\ 10 & -3 \end{bmatrix}$ (Showed)

5.(a) $A = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$ হলে A^2 এবং A^3 निर्मय रुद्र এবং দেশাও যে, $A^2 + \omega = 111$ একটি শুন্য মাট্রির; বেখানে $\mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ [ব.'es রা.'eq.'১২; তা.'es; **চ.'০৯; দি.'০৯,'১৪; মা.'১৩**] সমাধান 8 A² = A.A = $\begin{bmatrix} 1 & 2 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$ $= \begin{bmatrix} 1+8 & 2-6 \end{bmatrix} \begin{bmatrix} 9 & -4 \\ 4 & 12 & 9 & -9 & 17 \end{bmatrix}$ $A^{2} = A A^{2} = 1 \frac{1}{-1} \frac{1}{-1} \frac{1}{-17}$ $= \begin{bmatrix} 9 - 16 & -4 & 34 \\ -4 & 16 - 51 \end{bmatrix} = \begin{bmatrix} -7 & 30 \\ 60 & -67 \end{bmatrix}$ এখন 🔬 🔷 🛶 🛙 🛔 $= \begin{bmatrix} 1 & 1 \\ - & 17 \end{bmatrix} + 2\begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix} - 11\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 9 & -4 \\ -8 & 17 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ 8 & -6 \end{bmatrix} + \begin{bmatrix} -11 & 0 \\ 0 & -11 \end{bmatrix}$ $= \begin{bmatrix} 9 & 2-11 & -4+4+0 \\ -8+8+0 & 17-6-11 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ অতএব $A^2 + 2A - 111$ একটি শন্য মাটিঙ্গ A(b) $A = \begin{bmatrix} 3 & 2 \\ 5 & -1 \end{bmatrix}$ হলে , $A^2 - 5A + 6I$ নির্ণয় কর ; যেখানে $\mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ [ঢা. '০৭; সি. '০৯; ব. '১২] সমাধান $A^2 = A = \begin{vmatrix} 3 & 2 \\ 5 & -1 \end{vmatrix} \begin{vmatrix} 3 & 2 \\ 5 & -1 \end{vmatrix}$ $= \begin{bmatrix} 9+10 & 6-2 \\ 15-5 & 10+1 \end{bmatrix} = \begin{bmatrix} 19 & 4 \\ 10 & 11 \end{bmatrix}$ এখন . A² - 5A + 61 $= \begin{bmatrix} 19 & 4 \\ 10 & 11 \end{bmatrix} - 5 \begin{bmatrix} 3 & 2 \\ 5 & -1 \end{bmatrix} + 6 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 19 & 4 \\ 10 & 11 \end{bmatrix} + \begin{bmatrix} -15 & -10 \\ -25 & 5 \end{bmatrix} + \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$ $= \begin{bmatrix} 19 - 15 + 6 & 4 - 10 + 0 \\ 10 - 25 + 0 & 11 + 5 + 6 \end{bmatrix} = \begin{bmatrix} 10 & -6 \\ -15 & 22 \end{bmatrix}$ (Ans.)

5(c)
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} = (a, A^2 - 4A - 5) I = A^4 = 5$$

 $a = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $a = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $a = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$
 $a = \begin{bmatrix} 1 + 4 + 4 & 2 + 2 + 4 & 2 + 4 + 2 \\ 2 + 2 + 4 & 4 + 1 + 4 & 4 + 2 + 2 \\ 2 + 4 + 2 & 4 + 2 + 2 & 4 + 4 + 1 \end{bmatrix}$
 $= \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix}$
 $a = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} - 4 \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} - 5 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} + \begin{bmatrix} -4 & -8 & -8 \\ -8 & -4 & -8 \\ -8 & -4 & -8 \\ -8 & -8 & -4 \end{bmatrix} + \begin{bmatrix} -5 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -5 \end{bmatrix}$
 $= \begin{bmatrix} 9 -4 - 5 & 8 - 8 + 0 & 8 - 8 + 0 \\ 8 - 8 + 0 & 9 - 4 - 5 \\ 8 - 8 + 0 & 8 & 9 - 4 - 5 \end{bmatrix}$
 $= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (Ans.)
5(d) $A = \begin{bmatrix} -1 & 1 & -1 \\ 3 & -3 & 5 \\ 5 & -5 & 5 \end{bmatrix}, B = \begin{bmatrix} 0 & 4 & 3 \\ 1 & -3 & -3 \\ -1 & 4 & 4 \end{bmatrix}$
 $a = \begin{bmatrix} -1 & 1 & -1 \\ 3 & -3 & 5 \\ 5 & -5 & 5 \end{bmatrix} \begin{bmatrix} -1 & 1 & -1 \\ 3 & -3 & 5 \\ 5 & -5 & 5 \end{bmatrix}$

1+3-51+5-5-3-9+253+92.5-3-15+-5-15+255+1525-525|-1 1 1 $B^{2} = \begin{bmatrix} 0 & 4 \\ 1 & -3 & -6 \\ -1 & 4 & 4 \end{bmatrix}$ $\begin{array}{c}
 3 \\
 -3 \\
 4 \\
 4
 \end{array}$ 0+4-3 0-i2 12 0-12+12 $= \begin{bmatrix} 0-3+3 & 4+9 & 12 & 3+9-12 \\ 0+4-4 & -4-2+16 & 3-12 & 16 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} -1 & 1 & 1 \\ 13 & -13 & 7 \\ 5 & -5 & -5 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} -2 & 1 & 1 \\ 13 & -14 & 7 \\ 5 & -5 & -6 \end{bmatrix}$ (Ans.) 6. (a) সমাধান : মনে করি, P ও Q যথাক্রমে বইয়ের সংখ্যার ম্যাট্রিক্স ও লাভ ম্যাট্রিক্স। তাহলে, $P = [100 \ 125 \ 110]$ $Q = \begin{bmatrix} 70.00 - 60.00\\ 102.00 - 90.00\\ 96.00 - 85.00 \end{bmatrix} = \begin{bmatrix} 10.00\\ 12.00\\ 11.00 \end{bmatrix}$ ∴ মোট লাভ = P × O $\begin{bmatrix} 100 & 125 & 110 \end{bmatrix} \times \begin{bmatrix} 10.00 \\ 12.00 \\ 11.00 \end{bmatrix}$ = = [1000.00 + 1500.00 + 1210.00]:. মোট লাভ : 3710.00 টাকা 6(b) সমাধান : মনে করি, P ও O যথাক্রমে বিক্রীত কলমের সংখ্যার ম্যাট্রিক্স ও লাভ ম্যাট্রিক্স। তাহলে,

উচ্চতর গণিত: ১ম পত্র সমাধান ব্রুঘর কম $P = \begin{bmatrix} 140 & 155 & 132 \\ 130 & 100 & 148 \end{bmatrix}, Q = \begin{bmatrix} 1.50 \\ 2.00 \\ 1.25 \end{bmatrix}$ মোট নাত $= P \times O$ $\begin{bmatrix} 140 & 155 & 132 \\ 130 & 100 & 148 \end{bmatrix} \times \begin{bmatrix} 1.50 \\ 2.00 \\ 125 \end{bmatrix}$ $\begin{bmatrix} 2 \cdot 0.00 & 310.09 + 165.00 \\ 195.00 + 200.00 + 185.00 \end{bmatrix} = \begin{bmatrix} 685.00 \\ 580.00 \end{bmatrix}$:: মেট লাভ = (685.00 - 580 CO) গীকা = 1265.00 টাকা নির্ণায়ক প্রশ্নমালা - IB 1(a) প্রদন্ত ম্যাট্রিক্সটি কর্ণ,স্কেলার ও অভেদক ম্যাট্রিক্স। (b) B ম্যাট্রিক্সটির ক্রম 2×3 ∴ Ans B (c) $3\mathbf{B} = \begin{bmatrix} 3 \times 1 & 3 \times 3 & 3 \times 0 \\ 3 \times 2 & 3 \times 0 & 3 \times 1 \end{bmatrix}$ Ans. B (d) $A - 2C = \begin{bmatrix} 1-2 & -1-0 \\ 0-0 & 2-2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix}$ A এর ক্রম = A এর সারি সংখ্যা \times B এর **(e)** কলাম সংখ্যা = 2×3 Ans. B (f) $A^{-1} = \frac{1}{2-0} \begin{vmatrix} 2 & -(-1) \\ -0 & 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix}$ (g) $\begin{vmatrix} 1 & 0 \\ -1 & 2 \\ 2 & 0 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 0 & 1 \\ 2 & -3 \end{vmatrix} = \begin{vmatrix} x & 1 \\ -1 & z \\ y & -3 \end{vmatrix}$ $\Rightarrow \begin{vmatrix} 3 & 1 \\ -1 & 3 \\ 4 & -3 \end{vmatrix} = \begin{vmatrix} x & 1 \\ -1 & z \\ y & -3 \end{vmatrix}$ (x, y, z) = (3, 4, 3); Ans. B (h)
 (b)
 1
 2
 3
 4
 4
 4
 4
 4
 5
 6
 9
 5
 6
 7
 7
 8
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 8
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7</ বলে নির্ণায়কের মান শূন্য। : Ans. C. (i) (i) $A^{-1} = \frac{1}{5+6} \begin{bmatrix} 1 & -2 \\ 3 & 5 \end{bmatrix}$

 $[c_1 - c_2, a = c_2 - c_3]$ $=1\{a(a-b)(a-b) - b(a-b)(a-b)\}$ [শেষ সারি বরাবর বিস্তার করে।] $=(-b)^{2}(a-b)=(a-b)^{3}=R.H.S.$ (Proved) $1(i)(c) \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 - bc & b^2 - ca & c^2 - ab \end{vmatrix} = 0$ [য.'০৩;চুয়েট'০৫-০৬] L.H.S.= $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 - bc & b^2 - ca & c^2 - ab \end{vmatrix}$ $= \begin{vmatrix} a-b & b-c & c \\ a^2-b^2+ca-bc & b^2-c^2+ab-ca & c^2-ab \end{vmatrix}$ $[c_1' = c_1 - c_2, \text{ and } c_2' = c_2 - c_3]$ $=1(a - b)(b^2 - c^2 + ab - ca)$ $-(b-c)(a^2-b^2+ca-bc)$ ১ম সারি বরাবর বিস্তার **করে**।] $= (a b) \{ (b c)(b + c) + a(b c) \}$ $-(b-c)\{(a-b)(a + + c(a-b))\}$ $= (a-b)(b-c)(a+b+c)^{2} - (a-b)(b-c)$ (a + b + c) = 0 = R.H.S. (Proved) 1 1 1 $1(i)(a) | 1 + x = 1 | = x y [\overline{3}.' 0]$ 1 1 + y1 **2 NIIS.**= $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ -x & x & 1 \\ 0 & y & 1+y \end{vmatrix}$ $[c_1 - c_1, c_1 - c_1]$ $= 1{xv - 0} = xy = R.H.S.$ (Proved) $\frac{1}{|a|} \begin{vmatrix} 1 & 1 \\ b & c \\ a & b^3 & c^3 \end{vmatrix} = (a - b)(b - c)_{12} - a^3$ (a + b + c) [5. of; 3. so] श्रमान s L.H.S.=

(ii) $AB = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ -15 & -3 \end{bmatrix}$ (iii) $\begin{bmatrix} a-4 & 8 \\ 2 & a+2 \end{bmatrix}$ ANDER WITH THE ALL AND ALL AND

1.(i) প্রমাণ কর যে. (a) $\begin{vmatrix} 1 & 1 & 1 \\ 1 & p & p^2 \\ 1 & p^2 & p^4 \end{vmatrix}$ = p (p -1)² (p²-1) [ঢা.'০৭,'১২; রা.'১১; কু.', য.'০৯; চ.'১২; রুয়েট'০৭-০৮] প্রমাণ : L.H.S.= $\begin{vmatrix} 1 & 1 & 1 \\ 1 & p & p^2 \\ 1 & p & p^4 \end{vmatrix}$ $= \begin{vmatrix} 0 & 0 & 1 \\ 1-p & p(1-p) & p^2 \\ 1-p^2 & p^2(1-p^2) & p^4 \end{vmatrix}$ $[c_1-c \quad \mathfrak{A} c_2 - c_3]$ $= 1\{(1-p)p^{2}(1-p^{2} - p(1-p)(1-p^{2}))\}$ ্রিম সারি বরাবর বিস্তার করে] $= (1 - p)(1 - p^2)(p^2 - p)$ $= (1 - p)(1 - p^2) p (p - 1)$ $= p(p-1)^2(p^2-1) = R.H.S.$ (Proved) 1(i)(b) $\begin{vmatrix} a^2 & ab & b^2 \\ 2a & a+b & 2b \\ 1 & 1 & 1 \end{vmatrix}$ = $(a-b)^3$ [ज.'os; मि.'oo] প্রমাণ ঃ L.H.S.= $\begin{vmatrix} a & ab & b \\ 2a & +b & 2b \\ 1 \end{vmatrix}$ $=\begin{vmatrix} a(a & b) & v(a-b & b^{2}) \\ a-b & a & 2b \end{vmatrix}$

.

$$\begin{aligned} &= \begin{bmatrix} 0 & 0 & 0 & 1 \\ a^{2} - b^{3} & b^{2} - c^{3} & c^{3} \\ a^{3} - b^{3} & b^{3} - c^{3} & c^{3} \end{bmatrix} \\ &= [(a - b)(b^{3} - c^{3}) - (b - c)(a^{3} - b^{3})] \\ &= [a + b(b^{3} - c^{3}) - (b - c)(a^{3} - b^{3})] \\ &= [a + b(c^{3} - c^{3}) - (b - c)(a^{3} - b^{3})] \\ &= (a + b + c) \begin{bmatrix} b + c - a & a \\ a + b + c \end{bmatrix} \begin{bmatrix} b + c - a & a^{2} & 1 \\ a + b - c \end{bmatrix} \begin{bmatrix} c - a & b & b^{2} & 1 \\ a + b - c & c^{2} & 1 \end{bmatrix} \\ &= (a + b + c) \begin{bmatrix} b + c - a & a^{2} & 1 \\ a + b - c & c^{2} & 1 \end{bmatrix} \\ &= (a + b + c) \begin{bmatrix} b + c - a & a^{2} & 1 \\ a + b - c & c^{2} & 1 \end{bmatrix} \\ &= (a + b + c) \begin{bmatrix} -2(a - b) & a^{2} - b^{2} & 0 \\ -2(b - c) & b^{2} - c^{2} & 0 \end{bmatrix} \\ &= (a + b + c) \begin{bmatrix} -2(a - b) & a^{2} - b^{2} & 0 \\ -2(b - c) & b^{2} - c^{2} & 0 \end{bmatrix} \\ &= (a + b + c) \begin{bmatrix} -2(a - b) & a^{2} - b^{2} & 0 \\ -2(b - c) & b^{2} - c^{2} & 0 \end{bmatrix} \\ &= (a + b + c) \begin{bmatrix} a + b + c \\ -2(b + c) & b^{2} - c^{2} & 0 \end{bmatrix} \\ &= (a + b + c) (a - b) (b - c)^{2} - c^{2} & 0 \end{bmatrix} \\ &= (a + b + c) (a - b) (b - c)^{2} - c^{2} & 0 \end{bmatrix} \\ &= (a + b + c) (a - b) (b - c)^{2} - a^{2} & 0 \end{bmatrix} \\ &= (a + b + c) (a - b) (b - c)^{2} - a^{2} & 0 \end{bmatrix} \\ &= (a + b + c) (a - b) (b - c)^{2} - a^{2} & 0 \end{bmatrix} \\ &= (a + b + c) (a - b) (b - c)^{2} - a^{2} & 0 \end{bmatrix} \\ &= (a + b + c) (a - b) (b - c)^{2} - a^{2} & 0 \end{bmatrix} \\ &= (a + b + c) (a - b) (b - c)^{2} - a^{2} & 0 \end{bmatrix} \\ &= (a + b + c) (a - b) (b - c)^{2} - a^{2} & 0 \end{bmatrix} \\ &= (a + b + c) (a - b) (b - c)^{2} - a^{2} & 0 \end{bmatrix} \\ &= (a - b)(b - c)(c - a) \\ &= (a - b)(c - c)(a - b) \\ &= (a - b)($$

নির্ণায়ক: প্রশ্নমালা I B

= R.H.S. (Proved) 2. কিম্তার না করে প্রমাণ কর ঃ (a) $\begin{vmatrix} 1 & bc & bc(b+c) \\ 1 & ca & ca(c+a) \\ 1 & ab & ab(a+b) \end{vmatrix} = abc \begin{vmatrix} a & 1 & b+c \\ b & 1 & c+a \\ c & 1 & a+b \end{vmatrix} = 0$ [ঢা.'০৯; য.'১৩; কুয়েট'০৯-১০] প্রমাণ : L.H.S. = $\begin{vmatrix} 1 & bc & bc(b+c) \\ 1 & ca & ca(c+a) \\ 1 & ab & ab(a+b) \end{vmatrix}$ $=\frac{1}{abc}\begin{vmatrix} a & abc & abc(b+c) \\ b & abc & abc(c+a) \\ c & abc & abc(a+b) \end{vmatrix}$ $=\frac{abc.abc}{abc}\begin{vmatrix} a & 1 & b+c \\ b & 1 & c+a \\ c & 1 & a+b \end{vmatrix}$ = abc $\begin{vmatrix} a & 1 & b+c \\ b & 1 & c+a \\ c & 1 & a+b \end{vmatrix}$ = M.H.S. এখন , abc $\begin{vmatrix} a & 1 & b+c \\ b & 1 & c+a \\ c & 1 & a+b \end{vmatrix}$ $= abc \begin{vmatrix} a & 1 & a+b+c \\ b & 1 & a+b+c \\ c & 1 & a+b+c \end{vmatrix} [c'_3 = c_3 + c_1]$ $= \operatorname{abc}(a+b+c) \begin{vmatrix} a & 1 & 1 \\ b & 1 & 1 \\ c & 1 & 1 \end{vmatrix}$ = abc (a+b+c).0 = 0 = R.H.S.[দুইটি কলাম একই ।] 2(b) $\begin{vmatrix} 1 & x-a & y-b \\ 1 & x_1-a & y_1-b \\ 1 & x_2-a & y_2-b \end{vmatrix} = \begin{vmatrix} 1 & x & y \\ 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \end{vmatrix}$ থমাল ঃ L.H.S.= $\begin{vmatrix} 1 & x-a & y-b \\ 1 & x_1-a & y_1-b \\ 1 & x_2-a & y_2-b \end{vmatrix}$

প্রমাণ ঃ LH.S.= $\begin{vmatrix} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix}$ $= \begin{vmatrix} b & c+a & a+b \\ q & r+p & p+q \\ y & z+x & x+y \end{vmatrix} + \begin{vmatrix} c & c+a & a+b \\ r & r+p & p+q \\ z & z+x & x+y \end{vmatrix}$ $=\begin{vmatrix} b & c & a+b \\ q & r & p+q \\ y & z & x+y \end{vmatrix} + \begin{vmatrix} b & a & a+b \\ q & p & p+q \\ y & x & x+y \end{vmatrix}$ $+ \begin{vmatrix} c & c & a+b \\ r & r & p+q \\ z & z & x+y \end{vmatrix} + \begin{vmatrix} c & a & a+b \\ r & p & p+q \\ z & x & x+y \end{vmatrix}$ $= \begin{vmatrix} b & c & a \\ q & r & p \\ y & z & x \end{vmatrix} + \begin{vmatrix} b & c & b \\ q & r & q \\ y & z & y \end{vmatrix} + \begin{vmatrix} b & a & a \\ q & p & p \\ y & x & x \end{vmatrix}$ $+ \begin{vmatrix} b & a & b \\ q & p & q \\ y & x & y \end{vmatrix} + 0 + \begin{vmatrix} c & a & a \\ r & p & p \\ z & x & x \end{vmatrix} + \begin{vmatrix} c & a & b \\ r & p & q \\ z & x & y \end{vmatrix}$ $= - \begin{vmatrix} b & a & c \\ q & p & r \\ v & x & z \end{vmatrix} + 0 + 0 + 0 + 0$ $+ (-) \begin{vmatrix} a & c & b \\ p & r & q \\ x & z & y \end{vmatrix}$ $= (-)(-) \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix} + (-)(-) \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$ $= 2 \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix} = \text{R.H.S.(Proved)}$ 3. প্রমাণ কর যে. (a) $\begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{vmatrix}$ $= 2 (a + b + c)^{3}$ [ह. '00; व. '05; य. '09; मि. '02. '22]

$$= \begin{vmatrix} a+b+2c & a & b \\ c & a & c+a+2b \end{vmatrix}$$

$$= \begin{vmatrix} 2(a+b+c) & a & b \\ 2(a+b+c) & b+c+2a & b \\ 2(a+b+c) & a & c+a+2b \end{vmatrix}$$
www.boighar.c[c'_a = c_1 + (c_2 + c_3)]
$$= 2(a+b+c) \begin{vmatrix} 1 & a & b \\ 1 & b+c+2a & b \\ 1 & a & c+a+2b \end{vmatrix}$$

$$= 2(a+b+c) \begin{vmatrix} 0 & -(a+b+c) & 0 \\ 0 & a+b+c & -(a+b+c) \\ 1 & a & c+a+2b \end{vmatrix}$$

$$= 2(a+b+c) \begin{vmatrix} 0 & -(a+b+c) & 0 \\ 0 & a+b+c & -(a+b+c) \\ 1 & a & c+a+2b \end{vmatrix}$$

$$= 2(a+b+c) 1\{-(a+b+c) \times -(a+b+c)\}$$

$$= 2(a+b+c)^3 = R.H.S.$$
3(b)
$$\begin{vmatrix} 1+x_1 & x_2 & x_3 \\ x_1 & 1+x_2 & x_3 \\ x_1 & x_2 & 1+x_3 \end{vmatrix}$$

$$= 1+x_1+x_2+x_3 \quad x_2 \quad x_3 \\ x_1 & 1+x_2 & x_3 \\ x_1 & x_2 & 1+x_3 \end{vmatrix}$$

$$= \left| 1+x_1 + x_2 + x_3 & 1+x_2 & x_3 \\ 1+x_1 + x_2 + x_3 & 1+x_2 & x_3 \\ 1+x_1 + x_2 + x_3 & 1+x_2 & x_3 \\ 1+x_1 + x_2 + x_3 & 1+x_2 & x_3 \\ 1+x_1 + x_2 + x_3 & 1+x_2 & x_3 \\ 1+x_1 + x_2 + x_3 & 1+x_2 & x_3 \\ 1 & x_2 & 1+x_3 \end{vmatrix}$$

$$= (1+x_1 + x_2 + x_3) \begin{vmatrix} 1 & x_2 & x_3 \\ 1 + x_2 & 1+x_3 \\ 1 & x_2 & 1+x_3 \end{vmatrix}$$

$$= (1+x_1 + x_2 + x_3) \begin{vmatrix} 0 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & x_2 & 1+x_3 \end{vmatrix}$$

$$= (1+x_1 + x_2 + x_3) \begin{vmatrix} 0 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & x_2 & 1+x_3 \end{vmatrix}$$

$$= (1+x_1 + x_2 + x_3) \cdot (1-0)$$

$$= 1+x_1 + x_2 + x_3 \cdot (1-0)$$

L.H.S.

$$\begin{aligned} \mathbf{3(c)} \begin{vmatrix} a & b & c & c \\ a^{2} & b^{2} & c^{2} \\ a^{2} & b^{2} & c^{2} \\ a^{2} & b^{2} & c^{2} \\ \hline [\mathbf{\beta}, \mathbf{i}_{\mathbf{y}}, \mathbf{x}], \mathbf{x}(\mathbf{q}, \mathbf{i}_{\mathbf{y}}, \mathbf{q}, \mathbf{x}_{\mathbf{y}}) \\ \hline [\mathbf{\beta}, \mathbf{i}_{\mathbf{y}}, \mathbf{x}], \mathbf{x}(\mathbf{q}, \mathbf{i}_{\mathbf{y}}, \mathbf{q}, \mathbf{x}_{\mathbf{y}}) \\ \hline [\mathbf{\beta}, \mathbf{i}_{\mathbf{y}}, \mathbf{x}], \mathbf{x}(\mathbf{q}, \mathbf{i}_{\mathbf{y}}, \mathbf{q}, \mathbf{x}_{\mathbf{y}}) \\ \hline [\mathbf{\beta}, \mathbf{i}_{\mathbf{y}}, \mathbf{x}], \mathbf{x}(\mathbf{q}, \mathbf{i}_{\mathbf{y}}, \mathbf{q}, \mathbf{x}_{\mathbf{y}}) \\ \hline [\mathbf{\beta}, \mathbf{i}_{\mathbf{y}}, \mathbf{x}], \mathbf{x}(\mathbf{q}, \mathbf{i}_{\mathbf{y}}, \mathbf{q}, \mathbf{x}_{\mathbf{y}}) \\ \hline [\mathbf{\beta}, \mathbf{i}_{\mathbf{y}}, \mathbf{x}], \mathbf{x}(\mathbf{q}, \mathbf{i}_{\mathbf{y}}, \mathbf{q}, \mathbf{x}_{\mathbf{y}}) \\ \hline [\mathbf{k}, \mathbf{i}_{\mathbf{y}}, \mathbf{x}], \mathbf{x}(\mathbf{q}, \mathbf{i}_{\mathbf{y}}, \mathbf{q}, \mathbf{x}_{\mathbf{y}}) \\ \hline [\mathbf{k}, \mathbf{i}_{\mathbf{y}}, \mathbf{x}], \mathbf{x}(\mathbf{q}, \mathbf{i}_{\mathbf{y}}, \mathbf{q}, \mathbf{x}_{\mathbf{y}}) \\ \hline [\mathbf{k}, \mathbf{i}_{\mathbf{y}}, \mathbf{x}], \mathbf{x}(\mathbf{q}, \mathbf{i}_{\mathbf{y}}, \mathbf{q}, \mathbf{x}_{\mathbf{y}}) \\ \hline [\mathbf{k}, \mathbf{i}_{\mathbf{y}}, \mathbf{x}], \mathbf{x}(\mathbf{q}, \mathbf{i}_{\mathbf{y}}, \mathbf{q}, \mathbf{x}_{\mathbf{y}}) \\ \hline [\mathbf{k}, \mathbf{i}_{\mathbf{y}}, \mathbf{x}], \mathbf{x}(\mathbf{q}, \mathbf{i}_{\mathbf{y}}, \mathbf{q}, \mathbf{x}_{\mathbf{y}}) \\ \hline [\mathbf{k}, \mathbf{i}_{\mathbf{y}}, \mathbf{k}], \mathbf{x}(\mathbf{q}, \mathbf{i}_{\mathbf{y}}, \mathbf{q}, \mathbf{x}_{\mathbf{y}}) \\ \hline [\mathbf{k}, \mathbf{i}_{\mathbf{y}}, \mathbf{k}], \mathbf{k}, \mathbf$$

[য.'০০]

[₹.'œ]

 $= 3 \begin{vmatrix} 1 & a+b+c & b+c \\ 1 & a+b+c & c+a \\ 1 & a+b+c & a+b \end{vmatrix} \quad [c'_2 = c_2 + c_3]$ $= 3(a+b+c) \begin{vmatrix} 1 & 1 & b+c \\ 1 & 1 & c+a \\ 1 & 1 & a+b \end{vmatrix}$ = 3(a + b + c). 0 = 0 = R.H.S.[∴ দুইটি কলাম একই ।] 3(h) $\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$ = $(a + b + c)^3$ [রা. '০৪; রুয়েট '১১–১২] **L.H.S.=** $\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$ $|a+b+c \quad a+b+c \quad a+b+c|$ $= \begin{array}{cccc} 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{array}$ $[r_1' = r_1 + (r_2 + r_3)]$ $= (a + b + c) \begin{vmatrix} 1 & 1 & 1 \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b \end{vmatrix}$ $= (a+b+c) \begin{vmatrix} 0 & 0 & 1 \\ (a+b+c) & -(a+b+c) & 2b \\ 0 & (a+b+c) & c-a-b \end{vmatrix}$ $[c_1' = c_1 - c_2, c_2' = c_2 - c_3]$ $= (a + b + c).1(a + b + c)^{2}$ $= (a + b + c)^{3} = R.H.S.$ (Proved) lgz log x log y 4.(a) $\log 2x \log 2y \log 2z = 0$ $\log 3x \log 3y \log 3z$ [ব.'১৩; কুয়েট'০৭-০৮; বুয়েট'০৯-১০; রুয়েট'১১-১২] $\log x \log y$ lgz প্রমাণ : L.H.S.= $\log 2x \log 2y \log 2z$ $\log 3x \log 3y \log 3z$ $\log x - \log y$ $\log y - \log z$ lgz $= \frac{\log x - \log 2y}{\log 3x - \log 2y} \frac{\log 2y - \log 2z}{\log 3x - \log 3y} \frac{\log 2y - \log 2z}{\log 3z} \frac{\log 2z}{\log 3z}$ 5. প্রমাণ কর যে,

 $[c_1' = c_1 - c_2, c_2' = c_2 - c_3]$ $\left|\log \frac{x}{y} \log \frac{y}{z} \quad \lg z\right|$ $=\log \frac{x}{y} \log \frac{y}{z} \log 2z$ $\log \frac{x}{v} \log \frac{y}{z} \log 3z$ $= \log \frac{x}{y} \log \frac{y}{z} \begin{vmatrix} 1 & 1 & \lg z \\ 1 & 1 & \log 2z \\ 1 & 1 & \log 3z \end{vmatrix}$ $= \log \frac{x}{v} \log \frac{y}{z} \times 0 = 0 = \text{R.H.S.}$ 4(b) $\begin{vmatrix} 1 & \cos 2\alpha & \sin \alpha \\ 1 & \cos 2\beta & \sin \beta \\ 1 & \cos 2\gamma & \sin \gamma \end{vmatrix} = 2 (\sin \alpha - \sin \beta)$ $(\sin \beta - \sin \gamma) (\sin \gamma - \sin \alpha)$ বি.'০৩] প্রমাণ : L.H.S.= $\begin{vmatrix} 1 & \cos 2\alpha & \sin \alpha \\ 1 & \cos 2\beta & \sin \beta \end{vmatrix}$ $1 \cos 2\gamma \sin \gamma$ $0 \cos 2\alpha - \cos 2\beta \sin \alpha - \sin \beta$ $= 0 \cos 2\beta - \cos 2\gamma \sin \beta - \sin \gamma$ $\sin \gamma$ $\cos 2\gamma$ $[r_1' = r_1 - r_2, r_2' = r_2 - r_2]$ = 1{ $(\cos 2\alpha - \cos 2\beta)(\sin \beta - \sin \gamma) (\sin\alpha - \sin\beta)(\cos 2\beta - \cos 2\gamma)$ $= (1 - 2\sin^2 \alpha - 1 + 2\sin^2 \beta)(\sin \beta - \sin \gamma)$ $-(\sin\alpha - \sin\beta)(1 - 2\sin^2\beta - 1 + 2\sin^2\gamma)$ $= -2(\sin^2\alpha - \sin^2\beta)(\sin\beta - \sin\gamma)$ + $2(\sin\alpha - \sin\beta)(\sin^2\beta - \sin^2\gamma)$ = $-2(\sin\alpha - \sin\beta)(\sin\alpha + \sin\beta)(\sin\beta - \sin\gamma)$ + $2(\sin\alpha - \sin\beta)(\sin\beta - \sin\gamma)(\sin\beta + \sin\gamma)$ = $2(\sin\alpha - \sin\beta)(\sin\beta - \sin\gamma)$ $(-\sin\alpha - \sin\beta + \sin\beta + \sin\gamma)$ = $2(\sin\alpha - \sin\beta)(\sin\beta - \sin\gamma)(\sin\gamma - \sin\alpha)$ = R.H.S. (Proved)

(a) $\begin{vmatrix} -a^2 & ab & ac \\ ab & -b^2 & bc \\ ac & bc & -c^2 \end{vmatrix} = 4 a^2 b^2 c^2$ [চ. '০২, '০৪; সি. '০৬, '০১; রা. '০৮] প্রমাণ ঃ L.H.S.= $\begin{vmatrix} -a^2 & ab & ac \\ ab & -b^2 & bc \\ ac & bc & -c^2 \end{vmatrix}$ $= \operatorname{abc} \begin{vmatrix} -a & a & a \\ b & -b & b \\ c & c & -c \end{vmatrix} = \operatorname{abc} \begin{vmatrix} 0 & 2a & a \\ 0 & 0 & b \\ 2c & 0 & -c \end{vmatrix}$ $[c_1' = c_1 - c_2, c_2' = c_2 - c_3]$ = abc{2c(2ab - 0)} = abc.4abc $= 4a^2 b^2 c^2 = R.H.S.$ (Proved) 5(b) $\begin{vmatrix} b^2 + c^2 & ab & ca \\ ab & c^2 + a^2 & bc \\ ca & bc & a^2 + b^2 \end{vmatrix} = 4a^2b^2c^2$ ৰ. '08, '১২] ধমাণ : L.H.S. = $\begin{vmatrix} b^2 + c^2 & ab & ca \\ ab & c^2 + a^2 & bc \\ ca & bc & a + b^2 \end{vmatrix}$ $= \frac{1}{abc} \begin{vmatrix} ab^{2} + ac^{2} & ab^{2} & c^{2}a \\ a^{2}b & bc^{2} + a^{2}b & bc^{2} \\ ca^{2} & b^{2}c & ca^{2} + b^{2}c \end{vmatrix}$ $= \frac{1}{abc} \operatorname{abc} \begin{vmatrix} b^2 + c^2 & b^2 & c^2 \\ a^2 & c^2 + a^2 & c^2 \\ a^2 & b^2 & a^2 + b^2 \end{vmatrix}$ $= \begin{vmatrix} 0 & b^2 & c^2 \\ -2c^2 & c^2 + a^2 & c^2 \\ -2b^2 & b^2 & a^2 + b^2 \end{vmatrix}$ $[c'_1 = c_1 - (c_2 + c_3)]$ $= 2c^2 (a^2b^2 + b^4 - b^2c^2) -$ $2b^2(b^2c^2-c^4-c^2a^2)$ $= 2b^{2}c^{2}(a^{2} + b^{2} - c^{2}) - b^{2}c^{2}(b^{2} - c^{2} - a^{2})$ $= 2b^{2}c^{2}(a^{2} + b^{2} - c^{2} - b^{2} + c^{2} + a^{2})$ $= 2b^{2}c^{2}.2a^{2} = 4a^{2}b^{2}c^{2} = R.H.S.$ (Proved)

5.(c) $\begin{vmatrix} x^2 & yz & zx + z^2 \\ x^2 + xy & y^2 & zx \\ xy & y^2 + yz & z^2 \end{vmatrix} = 4x^2y^2z^2$ যি. '08.'0৮: রা.'১৩] প্রমাণ ঃ L.H.S.= $\begin{vmatrix} x^2 & yz & zx + z^2 \\ x^2 + xy & y^2 & zx \\ xy & y^2 + yz & z^2 \end{vmatrix}$ $= xyz \begin{vmatrix} x & z & x+z \\ x+y & y & x \\ y & y+z & z \end{vmatrix}$ $= xyz \begin{vmatrix} -2z & z & x+z \\ 0 & y & x \\ -2z & y+z & z \end{vmatrix}$ $\begin{vmatrix} 0 & -y & x \\ 0 & y & x \\ -2z & y+z & z \end{vmatrix} \quad [r_1' = r_1 - r_3]$ = $xyz(-2z)(-xy - xy) = -2xyz^{2}(-2xy)$ = $4x^{2}y^{2}z^{2} = R.H.S.$ (Proved) 5(d) $\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix}$ $=(1+a^2+b^2)^3$ [রা.'০৯; য.'০২; সি.'১০,'১৩; কুরেট'০৩-০৪, ১১-১২] **L.H.S.**= $\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix}$ $= \begin{vmatrix} 1+a^2-b^2+2b^2 & 2ab-2ab & -2b \\ 2ab-2ab & 1-a^2+b^2+2a^2 & 2a \\ 2b-b+a^2b+b^3 & -2a+a-a^3-ab^2 & 1-a^2-b^2 \end{vmatrix}$ $\begin{bmatrix} c_1' = c_1 - bc_3, c_2' = c_2 + ac_3 \end{bmatrix}$ = $\begin{vmatrix} 1 + a^2 + b^2 & 0 & -2b \\ 0 & 1 + a^2 + b^2 & 2a \\ b(1 + a^2 + b^2) & -a(1 + a^2 + b^2) & 1 - a^2 - b^2 \end{vmatrix}$ $\begin{vmatrix} 1 & 0 & -2b \\ 0 & 1 & 2a \\ 0 & 1 & 2a \\ 0 & -a & 1 - a^2 - b^2 \end{vmatrix}$

াইহার কা $= (1 + a^{2} + b^{2})^{2} \{1(1 - a^{2} - b^{2} + 2a^{2}) + b(0 + 2b)\}$ $|(a+b+c)(b+c-a) a^2 bc|$ $=(1+a^2+b^2)^2(1+a^2-b^2+2b^2)$ $= |(a+b+c)(c+a-b) b^{2} ca|$ $= (1 + a^{2} + b^{2})^{3} = R.H.S.$ (Proved) (a+b+c)(a+b-c) c^2 abb ax + by $= (a+b+c) \begin{vmatrix} b+c-a & a^2 & bc \\ c+a-b & b^2 & ca \end{vmatrix}$ $bx + cy = (b^2 - ac)$ 5(e) С $a+b-c c^2 ab$ ax + by bx + cy0 $(ax^{2} + 2bxy + cy^{2})$ |-2(a-b) (a-b)(a+b) - c(a-b)|= $(a+b+c)\begin{vmatrix} -2(b-c) & (b-c)(b+c) & -a(b-c) \\ a+b-c & c^2 & ab \end{vmatrix}$ [য.,ঢা.'১০; দি., য., রা.,সি.'১২;চ.'১৩] b ax+byа প্রমাণ * L.H.S. = bС bx + cy $[r_1' = r_1 - r_2, r_2' = r_2 - r_2]$ ax+by bx+cy0 $= (a+b+c)(a-b)(b-c) \begin{vmatrix} -2 & a+b & -c \\ -2 & b+c & -a \\ a+b-c & c^{2} & ab \end{vmatrix}$ $= \frac{1}{xy} \begin{vmatrix} ax & bx & ax^2 + bxy \\ by & cy & bxy + cy^2 \\ ax + by & bx + cy & 0 \end{vmatrix}$ = (a + b + c)(a - b)(b - c) $=\frac{1}{xy}\begin{vmatrix} 0 & 0 & ax^{2} + 2bxy + cy^{2} \\ by & cy & bxy + cy^{2} \\ ax + by & bx + cy & 0 \end{vmatrix}$ $[r_1' = r_1 - r_2]$ $[r_1' = r_1 + (r_2 - r_2)]$ $= (a+b+c)(a-b)(b-c) \begin{vmatrix} 0 & -1 & -1 \\ -2 & b+c & -a \\ a+b-c & c^2 & ab \end{vmatrix}$ $=\frac{1}{rv}(ax^2+2bxy+cy^2)$ $(b^2xy + bcy^2 - acxy - bcy^2)$ = (a + b + c)(a - b)(b - c) $=\frac{1}{rv}(ax^2+2bxy+cy^2)(b^2-ac)xy$ $\begin{vmatrix} 0 & 0 & -1 \\ -2 & a+b+c & -a \\ a+b-c & c^2-ab & ab \end{vmatrix}$ $= (b^{2} - ac)(ax^{2} + 2bxy + cy^{2}) = R.H.S.$ 5(f) $\begin{vmatrix} (b+c)^2 & a^2 & bc \\ (c+a)^2 & b^2 & ca \\ (a+b)^2 & c^2 & ab \end{vmatrix} = (a^2 + b^2 + c^2)$ $[c_{2}' = c_{2} - c_{3}]$ = (a + b + c)(a - b)(b - c)(c - a) .(-1) $[-2c^{2} + 2ab - \{(a + b)^{2} - c^{2}\}]$ (a+b+c)(b-c)(c-a)(a-b) [5.'04] = (a + b + c)(a - b)(b - c)(c - a)(-1)প্রমাণ : L.H.S.= $\begin{vmatrix} (b+c)^2 & a^2 & bc \\ (c+a)^2 & b^2 & ca \\ (a+b)^2 & c^2 & ab \end{vmatrix}$ $(-2c^{2} + 2ab - a^{2} - b^{2} - 2ab + c^{2})$ = (a + b + c)(a - b)(b - c)(c - a) $(-1)(-1)(a^2 + b^2 + c^2)$ $= (a^{2} + b^{2} + c^{2}) (a + b + c)(a-b)(b-c)(c-a)$ $= \begin{vmatrix} (b+c)^2 - a^2 & a^2 & bc \\ (c+a)^2 - b^2 & b^2 & ca \\ (a+b)^2 - c^2 & c^2 & ab \end{vmatrix} \quad [c_1' = c_1 - c_2]$ = R.H.S. (Proved) 6.(a) $\begin{vmatrix} -2a & a+b & a+c \\ b+a & -2b & b+c \\ c+a & c+b & -2c \end{vmatrix}$ [ব.'১১] = 4(a+b)(b+c)(c+a)

উচ্চতর গণিত : ১ম পত্র সমাধান

28

 $-2a \quad a+b \quad a+c$ প্রমাণ 8 L.H.S. = b + a - 2b + b + c $c+a \ c+b \ -2c$ $= -2a\{4bc - (b + c)^{2}\} - (a + b)\{-2c(b + a)\}$ -(b+c)(c+a) + (a+c) {(a+b)(b+c) + 2b(c + a) $= -8abc + 2a(b + c)^{2} + 2c(a + b)^{2} +$ $2(a + b)(b + c)(c + a) + 2b(c + a)^{2}$ $=-8abc + 2a(b^{2} + 2bc + c^{2}) +$ $2c(a^{2} + 2ab + b^{2}) + 2b(c^{2} + 2ca + a^{2}) +$ 2(a+b)(b+c)(c+a) $= -8abc + 2ab^{2} + 4abc + 2ac^{2} + 2ca^{2} +$ $4abc + 2b^{2}c + 2bc^{2} + 4abc + 2a^{2}b +$ 2(a + b)(b + c)(c + a) $= 2{ab^{2}+2abc} + ac^{2} + ca^{2} + a^{2}b + b^{2}c$ $+ bc^{2}$ +2(a + b)(b + c)(c + a) $= 2\{a(b+c)^{2} + a^{2}(b+c) + bc(b+c)\} +$ 2(a + b)(b + c)(c + a) $= 2(b + c) (ab + ca + a^{2} + bc) +$ 2(a + b)(b + c)(c + a) $= 2(b + c) \{a(c + a) + b(c + a)\} +$ 2(a + b)(b + c)(c + a)= 2(b+c)(c+a)(a+b) + 2(a+b)(b+c)(c+a)= 4(a + b)(b + c)(c + a) = R.H.S.বিকল পদ্ধতি ঃ মনে করি . $-2a \quad a+b \quad a+c$ $\mathbf{D} = |b+a| - 2b \quad b+c$

 $\begin{vmatrix} c+a & c+b & -2c \\ a+b=0 \text{ i.e. } b=-a \ \overline{a}$ বসিয়ে জামরা পাই , $D = \begin{vmatrix} -2a & 0 & a+c \\ 0 & 2a & -a+c \\ c+a & c-a & -2c \end{vmatrix}$ $= -2a(-4ac-(c-a)^2 + (c+a)\{0-2a(c+a)\} = 2a(c+a)^2 - 2a(c+a)^2 = 0$ $\therefore (a+b), D \ \overline{a}$ এ কটি উৎপাদক ।

অনুরূ পভাবে দেখানো যায়, (b + c) এবং (c + a) নির্ণায়ক D এর উৎপাদক ।

যেহেতু D একটি তৃতীয় ক্রমের নির্ণায়ক এবং (a + b) (b + c) (c + a) একটি তৃতীয় ক্রমের উৎপাদক , সুতরাং D এর অপর একটি উৎপাদক k থাকতে পারে যা ধ্রুবক।

 $\begin{vmatrix} -2a & a+b & a+c \end{vmatrix}$ $\therefore |b+a - 2b b+c| = k(a+b)(b+c)(c+a)$ c+a c+b -2cএখন, উভয় পক্ষে a = b = c = 1 বসিয়ে আমরা পাই, $\begin{vmatrix} -2 & 2 & 2 \\ 2 & -2 & 2 \\ 2 & 2 & -2 \end{vmatrix} = k.2.2.2$ $\Rightarrow \begin{vmatrix} 0 & 4 & 2 \\ 0 & 0 & 2 \\ 4 & 0 & -2 \end{vmatrix} = 8k \Rightarrow 32 = k = 4$ $\begin{vmatrix} -2a & a+b & a+c \\ b+a & -2b & b+c \\ c+a & c+b & -2c \end{vmatrix} = 4(a+b)(b+c)(c+a)$ $6(b)\begin{vmatrix} 1+a & 1 & 1\\ 1 & 1+b & 1\\ 1 & 1 & 1+c \end{vmatrix} = abc(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$ প্রমাণ ঃ L.H.S.= $\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix}$ $= \begin{vmatrix} a(\frac{1}{a'}+1) & b.\frac{1}{b} & c.\frac{1}{c} \\ a.\frac{1}{a} & b(\frac{1}{b}+1) & c.\frac{1}{c} \\ a.\frac{1}{a} & b.\frac{1}{b} & c(\frac{1}{c}+1) \end{vmatrix}$ $= \operatorname{abc} \begin{vmatrix} \frac{1}{a} + 1 & \frac{1}{b} & \frac{1}{c} \\ \frac{1}{a} & \frac{1}{b} + 1 & \frac{1}{c} \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{c} + 1 \end{vmatrix}$ $= abc \begin{vmatrix} 1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} & \frac{1}{b} & \frac{1}{c} \\ 1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} & \frac{1}{b} + 1 & \frac{1}{c} \\ 1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} & \frac{1}{b} & \frac{1}{c} + 1 \end{vmatrix}$ $[c_1' = c_1 + (c_2 + c_3)]$

 $= \operatorname{abc}(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}) = \begin{vmatrix} 1 & \frac{1}{b} & \frac{1}{c} \\ 1 & \frac{1}{b} + 1 & \frac{1}{c} \\ 1 & \frac{1}{b} + \frac{1}{c} \\ 1 & \frac{1}{b} & \frac{1}{c} + 1 \end{vmatrix}$ $= \operatorname{abc}(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}) \begin{vmatrix} 0 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & \frac{1}{c} & \frac{1}{c} + 1 \end{vmatrix}$ $[r_1' = r_1 - r_2, r_2' = r_2 - r_3]$ $= abc(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}) 1(1 - 0)$ = $abc(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}) = R.H.S.$ (Proved) 7. $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$ নির্ণায়কে a_1, b_1, c_1 এর সহগূণক ফথারুমে A_1 , B_1 , C_1 হলে, প্রমাণ কর যে $a_{2}A_{1}+b_{2}B_{1}+c_{2}C_{1}=0.$ [4.'05; 4.'05,'05] সমাধান 8 A₁ = a_1 এর সহগৃণক = $b_2c_3 - b_3c_2$ $B_1 = b_1$ এর সহগুণক = $-(a_2c_3 - a_3c_2)$ $C_1 = c_1$ এর সহগণক = $a_2b_2 - a_3b_2$ **L.H.S.** = $a_2 A_1 + b_2 B_1 + c_2 C_1$ $= a_2(b_2c_3 - b_3c_2) + b_2\{-(a_2c_3 - a_3c_2)\} +$ $c_{2}(a_{2}b_{3}-a_{3}b_{2})$ $= a_{2}b_{2}c_{3} - a_{2}b_{3}c_{2} - a_{2}b_{2}c_{3} + a_{3}b_{2}c_{2} + a_{3}b_{3}c_{3} + a_{3}b_{$ $a_{2}b_{3}c_{2} - a_{3}b_{2}c_{2} = 0 = R.H.S.$ (Proved) 8. মান নির্ণয় কর ঃ (a) সমাধান 8 $\begin{vmatrix} x+y & x & y \\ x & x+z & z \\ y & z & y+z \end{vmatrix}$ [૫.'o¢] $= \begin{vmatrix} 0 & x & y \\ -2z & x+z & z \\ -2z & z & y+z \end{vmatrix} \begin{bmatrix} c_1' = c_1 - (c_2 + c_2) \end{bmatrix} \qquad \Rightarrow (x + 9)(x^2 - 3) = 0 \\ \therefore x + 9 = 0 \Rightarrow x = -9$

 $\begin{vmatrix} 0 & x & y \\ 0 & x & -y \\ -2z & z & y+z \end{vmatrix} [r'_1 = r_1 - r_2] \\ = -2z(-xy - xy) = -2z(-2xy) = 4xyz \\ 8(b) সমাধান : \begin{vmatrix} b+c & b-c & c-b \\ a-c & c+a & c-a \\ a-b & b-a & a+b \end{vmatrix}$ $\begin{vmatrix} 2b & 0 & c-b \\ 2a & 2c & c-a \\ 0 & 2b & a+b \end{vmatrix} [c_1' = c_1 - c_2, c_2' = c_2 - c_3]$ $= 2.2 \begin{vmatrix} b & 0 & c-b \\ a & c & c-a \\ 0 & b & a+b \end{vmatrix}$ $= 4\{b(ca + bc - bc + ab) + (c - b)(ab - 0)\}$ $= 4 \{ abc + ab^{2} + abc - ab^{2} \}$ = 4.2abc = 8abc (Ans.) 9. সমাধান কর : (a) $\begin{vmatrix} 3+x & 4 & 2 \\ 4 & 2+x & 3 \\ 2 & 3 & 4+x \end{vmatrix} = 0$ [7.09] [7.09] $\Rightarrow \begin{vmatrix} x+9 & 4 & 2 \\ x+9 & 2+x & 3 \\ x+9 & 3 & 4+x \end{vmatrix} = 0$ $[c_1' = c_1 + (c_2 + c_2)]$ $\Rightarrow (x+9) \begin{vmatrix} 1 & 4 & 2 \\ 1 & 2+x & 3 \\ 1 & 3 & 4+x \end{vmatrix} = 0$ $\Rightarrow (x+9) \begin{vmatrix} 0 & 2-x & -1 \\ 0 & x-1 & -(x+1) \\ 1 & 3 & 4+x \end{vmatrix} = 0$ $[r_1' = r_1 - r_2, r_2' = r_2 - r_2]$ $\Rightarrow (x+9) 1.\{-(2-x)(x+1) + x - 1\} = 0$ $\Rightarrow (x+9) \{ (x-2)(x+1) + x - 1 \} = 0$ $\Rightarrow (x+9) (x^2 - x - 2 + x - 1) = 0$ or, $x^2 - 3 = 0 \implies x = \pm \sqrt{3}$ নির্ণেয় সমাধান , x = -9, $\pm \sqrt{3}$

নির্ণায়ক: প্রশ্নমালা I B

$$\begin{array}{l} 9(\mathbf{b}) \begin{vmatrix} x-3 & 1 & -1 \\ 1 & x-5 & 1 \\ -1 & 1 & x-3 \end{vmatrix} = 0 \quad [\mathfrak{grad} \circ \mathbf{s} - \mathbf{ot}] \\ \Rightarrow \begin{vmatrix} x-3 & 1 & x-3 \\ x-3 & 1 & x-3 \end{vmatrix} = 0 \quad [\mathfrak{grad} \circ \mathbf{s} - \mathbf{ot}] \\ \Rightarrow \begin{vmatrix} x-3 & 1 & x-3 \\ x-3 & 1 & x-3 \end{vmatrix} = 0 \quad [\mathfrak{grad} \circ \mathbf{s} - \mathbf{ot}] \\ \Rightarrow (x-3) \begin{vmatrix} 1 & x-5 & 1 \\ 1 & 1 & x-3 \end{vmatrix} = 0 \quad [\mathbf{1} & x+y & x^2 + xy + y^2 \\ 1 & y+z & y^2 + yz + z^2 \end{vmatrix} = 0 \quad [\mathbf{1} & x+y & x^2 + xy + y^2 \\ z & z^2 & 1+z^3 \end{vmatrix} = 0 \quad [\mathbf{1} & x+y & x^2 + xy + y^2 \\ z & z^2 & 1+z^3 \end{vmatrix} = 0 \quad [\mathbf{1} & x-3 \\ = 0 \quad [\mathbf{1} & x+y & x^2 + xy + y^2 \\ z & z^2 & 1+z^3 \end{vmatrix} = 0 \quad [\mathbf{1} & x-3 \\ \Rightarrow (x-3) \begin{vmatrix} 0 & x+6 & -2 \\ 1 & 1 & x-3 \end{vmatrix} = 0 \quad [\mathbf{1} & x-3 \\ [\mathbf{1} & 1 & x-3 \end{vmatrix} = 0 \quad [\mathbf{1} & x+y & x^2 + xy + y^2 \\ z & z^2 & 1+z^3 \end{vmatrix} = 0 \quad [\mathbf{1} & y+z & y^2 + yz + z^2 \\ z & z^2 & 1+z^3 \end{vmatrix} = 0 \quad [\mathbf{1} & y+z & y^2 + yz + z^2 \\ z & z^2 & 1+z^3 \end{vmatrix} = 0 \quad [\mathbf{1} & x+y + z \\ [\mathbf{1} & y+z & y^2 + yz + z^2 \\ z & z^2 & 1+z^3 \end{vmatrix} = 0 \quad [\mathbf{1} & x+y + z \\ x & x^3)(x^2 - \mathbf{0} x + 2 + 2x - 12) = 0 \\ \Rightarrow (x-3)(x^2 - \mathbf{0} x + 2 + 2x - 12) = 0 \quad (\mathbf{1} & x+y + z \\ x & (x-3)(x^2 - \mathbf{0} x - 2 + x8) = 0 \\ \Rightarrow (x-3)(x^2 - \mathbf{0} x - 2 + x8) = 0 \quad (\mathbf{1} & x+y + z \\ x & z^2 & 1+z^3 \end{vmatrix} = 0 \quad [\mathbf{1} & x+y + z \\ x & y^2 + yz + yz^2 + z^2 = 0 \\ \Rightarrow (x-3)(x-2)(x-6) = 0 \quad (\mathbf{1} & \mathbf{3} \cdot \mathbf{3} \cdot \mathbf{3} \\ \mathbf{1} & y+z & y^2 + yz + z^2 \end{vmatrix} = 0 \quad (\mathbf{1} & x+y + z \\ x & y^2 + yz + yz^2 + z^2 = 0 \\ \Rightarrow (x-3)(x-2)(x-6) = 0 \quad (\mathbf{4} \cdot \mathbf{3} \cdot \mathbf{3} \cdot \mathbf{3} \\ \mathbf{1} & y+z & y^2 + yz + z^2 \end{vmatrix} = 0 \quad (\mathbf{1} & x+y + z \\ x & y^2 + yz + z^2 - (y+z)(x+y+z) \\ z & z^2 & 1+z^2 \end{vmatrix} = 0 \quad (\mathbf{1} & x+y + z \\ x & y^2 + yz + yz^2 + (y+z)(x+y+z) \\ z & z^2 + yz^2 - xyz - 2x - yz^2 - 2yz - z^2 + z^2 \\ x & y^2 + yz + yz^2 + z^2 - (y+z)(x+y+z) \\ z & z^2 + yz^2 + xyz^2 + z^2 - (y+z)(x+y+z) \\ z & -1 + z^2 + xy^2 + xyz - (x-x)(x-y-z) = 0 \\ \Rightarrow -1 + z^2 x + yz^2 + xyz - (y-z)(x-y) + (x+y+z) \\ z & -1 + z^2 x + yz^2 + z^2 - (y+z)(x+y+z) \\ z & -1 + z^2 x + yz^2 + z^2 - (y+z)(x+y+z) \\ z & -1 + z^2 + x^2 + z^2 + z^2 + z^2 + z^2 + z^2 \\ = 0 \quad (\mathbf{1} + x^2 + x^2 + x^2 + z^2 + z^2$$

$$\Rightarrow a^{2} - a - 12 - 30 = 0 \Rightarrow a^{2} - a - 42 = 0$$

$$\Rightarrow (a - 7)(a + 6) = 0 \Rightarrow a = -6, 7$$
(b) $\begin{bmatrix} a - 2 & 6 \\ 2 & a - 3 \end{bmatrix}$ TIDE TO EXTROLOGY TO A USA
THE REFERENCE AND A SET TO A SET TO A USA
THE REFERENCE AND A SET TO A SET TO A USA
THE REFERENCE AND A SET TO A SET TO A USA
THE REFERENCE AND A SET TO A SET TO A USA
THE REFERENCE AND A SET TO A SET TO A USA
THE REFERENCE AND A SET TO A

12(c)
$$A = \begin{bmatrix} 3 & 4 & -1 \\ 1 & 0 & 3 \\ 2 & 5 & -4 \end{bmatrix}$$

 $|A| = 3(0 - 15) - 4(-4 - 6) - 1(5 - 0)$
 $= -45 + 40 - 5 = -10$
 $|A| dat সecently experiment access, $A_{11} = \begin{vmatrix} 0 & 3 \\ 5 & -4 \end{vmatrix} = -15$,
 $A_{12} = -\begin{vmatrix} 1 & 3 \\ 2 & -4 \end{vmatrix} = 10, A_{13} = \begin{vmatrix} 1 & 0 \\ 2 & 5 \end{vmatrix} = 5$,
 $A_{21} = -\begin{vmatrix} 4 & -1 \\ 5 & -4 \end{vmatrix} = 11, A_{22} = \begin{vmatrix} 3 & -1 \\ 2 & -4 \end{vmatrix} = -10$,
 $A_{23} = -\begin{vmatrix} 3 & 4 \\ -1 \\ 2 & 5 \end{vmatrix} = -7, A_{31} = \begin{vmatrix} 4 & -1 \\ 0 & 3 \end{vmatrix} = 12$,
 $A_{32} = -\begin{vmatrix} 3 & -1 \\ -1 & 2 \\ 5 \end{vmatrix} = -7, A_{31} = \begin{vmatrix} 4 & -1 \\ 0 & 3 \end{vmatrix} = 12$,
 $A_{32} = -\begin{vmatrix} 3 & -1 \\ -1 & 3 \end{vmatrix} = -10, A_{33} = \begin{vmatrix} 3 & 4 \\ 0 & 3 \end{vmatrix} = -4$
 $\therefore A^{-1} = \frac{1}{|A|} Adj (A)$
 $= \frac{1}{-10} \begin{bmatrix} -15 & 10 & 5 \\ 11 & -10 & -7 \\ 12 & -10 & -4 \end{bmatrix}^{T}$
 $= \begin{bmatrix} 3/2 & -11/10 & -6/5 \\ -1 & 1 & 1 \\ -1/2 & 7/10 & 2/5 \end{bmatrix}$
[A) Integerbicast staticty best attack astal table]
 $|A| = 2(-4 + 1) + 1(2-1) - 1(-1+2)$
 $= -6 + 1 - 1 = -6$
 $|A| dat statight acces, $A_{11} = \begin{vmatrix} -2 & 1 \\ -1 & 2 \end{vmatrix} = -3, A_{12} = -\begin{vmatrix} 1 & 2 \\ -1 & 2\end{vmatrix} = 3, A_{22} = \begin{vmatrix} 2 & -1 \\ 1 & 2\end{vmatrix} = 5,$$$

$$A_{23} = -\begin{vmatrix} 2 & -1 \\ 1 & -1 \end{vmatrix} = 1, \ A_{31} = \begin{vmatrix} -1 & -1 \\ -2 & 1 \end{vmatrix} = -3,
A_{32} = -\begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} = -3, A_{33} = \begin{vmatrix} 2 & -1 \\ 1 & -2 \end{vmatrix} = -3
A^{-1} = \frac{1}{|A|} Adj (A)
= \frac{1}{-6} \begin{bmatrix} -3 & -1 & 1 \\ 3 & 5 & 1 \\ -3 & -3 & -3 \end{bmatrix}^{T} = \frac{1}{-6} \begin{bmatrix} -3 & 3 & -3 \\ -1 & 5 & -3 \\ 1 & 1 & -3 \end{bmatrix}
= \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ 1/6 & -5/6 & 1/2 \\ -1/6 & -1/6 & 1/2 \end{bmatrix} (Ans.)
13. Affinatera function function for the set is
matrixed if is (a) the test of the set is
matrixed for an anticol function for the set is
 $x - y = 7$
Corvaticas fraction function for the set is
 $D = \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} = -2 - 3 = -5,
 $D_x = \begin{vmatrix} 4 & 3 \\ 7 & -1 \end{vmatrix} = -4 - 21 = -25,
D_y = \begin{vmatrix} 2 & 4 \\ 1 & 7 \end{vmatrix} = 14 - 4 = 10
 $x = \frac{D_x}{D} = \frac{-25}{-5} = 5, \ y = \frac{D_y}{D} = \frac{10}{-5} = -2$
13(b) the set is (a) the set is a set is a set if the set is
 $D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 2 \end{vmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix}$$$$$

$$D_{y} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 0 & 2 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & -2 & 2 \end{vmatrix}$$

$$[c_{1}' = c_{1} - c_{2}, c_{2}' = c_{2} - c_{3}]$$

$$= 1(2 - 1) = 1$$

$$D_{z} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ -1 & 0 & 2 \\ 0 & 1 & 0 \end{vmatrix}$$

$$[c_{1}' = c_{1} - c_{2}, c_{2}' = c_{2} - c_{3}]$$

$$= 1(-1 - 0) = -1$$

$$x = \frac{D_{x}}{D} = \frac{1}{1} = 1, y = \frac{D_{y}}{D} = \frac{1}{1} = 1,$$

$$z = \frac{D_{z}}{D} = \frac{-1}{1} = -1$$

$$13(c) \text{ CPOSIN DATE, } \begin{bmatrix} 1 & 2 & -1 \\ 3 & -1 & 3 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 11 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x + 2y - z \\ 3x - y + 3z \\ 2x + 3y + z \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 11 \end{bmatrix}$$

$$x + 2y - z = 5$$

$$3x - y + 3z = 7$$

$$2x + 3y + z = 11$$

$$d = 4n, \text{ GAPAIGAS FRAW EVENS FACE EVE$$

$$D_{z} = \begin{vmatrix} 1 & 2 & 5 \\ 3 & -1 & 7 \\ 2 & 3 & 11 \end{vmatrix}$$

$$= 1(-11-21) - 2(33-14) + 5(9+2)$$

$$= -32 - 38 + 55 = -15$$

$$x = \frac{D_{x}}{D} = \frac{-30}{-15} = 2, \quad y = \frac{D_{y}}{D} = \frac{-30}{-15} = 2,$$

$$z = \frac{D_{z}}{D} = \frac{-15}{-15} = 1$$
14. সমাধান s (a) $|A| = \begin{vmatrix} 1 & 2 \\ 4 & -3 \end{vmatrix} = -3 - 8 = -11$
($accge |A| = 2$, $y = 1$, $y = 3$, $accel = 1$)
(c) A^{-1} নির্ণয় কর :
 $|A| = 3 সহগ্র্ণকগুলি হচ্ছে, $A_{11} = -3, A_{12} = -4,$
 $A_{21} = -2, A_{22} = 1$

$$A^{-1} = \frac{1}{|A|} Adj (A) = \frac{1}{-11} \begin{bmatrix} -3 & -4 \\ -2 & 1 \end{bmatrix}^{T}$$

$$= -\frac{1}{11} \begin{bmatrix} -3 & -2 \\ -4 & 1 \end{bmatrix}$$
15(a) $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12 \end{bmatrix}, B = \begin{bmatrix} 14 \\ 10 \\ 8 \end{bmatrix}$
 $AB = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12 \end{bmatrix} \times \begin{bmatrix} 14 \\ 10 \\ 8 \end{bmatrix} = \begin{bmatrix} 14 + 20 + 24 \\ 14 + 30 + 40 \\ 14 + 50 + 96 \end{bmatrix}$

$$= \begin{bmatrix} 58 \\ 84 \\ 160 \end{bmatrix}$$
cuib airs = $(58 + 84 + 160) = 302$ bits i
(b) $A^{2} = A \times A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12 \end{bmatrix}$$

 $= \begin{bmatrix} 6 & 23 & 49 \\ 9 & 36 & 78 \\ 18 & 77 & 172 \end{bmatrix}$ (Ans.) (c) A ম্যাট্রিক্সের নির্ণায়ক | A | =1 (36 - 25) - 2(12 - 5) + 3(5 - 3) = 11-14 + 6 = 3 |A| এর সহগুণকগুলি হচ্ছে, $A_{11} = \begin{vmatrix} 3 & 5 \\ 5 & 12 \end{vmatrix} = 11$, $A_{12} = -\begin{vmatrix} 1 & 5 \\ 1 & 12 \end{vmatrix} = -7, A_{13} = \begin{vmatrix} 1 & 3 \\ 1 & 5 \end{vmatrix} = 2,$ $A_{21} = -\begin{vmatrix} 2 & 3 \\ 5 & 12 \end{vmatrix} = -9, \ A_{22} = \begin{vmatrix} 1 & 3 \\ 1 & 12 \end{vmatrix} = 9,$ $A_{23} = -\begin{vmatrix} 1 & 2 \\ 1 & 5 \end{vmatrix} = -3 A_{31} = \begin{vmatrix} 2 & 3 \\ 3 & 5 \end{vmatrix} = 1,$ $A_{32} = -\begin{vmatrix} 1 & 3 \\ 1 & 5 \end{vmatrix} = -2, A_{33} = \begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix} = 1$ $A^{-1} = \frac{1}{|A|} \operatorname{Adj} (A)$ $= \frac{1}{3} \begin{bmatrix} 11 & -7 & 2 \\ -9 & 9 & -3 \\ 1 & -2 & 1 \end{bmatrix}^{1} = \frac{1}{3} \begin{bmatrix} 11 & -9 & 1 \\ -7 & 9 & -2 \\ 2 & -3 & 1 \end{bmatrix}$ 16. সমাধান (a)A বর্গ ম্যাট্রিক্স এর নির্ণায়ক |A| অশন্য হলে A এর বিপরীত ম্যাটিক্স A^{-1} বিদ্যমান থাকবে। আবার, A ম্যাট্রিক্স এর সারি সংখ্যা = 3. সুতরাং, B ম্যাট্রিক্স এর কলাম সংখ্যা 3 হলে AB বিদ্যমান থাকবে। (b) প্রশ্নমালা IB এর 1(a) নং প্রশ্ন। · 7 [. .

(c)
$$p = 2$$
 even, $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2^2 \\ 1 & 2^2 & 2^4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 16 \end{bmatrix}$

$$A \times \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 11 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 16 \end{bmatrix} \times \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 11 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x + y + z \\ x + 2y + 4z \\ x + 4y + 16z \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 11 \end{bmatrix}$$

$$\Rightarrow x + y + z = 5, \ x + 2y + 4z = 7$$

$$x + 4y + 16z = 11$$

২০

বইঘর কম্ নির্ণায়ক: প্রশ্নমালা I B

এখন. ক্রেমারের নিয়ম ব্যবহার করে আমরা পাই, $D = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 16 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -1 & -2 & 4 \\ -3 & -12 & 16 \end{bmatrix}$ = 12 - 6 = 6 $D_{x} = \begin{bmatrix} 5 & 1 & 1 \\ 7 & 2 & 4 \\ 11 & 4 & 16 \end{bmatrix}$ = 5 (32 - 16) - 1(112 - 44) + 1(28 - 22)= 80 - 68 + 6 = 18 $D_{y} = \begin{bmatrix} 1 & 5 & 1 \\ 1 & 7 & 4 \\ 1 & 11 & 16 \end{bmatrix} = \begin{bmatrix} 0 & -2 & -3 \\ 0 & -4 & -12 \\ 1 & 11 & 16 \end{bmatrix}$ = 24 - 12 = 12 $D_{z} = \begin{bmatrix} 1 & 1 & 5 \\ 1 & 2 & 7 \\ 1 & 4 & 11 \end{bmatrix} = \begin{bmatrix} 0 & -1 & -2 \\ 0 & -2 & -4 \\ 1 & 4 & 11 \end{bmatrix}$ = 4 - 4 = 0 $x = \frac{D_x}{D} = \frac{18}{6} = 3, y = \frac{D_y}{D} = \frac{12}{6} = 2$ $z = \frac{D_z}{D} = \frac{0}{6} = 0$ নির্ণেয় সমাধান x = 3, y = 2, z = 0অতিরিক্ত প্রশ্ন (সমাধানসহ) বিস্ত্মার না করে প্রমাণ কর : 1(a) $\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ bc & ca & ab \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix}$ প্রমাণ ঃ L.H.S.= $\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ bc & ca & ab \end{vmatrix}$ $=\frac{1}{abc}\begin{vmatrix} a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \\ abc & abc & abc \end{vmatrix} = \frac{abc}{abc}\begin{vmatrix} a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \\ 1 & 1 & 1 \end{vmatrix}$ $= -\begin{vmatrix} a^2 & b^2 & c^2 \\ 1 & 1 & 1 \\ a^3 & b^3 & c^3 \end{vmatrix} = (-)(-)\begin{vmatrix} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix}$

$$= \frac{1}{\begin{vmatrix} a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3} \end{vmatrix}} = R.H.S. (Proved)$$

$$1(b) \begin{vmatrix} bc & ca & ab \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{c} \\ \frac{1}{a} + b & \frac{1}{b} + c & \frac{1}{c} + a \end{vmatrix} = 0 \quad [\mathfrak{A}.\mathfrak{B}.\mathfrak{A}.\mathfrak{B}]$$

$$\mathfrak{ANP} : L.H.S. = \begin{vmatrix} bc & ca & ab \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{c} \\ \frac{1}{a} + b & \frac{1}{b} + c & \frac{1}{c} + a \end{vmatrix}$$

$$= \frac{abc}{abc} \begin{vmatrix} bc & ca & ab \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{c} \\ \frac{1}{a} + b & \frac{1}{b} + c & \frac{1}{c} + a \end{vmatrix}$$

$$= \frac{abc}{abc} \begin{vmatrix} bc & ca & ab \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{c} \\ \frac{1}{a} + b & \frac{1}{b} + c & \frac{1}{c} + a \end{vmatrix}$$

$$= \frac{abc}{abc} \begin{vmatrix} abc & abc & abc \\ a.\frac{1}{a} & b.\frac{1}{b} & c.\frac{1}{c} \\ a(\frac{1}{a} + b) & b(\frac{1}{b} + c) & c(\frac{1}{c} + a) \end{vmatrix}$$

$$= \frac{abc}{abc} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 + ab & 1 + bc & 1 + ca \end{vmatrix}$$

$$= 0 = R.H.S. \qquad [\ \ q \overline{z} \ b \ \pi f \overline{z} \ q \overline{z} \ 1]$$

$$2(a) \begin{vmatrix} x + a & a & a \\ b & x + b & b \\ c & c & x + c \end{vmatrix} = x^{2}(x + a + b + c)$$

উচ্চতর গণিত : ১ম পত্র সমাধান

 $\begin{vmatrix} x+a+b+c & x+a+b+c & x+a+b+c \\ b & x+b & b \\ c & c & x+c \end{vmatrix}$ $[r_1' = r_1 + (r_2 + r_3)]$ $= (x+a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ b & x+b & b \\ c & c & x+c \end{vmatrix}$ $= (x+a+b+c) \begin{vmatrix} 0 & 0 & 1 \\ -x & x & b \\ 0 & -x & x+c \end{vmatrix}$ $[c_1' = c_1 - c_2, c_2' = c_2 - c_3]$ $= (x + a + b + c)(x^2 - 0)$ $=x^{2}(x+a+b+c) = R.H.S.$ (Proved) 2(b) $\begin{vmatrix} 1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1 \end{vmatrix} = (a^3 - 1)^2$ প্রমাণ : L.H.S.= $\begin{vmatrix} 1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1 \end{vmatrix}$ $= \begin{vmatrix} 1+a+a^2 & a & a^2 \\ 1+a+a^2 & 1 & a \\ 1+a+a^2 & a^2 & 1 \end{vmatrix} [c'_1 = c_1 + (c_2 + c_3)].$ $= \begin{vmatrix} 1 & a & a^2 \\ 1 & 1 & a \\ 1 & a^2 & 1 \end{vmatrix}$ $= (a^{2} + a + 1) \begin{vmatrix} 0 & a - 1 & a(a - 1) \\ 0 & 1 - a^{2} & a - 1 \\ 1 & a^{2} & 1 \end{vmatrix}$ $[r_1' = r_1 - r_2, r_2' = r_2 - r_2]$ $= (a^{2} + a + 1)1\{(a - 1)^{2} - a(a - 1)(1 - a)(1 + a)\}$ $= (a^{2} + a + 1) (a - 1)^{2} (1 + a + a^{2})$ $= (a^{2} + a + 1)^{2}(a - 1)^{2} = (a^{3} - 1)^{2} = R.H.S.$ (Proved) $\sin A \sin B \sin C$ 3. প্রমাণ কর যে.

 $= \sin(A - B) + \sin(B - C) + \sin(C - A)$ $= -4\sin\frac{A-B}{2}\sin\frac{B-C}{2}\sin\frac{C-A}{2}$ প্রমাণ ঃ L.H.S. = $\begin{bmatrix} 1 & 1 & 1\\ \sin A & \sin B & \sin c\\ \cos A & \cos B & \cos C \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 & 1\\ \sin A - \sin B & \sin B - \sin C & \sin C\\ \cos A - \cos B & \cos B - \cos C & \cos C \end{bmatrix}$ $[c_1 - c_2, c_2 - c_3]$ $= (\sin A - \sin B)(\cos B - \cos C) (\sin B - \sin C)(\cos A - \cos B)$ = sin A cos B - sin A cos C - sin B cos B $+\sin B\cos C$ $-\sin B\cos A$ $+\sin B\cos B$ $+ \sin C \cos A - \sin C \cos B$ = (sin A cos B – cos Asin B) + (sin B cos C $- \sin C \cos B + (\sin C \cos A - \sin A \cos C)$ $= \sin (A - B) + \sin (B - C) + \sin (C - B)$ = M.H.S.আবার, (sin A – sin B)(cos B – cos C) – $(\sin B - \sin C)(\cos A - \cos B)$ $= 2\sin\frac{A-B}{2}\cos\frac{A+B}{2} 2\sin\frac{B+C}{2}\sin\frac{C-B}{2}$ $-2\sin\frac{B-C}{2}\cos\frac{B+C}{2}2\sin\frac{A+B}{2}\sin\frac{B-A}{2}$ $= -4\sin\frac{A-B}{2}\sin\frac{B-C}{2}\left[\cos\frac{A+B}{2}\sin\frac{B+C}{2}\right]$ $-\cos\frac{B+C}{2}\sin\frac{A+B}{2}$] $= -4\sin\frac{A-B}{2}\sin\frac{B-C}{2}\cos(\frac{B+C}{2}-\frac{A+B}{2})$ $= -4\sin\frac{A-B}{2}\sin\frac{B-C}{2}\sin\frac{C-A}{2} = \text{R.H.S.}$ L.H.S. = M.H.S. = R.H.S. (Proved) প্রমাণ কর যে, (a) $\begin{vmatrix} 0 & b-a & c-a \\ a-b & 0 & c-b \\ a-b-a & 0 \end{vmatrix} = 0$

રર

নির্ণায়ক: প্রদুমালা I B

প্রমাণ ঃ L.H.S.= $\begin{vmatrix} 0 & b-a & c-a \\ a-b & 0 & c-b \\ a-c & b-c & 0 \end{vmatrix}$ $= \begin{vmatrix} a-b & b-c & c-a \\ a-b & b-c & c-b \\ a-b & b-c & 0 \end{vmatrix}$ $[c_1' = c_1 - c_2, c_2' = c_2 - c_2]$ $= (a - b)(b - c) \begin{vmatrix} 1 & 1 & c - a \\ 1 & 1 & c - b \\ 1 & 1 & 0 \end{vmatrix}$ = (a – b)(b – c)×0 [∵ দুইটি কলাম একই ।] = 0 = R.H.S. (Proved) 4(b) $\begin{vmatrix} -bc & bc + b^2 & bc + c^2 \\ ca + a^2 & -ca & ca + c^2 \\ ab + a^2 & ab + b^2 & -ab \end{vmatrix}$ $=(bc+ca+ab)^3$ States a state of the second states and the second states a state of the second states a state of the states a states a state of the states a states a state of the states a states a states a state of the states a state $= \frac{1}{abc} \begin{vmatrix} -abc & abc + ab^2 & abc + ac^2 \\ abc + a^2b & -abc & abc + bc^2 \\ abc + a^2c & abc + b^2c & -abc \end{vmatrix}$ $= \frac{1}{abc} abc \begin{vmatrix} -bc & ca + ab & ab + ac \\ bc + ab & -ca & ab + bc \\ bc + ca & ca + bc & -ab \end{vmatrix}$ $= \begin{vmatrix} ab+bc+ca & ab+bc+ca & ab+bc+ca \\ bc+ab & -ca & ab+bc \\ bc+ca & ca+bc & -ab \end{vmatrix}$ $[r_1' = r_1 + (r_2 + r_2)]$ 1 1 1 = (ab + bc + ca) bc + ab - ca ab + bcbc + ca ca + bc - ab=(ab + bc + ca) $\begin{array}{ccc} 0 & 0 & 1\\ bc+ab+ca & -(ca+ab+ca) & ab+bc \end{array}$ ca + bc + ab - ab $[c_1' = c_1 - c_2, c_2' = c_2 - c_3]$ $=(ab+bc+ca).1\{(ab+bc+ca)(ab+bc+ca)-0\}$

$$\begin{aligned} \mathbf{H}^{\text{Har.com}}_{\mathbf{a}} &= (ab + bc + ca)^{3} = 0 = \text{R.H.S.} \\ \mathbf{4}(c) \begin{vmatrix} a^{2} - bc \ b^{2} - ca \ c^{2} - ab \ a^{2} - bc \ b^{2} - ca \end{vmatrix} \\ &= (a^{3} + b^{3} + c^{3} - 3abc)^{2} \\ \mathbf{L.H.S.} &= \begin{vmatrix} a^{2} - bc \ b^{2} - ca \ c^{2} - ab \ a^{2} - bc \ b^{2} - ca \end{vmatrix} \\ &= (a^{2} + b^{2} + c^{2} - ab - bc - ca \ b^{2} - ca \ c^{2} - ab \end{vmatrix} \\ = \begin{vmatrix} a^{2} + b^{2} + c^{2} - ab - bc - ca \ b^{2} - ca \ c^{2} - ab \end{vmatrix} \\ = \begin{vmatrix} a^{2} + b^{2} + c^{2} - ab - bc - ca \ b^{2} - ca \ c^{2} - ab \end{vmatrix} \\ = \begin{vmatrix} a^{2} + b^{2} + c^{2} - ab - bc - ca \ b^{2} - ca \ c^{2} - ab \end{vmatrix} \\ = \begin{vmatrix} a^{2} + b^{2} + c^{2} - ab - bc - ca \ c^{2} - ab \ a^{2} - bc \end{vmatrix} \\ = a^{2} + b^{2} + c^{2} - ab - bc - ca \ c^{2} - ab \ a^{2} - bc \end{vmatrix} \\ = a^{2} + b^{2} + c^{2} - ab - bc - ca \ c^{2} - ab \ a^{2} - bc \end{vmatrix} \\ = a^{2} + b^{2} + c^{2} - ab - bc - ca \ c^{2} - ab \ a^{2} - bc \end{vmatrix}$$
(i)
$$\begin{bmatrix} 1 \ b^{2} - ca \ c^{2} - ab \ a^{2} - bc \ b^{2} - ca \ 1 \ c^{2} - ab \ a^{2} - bc \end{vmatrix} \\ = a^{2} + b^{2} + c^{2} - ab - bc - ca \end{vmatrix} \\ = a^{2} + b^{2} + c^{2} - ab - bc - ca \ c^{2} - ab \ a^{2} - bc \end{vmatrix} \\ = a^{2} + b^{2} + c^{2} - ab - bc - ca \ c^{2} - ab \ a^{2} - bc \end{vmatrix} \\ = a^{2} + b^{2} + c^{2} - ab - bc - ca \ c^{2} - ab \ a^{2} - bc \end{vmatrix} \\ = a^{2} + b^{2} + c^{2} - ab - bc - ca \ c^{2} - ab \ a^{2} - bc \end{vmatrix} \\ = a^{2} + b^{2} + c^{2} - ab - bc - ca \ c^{2} - ab \ a^{2} - bc \end{vmatrix} \\ = a^{2} + b^{2} + c^{2} - ab - bc - ca \ c^{2} - ab \ a^{2} - bc \end{vmatrix} \\ = a^{2} + b^{2} + c^{2} - ab \ a^{2} - bc \end{vmatrix} \\ = a^{2} - ab \ (a^{2} + b^{2} + c^{2} - ab \ a^{2} - bc \end{vmatrix} \\ = (a + b + c)^{3} \begin{vmatrix} 0 - (a - b) - (b - c)(a + b + c) \\ 1 \ c^{2} - ab \ a^{2} - bc \end{vmatrix} \\ = (a + b + c)^{2} (a^{2} + b^{2} + c^{2} - ab - bc - ca) \\ = (a + b + c)^{2} (a^{2} + b^{2} + c^{2} - ab - bc - ca) \\ = (a + b + c)^{2} (a^{2} + b^{2} + c^{2} - ab - bc - ca) \\ = (a + b + c)^{2} (a^{2} + b^{2} + c^{2} - ab - bc - ca) \\ = (a + b + c)^{2} (a^{2} + b^{2} + c^{2} - ab - bc - ca) \\ (i) \ \overline{c^{2} - ab \ a^{2} - bc} \ b^{2} - ca \ c^{2} - ab \ a^{2} - bc} \end{vmatrix}$$

 $= (a + b + c)^{2}(a^{2} + b^{2} + c^{2} - ab - bc - ca)^{2}$ $= \{(a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)\}^{2}$ $= (a^{3} + b^{3} + c^{3} - 3abc)^{2} = R.H.S.$ (Proved) $\mathbf{4(d)}\begin{vmatrix} (a+b)^2 & ca & bc \\ ca & (b+c)^2 & ab \\ bc & ab & (c+a)^2 \end{vmatrix}$ $a = abc (a + b + c)^3$ $\mathbf{L.H.S.} = \begin{vmatrix} (a+b)^2 & ca & bc \\ ca & (b+c)^2 & ab \\ bc & ab & (c+a)^2 \end{vmatrix}$ $= \frac{1}{abc} \begin{vmatrix} c(a+b)^2 & c^2a & bc^2 \\ ca^2 & a(b+c)^2 & a^2b \\ b^2c & ab^2 & b(c+a)^2 \end{vmatrix}$ $= \frac{abc}{abc} \begin{vmatrix} (a+b)^2 & c^2 & c^2 \\ a^2 & (b+c)^2 & a^2 \\ b^2 & b^2 & (c+a)^2 \end{vmatrix}$ $= \begin{vmatrix} (a+b)^2 & c^2 & c^2 \\ a^2 & (b+c)^2 & a^2 \\ b^2 & b^2 & (c+a)^2 \end{vmatrix}$ অতপর , উদাহরণ ৪ দ্রন্টব্য । 4 (e) $\begin{vmatrix} a+b+c & -c & -b \\ -c & a+b+c & -a \\ -b & -a & a+b+c \end{vmatrix}$ = 2 (b + c) (c + a)(a + b) $[c_1' = c_1 - c_2, c_2' = c_2 - c_3]$ $= (a + b)(b + c) \begin{vmatrix} 0 & -1 & -b \\ 2 & 1 & -a \\ 0 & 1 & a + b + c \end{vmatrix} [c'_1 = c_1 - c_2] = R.H.S. \text{ (Proved)}$ $= (a+b)(b+c)\{-2(-a-b-c+b)\}$

= (a + b)(b + c)(-2)(-1)(c + a)= 2(a + b)(b + c)(c + a) = R.H.S.4(f) $\begin{vmatrix} -1 & b & c \\ a & -1 & c \\ a & b & -1 \end{vmatrix} = (a+1)(b+1)(c+1)$ $\left(\frac{a}{a+1} + \frac{b}{b+1} + \frac{c}{c+1} - 1\right)$ L.H.S.= $\begin{vmatrix} -1 & b & c \\ a & -1 & c \\ a & b & -1 \end{vmatrix}$ $\begin{vmatrix} -1 & b & c \\ a+1 & -(b+1) & 0 \\ a+1 & 0 & -(c+1) \end{vmatrix}$ $[r'_2 = r_2 - r_1, r'_3 = r_3 - r_1]$ = (a + 1)(b + 1)(c + 1) $\begin{bmatrix}
-\frac{1}{a+1} & \frac{b}{b+1} & \frac{c}{c+1} \\
\frac{a+1}{a+1} & \frac{-(b+1)}{b+1} & \frac{0}{c+1} \\
\frac{a+1}{a+1} & \frac{0}{b+1} & \frac{-(c+1)}{c+1}
\end{bmatrix}$ $= (a+1)(b+1)(c+1) \begin{vmatrix} -\frac{1}{a+1} & \frac{b}{b+1} & \frac{c}{c+1} \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{vmatrix}$ = (a + 1)(b + 1)(c + 1) $\mathbf{L.H.S.} = \begin{vmatrix} a+b+c & -c & -b \\ -c & a+b+c & -a \\ -b & -a & a+b+c \end{vmatrix} = (a+1)(b+1)(c+1) \left\{ -\frac{1}{a+1} + \frac{b}{b+1} + \frac{c}{c+1} \right\}$ $= \begin{vmatrix} a+b & -(b+c) & -b \\ a+b & b+c & -a \\ -(a+b) & b+c & a+b+c \end{vmatrix} = (a+1)(b+1)(c+1)\{-\frac{a+1-a}{a+1} + \frac{b}{b+1} + \frac{c}{c+1}\}$ = (a + 1)(b + 1)(c + 1) $\left\{ -\frac{a+1}{a+1} + \frac{a}{a+1} + \frac{b}{b+1} + \frac{c}{c+1} \right\}$

নির্ণায়ক: প্রশ্নমালা I B 4(g) মান নির্ণয় কর: $\begin{vmatrix} 1 & -a & a^2 \\ a^2 & 1 & -a \\ -a & a^2 & 1 \end{vmatrix}$ [রুয়েট'১২-১৩] $\begin{vmatrix} 1 & -a & a^2 \\ a^2 & 1 & -a \\ -a & a^2 & 1 \end{vmatrix} = \begin{vmatrix} 1-a+a^2 & -a & a^2 \\ 1-a+a^2 & 1 & -a \\ 1-a+a^2 & a^2 & 1 \end{vmatrix}$ $= (1 - a + a^{2}) \begin{vmatrix} 1 & -a & a^{2} \\ 1 & 1 & -a \\ 1 & a^{2} & 1 \end{vmatrix}$ $=(1-a+a^{2})\begin{vmatrix} 0 & -a-1 & a^{2}+a \\ 0 & 1-a^{2} & -a-1 \\ 1 & a^{2} & 1 \end{vmatrix}$ $= (1-a+a^2) \begin{vmatrix} 0 & -(a+1) & a(a+1) \\ 0 & (1+a)(1-a) & -(a+1) \\ 1 & a^2 & 1 \end{vmatrix}$ $= (1 - a + a^{2})(a + 1)^{2} \begin{vmatrix} 0 & -1 & a \\ 0 & 1 - a & -1 \\ 1 & a^{2} & 1 \end{vmatrix}$ $= (1-a+a^2)(a+1)^2(1-a+a^2)$ $= (1 - a + a^2)^2 (a + 1)^2$ 5. $\mathbf{A} = \begin{vmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{vmatrix}$ হলে দেখাও যে, $\mathbf{A}^3 = \mathbf{I}$. এ থেকে A^{-1} নির্ণয় কর ৷ সমাধান : $\mathbf{A}^{2} = \begin{vmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{vmatrix} \begin{vmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{vmatrix}$ $A^{3} = A^{2}A = \begin{vmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{vmatrix} \begin{vmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{vmatrix}$ $= \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \mathbf{I}$

উ. গ. (১ম পত্র) সমাধান-৪

 $A^2A = I$ হতে সিদ্ধান্ত হয় যে, A^{-1} বিদ্যমান এবং এর মান $A^2 = \begin{vmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{vmatrix}$ 6. A = $\begin{bmatrix} 1 & 3 & 4 \\ 3 & -1 & 6 \\ 1 & 5 & 1 \end{bmatrix}$ হলে এমন একটি ম্যাট্রিক্স B নির্ণায় কর যেন AB = BA = I হয়। সমাধান : AB = BA = I বলে, $B = A^{-1}$ এখানে, |A| = 1(-1, -30) - 3(3+6) + 4(15-1)= -31 - 27 + 56 = -2 $\begin{vmatrix} -1 & 6 \\ 5 & 1 \end{vmatrix} - \begin{vmatrix} 3 & 6 \\ -1 & 1 \end{vmatrix} \begin{vmatrix} 3 & -1 \\ -1 & 5 \end{vmatrix}$ $\therefore A^{-1} = \frac{1}{-2} \begin{vmatrix} -3 & 4 \\ 5 & 1 \end{vmatrix} \begin{vmatrix} 1 & 4 \\ -1 & 1 \end{vmatrix} - \begin{vmatrix} 1 & 3 \\ -1 & 5 \end{vmatrix}$ $\begin{vmatrix} 3 & 4 \\ -1 & 6 \end{vmatrix} - \begin{vmatrix} 1 & 4 \\ 3 & 6 \end{vmatrix} + \begin{vmatrix} 1 & 3 \\ 3 & -1 \end{vmatrix}$ $=\frac{1}{-2}\begin{bmatrix} -31 & -9 & 14\\ 17 & 5 & -8\\ 22 & 6 & -10 \end{bmatrix}$ $= \frac{1}{-2} \begin{vmatrix} -31 & 17 & 22 \\ -9 & 5 & 6 \\ 14 & -8 & -10 \end{vmatrix}$ $\therefore \mathbf{B} = \mathbf{A}^{-1} = \begin{vmatrix} 31/2 & -17/2 & -11 \\ 9/2 & -5/2 & -3 \\ -7 & 4 & 5 \end{vmatrix}$ 7. A = $\begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ & AB = $\begin{bmatrix} 10 & 17 \\ 4 & 7 \end{bmatrix}$ and B ম্যাট্রিক্সের উপাদানসমূহ নির্ণয় কর । [রুয়েট' ০৯-১০] সমাধান: এখানে, $A^{-1} = \frac{1}{4-6} \begin{bmatrix} 1 & -3 \\ 2 & 4 \end{bmatrix}$ $= -\frac{1}{2}\begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} -1/2 & 3/2 \\ 1 & -2 \end{bmatrix}$ এখন, $\dot{A}^{-1}(AB) = (A^{-1}A)B = (I)B = B$ $\Rightarrow \mathbf{B} = \mathbf{A}^{-1}(\mathbf{A}\mathbf{B}) = \begin{vmatrix} 1/2 & 3/2^{\top} & 10 & 17^{\top} \\ 1 & -2 & 4 & 7 \end{vmatrix}$

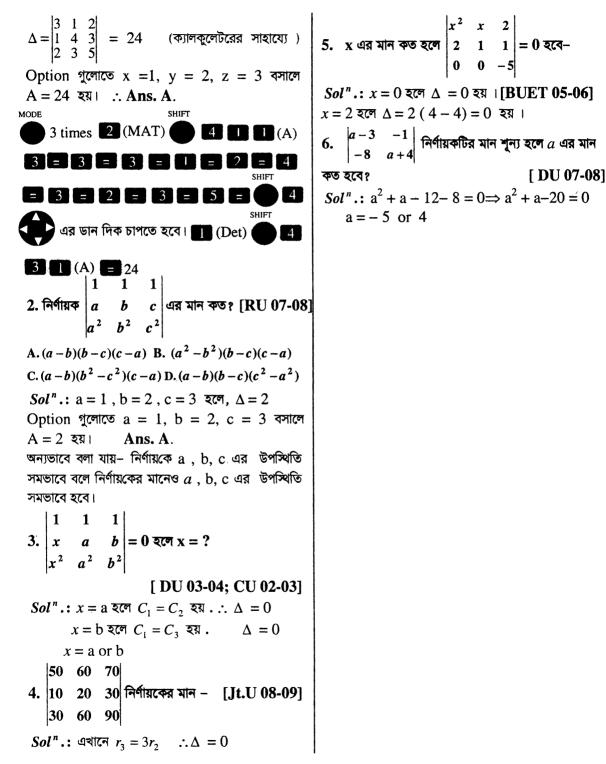
উচ্চতর গণিত: ১ম পত্র সমাধান

 $= \begin{vmatrix} -5+6 & -\frac{17}{2} + \frac{21}{2} \\ 10-8 & 17-14 \end{vmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ 8. $\begin{vmatrix} 4 & 3 \\ 2 & 1 \end{vmatrix}$ B = I হলে, B ম্যাট্রিক্স নির্ণয় কর; যেখানে $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ একটি অভেদ ম্যাটিক্স । সমাধান: ধরি, $A = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$. তাহলে, $A^{-1} = \frac{1}{4-6} \begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix}$ $=-\frac{1}{2}\begin{bmatrix}1 & -3\\-2 & 4\end{bmatrix} = \begin{bmatrix}-1/2 & 3/2\\1 & -2\end{bmatrix}$ এখন, যেহেতু AB = I, সুতরাং, $B = A^{-1}$ $B = \begin{vmatrix} -1/2 & 3/2 \\ 1 & -2 \end{vmatrix}$ ভর্তি পরীক্ষার MCO ঃ ম্যাট্রিক্স ঃ 1. $\overline{A} = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}, B = \begin{bmatrix} 3 & 0 \\ 5 & 1 \end{bmatrix}$ হয়. তবে AB এর সমান - [DU 05-06; Jt.U 08-09, 09-10; JU.09-10; R.U.08-09] Sol^{n} .: AB= $\begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ -15 & -3 \end{bmatrix}$ [বি.দ্র.: ক্যালকুলেটরের সাহায্যেও ম্যাট্রিক্সের সমাধান করা যায়।] 2. $A = \begin{vmatrix} 2 & -3 \\ 3 & 2 \end{vmatrix}$ হলে, A^2 সমান- [DU 04-05; RU,'07-08; JU.09-10] **Sol**ⁿ.: $A^2 = \begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix}$ $= \begin{bmatrix} 4-9 & -6-6 \\ 6+6 & -9+4 \end{bmatrix} = \begin{bmatrix} -5 & -12 \\ 12 & -5 \end{bmatrix}$ 3. $A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, B = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$ হলে AB কত?

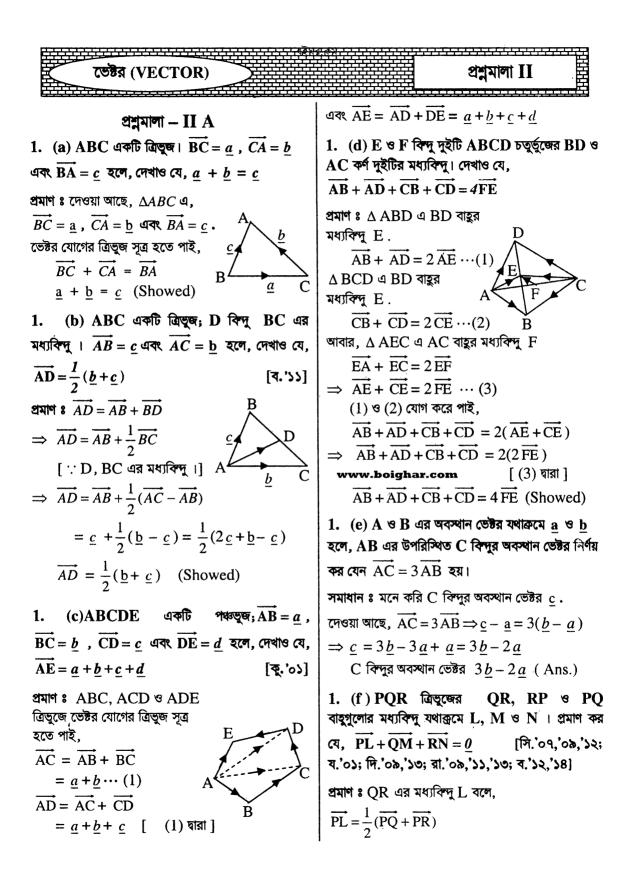
[CU 07-08] a. $\begin{bmatrix} 3 & 2 \end{bmatrix}$ b. $\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$ c. $\begin{bmatrix} 5 \\ 7 \\ 9 \end{bmatrix}$ d. $\begin{bmatrix} 4 & 5 & 6 \\ 8 & 10 & 12 \\ 12 & 15 & 18 \end{bmatrix}$ Sol".: AB এর মাত্রা হবে (3×1).(1×3) = 3 × 3 $4. A = \begin{bmatrix} 0 & 0 & 2i \\ 0 & 2i & 0 \\ 2i & 0 & 0 \end{bmatrix}$ হলে, $A^2 + 4I$ সমান– [CU 06-07] **Sol**ⁿ: $A^2 + 4I = \begin{bmatrix} (2i)^2 & 0 & 0 \\ 0 & (2i)^2 & 0 \\ 0 & 0 & (2i)^2 \end{bmatrix}$ $\begin{array}{c} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{array} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 5. $M = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ হলে $M^2 = ?$ [CU 02-03] **Sol**^{*n*}.: $M^2 = \begin{bmatrix} 2^2 & 0 \\ 0 & 2^2 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$ 6. $\begin{bmatrix} x-y & 1\\ 7 & x+y \end{bmatrix} = \begin{bmatrix} 8 & 1\\ 7 & 2 \end{bmatrix}$ zero (x,y) = ?[DU 02-03] Solⁿ: x-y = 8, x + y = 2: (x,y) = (5, -3)7. $\begin{bmatrix} 3 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$ even (x, y) = ?[CU 05-06] **Sol**": 3x + 2y = 5, x - 2y = 7 $\therefore (x, y) = (3, -2)$ 8. $\begin{vmatrix} p-4 & 8 \\ 2 & p+2 \end{vmatrix}$ ম্যাট্রিক্সটি ব্যতীক্রমী হবে p যদি এর মান -[DU 09-10, 07-08] Solⁿ.: (p-4)(p+2)-16 = 0 \Rightarrow p² - 2p - 8 - 16 = 0 \Rightarrow p² - 2p - 24 = 0 p = -6, 4

নির্ণায়কু: প্রশ্নমালা I B 9. $\begin{bmatrix} \alpha + 3 & 6 \\ 5 & \alpha - 4 \end{bmatrix}$ ম্যাট্রিক্সটি ব্যতীক্রমী হবে যদি [.It.U 07-08] α এর মান – **Sol**^{*n*}.: $(\alpha + 3)(\alpha - 4) - 30 = 0$ $\Rightarrow \alpha^2 - \alpha - 42 = 0$ $\alpha = 7, -6$ কৌশল ঃ 2×2 অব্যতীক্রমী ম্যাট্রিন্স $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ এর বিপরীত ম্যাট্রিন্স $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ 10. যদি $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ হয় তবে $A^{-1} = ?$ [DU 06-07: Jt.U 06-07] **Sol**ⁿ.: $A^{-1} = \frac{1}{4-6} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$ 11. যদি $A = \begin{bmatrix} 5 & 2 \\ -3 & 1 \end{bmatrix}$ হয় তবে $A^{-1} = ?$ [.It.U 07-08] **Sol**ⁿ: $A^{-1} = \frac{1}{5+6} \begin{bmatrix} 1 & -2 \\ 3 & 5 \end{bmatrix}$ 12. $A = \begin{vmatrix} 4 \\ -1 \\ 3 \end{vmatrix}$, $B = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ হলে AB কত? [BUET 08-09; NU 09-10; CU 07-08] a. $\begin{bmatrix} 4 & -29 \end{bmatrix}$ b. $\begin{vmatrix} 4 & 8 & 12 \\ -1 & -2 & -3 \\ 3 & 6 & 9 \end{vmatrix}$ c. $\begin{bmatrix} 4 \\ -2 \\ 9 \end{bmatrix}$ d. $\begin{bmatrix} 11 \end{bmatrix}$ Sol^n :: AB ম্যাটিন্সের মাত্রা = A এর সারি \times B এর কলাম = 3×3 \therefore Ans. b. 13. যদি $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$; $X = \begin{bmatrix} y \\ -x \end{bmatrix}$ হয়, তবে XA² эरव– [BUET 11-12] A. $\begin{bmatrix} -x \\ -y \end{bmatrix}$ B. $\begin{bmatrix} x \\ -y \end{bmatrix}$ C. $\begin{bmatrix} -y \\ -x \end{bmatrix}$ D. কোনটি নয়। Sol" .: XA² निर्मय (याग) नय । 14. A, B, C ম্যাট্রিক্লগুলির মাত্রা যথাক্রমে 4×5, 5×4 , 4×2 হলে ($A^{T} + B$)C এর মাত্রা হবে-[BUET 10-11]

 Sol^n : A^T এর মাত্রা = 5×4. (A^T + B) এর মাত্রা = 5×4, $(A^{T} + B)C = 5 \times 2$ ম্যাট্রিক্সে ক্যালকলেটরের ব্যবহার $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} -1 & -1 & -1 \\ 6 & 1 & 6 \\ 5 & 10 & 5 \end{bmatrix}$ **Z**(**7**), **AB** প 4⁻¹ নির্ণিয় কর। Declaring Matrix A: 3 times 2 (MAT) 4 3 = 3 = SHIFT STO 3 RCL এভাবে Matrix B Declare করি। এভাবে Matrix B Declare করি। SHIFT IMATI 4 3 (MAT) 1 (A) \times SHIFT (MAT) (MAT) 2 (B) ধারাবাহিকভাবে 💶 এর ডান দিক চাপতে হবে। ধারাবাহিকভাবে 📢 এর ডান দিক চাপতে হবে। নির্ণায়ক ঃ 1. নির্ণায়ক $\begin{vmatrix} x+y & x & y \\ x & x+z & z \end{vmatrix}$ এর মান– [DU 08-09, 05-06, Jt.U06-07; RU 05-06; KUET 10-11, 08-09; BAU 08-09] A. 4xyz B. 3xyz C. 2xyz D. xyz $Sol^n: x = 1, y = 2, z = 3$ হল



২৮



উচ্চতর গণিত : ১ম পত্রের সমাধান

বইঘর কম

Ρ

অনুরূপভাবে,

$$\overrightarrow{QM} = \frac{1}{2} (\overrightarrow{QP} + \overrightarrow{QR}) \, d\overrightarrow{R}$$

$$\overrightarrow{RN} = \frac{1}{2} (\overrightarrow{RP} + \overrightarrow{RQ})$$

$$L.H.S. = \overrightarrow{PL} + \overrightarrow{QM} + \overrightarrow{RN}$$

$$= \frac{1}{2} (\overrightarrow{PQ} + \overrightarrow{PR} + \overrightarrow{QP} + \overrightarrow{QR} + \overrightarrow{RP} + \overrightarrow{RQ})$$

$$= \frac{1}{2} \{ (\overrightarrow{PQ} + \overrightarrow{QP}) + (\overrightarrow{RQ} + \overrightarrow{QR}) + (\overrightarrow{RP} + \overrightarrow{PR}) \}$$

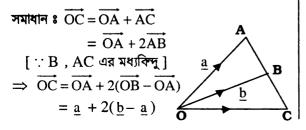
$$= \frac{1}{2} (\underline{0} + \underline{0} + \underline{0}) = \underline{0} = R.H.S. (Proved)$$

2. (a) ABC ত্রিভুচ্জের BC, CA ও AB বাহুর মধ্যবিন্দু যথাক্রমে D, E ও F হলে \overrightarrow{BE} ও \overrightarrow{CF} ভেন্টর দুইটিকে \overrightarrow{AB} ও \overrightarrow{AC} ভেন্টর দুইটির যোগাশ্রগ্রী সমাবেশে প্রকাশ কর।

সমাধান :
$$\overrightarrow{BE} = \overrightarrow{BA} + \overrightarrow{AE}$$

[ভেট্টর যোগের ত্রিভুজ সূত্রানুযায়ী] \overrightarrow{A}
 $\Rightarrow \overrightarrow{BE} = -\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$
[E, AC এর মধ্যবিন্দু |]
 $\overrightarrow{BE} = \frac{1}{2}\overrightarrow{AC} - \overrightarrow{AB}$ \overrightarrow{B} \overrightarrow{D} \overrightarrow{C}
 $\overrightarrow{CF} = \overrightarrow{CA} + \overrightarrow{AF}$ [ভেট্টর যোগের ত্রিভুজ সূত্রানুযায়ী]
 $\Rightarrow \overrightarrow{CF} = -\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AC}$
[$\because E$, AC এর মধ্যবিন্দু |]
 $\overrightarrow{CF} = \frac{1}{2}\overrightarrow{AB} - \overrightarrow{AC}$

2. (b)OAC ত্রিভুচ্চে AC বাহুর মধ্যবিন্দু B ; যদি $\overrightarrow{OA} = \underline{a}$ এবং $\overrightarrow{OB} = \underline{b}$ হয়, তবে \overrightarrow{OC} ভেষ্টরকে \underline{a} ও \underline{b} এর মাধ্যমে প্রকাশ কর। [ঢা.'০৯,'১৩; দি.'১২]



 $\overrightarrow{OC} = 2b - a$ (Ans.) 2. (c) $\overrightarrow{OP} = a$, $\overrightarrow{OQ} = b$ and $\overrightarrow{OR} = a + b$ হলে OPRO কি ধরনের চতুর্ভুচ্চ তা নির্ধারন কর। সমাধান ঃ দেওয়া আছে. $\overrightarrow{OP} = a$, $\overrightarrow{OQ} = b$ are $\overrightarrow{OR} = a + b$ এখন, \overrightarrow{OP} + \overrightarrow{OQ} = $a + b = \overrightarrow{OR}$ \overrightarrow{OP} + \overrightarrow{OQ} = \overrightarrow{OR} ; যা ভেক্টর যোগের সামান্তরিক সূত্রের শর্ত। অতএব, OPRO একটি সামান্তরিক। 3. যদি a ও b অসমরৈখিক ভেষ্টর এবং (x + 1)a+ (y - 2) b = 2a + b হয় তবে x ও y এর মান নির্ণয় কর। সমাধান ঃ দেওয়া আছে, a ও b অসমরৈখিক ভেষ্টর এবং (x + 1)a + (y - 2)b = 2a + b $x + 1 = 2 \Longrightarrow x = 1, y - 2 = 1 \Longrightarrow y = 3$ প্রশ্নমালা – II B 1. (a) $\vec{A} = \hat{i} + 3\hat{j} - 2\hat{k}$ are $\vec{B} = 4\hat{i} - 2\hat{j} + 4\hat{k}$ হলে $2\vec{A} + \vec{B}$ ও $6\vec{A} - 3\vec{B}$ এর মান নির্ণয় কর। [4.'09; δ.'08] সমাধান ঃ $2\overline{A} + \overline{B} = 2(\hat{i} + 3\hat{j} - 2\hat{k})$ $+4\hat{i}-2\hat{j}+4\hat{k}$ $= 2\hat{i} + 6\hat{j} - 4\hat{k} + 4\hat{i} - 2\hat{j} + 4\hat{k}$

 $\begin{bmatrix} \overrightarrow{OA} = a \ \square \overrightarrow{OB} = b \end{bmatrix}$

=
$$6i + 4j$$
 (Ans.)
 $6\overline{A} - 3\overline{B} = 6(\hat{i} + 3\hat{j} - 2\hat{k}) - 3(4\hat{i} - 2\hat{j} + 4\hat{k})$
= $6\hat{i} + 18\hat{j} - 12\hat{k} - 12\hat{i} + 6\hat{j} - 12\hat{k}$
= $-6\hat{i} + 24\hat{j} - 24\hat{k}$ (Ans.)
1. (b) $\vec{A} = \hat{i} + 3\hat{j} - 2\hat{k}$ এবং $\vec{B} = 4\hat{i} - 2\hat{j} + 4\hat{k}$
হলে $|3\overline{A} + 2\overline{B}|$ এর মান নির্ণয় কর।
[ফ.'০৭:রেক্রেয়েট.১১-১২

প্রশ্নমালা II B

সমাধান ঃ $3\overline{A} + 2\overline{B} = 3(\hat{i} + 3\hat{j} - 2\hat{k})$ + $2(4\hat{i}-2\hat{i}+4\hat{k})$ $= 3\hat{i} + 9\hat{j} - 6\hat{k} + 8\hat{i} - 4\hat{j} + 8\hat{k}$ $= 11\hat{i} + 5\hat{j} + 2\hat{k}$ $|3\overline{A} + 2\overline{B}| = \sqrt{11^2 + 5^2 + 2^2}$ $= \sqrt{121 + 25 + 4} = \sqrt{150}$ 1. (c) $\vec{A} = 3\hat{i} + 2\hat{j}$, $\vec{B} = -\hat{i} + 5\hat{j}$, $\vec{C} = 8\hat{i} - 3\hat{j}$ হলে $\overline{A} - 3\overline{B}$ এবং $3\overline{A} - 7\overline{C}$ নির্ণয় কর। [চ.'০১] সমাধান : $\overline{A} - 3\overline{B} = 3\hat{i} + 2\hat{j} - 3(-\hat{i} + 5\hat{i})$ $= 3\hat{i} + 2\hat{j} + 3\hat{i} - 15\hat{j} = 6\hat{i} - 13\hat{j}$ (Ans.) $3\overline{A} - 7\overline{C} = 3(3\hat{i} + 2\hat{i}) - 7(8\hat{i} - 3\hat{i})$ $= 9\hat{i} + 6\hat{j} - 56\hat{i} + 21\hat{i} = -47\hat{i} + 27\hat{i}$ (Ans.) 2. (a) $\vec{A} = \hat{i} + 3\hat{j} - 2\hat{k}$ and $\vec{B} = 4\hat{i} - 2\hat{j} + 4\hat{k}$ হলে $(\overrightarrow{2A} - \overrightarrow{B}) \cdot (\overrightarrow{6A} + \overrightarrow{3B})$ এর মান নির্ণয় ব্দর। য. '০৩] সমাধান ঃ $2\overline{A} - \overline{B}$ $= 2(\hat{i} + 3\hat{j} - 2\hat{k}) - (4\hat{i} - 2\hat{j} + 4\hat{k})$ $= 2\hat{i} + 6\hat{j} - 4\hat{k} - 4\hat{i} + 2\hat{j} - 4\hat{k}$ $= -2\hat{i} + 8\hat{i} - 8\hat{k}$ $6\overline{A} + 3\overline{B} = 6(\hat{i} + 3\hat{j} - 2\hat{k}) + 3(4\hat{i} - 2\hat{j} + 4\hat{k})$ $= 6\hat{i} + 18\hat{j} - 12\hat{k} + 12\hat{i} - 6\hat{j} + 12\hat{k}$ $= 18\hat{i} + 12\hat{i}$ $(2\overline{A} - \overline{B}).(6\overline{A} + 3\overline{B})$ $= (-2\hat{i} + 8\hat{j} - 8\hat{k}).(18\hat{i} + 12\hat{j})$ = -36 + 96 = 602. (b) $a = \hat{i} + \hat{j} + \hat{k}$, $b = \hat{i} - \hat{j} + \hat{k}$, $\underline{\mathbf{c}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$ হলে $(\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}) + (\underline{\mathbf{b}} \cdot \underline{\mathbf{c}}) + (\underline{\mathbf{c}} \cdot \mathbf{a})$ এর মান নির্ণয় কর। রা. '০৩: য. '০৯] সমাধান : $(\underline{a} \cdot \underline{b}) + (\underline{b} \cdot \underline{c}) + (\underline{c} \cdot \underline{a})$

 $= (\hat{i} + \hat{j} + \hat{k}) \cdot (\hat{i} - \hat{j} + \hat{k}) +$ $(\hat{i} - \hat{j} + \hat{k}) \cdot (\hat{i} + j - \hat{k}) +$ $(\hat{i} + \hat{i} + \hat{k}) \cdot (\hat{i} + \hat{i} - \hat{k})$ 1 - 1 + 1 + 1 - 1 - 1 + 1 + 1 - 1 = 12. (c) (2, 3,1) এবং (3,1, - 2) বিন্দু ধ্যের অবস্থান ভেক্টর দুইটির স্কেলার গুণফল নির্ণয় কর। [ঢা.'০২] সমাধান : (2, 3 1) ও (3 1, -2) কিপু দেয়ের অবস্থান ভেষ্টর যথাক্রমে $2\hat{i} + 3\hat{j} + \hat{k} \ll 3\hat{i} + j - 2\hat{k}$ এ ভেক্টর দুইটির স্কেলার গুণফল $= (2\hat{i} + 3\hat{j} + \hat{k}) \cdot (3\hat{i} + \hat{j} - 2\hat{k})$ = 6 + 3 - 2 = 7 (Ans.) 2. (d) $\overrightarrow{OA} = 2\hat{i} + 3\hat{j} - 4\hat{k}$, $\overrightarrow{OB} = 4\hat{i} - 3\hat{j} + 2\hat{k}$ হলে $|\overrightarrow{AB}|$ এর মান নির্ণয় কর। রো.'১২; ব.'১০; য.'১২,'১৪; চ.'১২; দি.'০৯,'১১,'১৪;ঢা.'১৩; মা.'০৯, '১৩] সমাধান ঃ $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ $= 4\hat{i} - 3\hat{i} + 2\hat{k} - (2\hat{i} + 3\hat{i} - 4\hat{k})$ $= 4\hat{i} - 3\hat{j} + 2\hat{k} - 2\hat{i} - 3\hat{j} + 4\hat{k}$ $= 2\hat{i} - 6\hat{i} + 6\hat{k}$ $|\vec{AB}| = |2\hat{i} - 6\hat{j} + 6\hat{k}| = \sqrt{2^2 + 6^2 + 6^2}$ $=\sqrt{76}=2\sqrt{19}$ (Ans.) 3. প্রতি জোড়া ভেষ্টরের অন্তর্গত কোণ নির্ণয় কর ঃ (a) $\vec{A} = 2\hat{i} + 2\hat{j} + \hat{k} \otimes \vec{B} = 2\hat{i} + 10\hat{j} - 11\hat{k}$ যি. '০৩: রা. '০৬] সমাধান ঃ $|\overline{A}| = |2\hat{i} + 2\hat{j} + \hat{k}|$ $=\sqrt{2^2+2^2+1^2}=\sqrt{9}=3$ $|\overline{B}| = |2\hat{i} + 10\hat{j} - 11\hat{k}| = \sqrt{2^2 + 10^2 + 11^2}$ $=\sqrt{4+100+121} = \sqrt{225} = 15$ এবং \overline{A} $\overline{B} = (2\hat{i} + 2\hat{j} + \hat{k}) \cdot (2\hat{i} + 10\hat{j} - 11\hat{k})$ = 2.2 + 2.10 + 1.(-11)= 4 + 20 - 11 = 13ভেক্টর দুইটির অনতর্ভুক্ত কোণ ⊖ হলে, $\frac{\overline{A} \quad \overline{B}}{|A||\overline{B}|} = \frac{13}{3 \times 15} = \frac{13}{45}$ co-

 $\theta = \cos^{-1} \frac{13}{45}$ ভেষ্টর দুইটির অন্তর্ভুক্ত কোণ $\cos^{-1} \frac{13}{15}$ (b) $\vec{A} = 2\hat{i} - 3\hat{i} - \hat{k} + \hat{B} = \hat{i} + 4\hat{i} + 3\hat{k}$ ঢো. '০৩; রা. '০৪.'১১; য. '০৭.'১৩; সি. '০৮,'১৪; ব.'১১] সমাধান ঃ $|\overline{A}| = |2\hat{i} - 3\hat{j} - \hat{k}|$ $=\sqrt{2^2+3^2+1^2}=\sqrt{4+9+1}=\sqrt{14}$ $|\overline{\mathbf{B}}| = |\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 3\hat{\mathbf{k}}| = \sqrt{1^2 + 4^2 + 3^2}$ $= \sqrt{1+16+9} = \sqrt{26}$ and \overline{A} $\overline{B} = (2\hat{i} - 3\hat{i} - \hat{k}):(\hat{i} + 4\hat{i} + 3\hat{k})$ = 2 - 12 - 3 = -13ভেষ্টর দুইটির অন্তর্ভুক্ত কোণ ⊖ হলে. $\cos \Theta = \frac{\overline{A} \cdot \overline{B}}{|\overline{A}||\overline{B}|} = \frac{-13}{\sqrt{14} \times \sqrt{26}}$ $=\frac{-13}{2\sqrt{7}\sqrt{13}}=\frac{-\sqrt{13}}{2\sqrt{7}}$ $\Theta = \cos^{-1} \frac{-\sqrt{13}}{2\sqrt{7}}$ ভেষ্টর দুইটির অন্তর্ভুক্ত কোণ $\cos^{-1}(-\frac{\sqrt{13}}{2\sqrt{7}})$ 3. (c) $\vec{A} = 2\hat{i} + 2\hat{j} - \hat{k}$ $\vec{B} = \hat{i} - 3\hat{j} + 5\hat{k}$ য.'05: চ.'08.'0৮: ব.'0৫] সমাধান $|A| = |2\hat{i} + 2\hat{j} - \hat{k}|$ $=\sqrt{2^2+2^2+1^2}=\sqrt{9}=3$ $|\overline{B}| = |\hat{i} - 3\hat{j} + 5\hat{k}| = \sqrt{1^2 + 3^2 + 5^2}$ $=\sqrt{1+9+25}=\sqrt{35}$ are \overline{A} $\overline{B} = (2\hat{i} + 2\hat{j} - \hat{k}) \cdot (\hat{i} - 3\hat{i} + 5\hat{k})$ = 2 - 6 - 5 = -9ভেষ্টর দুইটির অন্তর্ভুক্ত কোণ Θ হলে, $\cos \Theta = \frac{A \cdot B}{|A||B|} = \frac{-9}{3 \times \sqrt{35}} = \frac{-3}{\sqrt{35}}$ $\Theta = \cos^{-1} \frac{-3}{\sqrt{35}}$

ভেষ্টর দুইটির অনতর্ভুক্ত কোণ $\cos^{-1} \frac{-3}{\sqrt{25}}$ 3. (d) $\vec{A} = \hat{i} - 2\hat{j} - 3\hat{k}$ are $\vec{B} = 2\hat{i} + \hat{j} - \hat{k}$ এর অন্দতর্গত কোণ নির্ণয় কর। ক.'০৫.'১৩ সমাধান ঃ $|\overline{A}| = |\hat{i} - 2\hat{j} - 3\hat{k}|$ $=\sqrt{1^2+2^2+3^2}=\sqrt{1+4+9}=\sqrt{14}$ $|\overline{\mathbf{B}}| = |2\hat{\mathbf{i}} + \mathbf{i} - \hat{\mathbf{k}}| = \sqrt{2^2 + 1^2 + 1^2}$ $=\sqrt{4+1+1} = \sqrt{6}$ and \overline{A} $\overline{B} = (\hat{i} - 2\hat{i} - 3\hat{k}) \cdot (2\hat{i} + \hat{j} - \hat{k})$ = 2 - 2 + 3 = 3ভেক্টর দুইটির অনতর্ভুক্ত কোণ ⊖ হলে. $\cos \Theta = \frac{\overline{A} \cdot \overline{B}}{|\overline{A}||\overline{B}|} = \frac{3}{\sqrt{14} \times \sqrt{6}} = \frac{3}{2\sqrt{21}}$ $\Theta = \cos^{-1} \left(\frac{3}{2\sqrt{21}}\right)$ ভেষ্টর দুইটির অন্তর্ভুক্ত কোণ $\cos^{-1}(\frac{3}{2\sqrt{21}})$ 3. (e) $2\hat{i} - 3\hat{j} + \hat{k}$ এবং $\hat{i} - \hat{j} + \hat{k}$ ভেষ্টর দুইটির অন্তর্গত কোণ নির্ণয় কর। ৰি.'০৬] সমাধান ঃ ধরি, $\overline{A} = 2\hat{i} - 3\hat{i} + \hat{k}$, $\overline{B} = \hat{i} - \hat{i} + \hat{k}$ $\therefore |\overline{A}| = |2\hat{i} - 3\hat{i} + \hat{k}| = \sqrt{2^2 + 3^2 + 1^2}$ $=\sqrt{4+9+1} = \sqrt{14}$ $|\overline{\mathbf{B}}| = |\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$ \overline{A} $\overline{B} = (2\hat{i} - 3\hat{i} + \hat{k}) \cdot (\hat{i} - i + \hat{k})$ = 2 + 3 + 1 = 6ভেক্টর দুইটির অন্তর্ভুক্ত কোণ ⊖ হলে, $\cos \Theta = \frac{\overline{A} \cdot \overline{B}}{|\overline{A}||\overline{B}|} = \frac{6}{\sqrt{|\overline{A}||\overline{A}||\overline{A}||\overline{B}||}}$ $=\frac{6}{\sqrt{7}\times\sqrt{6}}=\sqrt{\frac{6}{7}}$ $\theta = \cos^{-1} \sqrt{\frac{6}{7}}$

প্রশ্নমালা II B বহুঘর কম

ভেষ্টর দুইটির অন্তর্ভুক্ত কোণ $\cos^{-1} \sqrt{\frac{6}{7}}$ 4. $a = \hat{i} + 2\hat{j} - 3\hat{k}$, $b = 3\hat{i} - \hat{j} + 2\hat{k}$ হলে 2<u>a</u> + <u>b</u> ও <u>a</u> + 2<u>b</u> ভেষ্টর দুইটির অন্দতর্গত কোণ নির্ণয় কর। য. '08: ব. '08: ব. '0৬ সমাধান ঃ $2a + b = 2(\hat{i} + 2\hat{j} - 3\hat{k}) + 3\hat{i} - \hat{i} + 2\hat{k}$ $= 2\hat{i} + 4\hat{j} - 6\hat{k} + 3\hat{i} - \hat{j} + 2\hat{k}$ $=5\hat{i}+3\hat{i}-4\hat{k}$ $a + 2b = \hat{i} + 2\hat{j} - 3\hat{k} + 2(3\hat{i} - \hat{j} + 2\hat{k})$ $= i + 2\hat{i} - 3\hat{k} + 6\hat{i} - 2\hat{j} + 4\hat{k} = 7\hat{i} + \hat{k}$ $|2a+b| = \sqrt{5^2+3^2+4^2}$ $=\sqrt{25+9+16}=\sqrt{50}$ $|a+2b| = \sqrt{7^2 + 1^2} = \sqrt{50}$ are $(2a + b) \cdot (a + 2b)$ $= (5\hat{i} + 3\hat{j} - 4\hat{k}) \cdot (7\hat{i} + \hat{k}) = 35 - 4 = 31$ ভেষ্টর দুইটির অন্তর্ভুক্ত কোণ ⊖ হলে, $\cos\Theta = \frac{(2\underline{a} + \underline{b}).(\underline{a} + 2\underline{b})}{|2\underline{a} + \underline{b}||\underline{a} + 2\underline{b}|} = \frac{31}{\sqrt{50} \times \sqrt{50}}$ $\Theta = \cos^{-1} \frac{31}{50}$ ভেষ্টর দুইটির অনতর্ভুক্ত কোণ $\cos^{-1} \frac{31}{50}$ 5. নিচের ভেষ্টরগুলি অক্ষত্রয়ের সাথে যে কোণ উৎপন্ন করে তা নির্ণয় করে ঃ (a) $2\hat{i} - \hat{i} + 2\hat{k}$ [ঢা., চ.'১১; দি.,রা.,কু.,য'১০; রা.,দি.,সি.,চ.'১৩] **সমাধান ঃ** ধরি. x v ও z-অক্ষ প্রদত্ত ভেক্টর $2\hat{i} - j + 2\hat{k}$ এর সাথে যথাক্রমে α , β ও γ কোণ উৎপন্ন করে। $\cos \alpha = \frac{i \cdot (2\hat{i} - \hat{j} + 2k)}{\sqrt{1^2} \sqrt{2^2 + 1^2 + 2^2}} = \frac{2}{\sqrt{9}} = \frac{2}{3}$ $\alpha = \cos^{-1}(2/3)$

 $\cos\beta = \frac{\hat{j} \cdot (2\hat{i} - \hat{j} + 2\hat{k})}{\sqrt{12}\sqrt{2^2 + 1^2 + 2^2}} = \frac{-1}{3}$ $\beta = \cos^{-1}(-1/3)$ are $\cos \gamma = \frac{\hat{k} \cdot (2\hat{i} - \hat{j} + 2\hat{k})}{\sqrt{1^2} \sqrt{2^2 + 1^2} + 2^2} = \frac{2}{3}$ $\gamma = \cos^{-1}(2/3)$ প্রদন্ত ভেক্টরটি অক্ষত্রয়ের সাথে $\cos^{-1}(2/3)$. cos⁻¹(−1/3) ও cos⁻¹(2/3) কোণ উৎপন্ন করে। 5. (b) $\hat{j} + 2\hat{k}$ রা. '০৮] সমাধান ঃ ধরি, x , y ও z-অক্ষ প্রদুত্ত ভেষ্টর $\hat{j}+2\hat{k}$ এর সাথে যথাব্রুমে α, β ও γ কোণ উৎপন্ন করে। $\cos \alpha = \frac{\hat{i} \cdot (\hat{j} + 2\hat{k})}{\sqrt{\frac{12}{12}} \sqrt{\frac{12}{12} + 2^2}} = \frac{0}{\sqrt{5}} = 0 = \cos \frac{\pi}{2}$ $\alpha = \frac{\pi}{2}$ $\cos\beta = \frac{\hat{j} \cdot (\hat{j} + 2k)}{\sqrt{12} \sqrt{12} + 2^2} = \frac{1}{\sqrt{5}}$ $\beta = \cos^{-1}(1/\sqrt{5})$ এবং $\cos \gamma = \frac{\hat{k} \cdot (\hat{j} + 2\hat{k})}{\sqrt{12} \sqrt{12} + 2^2} = \frac{2}{\sqrt{5}}$ $\gamma = \cos^{-1}(2/\sqrt{5})$ প্রদন্ত ভেক্টরটি অক্ষত্রয়ের সাথে $\frac{\pi}{2}$, $\cos^{-1}(1/\sqrt{5})$ ও $\cos^{-1}(2/\sqrt{5})$ কোণ উৎপন্ন করে। 5. (c) $3\hat{i} - 6\hat{i} + 2\hat{k}$ যি. '০৮] সমাধান ঃ ধরি, x y ও z-অক্ষ প্রদত্ত ভেক্টর $3\hat{i}-6\hat{j}+2\hat{k}$ এর সাথে যথাক্রমে lpha , eta ও γ কোণ উৎপন্ন করে। $\cos \alpha = \frac{\hat{i} \cdot (3\hat{i} - 6\hat{j} + 2\hat{k})}{\sqrt{1^2}\sqrt{2^2 + 6^2 + 2^2}} = \frac{3}{\sqrt{49}} = \frac{3}{7}$ $\alpha = \cos^{-1}(3/7)$

$$\cos\beta = \frac{j(3\hat{i} - 6\hat{j} + 2\hat{k})}{\sqrt{1^2}\sqrt{3^2 + 6^2 + 2^2}} = \frac{-6}{\sqrt{49}} = -\frac{6}{\sqrt{49}}$$

উ. গ. (১ম পত্র) সমাধান-৫

)

$$β = cos^{-1}(-6/7)$$
 এবং
 $cos \gamma = \frac{\hat{k} \cdot (3\hat{i} - 6\hat{j} + 2\hat{k})}{\sqrt{1^2}\sqrt{3^2 + 6^2 + 2^2}} = \frac{2}{\sqrt{49}} = \frac{2}{7}$
 $\gamma = cos^{-1}(2/7)$
প্রদন্ত ভেক্টরটি অক্ষত্রয়ের সাথে $cos^{-1}(3/7)$
 $cos^{-1}(-6/7)$ ও $cos^{-1}(2/7)$ কোণ উৎপন্ন করে।
6. (a) $\vec{B} = 6\hat{i} - 3\hat{j} + 2\hat{k}$ ভেক্টরের উপর
 $\vec{A} = 2\hat{i} + 2\hat{j} + \hat{k}$ তেন্টরের অভিক্ষেপ নির্ণয় কর।
 $[\textbf{φ}.'ob,'\lambda\lambda;$ রা.'o8,' λ ৩; চ.'o৫; য.' λ ২; সি.' λ ২
কুয়েট'o৫-o৬]
সমাধান \hat{s} ভিক্টরের উপর \vec{A} ভেন্টরের অভিক্ষেপ
 $\vec{A} = \hat{B}$ ভেক্টরের উপর \vec{A} ভেন্টরের অভিক্ষেপ

$$= \frac{A}{|\vec{B}|} = \frac{(6\hat{i} - 3\hat{j} + 2\hat{k}) \cdot (2\hat{i} + 2\hat{j} + \hat{k})}{|6\hat{i} - 3\hat{j} + 2\hat{k}|}$$

= $\frac{6 \times 2 + (-3 \times 2) + 2 \times 1}{\sqrt{6^2 + 3^2 + 2^2}} = \frac{12 - 6 + 2}{\sqrt{36 + 9 + 4}}$
= $\frac{8}{\sqrt{49}} = \frac{8}{7}$ (Ans.)

6. (b) $\underline{a} = \hat{i} + \hat{j} + \hat{k}$, $\underline{b} = \sqrt{3}\hat{i} + 3\hat{j} - 2\hat{k}$; \underline{b} ভেষ্টরের উপর <u>a</u> ভেষ্টরের অভিক্ষেপ নির্ণয় কর।

[इ.') २; क.') २; व.' ० १; मि.'))

সমাধান ঃ <u>b</u> ভেক্টরের উপর <u>a</u> ভেক্টরের অভিক্ষেপ

$$= \frac{\underline{a} \cdot \underline{b}}{|\underline{b}|} = \frac{(\hat{i} + \hat{j} + \hat{k}) \cdot (\sqrt{3}\hat{i} + 3\hat{j} - 2\hat{k})}{|\sqrt{3}\hat{i} + 3\hat{j} - 2\hat{k}|}$$

$$= \frac{1 \times \sqrt{3} + (1 \times 3) + 1 \times -2}{\sqrt{(\sqrt{3})^2 + 3^2 + 2^2}} = \frac{\sqrt{3} + 3 - 2}{\sqrt{3} + 9 + 4}$$

$$= \frac{\sqrt{3} + 1}{\sqrt{16}} = \frac{\sqrt{3} + 1}{4} \quad (Ans.)$$

6. (c) P = 5î - 3ĵ + 2k ভেষ্টরের উপর
Q = 2î + ĵ - 2k ভেষ্টরের অভিক্ষেপ নির্ণয় কর।
[বৄ.'08; ঢা.'09]
সমাধান : P ভেষ্টরের উপর Q ভেষ্টরের অভিক্ষেপ

$$= \frac{\vec{P} \cdot \vec{Q}}{|\vec{P}|} = \frac{(5\hat{i} - 3\hat{j} + 2\hat{k}) \cdot (2\hat{i} + j - 2\hat{k})}{|5\hat{i} - 3\hat{j} + 2\hat{k}|}$$

$$= \frac{5 \times 2 + (-3 \times 1) + 2 \times -2}{\sqrt{5^2 + 3^2 + 2^2}}$$

$$= \frac{10 - 3 - 4}{\sqrt{25 + 9 + 4}} = \frac{3}{\sqrt{34}} \quad (Ans.)$$
6. (d) $\underline{\mathbf{b}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ ভেষ্টরের উপর
 $\underline{\mathbf{a}} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ ভেষ্টরের অভিকেপ নির্ণম কর |
[ম.'o ৮]

সমাধান ঃ <u>b</u> ভেক্টরের উপর <u>a</u> ভেক্টরের অভিক্ষেপ

$$= \frac{\underline{a} \cdot \underline{b}}{|\underline{b}|} = \frac{(2\hat{i} + 3\hat{j} + 2\hat{k}) \cdot (\hat{i} + 2\hat{j} + \hat{k})}{|\hat{i} + 2\hat{j} + \hat{k}|}$$
$$= \frac{2 \times 1 + 3 \times 2 + 2 \times 1}{\sqrt{1^2 + 2^2 + 1^2}}$$
$$= \frac{2 + 6 + 2}{\sqrt{1 + 4 + 1}} = \frac{10}{\sqrt{6}} \quad (Ans.)$$

6. (e) A(2, 3, -1) S B (-2, -4, 3) কিপুৰুয়ের সংযোগ সরলরেখার উপর $4\hat{i} - 3\hat{j} + \hat{k}$ ডেষ্টরের অভিক্ষেপ নির্ণয় কর।

সমাধান : A(2 3, -1) ও B (-2, -4, 3) বিন্দুছয়ের অবস্থান ডেক্টর যথাক্রমে $2\hat{i}+3\hat{j}-\hat{k}$ ও $-2\hat{i}-4\hat{j}+3\hat{k}$. $\overrightarrow{AB} = (-2\hat{i}-4\hat{j}+3\hat{k}) - (2\hat{i}+3\hat{j}-\hat{k})$ $= -4\hat{i}-7\hat{j}+4\hat{k}$ $-4\hat{i}-7\hat{j}+4\hat{k}$ ডেক্টরের উপর $4\hat{i}-3\hat{j}+\hat{k}$ এর অভিক্ষেপ = $\frac{(-4\hat{i}-7\hat{j}+4\hat{k})\cdot(4\hat{i}-3\hat{j}+\hat{k})}{|-4\hat{i}-7\hat{j}+4\hat{k}|}$ $= \frac{-16+21+4}{\sqrt{16+49+16}} = \frac{9}{9} = 1$ (Ans.)

7. (a) $\vec{B} = 2\hat{i} + 10\hat{j} - 11\hat{k}$ ভেষ্টর বরাবর $\vec{A} = 2\hat{i} + 2\hat{j} + \hat{k}$ ভেষ্টরের উপাংশ নির্ণয় কর। [ব.'০১,'০৯; রা.'০৫; সি.'০৭,'১১; কৃ.,দি.'১০] সমাধান ঃ $|\vec{B}| = |2\hat{i} + 10\hat{j} - 11\hat{k}|$

 $=\sqrt{2^2+10^2+11^2}=\sqrt{4+100+121}$ $=\sqrt{225}=15$ R ভেন্ধবের দিক ভেন্টর বরারর একক $= \frac{\vec{B}}{|\vec{B}|} = \frac{2\hat{i} + 10\hat{j} - 11\hat{k}}{15} = \hat{n} \quad (4fa)$ উপাংশ R ভেক্টর বরাবর Ā ভেন্ধবের $=(\hat{n},\vec{A})\hat{n}$ $= \{\frac{1}{15}(2\hat{i}+10\hat{j}-11\hat{k})\cdot(2\hat{i}+2\hat{j}+\hat{k})\}\hat{n}$ $=\frac{4+20-11}{15}\cdot\frac{2\hat{i}+10\hat{j}-11\hat{k}}{15}$ $=\frac{13}{225}(2\hat{i}+10\hat{j}-11\hat{k})$ (Ans.) 7. (b) $\vec{A} = \hat{i} - 2\hat{j} - 2\hat{k}$ and $\vec{B} = 6\hat{i} + 3\hat{j} + 2\hat{k}$ ভেষ্টর দুইটির অন্দতর্গত কোণ নির্ণয় কর। 🕺 ভেষ্টর বরাবর B ভেষ্টরের উপাংশ এবং অভিক্ষেপ নির্ণয় কর এবং দেখাও যে এদের সাংখ্যিক মান সমান। [য.'09:ঢা.'0৯: চ.'১০] সমাধান ঃ $|\vec{A}| = |\hat{i} - 2\hat{j} - 2\hat{k}|$ $=\sqrt{1^2+2^2+2^2}=\sqrt{9}=3$ $|\vec{B}| = |6\hat{i} + 3\hat{j} + 2\hat{k}| = \sqrt{36 + 9 + 4} = 7$ $\vec{A} \ \vec{B} = (\hat{i} - 2\hat{j} - 2\hat{k}) \cdot (6\hat{i} + 3\hat{j} + 2\hat{k})$ = 6 - 6 - 4 = -4প্রদন্ত ভেষ্টর \vec{A} ও \vec{B} এর অনতর্ভক্ত কোণ \ominus হলে. $\cos \theta = \frac{A \cdot B}{|A||B|} = \frac{-4}{3 \times 7} \quad \therefore \theta = \cos^{-1}(-\frac{4}{2i})$ \vec{A} ভেষ্টরের দিক বরাবর একক ভেষ্টর = $\frac{A}{|\vec{A}|}$ $=\frac{1}{2}(\hat{i}-2\hat{j}-2\hat{k})=\hat{a}(4\hat{k})$ \vec{A} ভেক্টর বরাবর \vec{B} ভেক্টরের উপাংশ = $\frac{A \cdot B}{|\vec{A}|} \hat{a}$ $= \frac{-4}{3} \left\{ \frac{1}{3} (\hat{i} - 2\hat{j} - 2\hat{k}) \right\}$

<u>প্রশ্নমালা II B</u> 00 $=\frac{-4}{2}\hat{i}+\frac{8}{2}\hat{j}+\frac{8}{2}\hat{k}$ (Ans.) $ec{A}$ ভেষ্টর বরাবর $ec{B}$ ভেষ্টরের উপাংশের মান $= \left| \frac{-4}{2} \hat{i} + \frac{8}{2} \hat{j} + \frac{8}{2} \hat{k} \right| = \sqrt{\frac{16}{21} + \frac{64}{21} + \frac{64}{21}}$ $=\sqrt{\frac{16+64+64}{91}}=\sqrt{\frac{144}{91}}=\frac{12}{9}=\frac{4}{2}$ \vec{A} ভেক্টর বরাবর \vec{B} ভেক্টরের অভিক্ষেপ = $\frac{\vec{A} \cdot \vec{B}}{\vec{A} \cdot \vec{A}} = \frac{-4}{3}$ A ভেষ্টর বরাবর B ভেষ্টরের অর্ভিক্ষেপ এবং উপাৎশের সাংখ্যিক মান সমান। 8. (a) $2\hat{i} + 10\hat{j} - 11\hat{k}$ ভেষ্টরটির সমান্তরালে একক ভেষ্টর নির্ণয় কর। [সি.'০৫.' ০১] সমাধান ঃ ধরি, $\vec{A} = 2\hat{i} + 10\hat{j} - 11\hat{k}$ $|\vec{A}| = \sqrt{2^2 + 10^2 + 11^2}$ $=\sqrt{4+100+121} = \sqrt{225} = 15$ \vec{A} ভেক্টরের সমান্দতরালে একক ভেক্টর = $\pm \frac{A}{|\vec{A}|}$ $=\pm\frac{1}{15}(2\hat{i}+10\hat{j}-11\hat{k})$ (Ans.) 8. (b) $\vec{A} = 2\hat{i} + 4\hat{j} + 5\hat{k}$ and $\vec{B} = \hat{i} + 2\hat{j} + 3\hat{k}$ হলে ভেষ্টর দুইটির লম্বির সমান্তরাল একক ভেষ্টর নির্ণয় কর। [চ.'১০: সি.'১১] সমাধান ঃ প্রদত্ত ভেক্টর দইটির লব্দি ভেক্টর $= \vec{A} + \vec{B}$ $= 2\hat{i} + 4\hat{j} + 5\hat{k} + i + 2\hat{j} + 3\hat{k}$ $= 3\hat{i} + 6\hat{j} + 8\hat{k}$ $|\vec{A} + \vec{B}| = \sqrt{9 + 36 + 64} = \sqrt{109}$ নির্ণেয় একক ভেক্টর = $\pm \frac{A+B}{|\vec{A}+\vec{B}|}$ $=\pm\frac{1}{\sqrt{100}}(3\hat{i}+6\hat{j}+8\hat{k})$ 8. (c) $\vec{A} = 4\hat{i} + 5\hat{j} - 3\hat{k}$ are $\vec{B} = -\hat{i} - 5\hat{j} - \hat{k}$ হলে, (i) ভেষ্টর দুইটির লম্বির সমান্তরালে একক ভেষ্টর

[ব.'০৪]

নির্ণয় কর।

(ii) ভেষ্টর দুইটির লব্দির দিক বরাবর একক ভেষ্টর নির্ণয় কর। (iii) ভেষ্টর দুইটির লম্বির বিসদৃশ সমান্তরাল একক ভেষ্টর নির্ণয় কর i সমাধান ঃ প্রদত্ত ভেক্টর দুইটির লব্দি ভেক্টর $= \vec{A} + \vec{B}$ $=4\hat{i}+5\hat{j}-3\hat{k}+(-i-5\hat{j}-\hat{k})$ $=3\hat{i}-4\hat{k}$ $\vec{A} + \vec{B} = \sqrt{9+16} = \sqrt{25} = 5$ (j) ভেষ্টর দুইটির লধ্বির সমান্তরালে একক ভেষ্টর $=\pm \frac{\hat{A} + \hat{B}}{|\vec{A} + \vec{B}|} = \pm \frac{1}{5} (3\hat{i} - 4\hat{k})$ (ji) ভেষ্টর দুইটির লম্বির দিক বরাবর একক ভেষ্টর $=\frac{A+B}{|\vec{A}+\vec{B}|}=\frac{1}{5}(3\hat{i}-4\hat{k})$ (iii) ভেক্টর দুইটির লব্দির বিসদৃশ সমান্তরাল একক दछछेत्र = $-\frac{\hat{A}+\hat{B}}{|\vec{A}+\vec{B}|} = -\frac{1}{5}(3\hat{i}-4\hat{k})$ (d) (i) $2\hat{i} + \hat{j} + \hat{k}$ এবং $\hat{i} - 2\hat{j} + \hat{k}$ ভেষ্টর দুইটির উপর লম্ব একক ভেষ্টর নির্ণয় কর। ব.'০১; চ.'০৫.'১০; চা..কু.'১১;রুয়েট'১১-১২] সমাধান ঃ প্রদত্ত ভেক্টর দুইটির উপর লম্ব ভেক্টর, $\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 1 \\ 1 & -2 & 1 \end{vmatrix}$ $=(1+2)\hat{i}-(2-1)\hat{j}+(-4-1)\hat{k}$ $=3\hat{i}-\hat{j}-5\hat{k}$ $|\vec{A} \times \vec{B}| = \sqrt{9 + 1 + 25} = \sqrt{35}$ (i) প্রদত্ত ভেক্টর দুইটির উপর লম্ব একক ভেক্টর $=\pm \frac{A \times B}{|\vec{A} \times \vec{B}|} = \pm \frac{1}{\sqrt{25}} (3\hat{i} - \hat{j} - 5\hat{k})$ ষ্ট

(ii) প্রদন্ত ভেট্টর দুইটির উপর লম্ব 5 একক মান বিশি
ভেট্টর =
$$\pm 5 \frac{\vec{A} \times \vec{B}}{|\vec{A} \times \vec{B}|}$$

$$=\pm\frac{5}{\sqrt{35}}(3\hat{i}-\hat{j}-5\hat{k})$$
 (Ans.)

8. (e) $a = \hat{i} + \hat{j} - \hat{k}$, $b = \hat{i} - \hat{j} + \hat{k}$ হল, এমন একটি একক ভেষ্টর c নির্ণয় কর, যা a এবং b এর সাথে সমতলীয় হবে এবং a এর লম্ব হবে। সমাধান ঃ ধরি, a ও b এর সাথে সমতলীয় যেকোন ভেষ্টর $\lambda(\hat{i}+\hat{j}-\hat{k}) + \mu(\hat{i}-\hat{j}+\hat{k})$ অর্থাৎ $(\lambda + \mu)\hat{i} + (\lambda - \mu)\hat{i} + (-\lambda + \mu)\hat{k}$. এ ভেক্টর a - এর উপর লম্ব হলে, $(\lambda + \mu)(1) + (\lambda - \mu)(1) + (-\lambda + \mu)(-1) = 0$ $\Rightarrow \lambda + \mu + \lambda - \mu + \lambda - \mu = 0$ $\Rightarrow 3\lambda = \mu$ a -এর উপর লম্ব ভেষ্টরটি হচ্ছে, $4\lambda i - 2\lambda \hat{i} + 2\lambda \hat{k}$ $\underline{c} = \pm \frac{4\lambda \hat{i} - 2\lambda \hat{j} + 2\lambda \hat{k}}{\sqrt{16\lambda^2 + 4\lambda^2 + 4\lambda^2}}$ $= \pm \frac{2\lambda(2\hat{i} - \hat{j} + \hat{k})}{\sqrt{24\lambda^{2}}} = \pm \frac{2\lambda(2\hat{i} - \hat{j} + \hat{k})}{2\lambda\sqrt{6}}$ $= \pm \frac{1}{\sqrt{6}} (2\hat{i} - \hat{j} + \hat{k})$ (Ans.) 8. (f) $\hat{i} - \hat{j} + \hat{k}$ এবং $\hat{i} + 2\hat{j} - \hat{k}$ ভেষ্টর দুইটির উপর লম্ব একক ভেষ্টর নির্ণয় কর। [রা.'০৮; কু. '০৮; য.'১০] সমাধান ঃ ধরি, $\vec{A} = \hat{i} - \hat{j} + \hat{k}$ এবং $\vec{B} = i + 2\hat{j} - \hat{k}$ প্রদন্ত ভেক্টর দুইটির উপর লম্ব ভেক্টর, $\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix}$ $=(1-2)\hat{i}-(-1-1)\hat{j}+(2+1)\hat{k}$ $= -i - 2\hat{i} + 3\hat{k}$ $|\vec{A} \times \vec{B}| = \sqrt{1+4+9} = \sqrt{14}$ প্রদন্ত ভেক্টর দুইটির উপর লম্ব একক ভেক্টর $=\pm \frac{A \times B}{|\vec{A} \times \vec{B}|} = \pm \frac{1}{\sqrt{14}} (-\hat{i} - 2\hat{j} + 3\hat{k})$

9. (a) P(1, 1, 1) এবং Q(3, 2, -1) খুন্যে অবস্থিত দুইটি কিন্দু। 📅 ভেষ্টর নির্ণয় কর এবং এর সমানতরাল একটি একক ভেষ্টর নির্ণয় কর। যি.'০৯; ব্রেট'০৩-০৪] সমাধান : P(1, 1, 1) ও Q(3, 2, -1) কিন্দু দুইটির অবস্থান ভেষ্টর যথাক্রমে $i + \hat{j} + \hat{k}$, ও $3\hat{i} + 2\hat{j} - \hat{k}$ $\overrightarrow{PO} = (3\hat{i} + 2\hat{j} - \hat{k}) - (\hat{i} + \hat{j} + \hat{k})$ $= 2\hat{i} + i - 2\hat{k}$ (Ans.) $|\overrightarrow{PQ}| = \sqrt{2^2 + 1^2 + 2^2} = \sqrt{9} = 3$ PO ভেক্টরের সমাশতরাল একক ভেক্টর $=\pm \frac{PQ}{|\vec{PQ}|} = \pm \frac{1}{3}(2\hat{i} + \hat{j} - 2\hat{k})$ PO ভেষ্টরের সমাশতরাল একটি একক ভেষ্টর $\frac{1}{3}(2\hat{i}+j-2\hat{k})$ \overline{a} , $-\frac{1}{3}(2\hat{i}+\hat{j}-2\hat{k})$ 9. (b) মূলবিন্দ O এর সাপেকে P(2, -1, 7) এবং Q(-4, 5, 0) হলে । PO । নির্ণায় কর । [সি.'০১] সমাধান ঃ $\overrightarrow{OP} = 2\hat{i} - \hat{j} + 7\hat{k}$, $\overrightarrow{OO} = -4\hat{i} + 5\hat{j}$ $\overrightarrow{PO} = \overrightarrow{OO} - \overrightarrow{OP}$ $= -4\hat{i} + 5\hat{j} - (2\hat{i} - \hat{j} + 7\hat{k})$ $= -6\hat{i} + 6\hat{j} - 7\hat{k}$ $|\overrightarrow{PQ}| = \sqrt{36 + 36 + 49} = \sqrt{121} = 11$ 10. (a) দেখাও যে, $a = 9\hat{i} + \hat{i} - 6\hat{k}$ একং $\mathbf{b} = 4\hat{\mathbf{i}} - 6\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$ ভেষ্টর দুইটি পরস্পর লম্ব। [ব.'০৮; রুয়েট'০৭-০৮] প্রমাণ : $a = 9\hat{i} + \hat{j} - 6\hat{k}$ ও $b = 4\hat{i} - 6\hat{j} + 5\hat{k}$ ভেষ্টর দুইটি পরস্পর লম্ব হলে এদের স্কেলার গৃণফল শূন্য হবে।

এখন,
$$a \cdot b = (9\hat{i} + j - 6\hat{k}) \cdot (4\hat{i} - 6\hat{j} + 5\hat{k})$$

= 36 - 6 - 30 = 36 - 36 = 0
প্রদন্ত ভেক্টর দুইটি পরস্পর লম্ব ।

10 (b) দেখাও যে, $\ddot{A} = 8\hat{i} + \hat{i} - 6\hat{k}$ এবং $\vec{B} = 4\hat{i} - 2\hat{i} + 5\hat{k}$ ভেষ্টর দুইটি পরস্পর লম্ব। রা.'০৭; '০৭; য.'১২; রুয়েট' ০৫-০৬; ১০-১১] প্রমাণ : $a = 8\hat{i} + \hat{j} - 6\hat{k}$ ও $b = 4\hat{i} - 2\hat{j} + 5\hat{k}$ ভেষ্টর দুইটি পরস্পর লম্ব হলে এদের স্কেলার গুণন শুন্য হবে। এখন, $\vec{a} \cdot \vec{b} = (8\hat{i} + \hat{j} - 6\hat{k}) \cdot (4\hat{i} - 2\hat{j} + 5\hat{k})$ = 36 - 6 - 30 = 36 - 36 = 0প্রদত্ত ভেক্টর দুইটি পরস্পর লম্ব । $10(c)\vec{A} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{B} = 3\hat{i} - \hat{i} + 2\hat{k}$ হলে দেখাও যে, $\vec{A} + \vec{B}$ এবং $\vec{A} - \vec{B}$ ভেষ্টর দুইটি রা.'০৬; ঢা.'০৮; য.'০৭; চ.'১২.'১৪; পরস্পর লম্ব। মা.বো.'০৮; দি.'১০; ব.'১০.'১২; মা.'১৪; বুয়েট'১১-১২] প্রমাণ 8 $\vec{A} + \vec{B} = (1+3)\hat{i} + (2-1)\hat{i} + (-3+2)\hat{k}$ $=4\hat{i}+\hat{j}-\hat{k}$ $\vec{A} - \vec{B} = (1-3)\hat{i} + (2+1)\hat{j} + (-3-2)\hat{k}$ $=-2\hat{i}+3\hat{j}-5\hat{k}$ এখন, $(\vec{A} + \vec{B}) \cdot (\vec{A} - \vec{B})$ $= (4\hat{i} + \hat{j} - \hat{k}) \cdot (-2\hat{i} + 3\hat{j} - 5\hat{k})$ = -8 + 3 + 5 = 0ভেক্টর দুইটির স্কেলার গুণন শূন্য বলে তারা পরস্পর লম্ব। 10 (d) (refutes (a). $a = 3\hat{i} + 2\hat{i} - 6\hat{k}$ এবং $\mathbf{b} = 4\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + \hat{\mathbf{k}}$ ভেষ্টর দুইটি পরস্পর লম্ব । এ ভেষ্টর দুইটির উপর লম্ব একক ভেষ্টর নির্ণয় কর। ঢা. '০২; ৰ. '০৫] প্রমাণ : $\vec{a} \cdot \vec{b} = (3\hat{i} + 2\hat{j} - 6\hat{k}) \cdot (4\hat{i} - 3\hat{j} + \hat{k})$ = 12 - 6 - 6 = 12 - 12 = 0ভেক্টর দুইটির স্কেলার গুণন শূন্য বলে তারা পরস্পর লন্দ ৷ ২য় অংশ ঃ প্রদন্ত ভেক্টর দুইটির উপর লম্ব ভেক্টর,

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & -6 \\ 4 & -3 & 1 \end{vmatrix}$$

 $=(2-18)\hat{i}-(3+24)\hat{i}+(-9-8)\hat{k}$ $= -16\hat{i} - 27\hat{i} - 17\hat{k}$ $|\vec{A} \times \vec{B}| = \sqrt{256 + 729 + 289} = \sqrt{1274}$ প্রদন্ত ভেষ্টর দইটির উপর লম্ব একক ভেষ্টর $=\pm \frac{A \times B}{|\vec{A} \times \vec{B}|} = \pm \frac{1}{\sqrt{1274}} (-16\hat{i} - 27\hat{j} - 17\hat{k})$ 10 (e) A ও B বিন্দু দুইটির অবস্থান ভেষ্টর যথাক্রমে $(2\hat{i} + 3\hat{j} - 4\hat{k})$ ७ $(4\hat{i} - 3\hat{j} + 2\hat{k})$ হলে \overrightarrow{AB} এর দৈর্ঘ্য এবং \overrightarrow{AB} বরাবর একটি একক ভেষ্টর নির্ণয় কর। ক্লিয়েট'০৬-০৭] সমাধানঃ $\overrightarrow{AB} = 4\hat{i} - 3\hat{j} + 2\hat{k} - (2\hat{i} + 3\hat{j} - 4\hat{k})$ $= 2\hat{i} - 6\hat{i} + 6\hat{k}$ \overrightarrow{AB} এর দৈর্ঘ্য = $|\overrightarrow{AB}| = |2\hat{i} - 6\hat{i} + 6\hat{k}|$ $= \sqrt{4+36+36} = \sqrt{76} = 2\sqrt{19}$ এবং \overrightarrow{AB} বরাবর একটি একক ভেন্টর = $\frac{AB}{|\overrightarrow{AB}|}$ $=\frac{2\hat{i}-6\hat{j}+6\hat{k}}{2\sqrt{10}}=\frac{1}{\sqrt{10}}\hat{i}-\frac{3}{\sqrt{10}}\hat{j}+\frac{3}{\sqrt{10}}\hat{k}$ 11. (a) $a\hat{i} - 2\hat{j} + \hat{k}$ এবং $2a\hat{i} - a\hat{j} - 4\hat{k}$ ডেটর দুইটি পরস্পর লম্ব হলে a এর মান নির্ণয় কর। রা.'০৯. '১২; য.'০৫,'০৯,'১৩; চা.'০৬,'১০; সি.'০৮,'১২; চ.'০৯; কু.'১৩; দি.'১৪] সমাধানঃ $a\hat{i} - 2\hat{j} + \hat{k}$ এবং $2a\hat{i} - a\hat{j} - 4\hat{k}$ ভেষ্টর দুইটি পরস্পর লম্ব বলে এদের স্কেলার গুণন শুন্য। $(a\hat{i} - 2\hat{i} + \hat{k}) \cdot (2a\hat{i} - a\hat{i} - 4\hat{k}) = 0$ $\Rightarrow 2a^2 + 2a - 4 = 0 \Rightarrow a^2 + a - 2 = 0$ \Rightarrow (a + 2)(a - 1) = 0 a = 1, -2 11(b) $2\hat{i} + a\hat{j} + \hat{k}$ जर $4\hat{i} - 2\hat{j} - 2\hat{k}$ ट्रिके मुदें পরস্পর লম্ব হলে a এর মান নির্ণয় কর। [ঢা. '০২; ব. '০৪] $2\hat{i} + a\hat{j} + \hat{k}$ are $4\hat{i} - 2\hat{j} - 2\hat{k}$ cost সমাধানঃ দুইটি পরস্পর লম্ব বলে এদের স্কেলার গুণন শুন্য। $(2\hat{i} + a\hat{j} + \hat{k}) \cdot (4\hat{i} - 2\hat{j} - 2\hat{k}) = 0$ \Rightarrow 8 - 2a - 2 = 0 \Rightarrow 2a = 6 \therefore a = 3

11 (c) $a = 2\hat{i} + y\hat{j} + \hat{k}$ and $b = 4\hat{i} - 2\hat{j} - \hat{k}$ ভেষ্টর দুইটি পরস্পর লম্ব হলে y এর মান নির্ণয় কর। [চ. '০২: রা. '০৫: ক. '০৫] সমাধানঃ $a = 2\hat{i} + v\hat{i} + \hat{k}$ এবং $b = 4\hat{i} - 2\hat{j} - \hat{k}$ ভেক্টর দুইটি পরস্পর লম্ব বলে এদের স্কেলার গণন শন্য। $(2\hat{i} + y\hat{i} + \hat{k}) \cdot (4\hat{i} - 2\hat{i} - \hat{k}) = 0$ $\Rightarrow 8 - 2y - 1 = 0 \Rightarrow 2y = 7$ $a = \frac{7}{2}$ 12. $\underline{\mathbf{b}} = \hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$ ও $\underline{\mathbf{c}} = 2\hat{\mathbf{i}} + \hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ ভেষ্টর ডিনটি সমতলীয়। ঢো. '০৬] প্রমাণ ঃ প্রদত্ত ভেষ্টর তিনটি সমতলীয় হবে যদি এদের যেকোন দুইটির ক্রস গুণনের সাথে অপরটির ডট গুণন শূন্য ,হয়। এখন, $(\underline{a} \times \underline{b}) \cdot \underline{c} = \begin{vmatrix} 3 & -2 & 1 \\ 1 & -3 & 5 \\ 2 & 1 & -4 \end{vmatrix}$ = 3(12 - 5) + 2(-4 - 10) + 1(1 + 6)= 21 - 28 + 7 = 28 - 28 = 0প্রদত্ত ভেষ্টর তিনটি সমতলীয় । 12. (b) $\hat{i} - \hat{j} + \hat{k}$, $2\hat{i} + 2\hat{j} - \hat{k}$, $\lambda\hat{i} - \hat{j} + \lambda\hat{k}$ ভেষ্টর তিনটি সমতলীয় হলে **λ এর মান নির্ণয় কর**। যি. '০৮] সমাধান ঃ $i - \hat{j} + \hat{k}$, $2\hat{i} + 2\hat{j} - \hat{k}$, $\lambda\hat{i} - \hat{j} + \lambda\hat{k}$ ভেষ্টর তিনটি সমতলীয় বলে, $\begin{vmatrix} 1 & -1 & 1 \\ 2 & 2 & -1 \\ \lambda & -1 & \lambda \end{vmatrix} = 0$ $\Rightarrow 1(2\lambda - 1) + 1(2\lambda + \lambda) + 1(-2 - 2\lambda) = 0$ $\Rightarrow 2\lambda - 1 + 3\lambda - 2 - 2\lambda = 0$ $\Rightarrow 3\lambda = 3$ $\lambda = 1$ (Ans.) (a) (return (a) $a = 3\hat{i} - 2\hat{j} + \hat{k}$. 13. $b = \hat{i} - 3\hat{j} + 5\hat{k}$ এবং $c = 2\hat{i} + \hat{j} - 4\hat{k}$ ভেষ্টর তিনটি একটি সমকোণী ত্রিভুচ্চ গঠন করে। [ব.'০৩,'১২; ঢা.'০৪,'১৪; রা.'০৭,'১৪; বুয়েট'০৩-০৪]

প্রমাণ : $|\underline{a}| = |3\hat{i} - 2\hat{j} + \hat{k}| = \sqrt{9 + 4 + 1} = \sqrt{14}$ $|b| = |\hat{i} - 3\hat{j} + 5\hat{k}| = \sqrt{1 + 9 + 25} = \sqrt{35}$ $|c| = |2\hat{i} + j - 4\hat{k}| = \sqrt{4 + 1 + 16} = \sqrt{21}$ $\sqrt{14}$, $\sqrt{35}$ ও $\sqrt{21}$ এর যেকোন দুইটির সমষ্টি তৃতীয়টি অপেক্ষা বৃহত্তর এবং $|a|^2 + |c|^2 = 14 +$ $21 = 35 = |b|^2$ প্রদত্ত ভেষ্টর তিনটি একটি সমকোণী ত্রিভুজ গঠন করে। 13. (b)তিনটি বিন্দুর অবস্থান ভেষ্টর $\hat{i} + 2\hat{j} + 3\hat{k}$, $-\hat{i} - \hat{i} + 8\hat{k}$ are $-4\hat{i} + 4\hat{i} + 6\hat{k}$; there are \hat{k} তিনটি একটি সমবাহু ত্রিভুচ্চ গঠন করে। ঢ়া.'০৫.'১৩; সি..চ.'১০.'১৩; ক.'১৪] প্রমাণ ঃ ধরি , A, B ও C কিন্দু তিনটির অবস্থান ভেক্টর $\hat{i} + 2\hat{i} + 3\hat{k}$, $-\hat{i} + 8\hat{k}$ যথাক্রমে এবং $-4\hat{i}+4\hat{j}+6\hat{k}$. $\overrightarrow{AB} = -i - \hat{j} + 8\hat{k} - (\hat{i} + 2\hat{j} + 3\hat{k})$ $= -2\hat{i} - 3\hat{i} + 5\hat{k}$ $|\vec{AB}| = \sqrt{4+9+25} = \sqrt{38}$ $\overline{BC} = -4\hat{i} + 4\hat{j} + 6\hat{k} - (-\hat{i} - \hat{j} + 8\hat{k})$ $= -3\hat{i} + 5\hat{j} - 2\hat{k}$ $|\vec{BC}| = \sqrt{9 + 25 + 4} = \sqrt{38}$ $\vec{CA} = \hat{i} + 2\hat{j} + 3\hat{k} - (-4\hat{i} + 4\hat{j} + 6\hat{k})$ $=5\hat{i}-2\hat{j}-3\hat{k}$ $|\vec{CA}| = \sqrt{25 + 4 + 9} = \sqrt{38}$ $|\overrightarrow{AB}|$, $|\overrightarrow{BC}|$ ও $|\overrightarrow{CA}|$ এর যেকোন দুইটির সমষ্টি তৃতীয়টি অপেক্ষা বৃহত্তর এবং $|\overrightarrow{AB}| = |\overrightarrow{BC}|$ $= |\overrightarrow{CA}| = \sqrt{38}$ প্রদত্ত বিন্দু তিনটি একটি সমবাহু ত্রিতুজ গঠন করে। 13. (c) ভেষ্টরের সাহায্যে দেখাও যে, A (1,-1, -1), B (3,3,1) এবং C(-1,4,4) কিন্দু তিনটি একটি গোলকের উপর অবস্থিত যার কেন্দ্র P(0,1,2)

প্রমাণ : $\overrightarrow{PA} = (1 -)\hat{i} + (-1 - 1)\hat{j} - (-1 - 2)\hat{k}$

$$= i - 2j - 3k$$

$$|\overrightarrow{PA}| = \sqrt{1 + 4 + 9} = \sqrt{14}$$

$$\overrightarrow{PB} = (3 - 0)\hat{i} + (3 - 1)\hat{j} + (1 - 2)\hat{k}$$

$$= 3\hat{i} + 2\hat{j} - \hat{k}$$

$$|\overrightarrow{PB}| = \sqrt{9 + 4 + 1} = \sqrt{14}$$

$$\overrightarrow{PC} = (-1 - 0)\hat{i} + (4 - 1)\hat{j} + (4 - 2)\hat{k}$$

$$= -\hat{i} + 3\hat{j} + 2\hat{k}$$

$$|\overrightarrow{PC}| = \sqrt{1 + 9 + 4} = \sqrt{14}$$

$$|\overrightarrow{PA}| = |\overrightarrow{PB}| = |\overrightarrow{PC}| = \sqrt{14}$$

atrue forg fortil P(0,1,2) (orgent of the and the contrast of the angle of the a

 $= (4-3)\hat{i} - (4-1)\hat{j} + (6-2)\hat{k}$ $= i - 3\hat{i} + 4\hat{k}$ $|\vec{A} \times \vec{B}| = \sqrt{1+9+16} = \sqrt{26}$ ভেক্টর দুইটির অনতর্ভুক্ত কোণ Θ হলে, $\sin \Theta = \frac{|A + \vec{B}|}{|\vec{B}|} = \frac{\sqrt{26}}{\frac{2}{\sqrt{14}}} \therefore \Theta = \sin^{-1} \frac{\sqrt{13}}{3\sqrt{7}}$ 14(b) A = $i + 2\hat{j} + 3\hat{k}$ এবং $\vec{B} = 3\hat{i} - 2\hat{j} - \hat{k}$ হল, $|\Lambda \times \vec{B}|$ निर्भय करा। [বুয়েট'০০-০১] সমাধানঃ $\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & j & \kappa \\ 1 & 2 & 3 \\ 3 & -2 & -1 \end{vmatrix}$ $= (-2 \quad 6)i - (9 \quad \hat{i} + (-2 - 6)\hat{k})$ $=4\hat{i}+10\hat{j}-8k$ $|\vec{A} \times \vec{B}| = \sqrt{16 + 100 + 64} = \sqrt{180}$ $= 6\sqrt{5}$ 14(c) $(a\hat{i} + b\hat{j} + \hat{k}) \times (2\hat{i} + 2\hat{j} + 3\hat{k}) = \hat{i} - \hat{j}$ হলে, a ও b এর মান নির্ণয় কর। [বুয়েট'০১-০২] সমাধান ঃ দেওয়া আছে. $(ai + b\hat{j} + \hat{k}) \times (2\hat{i} + 2\hat{j} + 3\hat{k}) = \hat{i} - \hat{j}$ $\Rightarrow \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a & b & 1 \\ 2 & 2 & 3 \end{vmatrix} = i - \hat{j}$ $\Rightarrow (3b-2)\hat{i} - (3a-2)\hat{j} + (2a-2b)\hat{k}$ $=\hat{i}-\hat{j}$ $3b-2=1 \Rightarrow 3b=3$ b=1 $3a-2=1 \Longrightarrow 3a=3$ a=114(d) $\vec{A} = 3\hat{i} + \hat{j} - 2\hat{k}$ $\vec{B} = 2\hat{i} - \hat{j} + \hat{k}$ are $\vec{C} = \hat{i} + 3\hat{j} - 2\hat{k}$ হলে, $\vec{A} \times (\vec{B} \times \vec{C})$ নির্ণয় কর। সমাধান 8 $\vec{B} \times \vec{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 1 & 2 & 2 \end{vmatrix}$

$$= (2-3)i - (-4-1)j + (6+1)k$$

$$= -i + 5\hat{j} + 7\hat{k}$$

$$\vec{A} \times (\vec{B} \times \vec{C}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & -2 \\ -1 & 5 & 7 \end{vmatrix}$$

$$= (7+10)\hat{i} - (21-2)\hat{j} + (15+1)\hat{k}$$

$$= 17\hat{i} - 19\hat{j} + 16\hat{k} \text{ (Ans.)}$$

$$\mathbf{14(e)} \quad \underline{a} = 2\hat{i} - 3\hat{j} + 5\hat{k}, \quad \underline{b} = -\hat{i} + 2\hat{j} - 7\hat{k}$$

$$\mathbf{zcn} \quad 5\underline{a} \times \underline{b} \quad aqq \frac{\underline{b}}{|\underline{a}|} \quad \widehat{n}e^{\underline{a}} = 4\pi i \qquad [\mathbf{\overline{b}} \cdot \mathbf{\hat{b}} + 2\hat{j} - 7\hat{k}]$$

$$= 5\{(21-10)\hat{i} - (-14+5)\hat{j} + (4-3)\hat{k}\}$$

$$= 5\{(21-10)\hat{i} - (-14+5)\hat{j} + (4-3)\hat{k}\}$$

$$= 5\{(11\hat{i} + 9\hat{j} + \hat{k}\} = 55\hat{i} + 45\hat{j} + 5\hat{k}$$

$$\frac{\underline{b}}{|\underline{a}|} = \frac{-\hat{i} + 2\hat{j} - 7\hat{k}}{|2\hat{i} - 3\hat{j} + 5\hat{k}|} = \frac{-i + 2\hat{j} - 7\hat{k}}{\sqrt{4 + 9 + 25}}$$

$$= \frac{1}{\sqrt{38}}(-\hat{i} + 2\hat{j} - 7\hat{k})$$

14(f) যেকোন দুইটি ভেটর \vec{A} ७ \vec{B} এর জন্য প্রমাণ কর (ম, $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$ এবং $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$. [5.'0২] প্রমাণ ঃ মনে করি, $\vec{A} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{B} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ $\therefore \vec{A} \cdot \vec{B} = (a_1\hat{i} + a_2\hat{j} + a_3\hat{k}) \cdot (b_1\hat{i} + b_2\hat{j} + b_3\hat{k})$ $= a_1b_1 + a_2b_2 + a_3b_3$ $= b_1a_1 + b_2a_2 + b_3a_3$ $= (b_1\hat{i} + b_2\hat{j} + b_3\hat{k}) \cdot (a_1i + a_2\hat{j} + a_3\hat{k})$ $= \vec{B} \cdot \vec{A}$ $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$

82 বইঘর ক স্কেলার গ[্]নকে *a*.bদ্বারা সূচিত করা <u>a</u>.b=¹a, | cos ⊖ ছারা সংজ্ঞায়িত করা হয়। দুইটি ভেক্টরের স্কেলার গুণন একটি স্কেলার রাশি এখন, $i, \hat{j} = |\hat{i}||\hat{j}|\cos 90^{\circ} = 1 \times 1 \times 0 = 0$ $\hat{i} = |\hat{i}||\hat{i}|\cos 0^{\circ} = 1 \times 1 \times 1 = 1$ 15. (a) ভেষ্টরের সাহায্যে A(1,3,2), B(2,-1,1) ও C(-1, 2, 3) শীর্ষ বারা গঠিত ত্রিভুজের ক্ষেত্রফল নির্ণয় াবরেউ'০৪-০৫ 50 मश्राक्षा ? \overrightarrow{AB} = (1-?) + (3 −)) î +(2 −))k $=-\hat{i}+++\hat{k}$ $+(2-3)\hat{k}$ \overrightarrow{AC} (1+1)[^] $= 2\hat{i}$ k $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{j} & \hat{k} \\ -1 & 4 & 1 \\ 2 & 1 & -1 \end{vmatrix}$ $= (-4-1)i - (1-2)\hat{j} + (-1-8)\hat{k}$ = 5î ABC ত্রিত্জটির ক্ষেত্রফল = $\frac{1}{2}$ $| \overrightarrow{AB} \times \overrightarrow{AC} |$ $=\frac{1}{2}|-5\hat{i}+j-9\hat{k}| = \frac{1}{2}\sqrt{5^2+1^2+9^2}$ $\frac{1}{2}\sqrt{25}$ 1+81 = $\frac{1}{2}\sqrt{107}$ বর্গ একক। $15 (b) \vec{P} = 4\hat{i} - 4\hat{j} + \hat{k}$ are $\vec{Q} = 2\hat{i} - 2\hat{j} - k$ একটি সামানতরিকের দুইটি সন্নিহিত বাহু নির্দেশ করলে এর ক্ষেত্রফল নির্ণয় কর। বিয়েট'০৬-০৭া সমাধান : $\vec{P} \times \vec{Q} = \begin{vmatrix} i & j \\ 4 & -j \\ 2 & -2 & -1 \end{vmatrix}$

= (4+2)i - (-4-2) j 8 8)k
6 i
সামান্ডরিকের নির্দেয় ক্ষেত্রফল টিয়
=
$$\sqrt{36+36}$$
 বন একক

জ্ঞাবার, $\times \vec{B} = \begin{vmatrix} i & \hat{j} & \hat{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$ $= - \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_2 & b_2 & c_2 \\ a_1 & b_1 & c_1 \end{vmatrix} = - \vec{B} \times \vec{A}$ $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$ $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \end{vmatrix}$ 14(g) প্রমাণ কর থে, $\vec{A} \times \vec{B} = \begin{vmatrix} a_1 & a_2 & a_3 \end{vmatrix}$ रायाल $\vec{A} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{\mathbf{B}} = \mathbf{b}_1 \hat{\mathbf{i}} + \mathbf{b}_2 \hat{\mathbf{j}} + \mathbf{b}_3 \hat{\mathbf{k}}$ [ण.'o>; र.'o२] প্রমাণঃ L.H.S. = $\vec{X} \vec{B}$ $= (a_1i + a_2\hat{j} + a_3\hat{k}) \times (b_1i + b_2\hat{j} + b_3\hat{k})$ $= a_1 b_1(\hat{i} \times \hat{i}) + a_1 b_2(\hat{i} \times \hat{j}) + a_1 b_3(\hat{i} \times \hat{k})$ + $a_2 b_1(\hat{j} \times \hat{i})$ + $a_2 b_2(\hat{j} \times \hat{j})$ + $a_2 b_3(\hat{j} \times \hat{k})$ $+a_3 b_1(\hat{k}\times\hat{i})+a_3 b_2(\hat{k}\times\hat{j})+b_3(\hat{k}\times\hat{k})$ $= a_1 b_1(0) + a_1 b_2(\hat{k}) + a_1 b_3 (-\hat{j})$ $+ a_2 b_1(-\hat{k}) + a_2 b_2(0) + a_2 b_3(\hat{i})$ $+ a_3 b_1(\hat{j}) + a_3 b_2(-\hat{i}) + a_3 b_3(0)$ = $(a, b_3 - a_3 b_2) \hat{i} - (a_1 b_3 - a_3 b_1) j$ $+(a, b, -a, b)\hat{k}$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 R.H.S. (Proved)

14(h) দুইটি ভেট্টর \overline{a} ও \overline{b} এর স্কেলার বা ডট গৃৎনের সংজ্ঞা দাও। প্রমাণ কর বে, j = 0, $i \cdot i = 1$; যেখানে ও , বথাক্রমে 😰 ও অক্ষ পরাবর একক শ্রেষ্টর। [F '))] স্কেশার বা ৬ট গুণনের সংজ্ঞা 8 a ও b ভেষ্টর দুইটির মধ্যবর্তী কোণ Θ $(0 \le 0 < \pi^{1})$. ভেটার দুইটির উ. গ. (১ম পার্শ

প্রশ্নমালা II B

স

গুরুত্ব d.

15(c)একটি ত্রিভুঞ্জের শীর্ষ তিনটির অবস্থান ভেষ্টর $\hat{i} - 2\hat{i} + 3\hat{k}$. $3\hat{i}+5\hat{j}-\hat{k} \otimes 2\hat{i}+3\hat{j}-4\hat{k};$ ত্রিভুন্ধটির ক্ষেত্রফল নির্ণয় কর। সমাধান ঃ ধরি, ABC ত্রিভুজের A, B ও C শীর্ষ তিনটির অবস্থান ভেষ্টর যথাব্রুমে $\hat{i}-2\,\hat{j}+3\hat{k}$, $3\hat{i} + 5\hat{j} - \hat{k} \leq 2\hat{i} + 3\hat{j} - 4\hat{k}$ $\overrightarrow{AB} = 3\hat{i} + \dots - \hat{k} - (i - 2\hat{i} + 3\hat{k})$ $= 2\hat{i} + 7\hat{j} - 4\hat{k}$ $\overrightarrow{AC} = 2\hat{i} + 3\hat{j} - 4\hat{k} - (\hat{i} - 2\hat{j} + 3\hat{k})$ $= \hat{i} + 5\hat{j} - 7\hat{k}$ $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 7 & -4 \\ 1 & 5 & -7 \end{vmatrix}$ $= (-49 + 20)\hat{i} - (-14 + 4)\hat{j} + (10 - 7)\hat{k}$ $= -29\hat{i} + 10\hat{j} + 3\hat{k}$ ABC ত্রিভূজটির ক্ষেত্রফল = $\frac{1}{2}$ | $\overrightarrow{AB} \times \overrightarrow{AC}$ । $=\frac{1}{2}|-29\hat{i}+10\hat{j}+3\hat{k}|$ $=\frac{1}{2}\sqrt{29^2+10^2+3^2}$ বর্গ একক। $=\frac{1}{2}\sqrt{841+100+9}$ কা একক। $=\frac{1}{2}\sqrt{950}$ বর্গ একক $=\frac{5}{2}\sqrt{38}$ বর্গ একক। 15 (d) $\overrightarrow{OA} = 2\hat{i} - 3\hat{j} - \hat{k}$ at $\overrightarrow{OB} = \hat{i} + 4\hat{j} + 3\hat{k}$ হলে, OAB ত্রিভুজ্ঞটির কোণ তিনটি নির্ণয় কর। সমাধান : দেওয়া আছে, OAB ত্রিভুজে, $\overrightarrow{DA} = 2\vec{i} + 3\vec{i} + \hat{k}$ AO SZR UB 48 ± \odot = -2iıĵ 3ĥ

$$= -\hat{i} + 7\hat{j} + 4\hat{k} \qquad \overrightarrow{BA} = \hat{i} - 7\hat{j} - 4\hat{k}$$

$$\cos AOB = \frac{\overrightarrow{OA} \cdot \overrightarrow{OB}}{|\overrightarrow{OA}||\overrightarrow{OB}|}$$

$$= \frac{(2\hat{i} - 3\hat{j} - \hat{k}) \cdot (\hat{i} + 4\hat{j} + 3\hat{k})}{\sqrt{4 + 9 + 1} \sqrt{1 + 16 + 9}}$$

$$= \frac{2 - 12 - 3}{\sqrt{14} \sqrt{26}} = \frac{-13}{\sqrt{364}}$$

$$\angle AOB = \cos^{-1}(\frac{-13}{\sqrt{364}})$$

$$\cos OAB = \frac{\overrightarrow{AO} \cdot \overrightarrow{AB}}{|\overrightarrow{AO}||\overrightarrow{AB}|}$$

$$= \frac{(-2\hat{i} + 3\hat{j} + \hat{k}) \cdot (-\hat{i} + 7\hat{j} + 4\hat{k})}{\sqrt{4 + 9 + 1} \sqrt{1 + 49 + 16}}$$

$$= \frac{2 + 21 + 4}{\sqrt{14} \sqrt{66}} = \frac{27}{\sqrt{924}}$$

$$\angle OAB = \cos^{-1}(\frac{27}{\sqrt{924}})$$

$$\cos OBA = \frac{\overrightarrow{BO} \cdot \overrightarrow{BA}}{|\overrightarrow{BO}||\overrightarrow{BA}|}$$

$$= \frac{(-i - 4\hat{j} - 3\hat{k}) \cdot (\hat{i} - 7\hat{j} - 4\hat{k})}{\sqrt{1 + 16 + 9} \sqrt{1 + 49 + 16}}$$

$$= \frac{-1 + 28 + 12}{\sqrt{26} \sqrt{66}} = \frac{39}{\sqrt{1716}}$$

$$\angle OBA = \cos^{-1}(\frac{39}{\sqrt{1716}})$$
15. (e) $\overrightarrow{OA} = 2\hat{i} + 2\hat{j} - \hat{k}$ and an arranging find fix as a brain array for a first array by the fir

প্রশ্নমালা II B বহুঘর কম

,

प्रथम,
$$\overrightarrow{OA} \times \overrightarrow{OB} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 2 & -1 \\ 6 & -3 & -2 \end{vmatrix}$$

$$= (-4 - 3)\hat{i} - (-4 + 6)\hat{j} + (-6 - 12)\hat{k}$$

$$= -7\hat{i} - 2\hat{j} - 18\hat{k}$$

$$\Delta OAB = \frac{1}{2} |\overrightarrow{OA} \times \overrightarrow{OB}| = \frac{1}{2} |\overrightarrow{OA}| \times d$$

$$\Rightarrow \sqrt{7^2 + 2^2} + 18^2 = \sqrt{2^2 + 2^2} + 1^2 d$$

$$\Rightarrow d = \frac{\sqrt{377}}{\sqrt{9}} = \frac{\sqrt{377}}{3} \quad \Box \Phi \Phi + (Ans.)$$
15(f) $\Box \Phi \overline{D}$ आग्राजकांत चनवञ्छ्त रांतश्र्राणा
 $\overrightarrow{A} = 2\hat{i} - 3\hat{j} + 2\hat{k}$, $\overrightarrow{B} = \hat{i} + 2\hat{j} - \hat{k}$,
 $\overrightarrow{C} = 3\hat{i} - \hat{j} + 2\hat{k}$ coordination प्रमवञ्छिति आग्राजन

$$= \overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{C}) = \begin{vmatrix} 2 & -3 & 2 \\ 1 & 2 & -1 \\ 3 - 1 & 2 \end{vmatrix}$$
= 2(4 - 1) + 3(2 + 3) + 2(-1 - 6)
= 6 + 15 - 14 = 7 चन $\Box \Phi \Phi$
15(g) $\Box \Phi \overline{D}$ चिछ्ल्लत्न प्रदें D चांद्र $\overrightarrow{A} = 3\hat{i} + 6\hat{j} - 2\hat{k}$,
 $\overrightarrow{B} = 4\hat{i} - \hat{j} + 3\hat{k}$ coordination and the function of the state of the stat

$$= \frac{(3\hat{i} + 6\hat{j} - 2\hat{k}) \cdot (4\hat{i} - \hat{j} + 3\hat{k})}{\sqrt{9 + 36 + 4} \sqrt{16 + 1 + 9}}$$

$$= \frac{12 - 6 - 6}{\sqrt{49} \sqrt{26}} = \frac{0}{7\sqrt{26}} = 0 = \cos 90^{0}$$

$$\angle QPR = 90^{0}$$

$$\cos PQR = \frac{\overline{QP} \cdot \overline{QR}}{|\overline{QP}||\overline{QR}|}$$

$$= \frac{(-3\hat{i} - 6\hat{j} + 2\hat{k}) \cdot (\hat{i} - 7\hat{j} + 5\hat{k})}{\sqrt{9 + 36 + 4} \sqrt{1 + 49 + 25}}$$

$$= \frac{-3 + 42 + 10}{\sqrt{49} \sqrt{75}} = \frac{49}{7 \times 5\sqrt{3}} = \frac{7}{5\sqrt{3}}$$

$$\angle PQR = \cos^{-1}(\frac{7}{5\sqrt{3}}) \quad \text{arg}$$

$$\cos PRQ = \frac{\overline{RP} \cdot \overline{RQ}}{|\overline{RP}||\overline{RQ}|}$$

$$= \frac{(-4\hat{i} + j - 3\hat{k}) \cdot (-\hat{i} + 7\hat{j} - 5\hat{k})}{\sqrt{16 + 1 + 9} \sqrt{1 + 49 + 25}}$$

$$= \frac{4 + 7 + 15}{\sqrt{26} \sqrt{75}} = \frac{26}{\sqrt{26} 5\sqrt{3}} = \frac{\sqrt{26}}{5\sqrt{3}}$$

$$\angle PQR = \cos^{-1}(\frac{\sqrt{26}}{5\sqrt{3}})$$

$$.\overline{arggm}\overline{bra} \text{ convny}\overline{cmn} 90^{0}, \cos^{-1}(\frac{7}{5\sqrt{3}}) \quad arg$$

$$\cos^{-1}(\frac{\sqrt{26}}{5\sqrt{3}})$$

$$15(\mathbf{h}) \quad a\phi\overline{b} \text{ minimodaces a eferat a fin matrix of a cap a$$

পমাণ :
$$A \cdot B = (3i - 4j - k) \cdot (2i + 3j - 6k)$$

= $6 - 12 + 6 = 0$.
সামান্তরিকের কর্ণদ্বয় পরস্পর লম্ব । অতএব,
সামান্তরিকটি একটি রম্বস ।

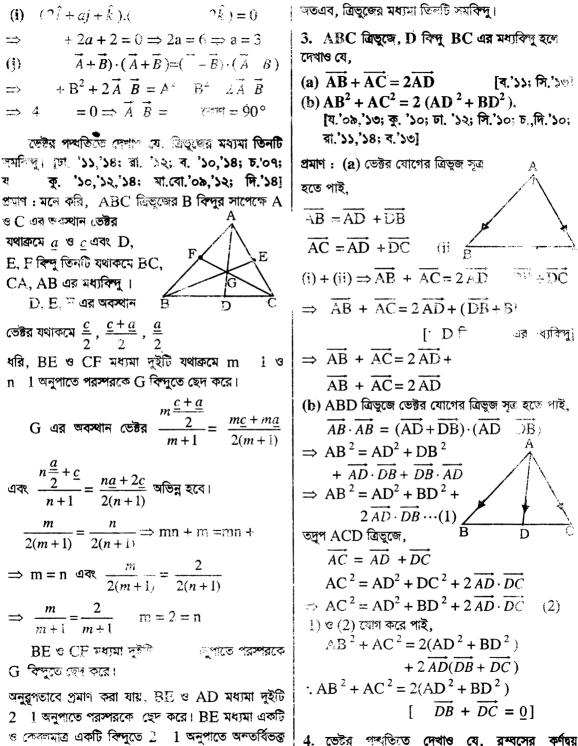
চারকাট একাট রস্পস এবং এর ক্ষেত্র
$$\vec{A}\cdot\vec{B}$$
 = $(3\hat{i}-4\hat{j}-\hat{k})\cdot(2\hat{i}+6-12+6=0.মান্স্তরিকের কর্ণদ্বয় পরস্পর লাচরিকটি একটি রস্পস ।$

এর ক্ষেত্রফল =
$$\frac{1}{2} |\vec{A}| |\vec{B}|$$

্র**র গণিত : ১ম প**ব্রের সমাধান বইঘর কম

 $=\frac{1}{2}\sqrt{3^2+4^2+1^2}\sqrt{2^2}\sqrt{3^2-4^2}$ $= \frac{1}{2}\sqrt{9+16+1}\sqrt{4+9+36}$ $=\frac{1}{2}\sqrt{1274}=17.85$ বর্গ একক (পায়) 16.(a) $2\hat{i} + 3\hat{j} = 4k$ বিদ্যামী এবং $5\hat{i} + 6\hat{j} + 8\hat{k}$ ভেষ্টরের সমান্তরাল সরলরেখার ডেষ্টর সমীকরণ নির্ণয় কর। সমাধান: ধরি, $a = 2\hat{i} + 3\hat{j} - 4k$ এব $b = 5\hat{i} + 6\hat{j} + 8\hat{k}$ a বিন্দুগামী এবং b ভেস্টরের এমান্তরাল সরলরেখার ভেষ্টর সমীকরণ =a + tb যোখানে একটি প্যারামিটার। নির্ণেয় রেখার ভেটর স**িকরণ**, $r = \hat{i} + 3\hat{i} - 4\hat{k} + t(5\hat{i} + 6\hat{i} + 8\hat{k})$ (b) 🕯 ও 🧍 কিন্দুগামী সরলরেখার তেষ্টর সমীকরণ নির্ণয় কর। সমাধান: ধরি, $a = i \in b = \hat{i}$. a ও b কিন্দুগামী সরলরেখার ভেট্টর সমীকরণ r = a + 1 (b - a), যেখানে t একটি প্যারমিটার। নির্ণেষ বেখার ভেক্টর সমীকেংগ $r = \hat{i} + t(\hat{j} - \hat{i}) \Rightarrow r =$ + t (c) দেশাঁও যে, (2, --3, 4) এবং (5 , --8) বিদ্যগামী সরগরেখার ভেষ্টর সমীক্রণ := (2 + 3t) $(-3 + 10t) + (4 - 12t)\hat{k}$ content applies প্যারামিটার। এর সাহার্য্যে এর কার্স্বনীয় সহীকরণ জিল কর ৷ প্রমাণ : মনে করি, (- 4) বিন্দুর অবস্থান ভেক্টর $a=2\hat{i}-3\hat{j}+$ কিন্দর অথ্যান (5) A b 51 + 1 3 6 C 14161 25 r = a1 -

+45 $\Rightarrow r = 2\hat{i} - 3\hat{i} + 4\hat{k} + t(3\hat{i} + 10i - 12\hat{k})$ $r = (2+3t)\hat{i} + (-3+10)\hat{i} + (4-12t)\hat{k}$ **বিতীয় জংশ:** কার্তেসীয় সমীকরণের ক্ষেত্রে. $r = xi + v\hat{i} + k$ আমবা পাই $x\hat{i} + y\hat{i} + \hat{k} = (2 + 3t)\hat{i} + (-3 + 10t)\hat{i}$ $+(4-12t)\hat{k}$ উভয় পক্ষ হতে \hat{i} \hat{j} , \hat{k} এর সহগ সমীকৃত করে পাই, x = 2 + 3t, y = -3 + 10t, z = 4 - 12t $\Rightarrow \frac{x-2}{3} = t, \frac{y+3}{10} = t, \frac{z-4}{12} = t$ নির্ণেয় কার্ত্তেসীয় সমীকরণ, $\frac{x-2}{2} = \frac{y+3}{10} = \frac{z-4}{12}$ প্রশ্নমালা II C (a) সবগুলি তথ্য সত্য। : Ans. D 1. (b) ভেক্টরের বিয়োগ অনুযায়ী $\overrightarrow{OA} - \overrightarrow{OB} = \overrightarrow{BA}$ Ans. B. (c) Sol^n , সবগলি তথ্য সত্য \downarrow Ans. D (d) $2\overline{A} - \overline{B} = 4\hat{i} + 4\hat{j} + 2\hat{k} - (6\hat{i} - 3\hat{j} + 2\hat{k})$ $= -2\hat{i} + 7\hat{i}$ $|2\overline{A} - \overline{B}| = \sqrt{4 + 49} = \sqrt{53}$ (e) নির্ণেয় কোণ = $\cos^{-1} \frac{(2\hat{i}+2\hat{j}+k).\hat{j}}{\sqrt{4+4+i\sqrt{1}}} = \cos^{-1} \frac{2}{3}$ নির্দের ভেক্টর = $\frac{6\hat{i} - 3\hat{i} + 2k}{\sqrt{2k}}$ $\frac{4\hat{j} + 2k}{\sqrt{2}}$ $({f g})\,Sol^{"}$ z অক্ষের উপর $\overline{f A}$ ভেক্টরটির অংশক $\hat k$ x অক্ষ বরাবর $\overline{\mathbf{B}}$ ভেন্টরটির অভিক্ষেপ 6. । C. ভেষ্টর দুইটির লব্ধির সমান্তরালে াকক ভেট্টর $\pm \frac{1}{7}(\hat{k}\hat{i} - j + 3\hat{k})$ (a) $\overline{A} = \sqrt{9 + 4 + 36}$



তত পারে। শতএব AD, BE ও CF মধ্যমা তিনটি

। অনুপাতত পর-ারকে C কিন্দুতে ছেদ করে।

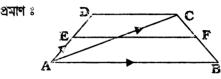
4. ভেতর পন্দাততে দেখাও যে, রম্বসের কর্ণাহয় পরস্পরকে সমকোণে সমদ্বিখণ্ডিত হরে। [সি.'০৭; ব.'০৭; চা. দি '১১; য.'১১; রা.,কু.,সি '১৩]

গ্রমাণ : মনে করি, ABCD রম্বসের AC ও BD কর্ণদ্বয় পরস্পরকে O কিন্দুতে হেদ ফার $\overrightarrow{AB} = a$ এবং $\overline{AD} = b$ হলে. $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$ $= \overrightarrow{AB} + \overrightarrow{AD} = \underline{a}$ bএবং $\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD}$ B = -a + b = b - aধরি, AO = m \overrightarrow{AC} = m(a + b) এবং $\overrightarrow{BO} = n \overrightarrow{BD} = n(b-a)$ এখন. $\overrightarrow{AO} = \overrightarrow{AB} + \overrightarrow{BO}$ \Rightarrow m(a + <u>b</u>) = <u>a</u> + n(<u>b</u> - <u>a</u>) \Rightarrow ma+mb = a + nb-na b + (m + n - 1)a = 0ান্থা অসমাশতরাল ভেষ্টর বলে, = 0 ⇒ m = n এবং $n-1=0 \Rightarrow m+m=1$ $\therefore m=\frac{1}{2}=n$ $\overrightarrow{AO} = \frac{1}{2} \overrightarrow{AC}$ as $\overrightarrow{5O} = \frac{1}{2} \overrightarrow{BD}$ আবার, $\overrightarrow{AC} \cdot \overrightarrow{BD} = (a+b) \cdot (b-a)$ $|a|^2 - |a|^2 = 0$, কারণ রম্বসের চারটি বাহু পরস্ার সমান ' খতএব, AC ও BD কর্ণ দুইটি পরস্পরকে O বিন্দুতে সমকোণে সমদিখন্ডিত করে। 5. ভেষ্টর পশ্বতিতে প্রমাণ কর যে, কোন চতুর্ভুজের কর্ণদয় পরস্পরকে সমদ্বিখতিত করলে তা একটি সামান্তরিক উৎপন্ন হয়। প্রমাণ ঃ মনে করি, ABCD চতুর্ভুজের AC ও BD বর্গদ্বয় পরস্পরকে O কিন্দুতে সমদ্বিখন্ডিত করে। C $\overrightarrow{AO} = \overrightarrow{OC}$ as $\overrightarrow{BO} = \overrightarrow{OD}$ এখন, $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} \cdots (1)$ $\overrightarrow{DC} = \overrightarrow{DO} + \overrightarrow{OC}$

 $=\overrightarrow{OB} + \overrightarrow{AO} [::\overrightarrow{AO} = \overrightarrow{OC} \otimes \overrightarrow{BO} = \overrightarrow{OD}]$

 $\Rightarrow \overrightarrow{DC} = \overrightarrow{AO} + \overrightarrow{OB} \cdots (2)$ (1) ও (2) হতে পাই, $\overrightarrow{AB} = \overrightarrow{DC}$ AB = DC এবং AB || DC [AB ও DC এফই রেখা হতে পারেখা।] ABCD একণি সামালতরিক।

6. ভেটার পশ্রতিশে প্রদাণ কর য়, ট্রাণিছিরামের অলগ্যাশতরাগ নির্বায়ের মধ্যবিপুর সংযোগ- সরগরেখা সমাগত্য নাগ্রাণতরাগ ও তাদের যোগফলের অর্ধেঝ।



মনে করি, ABCD ট্রাপিজিয়ামের AD ও BC অসমানত রাল বাহুময়ের মধ্যকিদু যথান্ত্রমে E ও F এবং A কিদুকে দ্বঙ্গন্ধির মনে করি, B ও D এর অকম্থার ভেষ্টর $\overrightarrow{AB} = a$, $\overrightarrow{AD} = b$. 3 AB DC এল যেকোন স্কেলার রাণি m এর জন্য $\overline{DC} = \mathbf{m} \overline{AB} = \mathbf{m} a$. $\triangle ABC \triangleleft, \overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{DC} = b + ma$ C কিন্দুর অবস্থান ভেক্টর = b + maAD এর মধ্যকিদু E এর অবস্থান েট্টর = $\frac{b}{2}$ BC এর মধ্যবিদ F এর অবস্থান ভেষ্টর $\frac{1}{a}(\underline{a} + \underline{b} + \underline{m}\underline{a})$ $\overrightarrow{F} = \frac{1}{2}(\underline{a} + \underline{b} + \underline{m}\underline{a}) - \frac{\underline{b}}{2}$ $=\frac{1}{2}(1+m)\underline{a}=\frac{1}{2}(1+m)\overrightarrow{AB}$ *EF* বাহু AB এর সমান্তরাল জতএব. EF DC এরও সমানতরাল। আবার, $\left|\overrightarrow{EF}\right| = \frac{1}{2}(1+m)\left|\overrightarrow{AB}\right|$ $=\frac{1}{2}\{|\overrightarrow{AB}|+|\overrightarrow{AB}|\}$

 $= \frac{1}{2} \{ |\overrightarrow{AB}| + |\overrightarrow{DC}| \}$

$$\mathrm{EF} = \frac{1}{2}(\mathrm{AB} + \mathrm{CD})$$

ট্রাপিজিয়ামের অসমান্তরাল বাহুদ্বয়ের মধ্যবিন্দুর সংযোগ সরলরেখা সমান্তরাল বাহুদ্বয়ের সমান্তরাল ও তাদের যোগফলের অর্ধেক।

 ভেষ্টর পন্দতিতে প্রমাণ কর যে, সমকোণী ত্রিভুজের অতিভুজের বর্গ অন্য দুই বাহুর বর্গের যোগফলের সমান।

প্রমাণ ৪ মনে করি, ABC সমকোণী ত্রিভুজে, AC অতিভুজ এবং B কিন্দুকে মূলকিন্দু ধরে A ও C এর অবস্থান ভেষ্টর যথারুমে a ও c.

$$\angle ABC = 90^{\circ}$$

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = 0 \, \forall i, \, \underline{a} \cdot \underline{c} = 0$$

$$\exists \forall \overline{n}, \, \overrightarrow{CA} = \underline{a} - \underline{c}$$

$$\overrightarrow{CA} \cdot \overrightarrow{CA} = (\underline{a} - \underline{c}) \cdot (\underline{a} - \underline{c})$$

$$\Rightarrow CA^{2} = a^{2} + c^{2} - 2\underline{a} \cdot \underline{c} = a^{2} + c^{2}$$

$$CA^{2} = AB^{2} + BC^{2}$$

সমকোণী ত্রিভুজের অতিভুজের বর্গ অন্য দুই বাহুর বর্গের যোগফলের সমান।

8. ভেষ্টর পন্ধতিতে প্রমাণ কর যে, একটি সমকোণী ত্রিভুচ্জের অতিভূচ্জের মধ্যবিন্দু ত্রিভুচ্চটির শীর্ষবিন্দুগুলো হতে সমদুরবর্তী।

প্রমাণ ঃ মনে করি, OAB সমকোণী ত্রিভুজের অতিভুজ AB এর মধ্যকিদু D এবং O কিদুকে মূলকিদু ধরে A ও B এর অবস্থান ভেষ্টর যথাক্রমে a ও b. B

$$\angle ABC = 90^{\circ}$$

$$\therefore \overrightarrow{BA} \cdot \overrightarrow{BC} = 0 \text{ di}, \ \underline{a} \cdot \underline{b} = 0$$
AB us nutlify D us wavelin

$$(\overrightarrow{obs} = \frac{a+b}{2} \therefore \overrightarrow{OD} = \frac{1}{2}(\underline{a} + \underline{b})$$

$$\overrightarrow{OD} \cdot \overrightarrow{OD} = \frac{1}{4}(\underline{a} + \underline{b}) \cdot (\underline{a} + \underline{b})$$

$$\Rightarrow OD^{2} = \frac{1}{4}(a^{2} + b^{2} + 2\underline{a} \cdot \underline{b}) = \frac{1}{4}(a^{2} + b^{2})$$

$$OD = \sqrt{a^{2} + b^{2}}$$

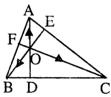
$$\overrightarrow{D^{4}} = \underline{a} - \frac{\underline{a} + \underline{b}}{2} = \frac{1}{2}(\underline{a} - \underline{b})$$

$$\overrightarrow{DB} = \underline{b} - \frac{\underline{a} + \underline{b}}{2} = \frac{1}{2}(\underline{b} - \underline{a})$$
$$DA^{2} = DB^{2} = \frac{1}{4}(a^{2} + b^{2} - 2\underline{a} \cdot \underline{b})$$
$$\Rightarrow DA^{2} = DB^{2} = \frac{1}{4}(a^{2} + b^{2})$$
$$DA = DB = \frac{1}{2}\sqrt{a^{2} + b^{2}}$$

... একটি সমকোণী ত্রিভুজের অতিভুজের মধ্যবিন্দু ত্রিভুজটির শীর্ষবিন্দুগুলো হতে সমদূরবর্তী।

 ডেক্টর পন্দ্রতিতে প্রমাণ কর যে, ত্রিভুচ্চের শীর্ষ হতে বিপরীত বাহুর উপর অজ্জিত লম্বত্রয় সমন্দিণু।

প্রমাণ ঃ মনে করি, ABC ত্রিভুজের শীর্ষ A ও B হতে BC ও CA বাহুর উপর যথাক্রমে AD ও BE লম্ব দুইটি পরস্পরকে O কিন্দুতে ছেদ করে এবং O



কিন্দুকে মূলকিন্দু ধরে A, B C এর অবস্থান ভেক্টর যথাক্রমে \underline{a} , \underline{b} , \underline{c} . C,O এর সংযোগ রেখাংশের বর্ধিতাংশ AB কে F কিন্দুতে ছেদ করে।

AD
$$\perp$$
 BC AO \perp BC
 $\underline{a} \cdot (\underline{c} - \underline{b}) = 0 \Rightarrow \underline{a} \cdot \underline{c} = \underline{a} \cdot \underline{b} \cdots (1)$
BE \perp AC BO \perp AC
 $\underline{b} \cdot (\underline{c} - \underline{a}) = 0 \Rightarrow \underline{b} \cdot \underline{c} = \underline{a} \cdot \underline{b} \cdots (2)$
(1) $\leq (2)$ RCS MR, $\underline{a} \cdot \underline{c} = \underline{b} \cdot \underline{c}$
 $\underline{c} \cdot (\underline{a} - \underline{b}) = 0$

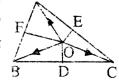
 $OC \perp AB$ অর্থাৎ $CF \perp AB$

 \Rightarrow

শীর্ষক্রিন্দুগুলি থেকে বিপরীত বা**হুর লম্বত্রয় সমক্রিদু**।

10. ভেস্টর পদ্ধতিতে প্রমাণ কর যে, ত্রিভুচ্ছের বাহুগুলোর লম্ব সমদ্বিখন্ডকত্রয় সমক্রিদু।

প্রমাণ মনে করি, ABC ত্রিভুজের শীর্ষ D E F যথাক্রমে BC, CA, AB এর মধ্যযিন্দু এবং O বিন্দু BC ও CA এর লম্ব–সমদ্বিখন্ডকের



ছেদকিন্দু। O কিন্দুকে মূলকিন্দু ধরে A B C এর অবস্থান ভেইড সমে ৫

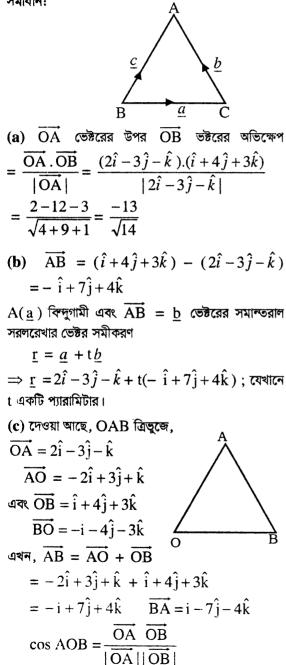
ń 8৮ প্রশ্নমালা II C D E ও F এর অবস্থান ভেষ্টর যথাক্রমে $\frac{1}{2}(\underline{b}+\underline{c}) = \frac{1}{2}(\underline{c}+\underline{a}) \,\, \Im \,\, \frac{1}{2}(\underline{a}+\underline{b}) \,\,.$ $OD \perp BC$ এবং $OE \perp AC$ বলে. $\frac{1}{2}(\underline{b}+\underline{c})\cdot(\underline{c}-\underline{b})=0 \Rightarrow |\underline{c}|^2 - |\underline{b}|^2 = 0\cdots(1)$ $\frac{1}{2}(\underline{c}+\underline{a})\cdot(\underline{a}-\underline{c})=0 \Longrightarrow |\underline{a}|^2 - |\underline{c}|^2 = 0\cdots(2)$ $(1) + (2) \Rightarrow |a|^2 - |b|^2 = 0$ $\Rightarrow \frac{1}{2}(\underline{a} + \underline{b}) \cdot (\underline{a} - \underline{b}) = 0$ $OF \perp AB$ অতএব. OF AB বাহর লম্ব সমদিখন্ডক : ত্রিভুজের বাহুগুলোর লম্ব সমদ্বিখন্ডকত্রয় সমক্দি। 11. ভেষ্টর পন্দতিতে প্রমাণ কর যে, অর্ধবৃত্তস্থ কোণ এক সমকোণ : [জ.,চ.'১৩; সি.'০৯,'১২; রা.'১০;ব.,কৃ'১১] প্রমাণ ঃ মনে করি. O কেন্দ্র বিশিষ্ট বৃত্তের AB ব্যাস এবং পরিধির উপর C একটি কিন্দু। OA = OB = OC = ব্যাসার্ধ $\overrightarrow{CA} \cdot \overrightarrow{CB} = (\overrightarrow{CO} + \overrightarrow{OA}) \cdot (\overrightarrow{CO} + \overrightarrow{OB})$ $= (\overrightarrow{CO} + \overrightarrow{OA}) \cdot (\overrightarrow{CO} - \overrightarrow{BO})$ BA = c. $= (\overrightarrow{CO} + \overrightarrow{OA}) \cdot (\overrightarrow{CO} - \overrightarrow{OA})$ [কেন্দ্র O, AB ব্যাসের মধ্যকিদ্র।] $= \overrightarrow{CO} \cdot \overrightarrow{CO} + \overrightarrow{CO} \cdot \overrightarrow{OA} - \overrightarrow{OA} \cdot \overrightarrow{CO} - \overrightarrow{OA} \cdot \overrightarrow{OA}$ $= |\overrightarrow{CO}|^2 + \overrightarrow{CO} \cdot \overrightarrow{OA} - \overrightarrow{CO} \cdot \overrightarrow{OA} - |\overrightarrow{OA}|^2$ $= CO^{2} - OA^{2} = 0$ $AC \perp BC$ অর্থাৎ $\angle ACB =$ এক সমকোণ অর্ধবৃত্তস্থ কোণ এক সমকোণ। 12. ভেষ্টর পদ্ধতিতে প্রমাণ কর যে, কোন ত্রিভুজ ABC cos (a) cos C = $a^2 + b^2 - c^2$ (π''), 38; **π**. '১০: ম.'১০; মি 🐁 స০: কৃ '১. ১. ১৩] প্রমাণ : ধনি ABC ত্রিভুজে, $\overrightarrow{BC} = a, \overrightarrow{CA} = b$ ল বর্ধিত করা হলে B£

সমাধান a Ē C ভেষ্টর যোগের ত্রিভুজ সূত্র হতে পাই, $\overrightarrow{BA} = \overrightarrow{BC} + \overrightarrow{CA}$ \Rightarrow c = <u>a</u> + <u>b</u> $c \cdot c = (a + b) \quad (a + b)$ $= a \cdot a + a \cdot b + b \cdot a + b \cdot b$ $\Rightarrow c^2 = a^2 + b^2 + 2 a \cdot b$ $\begin{bmatrix} a \cdot a = a^2 & a \leq a \cdot b = b \cdot a \end{bmatrix}$ $\Rightarrow c^2 = a^2 + b^2 + 2 |a||b|\cos ACE$ $\Rightarrow c^2 = a^2 + b^2 + 2ab\cos(\pi - C)$ $[\angle ACE = \pi - \angle C]$ = $a^2 + b^2 - 2ab\cos C$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ (b) $c = a \cos B + b \cos A \left[\overline{\mathbf{q}}, \mathbf{b}, \mathbf{b}, \mathbf{b}, \mathbf{b} \right]$ প্রমাণ ঃ ধরি ABC ত্রিভুজে, $\overrightarrow{BC} = a, \overrightarrow{CA} = b$ ভেষ্টর যোগের ত্রিভুচ্চ সূত্র হতে পাই, $\overrightarrow{BA} = \overrightarrow{BC} + \overrightarrow{CA}$ $\Rightarrow c = a + b$ $\underline{c} \cdot \underline{c} = \underline{c} \cdot (\underline{a} + \underline{b})$ \Rightarrow c² = c · a + c · b а \Rightarrow c² = ca cos B + co co²A $c = a \cos B + b \cos A$ (c) $\frac{a}{\sin A} = \frac{b}{\sin B}$ প্রমান : ধরি ABC ত্রিহাজে, \overrightarrow{BC} . $(\overrightarrow{A} = b \quad \overrightarrow{BA} = c$ u

 $\Rightarrow c = a + b$ $c \times c = c \times (a + b)$ $\Rightarrow c \times c = c \times a + c \times b$ $\Rightarrow 0 = -a \times c + c \times b$ $a \times c = c \times b \cdots \cdots (1)$ আবার, $a \times c = a \times (a + b)$ $\Rightarrow a \times c = a \times a + a \times b$ $\Rightarrow a \times c = a \times b \cdots (2) [a \times a = 0]$ (1) ও (2) হতে পাই, $a \times c = c \times b = a \times b$ \Rightarrow ac sin B \hat{n} = cb sin A \hat{n} = ab sin $(\pi - C)$ \hat{n} যখন \hat{n} হল ∆ABC সমতলের উপর লম্ব একক ভেষ্টর। $\Rightarrow \frac{ac\sin B}{abc} = \frac{bc\sin A}{abc} = \frac{ab\sin C}{abc}$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ 13. $\overline{A} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\overline{B} = 3\hat{i} - \hat{j} + 2\hat{k}$. (a) A ভেষ্টর বরাবর B ভেষ্টরের অংশক নির্ণয় কর। (b) দেখাও যে. $\overline{A} + \overline{B}$ এবং $\overline{A} - \overline{B}$ ভেষ্টর দুইটি পরস্পর লম। রা.'০৬; ঢা.'০৩,'০৪,'০৮; য.'০৭; **b.**'09,'32,'38; মা.বো.'0৮; দি.'30; ব.'30,'32; মা.'১৪; বুয়েট'১১-১২] (c) দেখাও যে, \overline{A} , $\overline{A} - \overline{B}$ এবং $4\hat{i} + 2\hat{j} - 2\hat{k}$ ভেক্টর তিনটি একটি সমকোণী সমন্বিবাহ ত্রিভুজ গঠন করে। সমাধান: (a) $|\overline{A}| = \sqrt{1+4+9} = \sqrt{14}$ \overline{A} ভেক্টরের দিক বরাবর একক ভেক্টর = $\frac{A}{|A|}$ $=\frac{i+2\hat{j}-3\hat{k}}{\sqrt{14}}=\hat{A}$ $\overline{\mathbf{A}}$ ভেক্টর বরাবর $\overline{\mathbf{B}}$ ভেক্টরের অংশক নির্ণয় কর = $(\hat{A}.\overline{B})\hat{A} = \{\frac{\hat{i}+2\hat{j}-3\hat{k}}{\sqrt{14}}.(3\hat{i}-\hat{j}+2\hat{k})\}\hat{A}$ $=\frac{3-2-6}{\sqrt{14}}\hat{A}=-\frac{5}{\sqrt{14}}\frac{\hat{i}+2\hat{j}-3\hat{k}}{\sqrt{14}}$

 $=-\frac{5}{14}(\hat{i}+2\hat{j}-3\hat{k})$ (b) প্রশ্নমালা IIB এর 10(c). (c) প্রমাণ ঃ $\overline{A} - \overline{B} =$ দেখাও যে. \overline{A} , \overline{A} – \overline{B} এবং $4\hat{i} + 2\hat{j} - 2\hat{k}$ ভেক্টর তিনটি একটি সমকোণী ত্রিভুজ গঠন করে। প্রমাণ : $|\overline{A}| = |\hat{i} + 2\hat{j} - 3\hat{k}| = \sqrt{1 + 4 + 9} = \sqrt{14}$ $|\overline{A} - \overline{B}| = |-2\hat{i} + 3\hat{i} - 5\hat{k}| = \sqrt{4 + 9 + 25} = \sqrt{38}$ $|4\hat{i}+2\hat{j}-2\hat{k}| = \sqrt{16+4+4} = \sqrt{24}$ $\sqrt{14}$, $\sqrt{38}$ ও $\sqrt{24}$ এর যেকোনো দইটির সমষ্টি তৃতীয়টি অপেক্ষা বৃহত্তর এবং $(\sqrt{14})^2 + (\sqrt{24})^2 =$ $14 + 24 = 38 = (\sqrt{38})^2$ প্রদত্ত ভেক্টর তিনটি একটি সমকোণী ত্রিভুজ গঠন করে। 14. ABC ত্রিভুজের BC, CA, AB বাহুগুলির মধ্যবিন্দু যথাক্রমে D, E, F । (a) প্রমাণ কর যে. AD + BE + CF = 0 ঢো. '০৭; য. '০৬,'১১; চ.'০৬; রা.'১১'১৩; সি.'০৯, '১২ ; ব. '০৭.'১২; দি.'১৩] (b) ভেক্টর পদ্ধতিতে দেখাও যে, AD, BE ও CF সমবিন্দু। ঢো. '১১.'১৪; রা. '১২; ব. '১০.'১৪; চ.'০৭; য.'১০; ক. '১০.'১২.'১৪; মা.বো.'০৯.'১২; দি.'১৪] (c) B, C ও D বিন্দুর স্থানার যথাক্রমে (2, -3, 0), (4, -4, 1) ও (1, 2, -6) হলে DE এর ভেটর সমীকরণ নির্ণয় কর। (a) প্রশ্নমালা IIA এর উদাহরণ 1(c) (b) প্রশ্নমালা IIC এর 2 নং প্রশ্ন। (c) প্রশ্নমালা IIB এর উদাহরণ 9 15. মুলবিন্দু O এর সাপেক্ষে A ও B এর অবস্থান ভেষ্টর যথাক্রমে $2\hat{i} - 3\hat{j} - \hat{k}$ ও $\hat{i} + 4\hat{j} + 3\hat{k}$ । (a) OA ভেষ্টরের উপর OB ভেষ্টরের অভিক্ষেপ নির্ণয় কর।

- (b) A বিন্দুগামী এবং \overrightarrow{AB} ভেক্টরের সমাম্ত্ররাল সরলরেখার ভেক্টর সমীকরণ নির্ণয় কর।
- (c) OAB ত্রিভুজটির কোণ তিনটি নির্ণয় কর। সমাধান:



$$= \frac{(2\hat{i} - 3\hat{j} - \hat{k}) \cdot (\hat{i} + 4\hat{j} + 3\hat{k})}{\sqrt{4 + 9 + 1}\sqrt{1 + 16 + 9}}$$

$$= \frac{2 - 12 - 3}{\sqrt{14}\sqrt{26}} = \frac{-13}{\sqrt{364}}$$

$$\angle AOB = \cos^{-1}(\frac{-13}{\sqrt{364}})$$

$$\cos OAB = \frac{\overline{AO} \cdot \overline{AB}}{|\overline{AO}||\overline{AB}|}$$

$$= \frac{(-2\hat{i} + 3\hat{j} + \hat{k}) \cdot (-\hat{i} + 7\hat{j} + 4\hat{k})}{\sqrt{4 + 9 + 1}\sqrt{1 + 49 + 16}}$$

$$= \frac{2 + 21 + 4}{\sqrt{14}\sqrt{66}} = \frac{27}{\sqrt{924}}$$

$$\angle OAB = \cos^{-1}(\frac{27}{\sqrt{924}})$$

$$\cos OBA = \frac{\overline{BO} \cdot \overline{BA}}{|\overline{BO}||\overline{BA}|}$$

$$= \frac{(-i - 4\hat{j} - 3\hat{k}) \cdot (\hat{i} - 7\hat{j} - 4\hat{k})}{\sqrt{1 + 16 + 9}\sqrt{1 + 49 + 16}}$$

$$= \frac{-1 + 28 + 12}{\sqrt{26}\sqrt{66}} = \frac{39}{\sqrt{1716}}$$

- * একটি বস্তুর উপর $\overline{\mathrm{F}}$ বলের ফ্রিয়ার ফলে বস্তুটির সরণ r হলে, কাজ = \overline{F} .r
- $\mathbf O$ এর সাপেক্ষে $\mathbf \overline{F}$ বলের ক্রিয়ারেখার উপরস্থ কোন বিন্দুর অবস্থান ভেষ্টর r হলে, O এর চতুর্দিকে F বলের মোমেন্ট = $|\vec{r} \times \vec{F}|$

 $\bar{r} = 3\hat{i} + 8\hat{j} - 2\hat{k} + t(2\hat{i} - j + 3\hat{k})$ $\bar{r} = 7\hat{i} + 4\hat{j} + 3\hat{k} + s(2\hat{i} + j + 4\hat{k})$ সরলরেখাদ্বয ছেদ করে কিনা পরীক্ষা কর এবং যদি ছেদ করে তবে ছেদবিন্দুর স্থানাজ্ঞ নির্ণয় কর।

সমাধান: $\overline{\mathbf{r}} = (3+2t)\hat{\mathbf{i}} + (8-t)\hat{\mathbf{j}} + (-2+3t)\hat{\mathbf{k}}$

এবং $\bar{r} = (7+2s)\hat{i} + (4+s)\hat{j} + (3+4s)\hat{k}$ রেখাদ্বয় ছেদ করলে, 3 + 2t = 7 + 2s ... (i), 8 – t = 4 + s ··· (ii) এবং - 2 + 3t = 3 + 4s ··· ·· (iii) সত্য হবে। (i) + (ii) $\times 2 \Rightarrow 3 + 16 = 7 + 8 + 4s$ $\Rightarrow 4s = 4 \Rightarrow s = 1$ (ii) হতে পাই, 8 - t = 4 + 1 ⇒ t = 3 s = 1, t = 3 এর জন্য (iii) এর বামপক্ষ = $-2 + 3 \times 3 = 7$ এবং ডানপক্ষ = $3 + 4 \times 1 = 7$ সমান। সরলরেখাদ্বয় পরস্পরকে ছেদ করে। ছেদবিন্দ্র অবস্থান ভেক্টর $=9\hat{i}+5\hat{i}+7\hat{k}$ ভর্তি পরীক্ষার MCO : 1. $4\hat{i} + 2\hat{j} - 3\hat{k}$ $\forall \lambda\hat{i} - 3\hat{i} + 2\hat{k}$ ($\forall \overline{\partial} \overline{\partial} \overline{\partial} \overline{\partial} \overline{\partial} \overline{\partial} \overline{\partial}$ পরস্পর লম্ব হলে λ এর মান - [DU 02-03, 06-07: NU 08-09. 05-06: RU 12-13.09-10] Solⁿ, $4\lambda - 6 - 6 = 0 \Longrightarrow \lambda = 3$ লম্ব হলে m এর মান – **IBUET 07-081** Solⁿ. $m + 6 - 24 = 0 \implies m = 18$ 3. $\overrightarrow{F_1} = 2\hat{i} - 3\hat{j}$ is $\overrightarrow{F_2}$ an $\overrightarrow{F_2}$ if $\overrightarrow{F_2}$ $\vec{F_{2}} = 5\hat{i} + 4\hat{j}$ reg $\vec{F_{2}} = ?$ [DU 06-07] Sol^n . $\overrightarrow{F_1} + \overrightarrow{F_2} = \overrightarrow{F_2} \Rightarrow \overrightarrow{F_2} = \overrightarrow{F_2} - \overrightarrow{F_1}$ $\Rightarrow \overrightarrow{F_2} = (5\hat{i} + 4\hat{j}) - (2\hat{i} - 3\hat{j}) = 3\hat{i} + 7\hat{j}$ 4. $\vec{A} = \hat{i} - 2\hat{i} + 3\hat{k}$ and $\vec{B} = 2\hat{i} + \hat{i} - \hat{k}$ হলে $\vec{A} \cdot \vec{B} = ?$ [DU 01-02] Sol^{n} , $\vec{A} \cdot \vec{B} = 2 - 2 - 3 = -3$ $5. \vec{B} = 2\hat{i} + 10\hat{i} - 11\hat{k}$ ভেষ্টর বরাবর $\vec{A} = 2\hat{i} + 2\hat{i} + \hat{k}$ ভেষ্টরের উপাংশের মান– [CU 07-08]

 Sol^n . মান = $\frac{\vec{A} \cdot \vec{B}}{|\vec{P}|} = \frac{4 + 20 - 11}{\sqrt{4 + 100 + 121}} = \frac{13}{15}$ $6. \ \vec{Y} = 2\hat{i} - 3\hat{j} + 5\hat{k}$ ভেটরের উপর $\vec{X} = -\hat{i} + \hat{j} - 4\hat{k}$ এর অভিক্ষেপ– [CU 07-08] 7. $\vec{X} = 4\hat{i} - 2\hat{j} + 5\hat{k}$ and $\vec{Y} = 3\hat{i} + \hat{j} - 2\hat{k}$ ভেষ্টরদ্বয়ের অন্তর্ভুক্ত কোণ– [CU 07-08] Solⁿ. cos $\theta = \frac{\vec{X} \cdot \vec{Y}}{|\vec{X}||\vec{Y}|}$ $=\frac{12-2-10}{\sqrt{16+4+25}\sqrt{9+1+4}}=0::\theta=90^{\circ}$ 8. $2\hat{i} - 3\hat{k}$ এবং $\hat{i} + \hat{i} + \hat{k}$ ভেষ্টরছয়ের অন্তর্ভক্ত কোণ– BUET 07-08] Solⁿ. cos $\theta = \frac{2+0-3}{\sqrt{4+9}\sqrt{1+1+1}} = \frac{-1}{\sqrt{13}\sqrt{2}}$ $\theta = \cos^{-1}(\frac{-1}{\sqrt{39}})$ 9. a এর মান কত হলে. $\vec{A} = 5\hat{i} + 2\hat{i} + 3\hat{k}$ এবং $\vec{B} = 15\hat{i} + a\hat{i} + 9\hat{k}$ ভেষ্টরদ্বয় পরস্পর সমান্দতরাল হবে। **[IU 07-08]** Sol^n . \vec{A} ও \vec{B} সমাশতরাল বলে, $\frac{5}{15} = \frac{2}{a} = \frac{3}{2}$ a = 610. দইটি ভেষ্টর $\vec{A} = 2\hat{i} - 6\hat{j} - 3\hat{k}$ এক্ট $\vec{B} = 4\hat{i} + 3\hat{j} - \hat{k}$ দ্বারা গঠিত সমতলের উপর একটি একক লম্ব ভেষ্টর – [SU 06-07] $Sol^{n} \cdot \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -6 & -3 \\ 4 & 3 & -1 \end{vmatrix}$ $= (6+9)\hat{i} - (-2+12)\hat{i} + (6+24)\hat{k}$

 $\hat{\eta} = \pm \frac{\vec{A} \times \vec{B}}{|\vec{A} \times \vec{B}|} = \pm \frac{15\hat{i} - 10\hat{j} + 30\hat{k}}{\sqrt{225 + 100 + 900}}$ $=\pm\frac{1}{7}(3\hat{i}-2\hat{j}+6\hat{k})$ 11. $|\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2$ এর মান-**Sol**ⁿ. $|\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2$ = $(AB \sin \theta)^2 + (AB \cos \theta)^2$ = $A^2 B^2$ 12. \hat{i} , \hat{j} , \hat{k} একক ভেষ্টর হলে $\hat{i} \cdot (\hat{j} \times \hat{k}) = ?$ **Solⁿ**. $i \cdot (\hat{i} \times \hat{k}) = \hat{i} \cdot \hat{i} = 1$ 13. m তরের একটি কন্তর উপর প্রযুক্ত $\vec{F} = 5\vec{x} + 4\vec{y}$ বলের কারণে কৃত্টি একটি নির্দিষ্ট দিকে গতিশীল কৃতটি উপর যে বল প্রয়োগ করলে বস্তটির গতিপথের সাথে 45° কোণ তৈরী করবে সে বলের মান কত? [RU 07-08] **Sol**^{*n*}. $(5\vec{x} + 4\vec{v}) \cos 45^{\circ}$ 14. यपि क्ल $\vec{F} = 2\hat{i} + 3\hat{j} + \hat{k}$ এর সরণ $\vec{S} = \hat{i} + 2\hat{i} + 5\hat{k}$ হয় হবে কাচ্চ W = ? **[RU 06-07] Sol**ⁿ, $W = \vec{F} \cdot \vec{S} = 2 + 6 + 5 = 13$

15. रापि क्षेयुद्ध दन $\vec{F} = 5\hat{i} + 2\hat{j} - \hat{k}$ এর ঘূর্ণায়মান কণার আক্ষের সাপেকে অবস্থান ভেক্টর $\vec{r} = 2\hat{i} - \hat{j} + 3\hat{k}$ হয় তবে বলের মোমেন্ট T এর মান কত ? [RU 06-07] $sol^n : \vec{T} = \vec{F} \times \vec{r} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & -1 \\ 2 & -1 & 3 \end{vmatrix}$ $= (6 - 1)\hat{i} - (9 + 2)\hat{j} + (-3 - 4)\hat{k}$ $= 5\hat{i} - 11\hat{j} - 7\hat{k}$ $T = |\vec{T}| = \sqrt{25 + 121 + 49} = \sqrt{195}$ 16. XOZ তলের সমানতরাল এবং $3\hat{i} - \hat{j} + 4\hat{k}$ ভেটরের সাথে লম্ঘ একক ভেট্টর হবে-Solⁿ : XOZ তলের সমানতরাল বলে \hat{i} ও \hat{k} উপাংশ

 Sol^{n} .: XOZ তলের সমানতরাল বলে i ও k উপাংশ থাকবে। XOZ তলের সমানতরাল এবং $3\hat{i} - \hat{j} + 4\hat{k}$ ভেষ্টরের সাথে লম্ব ভেষ্টর $4\hat{i} - 3\hat{k}$. [BUET 10-11]

নির্গেয় একক ভেষ্টর
$$=\frac{4\hat{i}-3\hat{k}}{\sqrt{16+9}}=\frac{4\hat{i}-3\hat{k}}{5}$$

ক্রম ভিন্ন বলে অনুপাত ঋণাত্মক হবে। অতএব, অনুপাত (+) হলে বহির্বিভক্ত করবে এবং (–) হলে অন্তর্বিভক্ত করবে।

MCQ এর জন্য, 1. $A \equiv (x_2 + x_3 - x_1, y_2 + y_3 - y_1)$ $D(x_3, y_3) \quad C(x,y)$ $B \equiv (x_1 + x_3 - x_2, y_1 + y_3 - y_2)$ $F(x_3, y_3)$ $\mathbf{E}(x_2, y_2)$ $C \equiv (x_1 + x_2 - x_3, y_1 + y_2 - y_3)$ ABCD সামান্তরিকের চতুর্থ শীর্ষের স্থানাজ্ঞ 2. $A(x_1, y_1) B(x_2, y_2)$ $\overline{D(x_1, y_1)}$ R $(\mathbf{x}, \mathbf{y}) = (x_2 + x_3 - x_1, y_2 + y_3 - y_1)$ (x1, y1) এবং (x2, y2) কিন্দু দয় একটি সমবাহ ত্রিভুজের শীর্ষকিন্দু হলে তৃতীয় শীর্ষের স্থানাজ্জ্ব $\left(\frac{x_1 + x_2 + \sqrt{3}(y_1 - y_2)}{2}, \frac{y_1 + y_2 - \sqrt{3}(x_1 - x_2)}{2}\right) \triangleleft \left(\frac{x_1 + x_2 - \sqrt{3}(y_1 - y_2)}{2}, \frac{y_1 + y_2 + \sqrt{3}(x_1 - x_2)}{2}\right)$ প্রশ্নমালা III A $\theta \in]-\pi,\pi]$ হল , $\theta = \tan^{-1}\frac{-\sqrt{3}}{1}$ 1. x- অক্ষ হতে P কিন্দুর দুরত্ব y-অক্ষ হতে এর $= -\pi + \tan^{-1}\sqrt{3} = -\pi + \frac{\pi}{3} = -\frac{2\pi}{3}$ দুরত্বের চ্বিগুণ । x- অক্ষ হতে এর দুরত্ব 4 একক হলে, P কিন্দুর স্থানাজ্ঞ্ব নির্ণায় কর। $(-\sqrt{3}, 1)$ এর পোলার স্থানাজ্ঞ $(2, \frac{4\pi}{2})$ অথবা, সমাধান : মনে করি, P বিন্দুর স্থানাজ্ঞ (α, β) . x- অক্ষ হতে P কিন্দুর দূরত্ব = $|\beta|$ এবং $(2, -\frac{2\pi}{3}).$ v-অক্ষ হতে P কিদ্যুর দূরত্ব = $|\alpha|$ প্রশ্নত, $|\beta| = 4 \Rightarrow \beta = \pm 4$ এবং (b) $\forall fa, (1, -\sqrt{3})$ as equivalent of (r, θ) . $r = \sqrt{(-\sqrt{3})^2 + 1^2} = 2$ and $|\beta| = 2 |\alpha| \Rightarrow 2 |\alpha| = 4$ $\Rightarrow |\alpha| = 2 \Rightarrow \alpha = \pm 2$ $\theta \in]-\pi,\pi]$ হল, $\theta = \tan^{-1}\frac{-\sqrt{3}}{1}$ P বিন্দুর স্থানাজ্জ (2, 4), (2, -4), (-2, 4)অথবা, (-2,-4) $=-\tan^{-1}\sqrt{3}=-\frac{\pi}{3}$ 2(i) কার্তেসীয় স্থানাজ্ঞক পোলার স্থানাজ্ঞক প্রকাশ কর, $\theta \in]-\pi,\pi]$ হলে, $\theta = \tan^{-1}\frac{-\sqrt{3}}{1}$ যখন $r \ge 0$ এবং $\theta \in [0, 2\pi]$ জথবা, $\theta \in]-\pi, \pi]$ (a) $(-1, -\sqrt{3})$ (b) $(1, -\sqrt{3})$ $=2\pi-\tan^{-1}\sqrt{3}=2\pi-\frac{\pi}{2}=\frac{5\pi}{2}$ সমাধান ঃ (a) ধরি, $(-1, -\sqrt{3})$ এর পোলার স্থানাজ্ঞ (\mathbf{r}, Θ) . $(1, -\sqrt{3})$ এর পোলার স্থানাজ্ঞ $(2, -\frac{\pi}{3}).$ বা, $r = \sqrt{(-1)^2 + (-\sqrt{3})^2} = 2$ এবং $(2, \frac{5\pi}{2})$ $\theta \in [0, 2\pi [$ হলে, $\theta = \tan^{-1} \frac{-\sqrt{3}}{1}$ (ii) পোলার স্থানাঙ্ককে কার্ত্তেসীয় স্থানাঙ্কে প্রকাশ কর ঃ $=\pi + \tan^{-1}\sqrt{3} = \pi + \frac{\pi}{3} = \frac{4\pi}{3}$ (a) $(\sqrt{2}, \frac{5\pi}{4})$ (b) $(-2, 120^{\circ})$ (c) $(\sqrt{2}, -\frac{\pi}{4})$ ৫৩ (খ)

2(ii) সমাধান ঃ (a) $(\sqrt{2}, \frac{5\pi}{4})$ এর কার্তেসীয় স্থানাঙ্ক $= (\sqrt{2}\cos\frac{5\pi}{4}, \sqrt{2}\sin\frac{5\pi}{4})$ = $(\sqrt{2}\cos(\pi + \frac{\pi}{4}), \sqrt{2}\sin(\pi + \frac{\pi}{4}))$ = $(\sqrt{2}\cos(\pi + \frac{\pi}{4}), \sqrt{2}\sin(\pi + \frac{\pi}{4}))$ $= (-\sqrt{2}\cos\frac{\pi}{4}, -\sqrt{2}\sin\frac{\pi}{4})$ $= (-\sqrt{2} \cdot \frac{1}{\sqrt{2}}, -\sqrt{2} \cdot \frac{1}{\sqrt{2}}) = (-1, -1)$ (b) (⁻ - 2 , 120°) এর কার্তেসীয় স্থানাজ্ঞ $= (-2\cos 120^{\circ}, -2\sin 120^{\circ})$ $(-2\cos(90^{\circ}+30^{\circ}), -2\sin(90^{\circ}+30^{\circ}))$ $(2\sin 30^{\circ}, -2\cos 30^{\circ})$ = $= (2 \cdot \frac{1}{2}, -2 \cdot \frac{\sqrt{3}}{2}) = (1, -\sqrt{3})$ (c) $(\sqrt{2}, -\frac{\pi}{4})$ এর কার্তেসীয় স্থানাজ্ঞ = $(\sqrt{2}\cos(-\frac{\pi}{4}), \sqrt{2}\sin(-\frac{\pi}{4}))$ $= (\sqrt{2}\cos\frac{\pi}{4}, -\sqrt{2}\sin\frac{\pi}{4})$ $= (\sqrt{2} \cdot \frac{1}{\sqrt{2}}, -\sqrt{2} \cdot \frac{1}{\sqrt{2}}) = (1, -1)$ পোলার সমীকরণকে কার্ত্তেসীয় সমীকরণে এবং কার্ত্তেসীয় সমীকরণকে পোলার সমীকরণে প্রকাশ কর ঃ (a) $y = x \cot \alpha$ (b) $r^{2} = a^{2} \cos 2\theta$. সমাধান : (a) $y = x \operatorname{cot} \alpha$ \Rightarrow r sin θ = r cos \exists cot α $\Rightarrow \tan \theta = \tan \left(\frac{\pi}{2} - \alpha\right) \Rightarrow \theta = \frac{\pi}{2} - \alpha \text{ (Ans.)}$ **(b)** $r^2 = a^2 \cos 2\theta$ \Rightarrow r² = a² (cos² Θ - sin² Θ)

$$\Rightarrow r^{2} = a^{2} \left(\frac{x^{2}}{r^{2}} - \frac{y^{2}}{r^{2}}\right)$$
[:: $x = r \cos \theta$, $y = r \sin \theta$

$$\Rightarrow (r^{2})^{2} = a^{2} (x^{2} - y^{2})$$
($x^{2} + y^{2}$)^{2} = $a^{2} (x^{2} - y^{2})$ (Ans.)
4(a) (reation (a), $(2\sqrt{3}, 90^{\circ})$, $(2, 120^{\circ})$ (area
(2, 60°) (reation (area) (area) (area) (area) (area)
(2, 60°) (reation (area) (area) (area) (area) (area) (area)
(2, 60°) (reation (area) (area

AB,BC,CA এর যেকোন দুইটির সমষ্টি তৃতীয়টি অপেক্ষা বৃহত্তর এবং AB = CA = CA = 2.

প্রদত্ত কিন্দুত্রয় একটি সমবাহু ত্রিভুজের শীর্ষকিন্দু।

4(b) P(4, 0) এবং Q(0, 4) কিন্দু হয় একটি সমবাহু ত্রিভুল্জের শীর্ষকিন্দু হলে তৃতীয় শীর্ষের স্থানাজ্ফ নির্ণায় কর। সমাধান : মনে করি, সমবাহু ত্রিভুজের তৃতীয় শীর্ষের স্থানাজ্ঞ R(x, y). $\therefore PQ^2 = QR^2 = RP^2$ এখন, $QR^2 = RP^2$ হতে পাই, $\Rightarrow (0-x)^2 + (4-y)^2 = (x-4)^2 + (y-0)^2$ $\Rightarrow x^2 + 16 - 8y + y^2 = x^2 - 8x + 16 + y^2$ $\Rightarrow -8 y = -8 x \Rightarrow y = x$ (1) $PQ^2 = QR^2$ হতে পাই, $\Rightarrow 4^2 + 4^2 = x^2 + 16 - 8y + y$ $\Rightarrow 32 = x^2 + 16 - 8x + x^2$ [y = x] $\Rightarrow 2x^2 - 8x - 16 = 0$ $\Rightarrow ^2 - 4x - 8 = 0$

 $x = \frac{-(-4) \pm \sqrt{16 - (-32)}}{21} = \frac{4 \pm \sqrt{48}}{2}$ $=\frac{4\pm 4\sqrt{3}}{2}=2\pm 2\sqrt{3}$ $y = 2 + 2\sqrt{3}$, যখন $x = 2 + 2\sqrt{3}$ এবং $v = 2 - 2\sqrt{3}$, यथन $x = 2 - 2\sqrt{3}$ ততীয় শীর্ষের স্থানাজ্ঞ্ব $(2 + 2\sqrt{3}, 2 + 2\sqrt{3})$ \mathbf{T} , $(2-2\sqrt{3}, 2-2\sqrt{3})$ [বি.দু.: MCO এর ক্ষেত্রে ,তৃতীয় শীর্ষের স্থানাজ্ঞ = $\left(\frac{4+0+\sqrt{3}(0-4)}{2},\frac{0+4-\sqrt{3}(4-0)}{2}\right)$ বা, $\left(\frac{4+0-\sqrt{3}(0-4)}{2},\frac{0+4+\sqrt{3}(4-0)}{2}\right)$ with $(2-2\sqrt{3}, 2-2\sqrt{3})$ $\exists . (2+2\sqrt{3}, 2+2\sqrt{3})$ 4(c) A ও B দুইটি স্থির বিন্দুর স্থানাজ্ঞ যথাক্রমে '(3, 4) ও (3 , 6) । AB বাহুর উপর অধ্রিত সমবাহ বিভুদ্ধ ABC এর C বিন্দুটি AB রেখার সাপেক্ষে মুলকিন্দুর বিপরীত পাশে অবস্থিত হলে, C কিন্দুর স্থানাজ্ঞ নির্ণয় কর। সমাধান ঃ মনে করি, সমবাহু ত্রিভুচ্জের তৃতীয় শীর্ষের স্থানাজ্ঞ C(x, y). $\therefore AB^2 = BC^2 = CA^2$ এখন. $BC^2 = CA^2$ হতে পাই. $\Rightarrow (3-x)^2 + (6-y)^2 = (x-3)^2 + (y-4)^2$ $\Rightarrow (6-y)^2 - (y-4)^2 = 0$ $\Rightarrow (6-v+v-4)(6-v-v+4)=0$ $\Rightarrow 2(-2y+10) = 0 \Rightarrow y = 5 \cdots \cdots (1)$ $AB^2 = BC^2$ হতে পাই $\Rightarrow |4-6|^2 = (3-x)^2 + (6-y)^2$ $\Rightarrow 4 = 9 - 6x + x^{2} + (6 - 5)^{2} [\because y = 5]$ $\Rightarrow x^2 - 6x + 6 = 0$

 $x = \frac{-(-6) \pm \sqrt{36 - 24}}{2.1} = \frac{6 \pm \sqrt{12}}{2}$ $= \frac{6 \pm 2\sqrt{3}}{2} = 3 \pm \sqrt{3}$

A ও B কিন্দুর ভুজ 3 এবং C কিন্দুটি AB রেখার

সাপেক্ষে মূলক্দিনুর বিপরীত পাশে অবস্থিত বলে, C এর ভূজ 3 অপেক্ষা বেশী হবে।

C বিন্দুর স্থানাঙ্ক
$$(3 + \sqrt{3}, 5)$$

[বি. দ্র. MCQ এর ক্ষেত্রে , তৃতীয় শীর্ষের স্থানাজ্ঞ্ফ
= $\left(\frac{3+3-\sqrt{3}(4-6)}{2}, \frac{4+6+\sqrt{3}(3-3)}{2}\right)$
= $(3 + \sqrt{3}, 5)$]
5(a) দেখাও যে, $(2, -2)$, $(8, 4)$, $(5, 7)$ এবং
 $(-1, 1)$ বিন্দুগুলি একটি আয়তের কৌনিক বিন্দু।
প্রমাণ ঃ ধরি, প্রদন্ত বিন্দু চারটি A $(2, -2)$, B $(8, 4)$,
C $(5, 7)$, D $(-1, 1)$.
 $A(2, -2)$ D $(-1, 1)$

$$A(2, -2)$$
 $D(-1, 1)$
 $B(8, 4)$ $C(5, 7)$

$$AB = \sqrt{(2-8)^2 + (4+2)^2}$$

$$= \sqrt{36+36} = 6\sqrt{2}$$

$$BC = \sqrt{(8-5)^2 + (4-7)^2} = \sqrt{9+9} = 3\sqrt{2}$$

$$CD = \sqrt{(5+1)^2 + (7-1)^2} = \sqrt{36+36} = 6\sqrt{2}$$

$$DA = \sqrt{(-1-2)^2 + (1+2)^2} = \sqrt{9+9} = 3\sqrt{2}$$

$$AC = \sqrt{(2-5)^2 + (-2-7)^2} = \sqrt{9+81} = 3\sqrt{10}$$

$$BD = \sqrt{(8+1)^2 + (4-1)^2} = \sqrt{81+9} = 3\sqrt{10}$$

$$ABCD$$

$$DS = \sqrt{(8+1)^2 + (4-1)^2} = \sqrt{81+9} = 3\sqrt{10}$$

$$ABCD$$

$$DS = 6\sqrt{2}, BC = DA = 3\sqrt{2}$$

$$AC = \sqrt{10}$$

$$AB = CD = 6\sqrt{2}, BC = DA = 3\sqrt{2}$$

$$AC = \sqrt{10}$$

$$AB = CD = 6\sqrt{2}, BC = DA = 3\sqrt{10}$$

$$BD = \sqrt{10}$$

$$BT = \sqrt{10}$$

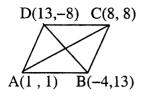
$$BT = \sqrt{10}$$

$$BT = \sqrt{10}$$

$$CT = \sqrt{10}$$

$$CT = \sqrt{10}$$

5(b)দেখাও যে, (1,1), (-4, 13), (8, 8) এবং (13, -4) বিন্দুগুলি একটি রম্বসের কৌনিক বিন্দু। [দি.'১১]



anif : 4a, and and and and and and anity bialb A(1, 1), B(-4, 13), C (8, 8) \oplus D(13, -4). \therefore AB = $\sqrt{(1+4)^2 + (1-13)^2}$ $= \sqrt{25+144} = \sqrt{169} = 13$ BC = $\sqrt{(-4-8)^2 + (13-8)^2}$ $= \sqrt{144+25} = \sqrt{169} = 13$ CD = $\sqrt{(8-13)^2 + (8+4)^2}$ $= \sqrt{25+144} = \sqrt{169} = 13$ DA = $\sqrt{(13-1)^2 + (-4-1)^2}$ $= \sqrt{144+25} = \sqrt{169} = 13$ AC = $\sqrt{(1-8)^2 + (1-8)^2} = \sqrt{2\times49} = 7\sqrt{2}$ BD = $\sqrt{(-4-13)^2 + (13+4)^2} = 17\sqrt{2}$

ABCD চতুর্ভুজের চারটি বাহু পারস্পর সমান অর্থাৎ AB = BC = CD = DA =13 এবং কর্ণদ্বয় পরস্পর অসমান অর্থাৎ AC ≠ BD

প্রদত্ত কিন্দুগুলি একটি রম্বসের কৌনিক কিন্দু।

5(c) দেখাও যে, A (a,b), B (a + α , b + β), C (a+ α + p,b + β + q) এবং D(a + p,b + q) কিন্দুগুলি একটি সামান্ডরিক উৎপন্ন করে। কি শর্জে ABCD (i) একটি আয়তক্ষেত্র (ii) একটি রম্বস তা নির্ণিয় কর।

ধ্রমাণ : AB = $\sqrt{(a-a-\alpha)^2 + (b-b-\beta)^2}$ = $\sqrt{\alpha^2 + \beta^2}$ BC = $\sqrt{(-p)^2 + (-q)^2} = \sqrt{p^2 + q^2}$ CD = $\sqrt{\alpha^2 + \beta^2}$ DA = $\sqrt{p^2 + q^2}$ AC = $\sqrt{(\alpha + p)^2 + (\beta + q)^2}$ $BD = \sqrt{(\alpha - p)^2 + (\beta - q)^2}$ ABCD চতুর্ভুজের বিপরীত বাহদয় পারস্পর সমান অর্থাৎ AB = CD and BC = DA. কিন্দু চারটি একটি সামান্তরিক উৎপন্ন করে। (i) ABCD একটি আয়তক্ষেত্র হলে, কর্ণ দৃইটি পরস্পর $AC = BD \Rightarrow AC^2 = BD^2$ সমান হবে। $\Rightarrow (\alpha + p)^{2} + (\beta + q)^{2} = (\alpha - p)^{2} + (\beta - q)^{2}$ $\Rightarrow (\alpha + p)^2 - (\alpha - p)^2 = (\beta - q)^2 - (\beta + q)^2$ $\Rightarrow 4\alpha p = -4\beta q \qquad \alpha p + \beta q = 0$ ইহাই নির্ণেয় শর্ত । (ii) ABCD একটি রম্বস হলে, বাহু চারটি সমান হবে। $AB = BC \Rightarrow AB^2 = BC^2$ $\Rightarrow \alpha^2 + \beta^2 = p^2 + q^2$; ইহাই নির্ণেয় শর্ত। 6(a) একটি বিন্দুর স্থানাজ্ঞ নির্ণয় কর যার কোটি শুচ্ছের দ্বিগুণ এবং তা (4, 3) বিন্দু হতে $\sqrt{10}$ একক দুরত্বে অবস্ধিত। রি.'০৭; মা.'০৮.'১২. '১৪; ঢা.'১১; দি.'১৩] সমাধান ঃ ধরি, কিন্দুটির স্থানাজ্ঞ্ব $(\alpha, 2\alpha)$. (4, 3) কিন্দু হতে $(\alpha, 2\alpha)$ কিন্দুর দূরত্ব $=\sqrt{(\alpha-4)^2+(2\alpha-3)^2}$ প্রশ্নামতে, $\sqrt{(\alpha - 4)^2 + (2\alpha - 3)^2} = \sqrt{10}$ $\Rightarrow \alpha^2 - 8\alpha + 16 + 4\alpha^2 - 12\alpha + 9 = 10$ $\Rightarrow 5\alpha^2 - 20\alpha + 15 = 0$ $\Rightarrow \alpha^2 - 4\alpha + 3 = 0 \Rightarrow (\alpha - 3)(\alpha - 1) = 0$ $\Rightarrow \alpha = 1$ অথবা, $\alpha = 3$ কিন্দুটির স্থানাজ্ঞ্ব (1, 2) বা, (3, 6) (Ans.) 6(b) (a + b, b - a) and (a - b, a + b) for a + bথেকে (x, y) কিন্দুর দুরত্ব সমান হলে, দেখাও যে, bx - ay = 0. প্রমাণ ঃ ধরি, প্রদত্ত কিন্দু তিনটি A(x y), B(a+b, b-a), C(a-b, a+b)প্রমতে, $AB = AC \Rightarrow AB^2 = AC^2$ $\Rightarrow (x-a-b)^2 + (y-b+a)^2 =$ $(x-a+b)^{2} + (y-a-b)^{2}$

 $\Rightarrow (x-a-b)^2 - (x-a+b)^2$ = $(y-a-b)^2 - (y-b+a)^2$ $\Rightarrow (x-a-b-x+a-b)(x-a-b+x-a+b)$ = (y-a-b-y+b-a)(y-a-b+y-b+a) $\Rightarrow -2b.2(x-a) = -2a.2(y-b)$ $\Rightarrow bx - ab = ay - ab$ bx - ay = 0 (Showed)

6(c) কোন বিন্দুর কোটি 6 এবং (5, 6) হতে বিন্দুটির দ্রন্থ 4 একক হলে, বিন্দুটির ভুঞ্চ নির্ণিয় কর। [ব.'০৩; কু.'১১]

সমাধান ঃ ধরি, কিন্দুটির স্থানাজ্ঞ্ব (lpha, 6).

(5, 6) হতে কিন্দুটির দূরত্ব = $|\alpha - 5|$ গ্রন্নমতে, $|\alpha - 5| = 4 \Rightarrow \alpha - 5 = \pm 4$ $\Rightarrow \alpha = 9$ অথবা, $\alpha = 1$

কিদুটির ভুজ 9 অথবা 1.

6(d) দেখাও যে, a এর যেকোন মানের জন্য $B(\sqrt{3}+1, 3\sqrt{3})$ এবং $C(3\sqrt{3}+1, \sqrt{3})$ বিন্দু থেকে A(a + 1, a) বিন্দুর দুরত্ব সমান। ABC সমকোণী ত্রিভুজ হলে a এর মান নির্ণয় কর।

প্রমাণ : AB = $\sqrt{(a - \sqrt{3})^2 + (a - 3\sqrt{3})^2}$ = $\sqrt{a^2 - 2\sqrt{3}a + 3 + a^2 - 2.a.3\sqrt{3} + 27}$ = $\sqrt{2a^2 - 8\sqrt{3}a + 30}$ এবং AC = $\sqrt{(a - 3\sqrt{3})^2 + (a - \sqrt{3})^2}$ = $\sqrt{2a^2 - 8\sqrt{3}a + 30}$ a এর যেকোন মানের জন্য AB = AC.

২য় অংশ ৪

BC =
$$\sqrt{(\sqrt{3} + 1 - 3\sqrt{3} - 1)^2 + (3\sqrt{3} - \sqrt{3})^2}$$

= $\sqrt{(-2\sqrt{3})^2 + (2\sqrt{3})^2} = \sqrt{24}$
এখন ABC সমবাহু ত্রিভুজ হলে,
 $\sqrt{2a^2 - 8\sqrt{3}a + 30} = \sqrt{24}$

$$\Rightarrow 2a^2 - 8\sqrt{3}a + 30 = 24$$

$$\Rightarrow 2a^2 - 8\sqrt{3}a + 6 = 0 \Rightarrow a^2 - 4\sqrt{3}a + 3 = 0$$

$$\Rightarrow (a - 2\sqrt{3})^2 = -3 + 12 = 3^2$$

 $\Rightarrow a - 2\sqrt{3} = \pm 3 \therefore a = 2\sqrt{3} \pm 3$ (Ans.) 6(e) y-97 ar (7, 2) fry (etc (a, 5) কিণুটির দুরত্ব সমান হলে, a এর মান নির্ণয় কর। [রা. '১০; য. '০৬, '১০; কৃ. '০৭; চ. '১০; ঢা. '১৩] সমাধান ঃ y-অক্ষ থেকে (a, 5) কিন্দুর দূরত্ব = |a|এবং (7 , 2) কিন্দু থেকে (a 5) কিন্দুর দরত $=\sqrt{(a-7)^2+(5-2)^2}$ প্রশ্নমতে, $|a| = \sqrt{(a-7)^2 + (5-2)^2}$ $\Rightarrow a^2 = a^2 - 14a + 49 + 9$ $\Rightarrow 14a = 58 \Rightarrow a = \frac{58}{14} = \frac{29}{7}$ (Ans.) 6(f) x - जम এবং (-5, -7) किन खरक (4, k) বিন্দুটির দুরত্ব সমান হলে, k এর মান নির্ণয় কর। [ৰু. '০১; মা.বো. '১৩] সমাধান ঃ x-অক্ষ থেকে (4, k) কিপুটির দূরত্ব = |k|এবং (-5, -7) কিন্দু থেকে (4, k) কিন্দুটির দূরত্ব $=\sqrt{(-5-4)^2+(-7-k)^2}$ $=\sqrt{81+49+14k+k^2} = \sqrt{130+14k+k^2}$ প্রন্মতে, $|\mathbf{k}| = \sqrt{130 + 14k + k^2}$ $\Rightarrow k^{2} = 130 + 14k + k^{2} \therefore k = -\frac{130}{14} = -\frac{65}{7}$ 7.(a) (5,7), (-1, -1) ও (-2, 6) কিপুত্রায় একটি বৃদ্তের পরিধির উপর অবস্থিত । এর কেন্দ্রের স্থানাজ্ঞ নির্ণয় কর। সমাধানঃ ধরি, বৃত্তের কেন্দ্র O(x, y) এবং এর পরিধিস্থ কিন্দু তিনটি A(5,7), B(-1, -1) ও C(-2, 6)। OA = OB = OC, [∵ একই বৃন্তের ব্যাসার্ধ।] OA = OB অর্থাৎ $OA^2 = OB^2$ হতে পাই. $(x-5)^{2} + (y-7)^{2} = (x+1)^{2} + (y+1)^{2}$ $\Rightarrow x^2 - 10x + 25 + y^2 - 14y + 49 =$ $x^{2} + 2x + 1 + y^{2} + 2y + 1$ \Rightarrow 12x + 16y = 72 \Rightarrow 3x + 4y - 18 = 0 ...(i) OB = OC অর্ধাৎ $OB^2 = OC^2$ হতে পাই, $(x+1)^{2} + (y+1)^{2} = (x+2)^{2} + (y-6)^{2}$

$$\Rightarrow x^{2} + 2x + 1 + y^{2} + 2y + 1 =$$

$$x^{2} + 4x + 4 + y^{2} - 12y + 36$$

$$\Rightarrow 2x - 14y + 38 = 0 \Rightarrow x - 7y + 19 = 0 \cdots (ii)$$

$$(i) - 3 \times (ii) \Rightarrow 4y + 21y - 18 - 57 = 0$$

$$\Rightarrow 25 y = 75 \Rightarrow y = 3$$

$$(ii)$$
হতে পাই, $x = 21 - 19 = 2$
বৃডের কেন্দ্রের স্থানান্ডক (2,3) ।

7(b) কোন বৃষ্টের একটি ব্যাসের প্রাম্তক্বিদুষয়ের স্থানাচ্চ্ব (5, 2) ও (-3, - 4) হলে, এর ব্যাসার্ধ নির্ণয় কর।

সমাধানঃ ধরি, বৃন্তের ব্যাসটির প্রাম্ফ কিন্দুদ্বয় A(5,2) ও B(-3, -4). ডাহলে,

বৃস্তটির ব্যাস = AB =
$$\sqrt{(5+3)^2 + (2+4)^2}$$

= $\sqrt{64+36} = 10$ একক।
বৃস্তটির ব্যাসার্ধ = $\frac{10}{2} = 5$ একক।

 7(c) একটি বৃন্তের ব্যাসার্ধ 5, কেন্দ্রের স্থানাজ্ঞ্ব (5,3).

 ; এর যে জ্যা (3, 2) কিন্দুতে সমধিধন্তিত হয় তার দৈর্ঘ্য

 নির্ণয় কর।
 [ক্রু. '১০; চ.'১৩]

 সমাধানঃ ধরি, O(5, 3) কেন্দ্রবিশিষ্ট বৃন্তের AB জ্যা

 এর মধ্যকিন্দু C(3, 2)। তাহলে,

OC
$$\perp$$
 AB, ব্যাসার্ধ OA = 5 এবং
 $OC^2 = (5-3)^2 + (3-2)^2 = 5$
OAC সমকোণী ত্রিভুচ্জ হতে
পাই, $OA^2 = AC^2 + OC^2$
 $\Rightarrow 5^2 = AC^2 + 5$
 $\Rightarrow AC^2 = 25 - 5 = 20 \Rightarrow AC = 2\sqrt{5}$
AB = 2×AC = 2× $2\sqrt{5} = 4\sqrt{5}$
জ্যা এর দৈর্ঘ্য $4\sqrt{5}$ একক।
7(d) একটি বৃন্ডের ব্যাসার্ধ 10, কেন্দ্রের স্থানাচ্চ্র্য (11, 2)
: এর যে চ্যা (2, -1) কিন্দুতে সমধিখভিত হয় তার দৈর্ঘ্য

; এর যে জ্যা (2, -1) কিন্দুতে সমন্বিখন্ডিত হয় তার দৈর্ঘ্য নির্ণয় কর। [ব.'১১] সমাধানঃ ধরি, O(11, 2) কেন্দ্রবিশিষ্ট বৃন্তের AB জ্যা এর মধ্যকিন্দু C(2, -1)। তাহলে, OC \perp AB,

- ব্যাসার্ধ OA =10 এবং $OC^2 = (11-2)^2$ $+ (2+1)^2 = 81+9=90$ OAC সমকোণী ত্রিভ্জ হতে পাই, A $C(2-1)^B$ OA² = AC² + OC² $\Rightarrow 10^2 = AC^2 + 90$ $\Rightarrow AC^2 = 100 - 90 = 10 \Rightarrow AC = \sqrt{10}$ $AB = 2 \times AC = 2 \times \sqrt{10} = 2\sqrt{10}$ জ্যা এর দৈর্ঘ্য 2 $\sqrt{10}$ একক। 8. A(4, 3), B(11, 2) ও C(2, -1) বিন্দুত্রের ABC ত্রিভ্জের শীর্ষবিন্দু।
- (a) মৃশবিন্দু এবং অভাষয় হতে C বিন্দুর দূরত্ব নির্ণয় কর।
- (b) A বিন্দু হতে \sqrt{10} একক দ্রত্বে অবস্থিত একটি বিন্দুর ছানাঙ্ক নির্পন্ন কর যার কোটি ভুজের বিশ্প।

[রা.'০৭; মা.'০৮,'১২, '১৪; চা.'১১; দি.'১৩]

(c) B কেন্দ্র ও 10 ব্যাসার্ধ বিশিষ্ট বৃত্তের যে জ্যা C বিন্দুতে সমন্বিখন্ডিত হয় তার দৈর্ঘ্য নির্ণয় কর ॥[য়,'১১]

সমাধান: (a) মূলবিন্দু হতে C(2, -1) বিন্দুর দূরত্ব

$$=\sqrt{2^2+1^2}=\sqrt{5}$$
 এकक।

x-অক্ষ হতে C(2, -1) বিন্দুর দূরত্ব = |-1| = 1 একন। এবং y-অক্ষ হতে C(2, -1) বিন্দুর দূরত্ব = |2| = 2একন।

- (b) 6(a) দ্রষ্টব্য ৷
- (c) 7(d) দ্রষ্টব্য।

কাজ

 P কিন্দুর কোটি – 6 । x- অক্ষ হতে P কিন্দুর দ্রত্ব y-অক্ষ হতে এর দ্রত্বের অর্ধেক হলে, P কিন্দুর স্থানাজ্ফ নির্ণয় কর।

সমাধান : ধরি, P কিন্দুর স্থানাজ্ঞ্ব
$$(x, -6)$$
.
 x - অক্ষ হতে P কিন্দুর দূরত্ব = $|-6| = 6$ এবং
 y -অক্ষ হতে P কিন্দুর দূরত্ব = $|x|$
প্রশ্নমতে, $6 = \frac{1}{2} |x| \Rightarrow |x| = 12 \Rightarrow x = \pm 12$

P কিন্দুর স্থানাজ্ঞ্ব (12, -6) বা, (-12, -6)2. (1, 1) \otimes ($-\sqrt{3}$, 1) (ϕ পোলার স্থানাঙ্কে প্রকাশ কর, যখন r≥0 এবং $\theta \in [0, 2\pi]$ অথবা. $\theta \in]-\pi,\pi].$ সমাধান: মনে করি, (1, 1) এর পোলার স্থানাজ্ঞ (r, Θ) . $r = \sqrt{1^2 + 1^2} = \sqrt{2}$ and $\Theta = \tan^{-1} \frac{1}{1} = \tan^{-1} 1 = \frac{\pi}{4}$ (1, 1) এর পোলার স্থানাজ্ঞ্ব $(\sqrt{2}, \frac{\pi}{4})$ ধরি, $(-\sqrt{3}, 1)$ এর পোলার স্থানাজ্ঞ (\mathbf{r}, Θ) . $r = \sqrt{(-\sqrt{3})^2 + 1^2} = 2$ are $\Theta = \tan^{-1} \frac{1}{-\sqrt{3}} = \pi - \tan^{-1} \frac{1}{\sqrt{3}}$ $=\pi-\frac{\pi}{6}=\frac{5\pi}{6}$ $(-\sqrt{3}, 1)$ এর পোলার স্থানাজ্ঞ্ব $(2, \frac{5\pi}{6})$ 3. $(4, \frac{\pi}{3})$ ও $(\sqrt{2}, -\frac{3\pi}{4})$ কে কার্তেসীয় হানাঙ্কে প্রকাশ কর। $(4, \frac{\pi}{2})$ এর কার্তেসীয় স্থানাঙ্ক = $(4\cos\frac{\pi}{2}, 4\sin\frac{\pi}{2})$ $[:: (r, \theta)$ এর কার্ত্তেসীয় স্থানাঙ্ক $(r \cos\theta, r \sin\theta)$] $= (4 \times \frac{1}{2}, 4 \times \frac{\sqrt{3}}{2}) = (2, 2\sqrt{3})$ এবং $(\sqrt{2}, -\frac{3\pi}{4})$ এর কার্ত্তেসীয় স্থানাজ্ঞ = $(\sqrt{2}\cos(-\frac{3\pi}{4}), \sqrt{2}\sin(-\frac{3\pi}{4}))$ $= (\sqrt{2}\cos\frac{3\pi}{4}, -\sqrt{2}\sin\frac{3\pi}{4})$ = $(\sqrt{2}\cos(\pi - \frac{\pi}{4}), -\sqrt{2}\sin(\pi - \frac{\pi}{4}))$

 $= (-\sqrt{2}\cos\frac{\pi}{4}, -\sqrt{2}\sin\frac{\pi}{4})$ $= (-\sqrt{2} \cdot \frac{1}{\sqrt{2}}, -\sqrt{2} \cdot \frac{1}{\sqrt{2}}) = (-1, -1)$ $x^{2} - y^{2} = a^{2}$ (ক পোলার সমীকরণে এবং r² 4 $\sin 2\Theta = 2a^2$ কে কার্তেসীয় সমীকরণে প্রকাশ কর । সমাধান :. $x^2 - y^2 = a^2$ \Rightarrow $(r \cos \theta)^2 - (r \sin \theta)^2 = a^2$ $[\because x = r \cos \Theta, y = r \sin \Theta]$ $\Rightarrow r^{2} (\cos^{2} \Theta - \sin^{2} \Theta) = a^{2}$ $r^2 \cos 2\theta = a^2$ (Ans.) -> এবং $r^2 \sin 2\Theta = 2a^2$ \Rightarrow r². 2 sin θ cos θ = 2a² \Rightarrow 2 (r cos Θ) (r sin Θ) = 2 a^2 $\Rightarrow 2 xy = 2a^2$ $xy = a^2$ (Ans.) 5. (nate (4, (3, 8), (8, 3) are (-2, 3) কিন্দুগুলি একটি সমদ্বিবাহু ত্রিভুজের শীর্ষকিন্দু। প্রমাণ ঃ মনে করি, প্রদন্ত বিন্দুত্রয় A(3 8) $B(8,3) \otimes C(-2,3).$ $AB = \sqrt{(3-8)^2 + (8-3)^2} = 5\sqrt{2}$ $BC = \sqrt{(8+2)^2 + (3-3)^2} = 10$ $CA = \sqrt{(-2-3)^2 + (3-8)^2} = 5\sqrt{2}$ AB, BC, CA এর যেকোন দুইটির সমষ্টি তৃতীয়টি অপেক্ষা বৃহত্তর এবং $AB = CA = 5\sqrt{2}$ প্রদন্ত বিন্দত্রয় একটি সমদ্বিবাহ ত্রিভুজের শীর্ষবিন্দ। 6. দেখাও যে, (4, 4), (5, 2) এবং (1, 0) কিন্দুগুলি একটি সমকোণী ত্রিভুজের শীর্ষকিন্দু এবং ত্রিভুচ্চটির ক্বেত্রফল নির্ণয় কর। প্রমাণ ঃ ধরি, প্রদন্ত বিন্দুত্রয় A(4, 4), B(5, 2) ও C(1,0). $AB = \sqrt{(4-5)^2 + (4-2)^2} = \sqrt{1+4} = \sqrt{5}$ BC = $\sqrt{(5-1)^2 + (2-0)^2} = \sqrt{16+4} = 2\sqrt{5}$

 $CA = \sqrt{(1-4)^2 + (0-4)^2} = \sqrt{9+16} = 5$ AB,BC,CA এর যেকোন দুইটির সমস্টি তৃতীয়টি অপেক্ষা বৃহত্তর বলে কিদুত্রয় একটি ত্রিতৃজ গঠন করে। আবার, $AB^2 + BC^2 = 5 + 20 = 25 = CA^2$ অতএব, প্রদন্ত কিদুত্রয় একটি সমকোণী ত্রিভুজের শীর্ষকিদু যার $\angle B = 90^0$.

২য় অংশ ঃ

ত্রিভুটির ক্ষেত্রফল =
$$\frac{1}{2}(AB \times BC)$$
 [:: $\angle B = 90^{\circ}$]
= $\frac{1}{2}(\sqrt{5} \times 2\sqrt{5}) = 5$ বর্গ

একক।

7. দেখাও যে, A (-3, 2), B (-7, -5), C(5, 4) এবং D(9, 11) বিন্দুগুলি একটি সামাম্ম্বরিকের শীর্ষবিন্দু।

প্রমাণ ঃ ABCD চতুর্ভুচ্ছে,

$$AB = \sqrt{(-3+7)^2 + (2+5)^2} = \sqrt{16+49} = \sqrt{65}$$

 $BC = \sqrt{(-7-5)^2 + (-5-4)^2} = \sqrt{144+81}$
 $= \sqrt{225} = 15$
 $CD = \sqrt{(5-9)^2 + (4-11)^2} = \sqrt{16+49} = \sqrt{65}$
 $DA = \sqrt{(9+3)^2 + (11-2)^2} = \sqrt{144+81} = 15$
এখানে AB = CD এবং BC = DA অর্থাৎ ABCD
চতুর্জুজের বিপরীত বাহুদ্বয় পারস্পর সমান।

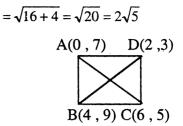
কিন্দু চারটি একটি সামান্তরিকের শীর্ষকিন্দু।

[বি.দ্র.: বর্গক্ষেত্র, আয়তক্ষেত্র ও রম্বস প্রত্যেকে সামান্দতরিক । সুতরাং , সামান্দতরিকের কর্ণদ্বয় সমান ও অসমান উতয়েই হতে পারে।]

8. দেখাও যে, (0, 7), (4, 9), (6, 5) এবং
 (2, 3) বিন্দুগুলি একটি বর্গের শীর্ষবিন্দু।

প্রমাণ ঃ ধরি, প্রদন্ত কিন্দু চারটি A(0, 7), B(4, 9), C (6, 5) ও D(2, 3).

 $AB = \sqrt{(0-4)^2 + (7-9)^2}$



BC = $\sqrt{(4-6)^2 + (9-5)^2} = \sqrt{4+16} = 2\sqrt{5}$ CD = $\sqrt{(6-2)^2 + (5-3)^2} = \sqrt{16+4} = 2\sqrt{5}$ DA = $\sqrt{(2-0)^2 + (3-7)^2} = \sqrt{4+16} = 2\sqrt{5}$ AC = $\sqrt{(0-6)^2 + (7-5)^2} = \sqrt{36+4} = 2\sqrt{10}$ BD = $\sqrt{(4-2)^2 + (9-3)^2} = \sqrt{4+36} = 2\sqrt{10}$ ABCD চতুর্ভুজের চারটি বাহু পারস্পর সমান অর্থাৎ AB = BC = CD = DA = $2\sqrt{5}$ এবং কর্পদ্বয় পরস্পর সমান অর্থাৎ AC = BD = $2\sqrt{10}$.

প্রদন্ত বিন্দুগুলি একটি বর্গের কৌনিক বিন্দু।

9. x-অক্ষের উপর অবস্থিত P কিন্দু থেকে (0, 2) একং (6, 4)এর দূরত্ব সমান। P এর স্থানাজ্ঞ নির্ণয় কর। সমাধান ঃ ধরি, P কিন্দুর স্থানাজ্ঞ (α , 0).

P কিন্দু থেকে (0, 2) এর দূরত্ব = $\sqrt{\alpha^2 + 4}$ এবং P কিন্দু থেকে (6, 4) এর দূরত্ব

$$= \sqrt{(\alpha - 6)^2 + 16}$$
 প্রশ্নমতে, $\sqrt{\alpha^2 + 4} = \sqrt{(\alpha - 6)^2 + 16}$

$$\Rightarrow \alpha^2 + 4 = \alpha^2 - 12\alpha + 36 + 16$$

$$\Rightarrow 12\alpha = 48 \Rightarrow \alpha = 4$$
P কিপুর স্থানাজ্ঞ (4, 0). (Ans.)

<u>প্রশ্নমালা III B</u>

1.(a) দেখাও যে, (2 – 2) এবং (– 1, 4) বিন্দুহেরের সংযোগ রেখাংশ অক্ষদন্য দারা সমান তিন ভাগে বিভক্ত হয়। [সি. '০৫, '১৩; ব. '০৭; মা'০৫]

প্রমাণ ঃ ধরি, প্রদন্ত কিন্দুদ্বয় A(2, - 2) ও B(- 1, 4) এবং *x*-অক্ষ AB রেখাংশকে P(α , 0) কিন্দুতে m 1 অনুপাতে অন্দতর্বিভক্ত করে।

বইঘর কম $0 = \frac{4m + 1 \times -2}{m + 1} \Longrightarrow 4m = 2 \Longrightarrow m = \frac{1}{2}$ অর্ধাৎ x-অক্ষ AB রেখাংশকে 1 2 অনুপাতে অস্তর্বিস্তব্ধ করে। আবার, ধরি y-জন্ষ AB রেখাংশকে $O(0, \beta)$ কিপুতে n : 1 অনুপাতে অস্তর্বিন্তব্রু করে। $0 = \frac{n \times -1 + 1 \times 2}{n + 1} \Longrightarrow n = 2 \Longrightarrow n : 1 = 2 : 1$ অর্ধাৎ y-অক্ষ AB রেখাংশকে 2 1 অনুপাতে অস্তর্বিভক্ত করে। :: AB রেখাংশ অক্ষদ্বয় দ্বারা সমান তিনভাগে বিভক্ত হয়। বিকল পন্দতি ধরি, প্রদন্ত কিন্দুছয় A(2, - 2) ও B(-1, 4) এবং x-আৰু ও y-আৰু AB রেখাংশকে যথাক্রমে $P(\alpha, 0)$ ও $Q(0, \beta)$ বিন্দুতে অন্তর্বিভক্ত করে। B(-1,4) $\frac{AP}{PB} = \frac{2-\alpha}{\alpha+1} = \frac{-2-0}{0-4} = \frac{1}{2}$ Q(0, β) Ρ(α,0) \Rightarrow 2AP = PB = PO + OB A(2,-2) \Rightarrow PO = 2AP - OB $\cdots \cdots (1)$ winding, $\frac{AQ}{QB} = \frac{2-0}{0+1} = \frac{-2-\beta}{\beta-4} \Rightarrow \frac{AQ}{QB} = \frac{2}{1}$ \Rightarrow AQ = 2QB \Rightarrow AP + PQ = 2 QB \Rightarrow AP + 2AP - OB = 2 OB [(1) $\forall i \exists i$] \Rightarrow 3 AP = 3 OB AP = OB $(1) \Rightarrow PO = 2AP - AP = AP$ $\therefore AP = PQ = QB$ ∴ AB রেখাশে অক্ষদন্ম দ্বারা সমান তিনভাগে বিভক্ত হয়। 1.(b) (7, 5) ও (-2, -1) বিপুন্ধরের সংযোগ রেখাদের সমত্রিখন্ডক কিন্দুর স্থানাচ্চ নির্ণয় কর। [ব. '০৫; রা. '০১, '১১] সমাধান : A(7, 5) P O B(-2, -1) ধরি, প্রদন্ত কিন্দুদয় A(7, 5) ও B(-2, -1) এবং P ও O সমত্রিখন্ডক বিন্দুদ্বয় AB রেখাংশকে যথাক্রমে 1 2 ও 2 : 1 অনুপাতে অম্তর্বিভক্ত করে। $P = (\frac{1 \times -2 + 2 \times 7}{1 + 2}, \frac{1 \times -1 + 2 \times 5}{1 + 2}) = (4, 3)$

 $Q = \left(\frac{2 \times -2 + 1 \times 7}{2 + 1}, \frac{2 \times -1 + 1 \times 5}{2 + 1}\right) = (1, 1)$ সমত্রিখন্ডক কিন্দুম্বয়ের স্থানাল্ফ (4, 3) ও (1, 1) 1.(c) (2,-4) ও (-3,6) কিপুন্ধয়ের সংযোগ রেখালেকে x-অক এবং y- অক যে যে অনুপাতে বিভব্ত করে তা [ঢা. '০৯; রা. '০৪, '০৮; য. '০২] নির্ণয় কর। সমাধান ঃ A(2, - 4) P B(-3, 6) ধরি, প্রদন্ত কিন্দুদ্বয় A(2, -4) ও B(-3, 6) এবং AB রেখাংশকে P কিন্দু k:1 অনুপাতে অন্তর্বিভক্ত করে। $\mathbf{P} \equiv (\frac{k \times -3 + 1 \times 2}{k+1}, \frac{k \times 6 + 1 \times -4}{k+1})$ এ কিন্দুটি x-অক্ষের উপর অবস্থিত হলে এর কোটি $\frac{6k-4}{k+1} = 0 \Longrightarrow 6k-4 = 0 \Longrightarrow k = \frac{2}{2}$ অধাৎ k: 1 = 2:3 আবার, এ কিন্দুটি ৮-অক্ষের উপর অবস্থিত হলে এর ভুজ $\frac{-3k+2}{k+1} = 0 \Longrightarrow -3k+2 = 0 \Longrightarrow k = \frac{2}{3}$ जया९ k: 1 = 2:3x ও y-অক্ষরেখা প্রদন্ত কিন্দুদ্বয়ের সংযোগ রেখাংশকে 2 : 3 এবং 2 : 3 অনুপাতে অম্তর্বিভক্ত করে। 1(d) (- 2 , 3) ও (4 , - 7) বিপুষয়ের সংযোগ রেখাশেকে x-অক্ষ এবং y- অক্ষ যে যে অনুগাতে বিভক্ত করে তা নির্ণয় কর। চি. '০৭: মা. '০৭] সমাধান ঃ প্রদন্ত (- 2, 3) ও (4, - 7) কিন্দু হয়ের সংযোগ রেখাংশকে k:1 অনুপাতে অম্তর্বিভক্তকারী বিন্দুটির স্থানাজ্ঞ = $\left(\frac{k \times 4 + 1 \times -2}{k+1}, \frac{k \times -7 + 1 \times 3}{k+1}\right)$ এ কিন্দুটি _X-অক্ষের উপর অবস্থিত হলে এর কোটি $\frac{-7k+3}{k+1} = 0 \Longrightarrow -7k+4 = 0 \Longrightarrow k = \frac{3}{7}$ অথাৎ k : 1 = 3 : 7 আবার, এ কিন্দুটি y-অক্ষের উপর অবস্থিত হলে এর ভুজ $\frac{4k-2}{k+1} = 0 \Longrightarrow 4k-2 = 0 \Longrightarrow k = \frac{1}{2}$ অধাৎ k : l = l : 2

x ও y-অক্ষরেখা প্রদন্ত বিন্দুদ্বয়ের সংযোগ রেখাংশকে যথাক্রমে 3 : 7 এবং 1 : 2 অনুপাতে অন্তর্বিভক্ত করে। 1(e) (2 , - 5) ও (2 , 3) কিপুন্বয়ের সংযোগ রেখাশেকে x-অক্ষ যে অনুপাতে বিভক্ত করে তা নির্ণয় কর। ছেদকিন্দুর স্থানাজ্ঞও নির্ণয় কর। যি.'০০] সমাধান ঃ প্রদন্ত (2, -5) ও (2, 3) কিন্দুদ্বয়ের সংযোগ রেখাংশকে k:1 অনুপাতে অশতর্বিভক্তকারী কিদ্যটির $\overline{x} = \left(\frac{k \times 2 + 1 \times 2}{k+1}, \frac{k \times 3 + 1 \times -5}{k+1}\right)$ এ কিন্দুটি <u>x</u>-অক্ষের উপর অবস্থিত হলে এর কোটি $\frac{3k-5}{k+1} = 0 \Longrightarrow 3k-5 = 0 \Longrightarrow k = \frac{5}{3}$ অর্ধাৎ k: 1 = 5 3 x-অক্ষরেখা প্রদন্ত কিন্দুদ্বয়ের সংযোগ রেখাংশকে 5:3 অনুপাতে অন্তর্বিভক্ত করে এবং কিন্দটির স্থানাজ্ঞ $=(\frac{2\cdot\frac{5}{3}+2}{\frac{5}{3}+1},0)=(\frac{10+6}{5+3},0)=(2,0)$ [MCQ এর ক্ষেত্রে , কিন্দু দুইটির সাধারন ভুজ 2 বলে কিন্দুদ্বয়ের সংযোগ রেখাংশকে x-অক্ষরেখা (2, 0) কিন্দুতে এবং $\frac{-5-0}{0-3} = \frac{5}{3}$ অনুপাতে অন্তর্বিভক্ত করে।]

1.(f) দেখাও যে, মূলকিন্থু (- 3, - 2) এবং (6, 4) কিন্দু দুইটির সংযোগ রেখাৎলের একটি সমত্রিখন্ডক কিন্দু। অপর সমত্রিখন্ডক কিন্দুর স্থানাচ্চ্ক নির্ণয় কর।

[সি. '০২, '০৮; কু. '০৩; ঢা. '০৬; চ. '০৮; য. '০৯, '১৩] সমাধান ঃ ধরি, প্রদন্ত কিন্দু দুইটি A(-3, - 2) ও B(6,4) এবং P ও Q সমত্রিখন্ডক কিন্দু দুইটি AB রেখাংশকে যথাক্রমে 1 2 ও 2 1 অনুপাতে অন্তর্বিতক্ত করে।

$$P = \left(\frac{1 \times 6 + 2 \times -3}{1 + 2}, \frac{1 \times 4 + 2 \times -2}{1 + 2}\right)$$
$$= \left(\frac{6 - 6}{3}, \frac{4 - 4}{3}\right) = (0, 0)$$
$$\square = \left(\frac{2 \times 6 + 1 \times -3}{2 + 1}, \frac{2 \times 4 + 1 \times -2}{2 + 1}\right)$$
$$= \left(\frac{12 - 3}{3}, \frac{8 - 2}{3}\right) = (3, 2)$$

অতত্রব, এূগবিন্দু প্রদন্ত বিন্দু দুইটির সংযোগ রেখাংশের একটি সমত্রিখন্ডক বিন্দু এবং অপর সমত্রিখন্ডক বিন্দুর স্থানাঙ্ক (3, 2).

1(g) AB সরলরেখাটি P(3,3) এবং Q(8,5) বিন্দু দুটি ঘারা সমত্রিখন্ডিত করা হয়, A, B এর স্থানাক্ত নির্ণন্ন কর। [ব.'১১] সমাধান ঃ

A(a, b) P(3,3) Q(8,5) C(c,d)

ধরি, A ও B এর স্থানাজ্ঞ যথাক্রমে (a,b) ও (c, d) তাহলে, P, AQ এর মধ্যবিন্দু |

 $\frac{a+8}{2} = 3 \Longrightarrow a = 6 - 8 = -2 \text{ arg}$ $\frac{b+5}{2} = 3 \Longrightarrow b = 6 - 5 = 1$

আবার, Q, PC এর মধ্যকিদু।

 $\frac{3+c}{2} = 8 \Longrightarrow c = 16 - 3 = 13 \text{ urr}$ $\frac{3+d}{2} = 5 \Longrightarrow d = 10 - 3 = 7$ A ও B এর স্থানাজ্ঞ যথাক্রমে (-2,1) ও (13,7)

2.(a) A ও B বিন্দুর স্থানাজ্ঞ ফ্যাব্রুমে (-2, 4) ও (4, - 5). AB রেখাংশকে C বিন্দু পর্যন্ত বর্ষিত করা হল যেন AB = 3BC হয়। C বিন্দুর স্থানাজ্ঞ নির্ণয় কর।

[कू.'ob; **ए**.'ss; **मि**'ss; **मि**'ss; **ता**.'so; **ता**.'so; **ए**.'ss] সমাধান ঃ A(-2, 4) धति, C दिग्पूत ज्यानाख्क (x, y). एमওয়া আছে, AB = 3BC $\Rightarrow \frac{AB}{BC} = \frac{3}{1}$ B বিশ্দু AC রেখাংশকে 3 1 অনুপাতে অশতর্বিতক্ত করে । B বিশ্দুর ज्यानाख्क = $(\frac{3x-2}{3+1}, \frac{3y+4}{3+1})$ প্রশ্নমতে, $\frac{3x-2}{4} = 4 \Rightarrow 3x - 2 = 16$ $\Rightarrow 3x = 18 \Rightarrow x = 6$ এবং $\frac{3y+4}{4} = -5 \Rightarrow 3y + 4 = -20$ $\Rightarrow 3y = -24 \Rightarrow y = -8$

উচ্চতর গণিত্র ১মুনু প্রত্রের সমাধান www.boighar.c C কিন্দুর স্থানাজ্ঞ্ব (6, -8) (Ans.) (2,7), (6,1) ও (x, y) শীর্ষবিশিষ্ট ত্রিভুজের ভরকেন্দ্র $(\frac{2+6+x}{3}, \frac{7+1+y}{3})$. দেওয়া আছে, $AB = 3BC \Rightarrow \frac{AB}{BC} = 3$ প্রশ্নতে, $\frac{2+6+x}{2} = 6 \Rightarrow x+8 = 18 \Rightarrow x = 10$ ধরি, C বিন্দুর স্থানাজ্ঞ্ব (x, y). $\operatorname{arg} \frac{7+1+y}{2} = 4 \Longrightarrow y + 8 = 12 \Longrightarrow y = 4$

 $\frac{AB}{BC} = \frac{-2-4}{4-x} = \frac{4+5}{-5-x} = 3$ $\frac{-6}{4} = 3 \Longrightarrow -6 = 12 - 3x \Longrightarrow x = 6 \text{ are}$ $\frac{9}{-5-y} = 3 \implies 9 = -15 - 3y \implies y = -8$ C কিন্দুর স্থানাজ্ঞ্ব (6, -8) (Ans.)

বিকল্প পদ্ধতি :

2(b) A(8, 10) ও B(18, 20) কিপুর সংযোগ রেখাংশকে Q ও R কিন্দুধয় 2 : 3 অনুপাতে যথান্ত্রমে অন্তর্বিভক্ত ও বহির্বিভক্ত করে এবং P কিন্দু AB এর মধ্যবিদ্। O ও R বিদ্যুর স্থানাজ্ঞ নির্ণয় কর এবং প্রমাণ কর যে, $PQ \times PR = PB^2$ [রা. '০০] 0,10,10,20

সমাধান 8 P =
$$(\frac{36+18}{2}, \frac{10+20}{2}) = (13, 15)$$

Q = $(\frac{36+24}{2+3}, \frac{40+30}{2+3}) = (\frac{60}{5}, \frac{70}{5}) = (12, 14)$
R = $(\frac{36-24}{2-3}, \frac{40-30}{2-3}) = (-12, -10)$

Q ও R কিন্দুর স্থানাজ্ঞ যথাক্রমে (12, 14) ও (-12, -10)এখন, PQ = $\sqrt{(13-12)^2 + (15-14)^2} = \sqrt{2}$ $PR = \sqrt{(13+12)^2 + (15+10)^2} = \sqrt{2 \times 25^2}$ $= 25\sqrt{2}$ $PB^{2} = (13 - 18)^{2} + (15 - 20)^{2} = 50$

 $PO \times PR = \sqrt{2} \times 25 \sqrt{2} = 50 = PB^{2}$

3. (a) একটি ত্রিভুদ্ধের দুইটি শীর্ষবিন্দু (2, 7) ও (6, 1) এবং এর ভরকেন্দ্র (6, 4); তৃতীয় শীর্ষ নির্ণয় কর। [সি. '08, '১২; মা.বো. '0৭; ব. '১০, '১২; চ. '১২] সমাধান ঃ ধরি, তৃতীয় শীর্ষের স্থানাজ্ঞ্ব (x, y).

বি.'০৬] সমাধান ঃ ধরি, তৃতীয় শীর্ষের স্থানাজ্ঞ্ব (x, y). (3,5), (7,-1) ও (x, y) শীর্ষবিশিষ্ট ত্রিভুজের ভরকেন্দ্র $(\frac{3+7+x}{2}, \frac{5-1+y}{2}).$ প্রশ্নমতে, $\frac{3+7+x}{2} = 7 \Rightarrow x + 10 = 21 \Rightarrow x = 11$ এবং $\frac{5-1+y}{3} = 2 \Rightarrow y+4 = 6 \Rightarrow y = 2$ তৃতীয় শীর্ষের স্থানাজ্ঞ্ব (11, 2).

3(b) একটি ত্রিভুজের দুইটি শীর্ষ (3, 5) ও (7, -1) এবং এর ভরকেন্দ্র (7,2) তৃতীয় শীর্ষ নির্ণয় কর।

তৃতীয় শীর্ষের স্থানাজ্ঞ্ব (10, 4).

শীর্ষকিদ্যর 3(c) একটি ত্রিভুচ্ছের স্থানাত্ত্ব $(at_1^2, 2at_1), (at_1^2, 2at_2)$ are $(at_3^2, 2at_3)$ যদি এর ভরকেন্দ্র x-অক্ষের উপর অবস্থিত হয়, তাহলে দেখাও যে, $t_1 + t_2 + t_3 = 0$ [সি.'oe; বৃ.'ou; য. '০১; মা. '০১]

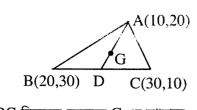
সমাধান ঃ ত্রিভুজটির ভারকেন্দ্রের স্থানাজ্ঞ

$$= \left(\frac{at_1^2 + at_2^2 + at_3^2}{3}, \frac{2a(t_1 + t_2 + t_3)}{3}\right)$$

এ কিন্দুটি *x*-অক্ষের উপর অবস্থিত বলে এর কোটি শূন্য।
$$\frac{2a(t_1 + t_2 + t_3)}{3} = 0$$

$$\implies t_1 + t_2 + t_3 = 0 \text{ (Showed)}$$

3(d) ABC ত্রিভুচ্ছের শীর্ষত্রয় A(10 20), B(20, 30) এবং C(30, 10). ABC ত্রিভুচ্ছের ভরকেন্দ্র G হলে GBC ত্রিভুজের GD মধ্যমার দৈর্ঘ্য [প্র.ভ.প.(প্রকৌশল ভর্তি পরীক্ষা)'০৪] নির্ণয় কর। সমাধান ঃ

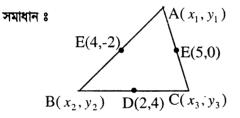


ABC ত্রিভুজের ভরকেন্দ্র G এর স্থানাজ্ঞ

$$= \left(\frac{10+20+30}{3}, \frac{20+30+10}{3}\right) = (20, 20)$$

BC এর মধ্যকিদ্ম D (25, 20)
GD = $\sqrt{(20-25)^2 + (20-20)^2}$ একক

3(e) ABC ত্রিভুজের BC, CA এবং AB এর মধ্যবিদ্দু যথারুমে (2, 4), (5, 0) এবং (4, -2)হলে A, B এবং C শীর্ষত্রয়ের স্থানাজ্ঞ নির্ণয় কর।



মনে করি, ABC ত্রিভুজের শীর্ষত্রয় $A(x_1, y_1)$ $B(x_2, y_2) \otimes C(x_3, y_3)$ এবং BC, CA \otimes AB এর মধ্যবিন্দু যথাক্রমে D(2, 4), E(5, 0) \otimes F(4,-2)

$$\frac{x_1 + x_2}{2} = 4 \implies x_1 + x_2 = 8$$
(1)

$$y_1 + y_2 = -4$$
(2), $x_2 + x_3 = 4 \cdots$ (3)

$$y_2 + y_3 = 8$$
(4), $x_3 + x_1 = 10 \cdots$ (5)
(5)

প্রশ্নমালা III C বইঘর.কম

 $\mathbf{C} = (2+5-4 \ 4+0+2) = (3, 6)]$

1. (a) ABC ত্রিভুচ্ছের শীর্ষত্রয় A(-3, -2), B(-3,9) এবং C(5, -8); ত্রিভুঞ্জটির ক্ষেত্রফল নির্ণয় কর এবং এর সাহায্যে B হতে CA এর উপর লম্বের দৈর্ঘ্য নির্ণয় কর। [কু.'০৪; য.'০৪,'১৩; চ.'০৮] সমাধান : A(-3, -2), B(-3, 9) এবং C(5, -8) বিন্দুত্রেয় দ্বারা গঠিত ত্রিভুজের ফ্ষেত্রফল

$$\Delta ABC = \frac{1}{2} | (-3)9 + (-3)(-8) + 5(-2) - (-2)(-3) - 9(5) - (-8)(-3)|$$

$$[\frac{1}{2} | x_1y_2 + x_2y_3 + x_3y_4 + x_4y_1 - y_1x_2 - y_2x_3 - y_3x_4 - y_4x_1 \quad \overline{2}\overline{a} \quad \overline{a}\overline{a}\overline{a}]$$

$$[A(-3, -2), B(-3, 9), C(5, -8)]$$

$$= \frac{1}{2} | -27 + 24 - 10 - 6 - 45 - 24 |$$

$$= \frac{1}{2} | -88 | = 44 \quad \overline{a}\overline{n} \quad a\overline{a}\overline{a}$$

$$[\overline{a}\overline{a}\overline{a} \quad \overline{a}\overline{a}\overline{a}]$$

$$\Delta ABC = \frac{1}{2} \begin{vmatrix} -3 & -3 & 5 & 3 \\ -2 & 9 & -8 & -2 \end{vmatrix} \\ = \frac{1}{2} \begin{vmatrix} -27 + 24 - 10 - (6 + 45 + 24) \end{vmatrix} \\ = \frac{1}{2} \begin{vmatrix} -13 - 75 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} -88 \end{vmatrix} = 44$$

ে ধান
সৈৰ্ঘ্য d একক।
$$\Delta ABC = \frac{1}{2} \times C^4 \times d$$

নন

উচ্চতর গণিত : ১ম পত্রের সমাধান বইঘব কম

 $\Rightarrow 88 = \sqrt{64 + 36} \times d \Rightarrow d = \frac{88}{10} = 8\frac{4}{5}$ B হতে CA এর উপর লম্বের দৈর্ঘ্য 8⁴ - একক। 1(b) ABC ত্রিভুজের শীর্ষবিন্দু A(5, 6), B(-9, 1) এবং C(-3, -1); ত্রিভুচ্চটির ক্ষেত্রফল নির্ণয় কর এবং এর সাহায্যে A হতে BC এর উপর লম্বের দৈর্ঘ্য নির্ণয় কর। [ण. '०৮; ठ. '১০; य. '०٩; फि.०৯. '১০] সমাধান ঃ $\Delta ABC = \frac{1}{2} \begin{vmatrix} 5 & -9 & -3 & 5 \\ 6 & 1 & -1 & 6 \end{vmatrix}$

$$= \frac{1}{2} | 5 + 9 - 18 - (-54 - 3 - 5) |$$

= $\frac{1}{2} | -4 + 62 | = \frac{1}{2} | -4 + 62 | = \frac{1}{2} (58)$
= 29

ত্রিভজটির ক্ষেত্রফল = 29 বর্গ একক।

২য় অংশ ঃ ধরি, A হতে BC এর উপর`লস্বের দৈর্ঘ্য d একক।

$$\Delta ABC = \frac{1}{2} \times BC \times d$$

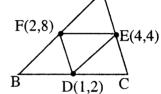
$$\Rightarrow 29 = \frac{1}{2} \times \sqrt{(-9+3)^2 + (1+1)^2} \times d$$

$$\Rightarrow 58 = \sqrt{36+4} \times d$$

$$\Rightarrow d = \frac{58}{2\sqrt{10}} = \frac{29\sqrt{10}}{10}$$

$$\therefore A \text{ হতে BC এর উপর লম্বের দৈর্ঘ্য $\frac{29\sqrt{10}}{10}$ একক।
1(c) দেখাও যে, (3, 5), (3, 8) এবং মুলবিন্দু একটি
বিভূজের শীর্ষব্রেয়। বিভূজেটির ক্ষেত্রফল নির্ণয় কর।[ক্.'০২]
সমাধান ঃ মনে করি, প্রদত্ত বিন্দু দুইটি A(3, 5) ও
B(3, 8) এবং মূলবিন্দু O(0, 0).
OA = $\sqrt{3^2 + 5^2} = \sqrt{9+25} = \sqrt{34}$
OB = $\sqrt{3^2 + 8^2} = \sqrt{9+64} = \sqrt{73}$
AB = $\sqrt{0^2 + 3^2} = \sqrt{9} = 3$
এখানে, OA + AB = $\sqrt{34} + 3 > \sqrt{73} = OB$$$

:. প্রদত্ত কিন্দু দুইটি এবং মূলকিন্দু একটি ত্রিভুজের শীর্ষনয । এখন, $\Delta ABO = \frac{1}{2} \begin{vmatrix} 3 & 3 & 0 & 3 \\ 5 & 8 & 0 & 5 \end{vmatrix}$ $= \frac{1}{2} |24 + 0 + 0 - (15 + 0 + 0)|$ $=\frac{1}{2}|24-15|=\frac{9}{2}=4\frac{1}{2}$ ত্রিতুজটির ক্ষেত্রফল 4 $rac{1}{2}$ বর্গ একক। 1(d)ABC ত্রিভুজের বাহুগুলির মধ্যবিন্দু (1,2), (4, 4) এবং (2,8); ত্রিভুঙ্গটির ক্ষেত্রফল নির্ণয় কর[প্র.ভ.প. '০১] সমাধান ঃ F(2,8) E(4,4)



ধরি, ABC ত্রিভুজের বাহগুলির মধ্যকিদ D(1, 2), E(4, 4) এবং F(2, 8). $\therefore \delta_{OEE} = (1-4)(4-8) - (2-4)(4-2)$ = 12 + 4 = 16 $\Delta DEF = \frac{1}{2} |16| = 8$ $\Delta ABC = 4 \times \Delta DEF = 4 \times 8 = 32$ ABC ত্রিভজের ক্ষেত্রফল 32 বর্গ একক। ABC ত্রিভুজের মধ্যমাগুলির মধ্যবিন্দু (1, 2), **1(e)** (4, 4) এবং (2, 8); ত্রিভুজটির ক্ষেত্রফল নির্ণয় কর। সমাধান : ধরি, ABC ত্রিভুজের মধ্যমাগুলির মধ্যবিন্দু P(1, 2), Q(4, 4) এবং R(2, 8). $\Delta PQR = \frac{1}{2} \begin{vmatrix} 1 & 4 & 2 & 1 \\ 2 & 4 & 8 & 2 \end{vmatrix}$ $=\frac{1}{2}|4+32+4-(8+8+8)|$

 $=\frac{1}{2}|40-24|$

 $=\frac{1}{2}|32|=16$ $\Delta ABC = 16 \times \Delta DEF = 16 \times 8 = 128$ ABC ত্রিভুজের ক্ষেত্রফল 128 বর্গ একক। 2. (a) কোন ত্রিভচ্চের শীর্ষত্রয়ের স্থানাজ্ঞ্ব (t + 1, 1). (2t + 1, 3), (2t + 2, 2t) । ত্রিভুঞ্জটির ক্ষেত্রফল নির্ণায় কর। দেখাও যে. t = 2 অথবা t = -1/2 হলে. কিন্দুগুলো সমরেখ হবে। [কু. '১০; রা. '১০; ব.'১০] সমাধান ঃ কিন্দুত্রয় দ্বারা গঠিত ত্রিভুজটির ক্ষেত্রফল $= \frac{1}{2} \begin{vmatrix} t+1 & 2t+1 & 2t+2 & t+1 \\ 1 & 3 & 2t & 1 \end{vmatrix}$ $6t + 6 + 2t^2 + 2t$ $= \frac{1}{2} |4t^2 + 7t + 5 - 2t^2 - 10t - 7|$ $= \frac{1}{2} |2t^2 - 3t - 2|$ বর্গ একক। t = 2 হলে, $2t^2 - 3t - 2 = 8 - 6 - 2 = 8 - 8 = 0$ এবং $t = -\frac{1}{2}$ হলে, $2t^2 - 3t - 2 = \frac{1}{2} + \frac{3}{2} - 2 = \frac{1+3-4}{2} = 0$ t = 2 বা $-\frac{1}{2}$ হলে কিন্দুগুলো সমরেখ হবে। 2(b) (a, b), (b, a) এবং $(\frac{1}{a}, \frac{1}{b})$ छिन्न किम्नूजुर [চ.'০২] সমরেখ হলে, দেখাও যে, a + b = 0. সমাধান ঃ যেহেতু কিন্দুগুলি সমরেখ, $\begin{vmatrix} a & b & 1/a & a \\ b & a & 1/b & b \end{vmatrix} = 0$ $\Rightarrow a^2 + 1 + \frac{b}{a} - (b^2 + 1 + \frac{a}{b}) = 0$ $\Rightarrow a^2 - b^2 + \frac{b}{a} - \frac{a}{b} = 0$ $\Rightarrow a^2 - b^2 + \frac{b^2 - a^2}{ab} = 0$

 $\Rightarrow (a^2 - b^2)(1 - \frac{1}{a^2}) = 0$ $\Rightarrow (a-b)(a+b)(ab-1) = 0$ এখানে a - b = 0 অর্থাৎ a = b হলে অথবা ab = 1হলে কিন্দু তিনটি ভিন্ন হয় না। a + b = 0 (Showed). 2(c) কোন ত্রিভুচ্ছের শীর্ষত্রয়ের স্থানাজ্ঞ্ব (2, -1) , (a + 1, a - 3), (a + 2, a) হলে এর ক্ষেত্রফল নির্ণায় কর এবং a এর মান কত হলে কিন্দুগুলি সমরেখ [রা.'১২: য.'১২:দি.'১৪] হবে ? সমাধান ঃ কিন্দুত্রয় দ্বারা গঠিত ত্রিভুজটির ক্ষেত্রফল $=\frac{1}{2}\begin{vmatrix} 2 & a+1 & a+2 & 2\\ -1 & a-3 & a & -1 \end{vmatrix}$ $=\frac{1}{2}|2a-6+a^2+a-a-2 (-a-1+a^2-a-6+2a)$ $=\frac{1}{2}|a^{2}+2a-8-a^{2}-7|$ $=\frac{1}{2}|2a-1|$ বর্গ একক। (Ans.) এখন কিন্দুগুলো সমরেখ হলে, $2a-1 \Longrightarrow a = \frac{1}{2}$ 3(a) 지면 A(3,4), B(2t,5) এবং C(6,t) কিন্দুত্রেয় দারা উৎপন্ন ত্রিন্ডুচ্ছের ক্ষেত্রফল 19 $rac{1}{2}$ বর্গ একক হয়, তবে t এর মান নির্ণয় কর। 15/2 [য.'০৩,'১৪; ঢা.'০৪; সি.'০৪; ব.'১৩; মা.'১৪] সমাধানঃ প্রদন্ত বিন্দুত্রয় দ্বারা গঠিত ত্রিভুজের ক্ষেত্রফল, $\frac{1}{2}\begin{vmatrix} 3 & 2t & 6 & 3 \\ 4 & 5 & t & 4 \end{vmatrix} = 19\frac{1}{2}$ $\Rightarrow \frac{1}{2}|15 + 2t^2 + 24 - (8t + 30 + 3t)| = \frac{39}{2}$ $\Rightarrow |2t^2 - 1|t + 9| = 39$ $\Rightarrow 2t^2 - 11t + 9 = \pm 39$ '+' চিহ্ন নিয়ে পাই, 2t² −11t + 9 − 39 = 0 $\Rightarrow 2t^2 - 11t - 30 = 0$ $\Rightarrow 2t^2 - 15t + 4t - 30 = 0$

এবং

জের ক্ষেত্ৰফল p বৰ্জিত হবে। [কু. '০৮; মা.বো. '০৪] প্রমাণ : প্রদত্ত কিন্দুত্রয়ের দ্বারা গঠিত ত্রিভূজের ক্ষেত্রফল,

$$= \frac{1}{2} \left[(p - p - 3)(p - p - 2) - (p - 2 - p)(p + 3 - p - 2) \right]$$

$$= \frac{1}{2} \left[(-3)(-2) - (-2) \cdot 1 \right]$$

$$= \frac{1}{2} \left[6 + 2 \right] = 4 \operatorname{eff} \operatorname{udp}, \operatorname{and}, \operatorname{and} \operatorname{and}, \operatorname{and} \operatorname{and}, \operatorname{and} \operatorname$$

3 (d) দুটি অক্ষরেখা পরস্পর লম্বভাবে O কিন্দুতে ছেদ করে। A এবং B এর ধনাত্রক স্থানাজ্ঞ যথাক্রমে (x_1, y_1) এবং (x_2, y_2) । মূল নিয়মে প্রমাণ কর যে, OAB ত্রিণ্ড্জের ক্ষেত্রফল $\frac{1}{2} |x_1y_2 - x_2y_1|$ বর্গ [য.'০৫ ; ঢা.'০৯; দি.'১২] একক। $A(x_1, y_1)$ প্রমাণ : $B(x_2,y_2)$ C

A ও B বিন্দু হতে x- অক্ষের উপর যথাক্রমে AC ও BD লম্ব আঁকি। তাহলে, OC = x_1 , OD = x_2 , $AC = y_1, BD = y_2$ এবং $CD = x_2 - x_1$, যখন $x_2 > x_1$ OAB ত্রিভুজের ক্ষেত্রফল $\triangle OAB$ হলে, △OAB = OAC ত্রিন্ডজের ক্ষেত্রফল + ট্রাপিজিয়াম ACDB এর ক্ষেত্রফল - OBD ত্রিভুজের ক্ষেত্রফল $= \frac{1}{2}(OC \times AC) + \frac{1}{2}(AC + BD) \times CD \frac{1}{2}(OD \times BD)$ $= \frac{1}{2} \{ x_1 y_1 + (y_1 + y_2)(x_2 - x_1) - x_2 y_2 \}$ $= \frac{1}{2} (x_1 y_1 + x_2 y_1 + x_2 y_2 - x_1 y_1 - x_1 y_2 -x_{2}, y_{2}$ $\Delta OAB = \frac{1}{2} (x_2 y_1 - x_1 y_2)$ এখন, $\triangle OAB$ ধনাত্মক হবে যখন $x_2 y_1 > x_1 y_2$ এবং ঋণাত্মক হবে যখন $x_2 y_1 < x_1 y_2$. কিন্তু ত্রিভুজের ক্ষেত্রফল ঋণাত্মক হতে পারে না ।

OAB ত্রিভুজের ক্ষেত্রফল $\frac{1}{2} |x_2 | y_1 - x_1 | y_2|$ বর্গ একক।

4. (a) একটি ত্রিভুচ্ছের শীর্ষত্রয় A(x, y), B(2, 4)এবং C(-3, 3) এবং এর ক্ষেত্রফল 9 বর্গ একক হলে,

দেখাও যে, x - 5y = 0 অথবা, x - 5y + 36 = 0. [রা.'১৩] প্রমাণ: ABC ত্রিভুজের ক্ষেত্রফল $= \frac{1}{2} \left| (x-2)(4-3) - (y-4)(2+3) \right|$ $=\frac{1}{2}|x-2-5y+20|$ $=\frac{1}{2}|x-y+18|$ বর্গ একক প্রশ্নমতে, $\frac{1}{2}|x-5y+18|=9$ $\Rightarrow x - 5y + 18 = \pm 18$ x-5y = 0 अथवा, x-5y + 36 = 0 (Showed) 4(b) একটি ত্রিভুচ্ছের শীর্ষত্রয় A(x, y), B(2, -4)ও C(- 3, 3) এবং এর ক্ষেত্রফল 9 বর্গ একক হলে, দেখাও যে, 7x + 5y + 24 0 অথবা, 7x + 5y - 12= 0. [र. '०७] প্রমাণ: ABC ত্রিভুজের ক্ষেত্রফল $= \frac{1}{2} \left[(x-2)(-4-3) - (y+4)(2+3) \right]$ $=\frac{1}{2}\left|-7x+14-5y-20\right|$ $=\frac{1}{2}|-7x-5y-6|$ বর্গ একক প্রশ্নমতে, $\frac{1}{2}|-7x-5y-6|=9$ \Rightarrow 7x + 5y + 6 = ± 18 7x + 5y + 24 = 0 অথবা, 7x + 5y - 12 = 05.(a) \triangle ABC এর A, B, C এর স্থানাজ্ঞ যথাব্রুমে (3, 5), (-3, 3), (-1,-1) এক BC, CA, AB এর মধ্যবিদ্দ D, E, F হলে, ত্রিভুচ্চ ABC এবং DEF এর ক্ষেত্রফল নির্ণয় কর। দেখাও যে, △ ABC $= 4. \Delta \text{ DEF}.$ বি.'০৫] সমাধান: $\Delta \, \mathrm{ABC}$ এর ক্ষেত্রফল

$$= \frac{1}{2} | (3+3)(3+1) - (5-3)(-3+1) |$$

 $= \frac{1}{2} |24 + 4| = \frac{1}{2} (28) = 14 \operatorname{drist} (একক)$ BC এর মধ্যবিন্দু D = $(\frac{-3-1}{2}, \frac{3-1}{2}) = (-2, 1)$ CA এর মধ্যবিন্দু E = $(\frac{-1+3}{2}, \frac{-1+5}{2}) = (1, 2)$ AB এর মধ্যবিন্দু F = $(\frac{3-3}{2}, \frac{5+3}{2}) = (0, 4)$ Δ DEF এর ক্ষেত্রফল $= \frac{1}{2} | (-2-1)(2-4) - (1-2)(1-0) |$ $= \frac{1}{2} | 6+1| = \frac{7}{2} \operatorname{drist} (3 \operatorname{drist})$ $\frac{\Delta ABC}{\Delta DEF} = \frac{14}{7/2} = 4$. Δ ABC = 4. Δ DEF 5(b) ABC ত্রিভুজের শীর্ষবিন্দু A, B, C এর স্থানাজ্ঞ থথারুমে (4, -3), (13, 0), (-2, 9) এবং D, E., F বিন্দু তিনটি ত্রিভুজের বাহুগুলোর উপর এমনভাবে অবস্থিত যেন, $\frac{BD}{DC} = \frac{CE}{EA} = \frac{AF}{FB} = 2$. ABC এবং

थन्त्राहा III C

 DC
 EA
 FB

 DEF
 ত্রিভূজ দুইটির ক্ষেত্রফল নির্ণন্ন কর এবং দেখাও যে, এদের আনুপাত 3 : 1.
 রো.'০২]

 সমাধান ঃ প্রদত্ত বিন্দু
 A(4, -3), B (13, 0) এবং

C
$$(-2, 9)$$
 এর নিশ্চায়ক,
 $\delta_{ABC} = (4-13)(0-9) - (-3-0)(13+2)$
 $= 81 + 45 = 126$
 $\Delta ABC = \frac{1}{2} | 126 | ব্ব্গ একক = 63 ব্ব্গ একক$
প্রশ্নমতে, $\frac{BD}{DC} = \frac{2}{1} \Rightarrow BD:DC = 2:1$
তন্ত্রপ CE : EA = 2:1, AF : FB = 2:1
 $D = (\frac{2 \times -2 + 1 \times 13}{2+1}, \frac{2 \times 9 + 1 \times 0}{2+1})$
 $= (\frac{-4+13}{3}, \frac{18}{3}) = (3, 6)$
E $= (\frac{2 \times 4 + 1 \times -2}{2+1}, \frac{2 \times -3 + 1 \times 9}{2+1})$
 $= (\frac{8-2}{3}, \frac{-6+9}{3}) = (2, 1)$

উচ্চতর গণিত: ১ম পত্রের সমাধান বহুঘর কম

 $F = \left(\frac{2 \times 13 + 1 \times 4}{2 + 1}, \frac{2 \times 0 + 1 \times -3}{2 + 1}\right)$ $=(\frac{26+4}{3},\frac{-3}{3})=(10,-1)$ $\delta_{\text{DFF}} = (3-2)(1+1) - (6-1)(2-10)$ = 2 + 40 = 42 $\Delta \text{DEF} = \frac{1}{2} |42|$ বর্গ একক = 21 বর্গ একক **থি**তীয় অংশ $\Delta ABC : \Delta DEF = 63 \quad 21 = 3 \quad 1$ 5(c) ABC ত্রিভুচ্চে A, B, C শীর্ষ তিনটির স্থানাজ্ঞ যথাক্রমে (-1, 2), (2, 3) ও (3, -4); P বিন্দুর স্থানাজ্ঞ (x, y) হলে, দেখাও যে, $\frac{\Delta PAB}{\Delta ABC} = \frac{|x - 3y + 7|}{22}$ [ৰু.'০৭] প্রমাণ: $\delta_{PAB} = (x+1)(2-3) - (y-2)(-1-2)$ = -x - 1 + 3y - 6 = -x + 3y - 7 $\Delta PAB = \frac{1}{2} |-x + 3y - 7|$ বর্গ একক $=\frac{1}{2}|x-3y+7|$ বর্গ একক $\delta_{ABC} = (-1-2)(3+4) - (2-3)(2-3)$ = -21 - 1 = -22 $\Delta PAB = \frac{1}{2} |-22|$ বর্গ একক = 11 বর্গ একক $\frac{\Delta PAB}{\Delta ABC} = \frac{|x - 3y + 7|}{22}$ 6.(a) ABCD রমসের তিনটি শীর্ষবিন্দু A(2, 5),

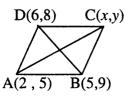
B(5,9) এবং D(6,8).

I. ABD ত্রিভুজের ক্ষেত্রফল নির্ণয় কর।

II. চতুর্থ শীর্ষ C এর স্থানাঙ্ক নির্ণয় কর। রম্বসটির ক্ষেত্রফল নির্ণয় কর। [ঢা.'০৫,' ১০; সি.'০৯; ব.'০৯]

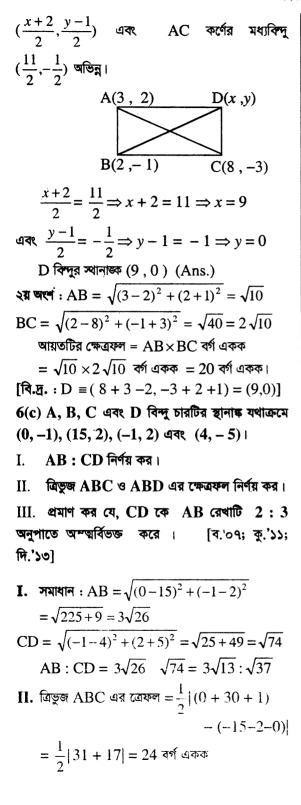
III. প্রমাণ কর যে, রম্বসটির বহু চারটি সমান ।

সমাধান : I.



ABD ত্রিভূজের ক্ষেত্রফল = $\frac{1}{2}$ | (2 - 5)(9 - 8) - $(5-9)(5-6) = \frac{1}{2} \{ (-3)(1) - (-4)(-1) \}$ $=\frac{1}{2}|-3-4|=\frac{1}{2}|-7|=\frac{7}{2}$ दर्श अकक। II. ধরি, C কিন্দুর স্থানাজ্ঞ্ব (x, y). ABCD একটি রম্বস বলে AC কর্ণের মধ্যক্ষি $(\frac{x+2}{2}, \frac{y+5}{2})$ এবং BD কর্ণের মধ্যবিন্দু $(\frac{11}{2}, \frac{17}{2})$ অভিন্ন। $\frac{x+2}{2} = \frac{11}{2} \Rightarrow x+2 = 11 \Rightarrow x = 9$ $a = \frac{y+5}{2} = \frac{17}{2} \Rightarrow y+5 = 17 \Rightarrow y = 12$ C কিন্দুর স্থানাজ্ঞ (9, 12). ২য় অংশ : AC = $\sqrt{(2-9)^2 + (5-12)^2} = 7\sqrt{2}$ BD = $\sqrt{(5-6)^2 + (9-8)^2} = \sqrt{2}$ রম্বসটির ক্ষেত্রফল = $\frac{1}{2}$ (AC×BD) বর্গ একক $=\frac{1}{2}(7\sqrt{2} \times \sqrt{2})$ বর্গ একক = 7 বর্গ একক। [ति.म.: C ≡ (6+5-2, 9+8-5) = (9,12)] III. AB = $\sqrt{(2-5)^2 + (5-9)^2} = \sqrt{9+16} = 5$ BC = $\sqrt{(5-9)^2 + (9-12)^2} = \sqrt{16+9} = 5$ $CD = \sqrt{(9-6)^2 + (12-8)^2} = \sqrt{9+16} = 5$ $DA = \sqrt{(6-2)^2 + (8-5)^2} = \sqrt{16+9} = 5$ রম্বসটির বহু চারটি সমান ।

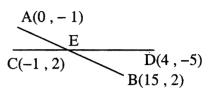
6(b) ABCD আয়তের তিনটি শীর্থবিন্দু A(3, 2), B(2, -1), C(8, -3) হলে, চত্র্থ শীর্ষ D এর স্থানাজ্ঞ নির্ণয় কর। আয়তটির ক্ষেত্রফল নির্ণয় কর। [ব.'০২; ঢা.'০৩; চ.'০৬] সমাধান ধরি, D কিন্দুর স্থানাজ্ঞ (x, y). ABCD একটি আয়তক্ষেত্র বলে BD কর্ণের মধ্যবিন্দ



ত্রিভুজ ABD এর ত্রেফল =
$$\frac{1}{2} |(0 - 75 - 4) - (-15 + 8 + 0)|$$

= $\frac{1}{2} |-79 + 7| = 36$ বর্গ একক।

III. প্রমাণ:



ধরি, CD রেখাংশকে AB রেখাটি k 1 অনুপাতে E কিদ্যতে অন্তর্বিভক্ত করে।

E কিন্দুর স্থানাজ্ঞ্র্ক =
$$(\frac{4k-1}{k+1}, \frac{-5k+2}{k+1})$$

এখন A, E, B কিন্দু তিনটি সমরেখ বলে তাদের
নিশ্চায়ক, $\delta_{AEB} = 0$
 $\therefore 0 \times \frac{-5k+2}{k+1} + \frac{4k-1}{k+1} \times 2+15 \times -1 -$
 $(-1 \times \frac{4k-1}{k+1} + \frac{-5k+2}{k+1} \times 15 + 2 \times 0) = 0$
 $\Rightarrow \frac{8k-2}{k+1} - 15 - \frac{-4k+1-75k+30}{k+1} = 0$
 $\Rightarrow 8k - 2 - 15k - 15 + 79k - 31 = 0$
 $\Rightarrow 72k - 48 = 0 \Rightarrow k = \frac{2}{3}$ অর্থাৎ k: $1 = 2:3$
CD রেখাংশকে AB রেখাটি 2 3 অনুপাতে
অন্দতর্বিতক্ত করে।
বিকল্প পন্ধিতি :
 $\delta_{ABC} = (0 - 15)(2 - 2) - (-1 - 2)(15 + 1)$

$$= 0 + 48 = 48$$

$$\delta_{ABD} = (0 - 15)(2 + 5) - (-1 - 2)(15 - 4)$$

$$= -105 + 33 = -72$$

$$\frac{\delta_{ABC}}{\delta_{ABd}} = \frac{48}{-72} = -\frac{2}{3} < 0$$

C ও D , AB এর বিপরীত পাশে অবস্থিত। অতএব CD কে AB রেখাটি 2 3 অনুপাতে অন্তর্বিভক্ত করে। $6(d) \ A \ , \ B \ , \ C \$ এবং $\ D \$ বিন্দু চারটির স্থানাজ্ঞ যথাক্রমে (3, 1), (1,0), (5, 1) এবং (-10, -4)

CD সরলরেখা AB রেখাংশকে বহিঃস্থভাবে যে অনুপাতে বিভক্ত করে তা নির্ণয় কর। 5.'02 সমাধান ঃ

$$\delta_{CDA} = (5+10)(-4-1) - (1+4)(-10-3)$$

= - 75 + 65 = - 10
 $\delta_{CDB} = (5+10)(-4-0) - (1+4)(-10-1)$
= - 60 + 55 = - 5
 $\frac{\delta_{CDA}}{\delta_{CDB}} = \frac{-10}{-5} = \frac{2}{1} > 0$
C ও D, AB এর একই পাশে অবস্থিত এবং AB

কে CD রেখাটি 2 1 অনুপাতে বহির্বিভক্ত করে।

6(e) ABCD চতুর্ভুঞ্জের A, B, C, D শীর্ষ চারটির স্থানাজ্ঞ মথাক্রমে (1, 2), (-5, 6), (7, -4)এবং (k, -2); এর ক্ষেত্রফল শূন্য হলে k এর মান নির্ণয় কর। য. '০২: সি. '০৮]

সমাধান : ABCD চতুর্ভুজের ক্ষেত্রফল

$$= \frac{1}{2} \begin{vmatrix} 1 & -5 & 7 & k & 1 \\ 2 & 6 & -4 & -2 & 2 \end{vmatrix}$$
 বর্গ একক
$$= \frac{1}{2} |(6 + 20 - 14 + 2k) - (-10 + 42 - 4k - 2)|$$
বর্গ একক
$$= \frac{1}{2} |12 + 2k - 30 + 4k|$$
 বর্গ একক

=
$$\frac{1}{2}$$
| 6k - 18| বর্গ একক
প্রশ্নমতে, $\frac{1}{2}$ | 6k - 18| = 0 ⇒ 6k - 18 = 0
k = 3 (Ans.)

প্রশ্নমালা III D

1. (a) A(2, 3) এবং B(-1, 4) দুইটি স্থির কিন্দু । A এবং B বিন্দু হতে একটি সেটের যেকোন বিন্দুর দুরত্বের অনুপাত 2:3 হলে সঞ্চার পর্ৎটির সমীকরণ নির্ণয় কর।

[চ.'১১; রা.'০৭; দি.'১১; ব.'১২; চা.', কু.,য.'১৪] সমাধান : মনে করি, P(x = y) কিন্দুটি সঞ্চার পথে উপর যেকোন একটি কিন্দু ।

PA =
$$\sqrt{(x-2)^2 + (...3)^2}$$
PB = $\sqrt{(x+1)^2 + (y-4)^2}$ अम्माराज, PA : PB = 2 $3 \Rightarrow \frac{PA}{PB} = \frac{2}{3}$ $\Rightarrow 9 PA^2 = 4 PB^2$ $\Rightarrow 9 \{(x-2)^2 + (y-3)^2\}$ $= 4 (x+1)^2 + (y-4)^2\}$ $\Rightarrow 9(x^2 - 4x + 4 + y^2 - 6y + 9)$ $= 4 (x^2 + 2x + 1 + y^2 - 8y + 16)$ $\Rightarrow 9x^2 - 36x + 9y^2 - 54y + 117$ $= 4x^2 + 4y^2 + 8x - 32y + 68$ $\Rightarrow 5x^2 + 5y^2 - 44x - 22y + 49 = 0$, ইহাই $\Rightarrow 5x^2 + 5y^2 - 44x - 22y + 49 = 0$, ইহাই $xatian area facta xhi area in1(b) একটি বিভেজের শীর্ষত্রায় A(x, y), B(-6, -3)এবং C(6, 3). A বিদ্দুটি একটি সেটের সদস্য বে!Crubba cuchen বিদ্দু হতe BC এর উপর অভিকতমধ্যমার দৈর্ঘ্য 5 একক। $xutina in area x^2 + y^2 = 25$ $(5 - 3)$ সাধান : BC এর মধ্যবিদ্দু D (ধরি) এর স্থানাজক = $(\frac{-6+6}{2}, \frac{-3+3}{2}) = (0, 0)$ AD মধ্যমার দৈর্ঘ্য 5 একক। $\sqrt{x^2 + y^2} = 5$ $\Rightarrow x^2 + y^2 = 25$ (Showed)1(c) A(0, 4) % B(0, 6) নুইটি মিথ্র বিদ্দু কার্তেসীন্টসাধান : মনে করি, P(x y) বিদ্দুটি সঞ্জার পথেরসাধান : মনে করি, P(x y) বিদ্দুটি সঞ্জার পথেরউপর যেকোন একটি বিদ্দু । $PA^2 = (x-0)^2 + (y-4)^2$ $= x - 8y = 16$$

x = 0

 $= x^{2} + y^{2} - 12y + 36$

90

 $AB^{2} = (0-0)^{2} + (4-6)^{2} = 4$ প্রশ্নমতে, P এর সাথে AB রেখাংশ এক সমকোণ উৎপন্ন করে। $PA^2 + PB^2 = AB^2$ $\Rightarrow x^{2} + y^{2} - 8y + 16 + x^{2} + y^{2} -$ 12v + 36 = 4 $\Rightarrow 2(x^2 + y^2) - 20y + 48 = 0$ $\therefore x^2 + y^2 - 10y + 24 = 0$, ইহাই সঞ্চার পথের নির্ণেয় সমীকরণ। 1(d) A(a, b) ও B(0, b) কিন্দু দুইটির সাথে একটি বিন্দু-সেটের যেকোন উপাদান একটি সমকোণী ত্রিভুচ্চ উৎপন্ন করে। এ সেটটি দ্বারা সৃষ্ট সঞ্চারপথের সমীকরণ নির্ণয় কর। [য. '08, '১০; রা. '১২] সমাধান : মনে করি, P(x = v) কিন্দুটি সঞ্চার পথের উপর যেকোন একটি কিন্দু $PA^{2} = (x-a)^{2} + (y-b)^{2}$ = ² - 2 a x + \dot{a}^{2} + y^{2} - 2by + b^{2} $PB^{2} = (x-0)^{2} + (y-b)^{2}$ $=x^{2}+y^{2}-2b+b^{2}$ $AB^{2} = |a - 0|^{2} = a^{2}$ প্রশ্নমতে, P এর সাথে AB রেখাংশ এক সমকোণ উৎপন্ $\overline{\Phi(A)} = PA^2 + PB^2 = AB^2$ $\Rightarrow x - 2ax + a^2 + y^2 - 2by + b^2 +$ $x^{2} + y^{2} - 2by + b^{2} = a^{2}$ $\Rightarrow 2(x^2 + y^2) - 2ax - 4by + 2b^2 = 0$ $x^{2} + y^{2} - ax - 2by + b^{2} = 0$, ইহাই সঞ্চার পথের নির্ণেয় সমীকরণ। 1(e) একটি কিন্দু-সেটের যেকোন উপাদান (2, -1) বিন্দু থেকে সর্বদা 4 একক দুরত্বে অবস্থান করে। ঐ সেটটি দ্বারা সৃষ্ট সঞ্চারপথের সমীকরণ নির্ণয় কর। [কু. '১২]

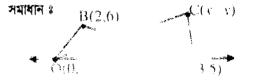
সমাধান ঃ ধরি, প্রদৃত্ত কিন্দুটি A(2,-1) এবং P(x,y) কিন্দুটি সংহার পথের উপর যেকোন একটি কিন্দু ।

$$PA = \sqrt{(x-2)^2 + (y+1)^2}$$

Strates, $\sqrt{(-2)^2 + (\gamma - 1)^2} = [4]$

2. (a) v-অক্ষ হতে একটি কিন্দু-সেটের যেকোন উপাদানের দুরত্ব মুলবিন্দু হতে তার দুরত্বের অর্ধেক। ঐ সেটটি দ্বারা সৃষ্ট সঞ্চারপথের সমীকরণ নির্ণয় কর : [প.ড.প. '08; কু. '১২] সমাধান ঃ মনে করি, $P(x \ y)$ কিন্দুটি সঞ্চার পথের উপর যেকোন একটি কিন্দু । y-অক্ষ হতে $P(x \ y)$ বিন্দুর দূরত্ব = |x| একক এবং মূলকিন্দু (0,0) হতে P(x, y) কিন্দুর দূরত্ব $=\sqrt{x^2 + y^2}$ upper প্রশ্নতে, $|x| = \frac{1}{2} \sqrt{x^2 + y^-} \Longrightarrow 4 |x|^2 = x^2 + y^2$ $\Rightarrow 4x^2 = x^2 + y^2$ $y^2 = 3x$ ইহাই সংখ্যার পথের নির্ণেয় সমীকরণ 2(b) (2, 0) কিন্দু হতে একটি কিন্দু-সেটের যেকোন উপাদানের দূরত্ব x = 0 রেখা হতে তার দূরত্বের তিনগুণ। ঐ সেটটি দ্বারা সুশ্ট সঞ্চারপথের সমীকরণ নির্ণয় কর। রা '০৯] সমাধান ঃ মনে করি, P(x = y) কিন্দুটি সঞ্চার পথের উপর যেকোন একটি কিন্দু। x = 0 রেখা অর্থাৎ y-অক্ষ হতে P(x, y) কিন্দুর দূরত্ব = |x| একক এবং (2,0) বিন্দু হতে P(x, v)কিন্দুর দূরত্ = $\sqrt{(x-2)^2 + y^2}$ একক প্রমতে, $3|x| = \sqrt{(x-2)^2 + y^2}$ $\Rightarrow 9|x|^2 = x - 4x + 4 + y^2$ \Rightarrow 9x² = x² - 4x + 4 + y² $y^2 - 8x^2 - 4x + 4 = 0$ ইহাই সঞ্চার পথের নির্ণেয় সমীকরণ।

2 (c) B(2, 6) ও C(x, y) কিন্দু দুইটি O(0, 0) ও A(3, 5) কিন্দু বেয়ের সংযোগ সরলরেখার একই পার্শ্বে অবস্থিত।C(x, y) কিন্দুটি এমন একটি কিন্দু-সেটের সদস্য যার প্রতিটি কিন্দু র জন্য Δ OAC = $2 \wedge$ OAB. ঐ সেটটি ধারা সৃষ্ট সঞ্চারপথের সমীকরণ নির্ণয় বর।



$$\begin{split} \delta_{OAB} &= (0-3)(5-6) - (0-5)(3-2) \\ &= 3+5=8 \\ \delta_{OAC} &= (0-3)(5-y) - (0-5)(3-x) \\ &= -15+3y+15-5x=3y-5x \\ \text{agings}, \ \Delta OAC &= 2\Delta OAB \\ &\Rightarrow \frac{1}{2} |\delta_{OAC}| &= 2. \frac{1}{2} |\delta_{OAB}| \\ &\Rightarrow |\delta_{OAC}| &= 2. |\delta_{OAB}| \end{split}$$

B ও C কিন্দু দুইটি O ও A কিন্দুদ্বয়ের সংযোগ সরলরেখার একই পার্শ্বে অবস্থিত বলে δ_{OAB} ও δ_{OAC} একই চিহ্নযুক্ত হবে।

 $\delta_{OAC} = 2 \cdot \delta_{OAB} \Rightarrow 3y - 5x = 2 \times 8$ ∴ 5x - 3y + 16 = 0, ইহাই সঞ্চার পথের নির্ণেয় সমীকরণ।

2(d) C(2, -1) ও D(x, y) কিন্দু দুইটি A(1, 1) ও B(4, -2) কিন্দু দেয়ের সংযোগ সরলরেখার বিপরীত পার্শ্বে অবস্থিত। D(x, y) কিন্দুটি এমন একটি কিন্দু-সেটের সদস্য যার প্রতিটি কিন্দুর জন্য $\triangle ABD =$ 3. $\triangle ABC$. ঐ সেটটি দ্বারা সৃষ্ট সঞ্চারপথের সমীকরণ নির্ণিয় কর।

সমাধান $\delta_{ABC} = (1-4)(-2+1)-(1+2)(4-2)$ = 3 - 6 = - 3 $\delta_{ABD} = (1-4)(-2-y) - (1+2)(4-x)$ = 6 + 3y - 12 + 3x = 3x + 3y - 6 প্রমানত, $\Delta ABD = 3, \Delta ABC$

 $\Rightarrow \frac{1}{2} |\delta_{ABD}| = 3. \frac{1}{2} |\delta_{ABC}|$ $\Rightarrow |\delta_{ABD}| = 3. |\delta_{ABC}|$ $C \ \Im \ D \ \operatorname{freg} \ \operatorname{pzlb} A \ \Im \ B \ \operatorname{fregenerative} 3 \ \operatorname{securit}$ সরলরেখার বিপরীত পার্শ্বে অবস্থিত বলে $\delta_{ABD} \ \Im \ \delta_{ABC}$ বিপরীত চিহুযুক্ত হবে।

 $\delta_{ABD} = -3 \cdot \delta_{ABC}$ $\Rightarrow 3x + 3y - 6 = -3(-3) = 9$ $\Rightarrow 3x + 3y = 15$ x + y = 5 ইহাই সঞ্চার পথের নির্ণেয় সমীকরণ।

 $3(a) \ k$ এর যেকোন মানের জন্য P কিন্দুর স্থানাজ্ঞ $(2ak, ak^2)$. P কিন্দুর সঞ্চারপথের সমীকরণ নির্ণায় কর। সমাধান ৪ ধরি, P কিন্দুর কার্তেসীয় স্থানাজ্ঞ্ব (x, y).

$$2ak = x \Longrightarrow k = \frac{x}{2a} \quad \text{এবং}$$

$$ak^{2} = y \Longrightarrow a(\frac{x}{2a})^{2} = y \quad [k = \frac{x}{2a}]$$

$$\Rightarrow a \frac{x^{2}}{4a^{2}} = y$$

$$x^{2} = 4ay, \text{ যা নির্ধেয় সঞ্চারপথের সমীকরণ }$$

3(b) Θ পরিবর্তনশীল হলে, P(1 + 2 cos Θ , -2 + 2 sin Θ) বিন্দুর সঞ্চারপথের সমীকরণ নির্ণয় কর। সমাধান ঃ ধরি, P বিন্দুর কার্তেসীয় স্থানাঙ্ক (x, y).

 $1 + 2\cos \theta = x \Longrightarrow 2\cos \theta = x - 1$ এবং $-2 + 2\sin \theta = y \Longrightarrow 2\sin \theta = y + 2$ $(x - 1)^{2} + (y + 2)^{2} = 4 (\cos^{2}\theta + \sin^{2}\theta)$ $\Rightarrow (x - 1)^{2} + (y + 2)^{2} = 4,$ যা নির্ণেয় সঞ্চারপথের সমীকরণ।

অতিরিক্ত প্রশ্ন (সমাধানসহ)

1. দেখাও যে, (a, a) (-a, -a) এবং $(-a\sqrt{3}, a\sqrt{3})$ কিন্দুগুলি একটি সমবাহু ত্রিভুজের শীর্ষবিন্দু। প্রমাণ ঃ মনে করি, প্রদত্ত কিন্দুত্রয় A(a a)

$$B(-a, -a) \, \mathfrak{sR} \, C(-a\sqrt{3}, a\sqrt{3})$$

$$AB = \sqrt{(a - a)^2 + (a + a)^2} = \sqrt{8a^2}$$

$$BC = \sqrt{(-a + a\sqrt{3})^2 + (-a - a\sqrt{3})^2}$$

$$= \sqrt{2\{(-a)^2 + (a\sqrt{3})^2\}}$$

$$= \sqrt{2(a^2 + 3a^2)} = \sqrt{8a^2}$$

$$CA = \sqrt{(-a\sqrt{3} - a)^2 + (\sqrt{3}a - a)^2}$$

$$= \sqrt{2\{(-a)^2 + (a\sqrt{3})^2\}}$$

$$= \sqrt{2(a^2 + 3a^2)} = \sqrt{8a^2}$$

AB,BC, CA এর যেকোন দুইটির সমষ্টি তৃতীয়টি অপেক্ষা বৃহত্তর এবং AB = CA = CA = $\sqrt{8a^2}$ প্রদন্ত কিন্দুত্রয় একটি সমবাহু ত্রিতুজের শীর্ষকিন্দু।

A ও B কিন্দুর স্থানাজ্ঞ যথাক্রমে (- 5, 4) ও 2. (3, - 2). AB কে C পর্যন্ত বর্ধিত করা হল যেন 3AB = 2BC হয়। C কিন্দুর স্থানাজ্ঞ নির্ণয় কর। সমাধান ঃ A(-5, 4) = B(3, -2)C(x,y)দেওয়া আছে, $3AB = 2BC \implies \frac{AB}{BC} = \frac{2}{3}$ ধরি, C কিন্দুর স্থানাজ্ঞ (x, y). $\frac{AB}{BC} = \frac{-5-3}{3-x} = \frac{4+2}{-2-x} = \frac{2}{3}$ $\frac{-8}{3-x} = \frac{2}{3} \Longrightarrow -24 = 6 - 2x$ $\Rightarrow 2x = 30 \Rightarrow x = 15$ are $\frac{6}{-2-y} = \frac{2}{3} \implies 18 = -4 - 2y$ $\Rightarrow 2y = -22 \Rightarrow y = -11$ C কিন্দুর স্থানাজ্ঞ্ব (15, -11) (Ans.) 3. যদি A(-4, 6), B(-1, -2) এবং C(a - 2) বিন্দুত্রয় দারা উৎপন্ন ত্রিভুচ্ছের ক্ষেত্রফল 16 বর্গ একক হয়, তবে 'a' এর মান এবং A হতে BC এর লম্ব দুরত্ব নির্ণয় কর । [প্র.ভ.প. '৯৫] সমাধান ঃ $\delta_{ABC} = (-4+1)(-2+2) - -$ (6+2)(-1-a) = 8(a+1) $\Delta \text{ ABC}$ এর ক্ষেত্রফল $=\frac{1}{2}|\delta_{ABC}|$ বর্গ একক $=\frac{1}{2}|8(a+1)|$ বর্গ একক প্রশ্নমতে $\frac{1}{2}|8(a+1)| = 16 \implies |a+1| = 4$ \Rightarrow a + 1 = ±4 \Rightarrow a = 3 ज्वथवा, a = -5

a এর মান 3 বা, -5২য় জংশ: A হতে BC এর লম্ব দূরত্ব d একক হলে Δ ABC এর ক্ষেত্রফল $=\frac{1}{2}$ (BC×d) = 16 $\Rightarrow |-1-a| × d = 32$ $\Rightarrow 4d = 32$ [a = 3 বা, -5 বসিয়ে] A হতে BC এর লম্ব দূরত্ব 8 একক। 4(a) দেখাও যে, (3 , 90°) ও (3 , 30°) কিন্দু দুইটি মূলবিন্দুর সাথে একটি সমবাহু ত্রিভুচ্জ উৎপন্ন করে। ত্রিভুচ্জটির ক্ষেত্রফল নির্ণয় কর।

সমাধান : (3, 90°) ও (3 30°) এর কার্তেসীয় স্থানাজ্ঞ যথাক্রমে (3 cos90°, 3 sin 90°) = (0,3) ও (3 cos 30°, 3 sin 30°) = $(\frac{3\sqrt{3}}{2}, \frac{3}{2})$. ধরি, প্রদন্ত কিন্দু দুইটি A(0,1) ও B $(\frac{3\sqrt{3}}{2}, \frac{3}{2})$ এবং মূলকিন্দু O(0,0). OA = $\sqrt{0+3^2} = 3$, OB = $\sqrt{(\frac{3\sqrt{3}}{2})^2 + (\frac{3}{2})^2} = \sqrt{\frac{27+9}{4}} = \sqrt{\frac{36}{4}} = 3$ AB = $\sqrt{(0-\frac{3\sqrt{3}}{2})^2 + (3-\frac{3}{2})^2} = \sqrt{\frac{27}{4}+\frac{9}{4}}$ $= \sqrt{\frac{36}{4}} = 3$

OA, OB AB এর যেকোন দুইটির সমষ্টি তৃতীয়টি অপেক্ষা বৃহত্তর এবং OA = OB = AB = 3. ∴ প্রদন্ত কিন্দু দুইটি মূলকিন্দুর সাথে একটি সমবাহু ত্রিভুজ উৎপন্ন করে।

এখন, সমবাহু ত্রিভূজটির ক্ষেত্রফল = $\frac{\sqrt{3}}{4}(3)^2$ $=\frac{9\sqrt{3}}{4}$ বর্গ একক

4(b) দেখাও যে, C(-2, -1) এবং D(5, -4)কিন্দু দুইটি A(-3, 1) এবং B(1, -1) কিন্দু বিন্দু বিদ্য সংযোগ রেখার একই পার্শ্বে অবস্থিত। AB রেখার কোন পার্শ্বে মুলকিন্দু অবস্থিত ?

সমাধান ঃ $\delta_{ABC} = (-3-1)(-1+1)-(1+1)(1+2)$ = -6 $\delta_{ABD} = (-3-1)(-1+4)-(1+1)(1-5)$ = -12+8 = -4এখন, $\delta_{ABC} \times \delta_{ABD} = -6 \times -4 > 0$ বলে C এবং D কিন্দুদ্বয় AB এর একই পার্শ্বে অবস্থিত। **দিতীয় অংশ ঃ** O(0, 0) মূলকিন্দু হলে,

 $\delta_{AB0} = (-3 - 1)(-1 - 0) - (1 + 1)(1 - 0)$ = 4 - 2 = 2 $\delta_{_{AB0}} imes \delta_{_{ABC}} = - \ 6 imes 2 < 0$ বলে AB রেখার যে পার্শ্বে C ও D অবস্থিত তার বিপরীত পার্শ্বে মুলক্দিদ অবস্থিত i 5. (-2, 3), (-3, -4), (5, -1) \otimes (2, 2)বিন্দু চারটি ব্রুমান্দ্বয়ে নিয়ে যে চতুর্ভুচ্চ গঠিত হয় তার ক্ষেত্রফল নির্ণয় কর। সমাধান ঃ প্রদত্ত কিন্দু চারটি ক্রমান্বয়ে নিয়ে যে চতুর্ভুজ গঠিত হয় তার ক্ষেত্রফল $= \frac{1}{2} \begin{vmatrix} -2 & -3 & 5 & 2 & -2 \\ 3 & -4 & -1 & 2 & 3 \end{vmatrix}$ $= \frac{1}{2} |8 + 3 + 10 + 6 - (-9 - 20 - 2 - 4)|$ $= \frac{1}{2} |27 + 35| = 31$ কাঁ একক (Ans.) 6(a) t এর মান কত হলে (2t + 1, t + 2), (2 - t, t)2 - 5t) এবং (5t, 7t) কিপুত্রয় ধনাত্মক ব্রুমে অবস্থান করে একটি ত্রিভুচ্চ গঠন করবে ? সমাধান ঃ প্রদত্ত কিন্দুত্রয়ের নিশ্চায়ক = (2t +1-2 + t) (2-5t-7t) - (t+2-2+5t)(2-t-5t)= (3t-1)(2-12t) + 6t(2-6t)= (3t-1)(2-12t+12t) = 2(3t-1)প্রদন্ত কিন্দুত্রয় ধনাত্মক ব্রুমে অবস্থান করে একটি ত্রিভুজ গঠন করলৈ, $2(3t-1)>0 \Rightarrow t>\frac{1}{2}$ 6(b) দেখাও যে, (t, 3t - 2), (1- 2t, 2 - 3t) এবং (-t,-t) কিন্দুত্রয় ঝণাত্মক ক্রমে থাকবে, যদি t>1 হয়। সমাধান ঃ প্রদত্ত কিন্দুত্রয়ের নিশ্চায়ক = (t-1 + 2t)(2-3t+t) - (3t-2-2+3t)(1-2t+t)= (3t-1)(2-2t) - (6t-4)(1-t)= (1-t)(6t-2-6t+4) = 2(1-t)প্রদন্ত বিন্দুত্রয় ঋণাত্মক রুমে অবস্থান করে একটি ত্রিভুজ গঠন করলে, 2(1 – t)< 0 t>1 (Showed)

7. t পরিবর্তনশীল হলে দেখাও যে, P(t + 2, 3t)কিন্দুর সঞ্চারপথের সমীকরণ 3x - y = 6. প্রমাণ ঃ ধরি, P কিন্দুর কার্তেসীয় স্থানাজ্ঞ্ব (x, y). $t + 2 = x \Longrightarrow t = x - 2$ and $3t = y \Longrightarrow 3(x-2) = y [\because t = x-2]$ 3x - y = 6, যা নির্ণেয় সঞ্চারপথের সমীকরণ। 8. একটি ত্রিভুজের শীর্ষ বিন্দুগুলি A(x, y), B(1, 3) ও C(3,1) হলে এবং x + y = 1 হলে ত্রিত্বজটির ত্রেফল নির্ণয় কর। [KUET 07-08] সমাধান : প্রদন্ত বিন্দু তিনটি দ্বারা গঠিত ত্রিভুজের ত্রেফল $= \frac{1}{2} | (x - 1)(3 - 1) - (y - 3)(1 - 3) |$ $= \frac{1}{2} |2x - 2 + 2y - 6| = \frac{1}{2} |2x + 2y - 8|$ = | x + y - 4 | = | 1 - 4 | = 3 বৰ্গ একক ৷ www.boighar.com ভর্তি পরীক্ষার MCQ : 1. কোন কিন্দুর কার্ত্তেসীয় স্থানাজ্ঞ্ব $(-1, \sqrt{3})$ হলে বিন্দুটির পোলার স্থানাজ্ঞ- [JH, IU 07-08; CU 05-06; KU 03-04] **Sol**".: $r = \sqrt{1+3} = 2, \Theta = \tan^{-1} \frac{\sqrt{3}}{1}$ $= 180^{\circ} - \tan^{-1}\sqrt{3} = 180^{\circ} - 30^{\circ}$: (2, 120°) 2. (1, 4) এবং (9, - 12) বিন্দুদ্বয়ের সংযোগকারী রেখাংশ অন্তঃস্থভাবে যে কিন্দুতে 5 : 3 অনুপাতে বিভক্ত হয় তার স্থানাংক- [DU, Jt.U 06-07, RU 07-08, 06-07; KUET 05-06] Sol^n .: $\operatorname{Pethemson}(3+45, \frac{12-60}{8}) = (6, -6)$ 3. (2, -4) ,(-3,6) কিন্দুদ্বয়ের সংযোগ রেখাংশকে y-অক্ষরেখা যে অনুপাতে বিভক্ত করে– [RU 07-08] Sol^n : অনুপাত = $\frac{-4-0}{0-6} = \frac{2}{2}$

4. ABC ত্রিভুজের শীর্ষ বিন্দুর স্থানাজ্ঞ্র (2,2), (3,4) ও (5,6) হলে উক্ত ত্রিভুজটির ভরকেন্দ্র - [RU 07-08] Solⁿ.: G = $(\frac{2+3+5}{3}, \frac{2+4+6}{3}) = (\frac{10}{3}, 4)$ 5. (x,y) , (2,3) এবং (5,1) একই সরলরেখায় অবস্থিত হলে– [DU 05-06] Solⁿ. (x-2)(3-1) - (y-3)(2-5) = 0 $\Rightarrow 2x - 4 + 3y - 9 = 0 \Rightarrow 2x + 3y - 13 = 0$ 6. (2, 2-2x),(1,2) এবং (2,b-2x) বিদ্যগুলো সমরেখ হলে, এর মান -[DU 06-07] Sol^{n} .:(2-1)(2-b+2x)-(2-2x-2)(1-2) = 0 $\Rightarrow 2 - b + 2x - 2x = 0 \Rightarrow b = 2$ 7. কোন ত্রিভুচ্জের শীর্ষবিন্দু সমূহ (-1, -2), (2,5), (3.10) হলে, তার ক্ষেত্রফল– [DU 03-04] Sol^{n} : $\frac{1}{2}|(-3)(-5) - (-7)(-1)| = \frac{1}{2}(8) = 4$ 8. কোন ত্রিভুজের শীর্ষবিন্দু সমূহ (-4, 3), (-1, -2), (3,-2) হলে, তার ক্ষেত্রফল-[Jt.U 08-09] $Sol^{n} : \frac{1}{2} | (-3) \cdot 0 - 5(-4) | = \frac{1}{2} \cdot 20 = 10$

9. ABCD সামাশতরিকের A, B, C কিন্দু তিনটির স্থানাঙ্জ যথারুমে (1,2), (3,4), (1,0) হলে সামাশত রিকের ক্ষেত্রফল – [RU07-08]

$$Sol^n$$
 : সামান্তরিকের ক্ষেত্রফল = $2 \cdot \frac{1}{2} |\{(-2)\cdot 4 - (-2)\cdot 2 | = |-8 + 4| = 4$ বর্গ একক।

10. A(2,4), B(2,8) এবং C কিন্দুদ্বয় সমবাহু ত্রিভুজ্জ গঠন কর । AB এর যে পার্শ্বে মূলকিন্দু , C তার বিপরীত পার্শ্বে অবস্থিত হলে C এর স্থানাজ্ঞ নির্ণয় কর ।

[RU 06-07]

 Sol^n : দুইটি শীর্ষের ভুজ সমান বলে C এর কোটি = $\frac{4+8}{2} = 6$ এবং ভুজ = $2 \pm \frac{\sqrt{3}}{2} |4-8| = 2 \pm 2\sqrt{3}$ আবার, 2 > 0 এবং কিন্দুটি মূলকিন্দুর বিপরীত পার্শ্বে বিধায় C এর স্থানাজ্ঞ $(2 + \sqrt{3}, 6)$.

 11. একটি ত্রিভুজ্জের বাহুগুলোর সমীকরণ 2x + y =12,

 x - 2y = 1 এবং 4x -3y = 4 . ত্রিভুচ্চটির ক্ষেত্রফল

 নির্ণায় কর।
 [RU 05-06; KU 03-04]

 Sol^n .: ক্যালকুলেটরের সাহায্যে শীর্ষত্রয় (5,2),(1,0), (4,4).: $\Delta = \frac{1}{2} | 4.(-4) - 2.(-3) | = 5$ বর্গ একক।

3 times a EQN 2 2 E C E C
2 E C E C E C
y =2

 12. a এর কোন মানের জন্য (a² ,2) ,(a ,1) এবং

 (0,0) কিন্দুত্রয় সমরেখ হবে?

 [BUET 05-06]

Solⁿ.
$$(a^2 - a)(1 - 0) - (2 - 1)(a - 0) = 0$$

⇒ $a^2 - 2a = 0 \Rightarrow a = 0$, 2

প্রশাননার শা E 10. মূলবিন্দু এবং (x_1, y_1) বিন্দুগামী রেখার সমীকরণ এক নন্ধরে প্রয়োজনীয় সূত্রাবলী $y = \frac{y_1}{x_1} x \implies x y_1 - y x_1 = 0$ ঢাল (m) ঃ 1. একটি সরলরেখা x-অক্ষের (a) ধনাত্মক দিকের সাথে heta কোণ উৎপন্ন করলে তার 11. মুলব্দিদু হতে কোন সরলরেখার উপর অঙ্জিত णत.m = $\tan \theta$ লম্বের দৈর্ঘ্য p এবং লম্বটি x-অক্ষের ধনাত্মক দিকের 2.একটি সরলরেখা (x_1, y_1) ও (x_2, y_2) বিন্দুগামী সাথে α কোণ উৎপন্ন করলে. রেখাটির সমীকরণ হবে হলে তার ঢাল, m = $\frac{y_1 - y_2}{x_1 - x_2}$. $x\cos\alpha + y\sin\alpha = p$. 3. একটি সরলরেখা মুলবিন্দু এবং (x_1, y_1) বিন্দুগামী এমন সরলরেখার সমীকরণ $\frac{x-x_1}{\cos \theta} = \frac{y-y_1}{\sin \theta} = \mathbf{r}$, হলে তার ঢাল, $\mathbf{m} = \frac{y_1}{x_1}$. যেখানে (x, y) কিন্দু হতে (x_1, y_1) কিন্দুর দূরত্ব r. (b) একটি রেখার সমীকরণ ঃ MCQ এর জন্য বিশেষ সূত্র ঃ 1. y-অক্ষের, x = 0. 2. x - অক্ষের . y = 01. AD মধ্যমার সমীকরণ, $A(x_1,y_1)$ 3. v-অক্ষের সমানতরাল অর্থাৎ x- অক্ষের উপর লম্ব $(2 y_1 - y_2 - y_3)x -$ রেখার সমীকরণ, x = a. $(2x_1 - x_2 - x_3)y =$ ١E 4. x -অক্ষের সমান্তরাল অর্থাৎ y-অক্ষের উপর লম্ব রেখার সমীকরণ, $y = \mathbf{b}$. $(2y_1 - y_2 - y_3)x_1 - 2$ $(2x_1 - x_2 - x_3) y_1^{\mathbf{B}(x_2, y_2) \mathbf{D}}$ $\overline{C}(x_3.y_3)$ 5. m তাল বিশিষ্ট এবং মূলবিন্দুগামী রেখার সমীকরণ, y = mx. 2. ax + by + c = 0 দ্বারা x-অক্ষের ছেদাংশ 6. একটি সরলরেখার ঢাল m এবং y-অক্ষের ছেদক =-c/a, y - আক্ষের ছেদাংশ =-c/b; আক্ষদয়ের অংশ c হলে তার সমীকরণ হবে y = mx + cমধ্যবর্তী খণ্ডিত অংশ = $\sqrt{(c/a)^2 + (c/b)^2}$; 7. একটি রেখার ঢাল m এবং রেখাটি (x_1, y_1) অক্ষদ্বয় দ্বারা গঠিত ত্রিভূজের ক্ষেত্রফল = $\frac{c^2}{2|ab|}$. কিন্দুগামী হলে, রেখাটির সমীকরণ. $y - y_1 = m(x - x_1)$ 3. একটি রেখার অক্ষদ্বয়ের মধ্যবর্তী অংশ (α,β) 8. (x_1, y_1) এবং (x_2, y_2) কিন্দুগামী রেখার কিন্দুতে সমদ্বিখন্ডিত সমীকরণ. হলে তার সমীকরণ $\frac{x-x_1}{x_1-x_2} = \frac{y-y_1}{y_1-y_2}$ $\frac{x}{2\alpha} + \frac{y}{2\beta} = 1$ $\Rightarrow (x - x_1)(y_1 - y_2) - (y - y_1)(x_1 - x_2) = 0.$ 4. মুলবিন্দু হতে কোন রেখার উপর অঙ্কিত লম্ব x- $\Rightarrow (y_1 - y_2)x - (x_1 - x_2)y =$ তার সমীকরণ $\frac{x}{a} + \frac{y}{b} = 1$, যেখানে $\tan \theta = \frac{a}{b}$ $(y_1 - y_2)x_1 - (x_1 - x_2)y_1$ x - অক্ষ এবং y - অক্ষ হতে যথাক্রমে a এবং b **5.** $a_1x + b_1y + c_1 = 0 \cdots (1)$, অংশ ছেদকারী রেখার সমীকরণ $\frac{x}{a} + \frac{y}{b} = 1$. $a_{2}x + b_{2}y + c_{2} = 0 \dots (2)$

 $\begin{aligned} a_3x + b_3y + c_3 &= 0 \cdots (3) \text{ রেখা তিনটি দারা গঠিত} \\ & & & & & \\ & & & \\ \hline \textbf{GQ}(\textbf{URA} \ \textbf{CPAGEVAP} = \\ & & \\ \frac{\{c_1(a_2b_3 - a_3b_2) - c_2(a_1b_3 - a_3b_1) + c_3(a_1b_2 - a_2b_1)\}^2}{2 \mid (a_2b_3 - a_3b_2)(a_1b_3 - a_3b_1)(a_1b_2 - a_2b_1)\mid} \\ & & \\ \textbf{6. (1) (2) (3) ual a center along the set of t$

প্রশ্নমালা – III E

1(i) (a) x অরে ধনাত্মক দিকের সাথে 30^0 কোণ উৎপন্ন করে এরূপ সরলরেখার ঢাল নির্ণয় কর ।

সমাধান: নির্ণেয় ঢাল =
$$\tan 30^0 = \frac{1}{\sqrt{3}}$$

(b) (3, -4) ও (4, -5) বিন্দুগামী সরলরেখার চাল নির্ণয় কর ৷

সমাধান: প্রদত্ত বিন্দুদ্বয় দিয়ে অতিক্রমকারী সরললেখার

$$\overline{\text{und}} = \frac{-4 - (-5)}{3 - 4} = \frac{1}{-1} = -1$$

(c) একটি সরলরেখার সমীকরকরণ নির্ণয় কর যা x-অরে সমান্তরাল এবং নচে 4 একক দূরে অবস্থিত

সমাধান: x-অরে সমান্তরাল এবং তার নিচে 4 একক দূরে অবস্থিত এরূপ সরলরেখার সমীকরণ, y = – 4

(d) একটি সরলরেখার সমীকরকরণ নির্ণয় কর যা y-অরে সমান্তরাল এবং তার ডানে 5 একক দুরে অবস্থিত।

সমাধান: y-অরে সমান্তবাল এবং তার ডানে 5 একক দূরে অবস্থিত এরূপ সরলরেখার সমীকরণ, x = 5

(e) x –অর্রে সমান্তরাল (3, -4) বিন্দুগামী সরলরেখার সমীকরণ নির্ণয় কর

সমাধান: ধরি, x --অরে সমান্তরাল সরলরেখার সমীকরণ y = k যেখানে k একটি ধ্রুবক v = k রেখাটি (3, -4) বিন্দুগামী। $-4 = k \Longrightarrow k = -4$ k এর মান বসিয়ে পাই, y = -4 (Ans.) 1(ii) নিমের দুইটি বিন্দুগামী রেখার সমীকরণ নির্ণয় কর ঃ (a) (a, b) এবং (-a, -b) (b) (a, b) and (a + b, a - b)সমাধান **ঃ** (a) $(a \ b)$ এবং (-a, -b) কিন্দুগামী রেখার সমীকরণ, $\frac{x-a}{a+a} = \frac{y-b}{b+b} \Longrightarrow \frac{x-a}{2a} = \frac{y-b}{2b}$ $\Rightarrow bx - ab = av - ab \Rightarrow bx - av = 0$ (b) (a, b) and (a + b - a - b) forgential রেখার সমীকরণ, (b - a + b) x - (a - a - b)y= (b - a + b).a - (a - a - b)b $[(y_1 - y_2)x - (x_1 - x_2)y] =$ $(y_1 - y_2)x_1 - (x_1 - x_2)y_1$ সুত্রের সাহায্যে] $\Rightarrow (2b-a)x + by = 2ab - a^2 + b^2$ $(2b-a)x+by+a^2-2ab-b^2=0$ 2. একটি সরলরেখার সমীকরণ নির্ণয় কর যা x-অক্ষের ধনাত্মক দিকের সাথে $\sin^{-1}(5/13)$ কোণ উৎপন্ন করে এবং y-অক্ষের ধনাত্মক দিকের ছেদাংশ 5 একক । সমাধান: ধরি, $\theta = \sin^{-1}(5/13) \Longrightarrow \sin \theta = \frac{5}{13}$ $\tan \theta = \frac{\sin \theta}{\cos \theta} \quad \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}}$ $\Rightarrow \tan \theta = \frac{5/13}{\sqrt{1-25/169}} = \frac{5}{13} \times \frac{13}{12} = \frac{5}{12}$ নির্শেয় রেখার ঢাল, m = $\frac{5}{12}$ এবং -অক্ষের

।2 ছেদক অংশ. c = 5 একক

নির্দেয় রেখার সমীকরণ, y = mx + c

 $\Rightarrow y = \frac{1}{12}x + 5 \Rightarrow 12y = 5x + 60. \text{ (Ans.)}$

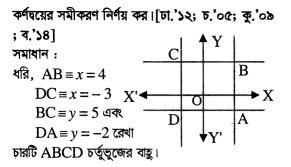
3. (a) A(1, 1), B(3, 4) এবং C(5, -2)কিন্দু তিনটি ABC ত্রিভূঞ্জের শীর্ষবিন্দু । AB ও ACএর মধ্যকিন্দুর সংযোগ রেখার সমীকরণ নির্ণয় কর।

[কু.'০৬, '০৮; ঢা.'১১; কু.'১৪; মা.বো.'০৭; য.'০৯]

সমাধান ঃ ধরি, AB ও AC এর মধ্যকিদ যথাক্রমে D ও E. তাহল, $D = (\frac{1+3}{2}, \frac{1+4}{2}) = (2, \frac{5}{2})$ এবং $E \equiv (\frac{1+5}{2}, \frac{1-2}{2}) = (3, -\frac{1}{2}).$ DE রেখার সমীকরণ, $\frac{x-2}{2-3} = \frac{y-\frac{5}{2}}{\frac{5}{2}+\frac{1}{2}}$ $\Rightarrow \frac{x-2}{y} = \frac{2y-5}{6} \Rightarrow 6x - 12 = -2y + 5$ 6x + 2y - 17 = 0 (Ans.) 3(b) (2,4), (-4,-6) এবং (6,-8) বিদ্ তিনটি একটি ত্রিভুঙ্গের শীর্ষবিন্দু । ত্রিভুচ্চটির মধ্যমাগলার সমীকরণ নির্ণয় কর। 5.'09] সমাধান ঃ A (2,4) E C(6,-8)B(-4,-6) D ধরি, ত্রিভুজের শীর্ষত্রয় A(2, 4), B(-4, -6) ও C(6 - 8) এবং BC, CA AB বাহর মধ্যকিদ যথাক্রমে D. E. F. $D \equiv \left(\frac{-4+6}{2}, \frac{-6-8}{2}\right) = (1, -7)$ $E = (\frac{6+2}{2}, \frac{-8+4}{2}) = (4, -2)$ $F = (\frac{2-4}{2}, \frac{4-6}{2}) = (-1, -1)$ AD মধ্যমার সমীকরণ, $\frac{v-2}{2-1} = \frac{y-4}{4+7}$ $11x 22 = 4 \Rightarrow 11x - y - 18 = 0$ BE भगामात शमीकत्रण $\frac{1+4}{4} = \frac{y+6}{-6+2}$ 4x = 16 = 8y = 481 + 4 + 32 () $\Rightarrow x - 2y - 8 = 0$

(1) মধ্যমার সামাকনণ, $\frac{x-6}{6+1} = \frac{y+8}{8-1}$

 $\Rightarrow -x + 6 = y + 8 \Rightarrow x + y + 2 = 0$ IMCO এর জন্য, AD মধ্যমার সমীকরণ, (8 + 6 $+8)x - (4 + 4 - 6)y = 22 \times 2 - 2 \times 4 = 36$ $\Rightarrow 11x - y - 18 = 0$] 3(c) A(h, k) किप्तुটি 6x - y = 1 রেখার উপর এবং B(k, h) কিন্দুটি 2x - 5y = 5 রেখার উপর অবস্থিত। AB সরলরেখাটির সমীকরণ নির্ণয় কর। [দি.'০৯; ঢা..চ.'১২.'১৪; ব.'১০; রা..য.'১১; সি..য.'১৪] সমাধান ঃ A(h, k) কিন্দুটি 6x - v = 1 রেখার উপর অবস্থিত । 6h - k = 1(1)আবার, B(k, h) কিন্দুটি 2x - 5y = 5 রেখার উপর অবস্থিত। 2k - 5h = 5(2) $(1) \times 2 + (2) \Rightarrow 12 h - 5h = 7 \Rightarrow h = 1$ (1) হতে আমরা পাই, 6.1 − k = 1 ⇒ k = 5 A = (1, 5) এবং B = $(5 \ 1)$ AB রেখার সমীকরণ, $\frac{x-1}{1-5} = \frac{y-5}{5-1}$ $\Rightarrow 4x - 4 = -4y + 20 \Rightarrow 4x + 4y = 24$ x + y - 6 = 0 (Ans.) 3(d) यपि (a, b) , (a', b') , (a - a', b - b')বিন্দুত্রয় সমরেখ হয়, তবে দেখাও যে, তাদের সংযোগ রেখাটি মুলবিন্দু দিয়ে যায় এবং ab' = a'b. [ক..'০৯] প্রমাণ: ধরি, প্রদন্ত বিন্দুত্রয় A(a, b) = B(a', b')C(a-a', b-b'). বিন্দু তিনটি সমরেখ বলে, AB রেখার ঢাল = AC রেখার ঢাল $\Rightarrow \frac{b-b'}{a-a'} = \frac{b-b+b'}{a-a+a'} \Rightarrow \frac{b-b'}{a-a'} = \frac{b'}{a'}$ $\Rightarrow a'b - a'b' = ab' - a'b' \qquad a'b' = ab'$ এখন, A(a, b), B(a', b') কিদুগামী রেখার সমীকণ $\frac{x-a}{a-a'} = \frac{y-b}{b-b'} \Longrightarrow (b-b')x - ab + ab'$ = (a - a')y - ab + a'b(b - b')y = (a - a')y = 0 [-a'b' - ab']গেহেতু সমাকরণা। বপদ মুক্ত, সুতরাং বিপুত্রয়ের সংযোগ রেখাটি মুলনিন্দু দিয়ে যায়। 3(i)(a)x - 4 = 0, y = 5, 0, x = 3, 0uter + 2 = 1) caving on and 100



AB ও AD বাহুদ্বয় A(4, - 2) কিন্দুতে, AB ও BC বাহুদ্বয় B(4,5) কিন্দুতে, BC ও CD বাহুদ্বয় C(-3,5) কিন্দুতে, CD ও DA বাহুদ্বয় D(-3, -2) কিন্দুতে ছেদ করে।

•AC কর্ণের সমীকরণ, $\frac{x-4}{4+3} = \frac{y+2}{-2-5}$ $\Rightarrow -x+4 = y+2 \Rightarrow x+y-2 = 0$ BD কর্ণের সমীকরণ, $\frac{x-4}{4+3} = \frac{y-5}{5+2}$ $\Rightarrow x-4 = y-5 \Rightarrow x - y + 1 = 0$

কর্ণদ্বয়ের সমীকরণ, x - y + 1 = 0, x + y - 2 = 0

3(i) (b) x = 4, x = 8, y = 6 এবং y = 10রেখাগুলো ঘারা উৎপন্ন আয়তক্ষেত্রের কর্ণঘয়ের সমীকরণ নির্ণায় কর। সমাধান ধরি, $AB \equiv x = 4$ $D \equiv x = 8$ $BC \equiv y = 10$ এবং $AD \equiv y = 6$ রেখা X' চারটি ABCD আয়তক্ষেত্রের Y'

বাহু।

AB ও AD বাহুদ্বয় A(4 6) কিন্দুতে , AB ও BC বাহুদ্বয় B(4,10) কিন্দুতে, BC ও CD বাহুদ্বয় C(8,10) কিন্দুতে, CD ও DA বাহুদ্বয় D(8, 6) কিন্দুতে ছেদ করে।

AC কর্ণের সমীকরণ
$$\frac{x-4}{4-8} = \frac{y-6}{6-10}$$

 $\Rightarrow x-4 = y-6 \Rightarrow x-y+2 = 0$
BD কর্ণের সমীকরণ, $\frac{x-4}{4-8} = \frac{y-10}{10-6}$
 $\Rightarrow x-4 = -y+10 \Rightarrow x + y - 14 = 0$

কর্ণদ্বয়ের সমীকরণ, x - y + 2 = 0, x + y - 14 = 04. (a) $3x + \sqrt{3}y + 2 = 0$ এবং $x \cos \alpha + y$ $\sin \alpha = p$ একই সরলরেখা নির্দেশ করলে p এর মান নির্ণয় কর। [মা.বো.'০৫] সমাধান: দেওয়া আছে, $3x + \sqrt{3}y + 2 = 0$ এবং x $\cos \alpha + y \sin \alpha = p$ একই সরলরেখা নির্দেশ করে। $\frac{\cos \alpha}{3} = \frac{\sin \alpha}{\sqrt{3}} = \frac{-p}{2}$ $\Rightarrow \cos \alpha = \frac{-3p}{2}$ এবং $\sin \alpha = \frac{-\sqrt{3}p}{2}$ $\sin^2 \alpha + \cos^2 \alpha = (\frac{-\sqrt{3}p}{2})^2 + (\frac{-3p}{2})^2$ $\Rightarrow 1 = \frac{3p^2}{4} + \frac{9p^2}{4} \Rightarrow 12 p^2 = 4$ $\Rightarrow p^2 = \frac{1}{3}$ $p = \pm \frac{1}{\sqrt{3}}$ (Ans.)

 (b) 3x - 4y = 12 এবং x cosα + y sinα = p একই সরলরেখা নির্দেশ করলে p এবং α এর মান নির্ণয় কর। [থ.ড.প '০৪]
 সমাধান: দেওয়া আছে, 3 x - 4y = 12 এবং x cosα + ysinα = p একই সরলরেখা নির্দেশ করেন

$$\frac{\cos \alpha}{3} = \frac{\sin \alpha}{-4} = \frac{p}{12}$$

$$\Rightarrow \cos \alpha = \frac{3p}{12} = \frac{p}{4} \quad \text{agg} \sin \alpha = \frac{-p}{3}$$

$$\sin^2 \alpha + \cos^2 \alpha = \left(\frac{p}{4}\right)^2 + \left(\frac{-p}{3}\right)^2$$

$$\Rightarrow 1 = \frac{p^2}{16} + \frac{p^2}{9} \Rightarrow \frac{p^2(9+16)}{16.9} = 1$$

$$\Rightarrow p^2 = \frac{144}{25} \qquad p = \pm \frac{12}{5} \quad \text{(Ans.)}$$

$$\text{and} \, \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{-p/3}{p/4} = -\frac{4}{3}$$

$$\alpha = \tan^{-1}(-\frac{4}{3}) \quad \text{(Ans.)}$$

5. (a) একটি সরলরেখা অক্ষদ্বয় হতে সমান সমান অংশ কর্তন করে. এবং (α , β) কিন্দু দিয়ে অতিক্রম করে তার সমীকরণ নির্ণয় কর। [কু.'০৪; দি.'১১] সমাধান: ধরি, অক্ষদ্বয় হতে সমান সমান অংশ কর্তন করে এর্প রেখাটির সমীকরণ $\frac{x}{a} + \frac{y}{\pm a} = 1$ $\Rightarrow x \pm y = a \Rightarrow x + y = a$ অথবা, x - y = aরেখাটি (α , β) কিন্দু দিয়ে অতিক্রম করলে, $a = \alpha + \beta$ অথবা, $a = \alpha - \beta$ নির্ণেয় রেখার সমীকরণ, $x + y = \alpha + \beta$ অথবা, $x - y = \alpha - \beta$

5(b) একটি সরপরেখা (2, 6) বিন্দু দিয়ে যায় এবং যার ধারা অক্ষধয়ের খণ্ডিত অংশের সমষ্টি 15 তার সমীকরণ নির্ণয় কর। মা.বো. '০৪.'০৮] সমাধান: ধরি, (2, 6) কিন্দুগামী রেখার সমীকরণ y - 6 = m(x - 2) \Rightarrow mx - y = 2m - 6 ... (1) $\Rightarrow \frac{x}{(2m-6)/m} + \frac{y}{-(2m-6)} = 1$ প্রশানত, $\frac{2m-6}{m} + \{-(2m-6)\} = 15$ $\Rightarrow 2m - 6 - 2m^2 + 6m = 15m$ $\Rightarrow 2m^2 + 7m + 6 = 0$ $\Rightarrow 2m^2 + 4m + 3m + 6 = 0$ $\Rightarrow 2m (m+2) + 3(m+2) = 0$ \Rightarrow (m + 2)(2m + 3) = 0 m = - 2 অথবা, m = - $\frac{3}{2}$ এ m এর মান বসিয়ে পাই. $-2x - y = 2(-2) - 6 \Longrightarrow 2x + y = 10$ षर्थवा, $-\frac{3}{2}x - y = 2.(-\frac{3}{2})-6$ \Rightarrow 3x + 2y = 6 + 12 \Rightarrow 3x + 2y = 18 উত্তর ঃ 2x + y = 10 বা, 3x + 2y = 18 5. (c) একটি সরলরেখা (1, 4) কিন্দু দিয়ে যায় এবং

 ৩. (c) এখার সরগরেখা (1, 4) বিপু দেরে ধার এবং অক্ষদ্বয়ের সাথে প্রথম চতুর্ভাগে ৪ বর্গ একক ক্ষেত্রফলবিশিষ্ট একটি ত্রিভুচ্চ গঠন করে তার সমীকরণ নির্ণয় কর। [ব.'০৬; চ.'১১; কু.'১২] সমাধান: ধরি, রেখাটির সমীকরণ $\frac{x}{a} + \frac{y}{b} = 1 \cdots (1)$ (1) রেখাটি (1, 4) কিন্দু দিয়ে অতিক্রম করে। $\frac{1}{a} + \frac{4}{b} = 1 \Longrightarrow \frac{1}{a} = 1 - \frac{4}{b} = \frac{b-4}{b}$ $\Rightarrow a = \frac{b}{b-4}$ (2) (1) রেখাটি অক্ষদ্বয়ের সাথে যে ত্রিভুজ গঠন করে তার ক্ষেত্ৰফল = $\frac{1}{2}ab$. প্রমতে, $\frac{1}{2}ab = 8 \Rightarrow \frac{b}{b-4} \cdot b = 16$ \Rightarrow b² = 16 b - 64 \Rightarrow b² - 16b + 64 = 0 $\Rightarrow (b-8)^2 = 0 \Rightarrow b = 8$ (2) হতে পাই, $a = \frac{8}{2} = 2$ রেখাটির সমীকরণ $\frac{x}{2} + \frac{y}{8} = 1 \Longrightarrow 4x + y = 8$ 5(d) একটি সরলরেখা (3, 7) কিন্দু দিয়ে যায় একং অক্ষদন্ম হতে বিপরীত চিহ্নবিশিষ্ট সমমানের অংশ ছেদ করে তার সমীকরণ নির্ণয় কর। [[[0.10]] সমাধান: ধরি, অক্ষদ্বয় হতে বিপরীত চিহ্নবিশিষ্ট সমমানের অংশ ছেদ করে এরুপ রেখাটির সমীকরণ $\frac{x}{a} + \frac{y}{-a} = 1 \Rightarrow x - y = a$ (1)(1) রেখাটির (3, 7) কিন্দু দিয়ে যায়। $3-7=a \Rightarrow a=-4$ রেখাটির সমীকরণ $x-y = -4 \Longrightarrow x - y + 4 = 0$ 6. (a) x + 2y + 7 = 0 রেখাটির অক্ষদ্বয়ের মধ্যবর্তী খন্ডিতাংশের মধ্যবিন্দর স্থানাজ্ঞ নির্ণয় কর । উপরি উক্ত

খণ্ডিতাংশ মন্যাব দুর স্থানাজ্য নিশন্ন করা । ওপার উস্ত খণ্ডিতাংশ কোন বর্গের বাহু হলে, তার ক্ষেত্রফল নির্ণায় কর। [ঢা.'০৭; চ.'০৮; রা.'১০;ব. '০৫,'১২; য.'১৩; দি.'১০; সি.'১৪; মা.'১২]

সমাধান: প্রদন্ত সমীকরণ, x + 2y + 7 = 0

$$\Rightarrow x + 2y = -7 \Rightarrow \frac{x}{-7} + \frac{y}{-7/2} = 1$$

রেখাটি অক্ষদ্বয়কে ধেরি) A(-7, 0) এবং B(0, -7/2) কিদ্দুতে ছেদ করে।

AB এর মধ্যকিন্দুর স্থানাজ্ঞ = $(\frac{-7}{2}, \frac{-7/2}{2})$ $=(\frac{-7}{2},\frac{-7}{4})$ এবং $AB^2 = (-7)^2 + (-7/2)^2 = 49 + \frac{49}{4} = 61\frac{1}{4}$ রেখাটির অক্ষদ্বয়ের মধ্যবর্তী খন্ডিতাংশ AB কোন বর্গের বাহু হলে, তার ক্ষেত্রফল = 61 ¹/₄ বর্গ একক। 6(b) যে সরলরেখার অক্ষদ্বয়ের মধ্যবর্তী খন্ডিত অংশ (6,2) কিন্দুতে 2:3 অনুপাতে অস্ত্র্বিভক্ত হয় তার সমীকরণ নির্ণয় কর। [ব.'08,'09; রা.'0৮; দি.'১১] সমাধান: ধরি, রেখাটির সমীকরণ $\frac{x}{a} + \frac{y}{b} = 1 \cdots (1)$ অক্ষদ্বয়কে (ধরি) A(a, 0) এবং (1) রেখাটি B(0, b) কিদ্যতে ছেদ করে। AB রেখাংশ (6, 2) কিন্দুতে 2 3 অনুপাতে অন্ত র্বিভক্ত হয়। $\frac{2.0+3a}{2+3} = 6 \Longrightarrow 3a = 30 \Longrightarrow a = 10 \text{ arg}$ $\frac{2b+3.0}{2+3} = 2 \Longrightarrow 2b = 10 \Longrightarrow b = 5$ রেখাটির সমীকরণ $\frac{x}{10} + \frac{y}{5} = 1 \Longrightarrow x + 2y = 10$ 6(c) যে সরলরেখার অক্ষদ্বয়ের মধ্যবর্তী খন্ডিত অংশ (-4,3) কিন্দুতে 5:3 অনুপাতে অন্তর্বিভক্ত হয় তার সমীকরণ নির্ণয় কর। [কু.'০৬; সি.'১১; ব.'১৩] সমাধান: ধরি, রেখাটির সমীকরণ $\frac{x}{a} + \frac{y}{b} = 1 \cdots (1)$ অক্ষদ্বয়কে (ধরি) A(a. 0) এবং (1) রেখাটি B(0, b) কিন্দুতে ছেদ করে। AB রেখাংশ (-4, 3) কিন্দুতে 5 3 অনুপাতে অন্ত র্বিভক্ত হয় । $\frac{5.0+3a}{5+3} = -4 \Longrightarrow 3a = -32 \Longrightarrow a = -\frac{32}{3}$ $a = 3 \Longrightarrow 5b = 24 \Longrightarrow b = \frac{24}{5}$ নির্ধোর সমীকরণ $\frac{x}{-32/3} + \frac{y}{24/5} = 1$

$$\Rightarrow \frac{3x}{-32} + \frac{5y}{24} = 1 \Rightarrow \frac{-9x + 20y}{96} = 1$$
$$9x - 20y + 96 = 0 \text{ (Ans.)}$$

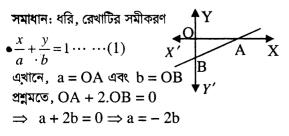
6(d) একটি সরলরেখার সমীকরণ নির্ণয় কর যা অক্ষদ্বয়ের সাথে 16 বর্গ একক ক্ষেত্রফলবিশিস্ট ত্রিভজ্জ গঠন করে একং মুলবিন্দু থেকে যার উপর অঙ্কিত লম্ব x-অক্ষের ধনাত্রক দিকের সাথে 45° কোণ উৎপন্ন [সি. '০৫: য. '১০] করে। সমাধান: ধরি, রেখাটির সমীকরণ $x \cos 45^\circ + y \sin 45^\circ = p \frac{Y}{B}$ $\Rightarrow \frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}} = p$ $\Rightarrow \frac{x}{\sqrt{2}n} + \frac{y}{\sqrt{2}n} = 1 \cdots (1)^{\overline{O}}$ (1) রেখাটির *x*-অক্ষকে A($\sqrt{2}v.0$) এবং y-অক্ষকে $B(0,\sqrt{2}p)$ কিন্দুতে ছেদ করে। প্রশ্নমতে, $\Delta OAB = \frac{1}{2}(OA \times OB) = .16$ $\Rightarrow \frac{1}{2}(\sqrt{2}p \times \sqrt{2}p) = 16$ \Rightarrow p² = 16 \Rightarrow p = ±4 রেখাটির সমীকরণ, $x + y + 4\sqrt{2} = 0$ অথবা, $x + y - 4\sqrt{2} = 0$ www.boighar.com [$\frac{a}{b} = \tan 45^\circ \Rightarrow a = b \therefore a^2 = 32$] 6(e) একটি সরলরেখার সমীকরণ নির্ণয় কর যা অক্ষদনের সাথে 8 বর্গ একক ক্ষেত্রফলবিশিষ্ট ত্রিভচ্চ গঠন করে একং মূলবিন্দু থেকে যার উপর অঙ্কিত লস্ব x-অক্ষের ধনাত্রক দিকের সাথে 45° কোণ উৎপন্ন [চ.'০৬,'১৩; দি.'১৩; রা.'কু.'১৪; য.'১০] করে। সমাধান: ধরি, রেখাটির সমীকরণ $x \cos 45^\circ + y \sin 45^\circ = p B^{\Upsilon}$ $\Rightarrow \frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}} = p$ $\Rightarrow \frac{x}{\sqrt{2}p} + \frac{y}{\sqrt{2}p} = 1 \cdots (1) \xrightarrow{0} 45^{\circ}$

উচ্চতর গণিত : ১ম পত্রের সমাধান বইঘর কম

(1) রেখাটির x-অক্ষকে
$$A(\sqrt{2}p,0)$$
 এবং
y-অক্ষকে $B(0,\sqrt{2}p)$ কিন্দুতে ছেদ করে।
প্রশ্নমতে, $\Delta OAB = \frac{1}{2}(OA \times OB) = 8$
 $\Rightarrow \frac{1}{2}(\sqrt{2}p \times \sqrt{2}p) = 8$
 $\Rightarrow p^2 = 8 \Rightarrow p = \pm 2\sqrt{2}$
রেখাটির সমীকরণ, $x + y + 4 = 0$
অথবা, $x + y - 4 = 0$

7. (a) P S Q किंग्नूष x-आकंत छेंगेत जर R S S किंग्नूष x y-आकंत छेंगेत जर्जाश्वे I PR S QS जत সমীকরণ ফথারুমে 4x + 3y + 6 = 0 S x + 2y - 1 = 0হলে, দেখাও যে, PQ = RS. [bl.'08] প্রমাণ : PR রেখার সমীকরণ, 4x + 3y + 6 = 0 $\Rightarrow 4x + 3y = -6 \Rightarrow \frac{x}{-3/2} + \frac{y}{-2} = 1$ এক QS রেখার সমীকরণ, x + 2y - 1 = 0 $\Rightarrow x + 2y = 1 \Rightarrow \frac{x}{1} + \frac{y}{1/2} = 1$ প্রশ্নমতে, P = $(-3/2 \ 0)$, R = $(0 \ 2)$ Q = (1, 0), S = (0, 1/2): PQ = $\sqrt{(-\frac{3}{2} - 1)^2 + (0 - 0)^2} = \frac{3 + 2}{2} = \frac{5}{2}$ এক RS = $\sqrt{(0 - 0)^2 + (2 - \frac{1}{2})^2} = \frac{4 + 1}{2} = \frac{5}{2}$ PQ = $\frac{5}{2}$ = RS (Showed)

7.(b)এমন একটি সরলরেখার সমীকরণ নির্ণয় কর যা (-2, -5) কিন্দু দিয়ে যায় এবং x ও y-জক্ষকে যথাক্রমে A ও B কিন্দুতে ছেদ করে যেন OA + 2.OB = 0 হয়, যখন O মূলকিন্দু। [ঢা. '০৬,'১৩; য.'০৬,'১১২; চ. '০৬; সি. '০৭; ব. '০৮,'১০]



 (1) রেখাটি (-2, -5) বিন্দুগামী। $\therefore \frac{-2}{a} + \frac{-5}{b} = 1 \Longrightarrow \frac{-2}{2b} + \frac{-5}{b} = 1 [\because a = -2b]$ $\Rightarrow \frac{1-5}{h} = 1 \Rightarrow b = -4 \text{ are } a = -2 \times -4 = 8$ নির্ণেয় রেখার সমীকরণ $\frac{x}{8} + \frac{y}{-4} = 1$ $\Rightarrow x - 2y = 8$ (Ans.) (c) এমন একটি সরলরেখার সমীকরণ নির্ণয় কর যা (3, 2) কিন্দু দিয়ে যায় এবং x ও y-অক্ষকে যথাক্রমে A ও B বিন্দুতে ছেদ করে যেন OA - OB = 2যখন O মুলকিদু। [কু.'০২; য.'০৪,'১২; হয় ব.'০৫;; রা., চ., দি.'১০] সমাধান: ধরি, রেখাটির সমীকরণ $\frac{x}{a} + \frac{y}{b} = 1 \cdots (1)$ এখানে, a = OA এবং b = OBপ্রশ্নত, $OA - OB = 2 \implies a - b = 2$ $\Rightarrow a = b + 2$ (2) (1) রেখাটি (3,2) কিন্দুগামী। $\frac{3}{a} + \frac{2}{b} = 1 \Longrightarrow \frac{3}{b+2} + \frac{2}{b} = 1 \quad [\because a = b+2]$ $\Rightarrow \frac{3b+2b+4}{(b+2)b} = 1 \Rightarrow b^2 + 2b = 5b + 4$ $\Rightarrow h^2 - 3h - 4 = 0 \Rightarrow (b - 4)(b + 1) = 0$ h = 4 অথবা, h = - 1 $(2) \Rightarrow a = 4 + 2 = 6$, যখন b = 4অথবা, a = -1 + 2 = 1 , যখন b = -1 রেখাটির সমীকরণ $\frac{x}{6} + \frac{y}{4} = 1 \Longrightarrow 2x + 3y = 12$ অথবা, $\frac{x}{1} + \frac{y}{-1} = 1 \Longrightarrow x - y = 1$ 7(d) x + ay = a রেখাটি $x \, \otimes \, y$ -অক্ষকে যথাক্রমে A ও B কিন্দুতে ছেদ করে যেন OA = 3.OB হয়, যখন O মুলবিন্দু P এর স্থানাজ্ঞ (0, -9) হলে, AP এর সমীকরণ নির্ণয় কর। সমাধান: প্রদন্ত রেখার সমীকরণ, x + ay = a

$$\Rightarrow \frac{x}{a} + \frac{y}{1} = 1 \qquad (1)$$

(1) রেখাটি x ও y-অক্ষকে যথাক্রমে A(a, 0) এবং B (0,1) কিন্দুতে ছেদ করে এবং OA = a ও OB = 1. প্রশ্নমতে, OA = $3.OB \Rightarrow a = 3.1 = 3$ A কিন্দুর স্থানাচ্চ্র্ক (3, 0) AP এর সমীকরণ $\frac{x-3}{3-0} = \frac{y-0}{0+9}$ $\Rightarrow 9x - 27 = 3y : 3x - y = 9$ (Ans.) 7(e) $x \cos \alpha + y \sin \alpha = p$ সরলরেখাটি $x \otimes y$ -জক্ষকে যথাক্রমে A \otimes B কিন্দুতে ছেদ করে। α কে পরিবর্তনশীল ধরে দেখাও যে, AB এর মধ্যবিন্দুর

সঞ্চারপথের সমীকরণ $p^2(x^2 + y^2) = 4x^2y^2$. [য. '০২; ব. '০ ২; সি.'০৩; ক্ব.'০৭; ঢা.'১১]

সমাধান: প্রদন্ত রেখার সমীকরণ,

 $x \cos \alpha + y \sin \alpha = p$ $\Rightarrow \frac{x}{p/\cos \alpha} + \frac{y}{p/\sin \alpha} = 1 \qquad \cdots (1)$

(1) রেখাটি x ও y-অক্ষকে যথাক্রমে
 A(p/cosα, 0) এবং B (0, p/sinα) কিন্দুতে ছেদ
 করে ।

AB এর মধ্যবিন্দুর স্থানাজ্ঞ $\left(\frac{p}{2\cos\alpha}, \frac{p}{2\sin\alpha}\right)$ ধরি AB এর মধ্যবিন্দুর সেটের যেকোন একটি উপাদান (x, y).

$$x = \frac{p}{2\cos\alpha} \implies \cos\alpha = \frac{p}{2x} \text{ and}$$
$$y = \frac{p}{2\sin\alpha} \implies \sin\alpha = \frac{p}{2y}$$
$$\cos^{2}\alpha + \sin^{2}\alpha = (\frac{p}{2x})^{2} + (\frac{p}{2y})^{2}$$
$$\implies 1 = \frac{p^{2}}{4x^{2}} + \frac{p^{2}}{4y^{2}} \implies \frac{p^{2}(y^{2} + x^{2})}{4x^{2}y^{2}} = 1$$
$$p^{2}(x^{2} + y^{2}) = 4x^{2}y^{2} \text{ (Showed)}$$

8. (a) x + 3y - 12 = 0 রেখার অক্ষদ্বয়ের মধ্যবর্তী খণ্ডিতাংশের ত্রিখন্ডক কিন্দুদ্বয়ের সাথে মূলকিন্দুর সংযোগ রেখার সমীকরণ নির্ণয় কর। [কু.'০৩, '০৭; ব.'০৭; য.'০৮; রা.'১০]

সমাধান: প্রদন্ত রেখা x + 3y - 12 = 0

8 (b) 5x + 4y - 20 = 0 রেখাট x ও y-অ যথাক্রমে A ও B বিন্দুতে ছেদ করে।

 AB এর দৈর্ঘ্য ও OAB ত্রিভুজের ক্ষেত্রফল নির্পয় কর, যেখানে O মূলবিন্দু।

II. P ও Q বিন্দুম্বর AB রেখাকে সমান তিন ডাগে বিভক্ত করলে OP ও OQ এর সমীকরণ নির্ণয় কর। [ঢা.'০৫; সি.'০৯; চ.'১৩]

III. দেখাও যে, OAP, OPQ ও OQB ত্রিভুজ তিনটির ক্ষেত্রফল পরস্পর সমান।

সমাধান: I. প্রদন্ত রেখার সমীকরণ, 5x + 4y - 20 = 0

⇒ 5x + 4y = 20 ⇒ $\frac{x}{4} + \frac{y}{5} = 1$, যা x ও y– অকে যথাক্রমে A (4, 0) ও B(0, 5) বিন্দুতে ছেদ করে ।

$$AB = \sqrt{(4-0)^2 + (0-5)^2} = \sqrt{16+25}$$
$$= \sqrt{41} \quad (4 + 25)^2 = \sqrt{16} + 25$$

এবং OAB ত্রিভুজের ত্রেফল $=\frac{1}{2} \times 5 \times 4 = 10$ বর্গ একক। II. P বিন্দুর স্থানাঞ্চ $(\frac{1\times 0+2\times 4}{1+2},\frac{1\times 5+2\times 0}{1+2})$ B $=(\frac{8}{2},\frac{5}{2})$ Q বিন্দুর স্থানাঙ্ক $\left(\frac{2\times 0+1\times 4}{2+1}, \frac{2\times 5+1\times 0}{2+1}\right)$ $=(\frac{4}{2},\frac{10}{2})$ OP রেখার সমীকরণ, $y = \frac{5/3}{8/3} x$ $\Rightarrow y = \frac{5}{8}x \Rightarrow 5x = 8y \quad \text{arg}$ OQ রেখার সমীকরণ, $y = \frac{10/3}{4/2}x$ $\Rightarrow y = \frac{10}{4}x \Rightarrow 5x = 2y$ নির্ণেয় রেখাদ্বয়ের সমীকরণ, 5x = 8y ও 5x = 2yIII. x-অ হতে P বিন্দুর দূরত্ব $\frac{5}{2}$ এবং y-অ হতে Q বিন্দুর দূরত্ব $\frac{4}{3}$. OAP ত্রিভূজের ত্রেফল = $\frac{1}{2}(OA \times \frac{5}{3})$ $=\frac{1}{2}(4 \times \frac{5}{3}) = \frac{10}{3}$ বর্গ একক । OBQ ত্রিভুজের ত্রেফল = $\frac{1}{2}(OB \times \frac{4}{3})$ $=\frac{1}{2}(5\times\frac{4}{3})=\frac{10}{3}$ वर्ग अकक । OPQ बिङ्राजत जिंक $= \frac{1}{2} \left| \frac{8}{3} \times \frac{10}{3} - \frac{4}{3} \times \frac{5}{3} \right|$

$$= \frac{1}{2} \left| \frac{80}{9} - \frac{20}{9} \right| = \frac{1}{2} \times \frac{60}{9} = \frac{10}{3}$$

OAP, OPQ ও OQB ত্রিভুজ তিনটির ত্রেফল পরস্পর সমান।

9. (a) 2y + x - 5 = 0, y + 2x - 7 = 0 are x - y + 1 = 0 ক্ষেরখাত্রায় দ্বারা গঠিত ত্রিভুচ্জের ক্ষেত্রফল নির্ণয় কর। যি.'০৩] সমাধান: মনে করি, ABC ত্রিভুজের বাহু তিনটি, $AB \equiv x + 2y - 5 = 0 \cdots (1),$ $BC \equiv 2x + y - 7 = 0 \cdots (2),$ $CA \equiv x - y + 1 = 0 \cdots (3)$ ও (3) এর ছেদকিন্দ $A \equiv \left(\frac{2-5}{-1-2}, \frac{-5-1}{-2-1}\right) = (1,2)$ (1) ও (2) এর ছেদকিন্দু, $B \equiv (\frac{-14+5}{1-4}, \frac{-10+7}{1-4}) = (3, 1)$ (2) ওঁ (3) এর ছেদবিন্দ $\mathbf{C} \equiv \left(\frac{1-7}{-2-1}, \frac{-7-2}{-2-1}\right) = (2, 3).$ $\delta_{ABC} = (1-3)(1-3) - (2-1)(3-2)$ = 4 - 1 = 3: $\Delta \text{ ABC}$ এর ক্ষেত্রফল = $\frac{1}{2} |\delta_{ABC}| = \frac{3}{2}$ বর্গ একক .: রেখাত্রয় দারা গঠিত ত্রিভুজের ক্ষেত্রফল 3/2 বর্গ একক। $\left[\Delta = \frac{\begin{vmatrix} 2 & 1 & -7 \\ 1 & -1 & 1 \end{vmatrix}}{2\begin{vmatrix} 1 & 2 & 2 & 1 \\ 2 & 2 & 1 & 1 \end{vmatrix} = \frac{9^2}{2 \times 27} = \frac{3}{2}\right]$ 9(b) দেখাও যে, x = a, y = b এবং y = mxরেখাত্রয় দারা গঠিত ত্রিভূচ্চের ক্ষেত্রফল $\frac{1}{2|m|}(b$ ma)² কা একক।[য. '০৫; রা.'০৮; কু.'১২; ব.'১৩]

প্রশালা III E

 $\begin{array}{c} \mathbf{A} Y \\ \mathbf{B} y = b \mathbf{C} \\ \mathbf{C} \\ \mathbf{A} y = mx \end{array}$ প্রমাণ ঃ ধরি. ABC ত্রিভজের বাহু তিনটি $AB \equiv x = a \cdots (1), \quad X'$ $BC \equiv y = b \cdots (2), \quad \checkmark$ $AC \equiv v = mx \cdots (3)$ (1) ও (3) এর ছেদকিন্দু, A ≡ (a, ma) (1) ও (2) এর ছৈদকিদ্ব, B = (a, b) (2) ও (3) এর ছেদকিন্দু, C ≡ ($\frac{b}{m}$, b) $\delta_{ABC} = (a - a)(b - b) - (ma - b)(a - \frac{b}{m})$ $= -(ma - b) \frac{ma - b}{m} = -\frac{(b - ma)^2}{m}$ প্রদন্ত রেখাত্রয় দ্বারা গঠিত ত্রিভুষ্ণের ক্ষেত্রফল $=\frac{1}{2}\left|-\frac{(b-ma)^2}{m}\right|$ and $a = \frac{1}{2}$ $= \frac{1}{2|m|}(b - ma)^2$ বর্গ একক। Showed) 10. (a) t এর যেকোন বাস্তব মানের জন্য P বিন্দুর স্থানাজ্ঞ্ব (t + 5, 2t - 4) হলে, এর সঞ্চারপথের সমীকরণ নির্ণয় কর। সঞ্চারপথটি অক্ষদ্বয় হতে যে অংশ ছেদ করে তা নির্ণয় কর। সমাধান: P কিন্দুর কার্ত্তেসীয় স্থানাঙ্ক (x, y) $t + 5 = x \Longrightarrow t = x - 5 \cdots (1)$ এবং $2t - 4 = y \Rightarrow 2(x - 5) - 4 = y$ [(1) দ্বারা] 2x - y = 14; যা নির্ণেয় সঞ্চারপথের সমীকরণ। ২য় অংশ : $2x - y = 14 \Rightarrow \frac{x}{7} + \frac{y}{-14} = 1$ সঞ্চারপথটির x-অক্ষের খন্ডিতাংশ = 7 এবং (b) দেখাও যে, (-3, 6) বিন্দু হতে x - 2y - 5= 0 রেখার উপর অঙ্জিত যেকোন রেখাংশকে x - 2y + 5= 0 রেখাটি সমদ্বিখন্ডিত করে। [সি. '০১; য. '০৫; ঢা. '০৯; চ. '১১; দি. '১২] প্রমাণ : প্রদন্ত রেখাদ্বয়. x - 2y - 5 = 0 (1) \Im (2) P(-3, 6) $x - 2y + 5 = 0 \cdots (2)$ এবং কিন্দুটি P(-3,6)

(2) রেখার উপর $Q(\alpha, \beta)$ $Q(\alpha, \beta)$

যেকোন একটি কিন্দু নেই। তাহলে, $\alpha - 2\beta - 5 = 0$... (3) এখন ইহা প্রমাণ করা যথেষ্ট যে , PO এর মধ্যবিন্দু $\left(\frac{-3+\alpha}{2}, \frac{6+\beta}{2}\right), x - 2y + 5 = 0$ রেখার উপর অবস্থিত। (3) হতে পাই, u = b. (1) এর বামপক্ষ = x - 2y + 5 $= \frac{-3+\alpha}{2} - 2\frac{6+\beta}{2} + 5$ $= \frac{1}{2}(\alpha - 3 - 12 - 2\beta + 10)$ $= \frac{1}{2}(\alpha - 2\beta - 5) = \frac{1}{2} \times 0 = 0$ [(3) धाता]

PO এর মধ্যবিন্দ x - 2v + 5 = 0 রেখার উপর অবস্থিত।

10(c)মূলবিন্দু হতে কোন সরলরেখার উপর অভিকত লম্বের দৈর্ঘ্য 5 একক এবং লম্বটি x-অক্ষের ধনাত্রক দিকের সাথে 120° কোণ উৎপন্ন করে : রেখাটির সমীকরণ নির্ণয় কর। মা.বো. '০৮' সমাধান: নির্ণেয় রেখার সমীকরণ

$$x \cos 120^\circ + y \sin 120^\circ = 5$$

 $\Rightarrow x(-\frac{1}{2}) + y \cdot \frac{\sqrt{3}}{2} = 5 \Rightarrow -x + \sqrt{3} y = 10$
 $x - \sqrt{3} y + 10 = 0$ (Ans.)

11. (a) (2, -1) কিদুগামী একটি সরলরেখার ঢাল -3/4 . এ রেখার উপর (2, -1) বিন্দু হতে 15 একক দুরে অবস্থিত দুইটি বিন্দুর স্থানাষ্ঠ্রক নির্ণয় কর। সমাধান ঃ মনে করি, রেখাটি x-অক্ষের সাথে lpha কোণ উৎপন্ন করে।

$$\tan \alpha = -\frac{3}{4}$$

$$\Rightarrow \sin \alpha = \frac{3}{5}$$
 এবং $\cos \alpha = -\frac{4}{5}$
অথবা, $\sin \alpha = -\frac{3}{5}$ এবং $\cos \alpha = \frac{4}{5}$

(2. – 1) কিন্দু হতে 15 একক দূরে অবস্থিত কিন্দুর স্থানাজ্ঞ্ব (x, y) হলে, $\frac{x-2}{\cos \alpha} = \frac{y+1}{\sin \alpha} = 15$ $x - 2 = 15 \cos \alpha \Rightarrow x = 15 \cos \alpha + 2$ $\mathfrak{AR} \ y+1 = 15 \sin \alpha \Longrightarrow y = 15 \sin \alpha - 1$ $\sin \alpha = \frac{3}{5}$ এবং $\cos \alpha = -\frac{4}{5}$ এর জন্য, $x = 15 \times -\frac{4}{5} + 2 = -12 + 2 = -10$ are $y = 15 \times \frac{3}{5} - 1 = 9 - 1 = 8$ $\sin \alpha = -\frac{3}{5}$ এবং $\cos \alpha = \frac{4}{5}$ এর জন্য, x = 12 + 2 = 14 and y = -9 - 1 = -10কিন্দু দুইটির স্থানাজ্ঞ্ব (-10, 8) ও (14, -10) 11(b) (- 1,1) বিন্দুগামী একটি সরলরেখার ঢাল ⁵/₁₂. এ রেখার উপর (-1, 1) কিন্দু হতে 26
 ⁶ একক দুরে অবস্থিত দুইটি বিন্দুর স্থানাজ্ঞ নির্ণয় কর। সমাধান ঃ মনে করি, রেখাটি x-অক্ষের সাথে α কোণ উৎপন্ন করে। $\tan \alpha = \frac{3}{12}$ 5 $\Rightarrow \sin \alpha = \frac{5}{13}$ and $\cos \alpha = \frac{12}{12}$ 12 অথবা, $\sin \alpha = -\frac{5}{13}$ এবং $\cos \alpha = -\frac{12}{13}$ (-11) কিন্দু হতে 26 একক দূরে অবস্থিত কিন্দুর স্থানাজ্ঞ্ব (x, y) হলে, $\frac{x+1}{\cos \alpha} = \frac{y-1}{\sin \alpha} = 26$ $x + 1 = 26 \cos \alpha \Rightarrow x = 26 \cos \alpha - 1$ এবং $y - 1 = 26 \sin \alpha \Rightarrow y = 26 \sin \alpha + 1$ $\sin \alpha = \frac{5}{13}$ এবং $\cos \alpha = \frac{12}{13}$ এর জন্য, $x = 26 \times \frac{12}{13} - 1 = 24 - 1 = 23$ वर

 $y = 26 \times \frac{5}{13} + 1 = 10 + 1 = 11$

x = -24 - 1 = -25 এবং y = -10 + 1 = -9 দুইটি কিন্দুর স্থানাজ্ঞ্ব (23, 11) ও (-25, -9) (c) A (3, - $\frac{7}{2}$) বিন্দুগামী একটি সরলরেখার ঢাল 5. রেখাটির উপরস্থ P বিন্দুর স্থানাজ্ঞ নির্ণয় কর যেন AP = $\frac{13}{2}$ হয়। সমাধান ঃ মনে করি, রেখাটি χ -অক্ষের সাথে α কোণ উৎপন্ন করে। 15 5 $\tan \alpha = \frac{3}{12}$ $\Rightarrow \sin \alpha = \frac{5}{12}$ and $\cos \alpha = \frac{12}{12}$ অথবা, $\sin \alpha = -\frac{5}{13}$ এবং $\cos \alpha = -\frac{12}{13}$ $A(3, -\frac{7}{2})$ নিন্দু হতে $AP = \frac{13}{12}$ একক দুরে অবস্থিত P বিম্দুর স্থানাজ্ঞ্ব (x v) হলে, $\frac{x-3}{\cos \alpha} = \frac{y+7/2}{\sin \alpha} = \frac{13}{2}$ $x - 3 = \frac{13}{2} \cos \alpha \Rightarrow x = \frac{13}{2} \cos \alpha + 3$ and $y + \frac{7}{2} = \frac{13}{2}\sin\alpha \Rightarrow y = \frac{13}{2}\sin\alpha - \frac{7}{2}$ $\sin \alpha = \frac{5}{12}$ এবং $\cos \alpha = \frac{12}{12}$ এর জন্য, $x = \frac{13}{2} \times \frac{12}{13} + 3 = 6 + 3 = 9$ and $y = \frac{13}{2} \times \frac{5}{13} - \frac{7}{2} = \frac{5}{2} - \frac{7}{2} = -1$ $\sin \alpha = -\frac{5}{12}$ এবং $\cos \alpha = -\frac{12}{12}$ এর জন্য, x =-6+3=-3 are $y=-\frac{5}{2}-\frac{7}{2}=-6$ কিন্দু দুইটির স্থানাজ্ঞ্ব (9, −1) ও (−3, −6)

 $\sin \alpha = -\frac{5}{12}$ এবং $\cos \alpha = -\frac{12}{12}$ এর জন্য,

কাজ:

 মূলবিন্দুগামী একটি রেখার সমীকরণ নির্ণয় কর যা x-অক্ষের ধনাত্মক দিকের সাথে 135° কোণ উৎপন্ন করে।
সমাধান : নির্পেয় রেখার ঢাল, m = tan 135° = tan (180°-45°) = - tan 45° = - 1 নির্পেয় রেখার সমীকরণ, y = m x ⇒ y = - x x + y = 0 (Ans.)
২. সরলরেখার সমীকরণ নির্ণয় কর যা y-অক্ষের সাথে 30° কোণ উৎপন্ন করে এবং y-অক্ষের ধনাত্মক দিক হতে 5 একক অংশ ছেদ করে।
সমাধান: নির্ণেয় রেখার ঢাল, m= $\cot(\pm 30^\circ)$
= .±cot 30° = ±√3 এবং y-অক্ষের ছেদক অংশ, c = 5 একক। নির্ণেয় রেখার সমীকরণ, y = mx + c ⇒ y = ±√3 x + 5 (Ans.)
 একটি সরলরেখা (6, – 1) কিন্দু দিয়ে যায় এবং যার দারা অক্ষদ্বয়ের খণ্ডিত অংশের গুণফল 1 তার সমীকরণ নির্ণয় কর।
সমাধান: ধরি, রেখাটির সমীকরণ $rac{x}{a} + rac{y}{b} = 1 \cdots (1)$
ধশ্মতে, $ab = 1 \Rightarrow b = \frac{1}{a} \cdots$ (2)
(1) রেখাটি (6 , – 1) কিন্দুগামী ।
$\frac{6}{a} + \frac{-1}{b} = 1 \Longrightarrow \frac{6}{a} - a = 1 \qquad [\qquad \frac{1}{b} = a]$
$\Rightarrow 6 - a^2 = a \Rightarrow a^2 + a - 6 = 0$
⇒ (a + 3)(a - 2) = 0 : a = 2 অথবা, a = -3
$b = \frac{1}{2}$ অথবা, $b = -\frac{1}{3}$
রেখাটির সমীকরণ, $\frac{x}{2} + 2y = 1 \Longrightarrow x + 4y = 2$
অথবা, $\frac{x}{-3} - 3y = 1 \Longrightarrow x + 9y + 3 = 0$
 একটি সরলরেখা দ্বারা অক্ষদ্বয়ের খন্ডিত অংশের সমর্ফ্টি ও অন্তরফ্রল যথাক্রমে 9 ও 5 তার, সমীকরণ

নির্ণয় কর ৷

সমাধান: ধরি, রেখাটির সমীকরণ $\frac{x}{a} + \frac{y}{b} = 1 \cdots (1)$ প্রামতে, $a + b = 9 \Longrightarrow b = 9 - a$ (2)এবং $|a - b| = 5 \Rightarrow a - b = \pm 5$ $\Rightarrow a - 9 + a = \pm 5$ [(2) \[\] \[\] \] \] [\Rightarrow 2a = 12 বা, 4 ∴ a = 6 বা, 2 (2) হতে পাই, b = 9 - 6 = 3, যখন a = 6 b = 9 - 2 = 7, যখন a = 2রেখাটির সমীকরণ $\frac{x}{6} + \frac{y}{3} = 1 \Longrightarrow x + 2y = 6$ অথবা, $\frac{x}{2} + \frac{y}{7} = 1 \Longrightarrow 7x + 2y = 14$ 5. যে সরলরেখার অক্ষদ্বয়ের মধ্যবর্তী খন্ডিত অংশ (2, 3) কিন্দুতে সমদ্বিখন্ডিত হয় তার সমীকরণ নির্ণয় কর। ৰি.'০০] সমাধান: ধরি, রেখাটির সমীকরণ $\frac{x}{a} + \frac{y}{b} = 1$ (1)(1) রেখাটির অক্ষদ্বয়ের মধ্যবর্তী খন্ডিত অৎশের মধ্যবিন্দুর স্থানাজ্ঞ $(\frac{a}{2}, \frac{b}{2})$. প্রশ্নমতে, $\frac{a}{2} = 2 \implies a = 4$ এবং $\frac{b}{2} = 3 \implies b = 6$:. রেখাটির সমীকরণ, $\frac{x}{4} + \frac{y}{6} = 1 \Rightarrow 3x + 2y = 12$ [MCQ এর জন্য, রেখাটির সমীকরণ $\frac{x}{2 \times 2} + \frac{y}{2 \times 3} = 1$] 6. (b) 2x + y = 3 ও 3x - 5y = -4 রেখাণ্র x-অক্ষের সাথে যে ত্রিভুচ্চ গঠন করে তার ক্ষেত্রফল নির্ণয় কর। সমাধান: x-অক্ষের সমীকরণ , y=0মনে করি, ABC ত্রিভুজের বাহু তিনটি, $AB = 2x + y - 3 = 0 \cdots (1), B$ $AC \equiv 3x - 5y + 4 = 0 \cdots (2)$ BC = $v = 0 \cdots (3)$, (1) ও (2) এর ছেদকিদু $A = (\frac{4-15}{10-3}, \frac{-9-8}{-10-3}) = (\frac{11}{13}, \frac{17}{13})$

উচ্চতর গণিত : ১ম পত্রের সমাধান বইঘর.কম

(1) \mathfrak{G} (3) এর ছেদবিন্দু , $\mathbf{B} \equiv (\frac{3}{2}, 0)$ (2) \mathfrak{G} (3) এর ছেদবিন্দু, $\mathbf{C} \equiv (-\frac{4}{3}, 0)$ $\delta_{ABC} = \begin{vmatrix} 11/13 & 17/13 & 1 \\ 3/2 & 0 & 1 \\ -4/3 & 0 & 1 \end{vmatrix}$ $= -\frac{17}{13}(\frac{3}{2} + \frac{4}{3}) = -\frac{17}{13} \times \frac{17}{6} = -\frac{289}{78}$ $\therefore \Delta ABC$ এর ক্ষেত্রফল $= \frac{1}{2} |-\frac{289}{78}|$ ব্র্গা একক $= \frac{289}{.156}$ ব্র্গা একক (Ans.) 7. একটি ঝিতুচ্চের বাছুরুেরের সমীকরণ $\mathbf{x} + 2\mathbf{y} = 4$,

2x - y = 3 ও x - y + 2 = 0. প্রমাণ কর যে, ত্রিভূজটি সমকোণী এবং এর ক্ষেত্রফল 7 1 কা একক। সমাধান: মনে করি, ABC ত্রিভুজের বাহু তিনটি, $AB \equiv x + 2y - 4 = 0 \cdots (1),$ $BC \equiv 2x - y - 3 = 0 \cdots (2),$ $CA \equiv x - y + 2 = 0 \cdots (3)$ (1) ও (3) এর ছেদকিদ . R $A \equiv (\frac{4-4}{-1-2}, \frac{-4-2}{-1-2}) = (0, 2)$ (1) ও (2) এর ছেদকিদ, $B = \left(\frac{-6-4}{-1-4}, \frac{-8+3}{-1-4}\right) = (2, 1)$ (2) ও (3) এর ছেদকিদ, $C \equiv (\frac{-2-3}{2+1}, \frac{-3-4}{2+1}) = (5, 7)$ এখন. AB = $\sqrt{2^2 + 1^2} = \sqrt{5}$ $B\dot{C} = \sqrt{3^2 + 6^2} = \sqrt{9 + 36} = 3\sqrt{5}$ $CA = \sqrt{5^2 + 5^2} = \sqrt{25 + 25} = 5\sqrt{2}$ AB, BC, CA এর যেকোন দুইটির সমন্টি তৃতীয়টি অপেক্ষা বৃহত্তর এবং $AB^2 + BC^2 = 5 + 45 = 50$ = CA² षाठ धर, ABC खिष्ठ्राणि সমকোণী यात $\angle B = 90^{\circ}$. २য় षरम : जिष्ठ्राणि रक्ष ज्रम् = $\frac{1}{2}(AB \times BC)$ = $\frac{1}{2}(\sqrt{5} \times 3\sqrt{5})$ र्जा धर्कक = $7\frac{1}{2}$ र्जा धर्कक [$\Delta = \left| \frac{\{-4(-2+1)+3(-1-2)+2(-1-4)\}^2}{2(-2+1)(-1-2)(-1-4)} \right|$ = $\left| \frac{(4-9-10)^2}{2(-1)(-3)(-5)} \right| = \frac{15}{2}$]

8. দেখাও যে, $2x + 7y = 14 \approx 2x - 7y = 14$ রেখাদ্বয় y-অক্ষের সাথে সমদ্বিবাহু ত্রিভুচ্চ গঠন করে। সমাধান: y-অক্ষের সমীকরণ , x = 0মনে করি, ABC ত্রিভুজের বাহু তিনটি, $AC \equiv 2x + 7y - 14 = 0 \cdots (1),$ BC = $2x - 7y - 14 = 0 \cdots (2)$ $AB \equiv x \equiv 0 \cdots (3),$ (1) ও (3) এর ছেদকিন্দ , A ≡ (0, 2) (2) ও (3) এর ছেদবিশ্দু, $B \equiv (0, -2)$ $(1) + (2) \Rightarrow 4x = 28 \Rightarrow x = 7$ R $(1) \Rightarrow 14 + 7y - 14 = 0 \Rightarrow y = 0$ ∴ (1) ও (2) এর ছেদকিদু, C ≡ (7,0) এখন AB = $\sqrt{2^2 + 2^2} = 2\sqrt{2}$ BC = $\sqrt{2^2 + 7^2} = \sqrt{4 + 49} = \sqrt{53}$ $CA = \sqrt{7^2 + 2^2} = \sqrt{49 + 4} = \sqrt{53}$ AB, BC, CA এর যেকোন দুইটির সমষ্টি তৃতীয়টি অপেক্ষা বৃহত্তর এবং $BC = \sqrt{53} = CA$ প্রদন্ত রেখাদ্বয় v-অক্ষের সাথে সমদ্বিবাহু ত্রিভুজ গঠন করে।

প্রমূল	III F
A. k এর যেকোন অশ্ন্য মানের জন্য $a_1x + b_1y + c_1 = 0$ ও $a_2x + b_2y + c_2 = 0$ সরলরেখাঘরের ছেদক্দিশ্যামী সরলরেখার সমীকরণ $a_1x + b_1y + c_1 + k$ $(a_2x + b_2y + c_2) = 0$. 2. (α, β) এবং f(x, y) = $a_1x + b_1y + c_1 = 0$ ও $g(x, y) = a_2x + b_2y + c_2 = 0$ রেখার জ্বার্ম + $b_1y + c_1 = 0$ ৩ $g(x, y) = a_2x + b_2y + c_2 = 0$ রেখার সমীকরণ, $\frac{f(x, y)}{f(\alpha, \beta)} = \frac{g(x, y)}{g(\alpha, \beta)}$ i.e., $\frac{a_1x + b_1y + c_1}{a_1\alpha + b_1\beta + c_1} = \frac{a_2x + b_2y + c_2}{a_2\alpha + b_2\beta + c_2}$	$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$ 9.(a) P(x ₁ , y ₁) বি প্রতিবিম্প (2x ₁ - h (b) (x , y) বিপ্দুর (x , -y) এবং y-ম (c) y = mx + c ব রেষার প্রতিবিম্প y $\frac{m_1 - m}{1 + m_1 m} = \frac{m - m}{1 + m_1}$
3. $y = m_1 x + c_1$ ও $y = m_2 x + c_2$ রেখান্বয়ের মধ্যবর্তী কোল, $\varphi = \pm \tan^{-1} \frac{m_1 - m_2}{1 + m_1 m_2}$. 4. $y = m_1 x + c_1$, $y = m_2 x + c_2$ রেখান্বয় সমান্দতরাল হলে, $m_1 = m_2$ এবং $a_1 x + b_1 y + c_1 = 0$, $a_2 x + b_2 y + c_2 = 0$ রেখান্বয় সমান্দতরাল হলে, $\frac{a_1}{a_2} = \frac{b_1}{b_2}$.	(d) x এবং y-অক্ষে রেখার প্রতিবিম্ঘ যথা – ax + by + c = (MCQ এর জ
রেখাবর সমাশতরাশ হলে, $\frac{1}{a_2} = \frac{1}{b_2}$. ax + by + c = 0 রেখার সমাশতরাল যেকোণ রেখার সমীকরণ $ax + by + k = 0$; যেখানে k একটি ধ্বক 5. $ax + by + c = 0$ রেখার সমাশতরাল এবং (α, β) কিন্দুগামী রেখার সমীকরণ, $ax + by = a\alpha + b\beta$.	1. $(x_1, y_1) \otimes (x_2)$ $(y_1 - y_2)x - (x_1, y_1) \otimes (x_2, y_2)$ 4. $(x_1, y_1) \otimes (x_2, y_2)$ $(y_1 - y_2)x - (x_1 - y_2)x - (x_1 - y_2)$
6. $y = m_1 x + c_1$, $y = m_2 x + c_2$ রেখাদের লম্ব হলে, $m_1 m_2 = -1$ এবং $a_1 x + b_1 y + c_1 = 0$, $a_2 x + b_2 y + c_2 = 0$ রেখাদের লম্ব হলে, $a_1 a_2 + b_1 b_2 = 0$. $ax + by + c = 0$ রেখার লম্ব যেকোন রেখার সমীকরণ $bx - ay + k = 0$; যেখানে k একটি ধ্রবক । 7. $ax + by + c = 0$ রেখার লম্ব এবং (α, β)	= (3. (x_1, y_1) ও (x_2) (x_3, y_3) কিছ $(x_1 - x_2)x + (y_1)$ = (4. (x_1, y_1) ও (x_2) সমছিখন্ডকের সমীকর
কিন্দুগামী রেখার সমীকরণ, $bx - ay = b \alpha - a \beta$. 8. $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ ও $a_3x + b_3y + c_3 = 0$ রেখাত্রয় সমকিন্দু হলে,	$= -5.$ $a_1x + b_1y + c_2$ 0 রেখাঘয়ের ছেদবিন্দ্

0 বিন্দুর সাপেক্ষে A(h , k) বিন্দুর $h, 2y_2 - k$). দুর প্রতিবিম্ব *x-*অক্ষের সাপেক্ষে -অক্ষের সাপেক্ষে (– x , y). রেখার সাপেক্ষে $y = m_1 x + c_1$ $y = m_2 x + c_2$ হবে, যদি <u>- m2</u> रा। $m_{2}x + c_{2}$ mm₂ $\overline{v} = mx + c$ $y = m_1 x + c_1$ ক্ষের সাপেক্ষে ax + by + c = 0ধাব্রুমে ax - by + c = 0 এবং = 0. জন্য বিশেষ সূত্র ঃ $x_2,y_2)$ কিন্দুগামী রেখার সমীকরণ $-(x_1 - x_2)y =$ $(y_1 - y_2)x_1 - (x_1 - x_2)y_1$ 2, y2) কিন্দুগামী রেখার সমান্ডরাল কিদুগামী সমীকরণ রেখার $(1 - x_2)y$

$$= (y_1 - y_2)x_3 - (x_1 - x_2)y_3$$

3. (x_1, y_1) ও (x_2, y_2) किमूगांभी রেখার **ग**म्प এবং (x_3, y_3) किमूगांभी রেখার সমীকরণ $(x_1 - x_2)x + (y_1 - y_2)y$ $= (x_1 - x_2)x_3 + (y_1 - y_2)y_3$

4. $(x_1, y_1) \otimes (x_2, y_2)$ কিন্দুগামী রেখার লম্ব সমছিখন্ডকের সমীকরণ $(x_1 - x_2)x + (y_1 - y_2)y$

$$=\frac{1}{2}(x_1^2+y_1^2-x_2^2-y_2^2)$$

5. $a_1x + b_1y + c_1 = 0$ ও $a_2x + b_2y + c_2 = 0$ রেখাদ্বয়ের ছেদক্দিপুগামী এবং *m* ঢাল বিশিষ্ট রেখার সমীকরণ, $(a_2 + mb_2)(a_1x + b_1y + c_1) - 0$ উচ্চতর গণিত : ১ম পত্র সমাধান বইঘর কম

 $(a_1 + mb_1)(a_2x + b_2y + c_2) = 0$ 6.x-অক্ষের সমান্তরাল ও $f(x) \equiv a_1 x + b_1 y + c_1 = 0$ ও $g(x) \equiv a_2 x + b_2 y + c_2 = 0$ রেখাঘয়ের ছেদকিন্দুগামী রেখার সমীকরণ, $a_2 \mathbf{f}(\mathbf{x}) - a_1 \mathbf{g}(\mathbf{x}) = \mathbf{0}$ y-অক্ষের সমান্তরাল ও $f(x) \equiv a_1 x + b_1 y + c_1 = 0$ ও $g(x) \equiv a_1x + b_2y + c_2 = 0$ রেখাবয়ের ছেদক্দিগামী রেখার সমীকরণ, $\mathbf{b}_2 \mathbf{f}(\mathbf{x}) - \mathbf{b}_1 \mathbf{g}(\mathbf{x}) = \mathbf{0}$ 7. অক্ষদয় হতে সমান সংখ্যামানের অংশ ছেদ করে এবং $f(x) \equiv a_1 x + b_1 y + c_1 = 0$ ও g(x)≡ $a_2x + b_2y + c_2 = 0$ রেখাদ্বয়ের ছেদকিন্দুগামী রেখার সমীকরণ $(a_2 - b_2)\mathbf{f}(\mathbf{x}) - (a_1 - b_1)\mathbf{g}(\mathbf{x}) = \mathbf{0}$ এবং $(a_2 + b_2)$ f(x) - $(a_1 + b_1)$ g(x) = 0. 8. (x_1, y_1) বিন্দুগামী এবং m, ঢাল বিশিষ্ট রেখার সাথে Θ $(m_2 = \tan \theta)$ কোণ উৎপন্ন করলে রেখা দুইটির সমীকরণ, $(m_1 - m_2)x - (1 + m_1m_2)y$ $=(m_1-m_2)x_1-(1+m_1m_2)y_1$ এবং $(m_1 + m_2)x - (1 - m_1m_2)y =$ $(m_1 + m_2)x_1 - (1 - m_1m_2)y_1$ 9. ax + by + c = 0 রেখার সাপেক্ষে (x_1, y_1) কিন্দুর প্রতিবিম্প $(x_1 - \frac{2a(ax_1 + by_1 + c)}{a^2 + b^2},$ $y_1 - \frac{2b(ax_1 + by_1 + c)}{a^2 + b^2})$ 10. $f(x) \equiv ax + by + c = 0$ রেখার সাপেক্ষে $g(x) \equiv a_1 x + b_1 y + c_1 = 0$ রেখার প্রতিবিম্ব $(a^{2}+b^{2})g(x) - 2(aa_{1}+bb_{1})f(x) = 0$ প্রশ্নমালা - III F 1.(a) মূলবিন্দু এবং $\frac{x}{a} + \frac{y}{b} = 1$ ও $\frac{x}{b} + \frac{y}{a} = 1$ রেখাদ্বয়ের ছেদবিন্দুগামী সরলরেখার সমীকরণ নির্ণয় কর। [b.'o@,'o9] সমাধান: ধরি, প্রদত্ত রেখাদ্বয়ের ছেদব্দিদুগামী রেখাটির সমীকরণ $\frac{x}{a} + \frac{y}{\bullet b} - 1 + k \left(\frac{x}{b} + \frac{y}{a} - 1\right) = 0$, $k \neq 0$

রেখাটি মুলবিন্দু (0, 0) দিয়ে অতিক্রম করলে, $\frac{0}{a} + \frac{0}{b} - 1 + k \left(\frac{0}{b} + \frac{0}{a} - 1\right) = 0 \Longrightarrow k = -1$ ় নির্ণেয় রেখার সমীকরণ $\frac{x}{a} + \frac{y}{b} - 1 - \frac{x}{b} - \frac{y}{a} + 1 = 0$ \Rightarrow bx + ay - ax - by = 0 \Rightarrow (b - a)x - (b - a)y = 0 x - y = 0 (Ans.) 1(b) দেখাও যে, k এর সব মানের জন্য একগুচ্ছ সরলরেখা (3 + 2k) x + 5ky - 3 = 0 একটি নির্দিষ্ট কিন্দুগামী । কিন্দুটির স্থানাজ্ঞ নির্ণয় কর। রো. '০৩] প্রমাণ : (3 + 2k) x + 5ky - 3 = 0 \Rightarrow 3x + 2kx + 5ky - 3 = 0 ⇒ 3x – 3 + k (2x + 5y) = 0.এ রেখাটি k এর বিভিন্ন মানের জন্য একগুচ্ছ সরলরেখা সূচিত করে যারা সকলেই 3x - 3 = 0··· (1) এবং 2x + 5y ···(2) রেখাদ্বয়ের ছেদবিন্দুগামী । (1) হতে পাই, 3x = 3 ⇒ x = 1. আবার, x = 1 হলে, (2) হতে পাই, $2 + 5y = 0 \Rightarrow y = -\frac{2}{5}$. নির্ণেয় নির্দিষ্ট কিদুটির স্থানাজ্ঞ্ব $(1, -\frac{2}{5})$ 2(a) $x - 2y - 1 = 0 \approx 2x + 3y + 2 = 0$ রেখাদ্বয়ের ছেদবিন্দুগামী এবং tan 45° ঢাল বিশিষ্ট সরলরেখার সমীকরণ নির্ণয় কর। [q. 'or, 'os] সমাধান : ধরি, প্রদন্ত রেখাদ্বয়ের ছেদকিন্দুগামী রেখাটির সমীকরণ x - 2y - 1 + k(2x + 3y + 2) = 0 $\Rightarrow (1+2k)x + (3k-2)y + 2k-1 = 0\cdots(1)$ (1) রেখাটির ঢাল = $-\frac{1+2k}{3k-2}$ প্রশ্নমতে, $-\frac{1+2k}{2k-2} = \tan 45^\circ = 1$ \Rightarrow 3k - 2 = -1 - 2k \Rightarrow 5k = 1 \Rightarrow k = $\frac{1}{5}$ নির্ণেয় রেখার সমীকরণ $x - 2y - 1 + \frac{1}{5} (2x + 3y + 2) = 0$ \Rightarrow 5x - 10y - 5 + 2x + 3y + 2 = 0

 \Rightarrow 7x - 7y - 3 = 0 (Ans.) বিকন্ম পদ্ধতি : x - 2y - 1 = 0 ও 2x + 3y + 2 = 0 রেখা দুইটির ছেদকিন্দু $\left(\frac{-4+3}{3+4}, \frac{-2-2}{3+4}\right)$ অর্থাৎ $\left(-\frac{1}{7}, -\frac{4}{7}\right)$ $\left(-\frac{1}{7},-\frac{4}{7}\right)$ কিন্দুগামী এবং $\tan 45^\circ = 1$ ঢাল বিশিষ্ট সরলরেখার সমীকরণ $y + \frac{4}{7} = 1.(x + \frac{1}{7})$ \Rightarrow 7y + 4 = 7x + 1 :: 7x - 7y - 3 = 0 [MCO এর জন্য, (2 +1.3) (x - 2y - 1) - $(1 + 1 \times -2)(2x + 3y + 2) = 0 \Longrightarrow 5x - 10y$ $-5 + 2x + 3y + 2 = 0 \Longrightarrow 7x - 7y - 3 = 0$ 2(b) 5x - 9y + 13 = 0 9x - 5y + 11 = 0রেখাদ্বয়ের ছেদ বিন্দু দিয়ে যায় এবং x-অক্ষের সম্ভো 45° কোণ উৎপন্ন করে এরপ সরলরেখার সমীকরণ নির্ণয় কর। [মা.বো. '08; ঢা. '১২] সমাধান : নির্শেয় রেখার ঢাল = $tan(\pm 45^{\circ}) = \pm 1$ 5x - 9y + 13 = 0 \Im 9x - 5y + 11 = 0 রেখা দুইটির ছেদবিন্দুর \mathbb{R} $=(\frac{-99+65}{-25+81},\frac{117-55}{-25+81})$ $=(-\frac{34}{56},\frac{62}{56})=(-\frac{17}{28},\frac{31}{28})$ $\left(-\frac{17}{28},\frac{31}{28}\right)$ কিন্দুগামী এবং ± 1 ঢাল বিশিষ্ট সরলরেখার সমীকরণ $y - \frac{31}{28} = \pm 1.(x + \frac{17}{28})$ \Rightarrow 28y - 31 = ±(28x + 17) '+' নিয়ে পাই, 28x −28y + 48 = 0 7x - 7y + 12 = 0আবার, '-' নিয়ে পাই, 28x + 28y - 14 = 0 $\therefore 2x + 2y - 1 = 0$ উত্তর ঃ 7x - 7y + 12 = 0 বা, 2x + 2y - 1= 0 2(c) মৃলবিম্পু এবং 4x + 3y - 8 = 0 ও x + y =1 রেখা দৃইটির ছেদক্দিদগামী সরলরেখার সমীকরণ নির্ণয় কর।

ধরি, প্রদন্ত রেখাদ্বয়ের ছেদবিন্দুগামী সমাধান রেখাটির সমীকরণ 4x + 3y - 8 + k(x + y - 1) = 0 $\Rightarrow (4+k)x + (3+k)y - 8 - k = 0 \cdots (i)$ (i) রেখাটি মূলবিন্দু (0, 0) দিয়ে অতিক্রম করে। $(4 + k) \times 0 + (3 + k) \times 0 - 8 - k = 0$ \Rightarrow k = -8 নির্ণেয় রেখার সমীকরণ. (4-8)x + (3-8)y - 8 + 8 = 0 \Rightarrow 4 x + 5y = 0 (Ans.) 3. (a) দুইটি সরলরেখা (6, 7) বিন্দু দিয়ে যায় এবং তারা 3x + 4y = 11 রেখার সক্ষো 45° কোণ উৎপন্ন করে। রেখা দুইটির সমীকরণ নির্ণয় কর। [রা.'১১.'১৩; দি'০৯; চ.'১১; ব.'১৩] সমাধান : ধরি, (6, 7) কিন্দুগামী রেখার সমীকরণ $y - 7 = m(x - 6) \cdots (1)$ 3x + 4y = 11 রেখার ঢাল = $-\frac{3}{4}$ প্রশ্নমতে, $\tan 45^\circ = \pm \frac{m + \frac{3}{4}}{1 - \frac{3}{2}m}$ $\Rightarrow 1 = \pm \frac{4m+3}{4-3m} \Rightarrow 4-3m = \pm (4m+3)$ '+' निरा, 4 - 3m = 4m + 3 \Rightarrow m = $\frac{1}{7}$ '–' নিয়ে 4 – 3m = – 4m – 3 ⇒ m = – 7 রেখা দুইটির সমীকরণ, y – 7 = $\frac{1}{7}(x - 6)$ $\Rightarrow 7y - 49 = x - 6 \Rightarrow x - 7y + 43 = 0$ এবং y - 7= -7(x - 6)⇒ y - 7 = -7x + 42 \Rightarrow 7x + y - 49 = 0 [MCQ এর জন্য, $\left(-\frac{3}{4}-1\right)x - \left(1-\frac{3}{4}\right)y = -\frac{7}{4}.6 - \frac{1}{4}.7,$ $\left(-\frac{3}{4}+1\right) x - \left(1+\frac{3}{4}\right) y = \frac{1}{4}.6 - \frac{7}{4}.7$] 3.(b) দুইটি সরলরেখা (3, 2) কিন্দু দিয়ে যায় গ্রুক্ত তারা x-2y=3 রেখার সক্ষো 45° কোণ উৎপন্ন করে। রেখা দুইটির সমীকরণ নির্ণয় কর। [য.'০৮]

সমাধান : ধরি, (3, 2) কিন্দুগামী রেখার সমীকরণ $\mathbf{v} - 2 = \mathbf{m}(\mathbf{x} - 3) \cdots (1)$ x - 2y = 3 রেখার ঢাল = $\frac{1}{2}$ প্রশ্নমতে, $\tan 45^\circ = \pm \frac{m - \frac{1}{2}}{1 + \frac{1}{2}m}$ $\Rightarrow 1 = \pm \frac{2m-1}{2+m} \Rightarrow 2 + m = \pm (2m-1)$ '+' নিয়ে. 2 + m = 2m − 1 ⇒ m = 3 '-' निरा $2 + m = -2m + 1 \Rightarrow m = -\frac{1}{2}$ রেখা দুইটির সমীকরণ, v - 2 = 3(x - 3) \Rightarrow y - 2 = 3x - 9 \Rightarrow 3x - y = 7 এবং $y - 2 = -\frac{1}{2}(x - 3) \Rightarrow 3y - 6 = -x + 3$ $\Rightarrow x + 3y = 9$ (c) দুইটি সরলরেখা (- 1, 2) কিন্দু দিয়ে যায় 3 এবং তারা 3x - y + 7 = 0 রেখার সচ্চো 45° কোণ উৎপন্ন করে । রেখা দুইটির সমীকরণ নির্ণয় কর একং তাদের সমীকরণ হতে দেখাও যে, তারা পরস্পর লম্বভাবে অবস্থান করে। রো '১০: ৰ.'১১; সি.'০৭.'১২.'১৪; মা.'০৯; য.'১১.'১৪; য..দি.'১৩] সমাধান : ধরি, (-1, 2) কিন্দুগামী রেখার সমীকরণ $y - 2 = m(x + 1) \cdots (1)$ 3x - y + 7 = 0 রেখার ঢাল = 3 প্রশ্নমতে, $\tan 45^\circ = \pm \frac{m-3}{1+3m}$ $\Rightarrow 1 = \pm \frac{m-3}{1+3m} \Rightarrow 1 + 3m = \pm (m-3)$ '+' নিয়ে. 2m = − 4 ⇒ m = −2 '-' নিয়ে 4m = 2 \Rightarrow m = $\frac{1}{2}$ রেখা দুইটির সমীকরণ, y - 2 = -2(x + 1) \Rightarrow y - 2 = -2x - 2 \Rightarrow 2x + y = 0 (Ans.) এবং $y - 2 = \frac{1}{2}(x + 1) \Longrightarrow 2y - 4 = x + 1$ $\Rightarrow x - 2y + 5 = 0$ (Ans.)

এখন, রেখা দুইটির ঢালদ্বয়ের গুণফল = $-2.\frac{1}{2} = -1$ রেখা দুইটি পরস্পর লম্বভাবে অবস্থান করে। 3(d) দুইটি সরলরেখা (6, - 7) কিন্দু দিয়ে যায় একং তারা $y + \sqrt{3} x = 1$ রেখার সচ্চো 60° কোণ উৎপন্ন করে । রেখা দুইটির সমীকরণ নির্ণয় কর। [ण. 'oe; मि. 'oa; कू. '>>] সমাধান : ধরি, (6, -7) কিন্দুগামী রেখার সমীকরণ $y + 7 = m(x - 6) \cdots (1)$ $y + \sqrt{3} x = 1$ রেখার ঢাল = $-\sqrt{3}$ প্রশ্নমতে, $\tan 60^\circ = \pm \frac{m + \sqrt{3}}{1 + \sqrt{2}m}$ $\Rightarrow \sqrt{3} = \pm \frac{m + \sqrt{3}}{1 \sqrt{5}}$ $\Rightarrow \sqrt{3} - 3m = \pm (m + \sqrt{3})$ '+' নিয়ে, $\sqrt{3}$ - 3m = m + $\sqrt{3}$ ⇒ m = 0 '-' নিয়ে $\sqrt{3} - 3m = -m - \sqrt{3}$ $\Rightarrow 2m = 2\sqrt{3} \Rightarrow m = \sqrt{3}$ রেখা দুইটির সমীকরণ, y + 7 = 0(x - 6) \Rightarrow y + 7 = 0 (Ans.) এবং $y + 7 = \sqrt{3}(x - 6)$ (Ans.) 3(e) দুইটি সরলরেখা মুলবিন্দু দিয়ে যায় এবং তারা 3y = 2x রেখার সজ্জো $\tan^{-1}\frac{1}{2}$ কোণ উৎপন্ন করে। রেখা দুইটির সমীকরণ নির্ণয় কর। [۲.'۲] সমাধান : ধরি, মূলকিন্দু (0, 0) দিয়ে যায় এরপ রেখার সমীকরণ $y = mx \cdots (1)$ 3y = 2x রেখার ঢাল = $\frac{2}{3}$ প্রশ্নমতে, $\tan \tan^{-1} \frac{1}{2} = \pm \frac{m - \frac{2}{3}}{1 + \frac{2}{2}m}$ $\Rightarrow \frac{1}{2} = \pm \frac{3m-2}{3+2m}$ \Rightarrow 3 + 2m = ±(6m - 4) '+' নিয়ে, 3 + 2m = 6m - 4

 $\Rightarrow 4m = 7 \Rightarrow m = \frac{7}{4}$ (-) fig. 3 + 2m = -6m + 4 $\Rightarrow 8m = 1 \Rightarrow m = \frac{1}{2}$ রেখা দুইটির সমীকরণ, $y = \frac{7}{4}x \implies 7x = 4y$ এবং $y = \frac{1}{8}x \Longrightarrow x = 8y$ 4(a) (4, -3) বিদ্যামী এবং 2x + 11y - 2 = 0রেখার সমান্তরাল সরলরেখার সমীকরণ নির্ণয় কর। [সি. '০৬; মা. '০৪, '০৬] সমাধান : ধরি, 2x + 11y - 2 = 0 এর সমান্তরাল নির্শেয় রেখার সমীকরণ $2x + 11y + k = 0 \cdots (1)$ প্রশ্নমতে (1) রেখাটি (4, – 3) কিন্দুগামী । $2 \times 4 + 11 \times -3 + k = 0 \implies k = 25$ নির্ণেয় রেখার সমীকরণ 2x + 11y + 25 = 0[MCO এর জন্য, $2x + 11y = 2 \times 4 + 11y = 2 \times 4$ $11 \times -3 = -251$ 4(b) (1, 2) বিদ্যগামী এবং 3x - 4y + 8 = 0রেখার সমান্তরাল সরলরেখার সমীকরণ নির্ণয় কর। ৰি.'০৪] সমাধান : 3x - 4y + 8 = 0 রেখার ঢাল $=\frac{3}{4}$ (1, 2) বিন্দুগামী এবং 3x - 4y + 8 = 0রেখার সমান্তরাল সরলরেখার সমীকরণ, $y-2 = \frac{3}{4}(x-1) \Longrightarrow 4y-8 = 3x-3$ 3x - 4y + 5 = 04(c) y-অক্ষের সমান্তরাল এবং 2x - 3y + 4 = 0ও 3x + 3y - 5 = 0 রেখা দুইটির ছেদক্বিদুগামী সরলরেখার সমীকরণ নির্ণয় কর। [চ.'০৪; ব.'০৪; মা.বো.'০৭; ব.'১০; দি.'১৪] সমাধান : ধরি, প্রদন্ত রেখা দুইটির ছেদকিদুগামী রেখার সমীকরণ 2x - 3y + 4 + k(3x + 3y - 5) = 0 \Rightarrow (2 + 3k)x + (-3 + 3k) y + 4 - 5k = 0 এ রেখাটি y-অক্ষের সমানতরাল বলে, y-এর সহগ $-3 + 3k = 0 \implies k = 1$ নির্ণেয় রেখার সমীকরণ, (2+3)x+4-5=0

5x - 1 = 0 (Ans.) [MCQ এর জন্য, 3(2x - 3y + 4) - (-3)(3x + (3v-5) = 04 (d) x- অক্ষের সমান্তরাল এবং x - 3y + 2 = 0x + y - 2 = 0 রেখা দুইটির ছেদক্বিদ্যামী 8 সরলরেখার সমীকরণ নির্ণয় কর। বি. '০১; বৃ. '০৭] সমাধান : ধরি, প্রদন্ত রেখা দুইটির ছেদক্দিগামী রেখার সমীকরণ x - 3y + 2 + k(x + y - 2) = 0 $\Rightarrow (1+k)x + (-3+k)y + 2 - 2k = 0$ এ রেখাটি x-অক্ষের সমান্তরাল বলে, x-এর সহগ $1 + k = 0 \Longrightarrow k = -1$ নির্ণেয় রেখার সমীকরণ, -4y + 2 + 2 = 0y - 1 = 0 (Ans.) [MCQ এর জন্য,1(x-3y +2)-1(x + y-2)=0] 5. (a) দুইটি সরলরেখার সমীকরণ নির্ণয় কর যারা 7x + 13y - 87 = 0 x - 8y + 7 = 0 cardiners ছেদকিন্দুগামী এবং অক্ষ দুইটি হতে সমান সংখ্যামানের অংশ [চ.'০৬; সি.'০৬; ব.'১৪] ছেদ করে। ধরি প্রদন্ত রেখাদ্বয়ের ছেদকিন্দগামী রেখার সমাধান সমীকরণ 7x + 13y - 87 + k(5x - 8y + 7) = 0 $\Rightarrow (7 + 5k)x + (13 - 8k)y + 7k - 87 = 0$ ইহা অক্ষ দুইটি হতে সমান সংখ্যমানের অংশ ছেদ করলে x ও v এর সহগের সংখ্যমান সমান হবে। $7 + 5k = \pm (13 - 8k)$ '+' निरा, $13k = 6 \Rightarrow k = \frac{6}{13}$ '+' নিয়ে, $3k = 20 \Rightarrow k = \frac{20}{2}$ রেখা দুইটির সমীকরণ, $7x + 13y - 87 + \frac{6}{13}(5x - 8y + 7) = 0$ \Rightarrow 91x+169y -1131 + 30x- 48y + 42 =0 \Rightarrow 121x+121y-1089 = 0 \Rightarrow x + y - 9= 0 এবং $7x + 13y - 87 + \frac{20}{3}(5x - 8y + 7) = 0$ $\Rightarrow 21x + 39y - 261 + 100x - 160y + 140 = 0$ \Rightarrow 121x - 121y - 121= 0 \Rightarrow x - y - 1 = 0

[MCQ এর জন্য, (5 + 8) (7x + 13y - 87) -(7-13)(5x-8y+7) = 0 and (5-8)(7x+13y-87) - (7+13)(5x-8y+7) = 0] (b) যদি $\frac{x}{a} + \frac{y}{b} = 1$ সরলরেখাটি 2x - y = 1 ও 3x - 4y + 6 = 0 রেখাদ্বয়ের ছেদবিন্দুগামী হয় এবং 4x + 3y - 6 = 0 রেখাটির সমান্তরাল হয় , তাহলে $a \otimes \mathbf{b}$ as \mathbf{h} and \mathbf{h} [ঢা. '১২; রা. '১৩] সমাধান : 2x - y - 1 = 0 ও 3x - 4y + 6 = 0 রেখা দুইটির ছেদবিন্দুর x in x = $(\frac{-6-4}{2}, \frac{-3-12}{2}) = (2, 3)$ প্রশ্নমতে, $\frac{x}{a} + \frac{y}{b} = 1$ রেখাটি 4x + 3y - 6 = 0রেখাটির সমানতরাল এবং (2, 3) কিন্দুগামী $\frac{1/a}{4} = \frac{1/b}{2} \Rightarrow 4a = 3b \Rightarrow a = \frac{3b}{4}$ $aq \frac{2}{a} + \frac{3}{b} = 1 \Longrightarrow \frac{8}{2b} + \frac{3}{b} = 1 \Longrightarrow \frac{8+9}{2b} = 1$ $\Rightarrow b = \frac{17}{3}$ $a = \frac{3}{4} \times \frac{17}{2} = \frac{17}{4}$ উত্তর ঃ $a = \frac{17}{4}, b = \frac{17}{2}$ 5(c) 3x - 4y + 1 = 0 3x + y - 1 = 0রেখাদ্বয়ের ছেদবিন্দু দিয়ে যায় এবং অক্ষদ্বয় হতে একই চিহ্নবিশিষ্ট সমান সমান অংশ ছেদ করে এরুপ সরলরেখার সমীকরণ নির্ণয় কর। রো.'০২] ধরি,প্রদত্ত রেখাদ্বয়ের ছেদবিন্দুগামী রেখার সমাধান সমীকরণ 3x - 4y + 1 + k(5x + y - 1) = 0 $\Rightarrow (3+5k)x + (-4+k)y + 1 - k = 0$ ইহা অক্ষ দুইটি হতে একই চিহ্নবিশিষ্ট সমান সমান অংশ ছেদ করলে x ও y এর সহগ সমান হবে। $3 + 5k = -4 + k \Longrightarrow 4k = -7 \Longrightarrow k = -\frac{1}{4}$ নির্ণেয় রেখার সমীকরণ $3x - 4y + 1 - \frac{7}{4}(5x + y - 1) = 0$ $\Rightarrow 12x - 16y + 4 - 35x - 7y + 7 = 0$ $\Rightarrow -23x - 23y + 11 = 0$

23x + 23y = 11 (Ans.)

[MCQ এর জন্য, (5-1)(3x-4y+1) - (3+4)(5x+y-1) = 0] 5(d) A(1,1), B(3,4) ও C(5,-2) বিদ্দৃগ্লো ABC ত্রিভুদ্জের শীর্ষবিন্দু । AB ও AC এর মধ্যবিন্দুর সংযোগ সরলরেখার সমীকরণ নির্ণয় কর। এবং দেখাও যে, সরলরেখাটি BC এর সমান্দতরাল। [চ.,দি.'১০; ঢা.'১১] সমাধান ধরি, AB ও AC এর মধ্যবিন্দু যথাক্রমে D ও E. $D \equiv (\frac{1+3}{2}, \frac{1+4}{2}) = (2, \frac{5}{2})$ এবং $E \equiv (\frac{1+5}{2}, \frac{1-2}{2}) = (3, -\frac{1}{2})$ DE রেখা অর্থাৎ AB ও AC এর মধ্যবিন্দুর

সংযোগ রেখার সমীকরণ $\frac{x-2}{2-3} = \frac{y-\frac{5}{2}}{\frac{5}{2}+\frac{1}{2}}$ $\Rightarrow \frac{x-2}{2-3} = \frac{2y-5}{5+1} \Rightarrow 6x - 12 = -2y + 5$ 6x + 2y = 17 (Ans.) ২য় অংশ : 6x + 2y = 17 রেখার ঢাল = $-\frac{6}{2} = -3$ এবং BC রেখার ঢাল = $\frac{4+2}{3-5} = \frac{6}{-2} = -3$ পরস্পর সমান। অতএব, রেখাটি BC এর সমান্তরাল। 6(a) (4,-3) কিন্দু দিয়ে যায় এবং 2x+11y-2=0 রেখার উপর লস্ব সরলরেখার সমীকরণ নির্ণয় কর। বি.'১২; কু.'১৪; মা.'১২.'১৪] সমাধান : ধরি, 2x + 11y - 2 = 0 এর উপর লম্ব নির্ণেয় রেখার সমীকরণ 11x - 2v + k = 0(1)প্রশ্নমতে (1) রেখাটি (4, -3) কিন্দুগামী । $11 \times 4 - 2 \times -3 + k = 0 \implies k = -50$ নির্ণেয় রেখার সমীকরণ. 11x - 2y - 50 = 0[MCQ এর জন্য,11x - 2y =11×4-2×-3 = 50] (b) (2, -3) বিন্দু দিয়ে যায় এবং 2x - 3y = 7রেখার উপর লম্ব সরলরেখার সমীকরণ নির্ণয় কর।

ক. '০১; য. '০৭; মা. '০৩] সমাধান : ধরি, 2x - 3y = 7 এর উপর লম্ব নির্ণেয় রেখার সমীকরণ $3x + 2y + k = 0 \cdots (1)$ প্রশ্নমতে (1) রেখাটি (2, - 3) কিন্দুগামী । $3 \times 2 + 2 \times -3 + k = 0 \implies k = 0$ নির্ণেয় রেখার সমীকরণ, 3x + 2y = 06(c) (2, 5) किंग्रु मिरा गां विरु 3x + 12y = 3রেখার উপর লম্ব সরলরেখার সমীকরণ ানর্ণয় কর। [ቑ.'0৫; ኦ.'ን8] ধরি, 3x + 12y = 3 এর উপর লম্ব সমাধান নির্ণেয় রেখার সমীকরণ $12x - 3y + k = 0 \cdots (1)$ প্রশ্নমতে (1) রেখাটি (2, 5) কিদুগামী। $12 \times 2 - 3 \times 5 + k = 0 \implies k = -9$ নির্ণেয় রেখার সমীকরণ, 12x - 3y - 9 = 07.(a) মূলকিন্দু ও (x_1, y_1) কিন্দুর সংযোগ রেখা এবং (b, 0) ও (x_2, y_2) কিন্দুদ্বয়ের সংযোগ রেখা পরস্পর লম্ব হলে প্রমাণ কর যে, $x_1x_2 + y_1y_2 = b x_1$. [**ঢ**.'০৩; রা.'০৪.'১৩; ব.'০৬; ঢা.'১৩] প্রমাণ: ধরি, মূলকিন্দু ও (x_1, y_1) কিন্দুর সংযোগ রেখার ঢাল m_1 এবং (b,0) ও (x_2, y_2) কিন্দুদয়ের সংযোগ রেখার ঢাল m_2 $m_1 = \frac{y_1}{x_1}$ and $m_2 = \frac{y_2 - 0}{x_2 - b} = \frac{y_2}{x_2 - b}$ প্রশ্নমতে, রেখাদ্বয় পরস্পর লম্ব $m_1 m_2 = -1 \Longrightarrow \frac{y_1}{x_1} \times \frac{y_2}{x_2 - b} = -1$ $\Rightarrow y_1y_2 = x_1x_2 + bx_1$ $x_1x_2 + y_1y_2 = b x_1$ (Proved) 7.(b) (2, 3) কিন্দুগামী সরলরেখার উপর (x , y) যেকোন একটি কিন্দু এবং রেখাটি (-1,2) ও (-5,4) কিন্দুদ্বয়ের সংযোগ রেখার উপর লম্ব। প্রমাণ কর যে, 2x - y - 1 = 0. প্রমাণ: ধরি, (... 3) কিন্দুগামী সরলরেখার ঢাল m_1 এবং (-1,2) ও (-5, 4) কিন্দুদ্বয়ের সংযোগ

রেখার ঢাল m_2 .

 $m_1 = \frac{y-3}{x-2}$ [(2, 3) বিন্দুগামী সরলরেখার উপর (x, v) যেকোন একটি কিন্দু।] are $m_2 = \frac{2-4}{-1+5} = \frac{-2}{4} = -\frac{1}{2}$ প্রশামতে, রেখাদ্বয় পরস্পর লম্ব । $\frac{y-3}{x-2} \times -\frac{1}{2} = -1 \Longrightarrow -y + 3 = -2x + 4$ 2x - y - 1 = 0 (Proved) 7(c) A(1, 1), B(3, 4) \otimes C(5, -2) বিন্দগুলো ABC ত্রিভুজের শীর্ষবিন্দ । A বিন্দগামী এবং BC রেখার উপর লম্ব সরলরেখার সমীকরণ নির্ণয় কর। থি.ভ.প. '০৪] A কিন্দুগামী এবং BC রেখার উপর সমাধান লম্ব সরলরেখার সমীকরণ y – $1 = -\frac{3-5}{4+2}(x-1)$ \Rightarrow y-1 = $-\frac{-2}{6}(x-1)$ \Rightarrow 3y - 3 = x - 1 \therefore x - 3y + 2 = 0 (Ans.) 8.(a) এরপ একটি সরলরেখার সমীকরণ নির্ণয় কর যা $\frac{x}{a} - \frac{y}{b} = 1$ রেখার উপর লম্ব এবং প্রদন্ত রেখা ও x-অক্ষের ছেদ বিন্দু দিয়ে অতিক্রম করে।[চ.'০২; ব.'০৫; বৃ.'٥৮,'১০] সমাধান : প্রদন্ত রেখা $\frac{x}{a} - \frac{y}{b} = 1 \Longrightarrow \frac{x}{a} + \frac{y}{-b} = 1$ $\Rightarrow bx - ay = ab$, x-অক্ষকে (a, 0) কিন্দুতে ছেদ করে। ধরি. প্রদন্ত রেখার উপর লম্ব রেখার সমীকরণ, (1)ax + by = kপ্রশ্নমতে, (1) রেখাটি (a, 0) কিন্দুগামী । $a.a + b.0 = k \Longrightarrow k = a^2$ নির্ণেয় রেখার সমীকরণ $a x + by = a^2$. 8(b) এরুপ একটি সরলরেখার সমীকরণ নির্ণয় কর যা 3x + 2v = 9 ও 2x + 3v = 11 রেখা বয়ের ছেদ কিন্দু দিয়ে যায় এবং প্রথম রেখার উপর লম্ব হয়।

সমাধান: $3x + 2y - 9 = 0 \cdots (1)$ ও

9 (c) এর্প একটি সরলরেখার সমীকরণ নির্ণয় কর যা 4x + 7y = 11 রেখার উপর লম্ব এবং y-অক্ষ হতে 2 একক দৈর্ঘ্য কর্তন করে। [প্র.ভ.প.'৯০] সমাধান: 4x + 7y = 11 রেখার ঢাল $= -\frac{4}{7}$ 4x + 7y = 11 এর উপর লম্ব রেখার ঢাল $= \frac{7}{4}$ y-অক্ষ হতে 2 একক দৈর্ঘ্য কর্তনকারী এবং $\frac{7}{4}$ ঢাল বিশিষ্ট রেখার সমীকরণ $y = \frac{7}{4}x \pm 2$ $\Rightarrow 7x - 4y \pm 8 = 0$ (Ans.)

10. (a) 3x - 4y + 8 = 0 রেখার সমান্দতরাল দিকে 3x + y + 4 = 0 রেখা হতে (1, 2) কিন্দুর দূরত্ব নির্ণিয় কর। [রা.'০২; য.'০৮]

সমাধানঃ

P(1,2)

ধরি, 3x - 4y + 8 = 0 (1) রেখার সমান্তরাল এবং P(1, 2) কিন্দুগামী সরলরেখা 3x + y + 4 = 0 (2) রেখাকে Q কিন্দুতে ছেদ করে।

PQ রেখার সমীকরণ
$$3x - 4y = 3 \times 1 - 4 \times 2$$

⇒ $3x - 4y = -5 \Rightarrow 3x - 4y + 5 = 0 \cdots(3)$
(2) $-(3) \Rightarrow 5y - 1 = 0 \Rightarrow y = \frac{1}{5}$.
(2) হতে পাই, $3x + \frac{1}{5} + 4 = 0 \Rightarrow 3x = -\frac{21}{5}$
⇒ $x = -\frac{7}{5}$: Q কিন্দুর স্থানাজ্ঞ $(-\frac{7}{5}, \frac{1}{5})$
দির্পেয় দূরত্ব , PQ = $\sqrt{(1 + \frac{7}{5})^2 + (2 - \frac{1}{5})^2}$
 $= \sqrt{\frac{144 + 81}{25}} = \sqrt{\frac{225}{25}} = \sqrt{9} = 3$ একক।
10(b) যে সরলরেখা *x*-অক্ষের ধনাত্মক দিকের সাথে
 $\tan^{-1}(\frac{3}{4})$ কোণ উৎপন্ন করে তার সমান্তরাল বরাবর

 $2x + 3y - 11 = 0 \cdots (2)$ রেখাদ্বয়ের ছেদকিন্দুর $\overline{\mathcal{R}}$ in $\overline{\mathcal{R}} = \left(\frac{-22+27}{9-4}, \frac{-18+33}{9-4}\right) = (1,3).$ (1, 3) কিন্দু দিয়ে যায় এবং (1) রেখার উপর লম্ব এরপ রেখার সমীকরণ $2x - 3y = 2 \times 1 - 3 \times 3$ $\Rightarrow 2x - 3y = 2 - 9$ 2x - 3y + 7 = 09. (a) এরপ একটি সরলরেখার সমীকরণ নির্ণয় কর যা (1,2) ও (4, 5) কিন্দুদ্বয়ের সংযোগ রেখাংশকে 3:1 অনুপাতে অনতর্বিভক্ত করে এবং ঐ রেখার উপর লম্ব হয়। সমাধান:(1,2) ও (4, 5) কিদুদ্বয়ের সংযোগ রেখাংশকে 1 অনুপাতে অন্তর্বিভক্তকারী কিন্দুর স্থানাজ্ঞ 3 $=(\frac{3\times4+1\times1}{3+1},\frac{3\times5+1\times2}{3+1})=(\frac{13}{4},\frac{17}{4})$ এখন, (1, 2) ও (4, 5) কিন্দুদ্বয়ের সংযোগ রেখাংশের উপর লম্দ এবং $(\frac{13}{4}, \frac{17}{4})$ কিন্দুগামী রেখার स्रोकत् $(y - \frac{17}{1}) = -\frac{1-4}{1}(x - \frac{13}{1})$

$$\Rightarrow (y - \frac{17}{4}) = -1(x - \frac{13}{4})$$

$$\Rightarrow 4y - 17 = -4x + 13 \Rightarrow 4x + 4y = 30$$

$$2x + 2y = 15 \text{ (Ans.)}$$

9(b) P(h,k) কিন্দু হতে x ও y-অক্ষের উপর যথাক্রমে PA ও PB লম্ব । P কিন্দুগামী এবং AB রেখার উপর লম্ব এরুপ সরলরেখার সমীকরণ নির্ণয় কর।

সমাধান: P(h, k) কিন্দু হতে $x ext{ (y)}$ -আক্ষের উপর যথাক্রমে $PA ext{ (y)}$ -আক্ষের উপর যথাক্রমে $PA ext{ (y)}$ -আক্ষের উপর যথাক্রমে $PA ext{ (y)}$ -আক্ষের বলে $A ext{ (y)}$ - $A ext{ (y)}$ -A ext

P কিন্দুগামী এবং AB রেখার উপর লম্ব এর্প রেখার সমীকরণ $y - k = -\frac{h-0}{0-k}(x - h)$ $\Rightarrow y - k = \frac{h}{k}(x - h)$ $\Rightarrow ky - k^2 = hx - h^2$ $hx - ky = h^2 - k^2$ (Ans.) 3x + 5y - 11 = 0 রেখা হতে (-1, 1) বিন্দুর দূরত্ব নির্ণয় কর।

সমাধান: যে সরলরেখা *x*-অক্ষের ধনাত্মক দিকের সাথে $\tan^{-1}(\frac{3}{4})$ কোণ উৎপন্ন করে তার সমান্ডরাল এবং P(-1,1) কিদ্রুগামী রেখার সমীকরণ,

$$y-1 = (x+1)\tan\tan^{-1}(\frac{3}{4})$$
$$\Rightarrow y-1 = \frac{3}{4}(x+1) \Rightarrow 4y-4 = 3x+3$$

⇒ 3x - 4y + 7 = 0 ··· ···(1) ধরি, (1) রেখা 3x + 5y - 11 = 0 (2) রেখাকে Q কিণুতে ছেদ করে।

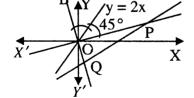
এখন, $(1) - (2) \Rightarrow -9y + 18 = 0 \Rightarrow y = 2$ $(1) \Rightarrow 3x - 8 + 7 = 0 \Rightarrow 3x = 1 \Rightarrow x = \frac{1}{3}$ O বিশ্বের স্থানাজ্ঞ $(\frac{1}{2}, 2)$

নির্দেয় দূরত্ব, PQ =
$$\sqrt{(-1-\frac{1}{3})^2 + (1-2)^2}$$

= $\sqrt{\frac{16}{9}+1} = \sqrt{\frac{16+9}{9}} = \frac{5}{3}$ একক।

10(c) যে সরলরেখা y = 2x রেখার সক্রো 45° কোণ উৎপন্ন করে তার সমান্তরাল বরাবর 3x - 4y =15 রেখা হতে মূলক্দির দুরত্ব নির্ণয় কর।

সমাধানঃ



y = 2x রেখার ঢাল (ধরি) $m_1 = 2$.

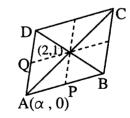
ধরি, যে সরলরেখা y = 2x রেখার সজ্জে 45° কোণ উৎপন্ন করে তার ঢাল m_{γ}

$$\tan 45^{0} = \pm \frac{m_{1} - m_{2}}{1 + m_{1}m_{2}} \Longrightarrow 1 = \pm \frac{2 - m_{2}}{1 + 2m_{2}}$$
$$\implies 1 + 2m_{2} = \pm (2 - m_{2})$$

'+' frich, $1 + 2m_{2} = 2 - m_{2} \Longrightarrow m_{2} = \frac{1}{3}$ and

'-' নিয়ে, $1 + 2m_2 = -2 + m_2 \Rightarrow m_2 = -3$ খরি, মূলবিন্দু O(0,0) দিয়ে অতিক্রমকারী এবং $\frac{1}{3}$ ঢাল বিশিষ্ট রেখা $y = \frac{1}{3}x \Rightarrow x = 3y \cdots(1)$, $3x-4y=15\cdots(2)$ রেখাকে P কিন্দুতে ছেদ করে । (2) হতে পাই, 9y - 4y = 15 [∵ x = 3y] $\Rightarrow 5y = 15 \Rightarrow y = 5$ এবং x = 15. $P \equiv (15,5)$ এবং $OP = \sqrt{5^2 + 15^2}$ $= \sqrt{5^2(1+3^2)} = 5\sqrt{10}$ একক । আবার, ধরি মূলবিন্দু O(0,0) দিয়ে অতিক্রমকারী এবং -3 ঢাল বিশিষ্ট রেখা $y = -3x \cdots(3)$, $3x-4y=15\cdots(2)$ রেখাকে Q কিন্দুতে ছেদ করে । (2) হতে পাই, 3x + 12x = 15 [∵y = -3x] $\Rightarrow 15x = 15 \Rightarrow x = 1$ এবং y = -3. $Q \equiv (1, -3)$ এবং $OP = \sqrt{1^2 + 3^2}$ $= \sqrt{10}$ একক ।

10(d) ABCD রম্বসের দুইটি বাহু x - y = 5 ও 7x - y = 3 এর সমান্ডরাল, কর্ণদ্বয় (2, 1) কিন্দুতে ছেদ করে। A কিন্দু x- অক্ষের উপর অবস্থিত হলে A এর স্থানাজ্ঞ নির্ণয় কর।



সমাধান:

ধরি, A এর স্থানাজ্ঞ $(\alpha, 0)$. x - y = 5 এর সমান্ডরাল (2,1) কিন্দুগামী রেখার সমীকরণ $x - y = 2 - 1 = 1 \cdots (i)$ এবং A($\alpha, 0$) কিন্দুগামী রেখার সমীকরণ $x - y = \alpha \cdots (ii)$ আবার,7x - y = 3 এর সমান্ডরাল (2, 1) কিন্দুগামী রেখার সমীকরণ $7x - y = 7 \times 2 - 1$ $\Rightarrow 7x - y = 13$ (iii) এবং A($\alpha, 0$) কিন্দুগামী রেখার সমীকরণ $7x - y = 7\alpha \cdots (iv)$. (i) ও (iv) এর ছেদকিন্দু P($\frac{7\alpha - 1}{6}, \frac{7\alpha - 7}{6}$)

কর।

উচ্চতর গণিত : ১ম পত্র সমাধান বইঘর.কম

(ii) ও (iii) এর ছেদকিন্দু $Q(\frac{13-\alpha}{6}, \frac{13-7\alpha}{6})$ AP = AQ, [∵ ABCD একটি রম্বস] $\Rightarrow AP^2 = AO^2$ $\Rightarrow (\alpha - \frac{7\alpha - 1}{6})^2 + (\frac{7\alpha - 7}{6})^2 =$ $(\alpha - \frac{13 - \alpha}{6})^2 + (\frac{13 - 7\alpha}{6})^2$ $\Rightarrow (1-\alpha)^2 + 49(1-\alpha)^2 = 2(7\alpha - 13)^2$ $\Rightarrow 25(1-\alpha)^2 = (7\alpha - 13)^2$ $\Rightarrow 5(1-\alpha) = \pm (7\alpha - 13)$ '+' চিহ্ন নিয়ে, $5 - 5\alpha = 7\alpha - 13 \Longrightarrow \alpha = 3/2$ '-' চিহ্ন নিয়ে, 5 – 5α = – 7α + 13⇒ α = 4 A এর স্থানাজ্ঞ্ব (4, 0) বা, (3/2, 0). 11. (a) (8, 5) ও (-4, -3) বিশ্বধরের সংযোগ রেখাংশের লম্ব সমদ্বিখন্ডক সরলরেখার সমীকরণ নির্ণয় কর। [রা.'১২; ঢা.'০৬; কু.'০৬; সি.'০৯,'১৩; 165,2 সমাধান: প্রদন্ত বিন্দুদ্বয়ের সংযোগ রেখাংশের মধ্যবিন্দুর স্থানাজ্ঞ $(\frac{8-4}{2}, \frac{5-3}{2}) = (2, 1)$ (8, 5) ও (-4, -3) বিন্দুদ্বয়ের সংযোগ রেখার ঢাল = $\frac{5+3}{8+4} = \frac{8}{12} = \frac{2}{3}$. লম্ব সমদ্বিখন্ডক রেখার ঢাল = - $\frac{3}{2}$ নির্ণেয় লম্ব সমদ্বিখন্ডক রেখার সমীকরণ. $y - 1 = -\frac{3}{2}(x - 2)$ $\Rightarrow 2y - 2 = -3x + 6$ 3x + 2y - 8 = 0 (Ans.) [MCO এর জন্য, (8 + 4) x + (5 + 3)y $=\frac{1}{2}(64-16+25-9)=32$] 11(b) (2, 1) ও (6, 3) কিপুথয়ের সংযোগ রেখাংশের লম্ব সমদিখন্ডক সরলরেখার সমীকরণ নির্ণয়

যি. '০৬]

সমাধান: প্রদত্ত কিন্দুদ্বয়ের সংযোগ রেখাংশের মধ্যকিন্দুর স্থানাজ্ঞ $(\frac{2+6}{2}, \frac{1+3}{2}) = (4, 2)$ (2, 1) ও (6, 3) কিন্দু দ্বয়ের সংযোগ রেখাংশের লম্ব সমদ্বিখন্ডক সরলরেখার ঢাল = $-\frac{2-6}{1-2} = -2$ নির্ণেয় লম্ব সমদ্বিখন্ডক রেখার সমীকরণ. $y-2 = -2(x-4) \Longrightarrow y-2 = -2x+8$ 2x + y - 10 = 0 (Ans.) 11(c) P(4, 11) ও O(-2, 2) কিপুদ্বয়ের সংযোগ রেখাংশের লম্ব সমদিখন্ডক সরলরেখার সমীকরণ নির্ণয় প্রি.ভ.প. '০৪] কর। সমাধান: PQ এর মধ্যবিন্দুর স্থানাজ্ঞ্ব $(1, \frac{13}{2})$ P ও O কিন্দুদ্বয়ের সংযোগ রেখাংশের লম্ব সমদ্বিখন্ডক রেখার ঢাল = $-\frac{4+2}{11-2} = -\frac{2}{3}$ নির্ণেয় লম্ব সমদ্বিখন্ডক রেখার সমীকরণ, $y - \frac{13}{2} = -\frac{2}{2}(x - 1)$ $\Rightarrow \frac{2y-13}{2} = -\frac{2}{3}(x-1)$ \Rightarrow 6y - 39 = -4x + 4 4x + 6y - 43 = 0 (Ans.) 11(d) দেখাও যে, (a, b) ও (c, d) বিন্দুদয়ের সংযোগ রেখাংশের লম্ব সমদ্বিখন্ডক সরলরেখার সমীকরণ $(a - c)x + (b - d)y = \frac{1}{2}(a^2 + b^2)$ $-c^{2}-d^{2}$). [ব.'০১] প্রমাণ: প্রদত্ত কিন্দুদ্বয়ের সংযোগ রেখাংশের মধ্যকিন্দুর স্থানাজ্ঞ $(\frac{a+c}{2}, \frac{b+d}{2})$ (a, b) ও (c, d) কিন্দুদ্বয়ের সংযোগ রেখাংশের লম্ব সমদ্বিখন্ডক সরলরেখার ঢাল = $-\frac{a-c}{b-c}$ নির্ণেয় লম্ব সমদ্বিখন্ডক রেখার সমীকরণ, $y - \frac{b+d}{2} = -\frac{a-c}{b-d}(x - \frac{a+c}{2})$

$$\Rightarrow (b-d)y - \frac{b^2 - d^2}{2}$$

= -(a-c)x + $\frac{a^2 - c^2}{2}$
(a-c)x + (b-d)y = $\frac{1}{2}(a^2 + b^2 - c^2 - d^2)$

12. (a) (2, 3) কিন্দু হতে 4x + 3y - 7 = 0সরলরেখা উপর অঙ্জিত লম্বের পাদকিন্দুর স্থানাঙ্জ নির্ণয় কর এবং এর সাহায্যে কিন্দুটি হতে সরলরেখার লম্ব-দূরত্ব নির্ণয় কর।

[য.'০৯; রা., সি.,ব.'০৯; ঢা.'১০; মা.'১৩]

সমাধান: (2,3) কিন্দুগামী এবং 4x + 3y - 7 = 0রেখার উপর অজ্জিত লন্দের সমীকরণ,

$$3x - 4y = 3 \times 2 - 4 \times 3 = 6 - 12$$

$$3x - 4y + 6 = 0$$

$$4x + 3y - 7 = 0 \%$$

$$3x - 4y + 6 = 0$$
 রেখাছয়ের ছেদবিন্দুর
স্থানান্ডক = $(\frac{18 - 28}{-16 - 9}, \frac{-21 - 24}{-16 - 9})$

$$= (\frac{-10}{-25}, \frac{-45}{-25}) = (\frac{2}{5}, \frac{9}{5})$$

আজিকত লন্দেশ্বর পাদবিন্দার স্থানাড্র $(\frac{2}{-9}, \frac{9}{-9})$

12(b) (2, - 1) কিন্দু হতে 3x - 4y + 5 = 0সরলরেখা উপর অঞ্চিত লন্দ্বের পাদকিন্দুর স্থানাজ্জ নির্ণায় কর।[য.'১২; সি.'০৭,'১২; ঢা.'০৮,'১৪; কু.'০৪; চ.'০৭,'১০; মা.বো.'০৮,'০৯; রা.'১২; দি.'১২]

সমাধান: (2, -1) কিন্দুগামী এবং 3x - 4y + 5 = 0রেখার উপর অজ্জিত লন্দ্বের সমীকরণ, $4x + 3y = 4 \times 2 + 3 \times -1 = 8 - 3$ 4x + 3y - 5 = 04x + 3y - 5 = 0 ও

3x - 4y + 5 = 0 রেখাদ্বয়ের ছেদবিন্দুর $ratio = (\frac{15-20}{-16-9}, \frac{-15-20}{-16-9})$ $=(\frac{-5}{-25},\frac{-35}{-25})=(\frac{1}{5},\frac{7}{5})$ অঙ্কিত লম্বের পাদকিন্দুর স্থানাঙ্ক $(\frac{1}{5}, \frac{7}{5})$ 12(c)(3, 1) रिन्तु २८७ 2x + y - 3 = 0সরলরেখা উপর অঙ্কিত লম্বের পাদবিন্দুর স্থানাজ্ঞ নির্ণয় কর। বি.'০৫] সমাধান: (3, 1) কিন্দুগামী এবং 2x + y - 3 = 0রেখার উপর অঙ্কিত লম্বের সমীকরণ, $x - 2y = 1 \times 3 - 2 \times 1 = 3 - 2$ x - 2y - 1 = 0x - 2y - 1 = 0 9 2x + y - 3 = 0 রেখাদ্বয়ের ছেদবিম্পুর $\Re(n) \Re = (\frac{6+1}{1+4}, \frac{-2+3}{1+4}) = (\frac{7}{5}, \frac{1}{5})$ অঙ্কিত লম্বের পাদক্দিনুর স্থানাঙ্ক $(1, \frac{1}{5})$

12(d) P(h, k) কিন্দু হতে মুলকিন্দুগামী সরলরেখার উপর লন্দ্বের পাদকিন্দুর সঞ্চারপথ নির্ণয় কর। [ব. '০৫] সমাধান: ধরি, মূলকিন্দু (0, 0) দিয়ে অতিক্রমকারী রেখার সমীকরণ y = mx অর্থাৎ mx -y = 0...(1) P(h k) কিন্দুগামী এবং (1) রেখার উপর অজ্জিত লন্দ্বের সমীকরণ, x + my = h + mk ...(2)

- (1) হতে পাই, m = $\frac{y}{x}$
- (2) নং সমীকরণে m–এর মান বসিয়ে পাই,

 $x + \frac{y}{x} y = h + \frac{y}{x} .k$ $\Rightarrow x^{2} + y^{2} = hx + ky;$ যা নির্ণেয় সঞ্চারপথের

সমীকরণ।

13(a) এর্প সরলরেখার সমীকরণ নির্ণয় কর যা x-আক্ষের সমান্দতরাল এবং 4x + 3y = 6 ও x - 2y= 7 সরলরেখা দুইটির সচ্চো সমকিদ। [চ.'০১; য.'০২; কু.'০৫; ঢা.'০৭; ব.'০৮]

সমাধান: 4x + 3y - 6 = 0 ও x - 2y - 7 = 0 রেখাদ্বয়ের ছেদকিন্দুর স্থানাজ্ঞ

200 $=(\frac{-21-12}{-8-3},\frac{-6+28}{-8-3})=(\frac{-33}{-11},\frac{22}{-11})$ =(3, -2)x-অক্ষের সমানতরাল এবং প্রদত্ত রেখাদ্বয়ের সজ্ঞো সমবিন্দু নির্ণেয় রেখার সমীকরণ $v = -2 \Longrightarrow v + 2 = 0$ 13(b) 2x + by + 4 = 0, 4x - y - 26 = 0, 3x + y - 1 = 0 রেখাত্রয় সমবিন্দু হলে b এর মান নির্ণয় কর। [2.3.9.'05] সমাধান: প্রদত্ত রেখাত্রয় সমকিদু বলে, $\begin{vmatrix} -2 & -4 \\ 4 & -1 & -26 \\ 3 & 1 & -1 \end{vmatrix} = 0$ $\Rightarrow 2(1+26) - b(-4+78) + 4(4+3) = 0$ \Rightarrow 54 - 74b + 28 = 0 \Rightarrow 74b = 82 $b = \frac{82}{74} = \frac{41}{27}$ (Ans.) 13(c) ax + by + c = 0, bx + cy + a = 0, cx + ay + b = 0 রেখাত্রয় সমকিদ্ব হলে, দেখাও a + b + c = 0. [সি. '০১, [ঢা.'১৪]] প্রমাণ : প্রদত্ত রেখাত্রয় সমকিন্দু হলে, $\begin{vmatrix} a & b & c \\ b & c & a \end{vmatrix} = 0 \Longrightarrow \begin{vmatrix} a+b+c & b & c \\ a+b+c & c & a \end{vmatrix} = 0$ c a b a+b+c a b $\Rightarrow \begin{vmatrix} 0 & b-c & c-a \\ 0 & c-a & a-b \\ a+b+c & a & b \end{vmatrix} = 0$ \Rightarrow (a + b + c) (ab - ca - b² + bc - c² + $2ca - a^2) = 0$ \Rightarrow (a + b + c)(2a² + 2b² + 2c² - 2ab -2bc – 2ca) = 0 [–2 দ্বারা গুণ করে।] \Rightarrow (a+b+c){(a-b)² + (b-c)² + (c-a)²}=0 এখানে, $a \neq b \neq c$, $\{(a - b)^2 + (b - c)^2\}$ $+(c-a)^{2}=0: a+b+c=0$ (Showed) 13(d) 3x + 5y - 2 = 0, 2x + 3y = 0, ax + 3y = 0by + 1 = 0 রেখাত্রয় সমকিন্দু হলে, $a \, \otimes \, b$ এর মধ্যে সম্পর্ক নির্ণয় কর। [য.'০৯,'১৩; দি.'১১; চ.'১২]

প্রমাণ : প্রদত্ত রেখাত্রয় সমকিন্দু হলে,

উচ্চতর গণিত : ১ম পত্র সমাধান معيام مر www.boighar.com $\begin{vmatrix} 3 & 5 & -2 \\ 2 & 3 & 0 \\ a & b & 1 \end{vmatrix} = 0$ $\Rightarrow -2(2b-3a) + 1(9-10) = 0$ $\Rightarrow -4b + 6a - 1 = 0 \Rightarrow 6a - 4b = 1$ 14. (a) দেখাও যে, x = t, y = 2t + 1 এবং x = 2t, y = -t - 4 রেখা দুইটি পরস্পরকে (-2, -3) কিদুতে সমকোণে ছেদ করে। [ব.'১১] প্রমাণ : x = t, y = 2t + 1 রেখাটিকে লেখা যায়– $y = 2x + 1 \cdots (1);$ যার ঢাল = 2 আবার, x = 2t, y = -t - 4 রেখাটিকে লেখা যায় $y = -\frac{x}{2} - 4 \cdots (2)$; যার ঢাল $= -\frac{1}{2}$ $(1) - (2) \Rightarrow 0 = (2 + \frac{1}{2})x + 5$ $\Rightarrow \frac{5}{2}x = -5 \Rightarrow x = -2 \quad \therefore y = -4 + 1 = -3$ রেখাদ্বয়ের ছেদবিন্দু (-2, -3). আবার, রেখাদ্বয়ের ঢালদ্বয়ের গুণফল = $2(-\frac{1}{2}) = -1$ রেখা দুইটি পরস্পরকে (- 2 , - 3) কিন্দুতে সমকোণে ছেদ করে। (Showed) 14(b) দেখাও যে, 2x = 1 - 4t, y = 1 + t এবং x = -2t, y = t - 1 রেখা দুইটি সমান্তরাল। প্রমাণ 2x = 1 - 4t, y = 1 + t রেখাটিকে লেখা যांग्र, $2x = 1 - 4(y - 1) \Longrightarrow 2x + 4y = 5 \cdots (1)$ আবার, x = -2t, y = t - 1 রেখাটিকে লেখা যায় $x = -2(y + 1) \Longrightarrow x + 2y + 2 = 0 \cdots (2)$ (1) রেখাটির ঢাল = $-\frac{2}{4} = -\frac{1}{2}$ এবং (2) রেখাটির ঢাল = $-\frac{1}{2}$ রেখা দুইটির ঢাল পরস্পর সমান বলে তারা সমান্তরাল । (Showed) 14(c) OABC একটি সামান্তরিক। x-অক্ষ বরাবর

14(C) OABC একটি সামান্ডারক। x-এক বরাবর OA অবস্থিত। OC বাহুর সমীকরণ y = 2x এবং B কিন্দুর স্থানাচ্চ্র্ক (4, 2). A ও C কিন্দুর স্থানাচ্চ্র্ক এবং AC কর্ণের সমীকরণ নির্ণয় কর। [রা.'০৯,'১৩;

OC বাহুর সমাধান সমীকরণ v = 2x এবং B C B(4,2) *x-*णक বরাবর **OA** $0\overline{\Omega}$ অবস্থিত। অতএব, মূলকিন্দু । আবার, CB বাহু x-অক্ষের সমানতরাল , সুতরাং B ও C শীর্ষের কোটি একই হবে। ধরি, C শীর্ষের স্থানাজ্ঞ $(\alpha, 2)$ যা y = 2x রেখার উপর অবস্থিত । $2 = 2\alpha \Rightarrow \alpha = 1.$ C শীর্ষের স্থানাজ্ঞ্ব (1, 2). এখন, OA = CB = | 1 - 4| = 3 A শীর্ষের স্থানাজ্ঞ্ব (3, 0) AC কর্ণের সমীকরণ $\frac{x-3}{3-1} = \frac{y-0}{0-2}$ \Rightarrow x - 3 = - y \therefore x + y - 3 = 0 14(d) A, B ও C এর স্থানাজ্ঞ যথাক্রমে (1, -2), (-3,0) ও (5,6). স্ত্রমাণ কর যে, AB ও AC রেখ্বয় পরস্পরকে সমকোণে ছেদ করে। কিদুগলি একটি আয়তক্ষেত্রের তিনটি শীর্ষবিন্দু হলে চতুর্থ শীর্ষের স্খানাজ্ঞ নির্ণয় কর। যি.'০৪]

य.'09; ण.'0४; जि.'0४; ए.'); जि.')8; व.')8]

প্রমাণ :

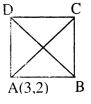
C(1,-2) $D(\alpha,\beta)$ A(1,-2) B(-3,0)AB রেখার ঢাল = $\frac{-2-0}{1+3} = -\frac{1}{2}$ AC রেখার ঢাল = $\frac{-2-6}{1-5} = 2$ AB ও AC এর ঢালদ্বয়ের গুণফল= $-\frac{1}{2}.2=-1$ AB ও AC রেখদ্বয় পরস্পারকে সমকোণে ছেদ করে। ধরি, আয়তক্ষেত্রের চতুর্থ শীর্ষের $D(\alpha, \beta)$. আয়তক্ষেত্রের BC কর্পের মধ্যবিদ্দু

প্রশ্নমালা III F ($\frac{-3+5}{2}$, $\frac{0+6}{2}$) = (1, 3) এবং AD কর্ণের ($\frac{-3+5}{2}$, $\frac{0+6}{2}$) = (1, 3) এবং AD কর্ণের মধ্যবিন্দু ($\frac{1+\alpha}{2}$, $\frac{-2+\beta}{2}$) একই হবে। X মধ্যবিন্দু ($\frac{1+\alpha}{2}$, $\frac{-2+\beta}{2}$) একই হবে। X চাটি $\frac{1+\alpha}{2} = 1 \Rightarrow \alpha = 2 - 1 = 1$ এবং $\frac{-2+\beta}{2} = 3 \Rightarrow \beta = 6 + 2 = 8$ চতুর্থ শীর্ষের স্থানাজ্ঞ (1, 8).

> 14(e) একটি ত্রিভুচ্জের দুইটি শীর্ষবিন্দু যথাক্রমে A(6, 1) ও B(1, 6) এবং এর লম্বকিদ P(3, 2); অবশিষ্ট শীর্ষের স্থানাজ্ঞ নির্ণয় কর। ঢো. '08] সমাধান : ধরি, ABC ত্রিভুজের AD, BE लम्प्वग्र P(3 2) A(6.1) কিন্দুতে ছেদ করে। AP অর্থাৎ AD রেখার P(3.2 $\overline{v} = \frac{1-2}{6-3} = -\frac{1}{3}$ B(1,6) D AD এর উপর লম্ব BC রেখার ঢাল = 3BC বাহুর সমীকরণ y - 6 = 3(x - 1) \Rightarrow y - 6 = 3x - 3 \Rightarrow y = 3x + 3 ...(1) BP অর্থাৎ BE এর উপর লম্ব AC বাহর \overline{v} ाल = $-\frac{3-1}{2-6} = \frac{2}{4} = \frac{1}{2}$ AC বাহুর সমীকরণ y $-1 = \frac{1}{2}(x - 6)$ $\Rightarrow 2y - 2 = x - 6$ ⇒ 2(3x + 3) - 2 = x - 6 [(1) দ্বারা] $\Rightarrow 6x + 6 - x = -4 \Rightarrow 5x = -10 \Rightarrow x = -2$ (1) হতে পাই, y = 3(-2) + 3 = −3 অবশিষ্ট শীর্ষ C এর স্থানাজ্ঞ্ব (-2, -3)

> 15. (a) 4x + 7y - 12 = 0 রেখাটি একটি বর্গের কর্ণ নির্দেশ করে এবং বর্গের একটি শীর্ষ (3, 2) কিন্দুতে অবস্থিত । এ কিন্দুটি দিয়ে অতিক্রমকারী বর্গের

বাহু দুইটির সমীকরণ নির্ণয় কর। সমাধান : ধরি, ABCD বর্গের $4x + 7y - 12 = 0 \dots(1)$ দেখাটি BD কর্ণ নির্দেশ করে এবং



A(3, 2) শীর্ষ দিয়ে অতিক্রমকারী বাহুর ঢাল m.

> BD কর্ণের ঢাল = $-\frac{4}{7}$ AC কর্ণের ঢাল= $\frac{7}{4}$ [: বর্গের কর্ণদ্বয় পরস্পর লম্ব]

AC কর্ণ AD ও AB বাহুর সজ্ঞা 45° কোণ উৎপন্ন করে।

15(b) দেখাও যে, 2x + y + 5 = 0 ও x - 2y - 3 =0 রেখা দুইটি পরস্পর লম্ব। রেখা দুইটিকে কোন আয়তক্ষেত্রের দুইটি সন্নিহিত বাহু ধরলে এবং অপর বাহু দুইটি (3, 4) কিন্দুতে পরস্পরকে ছেদ করলে অবশিষ্ট বাহু দুইটির সমীকরণ নির্ণয় কর।

প্রমাণ :
$$2x + y + 5 = 0 \cdots (1)$$
 রেখার ঢাল = -2
এবং $x - 2y - 3 = 0 \cdots (2)$ রেখার ঢাল = $\frac{1}{2}$
ঢাল দুইটির গুণফল = $-2 \times \frac{1}{2} = -1$ বলে প্রদন্ত
রেখাদ্বয় পরস্পর লম্ব।
২য় অংশ রেখা দুইটিকে কোন আয়তক্ষেত্রের দুইটি
সন্নিহিত বাহু ধরলে অপর বাহু দুইটির একটি (1) রেখার
সমান্দতরাল এবং অপরটি (2) রেখার সমান্দতরাল হবে।
(3 4) বিন্দুগামী এবং (1) রেখার সমান্দতরাল
বাহুটির সমীকরণ $2x + y = 2 \times 3 + 4$

 $\Rightarrow 2x + y = 10$ এবং (3, 4) কিন্দুগামী এবং (2) রেখার সমান্তরাল বাহুটির সমীকরণ $x - 2y = 3 - 2 \times 4$ $\Rightarrow x - 2y + 5 = 0$ 15(c) ABCD সামান্ডরিকের AB , BC বাহ দুইটির সমীকরণ যথাক্রমে 2x + y - 8 = 0, x - y + y2 = 0 এবং D বিন্দুর স্থানাজ্ঞ (2, -4) হলে AD ও DC এর সমীকরণ নির্ণয় কর। ABCD সামান্তরিক সমাধান বলে, BC || AD এবং AB || DC D(2, - 4) কিন্দুগামী R AD এর সমীকরণ x - y = 2 - (-4) $\Rightarrow x - y = 6$ এবং DC এর সমীকরণ $2x + y = 2 \times 2 + (-4)$ $\Rightarrow 2x + y = 0$ 15(d) A(3, -1), B(-2, 3) কিন্দু দুইটি একটি ত্রিভুজের শীর্ষবিন্দু এবং তার লম্ব বিন্দুটি মুলবিন্দুতে । অবশিষ্ট শীর্ষের স্থানাজ্ঞ নির্ণয় কর। A(3, -1)সমাধান : ধরি, ABC ত্রিভুজের E O(Q,0) AD, BE লম্বদ্বয় O(0, 0) কিন্দুতে ছেদ করে। B(-2.3) AO অর্থাৎ AD রেখার ঢাল = $\frac{-1-0}{3-0} = -$ AD এর উপর লম্ব BC রেখার ঢাল = 3

BC বাহুর সমীকরণ y - 3 = 3(x + 2) \Rightarrow y - 3 = 3x + 6 \Rightarrow y = 3x + 9 ...(1) BO অর্থাৎ BE এর উপর লম্ব AC বাহুর

ঢাল =
$$-\frac{2-0}{3-0} = \frac{2}{3}$$

∴ AC বাহুর সমীকরণ y + 1= $\frac{2}{3}(x-3)$
⇒ 3y + 3 = 2x - 6
⇒ 3 (3x + 9) + 3 = 2x - 6 [(1) দ্বারা]
⇒ 9x + 27 - 2x = -9 ⇒ 7x = -36
⇒ x = $-\frac{36}{7}$ y = 3($-\frac{36}{7}$) + 9 = $-\frac{45}{7}$
অবশিষ্ট শীর্ষ C এর স্থানাজ্ঞ ($-\frac{36}{7}, -\frac{45}{7}$)

[MCO এর জন্য, BC বাহুর সমীকরণ,

(3 – 0)x + (-1 – 0)y =
$$3 \times -2 + (-1) \times 3$$
]
कोछ
3. $4x - 3y - 1 = 0$ % $2x - 5y + 3 = 0$
तिर्थाषदात दिम निम्न मिरा यां या वर फक मूर्रेग्ति जर्ष्ला
সमान সमान दलाग উৎপन्न रुदत वज्वूग जतनदाथांत
ममोकंत्रग निर्मग्न कदा ग्रांग जमान जमान दलाग উৎপन्न
कदत वज्वूग जतनदाथांत ग्रांग = $\tan(\pm 45^{\circ}) = \pm 1$
वर्धन, $4x - 3y - 1 = 0$ %
 $2x - 5y + 3 = 0$ द्राशा मूर्रेग्तित द्ष्मतिम्मूत
प्र्यानाडक = $(\frac{-9-5}{-20+6}, \frac{-2-12}{-20+6}) = (1, 1)$
(1, 1) किम्पूशोमी वर्द्ध ± 1 ग्रांग विभिक्ते
प्रतादाक्षांत जमीकंत्रग $y - 1 = \pm 1.(x - 1)$
'+' निर्द्य भारे, $y - 1 = x - 1 \Rightarrow x - y = 0$
'-' निर्द्य भारे, $y - 1 = -x + 1 \Rightarrow x + y = 2$
छेडत $x + y = 2, x - y = 0$.
3. $2x + 3y - 1 = 0$ % $x - 2y + 3 = 0$ द्राशा मूर्रेग्ति जमार्थान.'08]
जमार्थान: र्थति, वुमछ द्राशा मूर्रेग्ति जमार्थ्यक्ठ दलाग φ
च $a_2x + b_2y + c_2 = 0$ द्राशा मूर्रेग्ति जमार्थ्यक्ठ दलाग φ
दरल, $\tan \varphi = \pm \frac{a_2b_1 - a_1b_2}{a_1a_2 + b_1b_2}$.
 $\tan \varphi = \pm \frac{1.3 - 2(-2)}{2.1 + 3(-2)} = \pm \frac{3+4}{2-6} = \pm \frac{7}{4}$.
'+' ग्निर्य शारे, $\varphi = \tan^{-1}\frac{7}{4}$
निर्दाग्त प्रच्चि नराय शारे, $\varphi = \tan^{-1}\frac{7}{4}$
6. k-वत्न मान कछ रदल $5x + 4y - 6 = 0$ % $2x + ky + 9 = 0$

সমাধান : 5x + 4y - 6 = 0 ও 2x + Ky + 9রেখা দুইটি পরস্পর সমান্তরাল হলে, $\frac{5}{2} = \frac{4}{k}$ $\Rightarrow k = \frac{8}{5}$ (Ans.)

দুইটির ছেদবিন্দু দিয়ে যায় এবং 13x - y - 1 = 0রেখার সমান্দ্রনাল সরলরেখার সমীকরণ নির্ণয় কর। সমাধান : ধরি, প্রদত্ত রেখা দুইটির ছেদক্দিগামী রেখার সমীকরণ (5x - 3y - 7) + k(4x + y - 9) = 0 \Rightarrow (5+4k)x + (-3+k)y -7-9k = 0 ...(1) রেখাটি 13x - y - 1= 0 এর সমানতরাল । $\frac{5+4k}{13} = \frac{-3+k}{-1} \qquad [\frac{a_1}{a_2} = \frac{b_1}{b_2}$ সূত্র দ্বারা] \Rightarrow - 39 + 13k = - 5 - 4k \Rightarrow 17k = 34 \Rightarrow k = 2 নির্ণেয় রেখার সমীকরণ. (5+8)x + (-3+2)y - 7 - 18 = 0 \Rightarrow 13x - y - 25 = 0 (Ans.) [MCQ এর জন্য, $\frac{5x - 3y - 7}{4x + y - 9} = \frac{\begin{vmatrix} 5 & -3 \\ 13 & -1 \end{vmatrix}}{\begin{vmatrix} 4 & 1 \end{vmatrix}} = \frac{-5 + 39}{-4 - 13} = -2 \end{bmatrix}$ ৩. k এর মান কত হলে 2x - y + 7 = 0 ও 3x + 3x = 0ky - 5 = 0 রেখা দুইটি পরস্পর লম্ব হবে ? সমাধান : 2x - y + 7 = 0 ও 3x + ky - 5 = 0রেখা দুইটি পরস্পর লম্ব হলে, 2×3 + (-1)×k = 0 [a1a2+b1b2=0 সূত্র দারা] \Rightarrow k = 6 (Ans.) ৬. (2, -3) কিন্দুগামী এবং (5, 7) ও (-6, 3) কিন্দুদ্বয়ের সংযোগ রেখার উপর লম্ব এরপ সরলরেখার সীকরণ নির্ণয় কর। সমাধান: (2, -3) কিন্দুগামী এবং (5,7) ও (-6,3) কিন্দুদ্বয়ের সংযোগ রেখার লম্ব এরপ সরলরেখার সমীকরণ y + 3 = $-\frac{5+6}{7-3}(x-2)$ \Rightarrow y + 3 = $-\frac{11}{4}(x-2)$ \Rightarrow 4y + 12 = -11x + 22

11x + 4y = 10 (Ans.)

 \Rightarrow [(5 + 6)x + (7-3) y = 11×2 + $4 \times -3 = 101$ এরুপ একটি সরলরেখার সমীকরণ নির্ণয় কর যা ۹. 2x + 3y + 4 = 0 = 3x + 4y - 5 = 0 (3) দুইটির ছেদ কিন্দু দিয়ে যায় এবং 6x - 7y + 8 = 0রেখার উপর লম্ব হয়। সমাধান: 2x + 3y + 4 = 0 ও 3x + 4y - 5 = 0 রেখাদ্বয়ের ছেদক্দ্যির $\mathbf{x} = \left(\frac{-15 - 16}{8 - 9}, \frac{12 + 10}{8 - 9}\right) = (31, -22).$ (31,-22) বিন্দুগামী এবং 6x-7y + 8 = 0রেখার উপর লম্ব এরূপ রেখার সমীকরণ, $7x + 6y = 7 \times 31 + 6 \times -22$ \Rightarrow 7x + 6y = 217 - 132 7x + 6y - 85 = 0 (Ans.) [MCQ अंत्र छन्ग, $\frac{2x+3y+4}{3x+4y-5} = \frac{2\times 6+3\times -7}{3\times 6+4\times -7}$] (2, 5) ও (5, 6) কিন্দুগামী সরলরেখার **ኮ**. সমীকরণ নির্ণয় কর। দেখাও যে, তা (-- 4, 5) ও (– 3, 2) কিন্দুম্বয়ের সংযোগ সরলরেখার উপর লম্ব। সমাধান: (2, 5) ও (5, 6) কিন্দুগামী সরলরেখার সমীকরণ $\frac{x-2}{2-5} = \frac{y-5}{5-6} \Rightarrow \frac{x-2}{-3} = \frac{y-3}{-1}$ \Rightarrow x -2 =3y +9 \therefore x - 3y + 13 = 0 \cdots (1) ২য় জংশ : (1) রেখার ঢাল = $-\frac{1}{-3} = \frac{1}{3}$ (-4,5) ও (-3,2) কিন্দুদ্বয়ের সংযোগ রেখার ঢাল = $\frac{5-2}{-4+3} = \frac{3}{-1} = -3$ ঢাল দুইটির গুণফল = $\frac{1}{3} \times -3 = -1$ (2, 5) ও (5, 6) কিন্দুগামী রেখাটি (-4, 5) ও (– 3 , 2) কিন্দুদ্বয়ের সংযোগ রেখার উপর লম্ব। b. (- 3, - 2) কিন্দুগামী এবং 2x + 3y = 3 রেখার উপর লম্ব সরলরেখার সমীকরণ নির্ণয় কর। মুলকিন্দুগামী এবং এই দুইটি রেখার ছেদকিন্দুগামী সরলরেখারও সমীকরণ নির্ণয় কর। সমাধান: (-3,-2) কিন্দুগামী এবং 2x + 3y = 3 <u>রেহার উপর লম্দ বেখার সমীকরণ</u>

 $3x - 2y = 3 \times -3 - 2 \times -2$ \Rightarrow 3x - 2y = -9 + 4 \therefore 3x - 2y + 5 = 0 ২য় অংশ: ধরি, 2x+3y −3 = 0 ও 3x−2y + 5= 0 রেখাদ্বয়ের ছেদক্দিদুগামী রেখার সমীকরণ, 2x + 3y - 3 + k(3x - 2y + 5) = 0 $\Rightarrow (2+3k)x + (3-2k)y - 3 + 5k = 0$ এ রেখাটি মূলবিন্দুগামী বলে, ধ্রবপদ - 3 + 5k = 0 $\Rightarrow k = \frac{3}{5}$. অতএব , নির্ণেয় রেখার সমীকরণ, $2x + 3y - 3 + \frac{3}{5}(3x - 2y + 5) = 0$ $\Rightarrow 10x + 15y - 15 + 9x - 6y + 15 = 0$ \Rightarrow 19x + 9y = 0 (Ans.) **50.** (1,2), (4,4), (2,8) **किप्रश्**राण একটি ত্রিভুচ্জের বাহুগুলোর মধ্যকিদু । বাহুগুলোর সমীকরণ নির্ণয় কর। ধরি, ABC সমাধান সমাধান ধার, ABC ত্রিভুজে BC, CA, AB F(2,8) E(4,4)বাহুর মধ্যবিন্দু যথাক্রমে B D(1.2)CD(1, 2), E(4, 4),বি.'০২ী F(2,8). BC || FE, CA || DF এবং AB || ED. BC রেখার ঢাল = FE রেখার ঢাল $\neq \frac{8-4}{2-4} = -2$ AC রেখার ঢাল = FD রেখার ঢাল = $\frac{8-2}{2-1} = 6$ AB রেখার ঢাল = ED রেখার ঢাল = $\frac{4-2}{4-1} = \frac{2}{3}$ D(1, 2) কিন্দুগামী BC বাহুর সমীকরণy - 2 $= -2(x-1) \Longrightarrow 2x + y - 4 = 0$ E(4,4) কিন্দুগামী CA বাহুর সমীকরণ y – 4 $= 6(x-4) \Longrightarrow 6x - y - 20 = 0$ এবং F(2, 8) কিন্দুগামী AB বাহুর সমীকরণy - 8 $=\frac{2}{3}(x-2) \Longrightarrow 3y-24 = 2x-4$ 2x - 3y + 20 = 0[MCQ এর জন্য, BC বাহুর সমীকরণ, \Rightarrow (4-8)x - (4-2)y = -4×1-2×2] ১১. এরপ সরলরেখার সমীকরণ নির্ণয় কর যা 2r + 3y = 1 ও x - 2y + 3 = 0 সরলরেখা দুইটির সঙ্গে

সমবিন্দু এবং অক্ষম্বয় হতে সমান সংখ্যামানের অংশ ছেদ করে। সমাধান: ধরি, প্রদত্ত রেখাদ্বয়ের সক্তো সমব্বিদ্র এরপ রেখার সমীকরণ 2x + 3y - 1 + k(x - 2y + 3) = 0 $\Rightarrow (2 + k)x + (3 - 2k)y - 1 + 3k = 0$ a রেখাটি অক্ষদ্বয় হতে সমান সংখ্যামানের অংশ ছেদ করে বলে x ও v এর সহগের সংখ্যামান সমান। $2 + k = \pm (3 - 2k)$ $2 + k = 3 - 2k \Rightarrow 3k = 1 \Rightarrow k = \frac{1}{2}$ অথবা, $2 + k = -3 + 2k \Longrightarrow k = 5$ নির্ণেয় রেখার সমীকরণ $2x + 3y - 1 + \frac{1}{3}(x - 2y + 3) = 0$ \Rightarrow 6x + 9y - 3 + x - 2y + 3 = 0 \Rightarrow 7x + 7y = 0 \Rightarrow x + y = 0 অথবা, 2x + 3y - 1 + 5x - 10y + 15 = 0 \Rightarrow 7x - 7y + 14 = 0 \Rightarrow x - y + 2 = 0 প্রশ্রমালা III G এক নন্ধরে প্রয়োজনীয় সুত্রাব্দী ৪ 1. $P(x_1, y_1)$ dry (v($\phi ax + by + c = 0$ সরলরেখার লম্ব দূরত্ব = $\frac{|a x_1 + b y_1 + c|}{\sqrt{a^2 + b^2}}$ 2.(i) $ax + by + c_1 = 0 \ \ ax + by + c_2 = 0$ সমান্তরাল সরলরেখা দুইটির মধ্যবতী দ্রত্ব $=\frac{|c_2 - c_1|}{\sqrt{a^2 + b^2}}$ (ii) ax + by + c = 0 হতে d একক দুরবর্তী রেখার সমীকরণ $ax + by + c \pm d\sqrt{a^2 + b^2} = 0$ 3. $f(x, y) = a_1 x + b_1 y + c_1 = 0$ \otimes $g(x, y) \equiv a_2 x + b_2 y + c_2 = 0$ রেখা দুইটির অন্দতর্ভুক্ত কোণপুলোর সমদিখন্ডকদয়ের সমীকরণ $\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \pm \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}$ (i) $P(\alpha, \beta)$ কিন্দু ধারণকারী কোণটির সমদ্বিখন্ডকের সমীকরণ '+' হবে যখন $f(\alpha, \beta) \times g(\alpha, \beta) > 0$ '-' হবে যখন f(α, β)× g(α, β) <0

(ii) মুলকিন্দু ধারণকারী কোণটির সমীকরণ '+' অথবা '–' হবে যখন যথাক্রমে c1 × c2 >0 বা, < 0 (iii) P(x', y') বিপুটি রেখাহুয়ের অসতর্ভুক্ত স্থৃলকোণে অথবা সুক্ষকোণে অবস্থিত হবে যখন যথাক্রমে $f(x', y') \times g(x' + y')$ $\times (a_1a_2 + b_1b_2 > 0$ वा, < 0 (iv) $a_1a_2 + b_1b_2 > 0$ হলে, '+' স্থৃলকোণের ও '--' সন্ধর্কোণের সমধিখন্ডকের সমীকরণ । $a_1a_2 + b_1b_2 < 0$ হলে, '+' সুন্ধকোণের ও -- স্থ্রলকোণের সমদ্বিখন্ডকের সমীকরণ । 4. ABC विष्ठाकत $AB \equiv a_1x + b_1y + c_1 = 0$, $AC \equiv a_2 x + b_2 y + c_2 = 0, BC \equiv px + qy$ + r = 0 হলে, ∠ A স্থৃলকোণ জথবা সুন্ধকোণ হবে यपि यथोक्टरम $\begin{vmatrix} a_1 & b_1 \\ p & a \end{vmatrix} \begin{vmatrix} p & q \\ a_2 & b_2 \end{vmatrix} (a_1a_2 + b_1b_2)$ >0. জ্পবা<0 হয়। 5. ABC ত্রিভুষ্ণের শীর্ষ তিনটি $A(x_1, y_1)$, $\mathbf{B}(x_2, y_2)$ ও $\mathbf{C}(x_3, y_3)$ হলে, $\angle \mathbf{A}$ সুন্ধকোগ বা স্থৃলকোণ হবে যদি যথাক্রমে $(x_1 - x_2)(x_1 - x_3)$ $+(y_1 - y_2)(y_1 - y_3) > 0$, ज्वथवा < 0 হয়। 6. ABC ত্রিভুচ্ছের শীর্ষ তিনটি $A(x_1, y_1)$, $B(x_2, y_2) \otimes C(x_3, y_3)$ হলে, জনত:ব্যাসার্ধ, $\mathbf{r} = \frac{1}{a+b+c} |\delta_{ABC}|$ এবং অনত:কেন্দ্র $(\frac{ax_1 + bx_2 + cx_3}{a + b + c}, \frac{ay_1 + by_2 + cy_3}{a + b + c});$ यथन AB = c, BC = a, CA = b are $\delta_{ABC} =$ $(x_1 - x_2)(y_2 - y_3) - (x_2 - x_3)(y_1 - y_2)$ `অর্থাৎ অম্ত:কেন্দ্রের $\nabla = \frac{\sum x_1 \sqrt{(x_2 - x_3)^2 + (y_2 - y_3)^2}}{\sum \sqrt{(x_2 - x_3)^2 + (y_2 - y_3)^2}} \, d\mathcal{R}$ $\overline{\text{confb}} = \frac{\sum y_1 \sqrt{(x_2 - x_3)^2 + (y_2 - y_3)^2}}{\sum \sqrt{(x_2 - x_3)^2 + (y_2 - y_3)^2}}$

সমচিখন্ডকের

MCQ এর জন্য বিশেষ সূত্র ঃ 1. $a_1x + b_1y + c_1 = 0$ ও $a_2x + b_2y + c_2 = 0$ সমান্দতরাল রেখাদ্বয়ের মধ্যবর্তী দূরত্ব = $\frac{|c_1\sqrt{a_2^2 + b_2^2} - c_2\sqrt{a_1^2 + b_1^2}|}{\sqrt{a_1^2 + b_1^2}\sqrt{a_2^2 + b_2^2}}$

2. $f(x) \equiv ax + by + c = 0$ রেখা $g(x) \equiv a_1x + b_1y + c_1 = 0$ ও AB রেখান্বয়ের অলতর্ভুক্ত কোণগুলোর একটি সমন্বিখন্ডক হলে AB এর সমীকরণ $(a^2 + b^2)g(x) - 2(aa_1 + bb_1)f(x) = 0$ 3. $A(x_1, y_1)$, $B(x_2, y_2)$ বিন্দুন্বয়ের সংযোগ রেখাংশকে ax + by + c = 0 সরলরেখাটি $|ax_1 + by_1 + c|$ $|ax_2 + by_2 + c|$ অনুপাতে বিল্জুক্ত করে।

প্রশ্নমালা III G

1(a)	Solⁿ.: সবগুলি তথ্য সত্য। Ans. D				
	Sol ⁿ . (2, 3) ও (6 7) বিন্দুগামী				
	রখার ঢাল = $\frac{3-7}{2-6} = \frac{-4}{-4} = 1$ Ans. A				
(c)	$\mathbf{Sol}^{\mathbf{n}}$: y- অক্ষের সমীকরণ x = 0				
	নির্ণেয় অনুপাত = $ 7 -5 = 7:5$				
(d) S	${ m Sol}^{ m n}$:: ত্রিভূজটির ক্ষেত্রফল $= rac{1}{2} x_1 y_2 - x_2 y_1 $				
	$= \frac{1}{2} 24 - 15 = 4.5$				
(e)	Sol ⁿ .: নির্ণেয় কোণ = $\tan^{-1}(\frac{4}{-4})$				
	$= 180^{0} - \tan^{-1}1 = 180^{0} - 45^{0} = 135^{0}$				
(f) S	${f ol}^{{ m n}}$: রেখাটির সমীকরণ, ${ m x}=(3,-6)$ বিন্দুর				
x-স্থান্	गंक $\Rightarrow x = 3$				
(g) S	ol ⁿ .: Ans.D				
(h) §	Sol ⁿ .: সবগুলি তথ্য সত্য। Ans. D				
(i) S	${f ol}^{f n}$.: রেখাটির সমীকরণ, $3x+4y=3{ imes}5+$				
4× ($-3) \Longrightarrow 3x + 4y = 3$				
(j) S	ol ⁿ .: রেখাটির সমীকরণ, $4x - 3y = 4 \times 4 - 3$				
3× ($\Rightarrow 4x - 3y = 16$				

(k) Solⁿ.: निषम् तिष् =
$$\frac{|-12|}{\sqrt{3^2 + 4^2}} = \frac{12}{5}$$

(l) Solⁿ.: $3x + 4y = 12 \Rightarrow \frac{x}{4} + \frac{y}{3} = 1$
विष्ठ्रजणित्र (क्षेत्रियुक्त = $\frac{1}{2}|ab| = \frac{1}{2}|12| = 6;$
[attice, $a = 4, b = 3$]
AB = $\sqrt{a^2 + b^2} = \sqrt{4^2 + 3^2} = 5$ above 1
(attice, $a = 4, b = 3$]
AB = $\sqrt{a^2 + b^2} = \sqrt{4^2 + 3^2} = 5$ above 1
(attice, $a = 4, b = 3$]
AB = $\sqrt{a^2 + b^2} = \sqrt{4^2 + 3^2} = 5$ above 1
(attice, $a = 4, b = 3$]
AB = $\sqrt{a^2 + b^2} = \sqrt{4^2 + 3^2} = 5$ above 1
(attice, $a = 4, b = 3$]
AB = $\sqrt{a^2 + b^2} = \sqrt{4^2 + 3^2} = 5$ above 1
(attice, $a = 4, b = 3$]
(attice, $a = 4, b = 3$]
AB = $\sqrt{a^2 + b^2} = \sqrt{4^2 + 3^2} = 5$ above 1
(attice, $a = 4, b = 3$]
(attice, $a = 5, -9 \Rightarrow a = -\frac{36}{9} = -4, a < 0$
 \therefore Ans. A
(i) (a) (1, 2) for any $x = -\frac{36}{9} = -4, a < 0$

1(i) (a) (1, 2) কিন্দু হতে $x - \sqrt{3}y + 4 = 0$ রেখার উপর একটি লম্ব অভিনত হল। মূলকিন্দু থেকে এ লম্বের লম্বদুরত্ব নির্ণয় কর। [প্র.ভ.প.'০৫] সমাধান : (1, 2) কিন্দু হতে $x - \sqrt{3}y + 4 = 0$ রেখার উপর অভিনত লম্বের সমীকরণ,

 $\sqrt{3} x + y = \sqrt{3} \times 1 + 2$ $\Rightarrow \sqrt{3} x + y - 2 - \sqrt{3} = 0 \cdots \cdots (1)$ $\therefore মূলবিন্দুর থেকে (1) এর লম্ব দূরত্ব = \frac{|-2 - \sqrt{3}|}{\sqrt{3 + 1}}$

 $=\frac{2+\sqrt{3}}{2}$ (Ans.) (b) 4x + 3y = c and 12x - 5y = 2(c + 3)রেখা দুইটি হতে মুলবিন্দু সমদূরবর্তী । с এর ধনাত্রক মান নির্ণয় কর। [রা.'০৮.'১২ ;চ.'০৬; য.'১০.'১৪; ঢা.'০৯] সমাধান : 4x + 3y = c অর্থাৎ 4x + 3y - c = 0হতে মূলবিন্দু দুরত্ব = $\frac{|-c|}{\sqrt{16+9}} = \frac{|c|}{5}$ আবার, 12x - 5y = 2 (c + 3) অর্থাৎ 12x - 5y - 2 (c + 3) = 0 হতে মৃলবিন্দুর দূরত্ব $= \frac{|-2(c+3)|}{\sqrt{144+25}} = \frac{|2(c+3)|}{12}$ প্রশ্নে, $\frac{|2(c+3)|}{12} = \frac{|c|}{5} \Rightarrow \frac{2(c+3)}{13} = \pm \frac{c}{5}$ '+' निदा,10c + 30 =13c⇒ 3c = 30 ∴ c=10 '-' নিয়ে, 10c + 30 = −13c ⇒ 23c = − 30 \Rightarrow c = - 30/23 c এর ধনাত্মক মান 10. (Ans.) (c) (a, b) (Figli 3x - 4y + 1 = 0 are 4x + 3y + 1 = 0 রেখাদ্য হতে সমদুরবর্তী হলে, দেখাও যে, a + 7b = 0 অথবা 7a - b + 2 = 0[রা. '০১, '১০; সি. '০১; মা. '০৮; চ. '১৩]

প্রমাণ : 3x - 4y + 1 = 0 রেখা হতে (a, b) কিন্দুর দূরত্ব = $\frac{|3a - 4b + 1|}{\sqrt{9 + 16}} = \frac{|3a - 4b + 1|}{5}$ আবার, 4x + 3y + 1 = 0 রেখা হতে (a, b) কিন্দুর দূরত্ব = $\frac{|4a + 3b + 1|}{\sqrt{16 + 9}} = \frac{|4a + 3b + 1|}{5}$ প্রত্ব = $\frac{|3a - 4b + 1|}{5} = \frac{|4a + 3b + 1|}{5}$ শ্রম্মতে, $\frac{|3a - 4b + 1|}{5} = \frac{|4a + 3b + 1|}{5}$ $\Rightarrow 3a - 4b + 1 = \pm (4a + 3b + 1)$ '+' নিয়ে, 3a - 4b + 1 - 4a - 3b - 1 = 0 $\Rightarrow -a - 7b = 0 \Rightarrow a + 7b = 0$ '-' নিয়ে, 3a - 4b + 1 + 4a + 3b + 1 = 0 $\Rightarrow 7a - b + 2 = 0$ a + 7b = 0 জথবা 7a - b + 2 = 0

(**d**) মুলবিন্দু থেকে x sec θ – y cosec θ = k ও $x \cos \theta - y \sin \theta = k \cos 2\theta$ রেখা দুইটির লম্ব দুরত্ব যথাক্রমে p ও p' হলে, প্রমাণ কর যে, $4p^2 + p'^2 = k^2$ [b.'ov,'\$5; ता.'08;य.'08] প্রমাণ : মূলকিন্দু থেকে $x \sec \theta - y \csc \theta - k = 0$ এর দূরত্ব $\mathbf{p} = \left| \frac{-k}{\sqrt{\sec^2 \theta + \cos^2 \theta}} \right|$ মূলকিন্দু (0 0) থেকে $x \cos \theta - y \sin \theta - k$ $\cos 2\theta = 0$ এর দূরত্ব , $p' = \left| \frac{-k\cos 2\theta}{\sqrt{\cos^2 \theta + \sin^2 \theta}} \right|$ L.H.S. = $4 p^2 + p'^2$ $=4 \frac{k^2}{\sec^2 \theta + \cos \alpha c^{2\dot{\theta}}} + \frac{k \cos^2 2\theta}{1}$ $=\frac{4k^2}{1/\cos^2 \theta + 1/\sin^2 \theta} + k^2 \cos^2 2\theta$ $=\frac{4k^{2}(\sin^{2}\theta\cos^{2}\theta)}{\sin^{2}\theta+\cos^{2}\theta}+k^{2}\cos^{2}2\theta$ $= \frac{k^2 (2\sin\theta\cos\theta)^2}{1} + k^2 \cos^2 2\theta$ (. $= k^{2} (\sin^{2} 2\Theta + \cos^{2} 2\Theta)$ $= k^{2} . 1 = k^{2} = R.H.S.$ (Proved) (e) দেখাও যে, $(\pm 4, 0)$ কিন্দু দুইটি থেকে $3x \cos \theta + 5y \sin \theta = 15$ এর উপর অভিকত লম্ব দুইটির গুণফল \varTheta মুক্ত হবে। য. '০৩; ঢা. '০৬; ব. '০৮ ; ৰ. '১৩] প্রমাণ : (4, 0) কিন্দু থেকে $3x \cos \theta + 5y \sin \theta$ - 15 = 0 এর লম্বদূরত্ব $= |\frac{12\cos\theta - 15}{\sqrt{9\cos^2\theta + 25\sin^2\theta}}| = d_1 \ (4fs)$ (4,0) for a constant of the second - 15 = 0 এর লম্বদূরত্ব $= \left| \frac{-12\cos\theta - 15}{\sqrt{9\cos^2\theta + 25\sin^2\theta}} \right| = d_2$ (4a) লম্বদূরত্ব দুইটির গৃণফল,

(h) প্রমাণ কর যে, $(\pm c, 0)$ কিন্দু দুটি হতে bx $\cos\theta$ + ay $\sin\theta$ = ab এর উপর অজ্জিত লম্ব্যায়ের গৃণফল b^2 হয় যখন $a^2 = b^2 + c^2$ [ফ.'o৯]

প্রমাণ : (c, 0) কিন্দু হতে প্রদন্ত রেখার উপর অজিত
লম্ম =
$$\left|\frac{bc\cos\theta - ab}{\sqrt{b^2\cos^2\theta + a^2\sin^2\theta}}\right| = d_1$$
 (ধরি)
এবং (-c, 0) কিন্দু হতে প্রদন্ত রেখার উপর অজিত
লম্ম = $\left|\frac{-bc\cos\theta - ab}{\sqrt{b^2\cos^2\theta + a^2\sin^2\theta}}\right| = d_2$ (ধরি)
 $d_1 d_2 = \left|\frac{-(b^2c^2\cos^2\theta - a^2b^2)}{b^2\cos^2\theta + a^2 - a^2\cos^2\theta}\right|$
= $\left|\frac{-b^2(c^2\cos^2\theta - a^2)}{(b^2 - a^2)\cos^2\theta + a^2}\right|$
= $\left|\frac{b^2(a^2 - c^2\cos^2\theta + a^2)}{-c^2\cos^2\theta + a^2}\right|$ [: $a^2 = b^2 + c^2$]
লম্ঘদ্বয়ের গুণফল = b^2

2(a) 3x-2y = 1 এবং 6x-4y + 9 = 0 সমাশত রাল রেখাৎয়ের মধ্যবর্তী দূরত্ব নির্ণয় কর। [মা.'০৪,'০৬] সমাধান ঃ প্রদন্ত রেখাদ্বয়,

$$3x - 2y = 1 \Longrightarrow 3x - 2y - 1 = 0 \cdots (1)$$
 এবং
 $6x - 4y + 9 = 0 \Longrightarrow 3x - 2y + \frac{9}{2} = 0 \cdots (2)$
(1) ও (2) সমান্দতরাল রেখাদ্বয়ের মধ্যবর্তী দূরত্ব

$$=\frac{\left|-1-\frac{5}{2}\right|}{\sqrt{9+4}}=\frac{\left|-\frac{11}{2}\right|}{\sqrt{13}}=\frac{11}{2\sqrt{13}}$$
 approximately appr

2(b) দেখাও যে, 4x + 7y - 26 = 0 রেখার উপরিস্থিত যেকোন কিন্দু 3x + 4y - 12 = 0 ও 5x + 12y - 52 = 0 রেখা দুইটি হতে সমদূরবর্তী। প্রমাণ ঃ ধরি, 4x + 7y - 26 = 0 রেখার উপর P(α, β) যেকোন একটি কিন্দু।

$$4\alpha + 7\beta - 26 = 0 \Rightarrow \alpha = \frac{26 - 7\beta}{4}$$
$$3x + 4y - 12 = 0$$
রেখা হতে P(α, β) এর দূরত্ব

 $d_1 d_2 = \left| \frac{12\cos\theta - 15}{\sqrt{9\cos^2\theta + 25\sin^2\theta}} \right|$ $\left|\frac{-12\cos\theta-15}{\sqrt{9\cos^2\theta+25\sin^2\theta}}\right|$ $= \left| \frac{225 - 144 \cos^2 \theta}{9 \cos^2 \theta + 25(1 - \cos^2 \theta)} \right|$ $= |\frac{9(25 - 16\cos^2\theta)}{(25 - 16\cos^2\theta)}| = 9;$ या Θ मूछ | লম্ব দূরত দুইটির গুণফল সুক্ত। 1(f) $(\sqrt{3}, 1)$ বিন্দু থেকে $\sqrt{3}x - y + 8 = 0$ এর উপর অঙ্কিত লম্বের দৈর্ঘ্য নির্ণয় কর এই লম্ব 🗴 -অক্ষের সক্তো যে কোণ উৎপন্ন করে তা নির্ণয় কর। ৰি.'০৭] সমাধান : $(\sqrt{3}, 1)$ কিন্দু থেকে $\sqrt{3}x - y + 8 = 0$ এ**র উপর** অঙ্কিত লম্বের দৈর্ঘ্য = $\frac{|3-1+8|}{\sqrt{2+1}}$ $=\frac{10}{2}=5$ **২য় অংশ : প্রদত্ত** রেখার ঢাল = √3 প্রদন্ত রেখার উপর লম্ব রেখার ঢাল = $-\frac{1}{\sqrt{3}}$ লম্বরেখা x -অক্ষের সক্তো যে কোণ উৎপন্ন করে তার পরিমাণ = $\tan^{-1}(-\frac{1}{\sqrt{3}}) = 180^{\circ} - \tan^{-1}\frac{1}{\sqrt{3}}$ $= 180^{\circ} - 30^{\circ} = 150^{\circ}$ (g) (2, 3) কিন্দু এবং 4x + 37 - 7 = 0 রেখার সাপেক্ষে উক্ত বিন্দুর প্রতিবিস্বের মধ্যবর্তী দুরত্ব নির্ণয় [প্র.ড.প. '০৫; কু. '১১] কর। সমাধান % (2, 3) কিন্দু হতে 4x + 3y - 7 = 0রেখার দূরত্ব = $\frac{|4 \times 2 + 3 \times 3 - 7|}{\sqrt{16 + 9}}$ $=\frac{|8+9-7|}{5}=\frac{10}{5}=2$ app :. (2, 3) কিন্দু এবং প্রদন্ত রেখার সাপেক্ষে উক্ত বিন্দুর প্রতিবিন্দ্বের মধ্যবর্তী দূরত্ব = 2×2 = 4 একক

202

 $= \frac{|3\alpha + 4\beta - 12|}{\sqrt{9 + 16}} = \frac{|3\frac{26 - 7\beta}{4} + 4\beta - 12|}{\sqrt{9 + 16}}$ $= \frac{|78 - 21\beta + 16\beta - 48|}{5 \times 4} = \frac{|30 - 5\beta|}{5 \times 4}$ $=\frac{|6-\beta|}{4}$ 5x + 12y - 52 = 0 রেখা হতে P(α, β) এর দূরত্ব $= \frac{|5\alpha + 12\beta - 52|}{\sqrt{25 + 144}} = \frac{|5\frac{26 - 7\beta}{4} + 12\beta - 52|}{13}$ $= \frac{|130 - 35\beta + 48\beta - 208|}{13 \times 4} = \frac{|-78 + 13\beta|}{5 \times 4}$ $=\frac{13|6-\beta|}{13\times4}=\frac{|6-\beta|}{13\times4}$ ∴ 4x + 7y - 26 = 0 রেখার উপরিস্থিত যেকোন $3x + 4y - 12 = 0 \otimes 5x + 12y - 52 = 0$ রেখা দুইটি হতে সমদুরবর্তী। বিকল্প পদ্ধতি প্রশ্নমতে এটাই প্রমাণ করা যথেষ্ট যে, $3x + 4y - 12 = 0 \cdots (1)$ s 5x + 12y - 52 = 0 ···(2) রেখাদ্বয়ের অন্তর্ভক্ত কোণগুলোর সমদ্বিখন্ডকদ্বয়ের একটি 4x + 7y - 26 = 0এখন,(1) ও (2) রেখাদ্বয়ের অনতর্ভুক্ত কোণগুলোর সমদ্বিখন্ডকের সমীকরণ. $\frac{3x+4y-12}{\sqrt{9+16}} = \pm \frac{5x+12y-52}{\sqrt{25+144}}$ $\Rightarrow \frac{3x+4y-12}{5} = \pm \frac{5x+12y-52}{12}$ $\Rightarrow 39x + 52y - 156 = \pm (25x + 60y - 260)$ '-' নিয়ে, 64x + 112y - 416 = 0 ⇒ 4x + 7y - 26 = 0, যা একটি সমদ্বিখন্ডকের সমীকরণ। 3.(a) 12x - 5y + 26 = 0 রেখা থেকে 2 একক দুরে এবং x + 5y = 13 রেখার উপর অবস্থিত বিন্দুসমূহের স্থানাজ্ঞ নির্ণয় কর। সমাধান ঃ ধরি, $x + 5y = 13 \cdots (1)$ রেখাস্থ কিন্দু (α, β) , $12x - 5y + 26 = 0 \cdots (2)$ त्रथा (श्रांक 2 একক দুরে অবস্থিত।

 $\alpha + 5\beta = 13 \Rightarrow \alpha = 13 - 5\beta$ (3) $aak \frac{|12\alpha - 5\beta + 26|}{\sqrt{144 + 25}} = 2$ $\Rightarrow 12\alpha - 5\beta + 26 = \pm 26$ '+' নিয়ে, $12\alpha - 5\beta = 0$ $\Rightarrow 12(13 - 5\beta) - 5\beta = 0$ [(3) bian] \Rightarrow 156 - 60 β - 5 β = 0 \Rightarrow 65 β = 156 $\Rightarrow \beta = \frac{156}{65} = \frac{12}{5} : \alpha = 13 - 5, \frac{12}{5} = 1$ আবার. '-' নিয়ে, $12\alpha - 5\beta + 52 = 0$ ⇒ $12(13 - 5\beta) - 5\beta + 52 = 0$ [(3) দারা] \Rightarrow 156 -60 β -5 β + 52 = 0 \Rightarrow 65 β = 208 $\Rightarrow \beta = \frac{208}{65} = \frac{16}{5} \therefore \alpha = 13 - 5 \cdot \frac{16}{5} = -3$ কিন্দুসমূহের স্থানাজ্ঞ্ব (1 , $\frac{12}{5}$) , (– 3 , $\frac{16}{5}$) 3(b)(x, y) (ryl) 3x - 4y + 1 = 04x + 3y + 1 = 0 রেখা দুইটি হতে সমদূরবর্তী হলে দেখাও যে, x + 7y = 0 অথবা, 7x - y + 2 = 0. [চ.'০২: সি.'০৮] সমাধান : 3x - 4y + 1 = 0 রেখা হতে (x, y)কিন্দুর দূরত্ব = $\frac{|3x-4y+1|}{\sqrt{9+16}} = \frac{|3x-4y+1|}{5}$ এবং 4x + 3y + 1 = 0 রেখা হতে (x , y) কিন্দুর দূরত্ব $=\frac{|4x+3y+1|}{\sqrt{16+9}}=\frac{|4x+3y+1|}{5}$ প্রশ্নত, $\frac{|3x-4y+1|}{5} = \frac{|4x+3y+1|}{5}$ $3x-4y+1 = \pm (4x+3y+1)$ '+' নিয়ে পাই, 3x - 4y + 1 = 4x + 3y + 1 \Rightarrow x + 7y = 0 '-' নিয়ে পাই, 3x - 4y + 1 = -4x - 3y - 1 \Rightarrow 7x - y + 2 = 0 4.(a) 12x - 5y = 7 রেখার 2 একক দুরবর্তী সমান্তরাল রেখার সমীকরণ নির্ণয় কর। [ব.'১০ ক.'০৮; য.'১০.'১২; রা.'১৩; চ.'১৪]

সমাধান 8 ধরি, 12x - 5y = 7 অর্থাৎ12x - 5y - 7 = 0রেখার সমান্তরাল রেখার সমীকরণ12x - 5v + k = 0এ রেখা দুইটির মধ্যবর্তী দূরত্ব = $\frac{|k+7|}{\sqrt{144+25}}$ প্রশ্নমতে, $\frac{|k+7|}{\sqrt{144+25}} = 2 \Longrightarrow \frac{k+7}{13} = \pm 2$ \Rightarrow k = ±26 - 7 k = 19 অথবা, k = -33নির্ণেয় রেখার সমীকরণ 12x - 5y + 19 = 0অথবা, 12x - 5y - 33 = 04(b) (1, -2) किंग्नू থেকে $7\frac{1}{2}$ একক দুরবর্তী এবং 3x + 4y = 7 রেখাটির সমান্তরাল রেখাসমূহের সমীকরণ নির্ণয় কর। [দি.'১০; চ.'১২; য.'১৩; ঢা.'১৪; সি.'১৩; ব.'১৪] সমাধান ঃ ধরি, প্রদন্ত রেখ্নার সমানতরাল রেখার সমীকরণ $3x + 4y + k = 0 \cdots$ (1)(1) রেখা হতে (1, -2) কিন্দুর দূরত্ব = $\frac{|3-8+k|}{\sqrt{0+16}}$ প্রশ্নমতে, $\frac{|3-8+k|}{\sqrt{9+16}} = 7\frac{1}{2} \implies \frac{k-5}{5} = \pm \frac{15}{2}$ 2k – 10 = 75 ⇒ k = 85/2 এবং $2k - 10 = -75 \implies k = -65/2$ নির্ণেয় রেখাসমূহের সমীকরণ $3x + 4y + \frac{85}{2} = 0$ $\Rightarrow 6x + 8y + 85 = 0$ এবং $3x + 4y - \frac{65}{2} = 0 \implies 6x + 8y = 65$ 4(c) 4x - 3y = 8 সরলরেখার সমান্দতরাল এবং তা থেকে 2 একক দুরে অবস্থিত রেখাসমূহের সমীকরণ নির্ণয় কর। [সি.'০৭,'১৩; ঢা'১০,'১৩; য.'০৪; মা.'০৫; চ.'০৯; ব.'১৩; দি.'১৪] সমাধান ঃ ধরি, 4x-3y = 8 অর্থাৎ 4x - 3y - 8 = 0রেখার সমানতরাল রেখার সমীকরণ 4x - 3y + k = 0এ রেখা দুইটির মধ্যবর্তী দূরত্ব = $\frac{|k+8|}{\sqrt{16+6}}$

প্রশ্নমতে, $\frac{|k+8|}{\sqrt{16+0}} = 2 \Longrightarrow \frac{k+8}{5} = \pm 2$ \Rightarrow k = ±10 - 8 k = 10 - 8 = 2 are, k = -10 - 8 = -18নির্ণেয় রেখাসমূহের সমীকরণ 4x - 3y + 2 = 0এবং 4x - 3y - 18 = 04(d) (7, 17) किंगू मिरा यांग এवर (1, 9) किंगू থেকে 6 একক দুরে অবস্থিত সরলরেখার সমীকরণ নির্ণয় কর। সমাধান ঃ ধরি, (7, 17) কিন্দু দিয়ে যায় এরপ রেখার সমীকরণ, y - 17 = m(x - 7) \Rightarrow mx - y -7m + 17 = 0 ··· ·· (1) (1) রেখাটি থেকে (1, 9) কিন্দুর দূরত্ব $= \left| \frac{m-9-7m+17}{\sqrt{m^2+1}} \right| = \left| \frac{8-6m}{\sqrt{m^2+1}} \right|$ পশ্মতে, $\left|\frac{8-6m}{\sqrt{m^2+1}}\right| = 6 \Rightarrow \left|\frac{4-3m}{\sqrt{m^2+1}}\right| = 3$ $\Rightarrow (4-3m)^2 = 9(m^2+1)$ \Rightarrow 16 - 24m + 9m² = 9m² + 9 $\Rightarrow 24m = 7 \Rightarrow m = 7/24$ নির্ণেয় রেখার সমীকরণ $y - 17 = \frac{7}{24} (x - 7)$ $\Rightarrow 24y - 408 = 7x - 49$ \Rightarrow 7x - 24y + 359 = 0 5. (a) এমন সরলরেখার সমীকরণ নির্ণয় কর যার ঢাল -1 এবং মূলবিন্দু থেকে যার দুরত্ব 4 একক। কি. '০৬; সি. '০৯] সমাধান ঃ ধরি, – 1 ঢাল বিশিষ্ট সরলরেখার সমীকরণ, $y = -1.x + c \Longrightarrow x + y - c = 0 \cdots (1)$ মূলকিন্দু (0,0) থেকে (1) এর দূরত্ব = $\frac{|-c|}{\sqrt{2}}$ প্রশ্নমতে, $\frac{|-c|}{\sqrt{2}} = 4 \Longrightarrow |c| = 4\sqrt{2}$ \Rightarrow c = $\pm 4\sqrt{2}$ নির্ণেয় রেখার সমীকরণ, $x + y \pm 4\sqrt{2} = 0$ (b) মুলকিন্দু থেকে 7 একক দুরত্বে এবং 3x - 4y +5 7 = 0 রেখার উপর লম্ব রেখাসমুহের সমীকরণ নির্ণিয় কর।

[চ.'০৫; সি.'০৬,'১১; রা.' ০৯; দি.'০৯, '১১.'১২; ব.'১১; মা.'১৪] সমাধান ঃ ধরি, প্রদন্ত রেখার উপর লম্ব রেখার সমীকরণ $4x + 3y + k = 0 \cdots$ (1)মূলবিন্দু (0,0) থেকে (1) এর দূরত্ব = $\frac{|k|}{\sqrt{16+0}}$ প্রশ্নমতে, $\frac{|k|}{\sqrt{16+9}} = 7 \implies \frac{k}{5} = \pm 7$ $= \pm 35$ নির্ণেয় রেখাসমূহের সমীকরণ 4x + 3y + 35 = 0এবং 4x + 3y - 35 = 05(c) একটি সরলরেখার সমীকরণ নির্ণয় কর যা x-অক্ষের ধনাত্মক দিকের সাথে 60° কোণ উৎপন্ন করে এবং মৃলকিদ্ব থেকে 4 একক দুরে অবস্থিত। [চ.'১৩] সমাধান : ধরি, রেখাটির সমীকরণ, $y = x \tan 60^\circ + c \Rightarrow y = \sqrt{3} x + c$ $\Rightarrow \sqrt{3} x - y + c = 0 \cdots (1)$ মূলকিন্দু (0,0) থেকে (1) এর দূরত্ব = $\frac{|c|}{\sqrt{2+1}} = \frac{|c|}{2}$ প্রশ্নমতে $\frac{|c|}{2} = 4 \implies \frac{c}{2} = \pm 4 \implies c = \pm 8$

রেখাটির সমীকরণ $\sqrt{3} x - y + 8 = 0$ অথবা, $\sqrt{3} x - y - 8 = 0$

5(d) একটি সরলরেখা অক্ষ দুইটি থেকে সমমানের যোগবোধক অংশ ছেদ করে। মূল কিন্দু থেকে তার উপর অজিত লন্দ্বের দৈর্ঘ্য 4 একক। তার সমীকরণ বের কর। [ব.'১১; কু.'১১; সি.'১৩] সমাধান ঃ ধরি, অক্ষ দুইটি থেকে সমমানের যোগবোধক অংশ ছেদ করে এরূপ সরলরেখার সমীকরণ,

 $\frac{x}{a} + \frac{y}{a} = 1 \Longrightarrow x + y = a \cdots (i)$, যেখানে a > 0. মূল কিন্দু থেকে (i) এর উপর অঙ্জিত লন্দ্বের দৈর্ঘ্য

$$\frac{0+0-a}{\sqrt{1^2+1^2}} = \implies |-a| = 4\sqrt{2}$$

 $\Rightarrow a = 4 \quad [\cdot \ a > 0.]$ নির্ণেয় সরলরেখার সমীকরণ, $x + y = 4\sqrt{2}$

 $6(a) \quad y = 2x + 1$ ও 2y - x = 4 রেখা দুইটির অন্তর্ভুক্ত কোণগুলোর সমদ্বিখন্ডক v –অক্ষকে P ও O কিন্দুতে ছেদ করে। PO এর দূরত্ব নির্ণয় কর। [রা.'১১.'১৪; সি.'০৫; ব.'১২;কু.'১৪; চুয়েট'০৮-০৯] সমাধান ঃ প্রদত্ত v = 2x + 1 অর্থাৎ 2x - v + 1 = 0ও 2y - x = 4 অর্থাৎ x - 2y + 4 = 0 রেখা দুইটির অন্তর্ভুক্ত কোণের সমদ্বিখন্ডকের সমীকরণ, $\frac{2x-y+1}{\sqrt{4+1}} = \pm \frac{x-2y+4}{\sqrt{1+4}}$ $\Rightarrow 2x - y + 1 = \pm (x - 2y + 4)$ '+' নিয়ে, x + y = 3 $\Rightarrow \frac{x}{2} + \frac{y}{2} = 1$, যা v –অক্ষকে P(0,3) কিন্দুতে ছেদ করে। '-' निता, 2x - y + 1 = -x + 2y - 4 \Rightarrow 3x - 3y = -5 \Rightarrow $\frac{x}{-5/3} + \frac{y}{5/3} = 1$, $\forall 1$ y – অক্ষকে Q(0, $\frac{5}{3}$) কিন্দুতে ছেদ করে। PQ এর দূরত্ব = $|3 - \frac{5}{3}| = |\frac{4}{3}| = 1\frac{1}{3}$ 6(b) দেখাও যে, (0,1) বিন্দুটি 12x - 5y + 1 = $0 \, \otimes \, 5x \, + \, 12y \, - \, 16 \, = \, 0$ রেখাদ্বয়ের অশতর্ভুক্ত কোণগুলোর একটি সমদ্বিখন্ডকের উপর অবস্থিত। রা.'০৬; সি.'০৮,'১৪; কু. '১১,'১৩; চ. '০৮; য.'১১; দি,'১৩] প্রশ্নমতে এটাই প্রমাণ করা যথেষ্ট যে, প্রমাণ 12x - 5y + 1 = 0 5x + 12y - 16 = 0রেখাদ্বয় হতে (0,1) বিন্দুটি সমদূরবর্তী । (1) থেকে (0,1) বিন্দুর দূরত্ব = $\frac{|0-5+1|}{\sqrt{144+25}}$ $= \frac{|-4|}{12} = \frac{4}{12}$

(2) থেকে (0,1) কিন্দুর দূরত্ব =
$$\frac{|0+12-16|}{\sqrt{25+144}}$$

বিকল্প পন্দ্রতি ঃ পদন্ত রেখাদ্বয়ের অন্দতর্ভুক্ত কোণগুলোর সমদ্বিখন্ডকের সমীকরণ,

 $\frac{12x - 5y + 1}{\sqrt{144 + 25}} = \pm \frac{5x + 12y - 16}{\sqrt{25 + 144}}$ $\Rightarrow 12x - 5y + 1 = \pm (5x + 12y - 16)$ '+' निरः, 12x - 5y + 1 = 5x + 12y - 16 \Rightarrow 7x - 17y + 17 = 0 ···(1) ধরি, f (x, y) = 7x - 17y + 17 = 0'-' নিয়ে, 12x - 5y + 1 = -5x - 12y +16 $\Rightarrow 17x + 7y - 15 = 0 \cdots (2)$ ধরি, $g(x, y) \equiv 17x + 7y - 15 = 0$ এখন, f (0, 1) = 7.0 - 17.1 + 17 = 0 এবং g(0, 1) = 17.0 + 7.1 - 15 = -8(0,1) কিন্দুটি (1) কৈ সিদ্ধ করে অর্থাৎ (0,1) কিন্দুটি (1) দ্বারা সূচিত সমদ্বিখন্ডকের উপর অবস্থিত। 6(c) 4y - 3x = 3 and 3y - 4x = 5 sat দুইটির অন্তর্ভুক্ত স্থ্রলকোণের সমীকরণ নির্ণয় কর। বি.'০২; দি.'০৯] সমাধান : $4y - 3x = 3 \implies 3x - 4y + 3 = 0$ কে $a_1x + b_1y + c_1 = 0$ এর সাথে এবং 3y - 4x = 5 $\Rightarrow 4\mathbf{x} - 3\mathbf{y} + 5 = 0 \ \text{centering} \ a_2 x + b_2 y + c_2 = 0$ এর সাথে তুলনা করে পাই. $a_1a_2 + b_1b_2 = 3 \times 4 + (-4) \times (-3)$ = 12 + 12 = 24 > 0রেখা দুইটির অন্তর্ভুক্ত স্থলকোণের সমদ্বিখন্ডকের সমীকরণ, $\frac{3x-4y+3}{\sqrt{9+16}} = \frac{4x-3y+5}{\sqrt{16+9}}$ \Rightarrow 3x-4y+3= 4x-3y+5 \Rightarrow -x - y - 2 = 0 \therefore x + y + 2= 0 (Ans.) 6(d) 3x + 4y = 11 and 12x - 5y - 2 = 0রেখা দুইটির অন্তর্ভুক্ত সুন্মকোণের সমদ্বিখন্ডকের সমীকরণ নির্ণয় কর। [প্র.ভ.প. '০৬;ব. '০৯] সমাধান : $3x + 4y = 11 \Rightarrow 3x + 4y - 11 = 0$ কে $a_1x + b_1y + c_1 = 0$ এর সাথে এবং 12x-5y-2=0কে $a_2x + b_2y + c_2 = 0$ এর সাথে তুলনা করে প i $a_1a_2 + b_1b_2 = 3 \times 12 + 4 \times (-5)$ $= 36 \quad 20 = > 0$

রেখা দুইটির অনতর্ভুক্ত সুক্ষকোণের সমদ্বিখন্ডকের সমীকরণ, $\frac{3x+4y-11}{\sqrt{9+16}} = -\frac{12x-5y-2}{\sqrt{144+25}}$ $\Rightarrow \frac{3x+4y-11}{5} = -\frac{12x-5y-2}{13}$ $\Rightarrow 39x+52y-143 = -60x+25y+10$ $\Rightarrow 99x+27y-153 = 0$ 11x+3y-17 = 0 (Ans.)

7(a) 4x - 4y + 3 = 0 এবং x + 7y - 2 = 0রেখা দুইটির অন্দতর্ভুক্ত কোণগুলোর সমদ্বিখন্ডকের সমীকরণ নির্ণায় কর এবং দেখাও যে, সমদ্বিখন্ডকদ্বয় পরস্পর লম্দ। এদের কোনটি মূলকিন্দু ধারণকারী কোণের সমদ্বিখন্ডক। [য.'০২,'০৭,'১২ সমাধান: প্রদন্ত রেখাদ্বয়ের অন্দতর্ভুক্ত কোণগুলোর সমদ্বিখন্ডকের সমীকরণ

$$\frac{4x - 4y + 3}{\sqrt{16 + 16}} = \pm \frac{x + 7y - 2}{\sqrt{1 + 49}}$$

$$\Rightarrow \frac{4x - 4y + 3}{4\sqrt{2}} = \pm \frac{x + 7y - 2}{5\sqrt{2}}$$

$$\Rightarrow 20x - 20y + 15 = \pm (4x + 28y - 8)$$
'+' निरा, 20x - 20y + 15 = 4x + 28y - 8

$$\Rightarrow 16x - 48y + 23 = 0 \quad (1)$$
'-' निरा, 20x - 20y + 15 = -4x - 28y + 8

$$\Rightarrow 24x + 8y + 7 = 0 \cdots (2)$$
२য় जर : (1) রেখার ঢাল = $-\frac{16}{-48} = \frac{1}{3}$
(2) রেখার ঢাল = $-\frac{24}{8} = -3$
এ ঢাল দুইটির গুণফল = $\frac{1}{3} \times -3 = -1$
সমদ্বিখন্ডকদ্বয় পরস্পর লন্দ্য।

৩য় অংশ ঃ প্রদন্ত রেখা দুইটির ধ্রুব পদ 3 ও –2 বিপরীত চিহ্নযুক্ত বলে '–' চিহ্ন নিয়ে প্রাশ্ত সমদ্বিখন্ডক সমীকরণ অর্থাৎ 24x + 8y + 7 = 0 মূলব্দিদু ধারণকারী কোণের সমদ্বিখন্ডক।

7(b) 4x+ 3y + 2=0 এবং 12x + 5y + 13=0 রেখা দুইটির অন্তর্ভুক্ত যে কোণটি মূলক্দিদু ধারণ কারে তার সমন্বিখন্ডকের সমীকরণ নির্ণয় কর। [মা.বো.'০৭]

প্রদন্ত রেখা দুইটির ধ্রব পদ 2 ও 13 সমাধান সমচিহ্নযুক্ত। মলবিন্দু ধারণকারী কোণের সমদ্বিখন্ডকের সমীকরণ $\frac{4x+3y+2}{\sqrt{16+9}} = \frac{12x+5y+13}{\sqrt{144+25}}$ $\Rightarrow \frac{4x+3y+2}{5} = \frac{12x+5y+13}{13}$ $\Rightarrow 60x + 25y + 65 = 52x + 39y + 26$ 8x - 14y + 39 = 0 (Ans.) 7(c) x + y + 1 = 0 রেখাটি 3x - 4y + 3 = 0ও AB রেখা দুইটির অশতর্ভুক্ত কোণগুলোর একটির সমদ্বিখন্ডক। AB রেখার সমীকরণ নির্ণয় কর। সমাধান: ধরি, AB রেখার ঢাল m_2 , x + y + 1 = 0 $\cdots(1)$ রেখার ঢাল, m = -1 এবং 3x - 4y + 3 = 0(1), (2) ও AB রেখাত্রযের ছেদকিন্দু = $(\frac{3+4}{2}, \frac{3-3}{3}, -3)$ A (2) ও (1) এর অনতর্ভুক্ত কোণ $\tan^{-1} \frac{m_1 - m}{1 + m_1 m}$ এবং ও AB এর অনতর্ভুক্ত কোণ tan⁻¹ <u>m - m₂</u>
 <u>I + mm₂</u>
 <u>I + mm₂</u>
 পরস্পর সমান। $\frac{m_1 - m}{1 + m_1 m} = \frac{m - m_2}{1 + m m_2}$ $\implies \frac{\frac{3}{4}+1}{1+(-1)\frac{3}{4}} = \frac{-1-m_2}{1-m_2}$ $\Rightarrow \frac{4+3}{4-3} = \frac{-1-m_2}{1-m_2} \Rightarrow 7 = \frac{-1-m_2}{1-m_2}$ \Rightarrow 7 - 7 $m_2 = -1 - m_2 \Rightarrow 6 m_2 = 8$ $\Rightarrow m_2 = \frac{4}{2}$ AB রেখার সমীকরণ $y - 0 = \frac{4}{2}(x + 1)$ \Rightarrow 3y = 4x + 4 :: 4x - 3y + 4 = 0 (Ans.)

[MCO এর জন্য, $(1^2 + 1^2)(3x - 4y + 3)$ – $2(1 \times 3 + 1 \times -4)(x + y + 1) = 0$ 8(a) (0, 0), (0, 3) (4, 0) किपूर्शन घाता গঠিত ত্রিভুচ্জের কোণগুলির অন্তচ্বিখন্ডক নির্ণয় কর এবং দেখাও যে, তারা সমকিদ। [ঢা. '০৪; কু. '১০; সি. '১১] A(0.0) সমাধান : মনে করি, ABC ত্রিভুজের শীর্ষ তিনটি A(0,0), F / B(0, 3) ও C(4, 0) এবং AD, BE ও CF ত্রিভূজটির কোণগুলির B(0.3) D C(4,0) অন্তর্দ্বিখন্ডক BC, CA ও AB বাহুকে যথান্ত্রমে D. E ও F কিন্দুতে ছেদ করে। $BC = \sqrt{3^2 + 4^2} = 5$ $AC = \sqrt{4^2 + 0^2} = 4$ $AB = \sqrt{0^2 + 3^2} = 3$ ∠ A এর অন্তর্দ্বিখন্ডক AD বলে, D কিন্দু BC কে AB: AC = 3 4 অনুপাতে অনতর্বিভক্ত করবে। $D = \left(\frac{3.4 + 4.0}{2 + 4}, \frac{3.0 + 4.3}{2 + 4}\right) = \left(\frac{12}{7}, \frac{12}{7}\right)$ অনুরূপতাবে, $E \equiv \left(\frac{3.4+5.0}{3+5}, \frac{3.0+5.0}{3+5}\right) = \left(\frac{3}{2}, 0\right)$ $F = \left(\frac{4.0 + 5.0}{4 + 5}, \frac{4.3 + 5.0}{4 + 5}\right) = \left(0, \frac{4}{2}\right)$ AD অনতর্দ্বিখন্ডকের সমীকরণ, $y = \frac{12/7}{12/7}x$ $y = x \cdots(1)$ BE অন্তর্দ্বিখন্ডকের সমীকরণ, $(x-0)(0-0) - (y-3)(0-\frac{3}{2}) = 0$ $\Rightarrow 3x + \frac{3}{2}y - \frac{9}{2} = 0 \Rightarrow 6x + 3y - 9 = 0$ $2x + y - 3 = 0 \cdots (2)$ CF অনতর্দ্বিখন্ডকের সমীকরণ. $(x-4)(0-\frac{4}{2}) - (y-0)(4-0) = 0$ $\Rightarrow -\frac{4}{3}x + \frac{16}{3} - 4y = 0 \Rightarrow -4x - 12y + 16 = 0$ x + 3y - 4 = 0 (3)

বিকল্প পন্ধতি ঃ ধরি, OAB ত্রিভুজের শীর্ষ তিনটি O(0,0), A(4,0) ও B(0,3).

স্পন্টতঃ OA ও OB বাহু যথাক্রমে x ও y অক্ষ বরাবর। OA বাহুর সমীকরণ y = 0OB বাহুর সমীকরণ x = 0OB বাহুর সমীকরণ $\frac{x}{4} + \frac{y}{3} = 1$ B(0, 3) \Rightarrow 3x + 4y - 12 = 0 OAB ত্রিভুজটির ∠AOB = 90° ∠OAB ও ∠OBA সৃক্ষকোণ। স্পষ্টতঃ ∠AOB এর সমদ্বিখন্ডকের ঢাল ধনাত্মক । অতএব. ∠ AOB এর সমদ্বিখন্ডকের সমীকরণ $\frac{y}{\sqrt{1^2}} = \frac{x}{\sqrt{1^2}} \quad \therefore y = x \cdots (1)$ BO ও BA বাহুর জন্য. $a_1a_2 + b_1b_2 = 1.3 + 0.4 > 0$ $\frac{3x+4y-12}{\sqrt{3^2+4^2}} = -\frac{x}{\sqrt{1^2}}$ \Rightarrow 3x + 4y - 12 = -5x \Rightarrow 8x + 4y - 12 = 0 2x + y - 3 = 0(2)আবার, এখন, AO ও AB বাহুর জন্য, $a_1a_2 + b_1b_2 = 0.3 + 1.4 > 0$ ∠OAB এর সমদ্বিখন্ডকের সমীকরণ $\frac{3x+4y-12}{\sqrt{3^2+4^2}} = -\frac{y}{\sqrt{1^2}}$ \Rightarrow 3x + 4y - 12 = -5y \Rightarrow 3x + 9y - 12 = 0 \therefore x + 3y - 4 = 0 (3)দিতীয় অংশ ঃ সমীকরণ (1) ও (2) সমাধান করে পাই, x = 1, y = 1 যা সমীকরণ (৩) কেও সিদ্ধ করে । ΔABC এর কোণগুলির অনতর্দ্বিখন্ডকত্রয় সমকিদ্ব। 8(b) যে ত্রিভুজের বাহ্ণুলোর সমীকরণ 4x + 3y - 12 =0, 3x – 4y + 16 = 0 এবং 4x – 3y – 12=0 তার অশতঃকেন্দ্র নির্ণয় কর। [সি.'০৩]

সমাধান: ধরি, ABC ত্রিভুজের বাহু তিনটি

AB =
$$4x + 3y - 12 = 0 \cdots (1)$$
 i.e., $\frac{x}{3} + \frac{y}{4} = 1$
BC = $3x - 4y + 16 = 0 \cdots (2)$ i.e., $\frac{x}{-16} + \frac{y}{4} = 1$
CA = $4x - 3y - 12 = 0 \cdots (3)$ i.e., $\frac{x}{3} + \frac{y}{-4} = 1$
Www.boighar com
(2)
(3)
For ABC fayer com
(2)
(3)
For ABC fay the formation of the formation o

 $\sqrt{16+9}$ $\sqrt{16+9}$ $\Rightarrow 4x + 3y - 12 = -4x + 3y + 12$ $\Rightarrow 8x = 24 \Rightarrow x = 3$ $(4) \Rightarrow 3 + 7y - 28 = 0 \Rightarrow y = \frac{25}{7}$ প্রদন্ত রেখা তিনটি দ্বারা গঠিত ত্রিভুজের অশতঃকেন্দ্র $(3, \frac{25}{7}).$

8(c) যে ত্রিভুজ্জের বাহুগুলোর সমীকরণ x = 3, y = 4এবং 4x + 3y = 12 তার কোণগুলোর সমদ্বিখন্ডকের সমীকরণ নির্ণয় কর। সমাধান: ধরি, ABC ত্রিভুজের AB, BC ও CA বাহু তিনটির সমীকরণ যথাক্রমে $x = 3 \cdots (1)$ (2) ও $4x + 3y = 12 \cdots (3)$ অর্থাৎ v = 4- + - = 1 চিত্রে ABC ত্রিভুজটি দেখানো হয়েছে। সমীকরণ তিনটির ধ্রবপদ ' - ' করে পাই, $\frac{x}{3} + \frac{y}{4} = 1$ $x - 3 = 0 \cdots (1), y - 4 = 0 \cdots (2)$ এবং $4x + 3y - 12 = 0 \cdots (3)$ চিত্র থেকে এটা স্পষ্ট যে, ত্রিভুন্সটির ∠BAC কোণ মুলকিন্দু ধারণ করে কিন্দু ∠ ABC ও ∠ ACB কোণ দুইটি মূলকিন্দু ধারণ করে না। $\angle BAC$ এর সমদ্বিখন্ডক $\frac{x-3}{\sqrt{1}} = \frac{y-4}{\sqrt{1}}$ \Rightarrow x - 3 = y - 4 \Rightarrow x - y + 1 = 0 $\angle ABC$ এর সমদ্বিখন্ডক $\frac{x-3}{\sqrt{1}} = -\frac{4x+3y-12}{\sqrt{16+9}}$ \Rightarrow 5(x - 3) = -4x - 3y + 12 \Rightarrow 9x + 3y-15-12= 0 \Rightarrow 9x + 3y - 27 = 0 \Rightarrow 3x + y - 9 = 0 $\angle ACB$ এর সমদ্বিখন্ডক $\frac{y-4}{\sqrt{1}} = -\frac{4x+3y-12}{\sqrt{16+9}}$ \Rightarrow 5(y-4) = -4x - 3y + 12 \Rightarrow 5y - 20 + 4x + 3y - 12 = 0 \Rightarrow 4x + 8y - 32 = 0 \Rightarrow x + 2y - 8 = 0 ত্রিভুজের কোণগুলোর সমদ্বিখন্ডকের সমীকরণ x - y + 1 = 0, 3x + y - 9 = 0 are x + 2y - 8 = 08(d) 5x + 12y = 15 এবং অক্ষ দুইটি সমন্দ্বয়ে গঠিত ত্রিভুচ্জের কোণ তিনটির বহির্দ্বিখন্ডকের সমীকরণ নির্ণয় কর। সমাধান: ধরি, প্রদন্ত রেখাটি অক্ষদুইটি সমন্বয়ে OAB ত্রিভুজ গঠন করে যার বাহু তিনটি

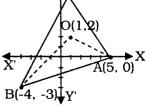
 $OA \equiv y \equiv 0 \cdots (1)$

```
OB = x = 0 ···(2) এব
AB = 5x + 12y = 15···(3)
i.e., \frac{x}{3} + \frac{y}{5/4} = 1
```

 $\frac{1}{3} + \frac{1}{5/4} = 1$

চিত্রে OAB ত্রিভুজটি দেখানো হয়েছে। চিত্র থেকে এটা স্পষ্ট যে, ত্রিভুজটির ∠AOB = 90° অতএব,∠OAB ও ∠OBA এর বহিঃস্থ কোণ দুইটি স্থৃলকোণ এবং ∠AOB এর বহির্দ্বিখন্ডকের ঢাল ঋণাত্মক।

(1) ও (2) এর অশতর্ভুক্ত ∠AOB কোণের বহির্দ্বিখন্ডকের সমীকরণ, $\frac{x}{\sqrt{1}} = -\frac{y}{\sqrt{1}} \Rightarrow x + y = 0$ (1) ও (3) সমীকরণে x-এর সহগদ্বয়ের গুণফল + y-এর সহগদ্বয়ের গ্রণফল = $0 \times 5 + 1 \times 12 = 12 > 0$ (1) ও (3) এর অন্তর্ভুক্ত কোণের বহির্দিখন্ডকের সমীকরণ, $\frac{5x + 12y - 15}{\sqrt{25 + 144}} = \frac{y}{\sqrt{1}}$ \Rightarrow 5x + 12y - 15 = 13y \Rightarrow 5x - y - 15 = 0 আবার,(2) ও (3) সমীকরণে, x-এর সহগদ্বয়ের গুণফল + y-এর সহগদ্বয়ের গ্রণফল $=1 \times 5 + 0 \times 12 = 5 > 0$ (2) ও (3) এর অনতর্ভুক্ত কোণের বহির্দিখন্ডকের সমীকরণ, $\frac{5x+12y-15}{\sqrt{25+144}} = \frac{x}{\sqrt{15}}$ \Rightarrow 5x + 12y - 15 = 13x \Rightarrow 8x - 12y +15 = 0 8(e) △ ABC এর শীর্ষ দুইটি A(5, 0), B(-4, -3) এবং অম্তঃকেন্দ্র (1, 2) হলে, C কিন্দুর স্থানাজ্ঞ নির্ণয় কর। সমাধান :



ধরি, \triangle ABC এর অনতঃকেন্দ্র O(1, 2). AB এর ঢাল = $\frac{0+3}{5+4} = \frac{1}{3}$

AO এর ঢাল = $\frac{0-2}{5-1} = -\frac{1}{2}$ BO এর ঢাল = $\frac{2+3}{1+4} = 1$ AC রেখার ঢাল m, হলে, $\frac{m_1 + \frac{1}{2}}{1 - \frac{1}{2}m_1} = \frac{-\frac{1}{2} - \frac{1}{3}}{1 + (-\frac{1}{2}) \cdot \frac{3}{4}} \Longrightarrow \frac{2m_1 + 1}{2 - m_1} = \frac{-3 - 2}{8 - 3}$ $\Rightarrow \frac{2m_1+1}{2-m_1} = -1 \Rightarrow 2m_1+1 = -2 + m_1$ $\Rightarrow m_1 = -3$ AC রেখার সমীকরণ, y - 0 = -3(x - 5) \Rightarrow y = -3x +15 ···· (1) আবার, BC রেখার ঢাল m_2 হলে, $\frac{m_2 - 1}{1 + 1.m_2} = \frac{1 - \frac{1}{3}}{1 + 1.\frac{1}{3}} = \frac{3 - 1}{3 + 1} = \frac{1}{2}$ $\Rightarrow 2m_2 - 2 = 1 + m_2 \Rightarrow m_2 = 3$ BC রেখার সমীকরণ, y + 3 = 3(x + 4) \Rightarrow v + 3 = 3x + 12 \Rightarrow -3x +15 + 3 = 3x + 12 [(1) घाরा] $\Rightarrow 6x = 6 \Rightarrow x = 1$ (1) হতে পাই, y = - 3. 1 + 15 = 12 (1) ও (2) এর ছেদকিন্দ C ≡ (1, 12) বিকর পদ্ধতি ঃ ধরি,∆ ABC এর অন্তঃকেন্দ্র O(1, 2).AB রেখার সমীকরণ, $\frac{x-5}{5+4} = \frac{y-0}{0+3}$ \Rightarrow x - 5 = 3y \Rightarrow x - 3y - 5 = 0 AO রেখার সমীকরণ, $\frac{x-5}{5-1} = \frac{y-0}{0-2}$ $\Rightarrow -2x + 10 = 4y \Rightarrow x + 2y - 5 = 0$ BO রেখার সমীকরণ, $\frac{x-1}{1+4} = \frac{y-2}{2+3}$ \Rightarrow x - 1 = y - 2 \Rightarrow x - y + 1 = 0

এখন, AC ও AB এর অনতর্ভুক্ত কোণের সমদ্বিখন্ডক AO. অতএব, AC রেখার সমীকরণ, $(1^{2} + 2^{2})(x - 3y - 5) - 2\{1.1 + (-3)(2)\}$ (x + 2y - 5) = 0 $\Rightarrow 5(x - 3y - 5) + 10(x + 2y - 5) = 0$ $\Rightarrow x - 3y - 5 + 2x + 4y - 10 = 0$ $\Rightarrow 3x + y - 15 = 0 \Rightarrow y = -3x + 15 \cdots (1)$ undia, BA ও BC এর অম্তর্ভুক্ত কোণের সমিষিখন্ডক BO. অতএব, BC রেখার সমীকরণ, $(1^{2} + 1^{2})(x - 3y - 5) - 2\{1.1 + (-3)(-1)\}$ (x - y + 1) = 0 $\Rightarrow x - 3y - 5 - 4(x - y + 1) = 0$ $\Rightarrow x - 3y - 5 - 4x + 4y - 4 = 0$ $\Rightarrow -3x + -3x + 15 - 9 = 0$ [(1) দ্বারা] $\Rightarrow -6x = -6 \Rightarrow x = 1$ (1) হতে পাই, y = -3. 1 + 15 = 12 AC ও BC এর ছেদবিন্দু C = (1, 12)

- 9 y = 2x + 1 ও 2y x = 4 দুইটি সরলরেখার সমীকরণ।
- (a) মূলবিন্দু ও প্রদন্ত রেখাদ্বয়ের ছেদ বিন্দুগামী রেখার সমীকরণ নির্ণয় কর।
- (b) রেখা দুইটির অন্তর্ভুক্ত কোণদ্বয়ের সমদ্বিখন্ডক y অক্ষকে P ও Q বিন্দুতে ছেদ করলে PQ এর দূরত্ব নির্ণয় কর । [রা.'১১,'১৪; সি.'০৫; ব.'১২; কু.'১৪; চুয়েট'০৮-০৯]
- (c) মূলবিন্দু থেকে $\sqrt{5}$ একক দূরত্বে এবং 2y x= 4 রেখার উপর লম্ব রেখাসমূহের সমীকরণ নির্ণয় কর।

সমাধান : (a) ধরি, প্রদন্ত রেখাদ্বয়ের ছেদবিন্দুগামী রেখার সমীকরণ, 2x - y + 1 + k(x - 2y + 4) =0 (i) ; যা মূলবিন্দু (0, 0) দিয়ে অতিক্রম করে । $2 \times 0 - 0 + 1 + k(0 - 2 \times 0 + 4) = 0$ $\Rightarrow 4k = -1 \Rightarrow k = -\frac{1}{4}$ \therefore (i) হতে পাই, $2x - y + 1 - \frac{1}{4}(x - 2y + 4) = 0$ $\Rightarrow 8x - 4y + 4 - x + 2y - 4 = 0$

\Rightarrow 7x - 2y = 0 (Ans.)
(b) প্রশ্নমালা III G এর 6(a) দ্রষ্টব্য।
(c) $\forall fa, 2y - x = 4 \implies x - 2y + 4 = 0$
রেখার উপর লম্ব সরলরেখার সমীকরণ, 2x + y +
$k = 0 \cdots \cdots (i)$
মূলবিন্দু (0,0) হতে (i) এর লম্ব দূরত্ব = <mark> k </mark>
¥2 + 1
প্রশ্নমতে, $\frac{ \mathbf{k} }{\sqrt{2^2+1^2}} = \sqrt{5} \Rightarrow \mathbf{k} = \pm 5$
$\sqrt{2^2 + 1^2}$ $\sqrt{2^2 + 1^2}$
রেখাসমূহের সমীকরণ, 2x + y ±5 = 0
10. A(1, 1), B(3, 4) এবং C(5, -2) বিন্দু
তিনটি ABC ত্রিভুজের শীর্ষবিন্দু ।
 (a) ABC ত্রিভুজের ক্ষেত্রফল নির্ণয় কর।
(b) AB ও AC এর মধ্যবিন্দুর সংযোগ রেখার
সমীকরণ নির্ণয় কর। [কু.'০৬,'০৮;ঢা.'১১;
কু.'১৪; মা.বো.'০৭; য.'০৯]
(c) ABC ত্রিভুজের কোণগুলির অন্তর্দ্বিখন্ডক নির্ণয়
কর ।
সমাধান: (a) ABC ত্রিভুজের ক্ষেত্রফল = $\frac{1}{2} 4 - 6$
+ 5 -(3 + 20-2) = $\frac{1}{2}$ 3 - 21 = 9 বর্গ একক।
2 (b) প্রশ্নমালা III E এর 3(a) দ্রষ্টব্য।
(c) সমাধান:
Y♠
B(3, 4)
X = A(1, 1)
Y' C(5, -2)
▼ ~
AB, BC ও CA বাহু তিনটির সমীকরণ যথাক্রমে,
(x-1)(1-4) - (y-1)(1-3) = 0

= + 2v 0

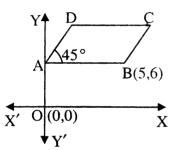
 \Rightarrow 3x - 2y - 1 = 0 (1)(x-3)(4+2) - (y-4)(3-5) = 0 $\Rightarrow 6x - 18 + 2y - 8 = 0$ ⇒ 3x + y - 13 = 0 ··· ···(2) এবং (x-1)(1+2) - (y-1)(1-5) = 0 \Rightarrow 3x - 3 + 4y - 4 = 0 \Rightarrow 3x + 4y - 7 = 0 ··· ···(3) চিত্রে ABC ত্রিভুজটি দেখানো হয়েছে। চিত্র থেকে এটা স্পষ্ট যে, ত্রিভুজটির ∠BAC কোণ মূলকিন্দু ধারণ করে কিন্দু∠ABC ও ∠ACB কোণ দুইটি মূলকিন্দু ধারণ করে না। AB = 3x - 2y - 1 = 0(1)BC = 3x + y - 13 = 0CA = 3x + 4y - 7 = 0∠BAC এর সমদ্বিখন্ডক $\frac{3x - 2y - 1}{\sqrt{9 + 4}} = \frac{3x + 4y - 7}{\sqrt{9 + 16}}$ $\implies \frac{3x-2y-1}{\sqrt{13}} = \frac{3x+4y-7}{5}$ $\Rightarrow 15x - 10y - 5 = 3\sqrt{13}x + 4\sqrt{13}y - 7\sqrt{13}$ \Rightarrow (15 - 3 $\sqrt{13}$) x - (10 + 4 $\sqrt{13}$) y $-5+7\sqrt{13}=0$ ∠ABC এর সমদ্বিখন্ডক $\frac{3x - 2y - 1}{\sqrt{9 + 4}} = -\frac{3x + y - 13}{\sqrt{9 + 1}}$ $\Rightarrow \frac{3x-2y-1}{\sqrt{13}} = -\frac{3x+y-13}{\sqrt{10}}$ $\Rightarrow 3\sqrt{13} x + \sqrt{13} y - 13\sqrt{13} = -3\sqrt{10} x$ $+2\sqrt{10}+\sqrt{10}$ $\Rightarrow (3\sqrt{13} + 3\sqrt{10})x + (\sqrt{13} - 2\sqrt{10})y$ $-13\sqrt{13}-\sqrt{10}=0$ ∠ACB এর সমদ্বিখন্ডক $\frac{3x+4y-7}{\sqrt{9+16}} = -\frac{3x+y-13}{\sqrt{9+1}}$ $\Rightarrow \frac{3x+4y-7}{5} = -\frac{3x+y-13}{\sqrt{10}}$ $\Rightarrow 15x + 5y - 65 = -3\sqrt{10} x - 4\sqrt{10} y$ $+7\sqrt{10}$

উচ্চতর গণি<u>ত</u>্র ১মুপত্র সমাধান

⇒ (15 + 3√10)x + (5 +4√10)y - 65 7√10 = 0

ত্রিভুজের কোণগুলির সমদ্বিখন্ডকের সমীকরণ,
(15 - 3√13) x - (10 + 4√13) y
- 5 + 7√13 = 0,
(3√13 + 3√10)x + (√13 - 2√10)y
- 13√13 - √10 = 0 এবং
(15 + 3√10)x + (5 +4√10)y - 65 7√10 = 0

11.



(a) AD বাহুর ঢাল m = tan 45° = 1, y অক্ষের ছেদাংশ c = B বিন্দুর y স্থানাজ্ঞ্ব = 6.

AD বাহুর স্রমীকরণ y = mx + c $\Rightarrow y = x + 6 = x + 6 \Rightarrow x - y + 6 = 0$ (b) x অক্ষের সমান্তরাল এবং B(5, 6) কিন্দুগামী AB বাহুর সমীকরণ y = 6

B(5, 6) কিন্দুগামী এবং AD এর সমান্তরাল BC বাহুর সমীকরণ $x - y = 5 - 6 \Longrightarrow x - y + 1 = 0$ এখানে $a_1a_2 + b_1b_2 = 0 \times 1 + 1 \times -1 = -1 < 0$ এবং \angle ABC একটি স্থূলকোণ।

ABC কোণের সমদ্বিখন্ডকের সমীকরণ,

$$\frac{x - y + 1}{\sqrt{1 + 1}} = -\frac{y + 6}{\sqrt{1}}$$

$$\Rightarrow x - y + 1 = -\sqrt{2} y - 6\sqrt{2}$$

$$x + (\sqrt{2} - 1)y + 1 + 6 \sqrt{2} = 0$$

(c) এখানে A এর স্থানাজ্ঞ্ব (0, 6)

ধরি, $AB \equiv y = 6$ বাহুর সমান্তরাল DC বাহুর সমীকরণ y = ky = k এবং $x - y + 6 = 0 \Rightarrow x = y - 6$ এর ছেদ বিন্দু D (k - 6, k). y = k এবং $x - y + 1 = 0 \Rightarrow x = y - 1$ এর ছেদ বিন্দু C(k - 1, k)এখন, AD = BC $\Rightarrow \sqrt{(k - 6 - 0)^2 + (k - 6)^2} = 3\sqrt{2}$ $\Rightarrow \sqrt{2(k - 6)^2} = 3\sqrt{2}$ $\Rightarrow \sqrt{2(k - 6)^2} = 3\sqrt{2}$ $\Rightarrow \sqrt{2} (k - 6) = 3\sqrt{2}$ $\Rightarrow k - 6 = 3 \Rightarrow k = 9$ C কিন্দুর স্থানাজ্ঞ (8, 9) এবং D কিন্দুর স্থানাজ্ঞ (3, 9). **ফাজ ১. দেখাও যে, (-\frac{1}{2}, -2) কিন্দুটি 2x - 3y + 4 = 0**

ও 6x + 4y - 7 = 0 রেখা দুইটি হতে সমদূরবর্তী। [য.'০৬]

প্রমাণ: 2x - 3y + 4 = 0 রেখা হতে $\left(-\frac{1}{2}, -2\right)$ এর

मूत्राष् =
$$\frac{|2 \times -\frac{1}{2} - 3 \times -2 + 4|}{\sqrt{2^2 + 3^2}} = \frac{|-1 + 6 + 4|}{\sqrt{13}}$$

= $\frac{|9|}{\sqrt{13}} = \frac{9}{\sqrt{13}}$

$$6x + 4y - 7 = 0$$
 রেখা হতে $(-\frac{1}{2}, -2)$ এর লম্ব

দূরত্ব =
$$\frac{|6 \times -\frac{1}{2} + 4 \times -2 - 7|}{\sqrt{6^2 + 4^2}} = \frac{|-3 - 8 - 7|}{\sqrt{36 + 16}}$$
$$= \frac{|-18|}{\sqrt{52}} = \frac{18}{2\sqrt{13}} = \frac{9}{\sqrt{13}}$$
প্রদন্ত কিন্দু হতে রেখা দুইটি সমদূরবর্তী ।

২. এর্প সরলরেখার সমীকরণ নির্ণয় কর যা মূলবিন্দু দিয়ে যায় এবং 2x + 3y - 5 = 0 এবং 3x + 2y - 7 = 0রেখা দুইটির সাথে সমান সমান কোণ উৎপন্ন করে। সমাধান ধরি, মূলবিন্দুগামী রেখার সমীকরণ y = mx

অর্থাৎ $mx - y = 0 \cdots (1)$ 2x + 3y - 5 = 0 and 3x + 2y - 7 = 0রেখার ঢাল যথাক্রমে $m_1 = -\frac{2}{3}$ এবং $m_2 = -\frac{3}{2}$ প্রদন্ত রেখাদ্বয় (1) রেখার সচ্চো সমান সমান কোণ উৎপন্ন করে বলে, $\frac{m-m_1}{1+mm_1} = \pm \frac{m-m_2}{1+mm_2}$ $\Rightarrow \frac{m+\frac{2}{3}}{1-\frac{2}{3}m} = \pm \frac{m+\frac{3}{2}}{1-\frac{3}{2}m}$ $\Rightarrow \frac{3m+2}{3-2m} = \pm \frac{2m+3}{2-3m}$ ⇒ '+' निरा, $4 - 9m^2 = 9 - 4m^2$ $\Rightarrow 5m^2 = -5$, যা সম্ভব নয়। '-' नि. $4 - 9m^2 = -9 + 4m^2$ \Rightarrow 13 m² = 13 \Rightarrow m² = 1 \Rightarrow m = ±1 রেখাটির সমীকরণ , x - y = 0 বা, x + y = 0অতিরিক্ত প্রশ্ন (সমাধানসহ) একটি সরলরেখার সমীকরণ নির্ণয় কর যা x-1 অক্ষের ধনাত্রক দিকের সাথে $\sin^{-1}(5/13)$ কোণ

উৎপন্ন করে।

সমাধান: দেওয়া আছে, রেখার ঢাল, 13m = tan sin⁻¹ (5/13)

= $\tan \tan^{-1} \frac{5}{12} = \frac{5}{12}$ এবং *y*-অক্ষের ছেদক

অংশ, c = 5 একক।

নির্ণেয় রেখার সমীকরণ, y = mx + c

 $\Rightarrow y = \frac{5}{12}x + 5 \Rightarrow 12 y = 5x + 60$ (Ans.)

2(a) (3.2) ও (7,3) কিন্দু দুইটি 2x - 5y + 3=0রেখার একই অথবা বিপরীত পার্শ্বে অবস্থিত কিনা নির্ণয় কর। কিন্দু দুইটির কোনটি রেখাটির যে পার্শ্বে মূল কিন্দু, ঠিক সে পার্শ্বে অবস্থিত?

সমাধান ঃ ধরি, $(x \ y) = 2x - 5y + 3 = 0$ f (3, 2) = 2 × 3 - 5 × 2 + 3 = -1, f (7, 3) = 14 - 15 + 3 = 2, f (0, 0) = _0 5 × 0 + 3 = 3 f(3, 2) ও f(7, 3) বিপরীত চিহ্নবিশিষ্ট বলে, কিন্দু দুইটি রেখাটির বিপরীত পার্শ্বে অবস্থিত।

আবার, f (7, 3) ও f (0, 0) একই চিহ্নবিশিষ্ট বলে, মূলবিন্দু ও (7, 3) কিন্দু রেখাটির একই পার্শ্বে অবস্থিত।

2(b) দেখাও যে, মুলবিন্দু ও (1,6) বিন্দুটি x - y + 4 = 0 এবং x + 2y - 4 = 0 রেখান্বয়ের অন্তর্ভুক্ত বিপ্রতীপ কোণে অবস্থিত।

প্রমাণ : ধরি,
$$f(x, y) \equiv x - y + 4 = 0 \cdots (1)$$

এবং $g(x, y) \equiv x + 2y - 4 = 0$ (2)
 $f(0,0) = 0 - 0 + 4 = 4$
 $f(1, 6) = 1 - 6 + 4 = -1$
 $f(0,0) \times f(1, 6) = 4 \times -1 < 0$

আবার,
$$g(0,0) = 0 + 0 - 4 = -4_{(0,0)}$$
 (1,6)
 $g(1,6) = 1 + 12 - 4 = 9$

 $g(0,0) \times g(1, 6) = -4 \times 9 < 0$

মূলকিন্দু ও (1,6) কিন্দু (2) রেখার বিপরীত পাশে অবস্থিত।

মূলবিন্দু ও (1,6) বিন্দুটি x - y + 4 = 0 এবং x + 2y - 4 = 0 রেখাদ্বয়ের অন্দতর্ভুক্ত বিপ্রতীপ কোণে অবস্থিত।

2(c) দেখাও যে, মূলকিন্দু এবং (2, -1) কিন্দুটি যথাক্রমে 2x - y - 4 = 0 এবং 4x + 2y - 9 = 0রেখাদ্বয়ের অন্দতর্ভুক্ত স্থূলকোণে এবং সুন্ধকোণে অবস্থিত।

প্রমাণ ঃ ধরি, f $(x, y) \equiv 2x - y - 4 = 0 \cdots(1)$ এবং g $(x, y) \equiv 4x + 2y - 9 = 0$ (2) f (0,0) = -4, g (0, 0) = -9f (2, -1) = 4 + 1 - 4 = 1g (2, -1) = 8 - 2 - 9 = -3এবং $a_1a_2 + b_1b_2 = 2 \times 4 + (-1) \times 2 = 6$ এখন, f $(0,0) \times$ g $(0,0)(a_1a_2 + b_1b_2) = 216 > 0$ মূলকিন্দু প্রদন্ত রেখাদ্বয়ের অনতর্ভুক্ত স্থূলকোণে অবস্থিত। এবং $f(2,-1) \times g(2,-1)(a_1a_2+b_1b_2) = -18 < 0$ (2, -1) কিন্দুটি প্রদন্ত রেখাদ্বয়ের অনতর্ভুক্ত সক্ষকোণে অবস্থিত। 3. 2x + 3y + 5 = 0 are 4x - 6y - 7 = 0রেখা দুইটির অন্তর্ভক্ত যে কোণটি (1, 2) কিন্দু ধারণ করে তার সমদিখন্ডকের সমীকরণ নির্ণয় কর। সমাধান : ধরি, $f(x, y) \equiv 2x + 3y + 5 = 0$ এবং $g(x, y) \equiv 4x - 6y - 7 = 0$ $f(1, 2) \times g(1, 2) = (2 + 6 + 5)(4 - 12 - 7)$ = 12.(-15) < 0(1.2) কিন্দু ধারণকারী সমদ্বিখন্ডকের সমীকরণ. $\frac{2x+3y+5}{\sqrt{4+9}} = -\frac{4x-6y-7}{\sqrt{16+36}}$ $\Rightarrow \frac{2x+3y+5}{\sqrt{13}} = -\frac{4x-6y-7}{\sqrt{52}}$ $\Rightarrow \frac{2x+3y+5}{\sqrt{13}} = -\frac{4x-6y-7}{2\sqrt{13}}$ \Rightarrow 4x + 6y + 10 = -4x + 6y + 7 \Rightarrow 8x + 3 = 0 (Ans.) 4(a) 4x + 3y = 12, $3x - 4y + 16 = 0 \le 4x$ - 3y + 4 = 0 রেখা তিনটি ঘারা গঠিত ত্রিভুঞ্জের লম্বকেন্দ্র নির্ণয় কর। সমাধান : ধরি, ABC ত্রিভুজের বাহু তিনটি $AB = 4x + 3y - 12 = 0 \cdots (1)$ Α $BC \equiv 3x - 4y + 16 = 0 \cdots (2)$ (1) (3) $CA = 4x - 3y + 4 = 0 \cdots (3)$ (2)(1) ও (3) এর ছেদবিন্দু, $A \equiv \left(\frac{12 - 36}{-12 - 12}, \frac{-48 - 16}{-12 - 12}\right) = \left(1, \frac{8}{3}\right)$ ও (2) এর ছেদকিন্দ $B = (\frac{48 - 48}{16}, \frac{-36 - 64}{16}) = (0, 4)$ $A(1,\frac{8}{2})$ दिन्मगांसी এবং BC এর উপর লম্বরেখার সমীকরণ $4x + 3y = 4.1 + 3. \frac{8}{2}$ $^{\circ} = 0$ (4)

আবার , B(0, 4) কিন্দুগামী এবং AC এর উপর লম্বরেখার সমীকরণ 3x + 4y = 3.0 + 4.4 \Rightarrow 3x + 4y - 16 = 0 ··· (5) (4) ও (5) এর ছেদক্দির স্থানাজ্ঞ $=(\frac{-48+48}{16-9},\frac{-36+64}{16-9})=(0,4)$ $5(b) A(-3, 0), B(3, 0) \otimes C(6, 6)$ বিন্দু তিনটি ABC ত্রিভুজের শীর্ষবিন্দু। ত্রিভুজটির লম্বকেন্দ্র ও পরিকেন্দ্র নির্ণয় কর। সমাধান : A (-3,0) কিদুগামী A(-3,0) এবং BC রেখার উপর লম্ব রেখার সমীকরণ, (3-6)x + (0-6)y $= -3 \times -3 - 6 \times 0$ B(3.0) $\overline{C(6, 6)}$ $\Rightarrow -3x-6y-9=0$ \Rightarrow x + 2y + 3 = 0···(1) B(3.0) কিন্দুগামী এবং AC রেখার উপর লম্ব রেখার সমীকরণ, (-3-6)x + (0-6)y= -9.3 + (-6).0 $\Rightarrow -9x - 6y + 27 = 0$ \Rightarrow 3x + 2y - 9 = 0 ··· ···(2) (1) ও (2) এর ছেদক্দি $(\frac{-18-6}{2}, \frac{9+9}{2})$ $=(\frac{-24}{-4},\frac{18}{-4})=(6,-\frac{9}{2})$,যা ত্রিভুজটির লম্বকেন্দ্র। এবং AC এর মধ্যবিন্দু $(\frac{3}{2},3)$. এখন, BC এর মধ্যকিন্দু $(\frac{9}{2},3)$ দিয়ে যায় এবং BC এর উপর লম্ব এরপ রেখার সমীকরণ, $(3-6)x + (0-6)y = -3.\frac{9}{2} + (-6).3$ $\Rightarrow -3x - 6y = \frac{-27 - 36}{2} = \frac{-63}{2}$ $\Rightarrow -6x - 12y + 63 = 0$ $\Rightarrow 2x + 4y - 21 = 0 \cdots (3)$ আবার, AC এর মধ্যক্দি ($\frac{3}{2}$,3) দিয়ে যায় এবং AC এর উপর লম্ব এরপ রেখার সমীকরণ, $(-3-6)x \neq (0-6)y = -9.\frac{3}{2} - 6.3$

প্রশ্নমালা III G

 $\Rightarrow 9x - 6y = \frac{-27 - 36}{2} = \frac{-63}{2}$ $\Rightarrow -18x - 12y + 63 = 0$ $\Rightarrow 6x + 4y - 21 = 0 \cdots$ (4)(3) ও (4) এর ছেদফিন্দু (<u>8 - 24</u>, <u>-126 + 42</u>) $=(\frac{0}{-16}, \frac{-84}{-16}) = (0, \frac{21}{4})$, যা ত্রিভুজটির পরিকেন্দ্র । 5(c) সুক্ষকোণী ত্রিভুচ্চ ABC এর শীর্ষ তিনটি A(4,0), B(0,2) ও C(3,5) হলে, $\triangle ABC$ এর পাদত্রিভুজ্জের অন্তত:কেন্দ্র নির্ণয় কর। A(4,0) সমাধান : ধরি,∆ ABC এ ςE F. AD, BE, CF যথাক্রমে BC, CA, AB এর উপর লম্ব । অতএব, $\Delta \, ABC$ B(0.2) D C(3,5) এর পাদত্রিভুজ ∆ DEF. BC এর উপর লম্ব AD এর সমীকরণ, $(3-0)x + (5-2)y = 3 \times 4 + 3 \times 0$ \Rightarrow 3x + 3y - 12 = 0 \Rightarrow x + y - 4 = 0 (1)আবার, CA এর উপর লম্ব BE এর সমীকরণ, $(4-3)x + (0-5)y = 1 \times 0 - 5 \times 2$ \Rightarrow x - 5y + 10 = 0 ··· (2) $(1) - (2) \Rightarrow 6y - 14 = 0 \Rightarrow y = \frac{7}{2}$ (1) হতে পাই, $x + \frac{7}{2} - 4 = 0$ \Rightarrow x + $\frac{7-12}{3} = 0 \Rightarrow$ x = $\frac{5}{3}$ ΔABC এর লম্বকেন্দ্র = $(\frac{5}{3}, \frac{7}{3})$. পাদত্রিভুজ $\Delta \, {
m DEF}$ পরিকেন্দ্র = $\Delta \, {
m ABC}$ এর লম্বকেন্দ্র = $(\frac{5}{2}, \frac{7}{2})$ (Ans.) $6(a) \Delta ABC$ এর AB, BC, CA বাহু তিনটির

সমীকরণ যথাক্রমে 4x + 3y - 12 = 0, x - 4y + 4 = 0, 6x + 5y - 15 = 0. দেখাও যে, $\angle ABC$ একটি স্থূলকোণ।

প্রমাণ : AB, BC, CA বাহু তিনটির সমীকরণকে

যথাক্রমে $a_1x + b_1y + c_1 = 0$ A , $a_2x + b_2y + c_2 = 0$, px + qy + r = 0 এর সাথে তুলনা করে পাই, $\begin{vmatrix} a_1 & b_1 \\ p & a \end{vmatrix} \times \begin{vmatrix} p & q \\ a_2 & b_2 \end{vmatrix} (a_1 a_2 + b_1 b_2)$ $= \begin{vmatrix} 4 & 3 \\ 6 & 5 \end{vmatrix} \times \begin{vmatrix} 6 & 5 \\ 1 & -4 \end{vmatrix} \{4.1 + 3.(-4)\}$ =(20-16)(-24-5)(4-12)= 4(-29)(-8) > 0∠ABC একটি স্থালকোণ। (Showed) 6(b) প্রমাণ কর যে, A(-2, 4), B(-3, -2) ও C(5, -1) কিন্দু তিনটি একটি সুন্ধকোণী ত্রিভুজের শীর্ষ। A(-2.4)প্রমাণ ঃ B(-3,-2) C(5, -1) $AB = \sqrt{(-2+3)^2 + (4+2)^2}$ $=\sqrt{1+36}=\sqrt{37}$ BC = $\sqrt{(-3-5)^2 + (-2+1)^2} = \sqrt{64+1}$ $=\sqrt{65}$ $CA = \sqrt{(5+2)^2 + (-1-4)^2} = \sqrt{49+25}$ $=\sqrt{74}$ AB, BC, CA এর যেকোন দুইটির সমষ্টি তৃতীয়টি অপেক্ষা বৃহত্তর । অতএব, A, B, C কিন্দু তিনটি একটি ত্রিভুজ গঠন করে। এখন, $\angle A$ এর ক্ষেত্রে, $(x_1 - x_2)(x_2 - x_3)$ + $(y_1 - y_2)(y_2 - y_3) = (-2 + 3)(-2 - 5) +$ (4+2)(4+1) = -7 + 30 = 23 > 0∠A সুন্মকোণ। $(x_1 - x_2)(x_2 - x_3) +$ এর ক্ষেত্রে, ∠B $(y_1 - y_2)(y_2 - y_3) = (-3 + 2)(-3 - 5) +$ (-2-4)(-2+1) = 8+6 = 14 > 0∠B সন্মকোণ।

উচ্চতর গণিত : ১ম পত্র সমাধান বইঘর কম

 $\angle C$ এর $(x_1 - x_2)(x_2 - x_3)$ $(y_1 - y_2)(y_2 - y_3) = (5 + 2)(5 + 3) +$ (-1-4)(-1+2) = 56 - 5 = 53 > 1∠C সৃন্দ্রকোণ। প্রদন্ত কিন্দু তিনটি একটি সুক্ষকোণী ত্রিভুজের শীর্ষ। প্রমাণ কর যে, (-2, -1), (1, 3) ও (4, 1) 6(c) কিন্দু তিনটি একটি স্থলকোণী ত্রিভুজ্জের শীর্ষ। প্রমাণ ঃ ধরি, প্রদন্ত কিন্দু তিনটি A(-2,-1),B(1,3) (4,1). A(-2,-1) B(1.3)C(4, 1): $AB = \sqrt{(-2-1)^2 + (-1-3)^2}$ $=\sqrt{9+16}=5$ BC = $\sqrt{(1-4)^2 + (3-1)^2} = \sqrt{9+4} = \sqrt{13}$ $CA = \sqrt{(4+2)^2 + (1+1)^2} = \sqrt{36+4} = \sqrt{40}$ AB, BC, CA এর যেকোন দুইটির সমষ্টি তৃতীয়টি অপেক্ষা বৃহত্তর । অতএব, A, B, C কিন্দু তিনটি একটি ত্রিভুজ গঠন করে যার CA বৃহতম বহু। CA বৃহতম বহুর বিপরীত কোণ ∠B এর ক্ষেত্রে, (1-4)(1+2) + (3-1)(3+1)= -9 + 8 = -1 < 0∠B স্থলকোণ। প্রদন্ত কিন্দু তিনটি একটি স্থলকোণী ত্রিভুজেরশীর্ষ । 7(a) A(0, 7) এবং B(4,9) কিন্দুদ্বয় ABCD বর্গের শীর্ষকিন্দু হলে C ও D এর স্থানাজ্ঞ নির্ণয় কর । সমাধান ঃ $AB = \sqrt{(0-4)^2 + (7-9)^2}$ $=\sqrt{16+4}=2\sqrt{5}$ D Α D AB বাহুর সমীকরণ (x-0)(7-9) - (y-7)(0-4) = 0 $\Rightarrow -2x + 4y - 28 = 0 \Rightarrow x - 2y + 14 = 0$ A(0, 7) কিন্দুগামী AB বাহুর উপর লম্ব AD বাহুর সমীকরণ, $2x + y = 2 \times 0 + 7$ $\Rightarrow 2x + y - 7 = 0$ (1)B(4,9) কিন্দুগামী AB বাহুর উপর লম্ব BC বাহুর সমীকরণ, $2x + y = 2 \times 4 + 9$

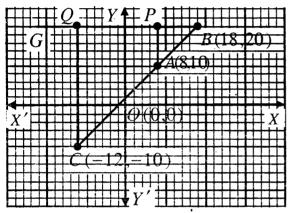
 $\Rightarrow 2x + y - 17 = 0$ (2)AB এর সমান্তরাল $2\sqrt{5}$ একক দূরবর্তী CD বাহুর সমীকরণ $x-2y + 14 \pm 2\sqrt{5} \sqrt{1^2 + 2^2} = 0$ $\Rightarrow x - 2y + 14 \pm 10 = 0$ $x - 2y + 24 = 0 \cdots (3)$ $x-2y+4=0\cdots$ (4)(1) ও (3) ছেদকিন্দ D এর স্থানাজ্ঞ্ব (-2,11) (2) ও (3) ছেদকিন্দু C এর স্থানাজ্জ (2,13) আবার, (1) ও (4) ছেদকিন্দু D এর স্থানাজ্ঞ্ব (2,3) (2) ও (4) ছেদকিন্দু C এর স্থানাজ্ঞ্ব (6.5) C(2.13) ও D (-2,11) অথবা, C(6,5) ७ D(2,3) 7(b) (0, 7) ও (6 , 5) কিন্দুদ্বয় একটি বর্গের কর্শের শীর্ষবিন্দু হলে অপর শীর্ষবিন্দু দুইটির স্থানাজ্ঞ নির্ণয় কর । সমাধান ঃ ধরি, ABCD বর্গের AC কর্ণেও শীর্ষকিন্দু A(0, 7) ও C(6, 5). : AC = $\sqrt{36+4} = 2\sqrt{10}$ AC কর্ণের লম্বসমদ্বিখন্ডক BD Α D কর্ণের সমীকরণ $(0-6)x + (7-5)y = \frac{1}{2}(0+$ $49 - 36 - 25) \Rightarrow -6x + 2y + 6 = 0$ $\Rightarrow 3x - y - 3 = 0$ (1)AC কর্ণের সমীকরণ $x + 3y = 0 + 3 \times 7$ \Rightarrow x + 3y - 21 = 0 AC কর্ণের সমান্তরাল $2\sqrt{10}$ একক দূরবর্তী রেখার সমীকরণ সরলরেখার সমীকরণ, $x + 3y - 21 \pm \sqrt{10}\sqrt{1^2} + 3^2 = 0$ \Rightarrow x + 3y - 21 ± 10 = 0 x + 3y - 11 = 0(2) এবং $x + 3y - 31 = 0 \cdots$ (3)(1) ও (2) এর ছেদকিন্দুর স্থানাজ্ফ (2, 3) (1) ও (3) এর ছেদকিন্দুর স্থানাজ্ঞ্ব (4, 9) অপর শীর্ষকিন্দু দুইটির স্থানাজ্ঞ্ব (2, 3) ও (4, 9) ব্যবহারিক অনুশীলন 1. পরীক্ষণের নাম : A(8, 10) ও B(18, 20) বিন্দুর সংযোগ রেখাংশকে 2 3 অনুপাতে

বহির্বিভক্তকারী বিন্দুর স্থানাঙ্ক নির্ণয় ।

মূ**লতত্ত্ব ঃ** $A(x_1, y_1)$ এবং $B(x_2, y_2)$ বিন্দুত্বয়ের সংযোগ রেখাংশকে m_1 m_2 অনুপাতে বহির্বিভক্তকারী বিন্দুর স্থানাঞ্চ

 $\left(\frac{m_1 x_2 - m_2 x_1}{m_1 - m_2}, \frac{m_1 y_2 - m_2 y_1}{m_1 - m_2}\right)$

প্রয়োজনীয় উপকরণ ঃ (i) পেন্সিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) পেন্সিল কম্পাস।



(i) একটি ছক কাগজে স্থানাজ্ঞের অক্ষ রেখা X'OX
 YOY' আঁকি ।

 (ii) x অফ v - অক্ষ বরাবর ক্ষুদ্রতম বর্গের 2 বাহুর দৈর্ঘ্য = 1 একক ধরে A(8 10) ও B(18, 20) কিন্দুদ্বয়কে গ্রাফ পেপারে স্থাপন করি এবং সরু পেন্সিল দিয়ে সংযোগ করে AB রেখাংশ লেখচিত্রে উপস্থাপন করি।

(iii) B কিন্দু দিয়ে x অক্ষের সমান্তরাল BG রেখার উপর যেকোন দুইটি কিন্দু P ও Q নেই যেন PQ BQ = 2 3 হয়। (এখানে, B থেকে 15 বর্গ দূরে Q এবং P থেকে 10 বর্গ দূরে Q কিন্দু অবস্থিত।)
(iv) P, A যোগ করি এবং PA এর সমান্তরাল QC রেখা অজ্ঞকন করি যা BA এর বর্ধিতাংশকে C কিন্দুতে ছেদ করে।

ফল সংকলন ঃ

C এর স্থানাঙ্ক					
গ্রাফ হতে	সূত্র হতে প্রাপ্ত মান				
প্রাপত					
মান					

 $\begin{array}{c} (-12,-10) \\ \left(\frac{2 \times 18 - 3 \times 8}{2 - 3}, \frac{2 \times 20 - 3 \times 10}{2 - 3} \right) \\ = \left(\frac{36 - 24}{-1}, \frac{40 - 30}{-1} \right) \\ = (-12, -10) \end{array}$

ফলাফল ঃ প্রদত্ত বিন্দুদ্বয়ের সংযোগ রেখাংশকে 2 3 অনুপাতে বহির্বিভক্তকারী বিন্দুর স্থানাঙ্ক (-12, -10).

2. পরীক্ষণের নাম ঃ ABC ত্রিভুজের শীর্ষবিন্দু A(5, 6), B(–9,1) এবং C(–3, –1) ত্রিভুজটির ক্ষেত্রফল নির্ণয়।

মূলতত্ত্ব ABC ত্রিভুজের শীর্ষত্রয় $A(x_1, y_1)$, $B(x_2, y_2)$ এবং $C(x_3, y_3)$ হলে ABC ত্রিভুজের ক্ষেত্রফল,

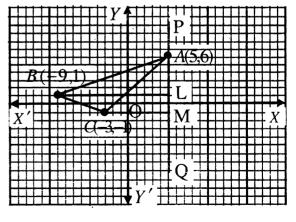
 $\Delta ABC = \frac{1}{2} \begin{vmatrix} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{vmatrix} |$ वर्श धकक ।

প্রয়োজনীয় উপকরণ ঃ (i) পেন্সিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) সায়েন্টিফিক ক্যালফুলেটর।

কাৰ্যপন্ধতি ঃ

(i) একটি ছক কাগজে স্থানাজ্ঞের অক্ষ রেখা X'OX

ও YOY' ঝাঁকি।



(ii) x - অক্ষ ও y - অক্ষ বরাবর ক্ষুদ্রতম বগের 1

বাহুর দৈর্ঘ্য = 1 একক ধরে A(5, 6), B(-9,1) এবং C(-3, -1) কিন্দুগুলি গ্রাফ পেপারে স্থাপন করি এবং সরু পেশিল দিয়ে A,B; B, C ; C, A সংযোগ করে ABC ত্রিভুজটি অঙ্জন করি।

(iii) A বিন্দু দিয়ে y অক্ষের সমান্তরাল PQ রেখা আঁকি।

(iv) B ও C হতে PQ এর উপর যথাক্রমে BL ও CM লম্ব আঁকি ।

হিসাব ঃ BL = |-9 - (5)| = 14,

CM = |-3 - (-5)| = 8, AL = |6 - 1| = 5, LM = |1 - (-1)| = 2, AM = 5 + 2 = 7

ফল সংকলন ঃ

ABC ত্রিভুজের ক্ষেত্রফল

ফলাফল ঃ ABC ত্রিভুজের ক্ষেত্রফল = 29 বর্গ একক।

3. পরীক্ষণের নাম ঃ 3x – 5y = –11 সরলরেখার লেখচিত্র অজ্জন প্রয়োজনীয় উপকরণ ঃ (i) পেন্সিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) সায়েন্টিফিক ক্যালকুলেটর।

কাৰ্যপন্ধতি ঃ

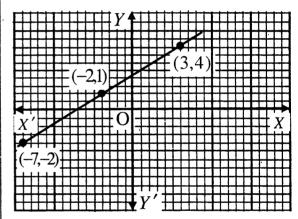
(i) প্রদন্ত সরলরেখার সমীকরণ হতে পাই,

$$-5y = -3x - 11 \Longrightarrow y = \frac{3x + 11}{5}$$

সমীকরণটিতে x এর কয়েকটি মান নিয়ে y এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি :

X	-2	3	-7
у	1	4	-2

(ii) একটি ছক কাগজে স্থানাজ্জের অক্ষ রেখা X'OX
 ও YOY' আঁকি ।



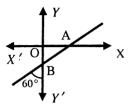
(iv) x - অক্ষ ও y - অক্ষ বরাবর ক্ষুদ্রতম বর্গের 2 বাহুর দৈর্ঘ্য = 1 একক ধরে (-2, 1) (3, 4) ও (-7, -2) কিন্দু তিনটি ছক কাগজে স্থাপন করি এবং সরু পেশিল দিয়ে সংযোগ করে 3x - 5y = -11 সরলরেখার লেখচিত্র অজ্ঞকন করি।

লেখচিত্রের বৈশিষ্ট ঃ

(i) প্রদন্ত সরলরেখার ঢাল-ছেদ আকৃতি
y = 3/5 x + 11/5 এ c = 11/5 > 0 বলে রেখাটি y
অক্ষকে ধনাত্মক দিকে 11/5 একক দূরে ছেদ করবে।
(ii) m = 3/5 > 0 বলে রেখাটি x অক্ষের ধনাত্মক দিকের সাথে সক্ষ্মকোণ উৎপন্ন করে।

4. সংযুক্ত চিত্রের সাহায্যে AB সরলরেখার সমীকরণ নির্ণয় কর, যেখানে (6, 5) কিন্দুটি AB এর উপর জবস্থিত।

পরীক্ষণের নাম ঃ প্রদন্ত চিত্র ও তথ্য হতে সরলরেখার সমীকরণ নির্ণয়।



মূ**লতন্ত্র ঃ** *a* (x অক্ষের ছেদাংশের পরিমাণ) ও b(y অক্ষের ছেদাংশের পরিমাণ) নির্ণয় করে $\frac{x}{a} + \frac{y}{b} = 1$ সূত্র দ্বারা, c (y অক্ষের ছেদাংশের পরিমাণ) ও ঢাল m (x অক্ষের ধনাত্মক দিকের সাথে প্রদন্ত রেখার উৎপন্ন কোণের tangent) নির্ণয় করে y = mx + c সূত্র দ্বারা সরলরেখার সমীকরণ নির্ণয় করা যায়।

প্রয়োজ্জনীয় উপকরণ ঃ (i) পেঙ্গিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) কম্পাস, (vii) চাঁদা ইত্যাদি।

কাৰ্যপন্ধতি ঃ

প্রদন্ত রেখা দ্বারা x অক্ষের ধনাত্মক দিকে সাথে উৎপন্ন কোণের পরিমাণ চাঁদা দিয়ে পরিমাপ করি। উৎপন্ন কোণের পরিমাণ 30°।

হিসাব ঃ

রেখাটির ঢাল = tan 30° = $\frac{1}{\sqrt{3}}$. y অক্ষের ছেদাংশ c হলে রেখাটির সমীকরণ হবে y = mx + c \Rightarrow y = $\frac{1}{\sqrt{3}}$ x + c তথ্য অনুসারে, রেখাটি (6, 5) কিন্দুগামী।

$$5 = \frac{6}{\sqrt{3}} + c \Rightarrow c = \frac{5\sqrt{3} - 6}{\sqrt{3}}$$

রেখাটির নির্ণেয় সমীকরণ

$$y = \frac{1}{\sqrt{3}}x + \frac{5\sqrt{3} - 6}{\sqrt{3}}$$
$$\Rightarrow \sqrt{3}y = x + 5\sqrt{3} - 6$$

5. y-অক্ষের সাপেক্ষে A(-5, 5) বিন্দুর এবং B(7,2) ও C(5, -4) বিন্দুদ্বয়ের সংযোগ রেখাংশের প্রতিচ্ছবি নির্ণয় কর।

পরীক্ষণের নাম ঃ y-অক্ষের সাপেক্ষে A(– 5, 5) কিন্দুর এবং B(7, 2) ও C(5, –4) কিন্দুদ্বয়ের সংযোগ রেখাংশের প্রতিচ্ছবি নির্ণয় ।

মূ**লতত্ত্ব ঃ** x-অক্ষ ও y-অক্ষের সাপেক্ষে (x , y) কিন্দুর প্রতিচ্ছবি যথাক্রমে (x , – y) ও (– x , y) ।

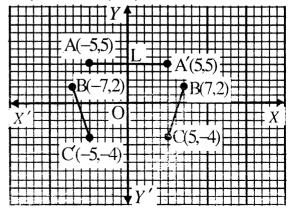
প্রয়োজনীয় উপকরণ ঃ (i) পেন্সিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার ইত্যাদি।

কাৰ্যপন্ধতি ঃ

(i) একটি ছক কাগজে স্থানাজ্ঞের অক্ষ রেখা X'OX
 ও YOY' আঁকি ।

(ii) x অক্ষ ও y অক্ষ বরাবর ক্ষুদ্রতম বর্গের 1 বাহুর দৈর্ঘ্য = 1 একক ধরে A(-5, 5), B(7 2) এবং C(5 -4) কিন্দুগুলি গ্রাফ পেপারে স্থাপন করি এবং সরু পেন্সিল দিয়ে B, C সংযোগ করে BC রেখাংশ অজ্ঞকন করি।

 (iii) A(-5, 5) কিন্দু হতে y অক্ষের উপর AL লম্ব অভকন করি এবং AL কে A' পর্যন্ত বর্ধিত করি যেন AL = LA' হয়। তাহলে, y অক্ষের সাপেক্ষে A কিন্দুর প্রতিচ্ছবি A'(5, 5)।



বইঘর কম

 (iv) তদুপ y অক্ষের সাপেক্ষে B(7, 2) রিন্দুর প্রতিচ্ছবি B'(-7, 2) এবং C(5 -4) কিন্দুর প্রতিচ্ছবি C'(-5, -4) নির্ণয় করি।

 (v) সরু পেন্সিল দিয়ে B', C' সংযোগ করি এবং y অক্ষের সাপেক্ষে BC রেখাংশের প্রতিচ্ছবি B'C' অজ্জ্ঞকন করি, যা (-7, 2) ও (-5, -4) ক্লিদুদ্বয়ের সংযোগ রেখাংশ।

বৈশিষ্ট ঃ

 (i) y অক্ষের সাপেক্ষে A(- 5, 5) ও A'(5, 5)
 পরস্পর পরস্পরের প্রতিচ্ছবি এবং এদের y স্থানাজ্ঞ্ অভিন্ন ও একটির x স্থানাজ্ঞ্ব অপরটির বিপরীত ঋণাত্মক মানের সমান।

(ii) y অক্ষের সাপেক্ষে BC রেখাংশ ও B'C' রেখাংশ পরস্পর পরস্পরের প্রতিচ্ছবি ও দৈর্ঘ্যে সমান এবং y অক্ষ থেকে এদের যেকোন একটির উপরস্ত যেকোন বিন্দুর সমদূরবর্তী বিন্দু অপরটির উপর অবস্থিত হবে।

6. y = x সরলরেখার সাপেক্ষে A(5, 6) কিন্দুর এবং B(-3, 5) ও C(4, -8) কিন্দুদ্বয়ের সংযোগ রেখাংশের প্রতিচ্ছবি নির্ণয় কর।

পরীক্ষণের নাম । y = x সরলরেখার সাপেক্ষে A(5 6) কিন্দুর এবং B(-3, 5) ও C(4, -8) কিন্দুদ্বয়ের সংযোগ রেখাংশের প্রতিচ্ছবি নির্ণয় ।

মূ**গতন্ব ঃ** y = x রেখার সাপেক্ষে (h, k) কিন্দুর প্রতিচ্ছবি (k, h).

প্রয়োজনীয় উপকরণ ঃ (i) পেন্সিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার ইত্যাদি।

কাৰ্যপন্ধতি ঃ

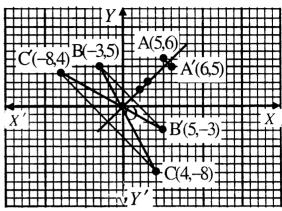
(i) একটি ছক কাগজে স্থানাজ্ঞের অক্ষ রেখা X'OX
 ও YOY' আঁকি ।

(ii) প্রদন্ত সমীকরণ y = x (i) এ x এর কয়েকটি মান নিয়ে y এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি

X	0	2	3
у	0	2	3

(iii) x অক্ষ ও y অক্ষ বরাবর ক্ষুদ্রতম বলের !
 বাহুর দৈর্ঘ্য = 1 একক ধরে

(2, 2) ও (3, 3) কিন্দুগুলি গ্রাফ পেপারে স্থাপন করি এবং সরু পেসিল দিয়ে সংযোগ করে প্রদত্ত রেখা (i) এর লেখচিত্র অজ্ঞকন করি।



(iv) একই স্কেলে A(5 6), B(-3, 5) ও C(4, -8) কিন্দুগুলি গ্রাফ পেপারে স্থাপন করি এবং সরু পেন্সিল দিয়ে B, C সংযোগ করে BC রেখাংশ অর্জকন করি।

(v) A কিন্দু থেকে (i) নং রেখার উপর অঙ্কিত লম্বকে A' পর্যনত বর্ধিত করি যেন A ও A' কিন্দুদ্বয় প্রদন্ত রেখা থেকে সমদূরবর্তী হয়। তাহলে, (i) নং রেখার সাপেক্ষে A কিন্দুর প্রতিচ্ছবি A'

6. তদ্রুপ (i) নং রেখার সাপেক্ষে B কিন্দুর প্রতিচ্ছবি B'এবং C কিন্দুর প্রতিচ্ছবি C' নির্ণয় করি।

7. সরু পেন্সিল দিয়ে B' C' সংযোগ করে (i) নং রেখার সাপেক্ষে BC রেখাংশের প্রতিচ্ছবি B'C' অজ্ঞকন করি।

হিসাব ঃ y = x (i) রেখার ঢাল = 1 এবং এর উপর লম্ব রেখার ঢাল = -1.

ধরি, (i) এর সাপেক্ষে A(5, 6) বিন্দুর প্রতিচ্ছবি A'(h,k) ।

A A' এর মধ্যবিদ্দু $(\frac{h+5}{2}, \frac{k+6}{2})$ (i) এর উপর অবস্থিত এবং A A' ঢাল = $\frac{k-6}{h-5} = -1$ (i) হতে পাই, $\frac{k+6}{2} = \frac{h-5}{2}$ $\Rightarrow h = 5 = k + 6$

এবং -h + 5 = k - 6 \Rightarrow h + k - 11 = 0 ··· (iii) (ii) + (iii) \Rightarrow 2h - 12= 0 \Rightarrow h = 6 (ii) হতে $6 - k - l = 0 \implies k = 5$ y = x রেখার সাপেক্ষে A(5, 6) কিন্দুর প্রতিচ্ছবি (6, 5)। সুত্রের সাহায্যে : A(5, 6) কিন্দুর প্রতিচ্ছবি (6.5). B(-3, 5) বিন্দুর প্রতিচ্ছবি (5, -3). C(4, -8) কিন্দুর প্রতিচ্ছবি (-8.4) ফলাফল y = x রেখার সাপেক্ষে A(5, 6) বিন্দুর প্রতিচ্ছবি (6,5) এবং B(-3, 5) ও C(4, -8) বিম্দুদ্বয়ের সংযোগ রেখাংশের প্রতিচ্ছবি (5. -3) ও (-8,4) কিন্দুদ্বয়ের সংযোগ রেখাংশ । ভর্তি পরীক্ষার MCO : 1. y = 3x + 7 এবং 3y - x = 8 সরলরেখা রের অন্তর্ভুক্ত সুহ্মকোণ – [DU 08-09] Solⁿ: এখানে $m_1 = 3$, $m_2 = \frac{1}{3}$ $\tan \theta = |\frac{3 - \frac{1}{3}}{1 + 3 \cdot \frac{1}{2}}| = \frac{8}{6} \Longrightarrow \theta = \tan^{-1} \frac{4}{3}$ 2.2x - 3y + 6 = 0 রেখার উপর লম্ব এবং (1,-1) কিদুগামী রেখার সমীকরণ-[DU, 02-03, 97-98; RU 06-071 Solⁿ: রেখার সমীকরণ 3x + 2y = 3 - 2 = 13.5x - 2y + 4 = 0 and 4x - 3y + 5 = 0রেখাদ্বয়ের ছেদক্দিদু এবং মূলক্দিদু দিয়ে গমনকারী রেখার সমীকরণ ---[DU 05-07: Jt.U 07-08] Solⁿ: সমীকরণ 5(5x - 2y) - 4(4x - 3y) = 0 $\Rightarrow 25x - 10y - 16x + 12y = 0$ \Rightarrow 9x + 2y = 0 4. একটি সরলরেখার অক্ষদ্বয়ের মধ্যবর্তী অংশ (2,3) কিন্দুতে সমদ্বিখন্ডিত হয়। রেখাটির সমীকরণ– [DU04-05] Solⁿ: রেখার সমীকরণ $\frac{x}{2 \times 2} + \frac{y}{2 \times 3} = 1$

 \Rightarrow 3x + 2y = 12 5. সরলরেখা 3x + 4y - 12 = 0 দ্বারা অক্ষদ্বয়ের মধ্যবর্তী খন্ডিত অংশের দৈর্ঘ্য– [DU 03-04] Sol^n : (पर्य) = $\sqrt{(12/3)^2 + (12/4)^2}$ $=\sqrt{16+9}=5$ 6. 2x - 5y + 10 = 0 দ্বারা নির্দেশিত সরলরেখা এবং অক্ষদয় দারা বেষ্টিত ত্রিভুজের ক্ষেত্রফল– [DU 99-00] $Sol^n: \frac{1}{2} \cdot \frac{10^2}{2 \times 5} = 5$ 7. একটি সরলরেখা (3,5) বিন্দু দিয়ে যায় অক্ষদ্বয় হতে বিপরীত চিহ্ন বিশিষ্ট অংশ ছেদ করে।সরলরেখাটির সমীকরণ কি? [DU 98-99] Solⁿ : সমীকরণ, x - y = 3-5⇒ x - y + 2=0 8. α এর কোন মানের জন্য (α -1)x + (α +1)y =7 রেখাটি 3x + 5y + 7 = 0 রেখার সমান্তরাল হবে? [DU 01-02] **Sol**ⁿ: $\frac{\alpha - 1}{3} = \frac{\alpha + 1}{5} \Longrightarrow 2\alpha = 8 \Longrightarrow \alpha = 4$ 9. $5x - 5\sqrt{3}y + 2 = 0$ are $3\sqrt{3}x + 3y = 4$ রেখা দুইটির অন্তর্ভুক্ত কোণ হবে- [BUET 06-07] Solⁿ: এখানে , $m_1 = \frac{1}{\sqrt{3}}$, $m_2 = -\sqrt{3}$ $m_1 m_2 = -1$ অনতর্ভুক্ত কোণ = 90° 10. (2,3) কিন্দু হতে 4x + 3y - 7 = 0 রেখার সাপেক্ষে প্রতিবিম্ব কিন্দুর দুরত্ব - [BUET 06-07] Sol^{n} : $\operatorname{Pag} = 2 \frac{|8+9-7|}{\sqrt{16+9}} = \frac{2.10}{5} = 4$ 11. মূলবিন্দু হতে 3x + 4y = 10 রেখটির লম্বদুরত্ত্ব [DU 07-08, Jt.U 07-08] Sol^n : লম্বদূরত্ব = $\frac{|-10|}{\sqrt{9+16}} = 2$ 12. (4, -2) কিন্দু হতে 5x + 12y = 3 রেখার উপর অঙ্কিত লন্দ্বের দৈর্ঘ্য - [DU 06-07, 04-05; RU 06-07, 05-06; CU 02-03]

Solⁿ : লম্বদূরত্ব = $\frac{|20 - 24 - 3|}{\sqrt{25 + 144}} = \frac{7}{13}$

13. α সুন্ধকোণ হলে $x\cos\alpha + y\sin\alpha = 4$ এবং 4x + 3y = 5 সমাশতরাল রেখাছয়ের দূরত্ব– [DU 06-07

Solⁿ: সমানতরাল রেখাদ্বয়ের দূরত্ব = $\left|\frac{-4}{\sqrt{\cos^2 \alpha + \sin^2 \alpha}} - \frac{-5}{\sqrt{4^2 + 3^2}}\right|$

$$= 4 - 1 = 3$$

14. (1, -1) এবং (2,4) কিন্দুদ্বয়ের সংযোগ রেখাংশের লম্দ সমদ্বিখন্ডকের সমীকরণ- [DU 04-05] Solⁿ : লম্দ সমদ্বিখন্ডকের সমীকরণ

$$(1-2)x + (-1-4)y = \frac{1}{2}(1^2 + 1^2 - 2^2 - 4^2)$$

$$\Rightarrow -x - 5y + 10 = 0 \Rightarrow x + 5y - 10 = 0$$

15. (-5,7) ও (3,-1) বিন্দুহুয়ের সংযোগ রেখাংশের লম্ব সমধিখন্ডকের সমীকরণ-[DU 00-01;RU 06-07]

Solⁿ:-8x + 8y = $\frac{1}{2}(25 + 49 - 9 - 1) = 32$ ⇒ x - y + 4 = 0 16. $y = 1 + \frac{1}{2+x}$ বরুরেখা x- অক্ষকে A বিন্দুতে এবং y - অক্ষকে B বিন্দুতে ছেদ করলে AB রেখার সমীকরণ – [DU 07-08, Jt.U 08-09] Solⁿ: 2y + xy = 2 + x + 1 $\Rightarrow x - 2y + 3 = 0$ [\because সরলরেখায় xy থাকেনা]

17. x এর কোন মানের জন্য (1, -x), (1, x) এবং $(x^2, -1)$ বিন্দু তিনটি একই রেখায় অবস্থান করবে? [BUET 12-13]

Solⁿ:
$$\begin{vmatrix} 1 & 1 & x^2 & 1 \\ -x & x & -1 & -x \end{vmatrix} = 0$$

 $\Rightarrow x - 1 - x^3 - (-x + x^3 - 1) = 0$
 $\Rightarrow x - 1 - x^3 + x - x^3 + 1 = 0$
 $\Rightarrow -2x^2 + 2x = 0$
 $\Rightarrow x(x - 1)(x + 1) = 0$
 $\Rightarrow x = 0, 1, -1$

১২৮

বৃত্ত (Circle) প্রশ্নমালা IV A (b) $(x - h)^2 + (y - k)^2 = r^2$ go that x-এক নন্ধরে প্রয়োজনীয় সূত্রাবলী অক্ষের খণ্ডিতাংশ = $2\sqrt{r^2-k^2}$ এবং y-অক্ষের 1.(a) (0,0) কেন্দ্র এবং 'r ' ব্যাসার্ধবিশিষ্ট ব্রন্তের খণ্ডিতাংশ = $2\sqrt{r^2 - h^2}$ সমীকরণ $x^2 + y^2 = r^2$. (a) (r₁, θ₁) কেন্দ্র ও a ব্যাসার্ধ বিশিষ্ট পোলার (b) (h, k) কেন্দ্র এবং 'r ' ব্যাসার্ধবিশিষ্ট বৃন্তের সমীকরণ $(x - h)^2 + (y - k)^2 = r^2$. স্থানাচ্চে বৃত্তের সমীকরণ, $a^2 = r^2 + r_1^2 -$ (h,k) কেন্দ্র এবং (α,β) বিন্দুগামী বৃত্তের $2 r r_1 \cos(\theta - \theta_1)$ সমীকরণ $(x - h)^2 + (y - k)^2 = (\alpha - h)^2 + (y - k)^2$ (b) পোলার স্থানাজ্ঞে বৃত্তের সাধারণ সমীকরণ $(\beta - k)^2$ $r^{2} + 2r (g \cos \theta + f \sin \theta) + c = 0$, यांत्र (c) (- g, - f) কেন্দ্রবিশিষ্ট বৃন্তের সমীকরণ কেন্দ্র $(\sqrt{g^2 + f^2}, \tan^{-1}\frac{f}{g}),$ $x^{2} + y^{2} + 2gx + 2fy + c = 0$, যেখানে ব্যাসার্ধ $=\sqrt{g^{2}+f^{2}-c}$ ব্যাসার্ঘ = $\sqrt{g^2 + f^2 - c}$ $(d)(x_1,y_1)$ ও (x_2,y_2) বিন্দু হয়ের সংযোগ MCQ এর জন্য বিশেষ সূত্র ঃ রেখাংশকে ব্যাস ধরে অঙ্কিত বৃত্তের সমীকরণ, 1. f(x, y) = 0 বৃত্তের সাথে এককেম্দ্রিক এবং (x_1, y_1) $(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0.$ কিন্দুগামী বৃত্তের সমীকরণ $f(x, y) = f(x_1, y_1)$ (e) একটি বৃস্ত ও একটি সরলরেখার ছেদকিমুগামী বৃন্তের সমীকরণ, 2. x-অক্ষকে মুগবিন্দুতে স্পর্শ করে এবং (x_1, y_1) বুন্ত + k(সরলরেখা)=0; **धुवक k** ≠0 কিন্দুগামী বৃত্তের সমীকরণ, $\frac{x^2 + y^2}{v} = \frac{x_1^2 + y_1^2}{v}$. (f) দুইটি বৃত্তের ছেদবিন্দু দিয়ে যায় এরুপ বৃত্তের সমীকরণ, প্রথম বৃত্ত + k (দিতীয় বৃত্ত) = 0 3. কেন্দ্র (h,k) এবং x – অক্ষকে স্পর্শ করে এরুগ ; ধ্বৰ k ≠0. ব্রন্ডের সমীকরণ $x^2 + y^2 - 2hx - 2ky + h^2 = 0$ 4. কেন্দ্র (h,k) এবং y – অক্ষকে স্পর্শ করে এরপ (g) f(x, y) = 0 বৃস্ত ও g(x, y) = 0 সরলরেখার (জথবা, f(x, y) = 0 ও g(x, y) = 0 বৃত্তদয়ের) বৃত্তের সমীকরণ $x^2 + y^2 - 2hx - 2ky + h^2 = 0$ ছেদকিন্দু এবং (α , β) কিন্দুগামী বৃদ্তের সমীকরণ প্রশ্নমালা – IV A $\frac{f(x,y)}{f(\alpha,\beta)} = \frac{g(x,y)}{g(\alpha,\beta)}; f(\alpha,\beta) \neq 0, g(\alpha,\beta) \neq 0$ 1. $ax^2 + 2bxy - 2y^2 + 8x + 12y + 6 = 0$ একটি বৃত্ত নির্দেশ করলে, 'a' ও 'b' এর মান নির্ণয় (h) খলিফার পশ্বতিঃ যেকোন দুইটি কিন্দু (x_1, y_1) কর। অতপর বৃশুটির কেন্দ্র ও ব্যাসার্ধ নির্ণয় কর। ও (x_2, y_2) দিয়ে অতিক্রম করে এরুপ বৃন্তের সমাধান : $ax^2+2bxy-2y^2+8x+12y+6=0$ সমীকরণ . একটি বৃত্ত নির্দেশ করলে, xy এর সহগ , 2b = 0 $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) +$ \Rightarrow b = 0 এবং x^2 ও y^2 এর সহগ দুইটি সমান $k\{(x-x_1)(y_1-y_2)-(y-y_1)(x_1-x_2)\}=0$ অর্থাৎ a = – 2 . ; ধ্ৰবৰ k≠0 বৃত্তটির সমীকরণ হবে, 2. (a) $x^{2} + y^{2} + 2gx + 2fy + c = 0$ रूख $-2x^{2}-2y^{2}+8x+12y+6=0$ দারা x-অক্ষের খণ্ডিতাংশ = $2\sqrt{g^2-c}$ এবং y- $\Rightarrow x^{2} + y^{2} + 2(-2)x + 2(-3)y - 3 = 0$ বৃত্তটির কেন্দ্র (-2, - 3) এবং অক্ষের খণ্ডিতাংশ = $2\sqrt{f^2-c}$. ব্যাসার্ধ = $\sqrt{2^2 + 3^2 - (-3)} = \sqrt{4 + 9 + 3} = 4$

2. (a, b) কেন্দ্র এবং $\sqrt{a^2 + b^2}$ ব্যাসার্ধ বিশিষ্ট বৃত্তের সমীকরণ নির্ণয় কর। সমাধান ঃ (a, b) কেন্দ্র এবং $\sqrt{a^2 + b^2}$ ব্যাসার্ধ বিশিষ্ট বৃত্তের সমীকরণ. $(x-a)^{2} + (y-b)^{2} = (\sqrt{a^{2}+b^{2}})^{2}$ $\Rightarrow x^{2} - 2ax + a^{2} + y^{2} - 2by + b^{2} = a^{2} + b^{2}$ $x^{2} + y^{2} - 2ax - 2by = 0$ (Ans.) 3. (a) এরুপ বৃত্তের সমীকরণ নির্ণয় কর যা $x^2 + y^2$ -4x + 5y + 9 = 0 বৃষ্টের সাথে এককেন্দ্রিক এবং (2, -1) কিন্দু দিয়ে অতিক্রম করে। ক.'০৫; য.'১০; দি.'১৩] সমাধান ঃ $x^2 + y^2 - 4x + 5y + 9 = 0$ বৃত্তটির কেন্দ্রের স্থানাচ্চ্র = $\left(-\frac{-4}{2}, -\frac{5}{2}\right) = \left(2, -\frac{5}{2}\right)$, যা নির্ণেয় বৃত্তের কেন্দ্র। এখন নির্ণেয় বৃত্তের ব্যাসার্ধ = কেন্দ্র $(2, -\frac{5}{2})$ হতে (2, -1) কিন্দুর দূরত্ব = $\left|-\frac{5}{2}+1\right|=\frac{3}{2}$ নির্ণেয় বৃত্তের সমীকরণ, $(x-2)^{2} + (y+\frac{5}{2})^{2} = (\frac{3}{2})^{2}$ $\Rightarrow x^2 - 4x + 4 + y^2 + 5y + \frac{25}{4} - \frac{9}{4} = 0$ $\Rightarrow x^{2} - 4x + 4 + y^{2} + 5y + \frac{25 - 9}{4} = 0$ $\Rightarrow x^2 - 4x + 4 + y^2 + 5y + 4 = 0$ $x^{2} + y^{2} - 4x + 5y + 8 = 0$ (Ans.) [MCQ এর জন্য, $x^2 + y^2 - 4x + 5y = 2^2 +$ $1^{2}-4.2+5(-1)=4+1-8-5$] 3.(b) এরুপ বৃত্তের সমীকরণ নির্ণয় কর যা $x^2 + y^2 - y^2$ 6x + 8y = 0 বৃন্ডের সাথে এককেম্দ্রিক এবং (3, -1) কিন্দু দিয়ে অতিক্রম করে। [त्रि.'०১] সমাধান ঃ $x^2 + y^2 - 6x + 8y = 0$ বৃত্তের কেন্দ্রের স্থানাজ্ঞ্ব = (3, - 4), যা নির্ণেয় বৃত্তের কেন্দ্র। এখন নির্ণেয় বৃত্তের ব্যাসার্ধ = কেন্দ্র (3, -4) হতে (3, -1) কিন্দুর দূরত্ব = | -4 + 1| = 3 নির্ণেয় বৃত্তের সমীকরণ,

পত্রের সমাধান ^ম
$(x-3)^{2} + (y+4)^{2} = 3^{2}$ $\Rightarrow x^{2} - 6x + 9 + y^{2} + 8y + 16 = 9$ $x^{2} + y^{2} - 6x + 8y + 16 = 0 \text{ (Ans.)}$
3(c) একটি বৃষ্তের কেন্দ্র (4, – 5) এবং এটি মূলকিন্দু দিয়ে যায়। তার সমীকরণ এবং অক্ষ দুইটি থেকে তা কি পরিমাণ অংশ ছেদ করে তা নির্ণয় কর। [সি.'০৬; য.'০৮; কু.'১৪]
্বান ৩৬, ৭. ৩৮, ২. ১৪] সমাধান ঃ কেন্দ্র $(4, -5)$ এবং মূলকিন্দু দিয়ে যায় এর্প বৃন্ডের সমীরকণ, $x^2 + y^2 + 2(-4)x + 2(5)y = 0$ $x^2 + y^2 - 8x + 10y = 0 \cdots (1)$
(1) বৃত্তটিকে $x^2 + y^2 + 2gx + 2fy + c = 0$ এর সাথে তুলনা করে পাই, $g = -4$, $f = 5$, $c = 0$ বৃত্তটি দ্বারা x-অক্ষের খণ্ডিতাংশের পরিমাণ $2\sqrt{g^2 - c} = 2\sqrt{4^2 - 0} = 8$ এবং বৃত্তটি দ্বারা y-অক্ষের খণ্ডিতাংশের পরিমাণ $2\sqrt{g^2 - c} = 2\sqrt{5^2 - 0} = 10$
4.(a) একটি বৃন্তের কেন্দ্র (4 , – 8) এবং তা y- অক্ষকে স্পর্শ করে। তার সমীকরণ নির্ণয় কর।
[ব.'০১; ঢা.'০২] সমাধান ঃ (4, – ৪) কেন্দ্রবিশিষ্ট বৃত্তটি y-অক্ষকে স্পূর্শ করে ।
বৃত্তটির ব্যাসার্ধ = কেন্দ্রের ভুজ = 4 = 4 বৃত্তের সমীকরণ, $(x-4)^2 + (y+8)^2 = 4^2$ $\Rightarrow x^2 - 8x + 16 + y^2 + 16y + 64 = 16$ $x^2 + y^2 - 8x + 16y + 64 = 0$ [MCQ এর জন্য, $x^2 + y^2 - 8x + 16y + 8^2 = 0$]
4(b) (– 5, 7) কেন্দ্রবিশিষ্ট এবং x-অক্ষকে স্পর্শ করে এর্থ বৃত্তের সমীকরণ নির্ণয় কর। [মা.'০৭]
সমাধান ঃ (– 5,7) কেন্দ্রবিশিষ্ট বৃত্তটি x-অক্ষকে স্পর্শ করে। বৃত্তটির ব্যাসার্ধ = কেন্দ্রের y-স্থানাজ্ঞ্ঞ = 7 = 7
বৃত্তের সমীকরণ, $(x + 5)^2 + (y - 7)^2 = 7^2$

বৃত্তের সমাকরণ, $(x + 5)^2 + (y - 7)^2 = 7^2$ ⇒ $x^2 + 10x + 25 + y^2 - 14y + 49 = 49$ $x^2 + y^2 + 10x - 14y + 25 = 0$

4(c) (2,3) বিন্দুতে কেন্দ্রবিশিষ্ট এবং x-অক্ষকে স্দর্শ করে এরুপ বৃত্তের সমীকরণ নির্ণয় কর। বৃত্তটি y-অক্ষ হতে যে পরিমাণ অংশ ছেদ করে তা নির্ণয় কর।

[রা. '০১; কু. '০৯] সমাধান : (2, 3) কেন্দ্রবিশিষ্ট বৃত্তটি x-অক্ষকে স্পর্শ করে । বৃত্তটির ব্যাসার্ধ = | কেন্দ্রের কোটি| = | 3 | = 3 বন্তের সমীকরণ, $(x - 2)^2 + (y - 3)^2 = 3^2$ $\Rightarrow x^{2} - 4x + 4 + y^{2} - 6y + 9 = 9$ $x^{2} + y^{2} - 4x - 6y + 4 = 0$ এখন বৃত্তটিকে $x^2 + y^2 + 2gx + 2fy + c = 0$ এর সাথে তুলনা করে পাই, g = -2, f = -3, c = 4বৃত্তটি দ্বারা y–অক্ষের খন্ডিতাংশের পরিমাণ $2\sqrt{g^2-c} = 2\sqrt{9-4} = 2\sqrt{5}$ 5. একটি বৃত্ত (- 6, 5), (- 3, - 4) এবং (2, 1) বিন্দু তিনটি দারা অতিক্রম করে। বৃস্তটির সমীকরণ, কেন্দ্রের স্থানাজ্ঞ এবং ব্যাসার্ধ নির্ণয় কর। [ব. '০২; দি. '০৯] সমাধান ঃ খলিফার নিয়মানুসারে ধরি (-6 5) ७ (-3, -4) কিন্দুগামী বৃত্তের সমীকরণ, (x+6)(x+3) + (y-5)(y+4) + $k\{(x+6)(5+4) - (y-5)(-6+3)\} = 0^{\circ}$ \Rightarrow x² + 9x + 18 + y² - y - 20 + k(9x + 54 + 3y - 15) = 0 \Rightarrow x² + y² + 9x - y - 2 + k(9x + 3y + 39) = 0(1) (1) বৃত্তটি (2, 1) কিন্দুগামী বলে, 4 + 1 + 18 - 1 - 2 + k(18 + 3 + 39) = 0 $\Rightarrow 60 \text{ k} = -20 \Rightarrow \text{k} = -\frac{1}{2}$ (1) এ k এর মান বসিয়ে পাই, $x^{2} + y^{2} + 9x - y - 2 - 3x - y - 13 = 0$ $x^{2} + y^{2} + 6x - 2y - 15 = 0 \cdots (1)$ (1) বৃত্তটির কেন্দ্রের স্থানাজ্ঞ্ব $(-\frac{6}{2}, -\frac{-2}{2})$ =(-3, 1) এবং ব্যাসার্ধ = $\sqrt{9+1-(-15)}=5$ $[MCQ: \frac{(x+6)(x+3) + (y-5)(y+4)}{9(x+6) - (-3)(y-5)}$ $=\frac{(2+6)(2+3)+(1-5)(1+4)}{9(2+6)-(-3)(1-5)}]$

6. (a) 2x - y = 3 রেখার উপর কেন্দ্রবিশিষ্ট একটি বৃত্ত (3, - 2) ও (-2, 0) বিন্দু দুইটি দিয়ে অতিক্রম করে। বৃত্তটির সমীকরণ নির্ণয় কর। [.'ob; ব. '১০,'১২; সি. '০৬; য. '০৭; কু. '০৭; রা.'১০,'১৩] সমাধান : খলিফার নিয়মানসারে ধরি (3 - 2) ও (-2, 0) কিন্দুগামী বৃত্তের সমীকরণ, (x-3)(x+2) + (y+2)(y-0) + $k\{(x-3)(-2-0) - (y+2)(3+2)\} = 0$ \Rightarrow x² - x - 6 + y² + 2y + k(-2x+6-5y-10)=0 $\Rightarrow x^{2} + y^{2} + (-1-2k)x + (2 - 5k)y -$ 6 - 4k = 0(1)বৃত্তটির কেন্দ্র $(\frac{1+2k}{2}, -\frac{2-5k}{2})$, 2x-y = 3রেখার উপর অবস্থিত। $2\frac{1+2k}{2} - (-\frac{2-5k}{2}) = 3$ \Rightarrow 2 + 4k + 2 - 5k = 6 $\Rightarrow - \mathbf{k} = 2 \Rightarrow \mathbf{k} = -2$ k এর মান (1) এ বসিয়ে পই, $x^{2} + y^{2} + (-1+4)x + (2+10)y - 6 + 8 = 0$ $x^{2} + y^{2} + 3x + 12y + 2 = 0$ (Ans.) 6(b) x + 2y - 10 = 0 রেখার উপর কেন্দ্রবিশিষ্ট একটি বৃত্ত (3, 5) ও (6, 4) কিন্দু দুইটি দিয়ে অতিক্রম করে। বৃত্তটির সমীকরণ নির্ণয় কর। [ঢা. '০২; রা. '০৮; য. '১২] সমাধান ঃ খলিফার নিয়মানুসারে ধরি (3 5) ७ (6, 4) কিন্দুগামী বৃত্তের সমীকরণ, (x-3)(x-6) + (y-5)(y-4) + $k\{(x-3)(5-4) - (y-5)(3-6)\} = 0$ $\Rightarrow x^{2} - 9x + 18 + y^{2} - 9y + 20 +$ k(x - 3 + 3y - 15) = 0 $\Rightarrow x^{2} + y^{2} + (-9 + k)x + (-9 + 3k)y$ $+38 - 18k = 0 \cdots (1)$ (1) বৃত্তটির কেন্দ্র $(\frac{9-k}{2}, \frac{9-3k}{2})$, x + 2y - 10= 0 রেখার উপর অবস্থিত। $\frac{9-k}{2} + 2$. $\frac{9-3k}{2} = 10$ \Rightarrow 9 -k + 18 -6k = 20 $\Rightarrow -7k = -7 \Rightarrow k = 1$

k এর মান (1) এ বসিয়ে পই. $x^{2} + y^{2} - 8x - 6y + 38 - 18 = 0$ $x^{2} + y^{2} - 8x - 6y + 20 = 0$ (Ans.) 6(c) x + 2 = 0 রেখার উপর কেন্দ্রবিশিষ্ট একটি বৃত্ত (-7,1) ও (-1,3) বিন্দু দুইটি দিয়ে অতিক্রম করে। বৃশুটির সমীকরণ নির্ণয় কর। [চ.'০৭;মা.'০৫] সমাধান ঃ খলিফার নিয়মানুসারে ধরি (-7 1) ও (-1, 3) কিন্দুগামী বৃত্তের সমীকরণ, (x + 7)(x + 1) + (y - 1)(y - 3) + $k\{(x + 7)(1-3) - (y - 1)(-7 + 1)\} = 0$ k(-2x - 14 + 6y - 6) = 0 $\Rightarrow x^2 + y^2 + (8 - 2k)x + (-4 + 6k)y$ +10 - 20k = 0... (1) (1) বৃস্তটির কেন্দ্র $(-\frac{8-2k}{2}, -\frac{-4+6k}{2}) =$ (k-4,2-3k), x+2=0 রেখার উপর অবস্থিত। $k - 4 + 2 = 0 \implies k = 2$ k এর মান (1) এ বসিয়ে পই, $x^{2} + y^{2} + (8 - 4)x + (-4 + 12)y +$ 10 - 40 = 0 $x^{2} + y^{2} + 4x + 8y - 30 = 0$ (Ans.) 6.(d) x + 2y + 3 = 0 রেখার উপর কেন্দ্রবিশিষ্ট একটি বৃত্ত (- 1,- 1) ও (3, 2) কিন্দু দুইটি দিয়ে অতিক্রম করে। বৃত্তটির সমীকরণ নির্ণয় কর। [কু. '১৩; সি. '১০] সমাধান ঃ খলিফার নিয়মানুসারে ধরি (-1, -1) ও (3, 2) কিন্দুগামী বৃত্তের সমীকরণ, (x + 1)(x - 3) + (y + 1)(y - 2) + $k\{(x+1)(-1-2) - (y+1)(-1-3)\} = 0$ \Rightarrow x²-2x-3+y²-y-2+ k(-3x-3+4y+4) = 0 $\Rightarrow x^2 + y^2 + (-2 - 3k)x + (-1 + 4k)y$ $-5 + k = 0 \cdots (1)$ (1) বৃস্তটির কেন্দ্র $(\frac{2+3k}{2}, \frac{1-4k}{2})$, x + 2y + 3 = 0 রেখার উপর অবস্থিত। $\frac{2+3k}{2}+2\cdot\frac{1-4k}{2}+3=0$ \Rightarrow 2 + 3k + 2 - 8k + 6 = 0

 $\Rightarrow -5k = -10 \Rightarrow k = 2$ k এর মান (1) এ বসিয়ে পই, $x^{2} + y^{2} + (-2-6)x + (-1+8)y - 5 + 2 = 0$ $x^{2} + y^{2} - 8x + 7y - 3 = 0$ (Ans.) 7.(a) x-অক্ষের উপর কেন্দ্রবিশিষ্ট একটি বৃত্ত (3, 5) ও (6, 4) কিন্দু দুইটি দিয়ে অতিক্রম করে। বৃত্তটির সমীকরণ নির্ণয় কর। [কু., রা., ব. '০৩; দি. '১০; সি.১৪] সমাধান ঃ খলিফার নিয়মানুসারে ধরি (3 5) 0 (6, 4) কিন্দুগামী বৃত্তের সমীকরণ, (x-3)(x-6) + (y-5)(y-4) + $k\{(x-3)(5-4) - (y-5)(3-6)\} = 0$ $\Rightarrow x^{2} - 9x + 18 + y^{2} - 9y + 20 +$ k(x - 3 + 3y - 15) = 0 $\Rightarrow x^{2} + y^{2} + (-9+k)x + (-9+3k)y$ +38 - 18k = 0··· (1) (1) বৃশ্ভটির কেন্দ্র $(\frac{k-9}{2}, \frac{9-3k}{2})$, x-অক্ষের উপর অবস্থিত। :: $\frac{9-3k}{2} = 0 \Longrightarrow k = 3$ k এর মান (1) এ বসিয়ে পই. $x^{2} + y^{2} + (-9 + 3)x + 38 - 54 = 0$ $x^{2} + y^{2} - 6x - 16 = 0$ (Ans.) বিকল্প পদ্ধতি ঃ (-g,0) X ধরি, কেন্দ্র x-অক্ষের উপর অবস্থিত এরপ বৃদ্তের সমীকরণ $x^2 + y^2 + 2gx + c = 0 \cdots \cdots (1)$ (1) বৃস্তটি (3, 5) ও (6,4) কিন্দু দিয়ে অতিক্রম করে। 9 + 25 + 6g + c = 0 \Rightarrow 34 + 6g + c = 0 ... (2) এবং 36 + 16 + 12g + c = 0 \Rightarrow 52 + 12g + c = 0·····(3) $(3) - (2) \Rightarrow 18 + 6g = 0 \Rightarrow g = -3$ (2) হতে পাই, 34–18 + c = 0 ⇒ c = –16 (1) এ g ও c এর মান বসিয়ে পাই,

প্রশানা : IV A

 $x^{2} + v^{2} - 6x - 16 = 0$ (Ans.) 7(b) y-অক্ষের উপর কেন্দ্রবিশিষ্ট একটি বৃত্ত (3,0) ও (- 4, 1) কিন্দু দুইটি দিয়ে অতিক্রম করে। বৃত্তটির সমীকরণ নির্ণয় কর। 5.'00] সমাধান ঃ ধরি, বৃত্তটির সমীকরণ, $x^{2} + y^{2} + 2gx + 2fy + c = 0 \cdots (1)$ বৃত্তটির কেন্দ্র y-অক্ষের উপর অবস্থিত। g = 0বৃত্তটি (3,0) ও (-4,1) কিন্দুগামী। 9+0+ c=0 ⇒ c=-9 এবং 16 + 1 + 2f + c = 0 \Rightarrow 17 + 2f - 9 = 0 \Rightarrow 2f = -8 \Rightarrow f = -4 (1) এ g, f ও c এর মান বসিয়ে পাই, $x^{2} + y^{2} - 8y - 9 = 0$ 7. (c) y-অক্ষের উপর কেন্দ্রবিশিষ্ট একটি বৃন্ত মূলকিন্দু এবং (p , q) কিন্দু দিয়ে অতিক্রম করে। বৃত্তটির সমীকরণ নির্ণয় কর। [রা. '০২; সি. '০৪; য. '০৫; ঢা.'১২; রা.,চ.'১৩] সমাধান ঃ ধরি, বৃত্তটির সমীকরণ. $x^{2} + y^{2} + 2gx + 2fy + c = 0 \cdots (1)$ (1) বৃত্তটির কেন্দ্র y-অক্ষের উপর অবস্থিত। g = 0বৃত্তটি মূলকিন্দু (0, 0) ও (p, q) কিন্দুগামী। $0 + 0 + c = 0 \Rightarrow c = 0$ এবং $p^{2} + q^{2} + 2qf + 0 = 0$ \Rightarrow f = $-\frac{p^2 + q^2}{2q}$ (1) এ g, f ও c এর মান বসিয়ে পাই, $x^{2} + y^{2} + 2(-\frac{p^{2} + q^{2}}{2q})y = 0$ $q(x^{2} + y^{2}) = (p^{2} + q^{2})y$ (Ans.) 7(d) (3,0) ও (7,0) কিদ্যগামী এব [রা. '০২, '০ সমাধানঃ খলিফার নিয়মানুসারে ধর্মি (7,0) কিন্দুগামী বৃত্তের সমীকরণ, $k{(x-3)(0-0) - (y - 0)(3)}$ $\Rightarrow x^{2} - 10x + 21 + y^{2} + k(4y) = 0$

$$\Rightarrow x^{2} + y^{2} - 10x + 4ky + 21 = 0 \cdots (1)$$
(1) वृछण्डित त्कख (5, -2k) এवर न्यांगार्थ

$$= \sqrt{5^{2} + (-2k)^{2} - 21} = \sqrt{4 + 4k^{2}}$$
(1) वृछण्डि *y*-खक्क ज्लर्भ करत ।
 $\sqrt{4 + 4k^{2}} = |5|$
 $\Rightarrow 4 + 4k^{2} = 25 \Rightarrow 4k^{2} = 21$
 $\Rightarrow k = \pm \frac{\sqrt{21}}{2}$
 k এর মান (1) এ বসিয়ে পই,
 $x^{2} + y^{2} - 10x + 4(\pm \frac{\sqrt{21}}{2})y + 21 = 0$
 $x^{2} + y^{2} - 10x \pm 2\sqrt{21}y + 21 = 0$
বিকল্প পদ্ধাতি ঃ ধরি, *y*-জক্ষকে স্পর্শ করে এর্প বৃত্তে

বিকল্প পন্দ্রাতি : ধরি , y-অক্ষকে স্পর্শ করে এর্প বৃত্তের সমীকরণ $(x - h)^2 + (y - k)^2 = h^2$ $\Rightarrow x^2 + y^2 - 2hx - 2ky + k^2 = 0 \cdots (1)$ (1) বৃত্তটি (3 , 0) ও (7, 0) কিন্দুগামী । $9 - 6h + k^2 = 0 \cdots \cdots (2)$ এবং $49 - 14h + k^2 = 0 \cdots \cdots (3)$ (2) $- (3) \Rightarrow -40 + 8h = 0 \Rightarrow h = 5$ (2) a = 5 বসিয়ে পাই, $9 - 30 + k^2 = 0$ $\Rightarrow k^2 = 21 \Rightarrow k = \pm \sqrt{21}$ (1) a = k ও র মান বসিয়ে পাই, $x^2 + y^2 - 10x \pm 2\sqrt{21}y + 21 = 0$

 7(e) (1,1) (2,2) ਕਿਸ਼੍ਰ ਸ਼੍ਰੋਟੈ ਸਿੰਗ ਕਹਿਣਸਕਾਂਗੀ

 ਕ੍ਰ (9, 1) ਕਿਸ਼ 1; ਨ੍ਰ (9, 2) ਕਿਸ਼ 10

 ਕ੍ਰ (9, 2) ਕਿਸ਼ 11

 ਕ੍ਰ (1,1) ਕਿਸ਼ 1; ਨ੍ਰ (9, 2)

 (1,1) ਕਿਸ਼ 1; ਨ੍ਰ (9, 2)

 ਕ੍ਰ (1,1) ਕਿਸ਼ 1; ਨ੍ਰ (1, 2)

 ਕ੍ਰ (1,1) ਕਿਸ਼ 1; ਨ੍ਰ (1, 2)

 ਕ੍ਰ (1,1) ਕਿਸ਼ 1; ਨ੍ਰ (9, 2)

 ਕ੍ਰ (1,1) ਕਿਸ਼ 1; ਨ੍ਰ (1,1) ਕਿਸ਼ 1; ਨ

উচ্চতর গণিত ক্রিমুমু প্রুত্রের সমাধান

র্বনাধান ঃ ধরি, বৃত্তের সমীকরণ,

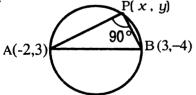
www.boighai ব্যাসার্ধ = $\sqrt{\left(\frac{k+3}{2}\right)^2 + \left(\frac{3-k}{2}\right)^2 - 4}$ $=\sqrt{\frac{k^2+6k+9+k^2-6k+9-16}{4}}$ $=\sqrt{\frac{2(k^2+1)}{4}}=\sqrt{\frac{k^2+1}{2}}$ প্রশ্নমতে, $\sqrt{\frac{k^2+1}{2}} = 1 \Longrightarrow k^2 + 1 = 2$ \Rightarrow k² = 1 \Rightarrow k = ±1 : নির্ণেয় বৃত্তের সমীকরণ, $x^{2} + y^{2} - 4x - 2y + 4 = 0$, यथन k = 1এবং $x^2 + y^2 - 2x - 4y + 4 = 0$, যখন k = -18.(a) এরুপ বৃষ্ডের সমীকরণ নির্ণয় কর যা মুলব্দিদু থেকে 2 একক দুরে x-অক্ষকে দুইটি কিদুতে ছেদ করে এবং যার ব্যাসার্ধ 5 একক। [য. '০৫; ব. '১১] নির্ণেয় বৃত্তটি মূলকিন্দু থেকে 2 একক দুরে সমাধান x-অক্ষকে দুইটি কিদুতে ছেদ করে বলে তা (2,0) ও (-2,0) দিয়ে অতিক্রম করে। খলিফার নিয়মানুসারে ধরি, (2 0) ७ (- 2, 0) কিন্দুগামী বৃত্তের সমীকরণ, (x-2)(x+2) + (y-0)(y-0) + $k\{(x-2)(0-0) - (y-0)(2+2)\} = 0$ $\Rightarrow x^2 - 4 + y^2 + k(-4y) = 0$ $\Rightarrow x^2 + y^2 - 4ky - 4 = 0 \cdots (1)$ (1) বৃত্তটির কেন্দ্র (0, 2k) এবং ব্যাসার্ধ = $\sqrt{0^2 + (2k)^2 + 4} = \sqrt{4k^2 + 4}$ প্রশ্রমতে. $\sqrt{4k^2 + 4} = 5 \Rightarrow 4k^2 + 4 = 25$ $\Rightarrow 4k^2 = 21 \Rightarrow k = \pm \frac{\sqrt{21}}{2}$ k এর মান (1) এ বসিয়ে পই, $x^{2} + y^{2} - 4(\pm \frac{\sqrt{21}}{2})y - 4 = 0$ $x^{2} + y^{2} \pm 2\sqrt{21}y - 4 = 0$ (Ans.) 8(b) এরুপ বৃত্তের সমীকরণ নির্ণয় কর যা y-অক্ষকে $(0,\sqrt{3}$) বিন্দুতে স্পর্শ করে এবং (– 1,0) বিন্দু দিয়ে অতিক্রম করে। বৃত্তটির কেন্দ্র ও ব্যাসার্ধ নির্ণয় কর।

[ঢা. '০৬; য. '১০]

 $x^{2} + y^{2} + 2gx + 2fy + c = 0$ (1) বৃত্তটি y-অক্ষকে (0, √3) কিন্দুতে স্পর্শ করে। (-g,- f) f² = c এবং (0, – f) $-f = \sqrt{3}$ $\Rightarrow f = -\sqrt{3}$ $c = (-\sqrt{3})^2 = 3$ আবার, (1) বৃত্তটি(-1,0) কিন্দুগামী। 1 + 0 - 2g + 0 + c = 0 $\Rightarrow 1 - 2g + 3 = 0 \Rightarrow g = 2$ নির্ণেয় বৃত্তের সমীকরণ, $x^{2} + y^{2} + 4x - 2\sqrt{3}y + 3 = 0$ ২য় অংশ ঃ বৃত্তটির কেন্দ্র $(-g, -f) = (-2, \sqrt{3})$ এবং ব্যাসার্ধ $\sqrt{g^2 + f^2} - c = \sqrt{4 + 3 - 3} = 2$ 8(c) এরুপ বৃত্তের সমীকরণ নির্ণয় কর যা 🗴-অক্ষকে (2, 0) কিন্দুতে স্পর্শ করে এবং (-1, 9) কিন্দু দিয়ে অতিক্রম করে। য.'00; চ.'00] সমাধানঃ ধরি, বৃত্তের সমীকরণ, $x^{2} + y^{2} + 2gx + 2fy + c = 0 \cdots (1)$ (1) বৃত্তটি x-অক্ষকে (2, 0) বিন্দুতে স্পর্শ করে। g² = c এবং -g = 2 C(-g, -f)-g \Rightarrow g = -2 $c = (2)^2 = 4$ Y'(-g, 0)আবার, (1) বৃত্তটি $\vec{X'}$ O X (-1,9) কিন্দু দিয়ে অতিক্রম করে। 1 + 81 - 2g + 18f + c = 0 \Rightarrow 82 + 4 + 18f + 4 = 0 [c ও g এর মান বসিয়ে।] \Rightarrow 18 f = -90 \Rightarrow f = -5 নির্ণেয় বৃত্তের সমীকরণ. $x^{2} + y^{2} - 4x - 10y + 4 = 0$ (Ans.) [MCQ এর জন্য, $\frac{(x-2)^2 + (y-0)^2}{v} = \frac{(-1-2)^2 + (9-0)^2}{0}$

আবার, (1) বৃত্তটি y-অক্ষ থেকে 6 একক দীর্ঘ একটি জ্যা কর্তন করে। $2\sqrt{f^2-c} = 6 \Rightarrow \sqrt{f^2-16} = 3$ \Rightarrow f² - 16 = 9 \Rightarrow f² = 25 \Rightarrow f = ±5 নির্ণেয় বৃত্তের সমীকরণ. $x^{2} + y^{2} - 8x \pm 10y + 16 = 0$ (Ans.) 9.(c) (-4,3) ও (12, -1) বিন্দু দুইটির সংযোগ রেখাকে ব্যাস ধরে অঙ্কিত বৃত্তের সমীকরণ নির্ণয় কর। বৃত্তটি দ্বারা y-অক্ষের ছেদাংশের দৈর্ঘ্য নির্ণয় কর। [রা. '০০; ব. '০৪; কু. '০৮; দি. '১০] সমাধান : (-4,3) ও (12,-1) কিন্দু দুইটির সংযোগ রেখাকে ব্যাস ধরে অচ্চিত বৃত্তের সমীকরণ, (x + 4) (x - 12) + (y - 3)(y + 1) = 0 $\Rightarrow x^{2} - 8x - 48 + y^{2} - 2y - 3 = 0$ $\Rightarrow x^{2} + y^{2} - 8x - 2y - 51 = 0$ (Ans.) ेश जर्श 8 $x^2 + y^2 - 8x - 2y - 51 = 0$ (क $x^{2} + y^{2} + 2gx + 2fy + c = 0$ এর সঞ্চো তুলনা করে পাই, g = - 4, f = - 1 এবং c = - 51 y-অক্ষের ছেদাংশের দৈর্ঘ্য = $2\sqrt{f^2 - c}$ $=2\sqrt{1^2-(-51)}=2\sqrt{52}=4\sqrt{13}$ 9(d) প্রমাণ কর যে, (-2, 3) ও (3, -4) কিন্দু দুইটির সংযোগ রেখাকে ব্যাস ধরে অঙ্চিকত ব্রন্তের সমীকরণ (x + 2)(x - 3) + (y - 3)(y + 4) = 0

প্রমাণ:



ধরি, ব্যাসের প্রাম্ত কিন্দু দুইটি A(-2, 3) ও B(3, -4) এবং P(x,y) পরিধির উপর যেকোন একটি কিন্দু।

PA এবং PB যোগ করি। যেহেতু AB ব্যাস, ∠APB একটি অর্ধবৃত্ত্রস্থ কোণ। ∴∠APB = 90° (AP রেখার ঢাল) × (BP রেখার ঢাল) = -1

বইঘর কম $\Rightarrow \frac{y-3}{x+2} \times \frac{y+4}{x-3} = -1$ \Rightarrow (y-3)(y+4) = -(x+2)(x-3) (x+2)(x-3) + (y-3)(y+4) = 0(Proved) 10. এরুপ বৃত্তের সমীকরণ নির্ণয় কর যা উভয় অক্ষকে স্পর্শ করে এবং (1, 8) বিন্দু দিয়ে অতিক্রম করে। [চ. '০১, '০৭; য. '০৩ ; মা.বো. '০৬; সি. '০১; কু. '১২] সমাধান ঃ ধরি, বৃত্তটির সমীকরণ **▲**Y $(x-h)^{2} + (y-k)^{2} = r^{2} \cdots (1)$ C(h,h)(1) বৃত্তটি উভয় অক্ষকে h স্পর্শ করে। h k = h এবং $r = |h| \chi'$ (1) হতে পাই, $(x - h)^{2} + (y - h)^{2} = |h|^{2} \forall Y'$ X $\Rightarrow x^{2} - 2hx + h^{2} + y^{2} - 2hy + h^{2} = h^{2}$ $\Rightarrow x^{2} + y^{2} - 2hx - 2hy + h^{2} = 0 \cdots (2)$ যা (1, 8) কিন্দু দিয়ে অতিক্রম করে। $1 + 64 - 2h - 16h + h^2 = 0$ \Rightarrow h² - 18h + 65 = 0 \Rightarrow (h - 5)(h - 13) = 0 : h = 5, 13 নির্ণেয় বৃত্তের সমীকরণ, $x^{2} + y^{2} - 10x - 10y + 25 = 0$ এবং $x^2 + y^2 - 26x - 26y + 169 = 0$ 11.(a)একটি বৃত্তের সমীকরণ নির্ণয় কর যার কেন্দ্র (6,0) are $\pi x^2 + y^2 - 4x = 0$ are x = 3রেখার ছেদবিন্দু দিয়ে যায়। [ঢা.'০৭; রা.'০৭, ১৪; ব. '০৮,'১২; চ.'০৮; মা.'০৯,'১৪; য.'১৩; দি.'১৪] সমাধান ঃ ধরি, প্রদন্ত বৃত্ত ও রেখার ছেদকিন্দু দিয়ে যায় এরপ বন্তের সমীকরণ $x^2 + y^2 - 4x + k(x - 3) = 0$ $\Rightarrow x^2 + y^2 + (-4 + k) x - 3 k = 0 \cdots (1)$ (1) বৃত্তের কেন্দ্র $(-\frac{k-4}{2},0)$. প্রশ্নমতে, বৃত্তের কেন্দ্র (6, 0). $-\frac{k-4}{2} = 6 \Longrightarrow k-4 = -12 \therefore k = -8$ নির্ণেয় বৃত্তের সমীকরণ,

 $x^{2} + y^{2} + (-4 - 8)x - 3 (-8) = 0$

 $x^{2} + y^{2} - 12x + 24 = 0$ (Ans.)

11(b) একটি বৃত্তের সমীকরণ নির্ণয় কর যা মুলবিন্দু $a = x^2 + y^2 - 2x - 4y - 4 = 0 = 0$ 2x + 3y + 1 = 0 রেখার ছেদ কিন্দু দিয়ে যায়। [য. '০২; সি. '০২; ব. '০৭; চ. '১১] সমাধান ঃ ধরি, প্রদন্ত বৃত্ত এবং রেখার ছেদক্দিদু দিয়ে যায় এরপ বৃত্তের সমীকরণ, $x^2 + y^2 - 2x - 4y - 4$ $+ k (2x + 3y + 1) = 0 \cdots \cdots (1)$ (1) বৃত্তটি মূলকিন্দু (0, 0) দিয়ে অতিক্রম করে। $-4 + k = 0 \Longrightarrow k = 4$ (1) এ k এর মান বসিয়ে পাই, $x^{2} + y^{2} - 2x - 4y - 4 + 8x + 12y + 4 = 0$ $\Rightarrow x^2 + y^2 + 6x + 8y = 0$ (Ans.) 11.(c) একটি বৃন্ডের সমীকরণ নির্ণয় কর যার কেন্দ্র (0.3) এবং যা $x^2 + y^2 - 4y = 0$ বৃত্ত ও y - 2 = 0রেখার ছেদ কিন্দু দিয়ে যায়। **[5.**'0\] সমাধান ঃ ধরি, প্রদত্ত বৃত্ত ও রেখার ছেদকিন্দু দিয়ে যায় এরপ ব্রন্ডের সমীকরণ $x^2 + y^2 - 4y + k(y - 2) = 0$ $\Rightarrow x^2 + y^2 + (-4 + k)y - 2k = 0 \cdots (1)$ (1) বৃত্তের কেন্দ্র $(0, -\frac{k-4}{2})$. প্রশ্নমতে, বৃত্তের কেন্দ্র (0, 3). $-\frac{k-4}{2} = 3 \Longrightarrow k-4 = -6 \therefore k = -2$ নির্ণেয় বৃত্তের সমীকরণ, $x^{2} + y^{2} + (-4 - 2)y - 2 \cdot (-2) = 0$ $x^{2} + y^{2} - 6x + 4 = 0$ (Ans.) 12. (a) দেখাও যে, A(1, 1) বিদ্যুটি $x^2 + y^2 + y^2$ 4x + 6y - 12 = 0 ব্রন্ডের উপর অবস্থিত । A কিন্দুগামী ব্যাসের অপর প্রান্তকিদুর স্থানাজ্ঞ নির্ণয় কর। [ঢা.'১০; য.'০৭; কু..রা..'০৯;দি.'১২;ব.'১৩; চ.'১৪] প্রমাণ ঃ ধরি, $f(x,y) \equiv x^2 + y^2 + 4x + 6y - 12 = 0$ $f(1, 1) = 1^{2} + 1^{2} + 4.1 + 6.1 - 12$ = 1 + 1 + 4 + 6 - 12 = 0A(1, 1) কিন্দুটি প্রদন্ত ব্রন্তের উপর অবস্থিত। ২য় অংশ: প্রদন্ত বৃত্তের কেন্দ্র= $(-\frac{4}{2}, -\frac{6}{2}) = (-2, -3)$ ধরি, A(1 1) কিন্দুগামী ব্যাসের অপর প্রান্তকিন্দুর **B**(α , β).

 $\frac{1+\alpha}{2} = -2 \Rightarrow 1 + \alpha = -4 \Rightarrow \alpha = -5$ এবং $\frac{1+\beta}{2} = -3 \Rightarrow 1+\beta = -6 \Rightarrow \beta = -7$ ব্যাসের অপর প্রান্তবিন্দুর স্থানাঙ্ক (-5, -7) 12 (b) $x^{2} + v^{2} - 8x + 6y + 21 = 0$ ব্রের বর্ধিত যে ব্যাসটি (2, 5) বিন্দু দিয়ে অতিক্রম করে তার সমীকরণ নির্ণয় কর। [रू. '0)] সমাধান ঃ প্রদন্ত বৃত্ত $x^2 + y^2 - 8x + 6y + 21 = 0$ এর কেন্দ্রের স্থানাজ্ঞ = $\left(-\frac{-8}{2}, -\frac{6}{2}\right) = (4, -3)$ (2, 5) কিন্দু ও কেন্দ্র (4, -3) দিয়ে অতিক্রম করে এর্প ব্যাসের সমীকরণ, $\frac{x-2}{2-4} = \frac{y-5}{5+3}$ \Rightarrow 8x - 16 = -2y + 10 \Rightarrow 8x + 2y = 26 4x + y = 13 (Ans.) 12 (c) $x^{2} + y^{2} = b(5x - 12y)$ বুন্ডের বর্ধিত যে ব্যাসটি মূলকিন্দু দিয়ে অতিক্রম করে তার সমীকরণ নির্ণয় কর। 2.9.9. 78, '08] সমাধান ঃ প্রদত্ত বৃত্ত $x^2 + y^2 = b(5x - 12y)$ $\Rightarrow x^2 + y^2 - 5bx + 12by = 0 \cdots (1)$ (1) বৃত্তের কেন্দ্র $(-\frac{-5b}{2}, -\frac{12b}{2}) = (\frac{5b}{2}, 6b)$ (1) ব্রন্তের বর্ধিত যে ব্যাসটি মূলবিন্দু দিয়ে অতিক্রম করে তার সমীকরণ $y = \frac{6b}{5b/2} x \Longrightarrow y = \frac{12}{5} x$ 12x + 5y = 0 (Ans.) 12 (d) (1,1) কিন্দুগামী একটি বৃন্তের সমীকরণ নির্ণায় কর যা x-অক্ষকে স্পর্শ করে এবং যার কেন্দ্র x + y = 3 রেখার উপর প্রথম চতুর্তাগে অবস্থিত। [বু.'০৮] সমাধান ঃ ধরি, বৃত্তের সমীকরণ $x^{2} + y^{2} + 2gx + 2fy + c = 0 \cdots (1)$ বৃত্তটি x-অক্ষকে স্পর্শ করে। $c = g^2 \cdots (2)$ (1) বৃত্তটির কেন্দ্র (– g , –f), x+y=3 রেখার উপর প্রথম চতুর্ভাগে অবস্থিত। ... (3) $-g-f=3 \Longrightarrow f=-g-3$ আবার, বৃত্তটি (1, 1) কিন্দুগামী ।

1 + 1 + 2g + 2f + c = 0 $\Rightarrow 2 + 2g + 2(-g - 3) + g^2 = 0$ [(2) ও (3) দ্বারা] \Rightarrow 2 + 2g - 2g - 6 + g² = 0 \Rightarrow g² = 4 \Rightarrow g = -2 [প্রথম চতুর্ভাগে g ও f ঋণাত্মক।] এখন (2) হতে পাই, $c = (-2)^2 = 4$ এবং (3) হতে পাই, f = 2 - 3 = - 1 : নির্ণেয় বৃত্তের সমীকরণ, $x^{2} + y^{2} - 4x - 2y + 4 = 0$ $12(e) \ \frac{1}{2} \sqrt{10}$ ব্যাসার্ধবিশিষ্ট একটি বৃষ্ণ (1,1) বিন্দু দিয়ে অতিক্রম করে এবং বৃস্তটির কেন্দ্র y = 3x-7রেখার উপর অবস্থিত। বৃত্তটির সমীকরণ নির্ণয় কর। [সি. '০৮; রা. ০৮; কৄ. '০৭; য. '০৬; চ. '০১; ঢা. '১১] সমাধান ঃ ধরি, $\frac{1}{2}\sqrt{10}$ ব্যাসার্ধবিশিষ্ট বৃত্তের সমীকরণ $(x - h)^{2} + (y - k)^{2} = (\frac{1}{2}\sqrt{10})^{2} = \frac{5}{2}$ $\Rightarrow 2(x^2-2hx + h^2 + y^2-2ky + k^2) = 5...(1)$ y = 3x - 7 রেখার উপর (1) বৃত্তের কেন্দ্র (h, k) অবস্থিত। ∴ k = 3h - 7 ··· (2) (1) বৃত্ত (1, 1) কিন্দু দিয়ে অতিক্রম করে। $2(1-2h+h^2+1-2k+k^2)=5$ $\Rightarrow 2h^2 + 2k^2 - 4h - 4k = 1$ $\Rightarrow 2h^{2} + 2(3h - 7)^{2} - 4h - 4(3h - 7) = 1$ [(2) **দ্বারা**] $\Rightarrow 2h^2 + 2(9h^2 - 42h + 49) - 4h -$ 12h + 28 - 1 = 0 $\Rightarrow 2h^2 + 18h^2 - 84h + 98 - 4h$ -12h + 28 - 1 = 0 $\Rightarrow 20h^2 - 100h + 125 = 0$ \Rightarrow 4h² - 20h + 25 = 0 \Rightarrow (2h - 5)² = 0 \Rightarrow h = $\frac{5}{2}$. (2) হতে পাই, k = $3\frac{5}{2} - 7 = \frac{1}{2}$ (1) এ h ও k এর মান বসিয়ে পাই, $2x^2 - 4 \cdot \frac{5}{2}x + 2 \cdot \frac{25}{4} + 2y^2 - 4 \cdot \frac{1}{2}y + 2 \cdot \frac{1}{4} = 5$ $\Rightarrow 8x^2 - 40x + 50 + 8y^2 - 8y + 2 = 20$ $\Rightarrow 8x^2 + 8y^2 - 40x - 8y + 32 = 0$

 $x^{2} + y^{2} - 5x - y + 4 = 0$ (Ans.)

13.(a) $4\sqrt{2}$ বাহুবিশিষ্ট বর্গের একটি শীর্ষ মূলকিন্দুতে অবস্থিত এবং এর বিপরীত শীর্ষটি *x*-অক্ষের উপর অবস্থিত। এ বর্গের কর্পকে ব্যাস ধরে অঞ্চিম্ত বৃন্তের সমীকরণ নির্ণয় কর। [য.'o8] সমাধান ধরি, OABC বর্গের এহুটি শীর্ষ মূলকিন্দু O(0,0)এবং *x*-অক্ষের উপর এর বিপরীত শীর্ষ B অবস্থিত।

OAB সমকোণী ত্রিভুজে,

$$OB^2 = OA^2 + AB^2$$

 $= (4\sqrt{2})^2 + (4\sqrt{2})^2$
 $[: বর্গের বাহুর দৈর্ঘ্য X' O
 $= 4\sqrt{2}$]
 $= 32 + 32 = 64$
 $OB = \pm 8 = B$ বিন্দুর ভূজ।
B বিন্দুর স্থানাজ্জ (± 8 , 0)$

OB কে ব্যাস ধরে অঙ্কিত নির্ণেয় বৃত্তের সমীকরণ

$$(x - 0)(x \pm 8) + (y - 0)(y - 0) = 0$$

$$\Rightarrow x^{2} \pm 8x + y^{2} = 0$$

$$x^{2} + y^{2} \pm 8x = 0 \text{ (Ans.)}$$

13(b) b বাহুবিশিষ্ট OABC একটি বর্গ। OA ও OC কে জক্ষ ধরে দেখাও যে, বর্গটির পরিবৃন্তের

সমীকরণ হবে
$$x^2 + y^2 = \mathbf{b}(x + y)$$
.

[ঢা.'০৫; রা.'১০; ব.'১৩] প্রমাণ ঃ b বাহুবিশিফ্ট OABC বর্গের x ও y– অক্ষ বরাবর যথাক্রমে OA ও OC অবস্থিত হলে A ও C এর স্থানাচ্চ্রু

যথাক্রমে (b,0) ও (0,b). বর্গের কর্ণ AC কে ব্যাস ধরে অভিকত পরিবৃত্তের সমীকরণ (x - b)(x - 0) + (y - 0)(y - b) = 0⇒ $x^2 - bx + y^2 - by = 0$ $x^2 + y^2 = b(x + y)$ (Provsd)

14 (a) এর্প দুইটি বৃষ্ডের সমীকরণ নির্ণয় কর যাদের প্রত্যেকটির কেন্দ্র (3, 4) এবং যারা $x^2 + y^2 = 9$ বৃস্তকে স্পর্শ-করে। [য.'১০] সমাধান ঃ প্রদন্ত বৃত্ত $x^2 + y^2 = 9 \cdots (i)$ এর কেন্দ্র A(0,0) এবং ব্যাসার্ধ r₁ = 3 ধরি, নির্ণেয় বৃত্তের কেন্দ্র B(3,4)এবং ব্যাসাধ r_2 বন্তদ্বয় পস্পরকে বহিঃস্থভাবে স্পর্শ করলে $r_1 + r_2 = AB \implies 3 + r_2 = \sqrt{3^2 + 4^2} = 5$ \Rightarrow $r_2 = 2$ আবার, বৃত্তদয় পস্পরকে বহিঃস্পভাবে স্পর্শ করলে, $r_2 - r_1 = AB \implies r_2 - 3 = \sqrt{3^2 + 4^2} = 5$ $r_2 = 8$ নির্ণেয় বন্তু দুইটির সমীকরণ, $(x-3)^{2} + (y-4)^{2} = 2^{2}$ $\Rightarrow x^{2} + y^{2} - 6x - 8y + 9 + 16 - 4 = 0$ $x^{2} + y^{2} - 6x - 8y + 21 = 0$ এবং $(x-3)^{2} + (y-4)^{2} = 8^{2}$ $\Rightarrow x^{2} + y^{2} - 6x - 8y + 9 + 16 - 64 = 0$ $x^2 + y^2 - 6x - 8y - 39 = 0$ 14.(b) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c}$ হলে দেখাও যে, $x^2 + y^2 + y^2$ $2ax + c = 0 \otimes x^{2} + y^{2} + 2by + c = 0$ 33 দুইটি পরস্পরকে স্পর্শ ক্রবে। মা. '০৭] প্রমাণ : $x^2 + y^2 + 2ax + c = 0$ বৃত্তের কেন্দ্র A(-a, 0) এবং ব্যাসার্ধ $r_1 = \sqrt{a^2 - c}$ $x^{2} + y^{2} + 2by + c = 0$ व्एखत (कन्ध B(0, -b) এবং ব্যাসার্ধ $r_2 = \sqrt{b^2 - c}$ বন্তু দুইটি পরস্পরকে স্পর্শ করলে, $AB = |r_1 \pm r_2|$ $\Rightarrow \sqrt{a^2 + b^2} = |\sqrt{a^2 - c} \pm \sqrt{b^2 - c}|$ $\Rightarrow a^2 + b^2 = a^2 - c + b^2 - c$ $\pm 2\sqrt{(a^2-c)(b^2-c)}$ [বর্গ করে।] $2c = \pm 2\sqrt{(a^2 - c)(b^2 - c)}$ ⇒ $c^2 = (a^2 - c)(b^2 - c)$ [कॉ कता |] \Rightarrow c² = a² b² - b² c - a² c + c² $\Rightarrow b^{2}c + a^{2}c = a^{2}b^{2} \Rightarrow \frac{1}{a^{2}} + \frac{1}{b^{2}} = \frac{1}{a}$

 $\frac{1}{r^2} + \frac{1}{r^2} = \frac{1}{r}$ হলে, প্রদত্ত রেখা দুইটি স্পর্শ করবে। 15. $x = a (\cos \theta - 1)$ and $y = a (\sin \theta + 1)$ হলে , বত্তের কার্ত্তেসীয় সমীকরণ, ব্যাসার্ধ ও কেন্দ্রের স্থানাঙ্ক নির্ণয় কর। সমাধান: $x = a (\cos \theta - 1) = a \cos \theta - a$ $\Rightarrow a \cos \theta = x - a$ আবার, $y = a (\sin \theta + 1) = a \sin \theta + a$ \Rightarrow a sin $\theta = y - a$ এখন, $a^{2}\cos^{2}\theta + a^{2}\sin^{2}\theta = (x-a)^{2} + (y-a)^{2}$:. $(x - a)^2 + (y - a)^2$, যা বৃত্তটির কার্ত্তেসীয় সমীকরণ । বৃত্তটির ব্যাসার্ধ a এবং কেন্দ্র (a, -a) 16. প্রদন্ত শর্ত সিদ্ধ করে এরূপ বৃত্তের পোলার সমীকরণ নির্ণয় কর: সমাধান: (a) (4, 30⁰) কেন্দ্র ও 5 ব্যাসার্ধ বিশিষ্ট বৃত্তের পোলার সমীকরণ. $5^2 = r^2 + 4^2 - 2r.4\cos(\theta - 30^0)$ $\Rightarrow 25 = r^2 + 16 - 8r \cos{(\theta - \frac{\pi}{\epsilon})}$ $r^2 - 8r\cos\left(\theta - \frac{\pi}{6}\right) - 9 = 0$ (b) $(3, \frac{3\pi}{2})$ কেন্দ্র ও 2 ব্যাসার্ধ বিশিষ্ট বৃত্তের পোলার সমীকরণ, $2^{2} = r^{2} + 3^{2} - 2r.3\cos(\theta - \frac{3\pi}{2})$ $\Rightarrow 4 = r^2 + 9 - 6r \cos(\frac{3\pi}{2} - \theta)$ \Rightarrow r² + 5 + 6r cos $\theta = 0$ (c) মনে করি, বৃত্তের ব্যাসার্ধ a. তাহলে বৃত্তের পোলার সমীকরণ, $a^2 = r^2 + 3^2 - 2r.3\cos(\theta - 0^0)$ $\Rightarrow a^2 = r^2 + 9 - 6rcos(\theta \cdots \cdots (1))$ (1) বৃত্তটি পোল $(0, 0^0)$ বিন্দুগামী বলে, $a^2 = 0^2 +$ 9-6.0, $\cos 0^0 \Rightarrow a^2 = 9 \Rightarrow a = 3$. নির্ণেয় সমীকরণ, $9 = r^2 + 9 - 6r \cos \theta$ \Rightarrow r² = 6r cos θ \Rightarrow r = 6 cos θ

(d) মনে করি, বৃত্তের ব্যাসার্ধ p. তাহলে বৃত্তের পোলার সমীকরণ, $p^2 = r^2 + r_1^2 - 2r r_1 \cos(\theta - \theta_1) \cdots (1)$ (1) বৃত্তটি পোল $(0, 0^0)$, $(a, 0^0)$, $(b, 90^0)$ বিন্দুগামী। $p^2 = 0^2 + r_1^2 - 2.0. r_1 \cos(0^0 - \theta_1)$ $\Rightarrow p^2 = r_1^2 \Rightarrow p = r_1 \cdots \cdots (2)$ $p^{2} = a^{2} + r_{1}^{2} - 2.a.r_{1} \cos(0^{0} - \theta_{1})$ $\Rightarrow a^2 = 2ar_1 \cos \theta_1$, [:: p = r,] $\Rightarrow a = 2 r_1 \cos \theta_1 \cdots \cdots (3)$ এবং $p^2 = b^2 + r_1^2 - 2.b.r_1 \cos(90^0 - \theta_1)$ $\Rightarrow b^2 = 2b r_1 \sin \theta_1$, [:: $p = r_1$] $\Rightarrow b = 2r_1 \sin \theta_1$ (1) হতে পাই, $r_1^2 = r^2 + r_1^2$ $-2rr_1(\cos\theta\cos\theta_1+\sin\theta\sin\theta_1)$ $r^2 = r (\cos \theta . 2r_1 \cos \theta_1 + \sin \theta . 2r_1 \sin \theta_1)$ $r = a \cos \theta + b \sin \theta$

17. বৃন্তটির কেন্দ্র ও ব্যাসার্ধ নির্ণয় কর:

(a) সমাধান: প্রদন্ত বৃত্তের সমীকরণ $r^2 - 4\sqrt{3}$ r $\cos \theta - 4 r \sin \theta + 15 = 0$ কে পোলার হানাক্ষে বৃত্তের সাধারণ সমীকরণ $r^2 + 2r(g \cos \theta + f \sin \theta) + c = 0$ এর সাথে তুলনা করে পাই, $g = -2\sqrt{3}$, f = -2, c = 15. $\sqrt{g^2 + f^2} = \sqrt{12 + 4} = 4$, $\tan^{-1} \frac{-f}{-g} = \tan^{-1} \frac{2}{2\sqrt{3}} = \tan^{-1} \frac{1}{\sqrt{3}} = \frac{\pi}{6}$ $\ln critic কেন্দ্র (4, <math>\frac{\pi}{6})$ এবং ব্যাসার্ধ = $\sqrt{g^2 + f^2 - c} = \sqrt{12 + 4 - 15} = 1$ (b) $r = 2a \cos \theta \Rightarrow r^2 - 2ra \cos \theta = 0$ কে পোলার হ্যানাক্ষে বৃত্তের সাধারণ সমীকরণ $r^2 + 2r(g \cos \theta + f \sin \theta) + c = 0$ এর সাথে তুলনা করে পাই, g = -a, f = 0, c = 0.

$$\sqrt{g^2 + f^2} = \sqrt{a^2 + 0} = a$$
, $\tan^{-1} \frac{-f}{-g} =$
 $\tan^{-1} \frac{0}{a} = \tan^{-1} 0 = 0^0$
নির্ণেয় কেন্দ্র $(a, 0^0)$ এবং ব্যাসার্ধ =
 $\sqrt{a^2 + 0^2 - 0} = a$

18. (a) একটি বৃত্তের কেন্দ্র x-অর্জোর উপর , যা মূলবিন্দু থেকে ধনাত্মক দিকে 7 একক দূরে অবস্থিত। বৃস্তটির ব্যাসার্ধ 4 একক হলে, বৃত্তটির পোলার সমীকরণ নির্ণায় কর।

সমাধান: প্রশ্নমতে নির্ণেয় বৃস্তটির কেন্দ্র (7, 0) এবং ব্যাসার্ধ = 4.

বৃত্তটির পোলার সমীকরণ,

$$4^{2} = r^{2} + 7^{2} - 2r.7\cos(\theta - 0)$$

$$\Rightarrow 16 = r^{2} + 49 - 14r\cos\theta$$

$$r^{2} - 14r\cos\theta + 33 = 0 \text{ (Ans.)}$$

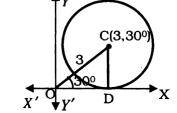
(b) একটি বৃন্তের কেন্দ্র y-অড়োর উপর , যা মূলবিন্দু থেকে ধনাত্মক দিকে 8 একক দুরে অবস্থিত। বৃস্তটির ব্যাসার্ধ 5 একক হলে, বৃস্তটির পোলার সমীকরণ নির্ণয় কর।

সমাধান: প্রশ্নমতে নির্ণেয় বৃত্তটির কেন্দ্র $(8, \frac{\pi}{2})$ এবং ব্যাসার্ধ = 5.

বৃত্তটির পোলার সমীকরণ,

$$5^{2} = r^{2} + 8^{2} - 2r.8 \cos \left(\theta - \frac{\pi}{2}\right)$$
$$\Rightarrow 25 = r^{2} + 64 - 16r \cos \left(\frac{\pi}{2} - \theta\right)$$
$$r^{2} - 16r \sin \theta + 39 = 0.$$

(c) একটি বৃন্ডের কেন্দ্র (3, 30⁰) এবং বৃস্তটি *x*-অর্জাকে স্পর্শ করে; বৃস্তটির পোলার সমীকরণ নির্ণয় কর। ▲ *Y*



সমাধান: প্রশ্নমতে নির্দেয় বৃত্তটির কেন্দ্র $(3,30^0)$ এবং ব্যাসার্ধ = CD = 3 sin $30^0 = \frac{3}{2}$ বৃত্তটির পোলার সমীকরণ, $\left(\frac{3}{2}\right)^2 = r^2 + 3^2 - 2r.3\cos(\theta - 30^0)$ $\Rightarrow \frac{9}{4} = r^2 + 9 - 6r\cos(\theta - 30^0)$ \Rightarrow 9 = 4r² + 36 - 24rcos (θ - 30⁰) $4r^2 - 24r \cos(\theta - 30^0) + 27 = 0$ (d) একটি বৃন্তের কেন্দ্র $(4, \frac{\pi}{2})$ এবং বৃস্তটি y-অভাকে স্পর্শ করে; বৃত্তটির পোলার সমীকরণ নির্ণয় কর। $C(4, \pi/\beta)$ সমাধান: প্রশ্নমতে নির্ণেয় বৃত্তটির কেন্দ্র $(4, \frac{\pi}{2})$ এবং ব্যাসার্ধ = OB = $4 \cos \frac{\pi}{2} = 4$. $\frac{1}{2} = 2$ বত্তটির পোলার সমীকরণ, $(2)^2 = r^2 + 4^2 - 2r.4 \cos(\theta - \frac{\pi}{3})$ $\Rightarrow 4 = r^2 + 16 - 8rcos(\theta - \frac{\pi}{2})$ $r^{2} - 8r \cos{(\theta - \frac{\pi}{2})} + 12 = 0$ 19. যদি বৃত্তের উপরস্থ (4,1) কিন্দুটি (1 + 5 cos Θ , $-3 + 5 \sin \Theta$) ঘারা প্রকাশিত হয়, তবে এ কিন্দুগামী ব্যাসের অপর প্রান্ড্র্যের স্থানাজ্ঞ্ব নির্ণয় কর। সমাধান : প্রশ্নমতে $4 = 1 + 5 \cos \Theta$, $1 = -3 + 5 \sin \Theta$

 \Rightarrow 5 cos θ = 3, 5 sin θ = 4

 $\Rightarrow \cos \theta = \frac{3}{5}, \sin \theta = \frac{4}{5}$ আমরা জানি, প্রদত্ত বিন্দুগামী ব্যাসের অপর প্রান্ডের জন্য *⊖* এর মান 180° বদ্ধি পায়। অপর প্রান্তের জন্য, $\cos(180^\circ + \Theta) = -\cos\Theta = -\frac{3}{5}$ धनः $\sin\left(180^\circ + \Theta\right) = -\sin\Theta = -\frac{4}{5}$ (4,1) বিন্দুগামী ব্যাসের অপর প্রান্তের স্থানাঙ্ক $(1+5\times(-\frac{3}{5}), -3+5\times(-\frac{4}{5}))$ = (1-3, -3-4) = (-2, -7) (Ans.) **16(a)** $r^2 - 4\sqrt{3}r \cos\theta - 4r\sin\theta + 15 = 0$ বত্তের কেন্দ্র ও ব্যাসার্ধ নির্ণয় কর। সমাধান: পোলার স্থানাজ্জে বৃত্তের সাধারণ সমীকরণ $r^2 + 2r (g \cos \theta + f \sin \theta) + c = 0$ ও প্রদত সমীকরণ $r^2 - 4\sqrt{3}r\cos\theta - 4r\sin\theta + 15 = 0$ তুলনা কণ্ডে পাই, $g = -2\sqrt{3}$, f = -2, c = 15 $\sqrt{g^2 + f^2} = \sqrt{12 + 4} = 4$ $\sqrt{g^2 + f^2 - c} = \sqrt{12 + 4 - 15} = 1$ $\tan^{-1}\frac{f}{a} = \tan^{-1}\frac{-2\sqrt{3}}{-2} = \pi + \tan^{-1}\sqrt{3}$ $=\pi+\frac{\pi}{6}=\frac{7\pi}{6}$: বৃত্তের কেন্দ্রের স্থানাজ্ঞ = $(\sqrt{g^2 + f^2}, \tan^{-1}\frac{t}{\alpha})$ $=(4, \frac{7\pi}{6})$ এবং ব্যাসার্ধ $=\sqrt{g^2 + f^2 - c} = 1$ 16(b) (4, 30⁰) কেন্দ্র ও 5 ব্যাসার্ধবিশিষ্ট বৃত্তের পোলার সমীকরণ, $5^2 = r^2 + 4^2 - 2r \times 4 \times \cos(\theta - 30^0)$ \Rightarrow r² - 8r cos $(\theta - \frac{\pi}{6}) - 9 = 0$

X

১। এরুপ বৃত্তের সমীকরণ নির্ণয় কর যা প্রত্যেক অক্ষরেখাকে মূলবিন্দু থেকে ধনাত্মক দিকে 5 একক

দুরত্বে স্পর্শ করে। সমাধানঃ নির্শেয় বৃত্তটি প্রত্যেক অক্ষরেখাকে মূলবিন্দু থেকে ধনাত্মক দিকে 5 একক দূরত্বে স্পর্শ করে। বৃত্তটির কেন্দ্র (5, 5)

এবং ব্যাসার্ধ = |5| = 5. বৃত্তটির সমীকরণ $(x - 5)^2 + (y - 5)^2 = 5^2$ $\Rightarrow x^2 - 10x + 25 + y^2 - 10y + 25 = 25$ $x^2 + y^2 - 10x - 10y + 25 = 0$ (Ans.)

২। দেখাও যে, $x^2 + y^2 - 4x + 6y + 8 = 0$ এবং $x^2 + y^2 - 10x - 6y + 14 = 0$ বৃত্ত দুইটি পরস্পারকে (3, -1) বিন্দুতে স্পর্শ করে।

ধ্রমাণ :
$$x^2 + y^2 - 4x + 6y + 8 = 0$$
 বৃত্তের কেন্দ্র
 $C_1(2,-3)$ এবং ব্যাসার্ধ $r_1 = \sqrt{4+9-8} = \sqrt{5}$
 $x^2 + y^2 - 10x - 6y + 14 = 0$ বৃত্তের কেন্দ্র
 $C_2(5,3)$ এবং ব্যাসার্ধ $r_2 = \sqrt{25+9-14} = \sqrt{20}$

= $2\sqrt{5}$ খরি, প্রদন্ত কিন্দু P(3, -1). এখন $C_1 P = \sqrt{(2-3)^2 + (-3+1)^2} = \sqrt{5} = r_1$ এবং $C_2 P = \sqrt{(5-3)^2 + (3+1)^2} = \sqrt{20}$

 $= 2\sqrt{5} = r_2$ $C_1 C_2 = \sqrt{(2-5)^2 + (-3-3)^2} = \sqrt{9+36}$ $= \sqrt{45} = 3\sqrt{5} = \sqrt{5} + 2\sqrt{5} = C_1 P + C_2 P$

বৃত্তের কেন্দ্র দুইটি এবং (3, –1) কিন্দু একই সরলরেখায় অবস্থিত। অতএব, প্রদন্ত বৃত্ত দুইটি পরস্পরকে (3, –1) কিন্দুতে

অতএব, শ্রদন্ত বৃত্ত দুখার সরস্পরকে (3, -1) বিন্দুতে স্পর্শ করে। (প্রমাণিত)

৩। দেখাও যে, $x^2 + y^2 - 6x + 6y - 18 = 0$ ও $x^2 + y^2 - 2y = 0$ বৃত্ত দুইটি পরস্পরকে জন্ডঃস্বভাবে স্পর্শ করে। প্রমাণ : $x^2 + y^2 - 6x + 6y - 18 = 0$ বৃত্তের কেন্দ্র A(3, -3) এবং ব্যাসার্ধ $r_1 = \sqrt{9+9+18}$ = 6 $x^2 + y^2 - 2y = 0$ বৃত্তের কেন্দ্র A(0, 1) এবং ব্যাসার্ধ $r_2 = \sqrt{0+1+0} = 1$ এখন, AB = $\sqrt{(3-0)^2 + (-3-1)^2} = 5$ এবং $r_1 - r_2 = 6 - 1 = 5 = AB$ বৃত্ত দুইটি পরস্পরকে অন্তঃস্থভাবে স্পর্শ করে। 8 । বৃত্তের পোলার সমীকরণ নির্ণয় কর যার কেন্দ্র

$$(6, \frac{\pi}{4})$$
 এবং ব্যাসার্ধ 5

৫। দেখাও যে, $r = a\cos \theta$ একটি বৃস্ত যার কেন্দ্র $(\frac{a}{2}, 0)$ ও ব্যাসার্ধ $\frac{a}{2}$.

অতিরিক্ত প্রশ্ন (সমাধানসহ)

পরিবৃন্তের 1. ABCD বর্গের সমীকরণ $x^{2} + y^{2} - 5x + 8y - 39 = 0$. A (-1, 3) হলে B, C ও D এর স্থানাজ্ঞ নির্ণয় কর। পরিবৃন্ত সমাধান ABCD বর্গের $x^{2} + y^{2} - 5x + 8y - 39 = 0$ এর বেস্দ্র $\left(\frac{3}{2},-4\right)$ হবে ABCD বর্গের AC ও BD কর্ণছযের ছেদকিদু O. ধরি, C এর স্থানাজ্ঞ্ব (α , β) AC এর মধ্যকিন্দু $(\frac{5}{2}, -4)$ । A(-1, 3) B $\therefore \frac{\alpha - 1}{2} = \frac{5}{2} \Longrightarrow \alpha = 5 + 1 = 6$ এবং $\frac{\beta+3}{2} = -4 \Longrightarrow \beta = -8 - 3 = -11$ C এর স্থানাজ্ঞ্ব (6, -11).

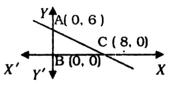
ধরি, AB বাহুর ঢাল m এবং AB বাহু AC কর্ণের সাথে 45° কোণ উৎপন্ন করে।

 $\frac{m+2}{1-2m} = \tan 45^\circ = 1 \Longrightarrow m + 2 = 1-2m$ \Rightarrow 3m = -1 \Rightarrow m = $-\frac{1}{3}$ AB ও DC বাহুর ঢাল $\frac{1}{3}$. A(-1,3) বিন্দুগামী AB রেখার সমীকরণ $y-3 = -\frac{1}{2}(x+1) \Rightarrow 3y-9 = -x-1$ \Rightarrow x + 3y - 8 = 0 ··· ··· (1) C(6, -11) কিন্দুগামী (1) এর উপর লম্ব BC এর সমীকরণ 3x – y = 18 + 11 \Rightarrow 3x - y - 29 = 0 ··· ···(2) (1) .ও (2) এর ছেদকিন্দু B এর স্থানাজ্ঞ্ব $=(\frac{-87-8}{-1-9},\frac{-24+29}{-1-9})=(\frac{19}{2},-\frac{1}{2})$ A(- 1, 3) কিদ্যগামী AB এর লম্ব AD এর সমীকরণ 3x – y = – 3 –3 \Rightarrow 3x - y + 6 = 0 ··· (3) C(6, -11) কিদুগামী (3) এর উপর লম্ব CD এর সমীকরণ x + 3y = 6 - 33 = -27 \Rightarrow x + 3y + 27 = 0 ...(4) (3) ও (4) এর ছেদকিন্দু D এর স্থানাজ্ঞ $=(\frac{-27-18}{0+1},\frac{6-81}{0+1})=(-\frac{9}{2},-\frac{15}{2})$ 2.(a)ABC সমবাহু ত্রিভুচ্জের দুইটি শীর্ষবিন্দু A(0,0) 영 B(6,0) + ABC 대중역하 পরিবৃত্তের সমীকরণ নির্ণয় কর। সমাধান ঃ ধরি, C শীর্ষের স্থানাজ্ঞ্ব (α , β). ABC সমবাহু ত্রিভুজ বলে $AC^2 = BC^2 = AB^2$ $\Rightarrow \alpha^2 + \beta^2 = (\alpha - 6)^2 + \beta^2$ $\Rightarrow \alpha^2 + \beta^2 = \alpha^2 - 12\alpha + 36 + \beta^2$ $\Rightarrow 12\alpha = 36 \Rightarrow \alpha = 3$ আবার, $AC^2 = AB^2 \Rightarrow \alpha^2 + \beta^2 = 6^2$ \Rightarrow 9 + $\beta^2 = 36 \Rightarrow \beta^2 = 27 \Rightarrow \beta = \pm 3\sqrt{3}$ C শীর্ষের স্থানাজ্ঞ্ব $(3, \pm 3\sqrt{3})$. ধরি, A(0,0) দিয়ে যায় এরপ পরিবৃত্তের সমীকরণ $x^{2} + y^{2} + 2gx + 2fy = 0 \cdots (1)$ (1) বৃত্ত B(6,0) এবং C(3, ± 3√3) কিন্দুগামী।

 $36 + 12g = 0 \Rightarrow g = -3$ এবং $9 + 27 + 6g \pm 6\sqrt{3} f = 0$ $36 - 18 \pm 6\sqrt{3} f = 0 \Rightarrow \pm 6\sqrt{3} f = 18$ $\Rightarrow f = \pm \sqrt{3}$ (1) এ g ও f এর মান বসিয়ে পাই, $x^2 + y^2 - 6x \pm 2\sqrt{3} y = 0$ (Ans.)

2 (b) 3x + 4y = 24 সরগরেখা এবং জক্ষ দুইটি দ্বারা গঠিত ত্রিভুচ্জের পরিবৃত্ত ও জন্যতঃবৃত্তের সমীকরণ নির্ণয় কর।

সমাধান ঃ ধরি, $3x + 4y = 24 \Rightarrow \frac{x}{8} + \frac{y}{6} = 1$ সরলরেখা এবং অক্ষদ্বয় দ্বারা গঠিত ABC ত্রিভুজের শীর্ষক্রিদু A(0, 6), B(0, 0) ও C(8, 0).



পরিবৃত্ত । ABC ত্রিভুজে, ∠ABC = 90° বলে, A ও C কিন্দুদয় ত্রিভুজটির পরিবৃত্তের একটি ব্যাসের প্রাম্তকিন্দু।

নির্ণেয় পরিবৃত্তের সমীকরণ,

$$(x-0)(x-8) + (y-6)(y-0) = 0$$

 $\Rightarrow x^2 + y^2 - 8x - 6y = 0$ (Ans.)

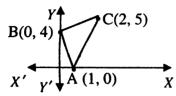
षमण्डः देख ः धर्थात्न,
$$a = BC = |0-8| = 8$$
,
 $b = AC = \sqrt{6^2 + 8^2} = 10$,
 $c = AB = |6-0| = 6$
 $\delta_{ABC} = 0 (0-0) - 6 (0-8) = 48$
धर्वे $a + b + c = 8 + 10$ म्रेन $AC^2 = BC^2$
खमण्डः देखंड त्रकल्पुत ज्यानाख्क
 $= (\frac{ax_1 + bx_2 + cx_3}{a + b + c}, \frac{ay_1 + by_2 + cy_3}{a + b + c})$
 $= (\frac{8 \times 0 + 10 \times 0 + 6 \times 8}{24}, \frac{8 \times 6 + 10 \times 0 + 6 \times 0}{24})$
 $= (2, 2)$
खमण्डः देग्राजार्थ $= \frac{|\delta_{ABC}|}{a + b + c} = \frac{48}{24} = 2$
निर्दा श्र खमण्डः देखंड जभोकत्व,
 $(x - 2)^2 + (y - 2)^2 = 2^2$

$$\Rightarrow x^{2} - 4x + 4 + y^{2} - 4y + 4 = 4$$

x² + y² - 4x - 4y + 4 = 0 (Ans.)

2(c) ABC ত্রিভ্জের শীর্ষবিন্দু তিনটি A(1,0), B(0,4) ও C(2,5) । ABC ত্রিভ্জটির পরিকেন্দ্র, ভরকেন্দ্র ও লম্বকেন্দ্র নির্ণয় কর।

সমাধান ঃ



নিকেন্দ্র: A(1, 0) ও B(0, 4) কিন্দুগামী বৃদ্তের সমীকরণ (x - 1)(x - 0) + (y - 0)(y - 4) = $k\{(x - 1) (0 - 4) - (y - 0)(1 - 0)\}$ $\Rightarrow x^2 + y^2 - x - 4y = k(-4x + 4 - y),$ यা C(2, 5) কিন্দুগামী। $2^2 + 5^2 - 2 - 4 \times 5 = k(-4 \times 2 + 4 - 5)$ $\Rightarrow 4 + 25 - 2 - 20 = k(-8 + 4 - 5)$ $\Rightarrow -9k = 7 \Rightarrow k = -7/9$ প্রদন্ড কিন্দুগামী ত্রিভূচ্জের পরিবৃন্ডের সমীকরণ $x^2 + y^2 - x - 4y = -\frac{7}{9}(-4x + 4 - y)$

 $\Rightarrow x^{2} + y^{2} - (1 + \frac{28}{9})x - (4 + \frac{7}{9})y + \frac{28}{9} = 0$ $\Rightarrow x^{2} + y^{2} - \frac{37}{9}x - \frac{43}{9}y + \frac{28}{9} = 0$ ত্রিভূছাটির পরিকেন্দ্রের স্থানাজ্ঞ $(\frac{37}{18}, \frac{43}{18})$

ভরকেন্দ্র : AB এর মধ্যবিন্দুর স্থানাজ্ঞ্ব ($\frac{1}{2}$,2) এবং C(2, 5) শীর্ষগামী মধ্যমার সমীকরণ, $(x-2)(5-2) - (y-5)(2-\frac{1}{2}) = 0$ $\Rightarrow 3x-6-\frac{3}{2}y+\frac{15}{2}=0$ $\Rightarrow 6x - 12 - 3y + 15 = 0$ $\Rightarrow 2x - y + 1 = 0 \cdots$ (i) আবার, BC এর মধ্যবিন্দুর স্থানাজ্ঞ্ব $(1, \frac{9}{2})$ এবং A(1,0) শীর্ষগামী মধ্যমার সমীকরণ, $(x-1)(0-\frac{9}{2}) - (y-0)(1-1) = 0$ ⇒ x = 1; (i) হতে পাই, y = 2 + 1 = 3 ত্রিভজটির ভরকেন্দ্র (1, 3). **লম্বকেন্দ্র :** AB বাহুর সমীকরণ (x - 1)(0 - 4) - (y - 0)(1 - 0) = 0 $\Rightarrow -4x + 4 - y = 0 \Rightarrow 4x + y - 4 = 0$ AB বাহুর উপর লম্ব এবং C(2 , 5) কিদুগামী রেখার সমীকরণ. x - 4y = 2 - 20 $\Rightarrow x = 4y - 18$ (ii) আবার, BC বাহুর সমীকরণ (x-0)(4-5) - (y-4)(0-2) = 0 \Rightarrow - x + 2y - 8 = 0 \Rightarrow x - 2y + 8 = 0 BC বাহুর উপর লম্ব এবং A(1, 0) বিন্দুগামী রেখার সমীকরণ, 2x + y = 2⇒ 2(4y-18) + y = 2, [(ii) घाরा] \Rightarrow 8y - 36 + y = 2 \Rightarrow 9y = 38 \Rightarrow y = 38/9 (ii) হতে পাই, $x = 4 \times \frac{38}{9} - 18 = -\frac{10}{9}$ ত্রিভূজটির লম্বকেন্দ্র $(-\frac{10}{0},\frac{38}{0})$

1111555	الد و هذه الله الله الله الله الله الله و الله الله	555 577
	প্রশ্নমধ্য IV B	
부수석	વનુવસ્વદ્યા છે છે	부수수
<u> </u>	· · · · · · · · · · · · · · · · · · ·	

এক নজরে প্রয়োজনীয় সূত্রাবলী www.boighar.com 1. $x^2 + y^2 = r^2$ 3(8 y = mx + c রেখাটি স্পর্শক হওয়ার শর্ত, $\mathbf{c} = \pm r\sqrt{m^2 + 1}$ $x^{2} + y^{2} = r^{2}$ বৃত্তের স্পর্শকের সমীকরণ, $y = mx \pm r\sqrt{m^2 + 1}$ धवर স্পর্শবিন্দুর স্থানাভক $\left(\frac{-mr}{\sqrt{1+m^2}}, \frac{r}{\sqrt{1+m^2}}\right)$ 2. x² + y² + 2gx + 2fy + c = 0 ব্রন্ডের উপর $P(x_1, y_1)$ কিন্দুতে স্পর্শকের সমীকরণ, $x x_1 + y y_1 + g (x + x_1) + f (y + y_1) + c = 0$ বহিঃস্থ যেকোন বিন্দু (x₁, y₁) হতে x² + y² + 2gx + 2fy + c = 0 ব্র্ডের অঞ্জিত স্পর্শকের সমীকরণ, $(x x_1 + y y_1 + gx + gx_1 + fy +$ $f y_1 + c$)² = (x² + y² + 2gx + 2fy + c) $(x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c)$ 4. $x^2 + y^2 + 2gx + 2fy + c = 0$ $\overline{q}cost$ উপর P(x1, y1) বিন্দুতে অভিলন্দ্বের সমীকরণ, $(y_1 + f)x - (x_1 + g)y + gy_1 - fx_1 = 0.$ 5. (x_1, y_1) frq zco $x^2 + y^2 + 2gx + 2fy$ + c = 0 বৃন্তে অঙ্কিত স্পর্শকের দৈর্ঘ্য, $= \sqrt{x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c}$ 6. (x_1, y_1) $\exists \forall y \exists x x^2 + y^2 + 2gx + 2fy$ + c = O বৃত্তে অধ্বিত স্পর্শ জ্যা এর সমীকরণ. $x x_1 + y y_1 + g(x + x_1) + f(y + y_1) + c = 0$ 7. $x^2 + y^2 + 2gx + 2fy + c = 0$ 3033 কোন জ্যা এর মধ্যকিন্দু (x_1, y_1) হলে তার সমীকরণ, $x x_1 + y y_1 + g(x + x_1) + f(y + y_1) + c =$ $x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c$ S₁ = 0 ও S₂ = 0 বৃত্ত দুইটির সাধারণ জ্যা এর সমীকরণ, $S_1 - S_2 = 0$. 9. $x^2 + y^2 + 2gx + 2fy + c = 0$ এর প্রতিবিম্ব (a) x অক্ষের সাপেক্ষে $x^2+y^2+2gx-2fy+c=0$ (b) v অক্ষের সাপেক্ষে $x^2+y^2 - 2gx+2fy +c=0$ (c) ax + by + c= 0) রেখার সাপেক্ষে ঃ এ রেখার

সাপেক্ষে প্রদন্ত বৃত্তের কেন্দ্র (-g, -f) এর প্রতিবিস্ব

(g',f') কে কেন্দ্র এরং প্রদন্ত ব্রন্তের ব্যাসার্ধকে ব্যাসার্ধ ধরে অঙ্কিত বৃত্তই নির্ণেয় প্রতিবিস্ব। প্রশ্নমালা IV B 1. (a) $x^{2} + y^{2} + 4x + 6y + c = 0$ great ব্যাসার্ধ 3 হলে, c এর মান নিচের কোনটি? **Sol**ⁿ: $\sqrt{2^2 + 3^2 - c} = 3 \implies c = 13 - 9 = 4$ (b) Sol^n : (i) সংশোধন : x-অক্ষের ছেদাংশের পরিমাণ 6 $2\sqrt{r^2-k^2} = 2\sqrt{5^2-4^2} = 6$ (ii) $\sqrt{2^2 + 3^2 - c} > 0 \Rightarrow c < 13$ (iii) সংশোধন : (1, 1) বিন্দুটি $x^2 + y^2 + 3x + 3x^2$ 5y – c = 0 বৃত্তের ভিতরে অবস্থান করলে c > 10 হবে। $1^{2} + 1^{2} + 3.1 + 5.1 - c < 0 \implies c > 10.$ (c) Solⁿ : $r = \sqrt{4^2 + 3^2} = 5$ (d) Solⁿ: $(x - h)^{2} + (v - k)^{2} = k^{2}$ (e) **Sol**ⁿ : উভয় অক্ষ কে স্পর্শ করার শর্ত $g^2 = f^2 = c$ $k = \pm 4, c = 16$ (f) Solⁿ: \overline{gglb} $\overline{$ অক্ষকে স্পর্শ করে বলে, f²= c = 0. (g) Sol": (0,1) ও (1,0) বিন্দুদ্বয়ের সংযোগ রেখাংশের মধ্যবিন্দু স্থানাঙ্ক $(\frac{0+1}{2}, \frac{1+0}{2})$. (h) Sol^n : (i) AB = 5 - 3 = 2(ii) স্পর্শকের দৈর্ঘ্য = $\sqrt{1^2 + 1^2 + 2 - 6 + 11} = 3$ (iii) জ্যা এর সমীকরণ, $x:2 + y.3 = 2^2 + 3^2$ $\Rightarrow 2x + 3y = 13.$ (i) Solⁿ : $r = a\cos \theta \Rightarrow r^2 = a \cdot r \cos \theta$ ⇒ $x^2 + y^2 - ax = 0$.: ($\frac{a}{2}$,0)

(j) Solⁿ : সাধারণ জ্যা এর সমীকরণ, $x^2 + y^2 + y^2$ $2x + 3y + 1 - (x^{2} + y^{2} + 4x + 3y + 2) = 0$ $\Rightarrow 2x + 1 = 0$ x - 3y = k রেখাটি $x^2 + y^2 - 6x + 8y + 15 =$ 0 বন্তকে স্পর্শ করে। পরবর্তী তিনটি প্রশ্নের উত্তর দাও: (k) Solⁿ : न्यामार्थ = $\sqrt{3^2 + 4^2 - 15} = \sqrt{10}$. v-অক্ষের খন্ডিতাংশ = $2\sqrt{4^2 - 15} = 2$. (l) Solⁿ: $\frac{|3-3(-4)-k|}{\sqrt{1^2+3^2}} = \sqrt{10}$ \Rightarrow $|15-k|=10 \Rightarrow k-15=\pm 10 \Rightarrow k=5, 25$ (m) Solⁿ : x - 3v = 5 স্পর্শকের সমান্তরাল বৃত্তটির অপর স্পর্শকের সমীকরণ, x - 3y = 25. (n) Solⁿ.: $x^2 + y^2 + 2x + 4y - 1/3 = 0$ रक्ष = (-2/2, -4/2) = (-1, -2): Ans. D (o) Solⁿ.: বৃত্তের ব্যাসার্ধ = $\sqrt{4^2 + 3^2} = 5$ (4, 3) ও (-1, 3) এর দূরত্ব = 4 + 1 = 5 (4, 3) ও (9, 3) এর দূরত্ব = | 4 - 9 | = 5 (4, 3) ও (0, 3) এর দূরত্ব = | 4 - 0 | = 4 (0, 3) বৃত্তের উপর অবস্থিত নয়। Ans. C (p) Sol^n .: বৃত্তের ব্যাসার্ধ = $\sqrt{g^2 + f^2 - c}$ $OA = OB = \sqrt{0+c} = \sqrt{c}$ OABC চতুর্ভুজের ক্ষেত্রফল = 2×OAC সমকোণী ত্রিভুজের ক্ষেত্রফল $=2\times\frac{1}{2}(OA\times AC)$ $=\sqrt{c}\sqrt{g^2+f^2-c}=\sqrt{c(g^2+f^2-c)}$ Ans. B

2(a) (3,7) ও (9,1) কিন্দুদ্বয়ের সংযোগ রেখাংশকে ব্যাস ধরে একটি বৃত্ত অঙ্জন করা হয়েছে। দেখাও যে, x + y = 4 রেখাটি এ বৃত্তের একটি স্পর্শক। স্পর্শকিন্দুটি নির্ণয় কর। [চ.'০৫]

প্রমাণ ঃ (3 7) ও (9 1) কিন্দুদ্বয়ের সংযোগ রেখাংশকে ব্যাস ধরে অজ্জিত বৃত্তের সমীকরণ,

(x - 3)(x - 9) + (y - 7)(y - 1) = 0 ⇒ $x^2 - 12x + 27 + y^2 - 8y + 7 = 0$ ⇒ $x^2 + y^2 - 12x - 8y + 34 = 0$ (1) প্রদত রেখা $x + y = 4 \Rightarrow y = 4 - x \cdots (2)$ (1) এ y এর মান বসিয়ে পাই, $x^2 + (4 - x)^2 - 12x - 8(4 - x) + 34 = 0$ ⇒ $x^2 + 16 - 8x + x^2 - 12x - 32 + 8x + 34 = 0$ ⇒ $2x^2 - 12x + 18 = 0 \Rightarrow x^2 - 6x + 9 = 0$ ⇒ $(x - 3)^2 \Rightarrow x = 3$ (2) ⇒ y = 4 - 3 = 1 ∴ (2) রেখাটি প্রদন্ত বৃত্তের সাথে শৃধুমাত্র (3,1)

বিকল্প পদ্ধতি : (3 7) ও (9 1) বিন্দুদ্বয়ের সংযোগ রেখাংশকে ব্যাস ধরে অঙ্জিত বৃত্তের সমীকরণ,

(x-3)(x-9) + (y-7)(y-1) = 0 $\Rightarrow x^2 - 12x + 27 + y^2 - 8y + 7 = 0$ $\Rightarrow x^{2} + y^{2} - 12x - 8y + 34 = 0$ (1)(1) বৃত্তের কেন্দ্র (6, 4) এবং ব্যাসার্ধ = $\sqrt{36 + 16 - 34} = \sqrt{18} = 3\sqrt{2}$ বৃত্তের কেন্দ্র (6, 4) থেকে প্রদত রেখা x + y = 4 জর্থাৎ x + y - 4 = 0 (2) এর লম্ব দূরত্ব $=\frac{|6+4-4|}{\sqrt{1+1}}=\frac{6}{\sqrt{2}}=3\sqrt{2}=$ বৃত্তের ব্যাসার্ধ । প্রদত্ত রেখাটি বৃত্তকে স্পর্শ করে। ২য় অংশ ঃ (2) রেখার উপর লম্ব এবং বৃত্তের কেন্দ্র (6, 4) দিয়ে অতিক্রম করে এরুপ রেখার সমীকরণ, $x - y = 6 - 4 \implies x - y = 2$ (3) $(2) + (3) \Longrightarrow 2x = 6 \Longrightarrow x = 3$ (3) হতে পাই, $3 - y = 2 \implies y = 1$. .(2) ও (3) রেখার ছেদকিন্দু (3 1) যা নির্ণের স্পর্শ কিন্দু।

2(b)দেখাও যে, y - 3x = 10 রেখাটি $x^2 + y^2 = 10$ বৃত্তকে সমাপতিত কিন্দুতে ছেদ করে। কিন্দুটির স্থানাজ্ঞ নির্ণয় কর। বি.'০১] প্রদত্ত রেখা y - 3x = 10 হতে প্রমাণ y = 3x + 10 ···(1) এর মান প্রদন্ত বৃত্তে বসিয়ে পাই, $x^2 + (3x + 10)^2 = 10$ $\Rightarrow x^{2} + 9x^{2} + 60x + 100 - 10 = 0$ $\Rightarrow 10x^2 + 60x + 90 = 0$ \Rightarrow x² + 6x + 9 = 0 \Rightarrow (x + 3)² = 0 \Rightarrow x + 3 = 0 \Rightarrow x = -3 $(1) \Rightarrow y = 3.(-3) + 10 = -9 + 10 = 1$: প্রদত্ত রেখাটি বৃত্তের সাথে শৃধুমাত্র (-3,1) কিন্দুতে মিলিত হয়। প্রদন্ত রেখাটি বৃত্তকে সমাপতিত কিন্দুতে ছেদ করে এবং বিম্দুটির স্থানাজ্ঞ্ব (-3,1). 2(c) $x^{2} + y^{2} - 4x - 6y + c = 0$ বৃভটি x-অক্ষকে স্পর্শ করে। c এর মান ও স্পর্শবিন্দুর স্থানাজ্ঞ নির্ণিয় কর। [ব. '08; ঢা. '08,'09')); রা. '০৫, '১২; য. '০৫, '০৮, '১১ ; চ. '০৫, '০৮; মা.বো. '০৫;] সমাধান : $x^2 + y^2 - 4x - 6y + c = 0$ ব্রুত্তের কেন্দ্র (2, 3) এবং ব্যাসার্ধ = $\sqrt{4+9-c} = \sqrt{13-c}$ x-অক্ষ থেকে বৃত্তের কেন্দ্র (2,3) এর দূরত্ব = |3| = 3 (2,3)বৃত্তটি x-অক্ষকে স্পর্শ করে। 2 $\sqrt{13-c} = 3$ 3 $\Rightarrow 13 - c = 9$ c = 40 (2, 0)আবার, বৃত্তটি x-অক্ষকে X স্পর্শ করে এবং বৃত্তটির কেন্দ্রের ভুজ 2. স্পর্শবিন্দুর স্থানাজ্ঞ্ব (2,0). 2(d) দেখাও যে, x - 3y = 5 রেখাটি $x^2 + y^2 - 3y = 5$ 6x + 8y + 15 = 0 বৃত্তকে স্পর্শ করে। স্পর্শবিন্দু দিয়ে যায় এরুপ ব্যাসের সমীকরণ নির্ণয় কর। [চ. '০৭; মা. '০৩] প্রমাণ : $x^2 + y^2 - 6x + 8y + 15 = 0 \cdots (1)$ বৃত্তের কেন্দ্র (3, - 4) এবং ব্যাসার্ধ = $\sqrt{9 + 16 - 15} = \sqrt{10}$

-3v - 5 = 0(2) রেখার লম্ব দুরত্ব 😑 $\frac{|3-3\times(-4)-5|}{\sqrt{1+9}} = \frac{|3+12-5|}{\sqrt{1+9}}$ $=\frac{10}{\sqrt{10}}=\sqrt{10}=$ বৃত্তের ব্যাসাধ । প্রদন্ত রেখাটি বৃত্তকে স্পর্শ করে। **২য় অংশ ঃ** x - 3y - 5 = 0 স্পর্শকের উপর লম্ব এবং বৃত্তের কেন্দ্র (3, – 4) দিয়ে অতিক্রমকারী নির্দেয় ব্যাসের সমীকরণ $3x + y = 3 \times 3 - 4 = 9 - 4$ 3x + y = 5 (Ans.) 3.(a) 3x + 4y = k রেখাটি $x^2 + y^2 = 10x$ বৃত্তকে স্পর্শ করলে k এর মান নির্ণয় কর। [য. '০১; ব. '০৩, '০৭; রা. '০৬; সি. '১২] প্রমাণ s $x^2 + y^2 = 10x$ অর্থাৎ $x^2 + y^2 - 10x = 0$ বৃত্তের কেন্দ্র (5, 0) এবং ব্যাসার্ধ = $\sqrt{5^2} = 5$ বৃত্তের কেন্দ্র (5, 0) থেকে 3x + 4y = k অর্থাৎ 3x+ 4y - k = 0 রেখার লম্ব দূরত্ব = $\frac{|15-k|}{\sqrt{9+16}}$ $=\frac{|15-k|}{5}$ রেখাটি প্রদন্ত বৃত্তকে স্পর্শ করলে কেন্দ্র থেকে রেখার দূরত্ব ব্যাসার্ধের সমান হবে। $\frac{|15-k|}{5} = 5 \implies |k-15| = 25$ \Rightarrow k - 15 = ±25 ∴ k = 40 বi, -10 3(b) দেখাও যে, lx + my = 1 রেখাটি $x^2 + y^2$ -2ax = 0 বৃত্তকে স্পর্শ করবে যদি $a^2 m^2 + 2al =$ 1 হয়। [কু. '০৬, '০৮; ঢা. '০৮; রা. '১১; সি. '০৪; ব. '০৫, '০৯; চ. '০৮, '১০; মা. '০৩; দি. '০৯; য. '১১] প্রমাণ : $x^{2} + y^{2} - 2ax = 0$ বৃত্তের কেন্দ্র (a, 0) এবং ব্যাসার্ধ = $\sqrt{a^2} = a$ বৃত্তের কেন্দ্র (a, 0) থেকে lx + my = 1 অর্থাৎ lx + my - 1 = 0 রেখার লম্ব দূরত্ব = $\frac{|la - 1|}{\sqrt{l^2 + m^2}}$ রেখাটি প্রদন্ত বৃত্তকে স্পর্শ করলে কেন্দ্র থেকে রেখার দূরত্ব ব্যাসার্ধের সমান হবে।

বৃত্তের কেন্দ্র (3, – 4) থেকে x – 3y = 5 অর্থাৎ x

 $\frac{|la-1|}{\sqrt{l^2+m^2}} = a$ ⇒ $|la - 1|^2 = a^2 (l^2 + m^2)$ [বর্গ করে] $\Rightarrow (la-1)^2 = a^2 l^2 + a^2 m^2$ $\Rightarrow l^2 a^2 - 2la + 1 = a^2 l^2 + a^2 m^2$ $a^{2} m^{2} + 2al = 1$ (Showed) 3. (c) px + qy = 1 রেখাটি $x^2 + y^2 = a^2$ বৃত্তকে স্পর্শ করে। দেখাও যে, (p, q) কিন্দুটি একটি ব্রন্তের উপর অবস্থিত। [য.'০৬,'১২ ;কু.'০৪,'০৫,'১৩; রা. '০৫, '১৩; ঢা. '০৬; য. '০৬; ব. '০৮] প্রমাণ : $x^2 + y^2 = a^2$ বৃত্তের কেন্দ্র (0, 0) এবং ব্যাসার্ধ = a বৃত্তের কেন্দ্র (0, 0) থেকে px + qy = 1 অর্থাৎ px + qy - 1 = 0 রেখার লম্ব দূরত্ব = $\frac{|-1|}{\sqrt{p^2 + q^2}}$ রেখাটি প্রদন্ত বৃত্তকে স্পর্শ করলে কেন্দ্র থেকে রেখার দূরত্ব ব্যাসার্ধের সমান হবে। $\left|\frac{-1}{\sqrt{p^2+q^2}}\right| = a \implies p^2+q^2 = \frac{1}{a^2} a$ থেকে স্পর্শ যে, (p, q) কিন্দুটি $x^2 + y^2 = \frac{1}{a^2}$ বৃত্তের সমীকরণকে সিদ্ধ করে। (p,q) কিন্দুটি একটি বৃত্তের উপর অবস্থিত। 3(d) ax + 2y - 1 = 0 রেখাটি $x^2 + y^2 - 8x - 3x = 0$ 2y + 4 = 0 বৃত্তকে স্পর্শ করলে a এর মান নির্ণয় কর। রা. '০৪] প্রমাণ $x^2 + y^2 - 8x - 2y + 4 = 0$ বৃত্তের কেন্দ্র (4,1) এবং ব্যাসার্ধ = $\sqrt{4^2 + 1^2 - 4} = \sqrt{13}$ বৃত্তের কেন্দ্র (4, 1) থেকে ax + 2y - 1 = 0 রেখার লম্প দূরত্ব = $\left|\frac{4a+2-1}{\sqrt{a^2+4}}\right| = \left|\frac{4a+1}{\sqrt{a^2+4}}\right|$ রেখাটি প্রদন্ত বৃত্তকে স্পর্শ করলে কেন্দ্র থেকে রেখার দূরত্ব ব্যাসার্ধের সমান হবে। $\left|\frac{4a+1}{\sqrt{a^2+4}}\right| = \sqrt{13}$ $\Rightarrow (4a+1)^2 = 13(a^2+4)$

 $\Rightarrow 16a^2 + 8a + 1 = 13a^2 + 52$

[বর্গ করে]

 \Rightarrow 3a² + 8a - 51 = 0 $\Rightarrow 3a^2 + 17a - 9a - 51 = 0$ \Rightarrow a (3a + 17) - 3(3a + 17) = 0 \Rightarrow (3a + 17)(a - 3) = 0 a=3 বা, -17/3

3(e) 3x + by - 1 = 0 রেখাটি $x^2 + y^2 - 8x$ -2y + 4 = 0 বৃত্তকে স্পর্শ করে। b এর মান নির্ণয় কর। [রা. '০৮,'১২; কু.'০৪,'১০; সি. '০৮; মা.'০৫, য. '১১; চ. '১১; ব. '১২; ঢা. '১৩] প্রমাণ $x^2 + y^2 - 8x - 2y + 4 = 0$ বৃত্তের কেন্দ্র (4, 1) এবং ব্যাসার্ধ = $\sqrt{4^2 + 1^2 - 4} = \sqrt{13}$ বৃত্তের কেন্দ্র (4, 1) থেকে 3x + by - 1 = 0রেখার লম্ধ দূরত্ব = $\left|\frac{12+b-1}{\sqrt{0+b^2}}\right| = \left|\frac{11+b}{\sqrt{9+b^2}}\right|$ রেখাটি প্রদন্ত বৃত্তকে স্পর্শ করলে কেন্দ্র থেকে রেখার

$$|\frac{11+b}{\sqrt{9+b^2}}| = \sqrt{13}$$

$$\Rightarrow (11+b)^2 = 13(9+b^2) \quad [4^{49} \text{ ord} 3]$$

$$\Rightarrow 121+22b+b^2 = 117+13b^2$$

$$\Rightarrow 12b^2 - 22b - 4 = 0$$

$$\Rightarrow 6b^2 - 11b - 2 = 0$$

$$\Rightarrow 6b^2 - 12b + b - 2 = 0$$

$$\Rightarrow 6b(b-2) + 1(b-2) = 0$$

$$\Rightarrow (b-2)(6b+1) = 0$$

$$b = 2 \quad \exists , -1/6$$

দবত ব্যাসাধের সমান হবে।

3(f) (4, 1) কিন্দু দিয়ে অতিক্রমকারী বৃত্ত 3x + 4y-1=0 ও x-3=0 রেখা দুইটিকে স্পর্শ করে। r বুন্তটির ব্যাসার্ধ হলে দেখাও যে, $r^2 - 20r + 40 = 0$. প্রমাণ : ধরি, r ব্যাসার্ধ বিশিষ্ট বৃত্তের সমীকরণ $(x - h)^{2} + (y - k)^{2} = r^{2} \cdots (1)$ (1) বৃত্ত (4, 1) কিন্দু দিয়ে অতিক্রম করে। $(4-h)^{2} + (1-k)^{2} = r^{2} \cdots (2)$ (1) বৃত্তের কেন্দ্র (h, k) হতে 3x + 4y - 1 = 0 ও x - 3 = 0 রেখা দুইটির লম্ব দুরত্ব যথাক্রমে $\frac{|3h+4k-1|}{\sqrt{9+14}} = \frac{|3h+4k-1|}{5} \otimes \frac{|h-3|}{\sqrt{1}}$

প্রশ্নমালা IV B বইঘর কম

(1) বৃভটি প্রদন্ত রেখা দুইটিকে স্পর্শ করলে , $|h-3| = r \Rightarrow h-3 = \pm r \Rightarrow h = \pm r+3$ arg $\frac{|3h+4k-1|}{5} = r \Rightarrow 3h+4k-1=\pm 5r$ $\Rightarrow 3(\pm r+3)+4k-1=\pm 5r$ [$\therefore h=\pm r+3$] $\Rightarrow \pm 3r+9+4k-1=\pm 5r$ $\Rightarrow 4k+8=\pm 2r \Rightarrow 2k=\pm r-4$ $\Rightarrow k = \frac{\pm r-4}{2}$ (2) a h ও k এর মান বসিয়ে পাই, $(4 \mp r-3)^2 + (1 - \frac{\pm r-4}{2})^2 = r^2$ $\Rightarrow (1 \mp r)^2 + \frac{(2\mp r+4)^2}{4} = r^2$ $\Rightarrow 4(1\mp 2r+r^2) + (36\mp 12r+r^2) = 4r^2$ $\Rightarrow 4\mp 8r+4r^2+36\mp 12r+r^2 = 4r^2$ $\Rightarrow r^2 \mp 20r+40=0$ কিশ্ছ বৃশ্ভটির ব্যাসার্ধ r>0 বলে r এর কোন

াকন্তু বৃত্তাচর ব্যাসাধ r>0 বলে r এর কোন ধনাত্মক বাস্তব মান $r^2 + 20r + 40 = 0$ কে সিন্ধ করে না।

 $r^2 - 20r + 40 = 0$ (Showed).

4.(a) $x^{2} + y^{2} - 2x - 4y - 4 = 0$ বৃত্তে অভিকত স্পর্শক 3x - 4y + 5 = 0 রেখার উপর লন্দ্র । স্পর্শকের সমীকরণ নির্ণায় কর। [বু. '০৫; রা. '০৭; ঢা. '১০] সমাধান ঃ $x^2 + y^2 - 2x - 4y - 4 = 0$ বৃত্তের কেন্দ্র (1.2) এবং ব্যাসার্ধ = $\sqrt{1^2 + 2^2 + 4} = 3$ ধরি, 3x - 4y + 5 = 0 রেখার উপর লম্ব স্পর্শকের সমীকরণ $4x + 3y + k = 0 \cdots$ (1) (1) রেখাটি প্রদন্ত বৃত্তকে স্পর্শ করলে কেন্দ্র (1,2) থেকে এর দরত্ব ব্যাসার্ধের সমান হবে। $\frac{|4.1+3.2+k|}{\sqrt{16+9}} = 3 \implies |4+6+k| = 15$ \Rightarrow k + 10 = ±15 : k = 5, -25 নির্ণেয় স্পর্শকের সমীকরণ 4x + 3y - 25 = 0, 4x + 3y + 5 = 04(b) x² + y² - 2x - 4y - 4 = 0 বৃত্তে অভিকত

স্পর্শক 3x - 4y - 1 = 0 রেখার সমান্ডরাল। স্পর্শকের

সমীকরণ নির্ণয় কর। [সি. '০১] সমাধান : $x^2 + y^2 - 2x - 4y - 4 = 0$ বৃত্তের কেন্দ্র (1,2) এবং ব্যাসার্ধ = $\sqrt{1^2 + 2^2 + 4} = 3$ ধরি. 3x - 4y - 1 = 0 রেখার সমান্তরাল স্পর্শকের সমীকরণ $3x - 4y + k = 0 \cdots$ (1)(1) রেখাটি প্রদন্ত বৃত্তকে স্পর্শ করলে কেন্দ্র (1,2) থেকে এর দূরত্ব ব্যাসার্ধের সমান হবে। $\frac{|3.1-4.2+k|}{\sqrt{9+16}} = 3 \implies |3-8+k| = 15$ \Rightarrow k - 5 = ±15 \therefore k = 20, -10 নির্ণেয় স্পর্শকের সমীকরণ 3x - 4y + 20 = 0, 3x - 4y - 10 = 05.(a) $x^2 + y^2 + 4x - 8y + 2 = 0$ বৃত্তের স্পর্শক অক্ষ দুইটি হতে একই চিহ্নবিশিষ্ট সমমানের অংশ ছেদ করে। স্পর্শকের সমীকরণ নির্ণয় কর। [ঢা. '০১. '০১; রা. '08; য. '0৭; কৃ. '১১] সমাধান : $x^2 + y^2 + 4x - 8y + 2 = 0$ ব্রুত্তের কেন্দ্র (-2 4) এবং ব্যাসার্ধ $\sqrt{2^2 + 4^2 - 2}$ $=\sqrt{18} = 3\sqrt{2}$ ধরি, অক্ষ দুইটি হতে একই চিহ্নবিশিষ্ট সমমানের অংশ ছেদ করে এর্প স্পর্শকের সমীকরণ $\frac{x}{a} + \frac{y}{a} = 1$ অর্থাৎ $x + y - a = 0 \cdots \cdots (1)$ রেখাটি প্রদত্ত বৃত্তকে স্পর্শ করলে কেন্দ্র (-2, 4) থেকে এর দূরত্ব ব্যাসাধ $3\sqrt{2}$ এর সমান হবে। $\frac{|-2+4-a|}{\sqrt{1^2+1^2}} = 3\sqrt{2} \implies |2-a| = 6$ $\Rightarrow a-2=\pm 6$ a=8,-4নির্ণেয় স্পর্শকের সমীকরণ x + y + 4 = 0, x + y - 8 = 05(b) $x^2 + y^2 = 16$ বৃত্তে অভিনত স্পর্শক x-অক্ষের ধনাত্রক দিকের সাথে 30° কোণ উৎপন্ন করে। স্পর্শকের সমীকরণ নির্ণয় কর। **ঢ.'**১০; ব.'১১; **বৃ.'**য.'১২] সমাধান ঃ $x^2 + y^2 = 4^2$ বৃত্তের কেন্দ্র (0, 0) এবং ব্যাসার্ধ = 4

ধরি, *x*-অক্ষের ধনাত্মক দিকের সাথে 30° কোণ উৎপন্ন করে এরুপ রেখার সমীকরণ

$$y = \tan 30^{\circ} \times x + c = \frac{1}{\sqrt{3}} \times x + c$$
$$\Rightarrow x - \sqrt{3} y + \sqrt{3} c = 0 \cdots (1)$$

 রেখাটি প্রদন্ত বৃত্তকে স্পর্শ করলে কেন্দ্র (0,0) থেকে এর দূরত্ব ব্যাসার্ধ 4 এর সমান হবে।

$$\frac{|\sqrt{3}c|}{\sqrt{1+3}} = 4 \implies |\sqrt{3}c| = 8 \implies c = \pm \frac{8}{\sqrt{3}}$$

নির্গেষ স্পর্শকের সমীকরণ $r = \sqrt{3}v + 8 = 0$

6.(a) $x^2 + y^2 = b$ (5x - 12y) বৃষ্টের এটি ব্যাস মুম্পন্দিদু দিয়ে অতিরুম করে। ব্যাসটির সমীকরণ এবং মুম্পন্দিদুগামী স্পর্শকের সমীকরণ নির্ণয় কর। [ঢা.'০8] সমাধান ঃ $x^2 + y^2 = b$ (5x - 12y) অর্থাৎ $x^2 + y^2 - 5b x + 12by = 0 \cdots(1)$ বৃত্তের কেন্দ্র $(\frac{5b}{2}, -6b)$ এবং ব্যাসার্ধ = $\sqrt{\frac{25b^2}{4} + 36b^2}$

$$= \sqrt{\frac{25b^2 + 144b^2}{4}} = \sqrt{\frac{169b^2}{4}} = \frac{13b}{2}$$

মূলকিন্দু (0, 0) এবং কেন্দ্র $(rac{5b}{2}, -6b)$ দিয়ে

অতিক্রমকারী নির্ণেয় ব্যাসের সমীকরণ y = $\frac{-6b}{5b/2}$ x

⇒ 5y = - 12x 12x + 5y = 0
২য় অংশ ঃ মূলবিন্দুগামী স্পর্শক মূলবিন্দুগামী ব্যাসের

উপর লম্ব। অতএব, মূলবিন্দুগামী স্পর্শকের সমীকরণ 5x - 12y = 0

6(b) দেখাও যে, x + 2y = 17 রেখাটি $x^2 + y^2 - 2x - 6y = 10$ বৃত্তের একটি স্পর্শক । এ বৃত্তের যে ব্যাসটি স্পর্শ কিন্দু দিয়ে অতিক্রম করে তার সমীকরণ নির্ণয় কর। [রা.'০২] প্রমাণ ঃ $x^2 + y^2 - 2x - 6y = 10$ অর্থাৎ $x^2 + y^2 - 2x - 6y - 10 = 0$ বৃত্তের কেন্দ্র (1,3) এবং ব্যাসার্ধ = $\sqrt{1+9} + 10 = \sqrt{20} = 2\sqrt{5}$ বৃত্তের কেন্দ্র (1,3) থেকে x + 2y = 17 অর্থাৎ x + 2y - 17 = 0 রেখার লম্বদূরত্ব = $\frac{|1+6-17|}{\sqrt{1+4}}$ $=\frac{|-10|}{\sqrt{5}}=2\sqrt{5}=$ বৃত্তের ব্যাসার্ধ । রেখাটি প্রদন্ত বৃত্তের একটি স্পর্শক । ২য় অংশ ঃ স্পর্শকিন্দুগামী ব্যাস স্পর্শকের উপর লম্ব এবং কেন্দ্র দিয়ে অতিক্রম করে। অতএব, x + 2y =17 স্পর্শকের উপর লম্ব এবং কেন্দ্র (1,3) দিয়ে অতিক্রম করে এরপ ব্যাসের সমীকরণ 2x-y = 2.1 - 3 = -12x - y + 1 = 07(a) $x^{2} + y^{2} - 3x + 10y - 15 = 0$ वुरखत (4, – 11) কিন্দুতে স্পর্শকের সমীকরণ নির্ণয় কর। [সি. '০২; রা.'০৯] সমাধান : $x^2 + y^2 - 3x + 10y - 15 = 0$ বৃত্তের (4, -11) কিন্দুতে স্পর্শকের সমীকরণ. $x.4 + y.(-11) - \frac{3}{2}(x + 4) + 5(y-11) - 15 = 0$ $[xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0]$ সূত্র দ্বারা ।] $\Rightarrow 8x - 22y - 3x - 12 + 10y - 110 - 30 = 0$ 5x - 12y - 152 = 0 (Ans.) 7(b) $x^2 + y^2 = 45$ दुरखत (6, -3) किपूरा অঙ্জিত স্পর্শক $x^2 + y^2 - 4x + 2y - 35 = 0$ বৃত্তকে A ও B কিন্দুতে ছেদ করে। দেখাও যে, A ও B বিন্দুতে অঙ্জিত স্পর্শক পরস্পর লম্ব। [প্র.ভ.প. 'oo] প্রমাণ ঃ $x^2 + y^2 = 45$ বৃত্তের (6, -3) কিন্দুতে স্পর্শকের সমীকরণ, x.6 + y.(-3) = 45 $\Rightarrow 2x - y = 15 \Rightarrow y = 2x - 15 \cdots (1)$ $x^2 + y^2 - 4x + 2y - 35 = 0$...(2) বৃত্তে y = 2x - 15 বসিয়ে পাই, $x^{2} + (2x - 15)^{2} - 4x + 2(2x - 15) - 35 = 0$ $\Rightarrow x^2 + 4x^2 - 60x + 225 - 4x + 4x - 30$ -35 = 0 $\Rightarrow 5x^2 - 60x + 160 = 0$ $\Rightarrow x^{2} - 12x + 32 = 0 \Rightarrow (x - 4)(x - 8) = 0$ $\Rightarrow x = 4, 8$ (1) হতে পাই, y = 2.4 – 15 = 8–15 = –7 এবং y = 2.8 - 15 = 16-15 = 1 ∴ (1) রেখাটি (2) বৃত্তকে A(4, -7) ও B(8, 1) কিন্দুতে ছেদ করে।

 $x^{2} + y^{2} - 4x + 2y - 35 = 0$

760

(2) ব্রন্তের A(4, -7) কিন্দুতে অন্ডিকত স্পর্শকের সমীকরণ, x.4 + y.(-7) -2(x + 4) + (y - 7) -35 = 0 \Rightarrow 4x - 7y - 2x - 8 + y - 7 - 35 = 0 ⇒ 2x - 6y - 50 = 0 ⇒ x - 3y - 25 = 0, $\sqrt{3}$ $vin = -\frac{1}{-3} = \frac{1}{3}$ আবার (2) বৃত্তের B(8, 1) কিন্দুতে অঙ্কিত স্পর্শকের সমীকরণ. x.8 + y.1 - 2(x + 8) + (y + 1) - 35 = 0 $\Rightarrow 8x + y - 2x - 16 + y + 1 - 35 = 0$ \Rightarrow 6x + 2y-50 = 0 \Rightarrow 3x + y − 25= 0, যার $vin = -\frac{3}{1} = -3$ এ ঢালদ্বয়ের গুণফল $=\frac{1}{3} \times -3 = -1$ A ও B কিন্দুতে অঙ্কিত স্পর্শক পরস্পর লম্ব। 8.(a) $x^2 + y^2 = 20$ বৃত্তের 2 ভুজবিশিন্ট বিন্দুতে স্পর্শকের সমীকরণ নির্ণয় কর। ব. '০৫; সি. '০৯; রা. '১০; দি. '১১] সমাধান ঃ ধরি, 2 ভুজবিশিফ্ট কিন্দুর স্থানাজ্ঞ্ব (2, β), যা প্রদন্ত বন্ত $x^2 + y^2 = 20$ এর উপর অবস্থিত। $4 + \beta^2 = 20 \Rightarrow \beta^2 = 16 \Rightarrow \beta = 4, -4$ 2 ভুজবিশিষ্ট কিন্দুর স্থানাজ্ঞ্ব (2,4) এবং (2,-4) প্রদত্ত বৃত্তের (2,4) এবং (2,-4) বিন্দুতে স্পর্ণকের সমীকরণ x.2 + y.4 = 20 \Rightarrow x + 2y = 10 এবং $x.2 + y.(-4) = 20 \Rightarrow x - 2y = 10$ $8(b) x^2 + y^2 = 13$ বৃন্ডের 2 কোটিবিশিষ্ট কিন্দুতে স্পর্শকের সমীকরণ নির্ণয় কর। যি. '০৮] সমাধান ঃ ধরি, 2 কোটিবিশিষ্ট কিন্দুর স্থানাজ্ঞ $(\alpha, 2)$, या প্রদন্ত বৃত্ত $x^2 + y^2 = 13$ এর উপর অবস্থিত। $\alpha^2 + 4 = 13 \Rightarrow \alpha^2 = 9 \Rightarrow \alpha = 3, -3$ 2 ভুজবিশিষ্ট কিন্দুর স্থানাজ্ঞ্ব (3,2) এবং (-3,2) প্রদত্ত বৃত্তের (3,2) এবং (-3,2) কিন্দুতে স্পর্শকের সমীকরণ x.3 + y.2 = 13 ⇒ 3x + 2y = 13 এবং

 $x.(-3) + y.2 = 13 \implies 3x - 2y + 13 = 0$

9.(a) (1, -1) रिष्मु (शरक $2x^2 + 2y^2 - x + 2y^2 - x + 2y^2 - x)$ 3y + 1 = 0 ব্রন্তে অঞ্চিত স্পর্শকের দৈর্ঘ্য নির্ণয় কর। [য. '০২; বৃ. '১৩; চ. '১১] সমাধান ঃ (1, -1) কিন্দু থেকে $2x^2 + 2y^2 - x +$ 3y + 1 = 0 with $x^2 + y^2 - \frac{1}{2}x + \frac{3}{2}y + \frac{1}{2} = 0$ বৃত্তে অঙ্জিত স্পর্শকের দৈর্ঘ্য $= \sqrt{1^2 + (-1)^2 - \frac{1}{2} \cdot 1 + \frac{3}{2}(-1) + \frac{1}{2}}$ $=\sqrt{2-\frac{1}{2}-\frac{3}{2}+\frac{1}{2}}=\sqrt{\frac{4-3}{2}}=\frac{1}{\sqrt{2}}$ appendix 9. (b) (3, -3) (b) (3, -3) (c) (3, -3)- 5 = 0 বৃত্তে অঞ্চিত স্পর্শকের সমীকরণ এবং দৈর্ঘ্য নির্ণয় কর। [४.'०১] সমাধান : $x^2 + y^2 + 8x + 4y - 5 = 0$ ব্রুত্তের কেন্দ্র (-4, -2) এবং ব্যাসার্ধ = $\sqrt{16 + 4 + 5} = 5$ ধরি, (3, -- 3) বিন্দুগামী স্পর্শকের সমীকরণ y + 3 = m(x - 3) আ x + 3 = 0এ রেখাটি প্রদন্ত বৃত্তকে স্পর্শ করলে কেন্দ্র (- 4, -2) থেকে এর দূরত্ব ব্যাসার্ধ $\sqrt{17}$ এর সমান হবে। $\left|\frac{-4m+2-3m-3}{\sqrt{m^2+1}}\right| = 5$ ⇒ $(-7m-1)^2 = 25(m^2+1)$ [$\overline{4}^{1}$ ($\overline{4}^{1}$ ($\overline{4}^{1}$) [$\overline{4}^{1}$ ($\overline{4}^{1}$) [$\overline{4}^{1}$ ($\overline{4}^{1}$) [$\overline{4}^{1}$ ($\overline{4}^{1}$)] $\Rightarrow 49m^2 + 14m + 1 = 25m^2 + 25$ $\Rightarrow 24m^2 + 14m - 24 = 0$ $\Rightarrow 12m^2 + 7m - 12 = 0$ $\Rightarrow 12m^2 + 16m - 9m - 12 = 0$ $\Rightarrow 4m(3m + 4) - 3(3m + 4) = 0$ \Rightarrow (3m + 4)(4m - 3) = 0 $m = -\frac{4}{3}, \frac{3}{4}$ স্পর্শকের সমীকরণ $y + 3 = \frac{3}{4}(x - 3)$ \Rightarrow 4y + 12 = 3x − 9 : 3x − 4y = 21 এবং $y + 3 = -\frac{4}{3}(x - 3) \Longrightarrow 3y + 9 = -4x + 12$ 4x + 3y = 3

4y-5=0 বৃত্তে অঙ্কিত স্পর্শকের দৈর্ঘ্য $=\sqrt{(3)^2 + (-3)^2 + 8.3 + 4.(-3) - 5}$ $=\sqrt{9+9+24-12-5} = \sqrt{25} = 5$ একক। 10.(a) (1, - 3) কেন্দ্রবিশিষ্ট একটি বৃত্ত 2x - y -4 = 0 রেখাকে স্পর্শ করে। তার সমীকরণ নির্ণয় কর। [ব. '০৩; সি. '০৯; দি. '১০; য. '১২] সমাধান ঃ বুত্তের ব্যাসার্ধ = কেন্দ্র (1, -3) হতে 2x - y - 4 = 0 স্পর্শকের লম্ব দূরত্ব $=\frac{|2.1+3-4|}{\sqrt{4+1}}=\frac{1}{\sqrt{5}}$ (1, - 3) কেন্দ্র ও $\frac{1}{\sqrt{5}}$ ব্যাসার্ধ বিশিষ্ট নির্ণেয় বৃন্তের সমীকরণ $(x - 1)^2 + (y + 3)^2 = (\frac{1}{\sqrt{5}})^2$ $\Rightarrow 5(x^2 - 2x + 1 + y^2 + 6y + 9) = 1$ $\Rightarrow 5x^{2} + 5y^{2} - 10x + 30y + 50 - 1 = 0$ $5x^2 + 5y^2 - 10x + 30y + 49 = 0$ $10(b)\sqrt{2}$ ব্যাসার্ধবিশিষ্ট দুইটি বৃত্তের সমীকরণ নির্ণয় কর যারা x + y + 1 = 0 রেখাকে স্পর্শ করে এবং যাদের কেন্দ্র x-অক্ষের উপর অবস্থিত । [সি. '০৩, '১১] সমাধান ঃ ধরি, *x*-অক্ষের উপর অবস্থিত বৃত্তের কেন্দ্রের স্থানাজ্ঞ্ব $(\alpha, 0)$. x + y + 1 = 0 রেখাটি বৃত্তকে স্পর্শ করলে কেন্দ্র $(\alpha, 0)$ থেকে এর দূরত্ব ব্যাসার্ধ $\sqrt{2}$ এর সমান হবে। $\frac{|\alpha+0+1|}{\sqrt{1^2+1^2}} = \sqrt{2} \Rightarrow |\alpha+1| = 2$ $\Rightarrow \alpha + 1 = \pm 2 : \alpha = 1, -3$ বৃত্ত দুইটির কেন্দ্র (1,0) এবং (-3,0) নির্ণেয় বৃত্তের সমীকরণ $(x-1)^2 + y^2 = (\sqrt{2})^2$ \Rightarrow $x^{2} + y^{2} - 2x + 1 = 2$ $x^{2} + y^{2} - 2x - 1 = 0$ (Ans.) এবং $(x + 3)^{2} + y^{2} = (\sqrt{2})^{2}$ \Rightarrow x² + 6x + 9 + y² = 2 $x^{2} + y^{2} + 6x + 7 = 0$ (Ans.)

২য় অংশ ঃ (3, -3) কিন্দু থেকে $x^2 + y^2 + 8x +$

অতিক্রম করে। বৃত্তটির সমীকরণ নির্ণয় কর এবং প্রমাণ কর যে, মূলকিদুতে বৃস্তটির স্পর্শকের সমীকরণ হবে px + qy = 0. [কু. '০৩; য. '০৭] সমাধান ঃ নির্ণেয় বৃত্তের ব্যাসার্ধ = কেন্দ্র (p, q) হতে মৃলক্দির দূরত্ব = $\sqrt{p^2 + q^2}$ (p , q) (কম্দ্র ও $\sqrt{p^2 + q^2}$ ব্যাসার্ধবিশিষ্ট বৃত্তের সমীকরণ $(\dot{x} - p)^2 + (y - q)^2 = p^2 + q^2$ $\Rightarrow x^{2} + y^{2} - 2px - 2qy + p^{2} + q^{2} = p^{2} + q^{2}$ $x^{2} + y^{2} - px - qx = 0$ (Ans.) **२** अप्टम **8** $x^{2} + y^{2} - px - qx = 0$ वृट्ख মূলবিন্দুতে স্পর্শকের সমীকরণ, $x.0 + y.0 - \frac{1}{2}p(x+0) - \frac{1}{2}q(y+0) = 0$ $\Rightarrow -px - qy = 0$: px + qy = 0 (Proved) 11.(a) y = 2x রেখাটি $x^2 + y^2 = 10x$ বৃত্তের একটি জ্যা । উক্ত জ্যাকে ব্যাস ধরে অঞ্চিকত বৃত্তের সমীকরণ নির্ণয় কর। [কু. '০৪; চ. '০৩; দি. '০৯; য. '১০] সমাধান ঃ ধরি, y = 2x অর্থাৎ $2x - y = 0 \cdots (1)$ রেখা এবং $x^2 + y^2 - 10x = 0$ বৃত্তের ছেদক্দ্যিগামী বুত্তের সমীকরণ, $x^2 + y^2 - 10x + k(2x - y) = 0$ $\Rightarrow x^2 + y^2 + (-10 + 2k)x - ky = 0 \cdots (2)$ (2) বৃত্তের কেন্দ্র $(-\frac{-10+2k}{2},-\frac{-k}{2})$ $= (5-k, \frac{\kappa}{2})$ প্রদন্ত রেখাটি (2) বৃত্তের ব্যাস বলে এর কেন্দ্র 2x – y = 0 রেখার উপর অবস্থিত হবে। $2(5-k) - \frac{k}{2} = 0 \Longrightarrow 20 - 4k - k = 0$ \Rightarrow 5k = 20 \Rightarrow k = 4 (2) এ k এর মান বসিয়ে পাই, $x^{2} + y^{2} + (-10 + 8)x - 4y = 0$ $\therefore x^2 + y^2 - 2x - 4y = 0$ (Ans.) বিকল্প পদ্ধতি : $y = 2x \cdots (1)$ হতে y এর মান প্রদন্ত বৃত্তের সমীকরণে বসিয়ে পাই, $x^2 + (2x)^2 = 10x$ $\Rightarrow x^2 + 4x^2 - 10x = 0 \Rightarrow 5x^2 - 10x = 0$ \Rightarrow 5x (x - 2) = 0 \Rightarrow x = 0, 2

10(c) (p , q) বেন্দ্রবিশিষ্ট একটি বৃস্ত মূলবিন্দু দিয়ে

 (1) হতে পাই, y = 2.0 = 0 এবং y = 2.2 = 4 প্রদন্ত বৃত্তের (1) জ্যা এর প্রান্তকিন্দু দুইটি (0,0)
এবং (2,4). (0,0) এবং (2,4) কিন্দু দুইটির সংযোগ রেখাংশকে ব্যাস ধরে অঙ্জিত নির্ধেয় বৃত্তের সমীকরণ,
(x - 0)(x-2) + (y - 0)(y - 4) = 0 x ² + y ² - 2x - 4y = 0 (Ans.)
11. (b) (3, 7) ও (9, 1) কিন্দু দুইটিকে একটি ব্যাসের প্রাশতকিন্দু ধরে অভিকত বৃত্তের সমীকরণ নির্ণন্ন কর এরং দেখাও যে, বৃস্তটি $x - y + 4 = 0$ রেখাকে স্পর্শ করে। [চ.'০৫; কু.'০৯; ঢা.'১২] সমাধান ঃ (3, 7) ও (9 1) কিন্দু দুইটিকে একটি ব্যাসের প্রাশতকিন্দু ধরে অভিকত বৃত্তের সমীকরণ, (x - 3)(x - 9) + (y - 7)(y - 1) = 0 $\Rightarrow x^2 - 12x + 27 + y^2 - 8y + 7 = 0$ $x^2 + y^2 - 12x - 8y + 34 = 0 \cdots (1)$ ২য় অংশ ঃ (1) বৃত্তের কেন্দ্র (6, 4) এবং ব্যাসার্ধ $= \sqrt{36 + 16 - 34} = \sqrt{18} = 3\sqrt{2}$ এখন কেন্দ্র (6, 4) থেকে $x - y + 4 = 0$ রেখার
লম্ব দূরত্ব $=\frac{6-4+4}{\sqrt{1+1}}=\frac{6}{\sqrt{2}}=3\sqrt{2}=$ বৃত্তের ব্যাসার্ধ ।
বৃত্তটি প্রদন্ত রেখাকে স্পর্শ করে।
12.(a) (3, -1) কিন্দুগামী একটি বৃত্ত x-অক্ষকে (2, 0) কিন্দুতে স্পর্শ করে। বৃত্তটির সমীকরণ নির্ণয় কর। মূলকিন্দু দিয়ে অতিক্রমকারী অপর স্পর্শকটির সমীকরণ নির্ণয় কর। [ঢা.'০৫; কু.'১২] সমাধান ঃ ধরি, বৃত্তের সমীকরণ, x ² + y ² + 2gx + 2fy + c = 0 (1) (1) বৃত্তটি x-অক্ষকে স্পর্শ করে।
c = g ² (2) (1) বৃত্তটি (2, 0) কিন্দু দিয়ে অতিক্রম করে। 4 + 0 + 4g + 0 + c = 0 $\Rightarrow 4 + 4g + g^2 = 0 [\because c = g^2]$ $\Rightarrow (g + 2)^2 = 0 \Rightarrow g + 2 = 0 \Rightarrow g = -2$ (2) হতে পাই, c = (-2) ² = 4
 (1) বৃত্তটি (2, 0) কিন্দু দিয়ে অতিক্রম করে। 4 + 0 + 4g + 0 + c = 0 ⇒ 4 + 4g + g² = 0 [· · c = g²]

 \Rightarrow 14 - 12 - 2f =0 \Rightarrow 2 - 2f = 0 \Rightarrow f = 1 (1) এ g, f ও c এর মান বসিয়ে পাই, $x^{2} + y^{2} - 4x + 2y + 4 = 0$ ২য় অংশ ঃ ধরি, মূলবিন্দু দিয়ে অতিক্রমকারী অপর স্পর্শকটির সমীকরণ y = mx অর্থাৎ mx – y = 0, $m \neq 0$. এ রেখাটি প্রদত্ত বৃত্তকে স্পর্শ করলে কেন্দ্র (2, -1) থেকে এর দূরত্ব ব্যাসার্ধ $\sqrt{4+1-4} = 1$ এর সমান হবে। $\left|\frac{2m+1}{\sqrt{m^2+1}}\right| = 1 \Longrightarrow (2m+1)^2 = m^2 + 1$ $\Rightarrow 4m^2 + 4m + 1 = m^2 + 1$ $\Rightarrow 3m^2 + 4m = 0 \Rightarrow 3m + 4 = 0$ \Rightarrow m = $-\frac{4}{3}$ মূলবিন্দু দিয়ে অতিক্রমকারী অপর স্পর্শকটির সমীকরণ $y = -\frac{4}{3}x$: 4x + 3y = 0 (Ans.) 12 (b) b ব্যাসার্ধবিশিষ্ট একটি বৃত্ত যার কেন্দ্রের ভুচ্চ ও কোটি উভয়ই ধনাত্মক , x-অক্ষ এবং 3y = 4xসরলরেখাকে স্পর্শ করে : তার সমীকরণ নির্ণয় কর। সমাধান ঃ ধরি, b ব্যাসার্ধবিশিষ্ট বৃত্তের সমীকরণ $(x - h)^{2} + (y - k)^{2} = b^{2} \cdots (1)$; এখানে h, k উভয়ই ধনাত্মক । (1) বৃত্ত x-অক্ষকে স্পর্শ করে। বৃত্তের ব্যাসার্ধ, b = | কেন্দ্রের কোটি | = | k |= k আবার, (1) বৃত্ত 3y = 4x অর্থাৎ 4x - 3y = 0রেখাকে স্পর্শ করলে কেন্দ্র (h, k) থেকে এর দূরত্ব ব্যাসার্ধ b এর সমান হবে। $\frac{|4h-3k|}{\sqrt{4^2+3^2}} = b \Longrightarrow |4h-3b| = 5b$ \Rightarrow 4h - 3b = ± 5b 4h = 8b অথবা, 4h = -2b \Rightarrow h = 2b অথবা, h = $-\frac{b}{2}$; কিন্তু h>0.

উচ্চতর গণিত: ১ম পত্রের সমাধান বইঘর কম

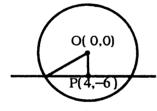
 $x^{2} + y^{2} - 4bx - 2by + 4b^{2} = 0$ (Ans.) 12 (c) 2x + 3y - 5 = 0 রেখাটি (3, 4) কেন্দ্রবিশিষ্ট বৃত্তের স্পর্শক। বৃত্তটি y-অক্ষের যে অংশ ছেদ করে তার পরিমাণ নির্ণয় কর। [য.'০৪; কু.'০৭] সমাধান ঃ বৃত্তের ব্যাসার্ধ r = কেন্দ্র (3, 4) হতে প্রদন্ত স্পর্শকের লম্বদূরত্ব = $\frac{|6+12-5|}{\sqrt{4+9}} = \frac{13}{\sqrt{13}}$

 $=\sqrt{13}$

বৃস্তটি y-অক্ষের যে জংশ ছেদ করে তার পরিমাণ = $2\sqrt{r^2 - h^2}$, এখানে h = কেন্দ্রের ভূজ = 3 = $2\sqrt{(\sqrt{13})^2 - 3^2} = 2\sqrt{13 - 9} = 2.2 = 4$

13.(a) $x^2 + y^2 = 144$ বৃদ্তের একটি চ্চ্যা এর সমীকরণ নির্ণয় কর যার মধ্যবিদ্ব (4, -6) বিদ্বতে ভবস্থিত। [চ.'০৯; দি.'০৯,'১১;রা.'০৫;য.'০৬; ঢা.'০৭; মা.'০৪; ক্.'১০; সি.'১১]

সমাধান **ঃ** ধরি, প্রদন্ত বৃত্ত $x^2 + y^2 = 144$ এর কেন্দ্র O(0, 0) এবং জ্যা এর মধ্যকিন্দু P(4, -6).



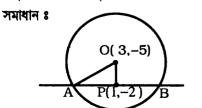
OP রেখার সমীকরণ $y = \frac{-6}{4}x \Rightarrow 2y = -3x$ $\Rightarrow 3x + 2y = 0$

P(4, -6) কিন্দুগামী এবং 3x + 2y = 0 রেখার উপর লম্ব নির্দেয় জ্যা এর সমীকরণ,

$$2x - 3y = 2.4 - 3.(-6) = 8 + 18 = 26$$

 $2x - 3y = 26$ (Ans.)

13.(b) $x^2 + y^2 - 6x + 10y - 21 = 0$ বৃষ্ডের একটি জ্যা এর সমীকরণ ও দৈর্ঘ্য নির্ণয় কর যার মধ্যক্ষিণু (1, -2) কিন্দুতে অবস্থিত।



ধরি, প্রদন্ত বৃত্ত $x^2 + y^2 - 6x + 10y - 21 = 0$ এর কেন্দ্র O(3, - 5) এবং AB জ্যা এর মধ্যবিন্দু P(1, -2). OP রেখার ঢাল = $\frac{-5+2}{2} = \frac{-3}{2}$ $OP \perp AB$ বলে, AB এর ঢাল = $\frac{2}{3}$ P(1, -2) কিন্দুগামী $\frac{2}{3}$ ঢাল বিশিষ্ট নির্ণেয় জ্যা AB এর সমীকরণ, $y + 2 = \frac{2}{2}(x - 1)$ \Rightarrow 3y + 6 = 2x - 2 2x - 3y - 8 = 0 (Ans.) **२** श्र जरुन **8** OP = $\sqrt{(3-1)^2 + (-2+5)^2}$ $=\sqrt{4+9}=\sqrt{13}$ OA = বৃত্তের ব্যাসার্ধ = $\sqrt{3^2 + 5^2 + 21}$ $=\sqrt{9+25+21}=\sqrt{55}$ OAP সমকোণী ত্রিভুষ্ণে OA অতিভুষ্ণ। $AP^{2} = OA^{2} - OP^{2} = 55 - 13 = 42$ \Rightarrow AP = $\sqrt{42}$ নির্ণেয় জ্যা এর দৈর্ঘ্য AB = $2 \text{ AP} = 2\sqrt{42}$ বিকল পন্দতি : $x^2 + y^2 - 6x + 10y - 21 = 0$ বৃত্তের যে জ্যাটি (1, -2) কিন্দুতে সমদ্বিখন্ডিত হয় তার সমীকরণ, x.1 + y.(-2) - 3(x + 1) + $5(y - 2) - 21 = 1^2 + (-2)^2 - 6.1 +$ 10.(-2) - 21 [T = S_1 সূত্রের সাহায্যে |] \Rightarrow x - 2y - 3x - 3 + 5y - 10 = 1 + 4 -6 - 20

$$\Rightarrow -2x + 3y - 13 + 21 = 0$$

2x - 3y - 8 = 0 (Ans.)

২য় জংশ ঃ প্রদন্ত বৃন্তের কেন্দ্র (3, -5) এবং ব্যাসার্ধ r = $\sqrt{9+25+21} = \sqrt{55}$.

কেন্দ্র (3, -5) এবং জ্যা এর মধ্যবিদ্দু (1, -2) এর দূরত্ব d = $\sqrt{(3-1)^2 + (-5+2)^2} = \sqrt{13}$ জ্যা এর দৈর্ঘ্য = $2\sqrt{r^2 - d^2} = 2\sqrt{55 - 13}$

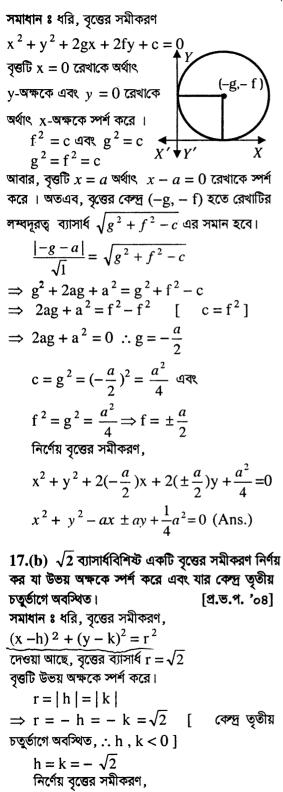
= 2 \sqrt{44} একক। 14. (a) $x^{2} + y^{2} + 6x + 2y + 6 = 0$ $x^{2} + 6x + 2y + 6 = 0$ $y^2 + 8x + y + 10 = 0$ বৃত্ত দুইটির সাধারণ জ্যাকে ব্যাস ধরে অঙ্কিত বৃত্তের সমীকরণ নির্ণয় কর। বি.'০৫] সমাধান ঃ ধরি, $S_1 \equiv x^2 + y^2 + 6x + 2y + 6 = 0$ $\mathfrak{AR} S_2 \equiv x^2 + y^2 + 8x + y + 10 = 0$ বৃত্ত দুইটির সাধারণ জ্যা এর সমীকরণ, $S_1 - S_2 = 0 \implies -2x + y - 4 = 0$ $\Rightarrow 2x - y + 4 = 0 \cdots \cdots (1)$ ধরি, এ সাধারণ জ্যাকে ব্যাস ধরে অঙ্কিত বতের সমীকরণ $x^2 + y^2 + 6x + 2y + 6 + 6x$ k(2x - y + 4) = 0 $\Rightarrow x^{2} + y^{2} + (6 + 2k)x + (2 - k)y +$ $6 + 4k = 0 \cdots (2)$ (2) বৃভের কেন্দ্র $(-k-3, \frac{k-2}{2})$, যা সাধারণ জ্যা (1) এর উপর অবস্থিত ; $2(-k-3) - \frac{k-2}{2} + 4 = 0$ $\Rightarrow -4k - 12 - k + 2 + 8 = 0$ $\Rightarrow -5k-2=0 \Rightarrow k=-\frac{2}{5}$ নির্ণেয় বৃত্তের সমীকরণ, $x^2 + y^2 + 6x + 2y$ $+6-\frac{2}{5}(2x-y+4)=0$ $\Rightarrow 5(x^2 + y^2) + 30x + 10y + 30 - 4x +$ 2y - 8 = 0 $5(x^{2} + y^{2}) + 26x + 12y + 22 = 0$ 14 (b) $(x - p)^2 + (y - q)^2 = r^2$ is $(x - q)^2 + (y - p)^2 = r^2$ বুন্ত দুইটির সাধারণ চ্চ্যা এর দৈর্ঘ্য নির্ণয় কর। সমাধান ঃ প্রদন্ত বৃত্তের সমীকরণদ্বয়কে লিখা যাই. $x^{2} + y^{2} - 2px - 2qy + p^{2} + q^{2} - r^{2} = 0$ $4 \Re x^2 + y^2 - 2qx - 2py + p^2 + q^2 - r^2 = 0$ বৃত্ত দুইটির সাধারণ জ্যা এর সমীকরণ, (-2p + 2q)x + (-2q + 2p)y = 0 \Rightarrow x - y = 0 ··· ··· (1) ১ম বৃত্তের কেন্দ্র (p,q) এবং ব্যাসার্ধ = r

কেন্দ্র (p, q) থেকে (1) সাধারণ জ্যা এর লম্বদূরত্ব d $=\frac{|p-q|}{\sqrt{1+1}}=\frac{|p-q|}{\sqrt{2}}$ সাধারণ জ্যা এর দৈর্ঘ্য = $2\sqrt{r^2-d^2}$ $= 2\sqrt{r^2 - \frac{|p-q|^2}{\sqrt{2}}} = \sqrt{4r^2 - \frac{4(p-q)^2}{2}}$ $=\sqrt{4r^2-2(p-q)^2}$ (Ans.) 14 (c) $x^{2} + y^{2} - 4x + 6y - 36 = 0$ \otimes $x^{2} + y^{2} - 5x + 8y - 43 = 0$ वुख मूरेंग्लि সাধারণ জ্যা এর সমীকরণ নির্ণয় কর। [প্র.ড.প. '০৫; '০৬] সমাধান **ঃ** ধরি, $S_1 \equiv x^2 + y^2 - 4x + 6y - 36 = 0$ এবং $S_2 \equiv x^2 + y^2 - 5x + 8y - 43 = 0$ বৃত্ত দুইটির সাধারণ জ্যা এর সমীকরণ, $S_1 - S_2 = 0$ \Rightarrow (-4 + 5)x + (6 - 8)y + (-36 + 43)= 0 x - 2y + 7 = 0 (Ans.) 15.(a) (मचाও (य, $x^2 + y^2 - 2x + 4y - 31 = 0$ ও $x^2 + y^2 + 4x - 4y + 7 = 0$ বৃত্ত দুইটি পরস্পরকে অন্তঃস্থভাবে স্পর্শ করে। সাধারণ স্পর্শক ও স্পর্শ কিন্দু নির্ণয় কর। বি.'১১] প্রমাণ : $x^2 + y^2 - 2x + 4y - 31 = 0$ বৃত্তের কেন্দ্র $C_1(1,-2)$ ও ব্যাসার্ধ $r_1 = \sqrt{1+4+31} = 6$ এবং $x^{2} + y^{2} + 4x - 4y + 7 = 0$ বৃত্তের কেন্দ্র $C_{2}(-2, 2)$ ও ব্যাসার্ধ $r_{2} = \sqrt{4+4-7} = 1$. $C_1 C_2 = \sqrt{(1+2)^2 + (-2-2)^2}$ $=\sqrt{9+16} = 5 = 6 - 1 = r_1 - r_2$ প্রদন্ত বৃত্ত দুইটি পরস্পরকে অন্তঃস্থভাবে স্পর্শ করে। সাধারণ স্পর্শক অর্থাৎ সাধারণ জ্যা এর সমীকরণ, (-2-4)x + (4+4)y + (-31-7) = 0 $\Rightarrow -6x + 8y - 38 = 0$ 3x - 4y + 19 = 0 (Ans.) এ সাধারণ স্পর্শক কেন্দ্রদ্বয়ের সংযোগ রেখাংশ C1 C2

কে ব্যাসার্ধদ্বয়ের অনূপাতে অর্থাৎ $r_1: r_2$ অনূপাতে

বহির্বিভক্ত করবে। অতএব, স্পর্শবিন্দুর স্থানাজ্ঞ $=(\frac{6.(-2)-1.1}{6-1},\frac{6.2-1.(-2)}{6-1})=(-\frac{13}{5},\frac{14}{5})$ 15(b) দেখাও যে, $x^2 + y^2 + 2gx + 2fy + c = 0$ যেকোন বিন্দু হতে $x^2 + y^2 + 2gx + 2fy + c' = 0$ বৃষ্তে অঙ্জিত স্পর্শকের দৈর্ঘ্য $\sqrt{c'-c}$. প্রমাণ : ধরি, (α , β) প্রথম বৃত্তের উপর যেকোন কিন্দু । $\alpha^2 + \beta^2 + 2g\alpha + 2f\beta + c = 0$ $\Rightarrow \alpha^{2} + \beta^{2} + 2g\alpha + 2f\beta = -c \cdots (1)$ এখন (α, β) কিন্দু থেকে দ্বিতীয় বৃত্তে অজ্জিত স্পর্শকের দৈর্ঘ্য = $\sqrt{\alpha^2 + \beta^2 + 2g\alpha + 2f\beta + c'}$ $=\sqrt{-c+c'}=\sqrt{c'-c}$ (Showed) 16.(a) (-5, 4) किंगू থেকে $x^2 + y^2 - 2x - 4y$ + 1 = 0 বৃত্তে অঙ্জিত স্পর্শকের সমীকরণ নির্ণয় কর। [য. '০১: ঢা. '০৫. '১৩] সমাধান ঃ $x^2 + y^2 - 2x - 4y + 1 = 0 \cdots (1)$ বৃত্তের কেন্দ্র (1, 2) এবং ব্যাসার্ধ = $\sqrt{1+4-1} = 2$ ধরি, (- 5, 4) কিন্দুগামী সাপর্শকের সমীকরণ y - 4 = m(x + 5) ज्वशि mx - y + 5m + 4 = 0বৃত্তের কেন্দ্র (1, 2) থেকে এ স্পর্শকের লম্বদূরত্ব ব্যাসার্ধ 2 এর সমান হবে। $\frac{|m-2+5m+4|}{\sqrt{m^2+1}} = 2 \Longrightarrow \frac{|6m+2|}{\sqrt{m^2+1}} = 2$ \Rightarrow $(3m+1)^2 = m^2 + 1$ $\Rightarrow 9m^2 + 6m + 1 = m^2 + 1$ $\Rightarrow 8m^2 + 6m = 0 \Rightarrow m(8m + 6) = 0$ $m = 0, -\frac{3}{4}$ স্পর্শকের সমীকরণ y – 4 = 0 এবং $y - 4 = -\frac{3}{4}(x + 5)$ $\Rightarrow 4y - 16 = -3x - 15 : 3x + 4y - 1 = 0$ 16.(b) भूनकिन् (शंदक $x^2 + y^2 - 10x + 20 = 0$ उट অভিকত স্পর্শক দুইটির সমীকরণ নির্ণয় কর। [ঢা.'০৮.'১১; রা. '১০, '১৩; সি. '১০; য. '০৫; চ. '০৬, '০৯, '১৩ ব. '১২] সমাধান : $x^2 + y^2 - 10x + 20 = 0 \cdots (1)$

বৃত্তের কেন্দ্র (5, 0) এবং ব্যাসার্ধ = $\sqrt{25 - 20} = \sqrt{5}$ ধরি, মূলবিন্দু (0, 0) দিয়ে অতিক্রমকারী সাপর্শকের সমীকরণ y = mx অর্থাৎ mx – y = 0 বৃত্তের কেন্দ্র (5, 0) থেকে এ স্পর্শকের লম্বদূরত্ব ব্যাসাধ √ ১ এর সমান হবে। $\frac{|5m-0|}{\sqrt{m^2+1}} = \sqrt{5} \implies 25m^2 = 5(m^2+1)$ $\Rightarrow 5m^2 = m^2 + 1 \Rightarrow 4m^2 = 1 \therefore m = \pm \frac{1}{2}$ $(3m+1)^2 = m^2 + 1$ স্পর্শক দুইটির সমীকরণ y = $\frac{1}{2}$ x \Rightarrow x-2y = 0 এবং $y = -\frac{1}{2}x \Longrightarrow x + 2y = 0$ 16 (c) মূলবিন্দু থেকে $x^2 + y^2 - 6x - 4y + 9=0$ বৃত্তে অঙ্কিত স্পর্শক দুইটির অসতর্ভুক্ত কোণ নির্ণয় কর। সমাধান ঃ $x^2 + y^2 - 6x - 4y + 9 = 0$...(1) বৃত্তের কেন্দ্র (3, 2) এবং ব্যাসার্ধ = $\sqrt{9 + 4 - 9} = 2$ ধরি, মূলব্দিদু (0, 0) দিয়ে অতিক্রমকারী সাপর্শকের সমীকরণ y = mx অর্থাৎ mx - y = 0বৃত্তের কেন্দ্র (3, 2) থেকে এ স্পর্শকের লম্বদূরত্ব ব্যাসার্ধ 2 এর সমান হবে। $\frac{|3m-2|}{\sqrt{m^2+1}} = 2 \Longrightarrow (3m-2)^2 = 4(m^2+1)$ \Rightarrow 9m² - 12m + 4 = 4m² + 4 $\Rightarrow 5m^2 - 12m = 0 \Rightarrow m(5m - 12) = 0$ $\therefore m = 0, \frac{12}{5}$ স্পর্শক দুইটির সমীকরণ y = 0 এবং $y = \frac{12}{5}x$. এখন $y = \frac{12}{5}x$ রেখা y = 0 রেখা অর্থাৎ x-অক্ষের সাথে Θ কোণ উৎপন্ন করলে, $\tan \Theta = m$ ⊖±tan⁻¹ 12/₅, যা স্পর্শক দূইটির অন্তর্ভুক্ত কোণ। 17.(a) x = 0, y = 0 ও x = a রেখা তিনটিকে স্পর্শ করে এরুপ বৃত্তের সমীকরণ নির্ণয় কর। [য. '০১; রা. '০৫; কু. '০৪, '১১]



$$(x + \sqrt{2})^{2} + (y + \sqrt{2})^{2} = (\sqrt{2})^{2}$$

$$\Rightarrow x^{2} + 2\sqrt{2} x + 2 + y^{2} + 2\sqrt{2} y + 2 = 2$$

$$x^{2} + y^{2} + 2\sqrt{2} x + 2\sqrt{2} y + 2 = 0$$
17(c) (-5, -6) किंपूशांगी এकটি वृछ $3x + 4y$
- 11 = 0 রেখাকে (1, 2) किंपूटा किंपूतुटा कार्भ करता।
वृष्ठांग्रेज प्रगिर्कत ग निर्शत कत्र।
प्राधान : (1 2) किंपूटा किंपूतुटा कार्भ करता।
वृष्ठांग्रेज प्रगिर्कत ग निर्शत कत्र।
प्राधान : (1 2) किंपूटा किंपूतुटा कार्भ करता।
(x - 1)^{2} + (y - 2)^{2} = 0

$$\Rightarrow x^{2} - 2x + 1 + y^{2} - 4y + 4 = 0$$

$$\Rightarrow x^{2} + y^{2} - 2x - 4y + 5 = 0 \cdots (1)$$
(-5, -6) किंपूशांगी এवर (1) वृष्ठ ७ धमछ রেখা
 $3x + 4y - 11 = 0$ এর ছেদ কিंपूशांगी वृटा त्र
प्रायेकत्र ,

$$\frac{x^{2} + y^{2} - 2x - 4y + 5}{3x + 4y - 11} = \frac{25 + 36 + 10 + 24 + 5}{-15 - 24 - 11}$$

$$\Rightarrow \frac{x^{2} + y^{2} - 2x - 4y + 5}{3x + 4y - 11} = \frac{100}{-50}$$

$$\Rightarrow x^{2} + y^{2} - 2x - 4y + 5 = -6x - 8y + 22$$

$$x^{2} + y^{2} + 4x + 4y - 17 = 0$$
18. $12x + 5y = 212$ সরলরেখা হতে $x^{2} + y^{2}$
 $-2x - 2y = 167$ दुख उलत उलत (1, 1) এবং ব্যাসার্ধ
= $\sqrt{1 + 1 + 167} = \sqrt{169} = 13$
 $12x + 5y - 212 = 0 \cdots (1)$ রেখার উপর লম্ম
এবং কেন্দ্র O(1, 1) দিয়ে অভিক্রম করে এর্প রেখার
 x মীকরণ, $5x - 12y - 5x 1 - 12x 1 = -7$

$$\Rightarrow 5x - 12y + 7 = 0 \cdots (2)$$

$$(1) \leq (2) \text{ (34)} \text{ (2) (34)} \text{ (35 - 2544)}$$

$$M \equiv (\frac{35 - 2544}{-144 - 25}, \frac{-1060 - 84}{-144 - 25})$$

$$= (\frac{-2509}{-169}, \frac{-1144}{-169}) = (\frac{193}{13}, \frac{88}{13})$$

$$OM = \sqrt{(1 - \frac{193}{13})^2 + (1 - \frac{88}{13})^2}$$

$$= \sqrt{\frac{32400 + 5625}{169}} = \sqrt{\frac{38025}{169}} = 15$$

$$\forall \overline{a}, \, \overline{nc} \forall \overline{x} \, \overline{cry} \overline{b} \, A(\alpha, \beta) \mid$$

$$OA = 13 \, a\overline{c},$$

$$AM = OM - OA = 15 - 13 = 2$$

$$OA : AM = 13 : 2$$

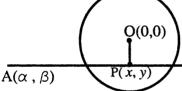
$$\therefore \alpha = \frac{13 \times \frac{193}{13} + 2 \times 1}{13 + 2} = \frac{195}{15} = 13$$

$$a\overline{c}, \, \beta = \frac{13 \times \frac{88}{13} + 2 \times 1}{13 + 2} = \frac{90}{15} = 6$$

$$\overline{nc} \forall \overline{x} \, \overline{cry} \overline{x} \, \overline{zv} = (13, 6) \mid$$

19.(a) $x^{2} + y^{2} = r^{2}$ বৃত্তের যেসব জ্যা (α, β) কিদুগামী তাদের মধ্যকিদুর সম্বর্গারপথের সমীকরণ নির্ণয় কর।

সমাধান ঃ



ধরি, প্রদন্ত বৃত্ত $x^2 + y^2 = r^2$ এর কেন্দ্র 0) এবং A(α, β) কিন্দুগামী জ্যাসমূহের O(0 মধ্যকিদুর সঞ্চারপথের উপর P(x , y) যেকোন একটি কিন্দু। তাহলে, $OP \perp AP$.

OP এর ঢাল $\times AP$ এর ঢাল = -1

$$\Rightarrow \frac{0-y}{0-x} \times \frac{y-\beta}{x-\alpha} = -1$$

 \Rightarrow y (y - β) = -x(x - α) $x(x - \alpha) + y(y - \beta) = 0$, या निर्धाय সঞ্চারপথের সমীকরণ।

19. (b) (b , 0) কিন্দু হতে $x^2 + y^2 = a^2$ ব্রুয়ের স্পর্শকের উপর অঙ্কিত লম্বের পাদকিন্দুর সঞ্চারপথ নির্ণয় কর। [ঢা.'০8] P(x, y)সমাধান ঃ O(0,0 A(b.0)

ধরি, A(b,0) কিন্দু হতে $x^2 + y^2 = a^2$ বৃত্তের স্পর্শকের উপর অঙ্কিত লম্বের পাদক্দির সঞ্চারপথের উপর P(x, y) যেকোন একটি কিন্দু PT যেকোন একটি স্পর্শক। তাহলে, AP⊥PT.

PT স্পর্শকের ঢাল, m =
$$-\frac{b-x}{0-y} = \frac{b-x}{y}$$

PT স্পর্শকের সমীকরণ, y = mx ± a $\sqrt{m^2 + 1}$
 $\Rightarrow y = \frac{b-x}{y}x \pm a\sqrt{\frac{(b-x)^2}{y^2} + 1}$
 $\Rightarrow y^2 = bx - x^2 \pm a\sqrt{(b-x)^2 + y^2}$
 $\Rightarrow x^2 + y^2 - bx = \pm a\sqrt{(b-x)^2 + y^2}$
(x² + y² - bx)² = a²{(b-x)² + y²}²,

যা নিণেয় সঞ্চারপথের সমাকরণ।

19 (c) (h, k) বিশ্ব থেকে $x^2 + y^2 = 12$ বৃত্তে জঙ্জিত স্পর্শকের দৈর্ঘ্য $x^2 + y^2 + 5x + 5y = 0$ বৃত্তে অঙ্জিত স্পর্শকের দৈর্ঘ্যের দ্বিগুণ। (h, k) বিন্দুটির সম্বারপথের সমীকরণ নির্ণর কর।

সমাধান ঃ (h , k) কিন্দু থেকে $x^2 + y^2 = 12$ অর্থাৎ x² + y² - 12 = 0 ব্রন্তে অঙ্কিত স্পর্শকের দৈর্ঘ্য $=\sqrt{h^2+k^2-12}$ এবং (h k) কিন্দু থেকে $x^{2} + y^{2} + 5x + 5y = 0$ বৃত্তে অঙ্জিত স্পর্শকের দৈর্ঘ্যের = $\sqrt{h^2 + k^2 + 5h + 5k}$ প্রশ্নমতে,

$$\sqrt{h^2 + k^2 - 12} = 2\sqrt{h^2 + k^2 + 5h + 5k}$$

$$\Rightarrow h^2 + k^2 - 12 = 4(h^2 + k^2 + 5h + 5k)$$

$$\Rightarrow 3h^2 + 3k^2 + 20h + 20k + 12 = 0$$

এখন h কে x দ্বার এবং k কে y দ্বারা প্রতিস্থাপন করে পाই, $3x^2 + 3y^2 + 20x + 20y + 12 = 0$, या নির্ণেয় সঞ্চারপথের সমীকরণ।

19 (d) যেসব কিন্দু থেকে $x^2 + y^2 = a^2$ বৃত্তে অঙ্কিত স্পর্শক দুইটি পরস্পর লম্ব হয় তাদের সঞ্চারপথের সমীকরণ নির্ণয় কর। [প্র.ড.প. '০৪] সমাধান ঃ ধরি, প্রদত্ত বৃত্ত $x^{2} + y^{2} = a^{2}$ এর কেন্দ্র O(0 0) এবং সঞ্চারপথের উপর $P(x \;,\; y)$ যেকোন একটি

a PAOB চতুর্জে, a O(0,0 $\angle A = \angle B = \angle P = 90^{\circ}$ ∠O = 90° তাছাডা, AO = OB = a PAOB একটি বর্গক্ষেত্র যার প্রতিটি বাহুর দৈর্ঘ্য a একক। $PO^{2} = PA^{2} + AO^{2}$ \Rightarrow x² + v² = a² + a² $\therefore x^2 + y^2 = 2a^2$, যা নির্ণেয় সঞ্চারপথের সমীকরণ। বিকল্প পদ্ধতি ঃ ধরি, প্রদত্ত বৃত্তে স্পর্শকের সমীকরণ, $v = mx \pm a \sqrt{1 + m^2}$ \Rightarrow y - mx = $\pm a \sqrt{1 + m^2}$ \Rightarrow y² - 2mxy + m²x² = a²(1 + m²) \Rightarrow (x² - a²) m² - 2mxy + y² - a² = 0 মূলদ্বয় m_1 ও m_2 হলে, শর্তমতে, $m_1 m_2 = -1$ $\frac{y^2 - a^2}{x^2 - a^2} = -1 \implies y^2 - a^2 = -x^2 + a^2$ \therefore $x^2 + y^2 = 2a^2$, যা নির্ধেয় সঞ্চারপথের সমীকরণ। 19(e) 3x - y - 1 = 0 সরলরেখা $(x - 2)^2 +$ $y^2 = 5$ বৃত্তকে যে সুক্ষকোণে ছেদ করে তা নির্ণয় কর। সমাধান ঃ প্রদত্ত বৃত্ত $(x-2)^2 + y^2 = 5$ (1)এবং সরলরেখা 3x - y - 1 = 0অর্থাৎ y = 3x - 1 (2) (1) এ y- এর মান বসিয়ে পাই, (2.0) $(x-2)^{2} + (3x-1)^{2} = 5$ $\Rightarrow x^2 - 4x + 4 + 9x^2$ -6x + 1 = 5(0, -1) $\Rightarrow 10 x^2 - 10 x = 0$ \Rightarrow x(x -1) = 0 \Rightarrow x = 0, 1 (2) হতে পাই, y = -1, 2 (2) রেখা (1) বৃত্তকে (0, -1) ও (1,2) কিন্দুতে ছেদ করে। (1) বৃত্তের কেন্দ্র (2,0). (0, -1) কিন্দুতে অভিলম্বের ঢাল = $\frac{0+1}{2-0} = \frac{1}{2}$

উ. গ. (১ম পত্র) সমাধান-২১

কিন্দু থেকে অভিনিত PA ও PB P(x, y) B

স্পর্শক দুইটি পরস্পর লম্ব ।

 $\mathbf{Q}(x, y)$ প্রমাণ ঃ ধরি, P(h, k) কিন্দু P(h,k) থেকে মূলকিন্দু O(0,0) দিয়ে 10(0,0)অতিক্রমকারী সরলরেখার উপর অঙ্কিত লম্বের পাদক্দির সঞ্চারপথের উপর Q(x,y) যেকোন একটি কিন্দু। তাহলে, OQ⊥PQ OO এর ঢাল \times PO এর ঢাল = -1 $\Rightarrow \frac{y}{r} \times \frac{y-k}{r-h} = -1 \Rightarrow y^2 - ky = -x^2 - hx$ $\Rightarrow \therefore x^{2} + y^{2} + hx + ky = 0$, যা একটি ব্রন্তের সমীকরণ নির্দেশ করে। সঞ্চারপথটি একটি বৃত্ত। 20. সমাধান ঃ (a) ব্যাসের দৈর্ঘ্য = (2, -4) ও (0, 0) বিন্দু দুইটির দৈর্ঘ্য = $\sqrt{2^2 + (-4)^2} = \sqrt{4 + 16}$ $= 2\sqrt{5} \, \mathrm{ext}$ (b) ব্যাসটির সমীকরণ, (x-2)(-4-0) - (y+4)(2-0) = 0 $\Rightarrow -4(x-2)-2(y+4)=0$ $\Rightarrow 2(x-2) + (y+4) = 0$ $\Rightarrow 2x - 4 + y + 4 = 0$ $\therefore 2x + y = 0$ আবার, (2 -4) ও (0 0) কিন্দু দুইটিকে একটি ব্যাসের প্রান্তবিন্দু ধরে অঙ্কিত বৃত্তের সমীকরণ, (x-2)(x-0) + (y+4)(y-0) = 0 \Rightarrow x² - 2x + y² + 4y = 0 $x^{2} + y^{2} - 2x + 4y = 0 \cdots (1)$ (Ans.) (c) (2 -4) ও (0 0) কিন্দু দিয়ে অতিক্রমকারী ব্যাসের সমীকরণ, $y = \frac{-4}{2}x$ \Rightarrow y = -2x \Rightarrow 2x + y = 0

(0, -1) কিন্দুতে স্পর্শকের ঢাল = -2

 $\tan \varphi = \left| \frac{3+2}{1+3(-2)} \right| = 1 \quad \varphi = 45^{\circ}$

19(f) দেখাও যে, P(h, k) বিন্দু থেকে মুলবিন্দু দিয়ে

অতিক্রমকারী সরলরেখার উপর অঙ্কিত লম্বের প্রাদক্ষিদর

(2) রেখার ঢাল = 3.

ধরি, নির্ণেয় কোণ ৩.

সঞ্চারপথ একটি বৃত্ত।

ধরি, 2x + y = 0 ব্যাসের সমান্তরাল স্পর্শকের সমীকরণ 2x + y + k = 0(2)(1) বৃত্ত (2) রেখাকে স্পর্শ করলে কেন্দ্র (1 ,-2) থেকে এর দূরত্ব ব্যাসার্ধ $\sqrt{1+4} = \sqrt{5}$ এর সমান হবে। $\frac{|2-2+k|}{\sqrt{4+1}} = \sqrt{5} \implies |k| = 5 \implies k = \pm 5$ (2) এ k এর মান বসিয়ে পাই, $2x + y \pm 5 = 0$ 21. $x^2 + y^2 - 4x - 6y + c = 0$ वुउछि x-অক্ষকে স্পর্শ করে। (a) প্রদন্ত বৃত্তের সমীকরণ, $x^2 + y^2 + 2(-2)x + 2(-2)x$ 2(-3) v + c = 0বৃত্তের কেন্দ্র (2, 3), ব্যাসার্ধ = $\sqrt{2^2 + 3^2 - c} = \sqrt{13 - c}$ এবং বৃত্তটি দ্বারা x-অক্ষের খন্ডিতাংশ = $2\sqrt{2^2-c}$ $=2\sqrt{4-c}$ (b) প্রশ্নমালা IV B এর 2(c) দ্রষ্টব্য। (c) প্রশ্নমালা IV A এর 4(c) দ্রষ্টব্য। 22. সমাধান: কার্ত্তেসীয় ও পোলার স্থানাজ্জের সম্পর্ক হতে পাই, $r^2 = x^2 + y^2$, $x = r \cos \theta$, y = r $\sin \Theta$. $r^2 = -4r\cos \Theta$ হতে পাই. $x^{2} + y^{2} = -4x \Longrightarrow x^{2} + y^{2} + 4x = 0$ (a) বৃত্তটির কেন্দ্র = $(-\frac{4}{2}, \frac{0}{2}) = (-2, 0)$ এবং ব্যাসার্ধ = $\sqrt{2^2 + 0 - 0}$ = (b) খলিফার নিয়মানুসারে (-6,5) ও (-3, - 4) কিন্দুগামী বৃত্তের সমীকরণ , (x+6)(x+3) + (y-5)(y+4) + $k\{(x+6)(5+4)-(y-5)(-6+3)\}=0$ $\Rightarrow x^{2} + 9x + 18 + y^{2} - y - 20 +$ k(9x + 54 + 3y - 15) = 0 $\Rightarrow x^2 + y^2 + 9x - y - 2 +$ k(9x + 3y + 39) = 0(1)(1) বৃত্তটি (2, 1) কিন্দুগামী বলে,

4 + 1 + 18 - 1 - 2 + k(18 + 3 + 39) = 0 $\Rightarrow 60 \text{ k} = -20 \Rightarrow \text{ k} = -\frac{1}{2}$ (1) এ k এর মান বসিয়ে পাই. $x^{2} + y^{2} + 9x - y - 2 - 3x - y - 13 = 0$ $x^2 + y^2 + 6x - 2y - 15 = 0$ (1)(c) দ্বিতীয় বৃত্তের কেন্দ্র (-3, 1). (-2, 0) ও (-3, 1) কেন্দ্রগামী সরলরেখার সমীকরেণ $\frac{x+2}{-2+3} = \frac{y-0}{0-1} \Rightarrow y = -x-2$ $x^{2} + y^{2} + 4x = 0$ বৃত্তে y = -x - 2 বসিয়ে পাই, $x^2 + (x + 2)^2 + 4x = 0$ $\Rightarrow x^2 + x^2 + 4x + 4 + 4x = 0$ $\Rightarrow 2x^2 + 8x + 4 = 0 \Rightarrow x^2 + 4x + 2 = 0$ $\Rightarrow x = \frac{-4 \pm \sqrt{16 - 8}}{2} = \frac{-4 \pm 2\sqrt{2}}{2}$ $= -2 + \sqrt{2}$ $x = -2 + \sqrt{2}$ হল, $y = 2 - \sqrt{2} - 2 = -\sqrt{2}$ $x = -2 - \sqrt{2}$ হল, $y = 2 + \sqrt{2} - 2 = \sqrt{2}$ প্রথম বৃত্তের ব্যাসের প্রান্তবিন্দু $(-2+\sqrt{2},-\sqrt{2}) \otimes (-2-\sqrt{2},\sqrt{2})$ কাজ ১ | $x^2 + y^2 + 4x - 10y + 28 = 0$ বুত্তের (- 2, 4) কিন্দুতে স্পর্শক ও অভিলম্বের সমীকরণ নির্ণয় কর। সমাধান ঃ $x^2 + y^2 + 4x - 10y + 28 = 0$ বৃত্তের (-2,4) কিন্দুতে স্পর্শকের সমীকরণ, x.(-2) + y.4 + 2(x - 2) - 5(y + 4) + 28 = 0 $\Rightarrow -2x + 4y + 2x - 4 - 5y - 20 + 28 = 0$ $\Rightarrow -y + 4 = 0$ y = 4এখন ধরি, v = 4 স্পর্শকের উপর লম্ব অভিলম্বের সমীকরণ x = k, যা (-2, 4) কিন্দুগামী। $-2 = k \implies k = -2$ অভিলম্বের সমীকরণ x = - 2 ⇒ x + 2 ≐ 0

২। $x^2 + y^2 = a^2$ বৃত্তে অভিহৃত স্পর্শক x-অক্ষের সাথে $\tan^{-1} \frac{2}{r}$ কোণ উৎপন্ন করে। স্পর্শকের সমীকরণ নির্ণয় কর। সমাধান ঃ $x^2 + y^2 = a^2$ বৃত্তের কেন্দ্র (0,0) এবং ব্যাসার্ধ = a ধরি, x-অক্ষের সাথে tan⁻¹ $\frac{2}{5}$ কোণ উৎপন্ন করে এর্প রেখার সমীকরণ $y = \tan(\tan^{-1}\frac{2}{5})x + c$ $\Rightarrow y = \frac{2}{5}x + c \Rightarrow 2x - 5y + 5c = 0 \cdots (1)$ (1) রেখাটি প্রদত্ত বৃত্তকে স্পর্শ করলে কেন্দ্র (0 0) থেকে এর দূরত্ব ব্যাসার্ধ a এর সমান হবে। $\frac{|5c|}{\sqrt{4+25}} = a \Rightarrow |5c| = \sqrt{29} a$ \Rightarrow 5c = $\pm \sqrt{29}$ a c = $\pm \frac{\sqrt{29a}}{5}$ নির্ণেয় স্পর্শকের সমীকরণ $2x - 5y + 5(\pm \frac{\sqrt{29a}}{5}) = 0$ $\Rightarrow 2x - 5y \pm \sqrt{29}a = 0$ (Ans.) $x^{2} + y^{2} = a^{2}$ বৃত্তে অঙ্জিত স্পর্শক অক্ষ ৩। দুইটির সাথে \mathbf{a}^2 ক্ষেত্রফলবিশিষ্ট একটি ত্রিভুজ গঠন করে। স্পর্শকের সমীকরণ নির্ণয় কর। সমাধান : $x^2 + y^2 = a^2$ ব্রুত্তের কেন্দ্র (0,0) এবং ব্যাসার্ধ = a. ধরি, স্পর্শকের সমীকরণ $\frac{x}{b} + \frac{y}{c} = 1$ অর্থাৎ cx + by - ab = 0··· (1) (1) রেখাটি অক্ষ দুইটির সাথে যে ত্রিভুজ গঠন করে তার ক্ষেত্ৰফল = $\frac{1}{2}bc$ প্রশ্নত , $\frac{1}{2}bc = a^2 \Rightarrow bc = 2a^2 \cdots (2)$ আবার, (1) রেখাটি প্রদন্ত বৃত্তকে স্পর্শ করলে কেন্দ্র (0,0) থেকে এর দূরত্ব ব্যাসার্ধ a এর সমান হবে। $\left|\frac{0-0-bc}{\sqrt{a^2+b^2}}\right| = a \Rightarrow b^2 c^2 = a^2(b^2+c^2)$

$$\Rightarrow b^{2} c^{2} = \frac{bc}{2} (b^{2} + c^{2}) \qquad [(2) घाता]$$

$$\Rightarrow b^{2} + c^{2} = 2bc \Rightarrow (b - c)^{2} = 0$$

$$b - c = 0 \Rightarrow b = c$$

$$(2) \Rightarrow b^{2} = 2a^{2} \Rightarrow b = c = \pm \sqrt{2}a$$

$$firetia \arrow firetia \$$

c। 5 ব্যাসার্ধবিশিফ্ট দুইটি বৃত্তের সমীকরণ নির্ণয় কর যারা 3x - 4y + 8 = 0 রেখাকে স্পর্শ করে এবং

উচ্চতর গণিত: ১ম পত্রের সমাধান বহুঘর কম

যাদের কেন্দ্র 3x + 4y - 1 = 0 রেখার উপর অবস্থিত । থি.ড.প. ৮৮] সমাধান ঃ ধরি, 5 ব্যাসার্ধবিশিষ্ট বৃত্তের সমীকরণ $(x - h)^{2} + (y - k)^{2} = 5^{2} \cdots (1)$ (1) এর কেন্দ্র (h, k) , 3x + 4y - 1 = 0 রেখার উপর অবস্থিত। $3h + 4k - 1 = 0 \cdots \cdots (2)$ (1) বৃত্ত 3x - 4y + 8 = 0 রেখাকে স্পর্শ করলে কেন্দ্র (h, k) থেকে এর দূরত্ব ব্যাসার্ধ 5 এর সমান হবে। $\frac{|3h-4k+8|}{\sqrt{2^2+4^2}} = 5 \implies \frac{|3h-4k+8|}{5} = 5$ \Rightarrow $|3h-4k+8| = 25 \Rightarrow 3h-4k+8 = \pm 25$ $3h - 4k - 17 = 0 \cdots$ (3) এবং 3h - 4k + 33 = 0...(4) $(2) + (3) \Rightarrow 6h - 18 = 0 \Rightarrow h = 3$ (2) रू. $9 + 4k - 1 = 0 \implies k = -2$ (1) এ h ও k এর মান বসিয়ে পাই, $(x-3)^{2} + (y+2)^{2} = 25$ (Ans.) আবার, (2) + (4) \Rightarrow 6h + 32 = 0 \Rightarrow h = $-\frac{16}{2}$ (2) रू , $3(-\frac{16}{3}) + 4k - 1 = 0$ $\Rightarrow -16 + 4k - 1 = 0 \Rightarrow k = \frac{17}{4}$ (1) এ h ও k এর মান বসিয়ে পাই, $\left(x + \frac{16}{3}\right)^2 + \left(y - \frac{17}{4}\right)^2 = 25$ ৬। মূলকিন্দুগমিী একটি বৃত্তের সমীকরণ নির্ণয় কর যা 3y + x = 20 রেখাকে স্পর্শ করে এবং যার একটি ব্যাসের সমীকরণ y = 3x. সমাধান ঃ ধরি, বৃত্তের সমীকরণ $x^{2} + y^{2} + 2gx + 2fy + c = 0 \cdots (1)$ বৃত্ত মূলক্মিণুগামী । c = 0 (1) বৃত্তের কেন্দ্র (-g, -f), y = 3x ব্যাসের উপর অবস্থিত $\therefore -f = 3 (-g) \Longrightarrow f = 3g \cdots (2)$ আবার, 3y + x = 20 অর্থাৎ x + 3y - 20 = 0 রেখা (1) বৃত্তকে স্পর্শ করলে কেন্দ্র (- g, -f) থেকে এর দূরত্ব ব্যাসার্ধ $\sqrt{g^2 + f^2 - c}$ এর সমান হবে।

 $\frac{|-g-3f-20|}{\sqrt{1+9}} = \sqrt{g^2 + f^2 - c}$ \Rightarrow (g + 3f + 20)² = 10(g² + f²) [c=01 $\Rightarrow (g + 9g + 20)^2 = 10(g^2 + 9g^2)$ [\therefore f = 3g] $\Rightarrow 100 (g + 2)^2 = 100g^2$ \Rightarrow g² + 4g + 4 = g² \Rightarrow g = -1. (2) হতে পাই, f = 3.(-1) = - 3 (1) এ f, g ও c এর মান বসিয়ে পাই, $x^{2} + y^{2} - 2x - 6y = 0$ (Ans.) 9 + y = 2x রেখাটি $x^2 + y^2 = 10x$ বৃত্তের একটি জ্যা। উক্ত জ্যাকে ব্যাস ধরে অঙ্চিকত বৃত্তের (2,4) বিন্দুতে স্পর্শকের সমীকরণ নির্ণয় কর। (1) হতে y এর মান প্রদন্ত সমাধান y = 2xবৃত্তের সমীকরণে বসিয়ে পাই, $x^2 + (2x)^2 = 10x$ \Rightarrow x² + 4x² - 10x = 0 \Rightarrow 5x² - 10x = 0 \Rightarrow 5x (x - 2) = 0 \Rightarrow x = 0, 2 (1) হতে পাই, v = 2.0 = 0 এবং v = 2.2 = 4 প্রদন্ত বৃত্তের (1) জ্যা এর প্রানতকিন্দু দুইটি (0,0) এবং (2,4). (0,0) এবং (2,4) কিন্দু দুইটির সংযোগ রেখাংশকে ব্যাস ধরে অঙ্কিত নির্ণেয় বৃত্তের সমীকরণ, (x-0)(x-2) + (y-0)(y-4) = 0 $x^2 + y^2 - 2x - 4y = 0$ এখন x² + y² - 2x - 4y = 0 ব্রের (2, 4) কিন্দুতে স্পর্শকের সমীকরণ, x.2 + y.4 - (x + 2) - 2(y + 4) = 0 \Rightarrow 2x + 4y - x - 2 - 2y - 8 = 0 x + 2y - 10 = 0 (Ans.) ৮। (3, -1) কিদুগামী একটি বৃত্ত 3x + y = 10রেখাকে (3,1) কিন্দুতে স্পর্শ করে বৃত্তটির সমীকরণ নির্ণয় কর। সমাধান ঃ (3, 1) কেন্দ্রবিশিষ্ট কিন্দুবৃত্তের সমীকরণ, $(x-3)^{2} + (y-1)^{2} = 0 \cdots (1)$ (3, -1) কিন্দু দিয়ে যায় এবং (1) বৃত্ত ও 3x + y - 10 = 0 রেখার ছেদকিন্দুগামী বৃত্তের সমীকরণ, $\frac{(x-3)^2 + (y-1)^2}{(3-3)^2 + (-1-1)^2} = \frac{3x+y-10}{3\times(3)+(-1)-10}$

প্রশ্নমালা IV B

$$\Rightarrow \frac{x^2 - 6x + 9 + y^2 - 2y + 1}{0 + 4} = \frac{3x + y - 10}{9 - 1 - 10}$$

$$\Rightarrow \frac{x^2 - 6x + y^2 - 2y + 10}{4} = \frac{3x + y - 10}{-2}$$

$$\Rightarrow x^2 - 6x + y^2 - 2y + 10 = -6x - 2y + 20$$

$$x^2 + y^2 = 10 \text{ (Ans.)}$$

৯। এর্প বৃন্তের সমীকরণ নির্ণয় কর যা x = 0, y = 0, 3x - 4y = 12 রেখা তিনটিকে স্পর্শ করে এবং যার কেন্দ্র প্রথম চতুর্তাগে অবস্থিত।

সমাধান ঃ ধরি, বৃত্তের সমীকরণ $(x - h)^{2} + (y - k)^{2} = r^{2}$ (h, k) h বৃত্তটি x = 0 রেখাকে অর্থাৎ k y-অক্ষকে এবং y = 0 রেখাকে অর্থাৎ x-অক্ষকে স্পর্শ করে । $X' \checkmark Y'$ r = | k | = k এবং r = |h| = h[∵ কেন্দ্র প্রথম চতুর্ভাগে অবস্থিত, ∴ h, k > 0] h = k = rআবার, বৃত্তটি 3x - 4y = 12 অর্থাৎ 3x - 4y = 1212 = 0 রেখাকে স্পর্শ করে । অতএব, বৃত্তের কেন্দ্র (h, k) হতে রেখাটির লম্বদূরত্ব ব্যাসার্ধ r এর সমান হবে।

$$\frac{|3h-4k-12|}{\sqrt{9+16}} = r$$

⇒ |3h-4h-12|=5h [h=k=r]
⇒ |h+12|=5h ⇒ h+12=±5h
4h=12⇒ h=3 खथता, -6h=12⇒h=-2
किন্ত h>0 ∴ h=k=r=3
Friction distance
(x-3)² + (y-3)² = 3²
⇒ x² - 6x + 9 + y² - 6y + 9 = 9
x² + y² - 6x - 6y + 9 = 0

১০। $2\sqrt{10}$ ব্যাসার্ধবিশিষ্ট এরুপ বৃন্তের সমীকরণ নির্ণায় কর যা 3x - y = 6 রেখাকে (1, -3)কিন্দুতে স্পর্শ করে। সমাধান ঃ ধরি, বৃত্তের সমীকরণ $x^{2} + y^{2} + 2gx + 2fy + c = 0 \cdots (1)$ (1) বৃত্তের (1, -3) কিন্দুতে স্পর্শকের সমীকরণ x.1 + y.(-3) + g(x + 1) + f(y-3) + c = 0 \Rightarrow x - 3y + gx + g + fy - 3f + c = 0 $\Rightarrow (1 + g)x + (-3 + f)y + g - 3f + c = 0$ প্রশ্নমতে, এ রেখা এবং 3x - y = 6 অভিনু। $\frac{1+g}{3} = \frac{-3+f}{-1} = \frac{g-3f+c}{-6}$ $\frac{1+g}{3} = \frac{-3+f}{-1}$ হতে পাই, 1+g = 9-3f \Rightarrow g = 8 - 3f ···(2) $\frac{-3+f}{-1} = \frac{g-3f+c}{-6}$ হতে পাই, -18 + 6f = g - 3f + c \Rightarrow c = -18 + 9f -g = -18 + 9f - 8 + 3f = 12f - 26আবার (1) বৃত্তের ব্যাসার্ধ = $\sqrt{g^2 + f^2 - c}$ $\sqrt{g^2 + f^2 - c} = 2\sqrt{10}$ $\Rightarrow (8-3f)^{2} + f^{2} - 12f + 26 = 40$ $\Rightarrow 64 - 48f + 9f^{2} + f^{2} - 12f - 14 = 0$ $\Rightarrow 10f^2 - 60f + 50 = 0$ \Rightarrow f² - 6f + 5 = 0 \Rightarrow (f -5)(f -1) = 0 f = 1.5f = 14 cs, g = 8 - 3 = 5, c = 12 - 26 = -14f =5 4a, g = 8-15 = -7, c = 60 - 26= 34 নির্ণেয় বৃত্তের সমীকরণ, $x^{2} + y^{2} + 10x + 2y - 14 = 0$ এবং $x^{2} + y^{2} - 14x + 10y - 34 = 0$ বিকল পদ্ধতি : (1, - 3) কিন্দুতে কিন্দুবুত্তের সমীকরণ $(x - 1)^2 + (y + 3)^2 = 0.$ ধরি, এ বৃত্ত ও প্রদত্ত রেখান ছেদ কিন্দুগামী বৃত্তের সমীকরণ $(x-1)^2 + (y+3)^2 + k(3x-y-6) = 0$ $\Rightarrow x^2 - 2x + 1 + y^2 + 6y + 9 + 3kx - ky$ -6k = 0 $\Rightarrow x^{2} + y^{2} + (-2 + 3k)x + (6 - k)y + 10$ $-6k = 0 \cdots (1)$ প্রশ্নমতে, (1) এর ব্যাসার্ধ = 2√10 $\Rightarrow \sqrt{\left(\frac{2-3k}{2}\right)^2 + \left(\frac{k-6}{2}\right)^2 - 10 + 6k} = 2\sqrt{10}$

$$\Rightarrow \frac{1}{4}(4-12k+9k^{2}+k^{2}-12k+36)-10 + 6k = 40$$

$$\Rightarrow 4-12k+k^{2}+k^{2}-12k+36-200 + 24k = 0$$

$$\Rightarrow 10k^{2}-160 = 0 \Rightarrow k^{2} = 16 \therefore k = \pm 4$$
(1) হতে নির্ধেয় বৃত্তের সমীকরণ,
 $x + y^{2} + 10x + 2y - 14 = 0$ এবং
 $x^{2} + y^{2} - 14x + 10y + 34 = 0$
SSI (-2,3) কিন্দু থেকে $2x^{2} + 2y^{2} = 3$
বৃত্তে অভিন্ড স্পর্শকের দৈর্ঘ্য নির্ণয় কর। [ব.'os]
সমাধান ঃ (-2,3) কিন্দু থেকে $2x^{2} + 2y^{2} = 3$
অর্থাৎ $x^{2} + y^{2} - \frac{3}{2} = 0$ বৃত্তে অভিন্ড স্পর্শকের
দৈর্ঘ্য = $\sqrt{(-2)^{2} + (3)^{2} - \frac{3}{2}} = \sqrt{4 + 9 - \frac{3}{2}}$
 $= \sqrt{13 - \frac{3}{2}} = \sqrt{\frac{26 - 3}{2}} = \sqrt{\frac{23}{2}}$ একক।
SSI $x^{2} + y^{2} = 16$ বৃত্তের একটি ড্যা এর সমীকরণ

১২। x " + y " = 16 বৃত্তের একাঢ জ্যা এর সমাকরণ নির্ণয় কর যার মধ্যবিশ্দু (-- 2 , 3) কিন্দুতে অবস্থিত। [য.'০০]

O(0,0) P(4,-6)

ধরি, প্রদন্ত বৃত্ত $x^2 + y^2 = 16$ এর কেন্দ্র O(0, 0) এবং জ্যা এর মধ্যকিন্দু P(-2, 3).

OP রেখার সমীকরণ $y = \frac{3}{-2}x \Longrightarrow -2y = 3x$

 $\Rightarrow 3x + 2y = 0$

সমাধান ঃ

P(-2, 3 কিন্দুগামী এবং 3x + 2y = 0 রেখার উপর লম্ব নির্ণেয় জ্যা এর সমীকরণ,

 $2x - 3y = 2 \cdot (-2) - 3 \cdot 3 = -4 - 9 = -13$ $2x - 3y + 13 = 0 \quad (Ans.)$ So $x^{2} + y^{2} + 4x - 2y + 3 = 0 \quad (Ans.)$

১৩। $x^2 + y^2 + 4x - 2y + 3 = 0$ ও $x^2 + y$ - 4x + 6y - 21 = 0 বৃত্ত দুইটির সাধারণ জ্যা এর সমীকরণ এবং দৈর্ঘ্য নির্ণয় কর।

সমাধান ঃ ধরি, $S_1 \equiv x^2 + y^2 + 4x - 2y + 3 = 0$ এবং $S_2 \equiv x^2 + y^2 - 4x + 6y - 21 = 0$ বৃত্ত দুইটির সাধারণ জ্যা এর সমীকরণ, $S_1 - S_2 = 0 \Longrightarrow 8x - 8y + 24 = 0$ x - y + 3 = 0 (1) (Ans.) এখন S1 বৃত্তের কেন্দ্র (- 2 1) এবং ব্যাসাধ $r = \sqrt{(-2)^2 + 1^2 - 3} = \sqrt{2}$ কেন্দ্র (-2, 1) হতে x - v + 3 = 0 এর লম্বদূরত্ব $d = \frac{|-2-1+3|}{\sqrt{1+1}} = 0$ সাধারণ জ্যা এর দৈর্ঘ্য = $2\sqrt{r^2 - d^2}$ www.boighar.com = $2\sqrt{2-0} = 2\sqrt{2}$ একক। $38 + 3x^2 + 3y^2 - 29x - 19y + 56 = 0$ বৃত্তের একটি জ্যা এর সমীকরণ x - y + 2 = 0. উক্ত জ্যা এর দৈর্ঘ্য এবং এ জ্যাকে ব্যাস ধরে অঙ্কিত বৃত্তের সমীকরণ নির্ণয় কর। সমাধান : $3x^2 + 3y^2 - 29x - 19y + 56 = 0$ অর্থাৎ $x^2 + y^2 - \frac{29}{2}x - \frac{19}{2}y + \frac{56}{2} = 0$ বৃত্তের কেন্দ্র $(\frac{29}{6}, \frac{19}{6})$ এবং ব্যাসার্ধ $r = \sqrt{\left(\frac{29}{6}\right)^2 + \left(\frac{19}{6}\right)^2 - \frac{56}{3}}$ $=\sqrt{\frac{841+361-672}{36}}=\sqrt{\frac{530}{36}}$ কেন্দ্র $(\frac{29}{6}, \frac{19}{6})$ থেকে x - y + 2 = 0জ্যা এর লম্বদূরত্ব $d = \frac{\left|\frac{29}{6} - \frac{19}{6} + 2\right|}{\sqrt{1+1}} = \frac{11}{3\sqrt{2}}$ জ্যা এর দৈর্ঘ্য = $2\sqrt{r^2 - d^2}$ $=2\sqrt{\frac{530}{36}-\frac{121}{18}}=2\sqrt{\frac{530-242}{36}}$ $=2\sqrt{\frac{288}{36}}=2\sqrt{8}=4\sqrt{2}$ এकक।

প্রশ্নমালা IV B

২য় অংশ ঃ ধরি প্রদত্ত জ্যাকে ব্যাস ধরে নির্ণেয় বৃত্তের সমীকরণ $x^2 + y^2 - \frac{29}{3}x - \frac{19}{3}y + \frac{56}{2} + k(x - x)$ v + 2 = 0 $\Rightarrow x^{2} + y^{2} + (-\frac{29}{3} + k)x + (-\frac{19}{3} - k)y$ $+\frac{56}{3}+2k=0\cdots(1)$ (1) ব্রের কেন্দ্র $(\frac{29}{6} - \frac{k}{2}, \frac{19}{6} + \frac{k}{2})$, যা x – 2y + 7 = 0 রেখার উপর অবস্থিত। $\frac{29}{6} - \frac{k}{2} - \frac{19}{3} - k + 7 = 0$ $\Rightarrow 29 - 3k - 38 - 6k + 42 = 0$ $\Rightarrow -9k = -33 \Rightarrow k = \frac{11}{3}$ নির্ণেয় বৃত্তের সমীকরণ, $x^2 + y^2 - \frac{29}{2}x - \frac{29}{2}x$ $\frac{19}{3}y + \frac{56}{3} + \frac{11}{3}(x - y + 2) = 0$ $\Rightarrow 3(x^2 + y^2) - 29x - 19y + 56 + 11x$ -11v + 22 = 0 $\Rightarrow 3(x^{2} + y^{2}) - 18x - 30y + 78 = 0$ x² + y² - 6x - 10y + 26 = 0 (Ans.) অতিরিক্ত প্রশ্ন (সমাধানসহ) $x^{2} + y^{2} - 6x + 8y + 21 = 0$ (303) 1. অঞ্চিত স্পৰ্শক x-অক্ষের সমান্যতরাল। স্পর্শকের সমীকরণ নির্ণয় কর। সমাধান ៖ $x^2 + y^2 - 6x + 8y + 21 = 0$ বৃত্তের কেন্দ্র (3, -4) এবং ব্যাসার্ধ = $\sqrt{3^2 + 4^2 - 21} = 2$ ধরি, x-অক্ষের সমান্তরাল স্পর্শকের সমীকরণ v + k = 0(1)(1) রেখাটি প্রদন্ত বৃত্তকে স্পর্শ করলে কেন্দ্র (3, - 4) থেকে এর দূরত্ব ব্যাসার্ধের সমান হবে। $\frac{|-4+k|}{\sqrt{1}} = 2 \Longrightarrow |-4+k| = 2$ \Rightarrow k-4 = ±2 : k = 6, 2 নির্ণেয় স্পর্শকের সমীকরণ y + 6=0, y + 2=0

ব্যবহারিক

 শিকের
 দৈর্ঘ্য = 1 এ

 বৃত্তের
 স্থাপন করি

 = 2
 করে প্রদত্ত (i

 মীকরণ
 করে প্রদত্ত (i

 কেন্দ্র
 কেন্দ্র

 ব।
 (-8,4)

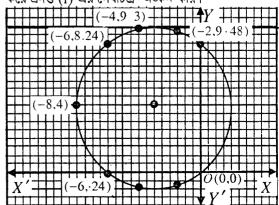
সমীকরণের লেখচিত্র অজ্ঞকন কর।সমীকরণের লেখচিত্র অজ্ঞকন কর। প্রয়োজনীয় উপকরণ ঃ (i) পেন্সিল (ii) ফেকল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার ইত্যাদি। কার্যপদ্ঘতি ঃ 1. প্রদন্ত বৃত্তের সমীকরণ হতে পাই, $(x + 3)^2 + (y - 4)^2 = 5^2$ $\Rightarrow (y - 4)^2 = 5^2 - (x + 3)^2$ $\Rightarrow y - 4 = \pm \sqrt{(5 + x + 3)(5 - x - 2)}$ $\Rightarrow y = 4 \pm \sqrt{-(x + 8)(x - 3)}$ (i) $(x - 8)(x - 3) \le 0 \Rightarrow -8 \le x \le 3$ অর্থাৎ $x \in [-8, 3]$ এর কয়েকটি মান নিয়ে y এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি

পরীক্ষণের নাম ঃ $(x + 3)^2 + (y - 4)^2 = 5^2$

x	-8	-6	-6	-4	-4
· y	4	8·24	2	9.29	-1.2
			4		9
x	-2	-2	0	0	
У	9.4	-1.4	8.8	-0.8	
	8	8	9	9	

একটি ছক কাগজে স্থানাংকের অক্ষ রেখা X'OX
 YOY' আঁকি

 x অক্ষ ও y অক্ষ বরাবর ক্ষুদ্রতম বর্গের 2 বাহুর দৈর্ঘ্য = 1 একক ধরে তালিকাভুক্ত ক্রিদুগুলি গ্রাফ পেপারে স্থাপন করি এবং সরু পেন্সিল দিয়ে মুক্তহস্তে সংযোগ করে প্রদন্ত (i) এর লেখচিত্র অজ্ঞকন করি।



লেখের বৈশিষ্ট ঃ

লেখচিত্রটি একটি বৃত্ত।

লেখচিত্রটি অবিচ্ছিন্ন।

সতৰ্কতা ঃ

 গ্রাফ পেপার সুষম বর্গক্ষেত্র বিশিষ্ট কিনা দেখে নেই।

শার্পনার দিয়ে পেন্সিল সরু করে নেই।

ভর্তি পরীক্ষার MCQ :

1. k এর মান কত হলে $(x - y + 3)^2 + (kx)$ +2) (y - 1) = 0 সমীকরণটি একটি বৃত্ত নির্দেশ [DU 08-09, 01-02, SU 03-04] করবে? Sol". বৃত্তের সমীকরণে xy এর সহগ শূন্য। $-2 + k = 0 \implies k = 2$ 2. $2x^2 + ay^2 = 9$ একটি বৃদ্তের সমীকরণ । তাই a এর মান --[CU 07-09] Sol^n . x² ও y² এর সহগ সমান । তাই a = 2 3. $x^2 + y^2 = 16$ এর বিবেচনায় (4,-3) কিন্দুটির অবস্থান কোথায় ? [RU 06-07] $Sol^n \cdot 4^2 + (-3)^2 - 16 = 9 > 0$ বণ্ডের বাইরে। 4. $x^2 + y^2 - 24x + 10y = 0$ বৃত্তের ব্যাসার্ধ -[DU 03-04; RU 05-06] Sol'', $\operatorname{sym} = \sqrt{12^2 + 5^2 - 0} = 13$ 5. 2x² + 2y² + 6x + 10y - 1 = 0 ব্রের ব্যাসার্ধ r হলে, r =? [DU 95-96,97-98] Solⁿ. প্রদন্ত বৃত্ত x² + y² + 3x + 5y - 1/2 = 0 $r = \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{5}{2}\right)^2 + \frac{1}{2}} = \sqrt{\frac{9+25+2}{4}} = 3$ 6. $x^{2} + y^{2} - 5x = 0 \le x^{2} + y^{2} + 3x = 0$ বৃত্তদ্বয়ের কেন্দ্রের দূরত্ব কত ? [DU 06-07] Sol^{n} . रक्ष्म $(\frac{5}{2}, 0)$ ७ $(-\frac{3}{2}, 0)$ এর দূরত্ব = $|\frac{5}{2} + \frac{3}{2}|$ 7. (-9,9) ও (5,5) কিন্দু দ্বয়ের সংযোগ রেখাংশকে

7. (-9,9) ও (5,5) কিন্দুছয়ের সংযোগ রেখাংশকে ব্যাস ধরে অঞ্চিত বৃত্তের সমীকরণ–[DU 05-06, 02-03; RU 06-07;NU 02-03]

Sol". (x+9)(x-5) + (y-9)(y-5) = 0 $\Rightarrow \sqrt{2} + 4x - 45 + y^2 - 14y + 45 = 0$ \Rightarrow x² + y² + 4x - 14y = 0 8. (4,5) কেন্দ্র বিশিষ্ট বৃত্ত, যা x² + y² + 4x + 6y - 12 = 0 বৃত্তের কেন্দ্র দিয়ে গমন করে তার [DU 03-04; RU 05-06] সমীকরণ– Solⁿ. প্রদত্ত বতের কেন্দ্র (-2 - 3). নির্ণেয় বতের সমীকরণ $x^2 + y^2 - 8x - 10y = (-2)^2$ $+(-3)^2 - 8(-2) - 10(-3)$ $\Rightarrow x^{2} + y^{2} - 8x - 10y - 59 = 0$ 9. (-1,1) এবং (-7, 3) কিন্দু দিয়ে অতিক্রমকারী একটি বৃত্তের কেন্দ্র 2x + y = 9 রেখার উপর অবস্থিত। বৃস্তটির সমীকরণ- [NU 08-09;SU 03-04] A. $(x + 1)^{2} + (y - 11)^{2} = 100$ B. $(x-2)^2 + (y-1)^2 = 81$ C. $(x + 3)^{2} + (y - 2)^{2} = 4$ D. $(x-5)^2 + (y+1)^2 = 64$ Sol". A. option টির কেন্দ্র (-1, 11), যা প্রদত্ত রেখার উপর অবস্থিত। 10. (5, 0) এবং (0, 5) কিন্দুটি অক্ষরেখাদয়কে স্পর্শকারী বৃন্ডের সমীকরণ – [DU 04-05] Sol". $x^{2} + y^{2} - 2.5x - 2.5y + 5^{2} = 0$ $\Rightarrow x^{2} + y^{2} - 10x - 10y + 25 = 0$ 11. নিম্নের কোন সমীকরণ দ্বারা নির্দেশিত বৃত্তের স্পর্শক x অক্ষ ? [DU 08-09] A. $x^{2} + y^{2} - 10x - 6y + 9 = 0$ B. $x^{2} + y^{2} - 10x + 6y + 25 = 0$ C. $x^{2} + y^{2} + 6x - 10y + 25 = 0$

D. $x^{2} + y^{2} + 6x + 8y + 28 = 0$ Sol".প্রদন্ত option গুলোর মধ্যে B এর ক্ষেত্রে $g^{2} = c$

12. $x^{2} + y^{2} - 4x - 6y + c = 0$ বৃস্তটি x অক্ষকে স্পর্শ করে । c এর মান- [DU 00-01,01-02; RU 07-08; NU 05-06] Solⁿ. c = (x এর সহগের অর্ধেক)² = 4 13. $x^{2} + y^{2} - 4x - 6y + 4 = 0$ রেন্সি x

13. $x^2 + y^2 - 4x - 6y + 4 = 0$ বৃত্তটি x অক্ষকে স্পর্শ করে । স্পর্শবিন্দুর স্থানাজ্ঞ্ব – [NU 07-08]

১৬৬

বইঘর.কম প্রশ্নমালা IV B

 $Sol^{"}$.স্পর্শবিন্দু = (-x এর সহগের অর্ধেক,0)=(2,0) 14. x² + y² = 81 বৃস্তুটির জ্যা (-2, 3) বিন্দুতে সমদিখন্ডিত হলে জ্যা এর সমীকরণ - [JU 05-06; KU 03-041 **Sol**^{*n*}. x .(-2) + y.3 = $(-2)^2 + 3^2$ $\Rightarrow 2x - 3y + 13 = 0$ $15. x^{2} + y^{2} - 4x + 6y - 36 = 0$ are $x^{2} +$ $y^2 - 5x + 8y - 43 = 0$ বুত্তদ্বরে সাধারণ জ্যা এর সমীকরণ [RU 07-08; KUET 05-06] Solⁿ. (-4+5)x + (6-8)y - 36 + 43 = 0 \Rightarrow x - 2y + 7 = 0 16, (4,3) কিন্দুতে কেন্দ্র ধরে কত ব্যাসার্ধ বৃত্ত অঞ্চকন করলে $x^2 + y^2 = 4$ বৃত্তকে স্পর্শ করবে ?[IU07-08] **Sol**ⁿ.r $\pm 2 = \sqrt{(4-0)^2 + (3-0)^2} = 5$ r = 7 বা. 3 17. (x-3)² + (y-4)² = 25 ব্রের কেন্দ্র হতে 3 একক দুরত্বে অবস্থিত চ্চ্যা এর দৈর্ঘ্য - [IU 07-08] Sol''. জ্যা এর দৈর্ঘ্য = $2\sqrt{5^2 - 3^2} = 8$ 18. $x^2 + y^2 = 100$ বৃত্ত দারা x + 7y - 50 = 0রেখার ছেদাংশের পরিমাণ --[KU 07-08] Solⁿ. এখানে $r = 10, d = \frac{|0+0-50|}{\sqrt{1+49}} = \sqrt{50}$ ছেদাংশের পরিমাণ = $2\sqrt{r^2-d^2}$ $= 2\sqrt{100-50} = 2\sqrt{50} = 10\sqrt{2}$ 19. 2x - 3y - 9 = 0 রেখাটি যে বৃত্তকে স্পর্শ করে তার কেন্দ্র (1,2) এর ব্যাসার্ধ $\mathbf{r} = \sqrt{5+c}$ । c এর [RU 06-07] মান কত ৷ Solⁿ. $r = \sqrt{5+c} = \frac{|2.1-3.2-9|}{\sqrt{2^2+2^2}} = \sqrt{13}$

c = 13 - 5 = 8

20. যে বৃষ্ণের কেন্দ্র মূলকিন্দুতে এবং এবং $2x + \sqrt{5} y - 1 = 0$ রেখাকে স্পর্শ করে তার সমীকরণ হবে- [CU-07-08; JU 07-08]

Solⁿ
$$(x-0)^{2} + (y-0)^{2} = (\frac{2.0+5.0-1}{\sqrt{2^{2}+(\sqrt{5})^{2}}})^{2}$$

 $\Rightarrow x^{2} + y^{2} = \frac{1}{9} \therefore 9(x^{2} + y^{2}) = 1$

21. মূলকিন্দু থেকে (1,2) কেন্দ্র বিশিষ্ট বৃষ্ণের উপর জজিত স্পর্শকের দৈর্ঘ্য 2 একক হলে বৃস্তটির সমীকরণ– [RU 07-08] Solⁿ.(1,2) কেন্দ্র বিশিষ্ট বৃত্ত $x^2 + y^2 - 2x - 4y$ + c = 0 এবং (0,0) কিন্দু থেকে এ বৃষ্ণে অভিনত স্পর্শকের দৈর্ঘ্য = \sqrt{c} . $\sqrt{c} = 2 \implies c = 4$ $x^2 + y^2 - 2x - 4y + 4 = 0$

22. একটি বৃন্তের সমীকরণ হল $2x^2 + 2y^2 = 25$ । 5 একক দৈর্ঘ্য বিশিষ্ট একটি চ্চ্যা কেন্দ্রে কত রেডিয়ান কোণ তৈরী করবে? [SU 06-07]

Sol".
$$2x^2 + 2y^2 = 25 \implies x^2 + y^2 = (\frac{5}{\sqrt{2}})^2$$

 $\cos\Theta = \frac{(5/\sqrt{2})^2 + (5/\sqrt{2})^2 - 5^2}{2 \cdot \frac{5}{\sqrt{2}} \cdot \frac{5}{\sqrt{2}}} = 0$
 $\Theta = \frac{\pi}{2}$

2

বইঘর.কম বিন্যাস ও সমাবেশ প্রশ্নমালা V A

সমাধান ঃ

(a) দেওয়া আছে,
$${}^{n-1}P_3 : {}^{n+1}P_3 = 5:12 \Rightarrow \frac{(n-1)!}{(n-1-3)!} : \frac{(n+1)!}{(n+1-3)!} = 5:12$$
 [al. 'o¢]

$$\Rightarrow \frac{(n-1)!}{(n-4)!} \times \frac{(n-2)!}{(n+1)!} = \frac{5}{12} \Rightarrow \frac{(n-1)!}{(n-4)!} \times \frac{(n-2).(n-3).(n-4)!}{(n+1)n(n-1)!} = \frac{5}{12}$$
$$\Rightarrow \frac{(n-2).(n-3)}{(n+1)n} = \frac{5}{12} \Rightarrow 12(n^2 - 5n + 6) = 5(n^2 + n) \Rightarrow 12n^2 - 5n^2 - 60n - 5n + 72 = 0$$

$$\Rightarrow 7n^{2} - 65n + 72 = 0 \Rightarrow 7n^{2} - 56n - 9n + 72 = 0 \Rightarrow 7n(n - 8) - 9(n - 8) = 0$$

$$\Rightarrow$$
 $(n-8)(7n-9)=0$ \Rightarrow $n=8$, $\frac{2}{7}$ কিন্দু n ভগ্নাংশ হতে পারেনা । $n=8$

(b) দেওয়া আছে,
$$4 \times {}^{n}P_{3} = 5 \times {}^{n-1}P_{3} \implies 4. \frac{n!}{(n-3)!} = 5 \frac{(n-1)!}{(n-1-3)!}$$
 [₹.'o¢]

$$\Rightarrow 4. \frac{n.(n-1)!}{(n-3).(n-4)!} = 5 \frac{(n-1)!}{(n-4)!} \Rightarrow 4. \frac{n}{n-3} = 5 \Rightarrow 5n-15 = 4n \quad \therefore n = 15 \text{ (Ans.)}$$

(c) সাধারণ সূত্র ব্যবহার না করে n- সংখ্যক বিভিন্ন বস্তু থেকে প্রত্যেকবার যেকোন 3টিকে নিয়ে বিন্যাস সংখ্যা নির্ণয় কর। সমাধান % n সংখ্যক বিভিন্ন জিনিস থেকে প্রতিবার 3টি জিনিস নিয়ে '3টি শূন্যস্থান যত রকম ভাবে পূরণ করা যায় তাই হবে n সংখ্যক বিভিন্ন জিনিস থেকে প্রতিবার 3টি জিনিস নিয়ে গঠিত বিন্যাস সংখ্যার সমান ।

n সংখ্যক জিনিসের যেকোন একটিকে বসিয়ে প্রথম শূন্যস্থানটি n সংখ্যক উপায়ে পূরণ করা যায়। প্রথম শূন্যস্থানটি n প্রকারের যেকোন এক উপায়ে পূরণ করার পর দ্বিতীয় শূন্য স্থানটি অবশিষ্ট (n - 1) সংখ্যক জিনিস দ্বারা (n - 1) সংখ্যক উপায়ে পূরণ করা যায়। যেহেতু প্রথম শূন্য স্থানটি পূরণকরার প্রত্যেক উপায়ের সজো দ্বিতীয় স্থান পূরণের জিনিম দ্বারা (n - 1) সংখ্যক স্থানে মুরণ করা যায়, সুতরাং প্রথম দুইটি শূন্য স্থান একত্রে n(n - 1) সংখ্যক উপায়ে পূরণ করা যায়, সুতরাং প্রথম দুইটি শূন্য স্থান একত্রে n(n - 1) সংখ্যক জিনিয় মুন্য ম্বান পূরণের রাবে। জের্থাৎ ${}^nP_2 = n$ (n - 1).

n সংখ্যক জিনিসের যেকোন দুইটি দ্বারা প্রথম ও দ্বিতীয় শূন্য স্থান পূরণ করার পর তৃতীয় শূন্য স্থানটি অবশিষ্ট (n-2) সংখ্যক জিনিস দ্বারা (n-2) সংখ্যক উপায়ে পূরণ করা যায়। সুতরাং , প্রথম তিনটি স্থান একব্রে মোট n(n-1)(n-2) সংখ্যক উপায়ে পূরণ করা যায়। অর্থাৎ ${}^{n}P_{3} = n(n-1)(n-2)$.

2 'COURAGE' শব্দটির বর্ণগুলো নিয়ে কত্তগুলো বিন্যাস তৈরি করা করা যায়, যাদের প্রথমে একটি স্বরবর্ণ থাকবে? সমাধান ঃ 'COURAGE' শব্দটিতে মোট 7টি বিভিন্ন অক্ষর আছে যাদের 4টি স্বরবর্ণ। প্রথম স্থানটি এই 4টি ভিন্ন স্বরবর্ণে যেকোনো একটি দ্বারা ⁴P₁ = 4 প্রকারে পূরণ করা যায় এবং অবশিস্ট (7 – 1) অর্থাৎ, 6টি স্থান বাকি 6টি ভিন্ন অক্ষর দ্বারা 6! = 720 প্রকারে পূরণ করা যায়। সুতরাং নির্দেয় বিন্যাস সংখ্যা = 4×720 = 2880

3. (a) সাধারণ সূত্র ব্যবহার না করে (p + q) সংখ্যক জিনিসের p সংখ্যক জিনিস এক জাতীয় এবং বাকীগুলো সব তিন্ন হলে, এদের সব্দুলোকে নিয়ে বিন্যাস সংখ্যা নির্ণয় কর।

সমাধান ঃ মনে করি , নির্ণেয় বিন্যাস সংখ্যা x । এই x সংখ্যক বিন্যাসের যেকোন একটির অন্তর্গত p সংখ্যক এক জাতীয় জিনিসের স্থলে p সংখ্যক ভিন্ন ভিন্ন জিনিস বসানো হলে অন্যদের স্থান পরিবর্তন না করে কেবল তাদের সাজানো পরিবর্তন করে মোট p! সংখ্যক নতুন বিন্যাস পাওয়া যায় । সুতরাং , x সংখ্যক বিন্যাসের জন্য মোট x × p! সংখ্যক বিন্যাস হবে।

উপর্যুক্ত প্রক্রিয়ার পর দেখা যায় জিনিসগুলো সবই এখন ভিন্ন ভিন্ন এবং (p+q) সংখ্যক ভিন্ন জিনিসের সকণুলো নিয়ে গঠিত বিন্যাস সংখ্যা (p+q)!. $x imes p! = (p+q)! \Rightarrow x = rac{(p+q)!}{p!}$

(b) 10 টি বর্ণের কিছু সংখ্যক একজাতীয় এবং বাকীগুলো ভিন্ন ভিন্ন । যদি তাদের সবগুলোকে একত্রে নিয়ে 30240টি শব্দ গঠন করা যায়, তবে কতগুলো বর্ণ এক জাতীয়।

সমাধান ঃ মনে করি, 10টি বর্ণের r সংখ্যক একজাতীয় ।

এ 10টি বর্শের সবগুলোকে একত্রে নিয়ে শব্দ গঠন করা যায় $rac{10!}{r!}$ টি।

প্রশ্নমতে, $\frac{10!}{r!} = 30240 \implies r! = \frac{10!}{30240} = \frac{3628800}{30240} = 120 = 5!$ r = 5 (Ans.)

4 (a) প্রমাণ কর যে, 'AMERICA' শব্দটির বর্ণগুলো একত্রে নিয়ে বিন্যাস সংখ্যা ' CANADA ' শব্দটির বর্ণগুলো একত্রে নিয়ে বিন্যাস সংখ্যার 21 গুণ । [চ.'০৩]

প্রমাণ ঃ 'AMERICA' শব্দটিতে মোট 7টি বর্ণ আছে যাদের 2টি A.

'AMERICA ' শব্দটির বর্ণগুলো একত্রে নিয়ে বিন্যাস সংখ্যা = $\frac{7!}{2!}$ = 2520 = 21×120

' CANADA ' শব্দটিতে 3টি A সহ মোট 6টি বর্ণ আছে।

' CANADA ' শব্দটির বর্ণগুলো একত্রে নিয়ে বিন্যাস সংখ্যা = $\frac{6!}{3!}$ = 120

'AMERICA' শব্দটির বর্ণগুলো একত্রে নিয়ে বিন্যাস সংখ্যা 'CANADA' শব্দটির বর্ণগুলো একত্রে নিয়ে বিন্যাস সংখ্যার 21 গুণ।

4. (b) দেখাও যে, ' AMERICA ' শব্দটি বর্ণগুলো একত্রে নিয়ে যত প্রকারে সাজানো যায় ' CALCUTTA ' শব্দটির বর্ণগুলো একত্রে নিয়ে তার ঘিগুণ উপায়ে সাজানো যায়। [ঢা.'০৪; রা.'১৩]

প্রমাণ ঃ ' AMERICA ' শব্দটিতে মোট 7টি বর্ণ আছে যাদের 2টি A .

'AMERICA' শব্দটির বর্ণগুলো একত্রে নিয়ে সাজানো সংখ্যা = $\frac{7!}{2!}$ = 2520.

' CALCUTTA ' শব্দটিতে মোট 8টি বর্ণ আছে যাদের 2টি C , 2টি A এবং 2টি T

'CALCUTTA' শব্দটির বর্ণগুলো একত্রে নিয়ে সাজানো সংখ্যা = $\frac{8!}{2!2!2!}$ = 5040 = 2×2520

' AMERICA ' শব্দটির বর্ণগুলো একত্রে নিয়ে যত প্রকারে সাজানো যায় ' CALCUTTA' শব্দটির বর্ণগুলো একত্রে নিয়ে তার দ্বিগুণ উপায়ে সাজানো যায় ।

5 (a) 'ARRANGE' শব্দটির অক্ষরগুলো কত প্রকারে সাজানো যায়, যাতে R দুইটি পাশাপাশি থাকবে না ? সমাধান ঃ 'ARRANGE' শব্দটিতে মোট 7টি বর্ণ আছে যাদের 2টি A এবং 2টি R.

সবগুলো বর্ণ একত্রে নিয়ে মোট সাজানো সংখ্যা = $\frac{7!}{2! \times 2!} = 1260$

2টি R কে একটি একক বর্ণ মনে করলে মোট বর্ণের সংখ্যা হবে (7-2+1) অর্থাৎ, 6টি যাদের 2টি A.

2টি R কে পাশাপাশি রেখে মোট সাজানো সংখ্যা = $\frac{6!}{2!}$ = 360

R দুইটি পাশাপাশি না রেখে মোট সাজানো সংখ্যা = সবগুলো বর্ণ একব্রে নিয়ে মোট সাজানো সংখ্যা – R দুইটি পাশাপাশি রেখে মোট সাজানো সংখ্যা = 1260 – 360 = 900

5 (b) 'ENGINEERING ' শব্দটির সব কয়টি বর্ণকে কত প্রকারে সাজানো যায় তা নির্ণয় কর। তাদের কত্যুলোতে তিনটি E একত্রে থাকবে এবং কত্যুলোতে এরা প্রথমে থাকবে। [ব.'০২; রা.'০৩; কু.'০৩] সমাধান ঃ ১ম জলে ঃ 'ENGINEERING ' শব্দটিতে মোট 11টি বর্ণ আছে যার মধ্যে 3টি E, 3টি N, 2টি G এবং 2টি I.

সব কয়টি বর্গকে একত্রে নিয়ে মোট সাজানো সংখ্যা = $\frac{11!}{3!.3!.2!.2!} = \frac{39916800}{6.6.2.2} = 277200$ (Ans.) ২য় জংশ ঃ যেহেতু E তিনটি একত্রে থাকে, অতএব তাদেরকে একটি একক বর্ণ মনে করলে মোট বর্ণগুলো হবে (EEE), N, G, I, N, R, I, N, G. এই 9টি বর্গের 3টি N, 2টি G এবং 2টি I.

E তিন্টি একত্রে রেখে মোট সাজানো সংখ্যা = $\frac{9!}{3!.2!.2!} = \frac{362880}{6.2.2} = 15120$

৩য় অংশ ঃ 3 টি E প্রথমে রেখে অবশিষ্ট বর্ণের সংখ্যা হবে (11−3) অর্থাৎ, 8টি; যাদের 3টি N, 2টি G ও 2টি I

E তিনটি প্রথমে রেখে মোট সাজানো সংখ্যা = $\frac{8!}{3! \cdot 2! \cdot 2!} = \frac{40320}{6.2.2} = 1680$ (Ans.)

6. (a) 'PARALLEL' শব্দটির বর্ণগুলোর সক্যুলো একত্রে নিয়ে যত প্রকারে সাজানো যায় তা নির্ণয় কর এবং স্বরবর্ণগুলোকে পৃথক না রেখে বর্ণগুলো কত প্রকারে সাজানো যায় তাও নির্ণয় কর।

[য. '০৬; ব. '০৭; সি. '০৮, '১১; চ. '০৮, '১২; দি. '০৯; রা. '১১; চা. '১৩] সমাধান ঃ ১ম অংশ ঃ ' PARALLEL ' শব্দটিতে 2টি A এবং 3টি L সহ মোট 8টি বর্ণ আছে ।

সকগুলো বর্ণ একত্রে নিয়ে মোট সাজানো সংখ্যা = $\frac{8!}{2!.3!} = \frac{40320}{2.6} = 3360$

২য় অংশ ঃ স্বরবর্ণ 3টি পৃথক না হলে, তাদেরকে একটি একক বর্ণ ধরতে হবে এবং ফলে বর্ণগুলো হবে (AAE), P, R, L, L, L.

3টি L সহ এই 6টি বর্গকে $\frac{6!}{3!} = 120$ উপায়ে এবং 2টি A সহ 3টি স্বরবর্গকে নিজেদের মধ্যে $\frac{3!}{2!} = 3$ উপায়ে সাজানো যায় ।

স্বরবর্ণগুলোকে পৃথক না রেখে বর্ণগুলোর মোট সাজানো সংখ্যা = $120 \times 3 = 360$. (Ans.)

(b) স্বরবর্ণগুলোকে পাশাপাশি না রেখে ' TRIANGLE ' শব্দটির বর্ণগুলো কত সংখ্যক উপায়ে সাজানো যায় তা নির্ণয় কর? [ঢা. '০৫; চ. '০৭; মা.বো. '০৯, '১৩; ব. '১০] সমাধান ঃ ' TRIANGLE ' শব্দটিতে মোট ৪টি ভিন্ন বর্ণ আছে যাদের 3টি স্বরবর্ণ।

সবগুলো বর্ণ একত্রে নিয়ে মোট সাজানো সংখ্যা = 8! = 40320

3টি স্বরবর্ণকে একটি একক বর্ণ মনে করলে পৃথক বর্ণগুলো হবে (IAE), T, R, N, G এবং L . এই 6টি ভিন্ন বর্গকে 6! প্রকারে এবং 3টি ভিন্ন স্বরবর্ণকে নিজেদের মধ্যে 3! প্রকারে সাজানো যায়।

স্বরবর্ণগুলোকে পাশাপাশি রেখে মোট সাজানো সংখ্যা = $6! \times 3! = 720 \times 6 = 4320$

স্বরবর্ণগুলোকে পাশাপাশি না রেখে মোট সাজানো সংখ্যা = সবগুলো বর্ণ একত্রে নিয়ে মোট সাজানো সংখ্যা – স্বরবর্ণগুলোকে পাশাপাশি রেখে মোট সাজানো সংখ্যা = 40320 – 4320 = 36000 (c) স্বরবর্ণগৃলোকে (i) কোন সময়ই পৃথক না রেখে এবং (ii) কোন সময়ই পাশাপাশি না রেখে ' DAUGHTER' শব্দটির বর্ণগৃলো কত সংখ্যক উপায়ে সাজানো যায় তা নির্ণয় কর।
[চ.'১০]

সমাধান ঃ (i) ' DAUGHTER ' শব্দটিতে মোট ৪টি ভিন্ন বর্ণ আছে যাদের 3টি স্বরবর্ণ।

সবগুলো বর্ণ একত্রে নিয়ে মোট সাজানো সংখ্যা = 8! = 40320

3টি স্বরবর্ণকে একটি একক বর্ণ মনে করলে পৃথক বর্ণগুলো হবে (AUE), D, G, H, T এবং R . এই 6টি ভিন্ন বর্ণকে 6! প্রকারে এবং 3টি ভিন্ন স্বরবর্ণকে নিজেদের মধ্যে 3! প্রকারে সাজানো যায়।

স্বরবর্ণগুলোকে কোন সময়ই পৃথক না রেখে মোট সাজানো সংখ্যা = $6! \times 3! = 720 \times 6 = 4320$

(ii) স্বরবর্ণগুলোকে কোন সময়ই পাশাপাশি না রেখে মোট সাজানো সংখ্যা = সবগুলো বর্ণ একত্রে নিয়ে মোট সাজানো সংখ্যা – স্বরবর্ণগুলোকে কোন সময়ই পৃথক না রেখে মোট সাজানো সংখ্যা = 40320 – 4320 = 36000

(d) 'DIGITAL' শব্দটির বর্ণগুলোর সব্গুলো একত্রে নিয়ে কত প্রকারে সাজানো যায় তা নির্ণয় কর এবং এদের কতগুলিতে স্বরব্দ গুলো একত্রে থাকবে? [য. '১০]

সমাধান ঃ ' DIGITAL ' শব্দটিতে 2টি I সহ মোট 7টি বর্ণ আছে ।

সবগুলো বর্ণ একত্রে নিয়ে মোট সাজানো সংখ্যা = $\frac{7!}{2!}$ = 2520 (Ans.)

3টি স্বরবর্ণ I, I ও A কে একটি একক বর্ণ মনে করলে পৃথক বর্ণগুলো হবে (I I A), D, G, T এবং L. এই 5টি তিন্ন বর্ণকে 5! প্রকারে এবং 3টি স্বরবর্ণকে নিজেদের মধ্যে $\frac{3!}{2!}$ = 3 প্রকারে সাজানো যায় ।

স্বরবর্ণগুলোকে একত্রে রেখে মোট সাজানো সংখ্যা = $5! \times 3 = 120 \times 3 = 360$ (Ans.)

7. 9 টি বলের 7টি বল লাল, 2টি সাদা (i) এদের উপর কোন বিধি–নিষেধ আরোপ না করে এবং (ii) সাদা বল দুইটি পাশাপাশি না রেখে বলগুলোকে কত প্রকারে এক সারিতে সাজানো যায়, তা নির্ণয় কর।

সমাধান ঃ এখানে 9 টি বলের মধ্যে 7টি লাল এবং 2টি সাদা।

(i) এদের উপর কোন বিধি–নিষেধ আরোপ না করে নির্ণেয় সাজানো সংখ্যা = $\frac{9!}{7! \times 2!} = 36$

(ii) সাদা বল দুইটি একটি একক বল মনে করলে মোট বলের সংখ্যা হবে (9 – 2 + 1) অর্থাৎ, 8টি যাদের মধ্যে

7টি লাল । অতএব, সাদা বল দুইটি পাশাপাশি রেখে মোট সাজানো সংখ্যা $=rac{8!}{7!!}=8$

সাদা বল দুইটি পাশাপাশি না রেখে মোট সাজানো সংখ্যা = 36 - 8 = 28

8.(a) স্বরবর্গগুলোর স্থান পরিবর্তন না করে ' PERMUTATION ' শব্দটির বর্ণগুলো কত উপায়ে পুনর্বিন্যাস করা যায়? [ব.'০০, ০৫ ; চ.'০০, ০৪; ঢা.'০৯; দি.'১৩]

সমাধান ঃ ' PERMUTATION ' শব্দটিতে মোট 11টি বর্ণ আছে যাদের 5টি স্বরবর্ণ। 5 টি স্বরবর্ণের স্থান পরিবর্তন না করে 2টি T সহ অবশিষ্ট (11 – 5) বা, 6টি ব্যঞ্জন বর্ণকে $\frac{6!}{2!} = \frac{720}{2} = 360$ উপায়ে সাজানো যায়ু।

নির্ণেয় পুনর্বিন্যাস করার উপায় = 360 - 1 = 359 (Ans.)

(b) স্বরবর্ণগুলোর (i) রুম পরিবর্তন না করে (ii) স্থান পরিবর্তন না করে এবং (iii) স্বরবর্ণের ও ব্যঞ্জনবর্ণের আপেক্ষিক অবস্থান পরিবর্তন না করে 'DIRECTOR' শব্দটি কত প্রকারে পুনরায় সাজানো যায় তা নির্ণয় কর। সমাধান ঃ (i) 'DIRECTOR' শব্দটিতে মোট ৪টি বর্ণ আছে যাদের 3টি স্বরবর্ণ। ক্রম পরিবর্তন না করায় স্বরবর্ণ 3টি (I, E, O) পরস্পরের মধ্যে আগেরটি পরে ও পরেরটি আগে আসতে পারে না। তাই তারা 3টি এক জাতীয় বর্ণের ন্যায় অবস্থান করে। তাহলে, ৪ টি বর্ণের মধ্যে 3টি স্বরবর্ণ এক জাতীয় এবং 2টি R অন্য এক জাতীয়।

স্বরবর্ণগুলোর ক্রম পরিবর্তন না করে মোট সাজানো সংখ্যা = $\frac{8!}{3! \times 2!}$ = 3360

'DIRECTOR' শব্দটি নিজেই একটি সাজানো সংখ্যা।

নির্ণেয় পুনরায় সাজানো সংখ্যা = 3360-- 1 = 3359

(ii) স্বরবর্ণ 3টির স্থান নির্দিষ্ট রেখে 2টি R সহ 5টি ব্যঞ্জন বর্ণকে <u>5!</u> = 60 রকমে সাজানো যায়। 2!

স্বরবর্ণগুলোর স্থান পরিবর্তন না করে নির্ণেয় পুনরায় সাজানো সংখ্যা = 60 – 1 = 59

(iii) এক্ষেত্রে, স্বরবর্ণ 3টি নির্দিষ্ট 3টি (২য়, ৪র্থ এবং ৭ম) স্থানে নিজেরা 3! = 6 প্রকারে বিন্যস্ত হয় এবং ব্যাজন বর্ণ 5টি নির্দিষ্ট 5টি (১ম, ৩য়, ৫ম ৬ষ্ঠ এবং ৮ম) স্থানে নিজেরা <u>5টি নির্দিষ্ট 5টি (১ম, ৩য়, ৫ম</u> ৬ষ্ঠ এবং ৮ম) স্থানে নিজেরা <u>5!</u> = 60 প্রকারে বিন্যস্ত হয়।

স্বরবর্ধের ও ব্যঞ্জনবর্ধের আপেক্ষিক অবস্থান পরিবর্তন না করে নির্ধেয় সাজানো সংখ্যা =6 imes 60 - 1 = 359

9.(a) 'MILLENNIUM ' শব্দটির সব কয়টি বর্ণকে কত প্রকারে সাজানো যায় তা নির্ণয় কর। তাদের কতগুলোতে প্রথমে ও শেষে M থাকবে? [সি.,০৬, '১২; প্র.জ.প.'০৪]

সমাধান ঃ১ম অংশঃ 'MILLENNIUM' শব্দটিতে মোট 10টি বর্ণ আছে যাদের 2টি I, 2টি M, 2টি L ও 2টি N

এ শব্দটির বর্ণগুলো একত্রে নিয়ে সাজানো যায় $\frac{10!}{2! \times 2! \times 2! \times 2!} = 226800$ উপায়ে।

২য় জংশ ঃ প্রথম ও শেষ স্থান দুইটি 'L ' দ্বারা নিদিষ্ট করে 2টি M এবং 2টি N সহ অবশিষ্ট (10 – 2) **অর্থাৎ**, ৪টি বর্ণকে ৪টি স্থানে $\frac{8!}{2! \times 2! \times 2!} = 5040$ উপায়ে সাজানো যায় ।

নির্ণেয় সাজানো সংখ্যা 226800 ও 5040.

(b) 'IMMEDIATE' শব্দটির সব কয়টি বর্ণকে কত প্রকারে সাজানো যায় তা নির্ণয় কর। কতগুলোর প্রথমে T এবং শেষে A থাকবে ?

সমাধান ঃ ১ম অংশ ঃ ' IMMEDIATE ' শব্দটিতে মোট 9টি বর্ণ আছে যাদের 2টি I, 2টি M এবং 2টি E.

এ শব্দটির বর্ণগুলো একত্রে নিয়ে সাজানো যায় = $\frac{9!}{2! \times 2! \times 2!}$ = 45360 উপায়ে। ২য় অংশ ঃ প্রথম স্থানটি 'T ' এবং শেষ স্থানটি 'A ' দ্বারা নিদিষ্ট করে অবশিষ্ট (9 – 2) বা 7টি বর্গকে (যাদের 2টি I, 2টি M এবং 2টি E) 7টি স্থানে $\frac{7!}{2! \times 2! \times 2!}$ = 630 উপায়ে সাজানো যায় ।

(c) 'DAUGHTER' শব্দটির বর্ণগুলো মোট কত রকমে সাজানো যাবে ? কতগুলো D দ্বারা শুরু হবে? কতগুলোর প্রথমে D এবং শেষে R থাকবে? [3.200]কতগুলোর প্রথমে D থাকবে কিন্দুত শেষে R থাকবে না ? কতগুলোর প্রথমে D এবং শেষে R থাকবে না ?

সমাধান ঃ ১ম অংশ ঃ ' DAUGHTER' শব্দটির ৪ টি ভিন্ন বর্ণ আছে ।

নির্ণেয় বিন্যাস সংখ্যা = 8! = 40320

২য় অংশ ঃ প্রথম স্থানাটি ' D ' দ্বারা নির্দিষ্ট করে অবশিষ্ট (8 – 1) অর্থাৎ, 7টি বর্ণকে 7! উপায়ে সাজানো যায় ।

নির্ণেয় বিন্যাস সংখ্যা = 7! = 5040 (Ans.)

এয় অংশ ঃ প্রথম স্থানটি ' D ' এবং শেষ স্থানটি ' R ' দ্বারা নিদিষ্ট করে অবশিষ্ট (8 – 2) বা , 6টি বর্ণকে 6! উপায়ে সাজানো যায় ।

নির্ণেয় সাজানো সংখ্যা = 6! = 720 (Ans.)

৪র্ধ অংশ ঃ প্রথমে D থাকবে কিন্তু শেষে R থাকবে না এমন সাজানো সংখ্যা = প্রথমে D থাকে এমন সাজানো সংখ্যা – প্রথমে D এবং শেষে R থাকে এমন সাজানো সংখ্যা = 5040 - 720 = 4320

বিকন্ধ পন্ধতি ঃ যেহেতু প্রথম স্থানটি D দ্বারা পূরণ করতে হয় এবং শেষের স্থানটি R দ্বারা পূরণ করা যায় না , অতএব শেষের স্থানটি (8-2) বা, 6টি বর্ণ দ্বারা 6P_1 ভাবে পূরণ করা যায়

আবার , মাঝের (8 – 2) বা, 6টি স্থান অবশিষ্ট 6টি বর্ণ দ্বারা 6! উপায়ে পূরণ করা যায়।

নির্ণেয় সাজানো সংখ্যা = ${}^{6}P_{1} \times 6! = 6 \times 720 = 4320$

মে জলে 3 নির্ণেয় সাজানো সংখ্যা = সবগুলো বর্ণ একত্রে নিয়ে মোট সাজানো সংখ্যা – প্রথমে ' D ' নিয়ে সাজানো সংখ্যা – শেষে ' R ' নিয়ে সাজানো সংখ্যা + প্রথমে ' D ' এবং শেষে ' R ' নিয়ে সাজানো সংখ্যা

= 8! - 7! - 7! + 6! = 40320 - 2.5040 + 720 = 41040 - 10080 = 30960

10. (a)' POSTAGE' শব্দটির সব কয়টি বর্ণকে কত প্রকারে সাজানো যেতে পারে যাতে স্বরবর্ণগুলো জোড় স্থান দখল করবে? কতগুলোতে ব্যঞ্জনবর্ণগুলো একত্রে থাকবে? [কু.'১৪]

সমাধান ঃ ১ম অংশ ঃ ' POSTAGE' শব্দটিতে মোট 7টি বর্ণ আছে যাদের 3টি ভিন্ন স্বরবর্ণ এবং 4টি ভিন্ন ব্যঞ্জনবর্ণ। এখানে 7টি স্থানের মধ্যে 3টি জোড় স্থান (২য়, ৪র্থ এবং ৬ষ্ঠ) 3টি ভিন্ন স্বরবর্ণ দ্বারা 3! উপায়ে এবং 4টি বিজ্ঞোড় স্থান (১ম, ৩য়, ৫ম এবং ৭ম) 4টি ভিন্ন ব্যঞ্জনবর্ণ দ্বারা 4! উপায়ে পূরণ করা যাবে।

স্বরবর্ণগুলো জোড় স্থানে রেখে নির্ণেয় সাজানো সংখ্যা = 3!×4! = 6×24 = 144

২য় অংশ ঃ 4টি ব্যঞ্জনবর্ণকে একটি একক বর্ণ মনে করলে ভিন্ন বর্ণ হবে (PSTG), O, A, E । এই 4টি বর্ণকে 4! প্রকারে এবং 4টি ভিন্ন ব্যঞ্জনবর্ণকে নিজেদের মধ্যে 4! প্রকারে সাজানো যাবে ।

ব্যঞ্জনবর্ণগুলোকে একত্রে রেখে মোট সাজানো সংখ্যা = $4! \times 4! = 24 \times 24 = 576$

(b) স্বরবর্গগুলোকে কেবল (i) জোড় স্থানে (ii) বিজ্ঞোড় স্থানে রেখে 'ARTICLE' শব্দটির অক্ষরগুলোকে কত প্রকারে সাজানো যায় তা নির্ণয় কর। [ঢা. '১০]

সমাধান ঃ (i) 'ARTICLE' শব্দটিতে মোট 7টি বর্ণ আছে যাদের 3টি ভিন্ন স্বরবর্ণ এবং 4টি ভিন্ন ব্যঞ্জনবর্ণ। এখানে 7টি স্থানের মধ্যে 3টি জোড় স্থান (২য়, 8র্থ এবং ৬ষ্ঠ) 3টি ভিন্ন স্বরবর্ণ দ্বারা 3! উপায়ে এবং অবশিষ্ট 4টি স্থান 4টি ভিন্ন ব্যঞ্জনবর্ণ দ্বারা 4! উপায়ে পুরণ করা যাবে।

স্বরবর্ণগুলোকে কেবল জোড় স্থানে রেখে নির্ণেয় সাজানো সংখ্যা = $3! \times 4! = 6 \times 24 = 144$

(ii) 7টি স্থানের মধ্যে 4টি বিজোড় স্থান (১ম, ৩য়, ৫ম এবং ৭ম) এর 3টি স্থান 3টি ভিন্ন স্বরবর্ণ দারা ⁴P₃
 উপায়ে এবং অবশিষ্ট 4টি স্থান 4টি ভিন্ন ব্যঞ্জনবর্ণ দারা 4! উপায়ে পুরণ করা যাবে।

স্বরবর্ণগুলোকে কেবল বিজ্ঞোড় স্থানে রেখে নির্ণেয় সাজানো সংখ্যা = ${}^{4}P_{3} \times 4! = 24 \times 24 = 576$

10. (c) 'ALLAHABAD' শব্দটির সব কয়টি বর্ণকে কত প্রকারে সাজ্ঞানো যায় তা নির্ণয় কর। এদের কতগুলোতে A চারটি একত্রে থাকবে ? এদের কতগুলোতে স্বরবর্ণগুলো জোড় স্থান দখল করবে?

সমাধান ঃ ১ম অংশ ঃ 'ALLAHABAD' শব্দটিতে মোট 9টি বর্ণের মধ্যে 4টি A এবং 2টি L আছে।

সবগুলো বর্ণ একত্রে নিয়ে মোট সাজানো সংখ্যা = $\frac{9!}{4! \times 2!}$ = 7560

২য় অংশ ঃ A চারটিকে একটি একক বর্ণ মনে করলে ভিন্ন বর্ণ হবে (AAAA), L, L, H, B এবং D. 2টি L সহ

এ 6টি বর্ণকে $\frac{6!}{2!}$ = 360 উপায়ে এবং A চারটিকে নিজেদের মধ্যে $\frac{4!}{4!}$ = 1 উপায়ে সাজানো যাবে।

A চারটি একত্রে নিয়ে নির্দেয় সাজানো সংখ্যা = $360 \times 1 = 360$

৩য় অংশ ঃ 4টি স্থানের মধ্যে 4টি জোড় স্থান 4টি স্বরবর্ণ অর্থাৎ 4টি A দ্বারা $\frac{4!}{4!} = 1$ উপায়ে এবং 5টি বিজোড় স্থান

2টি m L সহ 5টি ব্যঞ্জনবর্ণ দ্বারা $rac{5!}{2!}=60$ উপায়ে সাজানো যাবে।

স্বরবর্ণগুলো জোড় স্থানে রেখে নির্ণেয় সাজানো সংখ্যা = $1 \times 60 = 60$

11 (a) দেখাও যে, দুইখানা বিশেষ পুস্তক একন্ত্রে না রেখে n সংখ্যক বিভিন্ন পুস্তক যত রকমে সাচ্চানো যায় তার সংখ্যা (n-2)(n-1)!

সমাধান ঃ n সংখ্যক বিভিন্ন পুস্তকের সক্গুলো একত্রে নিয়ে সাজানো সংখ্যা = n!

দুইখানা বিশেষ পুস্তককে একটি একক পুস্তক মনে করলে সাজানোর জন্য (n – 1) সংখ্যক পুস্তক পাই। এই (n – 1) সংখ্যক পুস্তক একত্রে (n – 1)! প্রকারে এবং বিশেষ পুস্তক দুইটিকে নিজেদের মধ্যে 2! = 2 প্রকারে সাজানো যায়।

দুইখানা বিশেষ পুস্তক একত্রে রেখে সাজানো সংখ্যা = $(n - 1)! \times 2 = 2 (n - 1)!$

দুইখানা বিশেষ পুস্তক একত্রে না রেখে নির্ণেয় সাজানো সংখ্যা = n! - 2 (n-1)! = n.(n-1)! - 2(n-1)!= (n-2).(n-1)!

(b) n সংখ্যক বিভিন্ন জিনসকে কত রকমে এক সারিতে সাজানো যায়, যাতে বিশেষ দুইটি জিনিস সারির প্রথমে বা শেষে না থাকে? সমাধান ঃ বিশেষ জিনিস দুইটি সারির প্রথমে বা শেষে না থাকলে অবশিষ্ট (n − 2) সংখ্যক বিভিন্ন জিনস দ্বারা প্রথম ও শেষ স্থান দুইটি ^{n−2} P₂ উপায়ে পূরণ করা যায় এবং অবশিষ্ট (n − 2) সংখ্যক বিভিন্ন জিনস দ্বারা মধ্যের (n − 2) সংখ্যক স্থান (n − 2)! উপায়ে পূরণ করা যায় ।

নির্দেয় সাজানো সংখ্যা = ${}^{n-2}P_2 \times (n-2)! = (n-2)(n-3) .(n-2)!$

(c) n সংখ্যক বিভিন্ন জিনিসের r সংখ্যক একবারে নিয়ে কত রকমে এক সারিতে সাজানো যায়, যাতে বিশেষ দুইটি জিনিস অন্তর্ভুক্ত থাকে কিন্তু তারা সারির প্রথমে বা শেষে থাকে না?

সমাধান ঃ বিশেষ জিনিস দুইটি সারির প্রথমে বা শেষে না থাকলে অবশিষ্ট (n-2) সংখ্যক বিভিন্ন জিনস দ্বারা প্রথম ও শেষ স্থান দুইটি ⁿ⁻² P₂ উপায়ে পূরণ করা যায় এবং অবশিষ্ট (n-2) সংখ্যক বিভিন্ন জিনস দ্বারা মধ্যের (r-2)সংখ্যক স্থান ⁿ⁻² P_{r-2} উপায়ে পূরণ করা যায়।

নির্ধেয় সাজানো সংখ্যা = $^{n-2}P_2 \times ^{n-2}P_{r-2} =$ (n-2)(n-3) $\frac{(n-2)!}{(n-2-r+2)!} = \frac{(n-2)!}{(n-r)!}$ (n-2)(n-3)

 12.(a) 'SECOND ' শব্দটির বর্ণগুলো থেকে একটি স্বরবর্ণ ও দুইটি ব্যঞ্জন বর্ণ নিয়ে কতগুলো শব্দ গঠন করা যেতে পারে, যখন স্বরবর্ণ সর্বদা মধ্যম স্থান দখল করে?
 [ব.'০৩]

সমাধান ঃ ' SECOND ' শব্দটিতে মোট 6টি বর্ণ আছে যাদের 2টি স্বরবর্ণ এবং 3টি ব্যঞ্জন বর্ণ। মধ্যম স্থানটি দুইটি ভিন্ন স্বরবর্ণ দ্বারা ${}^2P_1 = 2$ উপায়ে এবং প্রান্ত স্থান 2টি 4টি ভিন্ন ব্যঞ্জন বর্ণ দ্বারা ${}^4P_2 = 12$ উপায়ে পুরণ করা যেতে পারে।

নির্ণেয় শব্দের সংখ্যা = $2 \times 12 = 24$ (Ans.)

(b) 7টি বিভিন্ন ব্যঞ্জনবর্ণ এবং 3টি বিভিন্ন স্বরবর্ণ থেকে দুইটি ব্যঞ্জনবর্ণ ও একটি স্বরবর্ণ নিয়ে কতপূলো শব্দ গঠন করা যায়, যাতে স্বরবর্ণটি ব্যঞ্জনবর্ণের মাঝখারে থাকবে? সমাধান ঃ মধ্যম স্থানটি 3টি বিভিন্ন স্বরবর্ণ দ্বারা ³P₁ = 3 উপায়ে এবং প্রান্ত স্থান 2টি, 7টি বিভিন্ন ব্যঞ্জন বর্ণ দ্বারা ⁷P₂ = 42 উপায়ে পূরণ করা যাবে । ∴ নির্ণেয় শব্দের সংখ্যা = 3 × 42 = 126

(c) যদি ' CAMBRIDGE ' শব্দটির বর্ণগুলো থেকে কেবল 5টি বর্ণ নিয়ে শব্দ গঠন করা হয় তবে কতগুলোতে প্রদন্ত শব্দটির সব কয়টি স্বরবর্ণ বর্তমান থাকবে ৪ [চ. '০৪; কু.'০৭]

সমাধান ঃ 'CAMBRIDGE' শব্দটিতে মোট 9টি ভিন্ন বর্ণ আছে যাদের 3টি স্বরবর্ণ এবং 6টি ব্যঞ্জন বর্ণ।

5টি স্থান 3টি ভিন্ন স্বরবর্ণ দ্বারা ⁵ P₃ = 60 উপায়ে পূরণ করা যাবে । অবশিষ্ট (5 – 3) অর্থাৎ, 2টি স্থান 6টি ভিন্ন ব্যঞ্জন বর্ণ দ্বারা ⁶ P₂ = 30 উপায়ে পূরণ করা যাবে ।

নির্ণেয় শব্দ . গঠন করার উপায় সংখ্যা = $60 \times 30 = 1800$

বিকল্প পদ্ধতি ঃ প্রদত্ত শব্দটিতে মোট 9টি ভিন্ন বর্ণ আছে যাদের 3টি স্বরবর্ণ এবং 6টি ব্যজ্ঞন বর্ণ।

6টি ব্যঞ্জন বর্ণ হতে 2টি ব্যঞ্জন বর্ণ ${}^{6}C_{2}$ উপায়ে বেছে নেওয়া যায়। 3 টি স্বরবর্ণ এবং 2টি ব্যঞ্জন বর্ণ 5! প্রকারে বিন্যস্ত হয়।

নির্ণেয় শব্দ গঠন করার উপায় সংখ্যা = ${}^{6}C_{2} \times 5! = 15 \times 120 = 1800$ (Ans.)

12. (d) 'EQUATION' শব্দটির বর্ণগুলো হতে প্রত্যেকবার 4টি বর্ণ নিয়ে বিভিন্ন শব্দ গঠন করা হল, এদের ফতগুলোতে Q বর্তমান থাঁকবে কিম্তু N থাকবে না ? [য.'০৮]

সমাধান ঃ 'EQUATION' শব্দটিতে 8 টি ভিন্ন বর্ণ আছে। 4টি বর্ণ নিয়ে গঠিত শব্দে 4টি স্থানে Q বর্তমান থাকবে ${}^{4}P_{1} = 4$ উপায়ে। অবশিষ্ট (4 – 1) অর্থাৎ 3টি স্থান 6টি বর্ণ E, U, A, T, I এবং O দ্বারা পূরণ করা যাবে ${}^{6}P_{3} = 120$ উপায়ে। O কে বর্তমান রেখে এবং N কে বর্তমান না রেখে শব্দ হঠন করা যাবে $4 \times 120 = 480$ টি।

বিকল্প পদ্ধতি ঃ Q কে বর্তমান রেখে এবং N কে বর্তমান না রেখে 4টি বর্ণ নিয়ে শব্দ গঠন করা হলে অন্য (8-2) = 6টি বর্ণ হতে 3টি বর্ণ নিতে হবে এবং তা ${}^{6}C_{3} = 20$ উপায়ে নেওয়া যায়। আবার, 4টি ভিন্ন বর্ণ দ্বারা শব্দ গঠন করা যায় 4! = 24 টি।

Q কে বর্তমান রেখে এবং N কে বর্তমান না রেখে শব্দ হঠন করা যায় $20 \times 24 = 480$ টি।

13. (a) 10 টি বস্ত্র 5টি একবারে নিয়ে কতগুলো বিন্যাসের মধ্যে 2টি বিশেষ বস্তু সর্বদা জলতর্ভুক্ত থাকবে?

[ৰু.'১০]

সমাধান ঃ 5টি একবারে নিয়ে গঠিত বিন্যাসের 5টি স্থান 2টি বিশেষ বস্তু দ্বারা ${}^5P_2 = 20$ উপায়ে পূরণ করার পর অবশিষ্ট (5 – 2) অর্থাৎ, 3টি স্থান বাকি (10 – 2) অর্থাৎ, 8টি বস্তু দ্বারা ${}^8P_3 = 336$ উপায়ে পূরণ করা যাবে। নির্ণেয় বিন্যাস সংখ্যা = $20 \times 336 = 6720$

বিকল্প পন্ধতি ঃ 2 টি বিশেষ বস্তুকে সর্বদা অন্দতর্ভুক্ত রেখে অবশিষ্ট (10 – 2) বা, ৪টি বস্তু হতে 3টি বস্তু ${}^8\mathrm{C}_3$ উপায়ে বেছে নেওয়া যাবে । আবার , 5 টি বস্তুকে 5! উপায়ে সাজানো যাবে ।

নির্ধোয় বিন্যাস সংখ্যা = ${}^{8}C_{3} \times 5! = 56 \times 120 = 6720$

(b) ইংরেচ্ছি বর্ণমালার 26টি বর্ণ থেকে কতন্ত্রকারে 5টি বিভিন্ন বর্ণ সমন্দ্বিত একটি শব্দ গঠন করা যায়, যাদের মধ্যে A এবং L অক্ষর দুইটি অবশ্যই থাকবে ?

সমাধান s 5টি অক্ষর নিয়ে গঠিত শব্দে 5টি স্থান A এবং L অক্ষর দ্বারা ${}^5P_2=20$ উপায়ে পূরণ করার পর অবশিষ্ট (5– 2) অর্থাৎ, 3টি স্থান বাকি (26 - 2) অর্থাৎ, 24টি অক্ষর দ্বারা $^{24}P_3 = 12144$ উপায়ে পূরণ করা যাবে।

নির্শেয় সংখ্যা = 20 × 12144 = 242880

14 (a) একন্দন লোকের একটি সাদা, দুইটি লাল এবং তিনটি সবুদ্ধ পতাকা আছে। একটির উপর আরেকটি সাদ্ধানো চারটি পতাকা নিয়ে সে কতগুলো বিভিন্ন সংকেত তৈরী করতে পারবে ? [রা.'০২] সমাধান **ঃ** মোট পতাকার সংখ্যা = 1 + 2 + 3 = 6.

6টি পতাকা হতে 4টি পতাকা নির্বাচন করে সে নিমুরুপে সংকেত তৈরী করতে পারবে ঃ

সাদ	<u> পতাকা (1)</u>	লাল পতাকা (2)	সবুন্ধ পতাকা (3)	সংকেত তৈরীর উপায় সংখ্যা
1	2	1	$\frac{4!}{2!} = 12$	
1	1	2	$\frac{4!}{2!} = 12$	
1	0	3	$\frac{4!}{3!} = 4$	
0	1	3	$\frac{4!}{3!} = 4$	
0	2	2	$\frac{4!}{2!2!} = 6$	

সে সংকেত তৈরী করতে পারবে (12 + 12 + 4 + 4 + 6) বা, 38 উপায়ে।

14 (b)একজন লোকের একটি সাদা , দুইটি লাল এবং তিনটি সবুন্ধ পতাকা আছে। একটির উপর আরেকটি সাজানো পাঁচটি পতাকা নিয়ে সে কতগুলো বিভিন্ন সংকেত তৈরী করতে পারবে ? [বৃ. '0); দি. '১০; প্র.ড.প. '08] সমাধান i মোট পতাকার সংখ্যা = 1 + 2 + 3 = 6.

6টি পতাকা হতে 5টি পতাকা নির্বাচন করে সে নিমুরপে সংকেত তৈরী করতে পারবে ঃ

<u>সাদা পতাকা(1)</u>	লাল পতাকা (2)	সবুজ পতাকা (3)	সংকেত তৈরীর উপায় সংখ্যা
1	2	2	$\frac{5!}{2!2!} = 30$
1	1	3	$\frac{5!}{3!} = 20$
0	2	3	$\frac{5!}{2!3!} = 10$

নির্ণেয় সংখ্যা = 30 + 20 + 10 = 60 (Ans.)

15. (a) দুইজন B.Sc. ক্লাসের ছাত্রকে পাশাপাশি না বসিয়ে 14 জন I.Sc. ক্লাসের ও 10 জন B.Sc. ক্লাসের ছাত্রকে কত রকমে একটি লাইনে সাজানো যায়, তা নির্ণয় কর। [য.'o8] সমাধান ঃ 14 জন I.Sc. ক্লাসের ছাত্রকে একটি লাইনে 14! রকমে সাজানো যায়। এই 14 জন I.Sc. ক্লাসের ছাত্রের মাঝখানে (14 –1) = 13 টি ফাঁকা স্থান পাওয়া যায়। এ ছাড়া লাইনের দুই প্রান্সেত জারও দুইটি ফাঁকা স্থান পাওয়া যায়।

সুতরাং, (13 + 2) = 15টি ফাঁকা স্থানে 10 জন B.Sc. ক্লাসের ছাত্রকে $^{15}P_{10}$ রকমে সাজানো যায়।

নির্ণেয় সাজানো সংখ্যা = 14! × ¹⁵ P 10

15 (b) দুইটি যোগবোধক চিহ্ন পাশাপাশি না রেখে p-সংখ্যক যোগবোধক চিহ্ন ও q-সংখ্যক বিয়োগবোধক চিহ্ন (p < q) কত প্রকারে এক সারিতে সাজানো যায়, তা নির্ণয় কর।

সমাধান ঃ p-সংখ্যক যোগবোধক চিহ্ন একজাতীয় এবং q-সংখ্যক বিয়োগবোধক চিহ্ন একজাতীয়। q-সংখ্যক বিয়োগবোধক চিহ্নক এক সারিতে $\frac{q!}{q!} = 1$ রকমে সাজানো যায়।এই q-সংখ্যক বিয়োগবোধক চিহ্নের মাঝখানে (q -1) টি ফাঁকা স্থান পাওয়া যায়। এ ছাড়া সারির দুই প্রান্দেত আরও দুইটি ফাঁকা স্থান পাওয়া যায়। সুতরাং , {(q -1) + 2} = (q +1) টি ফাঁকা স্থান পাওয়া যায়। এ ছাড়া সারির দুই প্রান্দেত আরও দুইটি ফাঁকা স্থান পাওয়া যায়। সুতরাং , {(q -1) + 2} = (q +1) টি ফাঁকা স্থানে p-সংখ্যক যোগবোধক চিহ্নক $\frac{q^{+1}P_p}{p!} = \frac{(q+1)!}{p! \times (q+1-p)!}$ রকমে সাজানো যায়। নির্শেয় সাজানো সংখ্যা = 1 $\times \frac{(q+1)!}{p! \times (q+1-p)!} = \frac{(q+1)!}{p! \times (q-p+1)!}$

16 (a) 3, 4, 5, 6, 7, 8 অভকগুলোর একটিকেও পুনরাবৃত্তি না করে 5000 এবং 6000 মধ্যবর্তী কতগুলো সংখ্যা গঠন করা যেতে পারে? [ব.'১৩]

সমাধান ঃ 5000 এবং 6000 মধ্যবর্তী সংখ্যাগুলো অবশ্যই 4 অঞ্চের হতে হবে এবং প্রথম অর্জ্ঞাটি 5 দ্বারা আরম্ভ হতে হবে। এখানে 6টি বিভিন্ন অজ্ঞ আছে। প্রথম স্থানটি 5 দ্বারা নির্দিষ্ট করে অবশিষ্ট (4 – 1) = 3টি স্থান বাকি (6 – 1) = 5টি অজ্ঞ দ্বারা পূরণ করা যাবে ⁵ P₃ উপায়ে। : নির্ণেয় মোট সংখ্যা = ⁵ P₃ = 60

(b) প্রত্যেক অভককে প্রত্যেক সংখ্যায় একবার মাত্র ব্যবহার করে 5, 6, 7, 8, 0 অভকগুলো ঘারা পাঁচ অভক বিশিষ্ট এবং 4 ঘারা বিভাচ্চ্য কতগুলো সংখ্যা গঠন করা যেতে পারে?

সমাধান ঃ এখানে শূন্যসহ মোট 5টি অজ্ঞ আছে । সংখ্যার প্রথমে 0 থাকলে তা অর্থপূর্ণ সংখ্যা হবেনা। 4 দ্বারা বিভাজ্য সংখ্যাগুলোর শেষের অজ্ঞ দুইটি দ্বারা গঠিত সংখ্যা 4 দ্বারা বিভাজ্য হবে। অতএব, 4 দ্বারা বিভাজ্য সংখ্যাগুলোর শেষের অজ্ঞ দুইটি দ্বারা গঠিত সংখ্যা 08, 60, 80, 56, 68, 76 হবে।

শেষ দুইটি স্থানে 08, 60 ও 80 এর যেকোন একটি দ্বারা ${}^{3}P_{1}$ উপায়ে পূরণ করে অবশিষ্ট (5-2) = 3টি স্থান বাকি (5-2) = 3টি অজ্ঞক দ্বারা 3! উপায়ে পূরণ করা যাবে।

জাবার, শেষ দুইটি স্থানে 56, 68 ও 76 এর যেকোন একটি দ্বারা ³ P₁ উপায়ে এবং 0 ব্যতীত অপর দুইটি অজ্জের যেকোন একটি দ্বারা প্রথম স্থানটি ² P₁ উপায়ে পূরণ করে অবশিষ্ট (5 – 3) = 2টি স্থান 0 ও অপর একটি অজ্জ দ্বারা 2! উপায়ে পূরণ করা যাবে।

4 দ্বারা বিভাজ্য মোট সংখ্যা = ³ P₁ × 3! + ³ P₁ × ² P₁ × 2! = 3 × 6 + 3 × 2× 2 = 18 + 12 = 30

17. (a) প্রতিটি অজ্ঞ যতবার আছে এর বেশি সংখ্যকবার ব্যবহার না করে 3, 4, 5, 3, 4, 5, 6 এর বিজ্ঞোড় অজ্ঞকগুলো সবসময় বিজ্ঞোড় স্থানে রেখে সাত অজ্ঞ বিশিষ্ট কতগুলো সংখ্যা গঠন করা যেতে পারে?

সমাধান ঃ সাত অজ্ঞ বিশিষ্ট সংখ্যার 4টি বিজ্ঞোড় স্থান ও 3টি জোড় স্থান থাকে। 3, 5, 3 ও 5 অজ্ঞকগুলো দ্বারা 4টি বিজ্ঞোড় স্থান $\frac{4!}{2! \times 2!} = 6$ উপায়ে এবং 4, 4 ও 6 অজ্ঞকগুলো দ্বারা বাকি স্থান 3টি $\frac{3!}{2!} = 3$ উপায়ে পূরণ করা যাবে।

নির্ণেয় মোট সংখ্যা = $6 \times 3 = 18$

(b) প্রত্যেক সংখ্যায় প্রতিটি অঞ্চক কেবল একবার ব্যবহার করে 1, 2, 3, 4, 5, 6, 7, 8, 9 অঞ্চগুলো দ্বারা কতগুলো সংখ্যা গঠন করা যায়, যাদের প্রথমে ও শেষে চ্চোড় অঞ্চক থাকবে?

সমাধান ঃ এখানে 9টি বিভিন্ন অঞ্চক আছে যাদের 4টি জোড় অঞ্চন ।

প্রথম ও শেষ স্থান দুইটি 4টি জোড় অজ্ঞের যেকোন দুইটি দ্বারা 4P_2 উপায়ে এবং অবশিষ্ট (9-2) = 7টি স্থান বাকি (9-2) = 7টি অল্জ দ্বারা 7! উপায়ে পুরণ করা যাবে।

প্রথমে ও শেষে জোড় অঞ্চ নিয়ে মোট সংখ্যা = ${}^{4}P_{2} \times 7! = 12 \times 5040 = 60480$

18. কোন সংখ্যায় কোন অভেকর পুনরাবৃত্তি না করে 0,3,5,6,8 অভকগুলো দ্বারা 4000-এর চেয়ে বড় কতগুলো সংখ্যা গঠন করা যায়?

সমাধান ঃ প্রশ্নমতে সংখ্যাগুলো 4 অঙ্জের ও 5 অঙ্জের হবে।

4000-এর চেয়ে বড় 4 অজ্ঞ দ্বারা গঠিত সংখ্যাগুলো 5, 6 কিংবা 8 দ্বারা আরম্ভ হবে।

4 অজ্জ দ্বারা গঠিত মোট সংখ্যা = ${}^{3}P_{1} \times {}^{4}P_{3} = 3 \times 24 = 72$ 4000-এর চেয়ে বড় 5 অজ্জ দ্বারা গঠিত সংখ্যাগুলো 3, 5, 6 কিংবা ৪ দ্বারা আরম্ভ হবে।

4 অজ্ঞ দ্বারা গঠিত মোট সংখ্যা = ${}^{4}P_{1} \times {}^{4}P_{4} = 4 \times 24 = 96$

নির্শেয় মোট সংখ্যা = 72 + 96 = 168

19 (a)1,2,3, 4 অঞ্চগুলি যে কোন সংখ্যকবার ব্যবহার করে তিন অঞ্চের বেশি নয় এমন কতগুলি সংখ্যা তৈরী করা যায় ?

সমাধান : এখানে অঙ্জ 4টির প্রতিটি যে কোন সংখ্যকবার ব্যবহার করা যাবে।

∴ এক অজ্ঞ বিশিষ্ট সংখ্যা গঠন করা যাবে 4 উপায়ে।

দুই অজ্ঞ বিশিষ্ট সংখ্যার প্রতিটি স্থান (একক বা দশক) 4টি অজ্ঞ দ্বারা 4 উপায়ে পূরণ করা যাবে। অতএব, দুই অজ্ঞ বিশিষ্ট সংখ্যা গঠন করা যাবে 4×4 = 4² উপায়ে।

অনুরূপভাবে, তিন জ্ঞ বিশিষ্ট সংখ্যা গঠন করা যাবে 4³ উপায়ে।

নির্শেয় মোট সংখ্যা = $(4 + 4^2 + 4^3) = (4 + 16 + 64) = 84$

(b) 0, 1, 2, 3, 4, 5, 6, 7 জঙ্জগুলো যেকোন সংখ্যক্বার ব্যবহার করে 10000 এর ছোট কতগুলো বিজোড় সংখ্যা গঠন করা যায় ?

সমাধান ঃ শূন্যসহ 8টি অঙ্জের প্রতিটি যে কোন সংখ্যকবার ব্যবহার করা যাবে। সংখ্যার শেষে 1, 3, 5 বা 7 থাকলে সংখ্যাগুলি বিজোড় হবে এবং প্রথমে 0 থাকলে তা অর্থপূর্ণ সংখ্যা হবেনা । তাই, শেষ স্থানটি (অর্থাৎ একক স্থান) এ চারটি বিজোড় সংখ্যা দ্বারা 4 উপায়ে, বাম দিক হতে প্রথম স্থানটি 0 ব্যতীত বাকী 7টি অঙ্জ দ্বারা 7 উপায়ে এবং অন্যান্য স্থানগুলির প্রতিটি শূন্যসহ 8টি অঙ্জ দ্বারা 8 উপায়ে পূরণ করা যাবে।

∴ এক অঙ্জ্ঞ বিশিষ্ট বিজ্ঞোড় সংখ্যা গঠন করা যাবে 4 উপায়ে।

দুই অজ্ঞ বিশিষ্ট বিজ্ঞোড় সংখ্যা গঠন করা যাবে 7×4 অর্থাৎ 28 উপায়ে।

তিন অঙ্জ্ঞ বিশিষ্ট বিজ্ঞোড় সংখ্যা গঠন করা যাবে 7×8×4 অর্ধাৎ 224 উপায়ে।

চার অঙ্জ বিশিষ্ট বিজ্ঞোড় সংখ্যা গঠন করা যাবে 7×8×8×4 অর্থাৎ 1792 উপায়ে।

নির্ণেয় মোট সংখ্যা = (4 + 28 + 224 + 1792) = 2048

20. (a) একটি প্রফেসরের পদের জন্য 3 জন প্রার্থী 5 জন লোকের ভোটে একজন নির্বাচিত হবে। কত প্রকারে ভোট দেওয়া যেতে পারে? [য.'০৫; কু.'০৯; রা.'১০]

সমাধান ঃ প্রত্যেক ভোটার 3 জন প্রথীকে ভোট দিতে পারে 3 উপায়ে।

5 জন ভোটার 3 জন প্রার্থীকে ভোট দিতে পারে $3 \times 3 \times 3 \times 3 \times 3 = 3^5 = 243$ উপায়ে।

243 প্রকারে ভোট দেওয়া যেতে পারে।

(b) তিনটি পুরস্কারের একটি সদাচারের জন্য, একটি ক্রীড়ার জন্য এবং একটি সাধারণ উন্নতির জন্য। 10 জন বালকের মধ্যে এগুলো কত রকমে বিতরণ করা যেতে পারে?

সমাধান ঃ প্রত্যেক পুরস্কার 10 জন বালকের মধ্যে 10 উপায়ে বিতরণ করা যায়।

তিনটি পুরস্কার 10 জন বালকের মধ্যে বিতরণ করার মোট উপায় সংখ্যা = 10 imes 10 imes 10 = 1000

21. (a) গণিডের 5 খানা, পদার্ধবিজ্ঞানের 3 খানা ও রসায়নবিজ্ঞানের 2 খানা পুস্তককে একটি তাকে কত প্রকারে সাচ্চানো যেতে পারে যাতে একই বিষয়ের পুস্তকগুলো একব্রে থাকে?

সমাধান ঃ যেহেতু একই বিষয়ের পুস্তকগুলো একত্রে থাকে, অতএব গণিতের 5 খানা পুস্তককে গণিতের একটি একক পুস্তক, পদার্থবিজ্ঞানের 3 খানা পুস্তককে পদার্থবিজ্ঞানের একটি একক পুস্তক এবং রসায়নবিজ্ঞানের 2 খানা পুস্তককে রসায়নবিজ্ঞানের একটি একক পুস্তক মনে করতে হবে।

এই 3 বিষয়ের পুস্তক 3! = 6 উপায়ে এবং গণিতের 5 খানা পুস্তককে নিজেদের মধ্যে 5! = 120 উপায়ে, পদার্থবিজ্ঞানের 3 খানা পুস্তককে 3! = 6 উপায়ে ও রসায়নবিজ্ঞানের 2 খানা পুস্তককে 2! = 2 উপায়ে সাজানো যাবে।

একই বিষয়ের পুস্তকগুলো একত্রে রেখে নির্ণেয় সাজানো সংখ্যা = 6×120×6 ×2 = 8640

(b) একটি তালার 4টি রিং এর প্রত্যেকটিতে 5টি করে অক্ষর মুদ্রিত আছে। প্রতিটি রিং এর একটি করে 4টি অক্ষরের একমাত্র বিন্যাসের জন্য তালাটি খোলা গেলে কতগুলি বিন্যাসের জন্য তালাটি খোলা যাবে না ? সমাধান ঃ প্রতিটি বিন্যাসের প্রথম স্থানটি প্রথম রিং এর 5টি অক্ষর দ্বারা পূরণ করা যায় 5 উপায়ে। প্রতিটি বিন্যাসের দ্বিতীয় স্থানটি দ্বিতীয় রিং এর 5টি অক্ষর দ্বারা পূরণ করা যায় 5 উপায়ে। প্রতিটি বিন্যাসের তৃতীয় স্থানটি দ্বিতীয় রিং এর 5টি অক্ষর দ্বারা পূরণ করা যায় 5 উপায়ে।

প্রতিটি বিন্যাসের চত্র্থ স্থানটি চত্র্থ রিং এর 5টি অক্ষর দ্বারা পূরণ করা যায় 5 উপায়ে।

চারটি রিং এর অক্ষরগুলি দ্বারা গঠিত বিন্যাসের সংখ্যা = $5 \times 5 \times 5 \times 5 = 25$

যেসব বিন্যাসের জন্য তালাটি খোলা যাবেনা তাদের সংখ্যা = 625 - 1 = 624

22. (a) 8 জন মেয়ে বৃত্তাকারে নাচবে । কত প্রকারে পৃথক ভাবে তারা বৃত্তাকারে দাঁড়াবে?

সমাধান ঃ 1 জন মেয়েকে নির্দিষ্ট করে অবশিষ্ট (8 – 1) বা, 7 জন মেয়েকে 7! প্রকারে সাজানো যায়।

7! = 5040 ভাবে তারা বৃত্তাকারে দাঁড়াতে পারবে।

(b) 8 টি ভিন্ন ধরনের মুক্তা কত রকমে একটি ব্যান্ডে লাগিয়ে একটি হার তৈরি করা যেতে পারে?

সমাধান ঃ 1টি মুক্তা নির্দিষ্ট করে অবশিষ্ট (8 – 1) বা, 7 টি মুক্তাকে 7! প্রকারে একটি ব্যান্ডে লাগিয়ে একটি হার হৈরি করা যেতে পারে। কিন্তু হারটি একটি চব্রু বিন্যাস যা উপর এবং নিচ থেকে অথবা উল্টিয়ে দেখা যায়।

 $\frac{7!}{2} = \frac{5040}{2} = 2520$ রকমে একটি হার তৈরি করা যেতে পারে ।

22 (c) দুইন্ধন কলা বিভাগের ছাত্রকে পাশাপাশি না বসিয়ে 8 জন বিজ্ঞান বিভাগের ছাত্র ও 7 জন কলা বিভাগের ছাত্রকে কত রকমে একটি গোল টেবিলের চারপাশে বসানো যায়, তা নির্ণয় কর। [বা.'১১; ঢা.'১২]

সমাধান ঃ 1 জন বিজ্ঞানের ছাত্রকে নির্দিষ্ট করে অবশিষ্ট (8 – 1) বা, 7 জন বিজ্ঞানের ছাত্রকে একটি গোল টেবিলের চারপাশে 7! রকমে বসানো যায়। 8 জন বিজ্ঞান বিভাগের ছাত্রের মধ্যের 8 টি আসনে 7 জন কলা বিভাগের ছাত্রকে ⁸P, রকমে বসানো যায়। :. তাদেরকে 7! × ⁸P, রকমে বসানো যেতে পারে।

(d) 15 সদস্যের একটি কমিটিকে গোলটেবিলে 15টি আসনে কতভাবে বসানো যায়? প্রধান অতিথিকে মাঝের আসনে বসিয়ে তাদেরকে একটি লম্বা টেবিলে 15টি আসনে কতভাবে বসানো যায় তাও নির্ণয় কর।

সমাধান ঃ 15 জন সদস্যের মধ্যে একজনকে একটি আসনে নির্দিষ্ট করে বাকি 14 জনকে গোল টেবিলের 14টি আসনে 14! উপায়ে বসানো যাবে। সুতরাং , নির্দেয় সংখ্যা = 14!

আবার , একটি লম্বাা টেবিলেপ্রধান অতিথিকে মাঝের আসনে বসিয়ে বাকি 14 টি আসনে 14 জনকে 14! উপায়ে বসানো যাবে। সুতরাং , নির্দোয় সংখ্যা = 14!

23 (a)প্রত্যেক অভককে প্রত্যেক সংখ্যায় একবার মাত্র ব্যবহার করে 0, 2, 4, 6, 8 অভকগুলো ঘারা 10000 এর চেয়ে বড় যতগুলো সংখ্যা গঠন করা যায় তাদের সমষ্টি নির্ণয় কর।

সমাধান ঃ প্রত্যেক অঙ্জ্বকে প্রত্যেক সংখ্যায় একবার মাত্র ব্যবহার করে 0, 2, 4, 6, 8 অঙ্জ্বগুলো দ্বারা 10000 এর চেয়ে বড় সংখ্যা পাঁচ অঙ্জ্ব বিশিষ্ট হবে।

পাঁচ স্থানের যেকোন একটি স্থান এ পাঁচটি অঙ্জের যেকোন একটি দ্বারা নির্দিষ্ট করে অবশিষ্ট চারটি স্থান বাকী চারটি অঙ্জ দ্বারা 4! উপাযে পূরণ করা যায়। সুতরাং, প্রত্যেক অঙ্জ প্রত্যেক স্থানে (একক, দশক, শতক, হাজার বা ওযুত) 4! সংখ্যকবার পুনরাবৃত্ত হবে।

পাঁচ অজ্ঞ বিশিষ্ট সংখ্যার প্রত্যেক স্থানের অজ্ঞগুলির সমষ্টি = 4!× (0 + 2 + 4 + 6 + 8) = 24×20 = 480

প্রত্যেক অজ্ঞ্বকে প্রত্যেক সংখ্যায় একবার মাত্র ব্যবহার করে 0, 2, 4, 6, 8 অজ্ঞকণুলো দ্বারা গঠিত পাঁচ. অজ্ঞ বিশিষ্ট সংখ্যার সমষ্টি = 480×1+ 480×10 + 480×100 + 480×1000 + 480×10000

 $=480(1 + 10 + 100 + 1000 + 10000) = 480 \times 11111 = 5333280$

তবে এদের মধ্যে প্রথমে 0 থাকলে তা অর্থপূর্ণ সংখ্যা হবেনা এবং এর্প সংখ্যার সমষ্টি = প্রত্যেক অজ্ঞ্বকে প্রত্যেক সংখ্যায় একবার মাত্র ব্যবহার করে 2 4 6 8 অজ্ঞ্বগুলো দ্বারা গঠিত চার অজ্ঞ্ব বিশিষ্ট সংখ্যার সমষ্টি = 3! × (0 + 2 + 4 + 6 + 8) × 1111 = 6 × 20 × 1111 = 133320

নির্ণেয় সমষ্টি = 5333280 - 133320 = 5199960

[বি.দ্র. : নির্ণেয় সমষ্টি = (2 + 4 + 6 + 8)(4! × 11111 - 3! × 1111) = 5199960]

23. (b) কোন অজ্ঞ কোন সংখ্যায় একবারের বেশি ব্যবহার না করে 1, 2, 3, 4 অজ্ঞকগুলো দারা যতগুলো সংখ্যা গঠন করা যায় তাদের সমষ্টি নির্ণয় কর।

সমাধান ঃ এক অজ্ঞ বিশিষ্ট সংখ্যার সমষ্টি = 1 + 2 + 3 + 4 = 10 দুই অজ্ঞ বিশিষ্ট সংখ্যার একক বা দশক স্থান এ চারটি অজ্ঞের যেকোন একটি দ্বারা নির্দিষ্ট করে অবশিষ্ট তিনটি অজ্ঞ দ্বারা বাকী স্থানটি ³ P₁ উপায়ে পূরণ করা যায়। সুতরাং, প্রত্যেক অজ্ঞ একক ও দশক স্থানে ³ P₁ সংখ্যকবার পুনরাবৃত্ত হয়।

দুই অঙ্জ বিশিষ্ট সংখ্যার প্রত্যেক স্থানের (একক বা দশক) অঙ্জগুলির সমষ্টি =
$${}^{3}P_{1}(1 + 2 + 3 + 4)$$

= $10 \times {}^{3}P_{1} = 30$

দুই অজ্ঞ বিশিষ্ট সংখ্যার সমষ্টি = $10 \times {}^{3}P_{1} \times 10 + 10 \times {}^{3}P_{1} \times 1$ [যেমন $26 = 2 \times 10 + 6 \times 1$] = $10 \times {}^{3}P_{1}(10 + 1) = 10 \times {}^{3}P_{1} \times 11 = 330$

প্রশ্নমালা ম A

অনুরূপভাবে, তিন অজ্ঞ বিশিষ্ট সংখ্যার সমষ্টি = $10 \times {}^{3}P_{2} \times 111 = 10 \times 6 \times 111 = 6660$ চার অজ্ঞ বিশিষ্ট সংখ্যার সমষ্টি = $10 \times {}^{3}P_{3} \times 1111 = 10 \times 6 \times 1111 = 66660$

নির্ণেয় সমষ্টি = 10 + 330 + 6660 + 66660 = 73660

[বি.দ্র. : নির্গেয় সমষ্টি = $(1 + 2 + 3 + 4)(1 + 11 \times {}^{3}P_{1} + 111 \times {}^{3}P_{2} + 1111 \times {}^{3}P_{3})$ যেকোন সংখ্যকবার ব্যবহার করে 1, 2, 3, 4 অজ্ঞকগুলো দ্বারা যত্তগুলো সংখ্যা গঠন করা যায় তাদের সমষ্টি = $(1 + 2 + 3 + 4)(1 + 11 \times 4^{1} + 111 \times 4^{2} + 1111 \times 4^{3}) = 10(1 + 44 + 1776 + 71104) = 729250$]

23 (c) প্রত্যেক সংখ্যায় 5 পাঁচবার এবং 4 চারবার ব্যবহার করে 9 অঞ্চের গঠিত ভিন্ন ভিন্ন সংখ্যার গড় নির্ণয় কর।

সমাধান: প্রত্যেক সংখ্যায় 5 পাঁচবার এবং 4 চারবার ব্যবহার করে 9 অচ্চের $\frac{9!}{5!4!} = 126$ সংখ্যক সংখ্যা গঠিত হয়। যেকোন স্থান (একক, দশক,শতক ইত্যাদি) 5 দ্বারা নির্দিষ্ট করে অবশিষ্ট আটটি স্থান 4টি 5 ও 4টি 4 দ্বারা $\frac{8!}{4!4!} = 70$ উপায়ে পূরণ করা যায় অর্থাৎ যেকোন স্থানে 70 বার 5 পুনরাবৃত্ত হয় । আবার, যেকোন স্থান 4 দ্বারা নির্দিষ্ট করে অবশিষ্ট আটটি স্থান 5টি 5 ও 3টি 4 দ্বারা $\frac{8!}{5!3!} = 56$ উপায়ে পূরণ করা যায় অর্থাৎ যেকোন স্থানে 56 বার 4

পুনরাবৃত্ত হয় ।

নয় অঙ্জ বিশিষ্ট সংখ্যার প্রত্যেক স্থানের অঙ্জগুলির সমষ্টি = 5× 70 + 4×56 = 350 + 224 = 574 প্রত্যেক সংখ্যায় 5 পাঁচবার এবং 4 চারবার ব্যবহার করে 9 অঙ্জের গঠিত সংখ্যার সমষ্টি = 574 ×1111111111 = 6377777714 নির্ণেয় গড় = 63777777714 ÷ 126 = 506172839

কাজ

১। 'EQUATION' শব্দটির সবগুলো অক্ষর ব্যবহার করে কডটি শব্দ গঠন করা যেতে পারে?

সমাধান ঃ 'EQUATION' শব্দটিতে মোট ৪টি বিভিন্ন অক্ষর আছে । এই ৪টি অক্ষর একত্রে ব্যবহার করে গঠিত বিভিন্ন শব্দের সংখ্যা ⁸ P₈ = 8! = 40320

২। 'LAUGHTER' শব্দটির সব ক্য়টি বর্ণকে কত প্রকারে সাজানো যায় তা নির্ণয় কর। এদের কতগুলো L দ্বারা শুরু হবে?

সমাধান ঃ 'LAUGHTER' শব্দটিতে মোট ৪টি বিভিন্ন অক্ষর আছে । এই ৪টি অক্ষর একত্রে ব্যবহার করে গঠিত বিভিন্ন শব্দের সংখ্যা $^8P_8=8!=40320$

প্রথম স্থানটি L দ্বারা নির্দিষ্ট করে অবশিষ্ট (৪ –1) অর্থাৎ, 7টি অক্ষরকে তাদের নিজেদের মধ্যে 7! = 5040 উপায়ে সাজানো যায়। সুতরাং L দ্বারা শুরু হয় এরূপ সাজানো সংখ্যা = 5040

৩। (a) নিচের শব্দগুলোর সবগুলো বর্ণ একবারে নিয়ে কত প্রকারে সাজ্ঞানো যায় ঃ (i) committee (ii) infinitesimal (iii) proportion ?

সমাধান ঃ (i) 'committee' শব্দটিতে মোট 9টি অক্ষর আছে , যাদের মধ্যে 2টি m , 2টি t এবং 2টি e .

নির্গেয় সাজানো সংখ্যা = $\frac{9!}{2! \times 2! \times 2!}$

(ii) infinitesimal শব্দটিতে মোট 13টি অক্ষর আছে , যাদের মধ্যে 4টি i, 2টি n . নির্ণেয় সাজানো সংখ্যা = $\frac{13!}{4! \times 2!}$

(iii) proportion শব্দটিতে মোট 10টি অক্ষর আছে, যাদের মধ্যে 2টি p, 2টি r, 3টি o.

নির্ণেয় সাজানো সংখ্যা = $\frac{10!}{2! \times 2! \times 3!}$

(b) একটি লাইব্রেরীতে একখানা পুস্তকের ৪ কপি, দুইখানা পুস্তকের প্রত্যেকের 3 কপি, তিনখানা পুস্তকের প্রত্যেকের 5 কপি এবং দশখানা পুস্তকের 1 কপি করে আছে। সবগুলো একব্রে নিয়ে কত প্রকারে সাজানো যেতে পারে? সমাধান ঃ মোট পুস্তকের সংখ্যা = 8 + 2×3 + 3×5 + 10 = 8 + 6 + 15 + 10 = 39

নির্ণেয় সাজানো সংখ্যা = $\frac{39!}{8! \times 3! \times 3! \times 5! \times 5!} = \frac{39!}{8! \times (3!)^2 \times (5!)^3}$

8। স্বরর্শগুলোকে পৃথক না রেখে 'INSURANCE' শব্দটি বর্ণগুলো একন্দ্রে নিয়ে যত প্রকারে সান্ধানো যায় তা নির্ণন্ন কর। সমাধান ঃ 'INSURANCE' শব্দটিতে মোট 9টি বর্ণ আছে যাদের 4টি ভিন্ন স্বরবর্ণ। যেহেতু স্বরবর্ণ 4টি একন্দ্রে থাকে, অতএব তাদেরকে একটি একক বর্ণ মনে করলে বর্ণগুলো হবে (IUAE), N, S, R, N, C.

2টি N সহ এই 6টি বর্ণকে $\frac{6!}{2!}$ = 360 প্রকারে সাজানো যায়। আবার, 4 টি ভিন্ন স্বরবর্ণকে নিজেদের মধ্যে 4! = 24 প্রকারে সাজানো যায়।

নির্ণেয় সাজানো সংখ্যা = 360 × 24 = 8640

৫। (a)'CHITTAGONG'শব্দটির বর্ণগুলো কত রকম ভাবে বিন্যাস করা যায়, যখন স্বরবর্ণগুলো একত্রে থাকে।[চ.'০১]

সমাধান ঃ ' CHITTAGONG ' শব্দটিতে মোট 10টি বর্ণ আছে যাদের 3টি স্বরবর্ণ।

যেহেতু স্বরবর্ণ তিনটি একব্রে থাকে, অতএব তাদেরকে 1টি বর্ণ মনে করে মোট বর্ণের সংখ্যা হবে (10 – 3 + 1) অর্ধাৎ, ৪টি। 2টি T ও 2টি G সহ এই ৪টি বর্ণকে $\frac{8!}{2!.2!}$ = 10080 প্রকারে এবং 3 টি ভিন্ন স্বরবর্ণকে নিজেদের মধ্যে 3! = 6 প্রকারে সাজানো যায় ।

স্বরবর্ণগুলো একত্রে নিয়ে বর্ণগুলোর মোট সাজানো সংখ্যা = 10080 imes 6 = 60480

(b) স্বরবর্ণগুলোকে পাশাপাশি রেখে 'TECHNOLOGY' শব্দটির বর্ণগুলো কত উপায়ে বিন্যাস করা যায়? [প্র.ভ.প.'০৫] সমাধান ঃ ' TECHNOLOGY' শব্দটিতে মোট 10টি বর্ণ আছে যাদের 3টি স্বরবর্ণ। যেহেতু স্বরবর্ণ তিনটি একত্রে থাকে, অতএব তাদেরকে 1টি বর্ণ মনে করে মোট বর্ণের সংখ্যা হবে (10 – 3 +1) অর্ধাৎ, 8টি। এই 8টি ভিন্ন বর্ণকে 8! উপায়ে এবং 2টি O সহ 3 টি স্বরবর্ণকে নিজেদের মধ্যে 3! = 3 উপায়ে বিন্যাস

৪টি । এই ৪টি ভিন্ন বর্ণকে ৪! উপায়ে এবং 2টি O সহ 3 টি স্বরবর্ণকে নিজেদের মধ্যে — = 3 উপায়ে বিন্যাস্ 2! করা যায় ।

স্বরবর্ণগুলোকে পাশাপাশি রেখে বর্ণগুলোর মোট বিন্যাস সংখ্যা = 8! × 3 = 120960

৬। 7টি সবুজ, 4টি নীল এবং 2টি লাল কাউন্টার এক সারিতে কত রকমে সাজ্বানো যেতে পারে ? এদের কৃতগুলোতে লাল কাউন্টার দুইটি একত্রে থাকবে?

थनस्राता 👬 A

সবগুলো কাউন্টার একত্রে নিয়ে মোট সাজানো সংখ্যা = $\frac{13!}{7! \times 4! \times 2!} = 25740$

২য় **অংশ ঃ** লাল কাউন্টার দুইটিকে একটি একক কাউন্টার মনে করলে মোট কাউন্টার সংখ্যা হবে (13 – 2 + 1) অর্থাৎ, 12টি যাদের মধ্যে 7টি সবুজ এবং 4টি নীল ।

লাল কাউন্টার দুইটি একত্রে রেখে মোট সাজানো সংখ্যা = $\frac{12!}{7! \times 4!}$ = 3960

৭। 'IDENTITY' শব্দটির সব কয়টি বর্ণকে কত প্রকারে সাজানো যায় তা নির্ণয় কর। কতগুলোর প্রথমে I এবং শেষে I থাব্ববে ? কতগুলোতে I দুইটি এবং T দুইটি একত্রে থাকবে ?

সমাধান ঃ ১ম অংশ ঃ 'IDENTITY' শব্দটিতে মোট ৪টি বর্ণ আছে যাদের 2টি I এবং 2টি T

এ শব্দটির বর্ণগুলো একত্রে নিয়ে সাজানো যায় = $\frac{8!}{2! \times 2!!}$ = 10080 প্রকারে।

২**য় জংশ ঃ** প্রথম ও শেষ স্থান দুইট 'I ' দ্বারা নিদিষ্ট করে 2টি T সহ অবশিষ্ট (8 – 2) অর্থাৎ, 5টি বর্ণকে 5টি স্থানে $\frac{5!}{2!} = 60$ প্রকারে সাজানো যায় ।

ওয় অংশ ঃ I দুইটিকে একটি একক বর্ণ এবং T দুইটি একটি একক বর্ণ মনে করে মোট ভিন্ন বর্ণের সংখ্যা হবে (8 – 2) অর্থাৎ, 6টি। সুতরাং, I দুইটি এবং T দুইটি একত্রে রেখে নির্দেয় সাজানো সংখ্যা = 6! = 720

৮। ব্যঞ্জনবর্ণগুলোকে বিজ্ঞোড় স্থানে রেখে 'EQUATION' শব্দটির অক্ষরগুলোকে কত প্রকারে সাজ্ঞানো যায় তা নির্ণয় কর।

সমাধান ঃ 'EQUATION' শব্দটিতে মোট ৪টি বর্ণ আছে যাদের 5টি ভিন্ন স্বরবর্ণ এবং 3টি ভিন্ন ব্যঞ্জনবর্ণ। এখানে ৪টি স্থানের মধ্যে 4টি বিজোড় স্থান (১ম, ৩য়, ৫ম এবং ৭ম) এর 3টি স্থান 3টি ভিন্ন ব্যঞ্জনবর্ণ দ্বারা ⁴P₃ উপায়ে এবং অবশিষ্ট 5টি স্থান 5টি ভিন্ন স্বরবর্ণ দ্বারা 5! উপায়ে পূরণ করা যাবে।

ব্যঞ্জনবর্ণগুলোকে বিজোড় স্থানে রেখে নির্দেয় সাজানো সংখ্যা = ${}^4P_3 \times 5! = 24 \times 120 = 2880$

৯। (a) 6টি পরীক্ষার খাতাকে কত প্রকারে সাজ্ঞানো যেতে পারে, যাতে সবচেয়ে ভাল ও সবচেয়ে খারাপ খাতা দুইটি একত্রে না থাকে?

সমাধান ঃ 6টি খাতা একত্রে 6! = 720 প্রকারে সাজানো যায়। সবচেয়ে ভাল ও সবচেয়ে খারাপ খাতা দুইটিকে একটি একক খাতা মনে করে মোট খাতার সংখ্যা হবে (6 – 2 + 1) অর্থাৎ 5 টি। এই 5টি খাতা একত্রে 5! = 120 প্রকারে এবং সবচেয়ে ভাল ও সবচেয়ে খারাপ খাতা দুইটিকে নিজেদের মধ্যে 2! = 2 প্রকারে সাজানো যায়।

সবচেয়ে ভাল ও সবচেয়ে খারাপ খাতা দুইটিকে একত্রে নিয়ে সাজানো সংখ্যা = $120 \times 2 = 240$

সবচেয়ে ভাল ও সবচেয়ে খারাপ খাতা দুইটি একত্রে না নিয়ে সাজানো সংখ্যা = 720 - 240 = 480

- (b) আটটি বস্তুকে এক সারিতে কত প্রকারে সাজানো যেতে পারে , যাতে (i) দুইটি বিশেষ বস্তু একত্রে থাকে এবং
- (ii) দুইটি বিশেষ কস্তু একত্রে না থাকে?

সমাধান ঃ (i) দুইটি বিশেষ বস্তুকে একটি একক বস্তু মনে করলে সাজানোর জন্য (8 – 2 + 1) অর্থাৎ, 7টি বস্তু পাই। এই 7টি বস্তু একত্রে 7! প্রকারে এবং বিশেষ বস্তু দুইটিকে নিজেদের মধ্যে 2! = 2 প্রকারে সাজানো যায়।

দুইটি বিশেষ বস্তু একত্রে নিয়ে নির্শেয় সাজানো সংখ্যা = 7! imes 2 = 5040 imes2 = 10080

(ii) ৪টি বস্তুকে এক সারিতে 8! = 40320 প্রকারে সাজানো যায়।
 দুইটি বিশেষ বস্তু একত্রে না নিয়ে নির্ণেয় সাজানো সংখ্যা = 40320 – 10080 = 30240

১০। (a) 'PERMUTATIONS' শব্দটির বর্ণগুলো থেকে একটি স্বরবর্ণ ও দুইটি ব্যঞ্জন বর্ণ নিয়ে কতগুলো শব্দ গঠন করা যেতে পারে, যখন স্বরবর্ণ সর্বদা মধ্যম স্থান দখল করে?

সমাধান ঃ 'PERMUTATIONS' শব্দটিতে মোট 12টি বর্ণ আছে যাদের 5টি ভিন্ন স্বরবর্ণ এবং 2টি T সহ 7টি ব্যঞ্জন বর্ণ। মধ্যম স্থানটি 5টি ভিন্ন স্বরবর্ণ দ্বারা ⁵ P₁ = 5 উপায়ে পূরণ করা যাবে।

প্রান্দত স্থান 2টি 6টি ভিন্ন ব্যঞ্জন বর্ণ P, R, M, T, N ও S দ্বারা ${}^{6}P_{2} = 30$ উপায়ে এবং 2টি T দ্বারা $\frac{2!}{2!} = 1$ উপায়ে পুরণ করা যাবে। অতএব, প্রান্দত স্থান 2টি ব্যঞ্জন বর্ণ দ্বারা (30 + 1) = 31 উপায়ে পুরণ করা যাবে।

নির্ণেয় শব্দের সংখ্যা = 5 × 31 = 155 (Ans.)

(b) একটি বালকের 11টি বিভিন্ন বস্তু আছে, যার মধ্যে 5টি কালো এবং 6টি সাদা । একটি কালো বস্তু মাঝখানে রেখে সে তিনটি বস্তু এক সারিতে কত প্রকারে সাজাতে পারে?

সমাধান ঃ সারির মাঝখানের স্থানটি 5টি বিভিন্ন কালো বস্তু দ্বারা ${}^5P_1 = 5$ উপায়ে এবং প্রানত স্থান 2টি অবশিষ্ট (11-1) = 10টি বিভিন্ন বস্তু দ্বারা ${}^{10}P_2 = 90$ উপায়ে পূরণ করা যাবে।

নির্ণেয় শব্দের সংখ্যা = $5 \times 90 = 450$

(c) a , b, c, d, e, f অক্ষরগুলো থেকে তিনটি অক্ষর দ্বারা গঠিত বিন্যাসের সংখ্যা নির্ণয় কর, যেখানে প্রতিটি বিন্যাসে কমপক্ষে একটি স্বরবর্ণ বর্তমান থাকে।

সমাধান ঃ a , b, c, d, e, f অক্ষরগুলোর মধ্যে 2টি ভিন্ন স্বরবর্ণ এবং 4টি ভিন্ন ব্যঞ্জন বর্ণ । 6টি অক্ষরের যেকোন 3টি নিয়ে গঠিত বিন্যাস সংখ্যা = ⁶ P₃ . এদের মধ্যে কেবল 3টি ব্যঞ্জন বর্ণ থাকবে এরুপ বিন্যাস সংখ্যা = ⁴ P₃

প্রতিটি বিন্যাসে কমপক্ষে একটি স্বরবর্ণ বর্তমান থাকবে এরপ বিন্যাস সংখ্যা = ${}^{6}P_{3} - {}^{4}P_{3} = 120 - 24 = 96$.

১১। দুইজন মেযেকে পাশাপাশি না রেখে x জন ছেলে ও y জন মেয়েকে (x > y) কত প্রকারে এক সারিতে সাজানো যায়, তা নির্ণয় কর।

সমাধান ঃ x জন ছেলেকে এক সারিতে x! প্রকারে সাজানো যায়।এই x জন ছেলের মাঝখানে (x –1) টি ফাঁকা স্থান পাওয়া যায়। এ ছাড়া সারির দুই প্রান্দেত আরও দুইটি ফাঁকা স্থান পাওয়া যায়। সুতরাং, {(x –1) + 2} = (x +1) টি ফাঁকা স্থানে y জন মেয়েকে ^{x+1} P, উপায়ে সাজানো যায়। : নির্গেয় সাজানো সংখ্যা = x! × ^{x+1} P,

১২। (a) প্রত্যেক অঙ্জকে প্রত্যেক সংখ্যায় একবার মাত্র ব্যবহার করে 2, 3, 4, 5, 6, 7 অঙ্জকাুলো দ্বারা ছয় অঙ্জ বিশিষ্ট কতগুলো সংখ্যা গঠন করা যেতে পারে? এদের কতগুলো 5 দ্বারা বিভাচ্চ্য হবে না?

সমাধান ঃ এখানে 6টি বিভিন্ন অজ্ঞ আছে। প্রত্যেক অজ্ঞকে প্রত্যেক সংখ্যায় একবার মাত্র ব্যবহার করে 6টি অজ্ঞ দ্বারা ছয় অজ্ঞ্জের গঠিত মোট সংখ্যা = ⁶ P₆ = 6! = 720

শৈষ স্থানটি 5টি অঙ্জ 2, 3, 4, 6 ও 7 এর যেকোন একটি দ্বারা 5P_1 প্রকারে পূরণ করে অবশিষ্ট 5টি স্থানে বাকি 5টি অঙ্জকে 5! প্রকারে সাজানো যায়।

5 দ্বারা বিভাজ্য নয় এরূপ মোট সংখ্যা = ⁵ P₁ × 5! = 5×120 = 600

(b) প্রতিটি অজ্ঞ যতবার আছে এর বেশি সংখ্যকবার ব্যবহার না করে 2, 2, 3, 3, 4 অঙ্জগৃলো দ্বারা ছয় অঙ্জ বিশিষ্ট কতগুলো সংখ্যা গঠন করা যেতে পারে? এদের কতগুলো 400000 অপেক্ষা বড় হবে? সমাধান ঃ ১ম অংশ ঃ এখানে 3টি 2 এবং 2টি 3 সহ মোট 6টি অঙ্জ আছে।

ንዶ8

প্রশ্নমিলিন্টিশA

www.boighar.com

ছয় অজ্ঞ বিশিষ্ট মোট সংখ্যা = $\frac{6!}{3! \times 2!} = 60$

২য় অংশ ঃ 400000 অপেক্ষা বড় সংখ্যাগুলোর প্রথম অঙ্জটি 4 দ্বারা আরম্ভ হতে হবে। প্রথম স্থানটি 4 দ্বারা নির্দিষ্ট করে অবশিষ্ট (6 – 1) = 5টি স্থান 3টি 2 এবং 2টি 3 সহ বাকি .5টি অঙ্জ দ্বারা পূরণ করা যাবে $\frac{5!}{3! \times 2!} = 10$ উপায়ে।

নির্ণেয় মোট সংখ্যা = 10

১৩। (a) 1, 2, 3 অঙ্জগুলি যে কোন সংখ্যকবার ব্যবহার করে চার অঙ্জ্জের বেশি নয় এমন কতগুলি সংখ্যা তৈরী করা যায়?

সমাধান 😮 এখানে অঙ্জ 3টির প্রতিটি যে কোন সংখ্যকবার ব্যবহার করা যাবে।

এক অজ্ঞ বিশিষ্ট সংখ্যা গঠন করা যাবে 3 উপায়ে।

দুই অঙ্জ বিশিষ্ট সংখ্যার প্রতিটি স্থান (একক বা দশক) 3টি অঙ্জ দ্বারা 3 উপায়ে পূরণ করা যাবে। অতএব, দুই

অঙ্জ বিশিষ্ট সংখ্যা গঠন করা যাবে $3 \times 3 = 3^2$ উপায়ে।

অনুরূপভাবে, তিন জ্ঞ বিশিষ্ট ও চার জ্ঞ বিশিষ্ট সংখ্যা গঠন করা যাবে যথাক্রমে 3³ ও 3⁴ উপায়ে।

নির্ণেয় মোট সংখ্যা = $(3 + 3^2 + 3^3 + 3^4) = (3 + 9 + 27 + 81) = 120$

[দ্র. 1, 2, 3, 4, 5 অঙ্জগুলি যে কোন সংখ্যকবার ব্যবহার করে চার অঙ্জের বেশি নয় এমন সংখ্যা গঠন করা যায় $\frac{5(5^4-1)}{5-1} = 780$ উপায়ে।]

(b) 0, 1, 2, 3, 4, 5, 6, 7 অভ্চ্বগুলো যেকোন সংখ্যকবার ব্যবহার করে 10000 এর ছোট কতগুলো সংখ্যা গঠন করা যায়?

সমাধান ঃ শূন্যসহ ৪টি অজ্ঞের প্রতিটি যে কোন সংখ্যকবার ব্যবহার করা যাবে। সংখ্যার প্রথমে 0 থাকলে তা অর্থপূর্ণ সংখ্যা হবেনা। তাই, বাম দিক হতে সংখ্যার প্রথম স্থান 0 ব্যতীত বাকী 7টি অঙ্জ দ্বারা 7 উপায়ে এবং অন্যান্য স্থানগুলির প্রতিটি শূন্যসহ ৪টি অঙ্জ দ্বারা ৪ উপায়ে পূরণ করা যাবে।

এক অজ্ঞ বিশিষ্ট সংখ্যা গঠন করা যাবে 7 উপায়ে। দুই অজ্ঞ বিশিষ্ট সংখ্যা গঠন করা যাবে 7×8 অর্থাৎ 56 উপায়ে। তিন অজ্ঞ বিশিষ্ট সংখ্যা গঠন করা যাবে 7×8×8 অর্থাৎ 448 উপায়ে। চার অজ্ঞ বিশিষ্ট সংখ্যা গঠন করা যাবে 7×8×8×8 অর্থাৎ 3584 উপায়ে।

নির্ণেয় মোট সংখ্যা = (7 + 56 + 448 + 3584) = 4095

১৪। তিনটি ফুটবল খেলার ফলাফল কত উপায়ে হতে পারে?

সমাধান ঃ প্রথম খেলার ফলাফল কোন বিশেষ দলের জন্য জয়, পরাজয় অথবা অমীমাৎসিত অর্থাৎ 3 উপায়ে হতে পারে। অনূরূপ ২য় খেলার ফলাফল 3 উপায়ে এবং ৩য় খোলার ফলাফলও 3 উপায়ে হতে পারে।

নির্ণেয় সংখ্যা = $3 \times 3 \times 3 = 27$

১৫। (a) প্রত্যেক অঙ্জকে প্রত্যেক সংখ্যায় একবার মাত্র ব্যবহার করে 1, 3, 5, 7, 9 অঙ্জগ্লো দারা 10000 এর চেয়ে বড় যতগুলো সংখ্যা গঠন করা যায় তাদের সমষ্টি নির্ণয় কর।

সমাধান ঃ প্রত্যেক অজ্জককে প্রত্যেক সংখ্যায় একবার মাত্র ব্যবহার করে 1, 3, 5, 7, 9 অজ্জকগুলো দ্বারা 10000 এর চেয়ে বড় সংখ্যা পাঁচ অজ্জ বিশিষ্ট হবে।

ንዶፍ

পাঁচ স্থানের যেকোন একটি স্থান এ পাঁচটি অজ্ঞের যেকোন একটি দ্বারা নির্দিষ্ট করে অবশিষ্ট চারটি স্থান বাকী চারটি অজ্ঞ দ্বারা 4! উপাযে পূরণ করা যায়। সুতরাং, প্রত্যেক অজ্ঞ প্রত্যেক স্থানে (একক, দশক, শতক, হাজার বা ওযুত) 4! সংখ্যকবার পুনরাবৃত্ত হবে।

পাঁচ অঙ্জ বিশিষ্ট সংখ্যার প্রত্যেক স্থানের অঙ্জ্ঞগুলির সমষ্টি = 4! × (1 + 3 + 5 + 7 + 9) = 24×25 = 600

প্রত্যেক অজ্ঞককে প্রত্যেক সংখ্যায় একবার মাত্র ব্যবহার করে 1, 3, 5, 7, 9 অজ্ঞকগুলো দ্বারা গঠিত পাঁচ অজ্ঞ বিশিষ্ট সংখ্যার সমষ্টি = 600×1+ 600×10 + 600×100 + 600×1000 + 600×10000

 $= 600(1 + 10 + 100 + 1000 + 10000) = 600 \times 11111 = 6666600$ (Ans.)

[বি.দ্র. : নির্ণেয় সমষ্টি = $(5 - 1)! \times (1 + 3 + 5 + 7 + 9) \times 11111 = 24 \times 25 \times 11111 = 6666600]$ (b) কোন অঙ্জ কোন সংখ্যায় একবারের বেশি ব্যবহার না করে 1, 3, 5, 7, 9 অঙ্জগুলো দারা যতগুলো সংখ্যা গঠন করা যায় তাদের সমষ্টি নির্ণয় কর।

সমাধান : এক অজ্ঞ বিশিষ্ট সংখ্যার সমষ্টি = 1 + 3 + 5 + 7 + 9 = 25

দুই অজ্ঞ বিশিষ্ট সংখ্যার একক বা দশক স্থান এ পাঁচটি অজ্ঞের যেকোন একটি দ্বারা নির্দিষ্ট করে অবশিষ্ট চারটি অজ্ঞ দ্বারা বাকী স্থানটি ⁴ P₁ উপায়ে পূরণ করা যায়। সুতরাং , প্রত্যেক অজ্ঞ একক ও দশক স্থানে ⁴ P₁ সংখ্যকবার পুনরাবৃত্ত হয়।

দুই অঙ্জ বিশিষ্ট সংখ্যার প্রত্যেক স্থানের (একক বা দশক) অঙ্জগুলির সমষ্টি = ⁴ P₁ (1 + 3 + 5 + 7 + 9) = 25 × ⁴ P₁ = 100

দুই অজ্ঞক বিশিষ্ট সংখ্যার সমষ্টি = $25 \times {}^{4}P_{1} \times 10 + 25 \times {}^{4}P_{1} \times 1$ [যেমন $26 = 2 \times 10 + 6 \times 1$] = $25 \times {}^{4}P_{1} (10 + 1) = 25 \times {}^{4}P_{1} \times 11 = 1100$

অনুরূপভাবে, তিন অজ্ঞ বিশিষ্ট সংখ্যার সমষ্টি = $25 \times {}^{4}P_{2} \times 111 = 25 \times 12 \times 111 = 33300$ চার অজ্ঞ বিশিষ্ট সংখ্যার সমষ্টি = $25 \times {}^{4}P_{3} \times 1111 = 25 \times 24 \times 1111 = 666600$ শাঁচ অজ্ঞ বিশিষ্ট সংখ্যার সমষ্টি = $25 \times {}^{4}P_{4} \times 11111 = 25 \times 24 \times 11111 = 6666600$

নির্ণেয় সমষ্টি = 25 + 1100 + 33300 + 6666600 + 6666600 = 7367625

[বি.দ্র. নির্ধেয় সমষ্টি = $(1 + 3 + 5 + 7 + 9)(1 + 11 \times {}^{4}P_{1} + 111 \times {}^{4}P_{2} + 1111 \times {}^{4}P_{3} + 11111 \times {}^{4}P_{4})$]

প্রশ্নমালা VIB

1(a) Solⁿ: 26টি বর্ণ হতে প্রতিবার 5টি বর্ণ নিয়ে শব্দ গঠন করা যায় ${}^{26}P_{5} = 7893600$ টি + : Ans. A

(b) Solⁿ: (i) 8 জন মেয়ে পৃথক পৃথক ভাবে বৃত্তাকারে দাঁড়াতে পারবে (8-1)! = 5040 উপায়ে।

(ii) ৪ টি ভিন্ন ধরনের মুক্তা একটি ব্যান্ডে লাগিয়ে একটি হার তৈরি করা যেতে পারে $\frac{(8-1)!}{2} = 2520$ উপায়ে। (iii) 4টি ডাকবক্সে 5টি চিঠি ফেলা যায় = 4⁵ =1024 উপায়ে। Ans. A

১৮৬

1413.114
(c) Sol ⁿ : $\frac{10!}{2!} = 1814400.$
(d) Sol ⁿ : অঞ্চণ্ডলির সমষ্টি × (4 – 1)! × 4 সংখ্যক 1 দ্বারা গঠিত সংখ্যা = (1 + 2 + 3 + 4)×3! ×1111
$= 10 \times 6 \times 1111 = 66660$
(e) Sol ⁿ : উপরের সবগুলি তথ্য সত্য।∴ Ans. D.
(f) Sol ⁿ : ${}^{n}P_{3} + {}^{n}C_{3} = 70 \Rightarrow {}^{n}C_{3} \times 3! + {}^{n}C_{3} = 70 \Rightarrow 7.{}^{n}C_{3} = 70 \Rightarrow {}^{n}C_{3} = 10 = {}^{5}C_{3}$ $n = 5$
(g) Sol ⁿ : ${}^{5-2}C_3 + {}^{5-2}C_{3-1} + {}^{5-2}C_{3-2} = {}^{3}C_3 + {}^{3}C_2 + {}^{3}C_1 = 1 + 3 + 3 = 7$
(h) Solⁿ : ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r} \therefore Ans. A.$
(i) Sol ⁿ : প্রদন্ত শব্দে 2 টি সহ ব্যঞ্জন বর্ণ আছে 6টি। নির্ণেয় উপায় সংখ্যা = $\frac{6!}{2!} - 1 = 360 - 1 = 359$
Ans. B
(j) Sol ⁿ : সংখ্যা গঠন করা যায় $4 \times 10^7 = 40000000$ সংখ্যক Ans. D
(k) Sol ⁿ : ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$ Ans. B
(<i>l</i>) Sol ⁿ : 'PARALLEL' শব্দটির বর্ণগুলি থেকে অন্তত একটি বর্ণ বাছাই করা যায় $(3+1)(2+1)2^3-1$
উপায়ে। Ans. B
2. (a) দেওয়া আছে , ${}^{2n}C_r = {}^{2n}C_{r+2} \Rightarrow r+r+2 = 2n [{}^{n}C_x = {}^{n}C_y$ হলে , $x + y = n$]
$\Rightarrow 2r = 2(n-1) \therefore r = n-1 \text{ (Ans.)}$
(b) দেওয়া আছে , ⁿ C _r : ⁿ C _{r+1} : ⁿ C _{r+2} =1:2:3
১ম এবং ২য় অনুপাত হতে আমরা পাই , ${}^{n}C_{r}: {}^{n}C_{r+1}=1:2 \Rightarrow rac{{}^{n}C_{r}}{{}^{n}C_{r+1}} rac{1}{2} \Rightarrow 2 {}^{n}C_{r} = {}^{n}C_{r+1}$
$\Rightarrow 2\frac{n!}{r!(n-r)!} = \frac{n!}{(r+1)!(n-r-1)!} \Rightarrow 2\frac{1}{r!(n-r)(n-r-1)!} = \frac{1}{(r+1).r!(n-r-1)!}$
$\Rightarrow \frac{2}{n-r} = \frac{1}{r+1} \Rightarrow n-r = 2r+2 \Rightarrow n = 3r+2 \dots \dots \dots (1)$
২য় এবং শেষ অনুপাত হতে আমরা পাই , ${}^{n}C_{r+1}:{}^{n}C_{r+2}=2:3 \Longrightarrow 3$. ${}^{n}C_{r+1}=2$. ${}^{n}C_{r+2}=2:3$
$\Rightarrow 3. \frac{n!}{(r+1)!(n-r-1)!} = 2. \frac{n!}{(r+2)!(n-r-2)!}$
$\Rightarrow 3. \frac{1}{(r+1)!(n-r-1).(n-r-2)!} = 2. \frac{1}{(r+2).(r+1)!(n-r-2)!} \Rightarrow \frac{3}{n-r-1} = \frac{2}{r+2}$
⇒ $2n - 2r - 2 = 3r + 6 \Rightarrow 2n = 5r + 8 \Rightarrow 2(3r + 2) = 5r + 8$ [(1) पाता]
$\Rightarrow 6r + 4 = 5r + 8 \Rightarrow r = 4$
(1) হতে আমরা পাই , n = 3.4 + 2 = 14 \therefore r = 4 , n = 14 (Ans.)
(a) where $\mathbf{n} = \mathbf{n} = \mathbf{n}$

(c) দেখাও যে, ${}^{n}C_{r} = {}^{n-2}C_{r} + 2 {}^{n-2}C_{r-1} + {}^{n-2}C_{r-2}$,यथन n > r > 2.

$$\begin{aligned} & \exists n \forall : \ ^{n-2}C_r + 2 \ ^{n-2}C_{r-1} + {}^{n-2}C_{r-2} = ({}^{n-2}C_r + {}^{n-2}C_{r-1}) + ({}^{n-2}C_{r-1} + {}^{n-2}C_{r-2}) \\ & = {}^{n-2+1}C_r + {}^{n-2+1}C_{r-1} = {}^{n-1}C_r + {}^{n-1}C_{r-1} \qquad [{}^{n}C_r + {}^{n}C_{r-1} = {}^{n+1}C_r] \\ & = {}^{n-1+1}C_r = {}^{n}C_r \\ {}^{n}C_r = {}^{n-2}C_r + 2 {}^{n-2}C_{r-1} + {}^{n-2}C_{r-2} \end{aligned}$$

(d) Change Ca,
$$m^{r}C_{r} = {}^{n}C_{r} + 2 {}^{n}C_{r-1} + {}^{n}C_{r-2}$$
, and $m > r > 2$.
States ${}^{n}C_{r} + 2 {}^{n}C_{r-1} + {}^{n}C_{r-2} = ({}^{n}C_{r} + {}^{n}C_{r-1}) + ({}^{n}C_{r-1} + {}^{n}C_{r-2})$
 $= {}^{n+1}C_{r} + {}^{n+1}C_{r-1} = {}^{n+1+1}C_{r}$ [${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$]
 ${}^{n+2}C_{r} = {}^{n}C_{r} + 2 {}^{n}C_{r-1} + {}^{n}C_{r-2}$

3. (a) 'LOGARITHMS' শদ্দটির বর্ণগুলো থেকে প্রতিবারে 3টি ব্যঞ্জনবর্ণ ও 2টি স্বরবর্ণ কত প্রকারে বাছাই করা যায় ? সমাধান ঃ 'LOGARITHMS' শদ্দটিতে মোট 10টি বিভিন্ন বর্ণ আছে যাদের 7টি ব্যঞ্জনবর্ণ এবং 3টি স্বরবর্ণ দ 7টি ব্যঞ্জনবর্ণ থেকে প্রতিবারে 3টি ⁷C₃ = 7×6×5 <u>3×2×1</u> = 35 উপায়ে এবং 3টি স্বরবর্ণ থেকে প্রতিবারে 2টি ³C₂ = 3 উপায়ে বাছাই করা যায়। অতএব, প্রতিবারে 3টি ব্যঞ্জনবর্ণ ও 2টি স্বরবর্ণ বাছাই সংখ্যা = 35×3 = 105

(b) 'DEGREE' শব্দটির বর্ণগুলো থেকে প্রতিবারে 4টি বর্ণ নিয়ে কত প্রকারে বাছাই করা যেতে পারে ? [য. '০৭, '১৩; রা. '১১]

সমাধান ঃ ' DEGREE ' শব্দটিতে 3টি E সহ মোট 6টি বর্ণ আছে । সবগুলোই বর্ণ ভিন্ন এরূপ বাছাই সংখ্যা = ${}^{4}C_{4} = 1$ [:: ভিন্ন বর্ণ 4টি] 2 টি E এবং অন্য 2টি ভিন্ন এরূপ বাছাই সংখ্যা = ${}^{3}C_{2} = {}^{3}C_{1} = 3$ [E ব্যতীত ভিন্ন বর্ণ 3টি] 3টি E এবং আরেকটি অন্য বর্ণ এরূপ বাছাই সংখ্যা = ${}^{3}C_{1} = 3$

নির্ণেয় বাছাই সংখ্যা = 1 + 3 + 3 = 7 (Ans.)

4. (a) 4 জন ভদ্র মহিলাসহ 10 ব্যক্তির মধ্য থেকে 5 জনের একটি কমিটি কত রকমে গঠন করা যেতে পারে , যাতে অশতত একজন ভদ্র মহিলা থাকবে?

 [য.'০২; মা.বো.'১৩]

 [য.'০২; মা.বো.'১৩]

সমাধান ঃ 5 জনের কমিটি নিমুরূপে গঠন করা যায় –

ভদ্র মহিলা (4) অন্যান্য (6) কমিটি গঠনের উপায় ${}^{4}C_{1} \times {}^{6}C_{4} = 4 \times 15 = 60$ 1 4 ${}^{4}C_{2} \times {}^{6}C_{3} = 6 \times 20 = 120$ 3 2 ${}^{4}C_{3} \times {}^{6}C_{2} = 4 \times 15 = 60$ 2 3 ${}^{4}C_{4} \times {}^{6}C_{1} = 1 \times 6 = 6$ 1 কমিটি গঠনের মোট উপায় = 60 + 120 + 60 + 6 = 246 [বি. দ্র. কমিটি গঠনের মোট উপায় = $\sum_{i=1}^{4} {}^{4}C_{i} \times {}^{6}C_{5-i} = {}^{4}C_{1} \times {}^{6}C_{4} + {}^{4}C_{2} \times {}^{6}C_{3} + {}^{4}C_{3} \times {}^{6}C_{2}$ $+ {}^{4}C_{4} \times {}^{6}C_{1} = 246$

4. (b) 6 জন বিজ্ঞান ও 4 জন কলা বিভাগের ছাত্র থেকে 6 জনের একটি কমিটি গঠন করতে হবে। বিজ্ঞানের ছাত্রদেরকে সংখ্যা গরিষ্ঠতা দিয়ে কত প্রকারে কমিটি গঠন করা যাবে ?
 [য.'০৬,'১২; কু.'০৯; ব.,চ.'১৩] সমাধান ঃ নিমন্থপে 6 জনের কমিটি গঠন করা যেতে পারে –

বিজ্ঞান	বিভাগের ছাত্র (6)	কলা বিভাগের ছাত্র (4)	কমিটি গঠনের উপায়
6	0	${}^{6}C_{6} = 1$	
5	1	${}^{6}\mathrm{C}_{5} \times {}^{4}\mathrm{C}_{1} = 6 \times 4$	
4	2	${}^{6}C_{4} \times {}^{4}C_{2} = 15 \times$	6 = 90

(1 + 24 + 90) অর্থাৎ, 115 প্রকারে কমিটি গঠন করা যাবে।

(c) 5 জন বিজ্ঞান ও 3 জন কলা বিভাগের ছাত্রের মধ্য থেকে 4 জনের একটি কমিটি গঠন করতে হবে। যদি প্রত্যেক কমিটিতে (i) অন্যতত একজন বিজ্ঞানের ছাত্র থাকে, (ii) অন্যতত একজন বিজ্ঞান ও একজন কলা বিভাগের ছাত্র থাকে, তাহলে কত প্রকারে কমিটি গঠন করা যেতে পারে?

সমাধান ঃ (i) নিমন্রপে 4 জনের কমিটি গঠন করা যেতে পারে – কমিটি গঠনের উপায় বিজ্ঞান বিভাগের ছাত্র (5) কলা বিভাগের ছাত্র (3) ${}^{5}C_{1} \times {}^{3}C_{3} = 5 \times 1 = 15$ 1 3 ${}^{5}C_{2} \times {}^{3}C_{2} = 10 \times 3 = 30$ 2 3 2 ${}^{5}C_{3} \times {}^{3}C_{1} = 10 \times 3 = 30$ 1 ${}^{5}C_{4} \times {}^{3}C_{0} = 5 \times 1 = 5$ 4 0 নির্নেয় মোট সংখ্যা = 5 + 30 + 30 + 5 = 70

(ii) নিমুরূপে 4 জনের কমিটি গঠন করা যেতে পারে – <u>বিজ্ঞান বিভাগের ছাত্র (5)</u> <u>কলা বিভাগের ছাত্র (3)</u> <u>কমিটি গঠনের উপায়</u> 1 3 ${}^5C_1 \times {}^3C_3 = 5 \times 1 = 15$ 2 2 ${}^5C_2 \times {}^3C_2 = 10 \times 3 = 30$ 1 ${}^5C_3 \times {}^3C_1 = 10 \times 3 = 30$ নির্নেয় মোট সংখ্যা = 5 + 30 + 30 = 65

(d) 15 জন ক্রিকেট খেলোয়াড়ের মধ্যে 5 জন বোলার এবং 3 জন উইকেট রক্ষক। এদের মধ্য হতে 11 জন খেলোয়াড়ের একটি দল কত প্রকারে বাছাই করা যেঁতে পারে যাতে অন্তত 8 জন বোলার ও 2 জন উইকেট রক্ষক থাকে?

সমাধান ঃ 11 জনের একটি দল নিমুরূপে বাছাই করা যায় –

বোলার (5) ইউকেট রক্ষক (3) অন্যান্য (7) দল বাছাই করার উপায় সংখ্যা ${}^{5}C_{4} \times {}^{3}C_{2} \times {}^{7}C_{5} = 5 \times 3 \times 21 = 315$ 4 2 5 ${}^{5}C_{4} \times {}^{3}C_{3} \times {}^{7}C_{4} = 5 \times 1 \times 35 = 175$ 3 4 4 ${}^{5}C_{5} \times {}^{3}C_{2} \times {}^{7}C_{4} = 1 \times 3 \times 35 = 105$ 5 2 4 ${}^{5}C_{5} \times {}^{3}C_{3} \times {}^{7}C_{3} = 1 \times 1 \times 35 = 35$ 5 3 3 নির্ণেয় মোট সংখ্যা = 315 + 175 + 105 + 35 = 630

5. (a) প্রতি গ্রুপে 5টি প্রশ্ন আছে এমন দুইটি গ্রুপে বিভক্ত 10 টি প্রশ্ন থেকে একজন পরীক্ষার্থীকে 6 টি প্রশ্নের উত্তর দিতে হবে এবং তাকে কোন গ্রুপ থেকে 4 টির বেশি উত্তর দিতে দেয়া হবে না । সে কত প্রকারে প্রশ্নগুলো বাছাই করতে পারবে?
[য.'০৩]

সমাধান ঃ একজন পরীক্ষার্থী 6টি প্রশ্ন নিমুরূপে বাছাই করতে পারবে ১ম গ্রুপ (5) ২য় গ্রুপ (5) প্রশ্ন বাছাই করার উপায় 2 4 ${}^{5}C_{2} \times {}^{5}C_{4} = 10 \times 5 = 50$ 3 3 ${}^{5}C_{3} \times {}^{5}C_{3} = 10 \times 10 = 100$ 4 2 ${}^{5}C_{4} \times {}^{5}C_{2} = 5 \times 10 = 50$ নির্শেষ্ট সংখ্যা = 50 + 100 + 50 = 200

(b) একচ্চন পরীক্ষার্থীকে 12 টি প্রশ্ন থেকে 6 টি প্রশ্নের উত্তর দিতে হবে। তাকে প্রথম 5 টি থেকে ঠিক 4 টি প্রশ্ন বাছাই করতে হবে। সে কত প্রকারে প্রশ্নপূলা বাছাই করতে পারবে? [ব.'o২, 'o৬, 'o৭] সমাধান ঃ সে প্রথম 5টি প্রশ্ন হতে 4টি ⁵C₄ = 5 উপায়ে এবং অবশিষ্ট 7টি প্রশ্ন থেকে 2টি ⁷C₂ = 21 উপায়ে বাছাই করতে পারবে।

নির্ণেয় মোট সংখ্যা = 5 × 21 = 105 (Ans.)

(c) একজন পরীক্ষার্থীকে 12 টি প্রশ্ন হতে 7 টি প্রশ্নের উত্তর দিতে হবে। এদের মধ্যে তাকে প্রথম পাঁচটি হতে ঠিক চারটি প্রশ্ন বাছাই করতে হবে। সে কত প্রকারে 7 টি প্রশ্ন বাছাই করতে পারবে? [সি.'০১] সমাধান ঃ পরীক্ষার্থী প্রথম 5টি প্রশ্ন হতে 4টি ⁵C₄ = 5 প্রকারে এবং শেষের 7টি প্রশ্ন হতে 3টি ⁷C₃ = 35 প্রকারে বাছাই করতে পারবে।

সে 5 × 35 = 175 প্রকারে 7টি প্রশ্ন বাছাই করতে পারবে।

 (a) সাতটি সরল রেখার দৈর্ঘ্য যথাক্রমে 1, 2, 3, 4, 5, 6, 7 সে.মি. । দেখাও যে, একটি চতুর্ভুক্ত গঠন করার জন্য চারটি সরল রেখা যত প্রকারে বাছাই করা যায় তার সংখ্যা 32.

[রা. '০৪,'১০; চ.'০৬, '০৮,'১২; সি.'০৮,'১২; দি.'০৯; ব.'০৮,'১০; য.'০৯] সমাধান ঃ 7টি সরল রেখা হতে 4টি সরল রেখা বাছাই করার উপায় = ⁷C₄ = 35 কিম্তু বাছাই করা 4টি সরল রেখার দৈর্ঘ্যের সেট {1, 2, 3, 6}, {1, 2, 3, 7} এবং {1, 2, 4, 7} হলে, তাদের ক্ষুদ্রতম সরল রেখা তিনটির দৈর্ঘ্যের যোগফল ৪র্থ সরল রেখার দৈর্ঘ্যের বৃহন্তম নয় বলে তাদের দ্বারা কোন চতুর্ভুক্ত গঠন করা সম্ভব নয় । ∴ নির্ণেয় চতুর্ভুর সংখ্যা = 35 – 3 = 32

(b) দেখাও যে , n বাহু বিশিষ্ট একটি বহুভূজের $\frac{1}{2}n(n-3)$ সংখ্যক কর্প আছে। আরও দেখা যে, এর কৌণিক কিন্দুগুলোর সংযোগ রেখা দার $\frac{1}{6}n(n-1)(n-2)$ সংখ্যক বিভিন্ন ত্রিভূজ গঠন করা যেতে পারে। [ঢা.'০৫] সমাধান ঃ প্রথম অংশ ঃ n বাহু বিশিষ্ট একটি বহুভূজের nটি কৌণিক কিন্দু আছে এবং দুই কিন্দুর সংযোগে একটি সরলরেখা উৎপন্ন হয়। \therefore n টি কৌণিক কিন্দু দারা গঠিত সরল রেখার সংখ্যা = ${}^{n}C_{2} = \frac{n(n-1)}{2}$ কিন্দু এদের মধ্যে , বহুভূজের nটি সীমান্দত বাহু কর্প নয়।

কর্ণের সংখ্যা = $\frac{n(n-1)}{2} - n = \frac{1}{2}n(n-1-2) = \frac{1}{2}n(n-3)$

দিতীয় অংশ ঃ অসমরেখ তিনটি কিন্দুর সংযোগ রেখা দ্বারা একটি ত্রিভুজ গঠিত হয়।

nটি কৌণিক বিন্দু দ্বারা গঠিত ত্রিভুজের সংখ্যা = ${}^{n}C_{3} = \frac{n(n-1)(n-2)}{3!} = \frac{1}{6} n (n-1)(n-2)$

n বাহু বিশিষ্ট একটি বহুভূজের $\frac{1}{2}$ n (n -3) সংখ্যক কর্ণ আছে এবং $\frac{1}{6}$ n (n -1)(n -2) সংখ্যক সংখ্যক ত্রিভুজ গঠন করা যেতে পারে। 7. (a) 10 খানা ও 12 খানা বই এর দুইজন মালিক কতভাবে দুইখানার পরিবর্তে দুইখানা বই পরস্পরের মধ্যে বিনিময় করতে পারবে?

সমাধান : 10 খানা বই এর মালিক দুইখানা বই ${}^{10}C_2$ উপায়ে 12 খানা বই এর মালিককে দিতে পারবে এবং 12 খানা বই এর মালিক দুইখানা বই ${}^{12}C_2$ উপায়ে 10 খানা বই এর মালিককে দিতে পারবে ।

তারা ¹⁰ C₂ × ¹² C₂ = 2970 উপায়ে দুইখানার পরিবর্তে দুইখানা বই পরস্পরের মধ্যে বিনিময় করতে পারবে। (b) 12 খানা পুস্তকের মধ্যে 5 খানা কত প্রকারে বাছাই করা যায় (i) যাতে দুইখানা নির্দিষ্ট পুস্তক সর্বদাই ধাকবে এবং (ii) যাতে দুইখানা নির্দিষ্ট পুস্তক সর্বদাই বাদ ধাকবে?

সমাধান : (i) দুইখানা নির্দিষ্ট পুস্তক সর্বদাই অন্তর্ভুক্ত রেখে অবশিষ্ট (12 – 2) অর্থাৎ, 10 খানা পুস্তক হতে বাকি (5 – 2) অর্থাৎ, 3 খানা পুস্তক বাছাই করা যাবে ¹⁰ C₃ = 120 উপায়ে। সুতরাং, নির্ধেয় সংখ্যা = 120 (ii) দুইখানা নির্দিষ্ট পুস্তক সর্বদাই বাদ দিয়ে অবশিষ্ট (12 – 2) অর্থাৎ, 10 খানা পুস্তক হতে 5 খানা পুস্তক বাছাই করা যাবে ¹⁰ C₅ = 252 উপায়ে। সুতরাং, নির্ধেয় সংখ্যা = 252

(c) দুইন্ধনকে কখনও একত্রে না নিয়ে, 9 জন ব্যক্তি হতে 5 জনকে একত্রে কতভাবে বাছাই করা যায়? সমাধান : বিশেষ দুইজনের কাউকে না নিয়ে 5 জনকে একত্রে বাছাই করার উপায় = ⁹⁻²C₅=⁷C₅ = 21 বিশেষ দুইজনের এক জন এবং অন্য 7 জনের 4 জনকে নিয়ে বাছাই করার উপায় = ²C₁×⁷C₄ = 2×35 = 70

নির্ণেয় সংখ্যা = 21 + 70 = 91

8. (a) 1 হতে 30 সংখ্যাগুলোর যে তিনটির সমষ্টি জোড় তাদেরকে কত ভাবে বাছাই করা যায়? সমাধান ঃ 1 হতে 30 পর্যনত সংখ্যাগুলোর 15টি জোড় এবং 15টি বিজোড়। তিনটি জোড় সংখ্যার যোগফল একটি জোড় সংখ্যা এবং দুইটি বিজোড় ও একটি জোড় সংখ্যার যোগফল একটি জোড় সংখ্যা।

15টি জোড় সংখ্যা হতে 3টি জোড় সংখ্যা ${}^{15}C_3 = 455$ উপায়ে বাছাই করা যায় যাদের সমষ্টি একটি জোড় সংখ্যা

আবার , 15টি বিজোড় সংখ্যা হতে 2টি বিজোড় সংখ্যা ${}^{15}C_2 = 105$ উপায়ে এবং 15টি জোড় সংখ্যা হতে 1টি জোড় সংখ্যা ${}^{15}C_1 = 15$ উপায়ে বাছাই করা যায়

1 হতে 30 পর্যনত সংখ্যাগুলোর দুইটি বিজোড় ও একটি জোড় সংখ্যা 105 × 15 = 1575 উপায়ে বাছাই করা যায় যাদের সমষ্টি একটি জোড় সংখ্যা ।

(455 + 1575) বা , 2030 উপায়ে বাছাই করা যায়।

(b) 3টি শূন্য পদের জন্য 10 জন প্রার্থী আছে। একজন নির্বাচক তিন বা তিনের কম প্রথীকে কতভাবে নির্বাচন করতে পারেন?

```
সমাধান ঃ একজন নির্বাচক নিমুরূপে নির্বাচন করতে পারেন –
```

- তিনি 3 জন প্রার্থীকে নির্বাচন করতে পারেন ¹⁰C₃ বা, 120 উপায়ে।
- তিনি 2 জন প্রার্থীকে নির্বাচন করতে পারেন $^{10}C_2$ বা, 45 উপায়ে ।
- তিনি 1 জন প্রার্থীকে নির্বাচন করতে পারেন ¹⁰C₁ বা, 10 উপায়ে ।

নির্ণেয় সংখ্যা = 120 + 45 + 10 = 175 (Ans)

(c) কোন নির্বাচনে 5 ছন পদপ্রার্থী আছেন, তার মধ্যে 3 ছনকে নির্বাচন করতে হবে। একছন ভোটার যত ইছা ভোট দিতে পারেন, কিন্তু যতজন নির্বাচিত হবেন তার চেয়ে বেশি ভোট দিতে পারবেন না। তিনি মোট কতভাবে ভোট দিতে পারবেন ? সমাধান ঃ একজন ভোটার নিমুরূপে ভোট দিতে পারেন– তিনি 1 জন প্রার্থীকে ভোট দিতে পারেন ⁵C₁ বা, 5 উপায়ে। তিনি 2 জন প্রার্থীকে ভোট দিতে পারেন ⁵C₂ বা, 10 উপায়ে। উ. গ. (১ম পত্র) সমাধান–২৫ তিনি 3 জন প্রার্থীকে ভোট দিতে পারেন ⁵C₃ বা, 10 উপায়ে।

নির্দেয় সংখ্যা = 5 + 10 + 1 0 = 25 (Ans)

9. (a) 277200 সংখ্যাটির উৎপাদকের সংখ্যা নির্ণয় কর।

সমাধান : $277200 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5 \times 7 \times 11 = 2^4 \times 3^2 \times 5^2 \times 7^1 \times 11^1$ 277200 এর উৎপাদকের সংখ্যা = $(4+1)(2+1)(2+1)(2^2 - 1) = 179$ (Ans.)

(b) ''Daddy did a deadly deed'' বাক্যটির বর্ণগুলো হতে যতগুলো সমাবেশ গঠন করা যাবে তার সংখ্যা নির্ণয় কর। সমাধান ঃ ''Daddy did a deadly deed'' এ আছে 9 টি d, 3 টি a, 3 টি e, 2 টি y, 1 টি *1* এবং 1 টি *i*

নির্শেয় সমাবেশ সংখ্যা = (9 + 1) (3 + 1) (3 + 1) (2 + 1) 2² -1 = 1920 -1 = 1919

(c) কোন পরীক্ষায় কৃতকার্য হতে হলে 6টি বিষয়ের প্রতিটিতে ন্যূনতম নম্বর পেতে হয়। একচ্চন ছাত্র কত রকমে অকৃতকার্য হতে পারে?

সমাধান ঃ একজন ছাত্র এক, দুই, তিন, চার, পাঁচ বা ছয় বিষয়ে অকৃতকার্য হতে পারে ।

ছাত্রটির মোট অকৃতকার্য হওয়ার উপায় =
$${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} + {}^{6}C_{4} + {}^{6}C_{5} + {}^{6}C_{6}$$

= 6 + 15 + 20 + 15 + 6 + 1 = 63

(d) দেখাও যে, প্রতিটি বিকল্পসহ 8টি প্রশ্ন থেকে একজন পরীক্ষার্থী একটি অথবা একাধিক প্রশ্ন 3⁸ – 1 উপায়ে বাছাই করতে পারে।

প্রমাণ ঃ যেহেতু প্রতিটি প্রশ্নের বিকল্প প্রশ্ন দেওয়া আছে, প্রতিটি প্রশ্নকে তিন উপায়ে নিম্পতি করা যায়– প্রশ্নটিকে গ্রহণ করে, এর বিকল্প প্রশ্নকে গ্রহণ করে অথবা উভয় প্রশ্নকে গ্রহণ না করে। অতএব, প্রদন্ত ৪টি প্রশ্ন নিম্পত্তি করা যায় 3⁸ উপায়ে। কিন্তু এর ভিতর বিকল্পসহ ৪টি প্রশ্নের একটিও না নেয়ার উপায়ও অনতর্ভুক্ত।

নির্ণেয় মোট সংখ্যা = $3^8 - 1$

10. একটি OMR সীটের একটি সারিতে 20টি ছোট বৃস্ত আছে। পেন্সিল দ্বারা কমপক্ষে একটি বৃস্ত কতভাবে ভরাট করা যায় ?

সমাধান 20টি ছোট বৃত্তের কমপক্ষে একটি বৃত্ত ভরাট করার উপায় = $2^{20} - 1 = 1048575$, $[2^n - 1$ সূত্রের সাহায্যে]

11 (a) 21টি ভিন্ন ব্যঞ্জন বর্ণ এবং 5টি ভিন্ন স্বরবর্ণ হতে প্রতিবার কমপক্ষে 1টি ব্যঞ্জন বর্ণ এবং কমপক্ষে 2টি স্বরবর্ণ কতভাবে বাছাই করা যায়?

সমাধান : 21টি ভিন্ন ব্যঞ্জন বর্ণ হতে কমপক্ষে 1টি বাছাই করা যায় $(2^{21} - 1) = 2097151$ উপায়ে।

5টি ভিন্ন ব্যঞ্জন বর্ণ হতে কমপক্ষে 2টি বাছাই করা যায়
$$\sum_{r=2}^5 {}^5C_r = {}^5C_2 + {}^5C_3 + {}^5C_4 + {}^5C_5 = 26$$
 উপায়ে।

নির্ণেয় বাছাই সংখ্যা = 2097151 × 26 = 54525926

(b) 3টি নারিকেল, 4টি আপেল, 2টি কমলা লেবু হতে প্রত্যেক প্রকার ফলের কমপক্ষে একটি করে ফল কতভাবে বাছাই করা যায়?

সমাধান ঃ 3টি নারিকেলের কমপক্ষে একটি $(2^3 - 1)$ উপায়ে, 4টি আপেলের কমপক্ষে একটি $(2^4 - 1)$ উপায়ে এবং 2টি কমলা লেবুর কমপক্ষে একটি $(2^2 - 1)$ উপায়ে বাছাই করা যায় ।

তিন প্রকারের কমপক্ষে একটি করে ফল বাছাই করার উপায় = $(2^3 - 1) (2^4 - 1) (2^2 - 1) = 315$

12. (a) 9 ব্যক্তির একটি দল দুইটি যানবাহনে ভ্রমন করবে, যার একটিতে সাত জনের বেশি এবং অন্যটিতে চার জনের বেশি ধরে না। দলটি কত প্রকারে ভ্রমণ করতে পারবে?

১৯১

[চ.'০৯; ঢা.'১১,'১৪; রা.'০৭; সি.'১০,'১৪; ব.'০৯;কু.'১০; য.'১১; দি.'১৪]

সমাধান ঃ নিম্নরূপে দলটি ভ্রমণ করতে পারবে – $\frac{5 \times 21 - 71 + 72}{7}$ $\frac{5 \times 21 - 71}{7}$ $\frac{5 \times 21 - 71}$

(b) 20 ব্যক্তির একটি দল দুইটি যানবাহনে ভ্রমন করবে । প্রতিটি যানবাহনের ধারণ ক্ষমতা 20। দলটি কত প্রকারে ভ্রমণ করতে পারবে?

সমাধান ঃ দলটির দুইটি যানবাহনে ভ্রমণ করার উপায় =
$$\sum_{r=0}^{20} {}^{20}C_r \times {}^{20-r}C_{20-r}$$
 [${}^{n}C_n = 1$
= $\sum_{r=0}^{20} {}^{20}C_r = 2^{20} = 1048576$

বিকঙ্গ পদ্দতি : প্রতিজন দুইটি যানবাহনের যেকোন একটিতে ভ্রমণ করতে পারবে। প্রতিজনের ভ্রমণ করার উপায় = 2

20 ব্যক্তির দলটি দুইটি যানবাহনে ভ্রমণ করতে পারবে 2²⁰ বা, 1048576 উপায়ে।

(c) 10 জন লোক দুইটি শয়ন কক্ষে কত রকমন্তাবে রান্রি যাপন করতে পারবে তা নির্ণয় কর। সমাধান ঃ প্রতিজন লোক দুইটি শয়ন কক্ষের যেকোন একটিতে রান্রি যাপন করতে পারবে। প্রতিজনের রান্রি যাপনের উপায় = 2

10 জন লোক দুইটি শয়ন কক্ষে রাত্রি যাপন করতে পারবে 2^{10} বা, 1024 উপায়ে।

(d) A, B ও C কে কতভাবে 12 খানা বই দেয়া যাবে যেন A ও B একত্রে C এর দ্বিগুণ পায়? সমাধান x মনে করি, C বই পায় x টি । তাহলে, A ও B একত্রে বই পায় 2x টি

 $x + 2x = 12 \implies x = 4$

4 খানা বই C পাবে এবং অবশিষ্ট (12 – 4) বা, 8 খানা বই A ও B পাবে।

12 খানা বই হতে 4 খানা m C কে দেওয়া যায় $^{12}C_{a}$ = 495 উপায়ে এবং অবশিষ্ট 8 খানা বই m A ও m B কে দেওয়া

যায়
$$\sum_{r=0}^{8} {}^{8}C_{r} \times {}^{8-r}C_{8-r} = \sum_{r=0}^{8} {}^{8}C_{r} = 2^{8} = 256 \cdot \mathbb{E}$$
পায়ে, [${}^{n}C_{n} = 1$] +

A, B ও C কে 12 খানা বই দেয়া যাবে 495×256 বা 126720 উপায়ে।

13. (a) 15 জন ছাত্রের মধ্য থেকে প্রতি কমিটিতে 5 জন হিসাবে মোট 3টি কমিটি গঠন করতে হবে। কত উপায়ে কমিটিগুলো গঠন করা যাবে? [প্র.ভ.প. '০৫]

সমাধান ঃ 15 জন ছাত্রের মধ্য থেকে প্রতি কমিটিতে 5 জন হিসাবে 3টি কমিটি গঠন করা যায় $rac{15!}{3!(5!)^3}$ উপায়ে।

(b) কত প্রকারে 52 খানা তাস 4 ব্যক্তির মধ্যে সমানভাবে ভাগ করা যেতে পারে?

সমাধান ঃ 52 খানা তাস 4 ব্যক্তির মধ্যে সমানভাবে ভাগ করা যায় <u>.52!</u> উপায়ে। [সূত্র প্রয়োগ করে।]

[চ.'০৯; ঢা.'১১,'১৪; রা.'০৭; সি.'১০,'১৪; ব.'০৯;কু.'১০; য.'১১; দি.'১৪] সমাধান : নিমুরুপে দলটি ভ্রমণ করতে পারবে – ১ম যানবাহন ভ্রমণ করার উপায় ২য় যানবাহন ${}^{9}C_{7} \times {}^{2}C_{2} = 36 \times 1 = 36$ 7 2 ${}^{9}C_{6} \times {}^{3}C_{3} = 6 \times 1 = 84$ 6 3 ${}^{9}C_{5} \times {}^{4}C_{4} = 15 \times 1 = 126$ 5 4 (36 + 84 + 126) বা , 246 উপায়ে দলটি ভ্রমণ করতে পারবে। [বি. দु.: ভ্রমণ করার উপায় সংখ্যা (${}^{9}C_{7} + {}^{9}C_{6} + {}^{9}C_{5}$) বা, (${}^{9}C_{4} + {}^{9}C_{3} + {}^{9}C_{2}$)]

(b) 20 ব্যক্তির একটি দল দুইটি যানবাহনে ভ্রমন করবে । প্রতিটি যানবাহনের ধারণ ক্ষমতা 20। দলটি কত প্রকারে ভ্রমণ করতে পারবে?

সমাধান ঃ দলটির দুইটি যানবাহনে ভ্রমণ করার উপায় =
$$\sum_{r=0}^{20} {}^{20}C_r \times {}^{20-r}C_{20-r}$$
 [${}^{n}C_n = 1$]
= $\sum_{r=0}^{20} {}^{20}C_r = 2^{20} = 1048576$

বিকন্ন পন্দতি : প্রতিজন দুইটি যানবাহনের যেকোন একটিতে ভ্রমণ করতে পারবে।

প্রতিজনের ভ্রমণ করার উপায় = 2

20 ব্যক্তির দলটি দুইটি যানবাহনে ভ্রমণ করতে পারবে 2²⁰ বা, 1048576 উপায়ে।

(c) 10 জন লোক দুইটি শয়ন কক্ষে কত রক্মভাবে রান্রি যাপন করতে পারবে তা নির্ণয় কর। সমাধান ঃ প্রতিজন লোক দুইটি শয়ন কক্ষের যেকোন একটিতে রাত্রি যাপন করতে পারবে। প্রতিজনের রাত্রি যাপনের উপায় = 2

10 জন লোক দুইটি শয়ন কক্ষে রাত্রি যাপন করতে পারবে 2¹⁰ বা, 1024 উপায়ে।

(d) A, B ও C কে কতভাবে 12 খানা বই দেয়া যাবে যেন A ও B একত্রে C এর দ্বিগুণ পায়? সমাধান ঃ মনে করি, C বই পায় x টি । তাহলে, A ও B একত্রে বই পায় 2x টি

 $x + 2x = 12 \implies x = 4$

4 খানা বই C পাবে এবং অবশিষ্ট (12 – 4) বা, 8 খানা বই A ও B পাবে।

12 খানা বই হতে 4 খানা m C কে দেওয়া যায় ${}^{12}C_4$ = 495 উপায়ে এবং অবশিষ্ট 8 খানা বই m A ও m B কে দেওয়া 8

যায়
$$\sum_{r=0}^{8} C_r \times {}^{8-r}C_{8-r} = \sum_{r=0}^{8} C_r = 2^8 = 256 \cdot$$
উপায়ে, [${}^{n}C_n = 1$] |

A, B ও C কে 12 খানা বই দেয়া যাবে 495×256 বা 126720 উপায়ে।

13. (a) 15 জন ছাত্রের মধ্য থেকে প্রতি কমিটিতে 5 জন হিসাবে মোট 3টি কমিটি গঠন করতে হবে। কত উপায়ে কমিটিগুলো গঠন করা যাবে? [প্র.ড.প.'০৫]

সমাধান ঃ 15 জন ছাত্রের মধ্য থেকে প্রতি কমিটিতে 5 জন হিসাবে 3টি কমিটি গঠন করা যায় $rac{15!}{3!(5!)^3}$ উপায়ে।

(b) কত প্রকারে 52 খানা তাস 4 ব্যক্তির মধ্যে সমানভাবে ভাগ করা যেতে পারে ?

সমাধান ঃ 52 খানা তাস 4 ব্যক্তির মধ্যে সমানভাবে ভাগ করা যায় <u>.52!</u> উপায়ে। [সূত্র প্রয়োগ করে।]

798

(c). 23 জন খেলোয়াড় দারা 11 সদস্যের দুইটি ক্লিফেট দল কতভাবে গঠন করা যায় ? 23 জনের মধ্যে দু জন উইকেট কিপিং করতে পারে এবং তাদেরকে দুইটি দলে রেখে কতভাবে দুইটি ক্লিফেট দল গঠন করা যায় ? সমাধান ঃ ১ম জ্বংশ ঃ 23 জন খেলোয়াড় হতে 22 জনকে ${}^{23}C_{22}$ উপায়ে বাছাই করা যায় । আবার 22 জনকে 11 জন করে সমান দুইটি দলে বিশুক্ত করা যায় $\frac{22!}{2!(1!!)^2}$ উপায়ে । দুইটি ক্লিফেট টিম গঠন করার উপায় = ${}^{23}C_{22} \times \frac{22!}{2!(1!!)^2} = 23 \times \frac{22!}{2!(1!!)^2} = \frac{23!}{2!(1!!)^2}$ ২য় জ্বংশ ঃ 21 জন হতে 20 জনকে বাছাই করা যায় ${}^{21}C_{20}$ উপায়ে । আবার, দুইজন ইউকেট রক্ষককে দুইটি টিমে নিদিফ করে 20 জনকে বাছাই করা যায় ${}^{21}C_{20}$ উপায়ে । আবার, দুইজন ইউকেট রক্ষককে দুইটি টিমে নিদিফ করে 20 জনকে দুইটি সমান ভাগে সেই নির্দিফ টিমে বিশুক্ত করা যায় $\frac{20!}{(10!)^2}$ উপায়ে । দুইটি ক্লিফেট টিম গঠন করার উপায় = ${}^{21}C_{20} \times \frac{20!}{(10!)^2} = \frac{21!}{20!} \times \frac{20!}{(10!)^2} = \frac{21!}{(10!)^2}$ (d) 23 জন খেলোয়াড়ের মধ্যে দুইজন উইকেট রক্ষক । তাদেরকে দুইটি দলে রেখে A ও B দল নামে দুইটি ক্লিফেট দল কতভাবে গঠন করা যায় ?

সমাধান ঃ দুইজন উইকেট রক্ষককে A ও B দলে অন্তর্ভুক্ত করা যাবে 2! = 2 উপায়ে। অবশিষ্ট 21 জন খেলোয়াড় হতে A -দলের জন্য বাকি 10 জনকে বাছাই করা যায় ${}^{21}C_{10}$ উপায়ে। বাকি 11 জন হতে B -দলের জন্য 10 জনকে বাছাই করা যায় ${}^{11}C_{10} = 11$ উপায়ে।

A ও B দল নামে দুইটি ক্রিকেট টিম গঠন করার উপায়= $2 \times {}^{21}C_{10} \times 11 = 2 \times \frac{21!}{10!11!} \times 11$ $= 2 \times \frac{21!}{(10!)^2}$

(e) একটি কম্পানি দুইটি ফ্যাষ্টরির জন্য 15 জনকে নিয়োগ দিয়েছে । একটি ফ্যাষ্টরিতে 5 জনকে ও অপরটিতে 10 জনকে কততাবে নিয়োগ দেওয়া যায় তা নির্ণয় কর । সমাধান ঃ 15 জন হতে একটি ফ্যাষ্টরিতে 5 জনকে নিয়োগ দেওয়া যাবে ¹⁵C₅ উপায়ে এবং অবশিষ্ট 10

জনকে অপর ফ্রাষ্টরিতে ${}^{10}\mathrm{C}_{10}$ উপায়ে নিয়োগ দেওয়া যাবে ।

নির্শেয় উপায় সংখ্যা =
$${}^{15}C_5 \times {}^{10}C_{10} = \frac{15!}{5 \times 10!} \times 1 = \frac{15!}{5 \times 10!}$$

(f) একটি ক্রিকেট টুর্নামেন্ট- এ 16 টি দল অংশ নেয়। র্যাৎকিং - এ শীর্ষ 8 টি দল থেকে দুইটি দল এবং অপর 8 টি দল থেকে দুইটি দল নিয়ে 4 দলের 4 টি গ্রুণ কতভাবে গঠন করা যায় তা নির্ণয় কর ।

সমাধান ঃ ১ম অংশ ঃ শীর্ষ ৪টি দলকে 2টি করে সমান 4টি দলে বিভক্ত করা যায় $\frac{8!}{4!(2!)^4} = 105$ উপায়ে।

পুনরায় , অপর 8টি দলকে 2টি করে সমান 4টি দলে বিভক্ত করা যায় $\frac{8!}{4!(2!)^4} = 105$ উপায়ে ।

4 দলের 4টি গ্রুপ গঠন করার উপায় = $105 \times 105 = 11025$

২য় জল্প ঃ শীর্ষ ৪টি দলকে 2টি করে A, B, C, D নামে 4টি দলে বিভক্ত করা যায় $\frac{8!}{(2!)^4} = 2520$ উপায়ে।

অপর 8টি দলকে 2টি করে A, B, C, D নামে 4টি দলে বিভক্ত করা যায় $\frac{8!}{(2!)^4} = 2520$ উপায়ে।

A B, C, D নামে 4 দলের 4টি গ্রুপ গঠন করার উপায় = 2520 × 2520 = 6350400

(g) এক ব্যক্তির 5টি সিম কার্ড এবং দুইটি করে সিম কার্ড ব্যবহার উপযোগী দুইটি মোবাইল সেট আছে। তিনি তাঁর মোবাইল সেট দুইটিতে কতভাবে 2 টি করে 4 টি সিম কার্ড সংরক্ষিত রাখতে পারেন এবং কতভাবে 1 টি করে 2 টি সিম কার্ড চালু রাখতে পারেন ?

সমাধান ঃ 5 টি সিম কার্ড হতে 4 টি সিম কার্ড ${}^{5}C_{4} = 5$ উপায়ে বেছে নেওয়া যায়। এই বেছে নেওয়া 4 টি সিম কার্ড দুইটি মোবাইল সেটে সমান দুইভাগে ভাগ করা যায় $\frac{4!}{(2!)^{2}} = \frac{24}{4} = 6$ উপায়ে।

4 টি সিম কার্ড মোবাইল সেট দুইটিতে সংরক্ষিত রাখা যায় = 5 × 6 = 30 উপায়ে। এখন, একটি মোবাইল সেটের সংরক্ষিত সিম কার্ড দুইটির একটি চালু রাখা যায় 2! উপায়ে এবং অপর মাবাইল সেটের সংরক্ষিত সিম কার্ড দুইটির একটি চালু রাখা যায় 2! উপায়ে।

2 টি সিম কার্ড দুইটি সেটে চালু রাখা যায় $30 \times 2! \times 2! = 120$ উপায়ে।

14. দেওয়া আছে,
$${}^{n}P_{r} = 240 \cdots(1)$$
 এবং ${}^{n}C_{r} = 120\cdots(2)$
 [5.'55]

 (1) $\div (2) \Rightarrow {}^{n}P_{r} \div {}^{n}C_{r} = 240 \div 120 = 2 \Rightarrow {}^{n}P_{r} = 2. {}^{n}C_{r}$
 (1) $\div (2) \Rightarrow {}^{n}P_{r} \div {}^{n}C_{r} = 240 \div 120 = 2 \Rightarrow {}^{n}P_{r} = 2. {}^{n}C_{r}$
 $\Rightarrow r!. {}^{n}C_{r} = 2. {}^{n}C_{r} \Rightarrow r! = 2 \therefore r = 2$
 [${}^{n}P_{r} = r!. {}^{n}C_{r}$]

 $u \forall \overline{n}, {}^{n}C_{r} = 120 \Rightarrow {}^{n}C_{2} = 120 \Rightarrow \frac{n(n-1)}{1.2} = 120 \Rightarrow n^{2} - n = 420 \Rightarrow n^{2} - n - 420 = 0$
 $\Rightarrow (n - 16)(n + 15) = 0 \Rightarrow n = 16, -15.$
 \overline{p} my n - ust and with use two missions in $n = 16$ (Ans.)

15. (a) 21টি ভিন্ন ব্যঞ্জন বর্ণ এবং 5টি ভিন্ন স্বরবর্ণ হতে প্রতিবার 2টি ব্যঞ্জন বর্ণ এবং 3টি স্বরবর্ণ নিযে কতগুলি শব্দ গঠন করা যায়?

সমাধান ঃ 21টি ভিন্ন ব্যঞ্জন বর্ণ হতে 2টি ²¹C₂ = 210 উপায়ে এবং 5টি ভিন্ন স্বরবর্ণ হতে 3টি ⁵C₃ = 10 উপায়ে বেছে নেওয়া যায়। এ বেছে নেওয়া 5টি ভিন্ন বর্ণ (2টি ব্যঞ্জন বর্ণ ও 3টি স্বরবর্ণ) দ্বারা 5!=120টি শব্দ গঠন করা যায়। : 210×10×120 = 252000টি শব্দ গঠন করা যায়।

(b) 12টি বিভিন্ন ব্যঞ্জন বর্ণ এবং 5টি বিভিন্ন স্বরবর্ণ হতে প্রতিবার 3টি ব্যঞ্জন বর্ণ এবং 2টি স্বরবর্ণ নিযে কতগুলি শব্দ গঠন করা যায়?

সমাধান ঃ 12টি ভিন্ন ব্যঞ্জন বর্ণ হতে 3টি ¹²C₃ = 220 উপায়ে এবং 5টি ভিন্ন স্বরবর্ণ হতে 2টি ⁵C₂ = 10 উপায়ে বেছে নেওয়া যায়। এ বেছে নেওয়া 5টি ভিন্ন বর্ণ (2টি ব্যঞ্জন বর্ণ ও 3টি স্বরবর্ণ) দ্বারা 5!= 120টি শব্দ গঠন করা যায়। : 220×10×120 = 264000টি শব্দ গঠন করা যায়।

(c) 2, 3, 4, 5 অধ্বস্থালো একবার এবং 6 দুইবার পর্যন্ত ব্যবহার করে তিন অধ্বেক্র কতগুলো সংখ্যা গঠন করা যায়? সমাধান ঃ নিমুরূপ তিন অধ্বের কতগুলো সংখ্যা গঠন করা যায়–

6 দুইবার ব্যবহার করা হলে, অন্য 4টি অঞ্চের 1টি ব্যবহার করতে হবে এবং তা ${}^4\mathrm{C}_1$ উপায়ে ব্যবহার করা যাবে।

6 দুইবার ব্যবহার করে সংখ্যা গঠন করা যায় ${}^{4}C_{1} \times \frac{3!}{2!} = 4 \times 3 = 12$ টি জনুরুপভাবে, 6 একবার ব্যবহার করে সংখ্যা গঠন করা যায় ${}^{4}C_{2} \times 3! = 36$ টি এবং 6 ব্যবহার না করে সংখ্যা গঠন করা যায় ${}^4C_3 \times 3! = 24$ টি

সর্বমোট শব্দ সংখ্যা =12 + 36 + 24 = 72

16. (a) ' ALGEBRA' শব্দটির বর্ণগুলো থেকে প্রতিবার 3টি করে নিয়ে কতগুলো ভিন্ন শব্দ গঠন করা যায়? [ব. ১০] সমাধান ঃ ALGEBRA' শব্দটিতে 2টি A সহ মোট 7টি বর্ণ আছে।

7টি বর্ণ হতে 3টি নিয়ে নিমুরূপে শব্দ গঠন করা যায় -

6টি ভিন্ন বর্ণ A, L, G, E, B ও R হতে 3টি নিয়ে শব্দ গঠন করা যায় ⁶P₃ = 120 উপায়ে।

2টি A এবং অপর 5টি তিন্ন বর্ণ L, G, E, B ও R হতে 1টি নিয়ে শব্দ গঠন করা = ${}^{2}C_{2} \times {}^{5}C_{1} \times \frac{3!}{2!}$ = $1 \times 5 \times 3 = 15$ উপায়ে। : সর্বমোট শব্দ সংখ্যা = 120 + 15 = 135

(b) 'EXAMINATION' শব্দটির বর্ণগুলো হতে প্রত্যেকবার 4টি বর্ণ নিয়ে বিভিন্ন শব্দ গঠন করা হল, এদের কতগুলোতে এক প্রান্দেত N এবং অন্য প্রান্দেত A থাকবে ? [প্র.ড.প. ৮৮]

সমাধান : 'EXAMINATION ' শব্দটিতে 2টি A, 2টি I ও 2টি N সহ মোট 11টি বর্ণ আছে। এক প্রান্দেত N এবং অন্য প্রান্দেত A রেখে 4টি বর্ণ নিয়ে বিভিন্ন শব্দ গঠন করা হলে, মধ্যের স্থান দুইটি অবশিষ্ট (11-2) = 9 টি বর্ণের 2টি দ্বারা পূরণ করতে হবে।

2টি I দ্বারা মধ্যের স্থান দুইটি পূরণ করা যায় $\frac{2!}{2!} = 1$ উপায়ে।

2টি ভিন্ন বর্ণ দ্বারা মধ্যের স্থান দুইটি পূরণ করা যায় ⁹⁻¹ P₂ = ⁸P₂ = 56 উপায়ে। [11–3 = 8 টি ভিন্ন বর্ণ] আবার, N ও A দ্বারা প্রান্দেতর স্থান দুইটি পূরণ করা যায় 2! = 2 উপায়ে।

নির্ণেয় সংখ্যা = (1+56) × 2 = 114

(c) 'MATHEMATICS 'শদটিতে 2টি M, 2টি A ও 2টি T সহ মোট 11টি বর্ণ আছে যাদের 4টি স্বরবর্ণ ও 7টি ব্যঞ্জন বর্ণ । সমাধান ঃ 3টি তিন্ন স্বরবর্ণ A, E ও I হতে 1টি স্বরবর্ণ এবং 5টি তিন্ন ব্যঞ্জন বর্ণ M, T, H, C ও S হতে 2টি ব্যঞ্জন বর্ণ নিয়ে বিন্যাস সংখ্যা = ${}^{3}C_{1} \times {}^{5}C_{2} \times 3! = 3 \times \frac{5 \times 4}{2} \times 3 \times 2 \times 1 = 180$ আবার, 3টি তিন্ন স্বরবর্ণ A, E ও I হতে 1টি স্বরবর্ণ এবং 2টি M বা 2টি T নিয়ে বিন্যাস সংখ্যা = ${}^{3}C_{1} \times {}^{2}C_{1} \times \frac{3!}{2!} = 3 \times 2 \times 3 = 18$. .: নির্ণেয় বিন্যাস সংখ্যা = 180 + 18 = 198(d) 'EXPRESSION' শদ্দটির বর্ণগুলো হতে প্রত্যেকবার 4 টি বর্ণ নিয়ে সমাবেশ ও বিন্যাস সংখ্যা নির্ণয় কর । সমাধান ঃ ' EXPRESSION' শদ্দটির বর্ণগুলো হতে প্রত্যেকবার 4 টি বর্ণ নিয়ে সমাবেশ ও বিন্যাস সংখ্যা নির্ণয় কর । 10টি বর্ণ হতে 4টি বর্ণ নিয়ে নিয়ন্ত্রপে সমাবেশ ও বিন্যাস সংখ্যা নির্ণয় করা যায় –

8টি ভিন্ন বৰ্ণ E, X, P, R, S, I, O ও N হতে 4টি নিয়ে সমাবেশ সংখ্যা = ${}^{8}C_{4} = 70$ এবং বিন্যাস সংখ্যা = ${}^{8}P_{4} = 1680$

2টি E এবং অপর 7টি ভিন্ন বর্ণ X, P, R, S, I, O ও N হতে 2টি নিয়ে সমাবেশ সংখ্যা = ${}^{2}C_{2} \times {}^{7}C_{2}$ = $1 \times 21 = 21$ এবং বিন্যাস সংখ্যা = $21 \times \frac{4!}{2!} = 21 \times 12 = 252$

১৯৬

অনুরপভাবে, 2টি S এবং অপর 7টি ভিন্ন বর্ণ E, X, P, R, I, O ও N হতে 2টি নিয়ে সমাবেশ সংখ্যা = 21 এবং বিন্যাস সংখ্যা = 252

2টি E এবং 2টি S নিয়ে সমাবেশ সংখ্যা = ${}^{2}C_{2} \times {}^{2}C_{2} = 1$ এবং বিন্যাস সংখ্যা = $1 \times \frac{4!}{2!2!} = 6$

নির্শেয় সমাবেশ সংখ্যা = 70 + 42 + 1 = 113 এবং বিন্যাস সংখ্যা = 1680 + 504 + 6 = 2190

(e) 'ENGINEERING' শব্দটির বর্ণগুলো থেকে প্রতিবারে 3 টি বর্ণ নিয়ে শব্দ গঠন করা হল, এদের কতগলোতে অন্তত একটি স্বরবর্ণ বর্তমান থাকবে। [RU 06-07]

সমাধান ঃ ' ENGINEERING ' শব্দটিতে ব্যঞ্জন বর্ণ আছে 3টি N, 2 টি G ও 1টি R এবং স্বরবর্ণ আছে 3টি E ও 2 fb I

যেকোন 3টি বর্ণ নিয়ে গঠিত শব্দ সংখ্যা = 5টি ভিন্ন বর্ণ E, N, G, I ও R হতে 3টি নিয়ে গঠিত শব্দ সংখ্যা + 2টি N বা, 2 টি G বা, 2 টি E বা, 2 টি I এবং অপর 4 টি ভিন্ন বর্ণ হতে 1 টি নিয়ে গঠিত শব্দ সংখ্যা + 3 টি N বা, 3 টি E

নিয়ে গঠিত শব্দ সংখ্যা =
$${}^{5}P_{3} + {}^{4}C_{1} \times \frac{3!}{2!} + {}^{2}C_{1} \times \frac{3!}{3!} = 60 + 4 \times 4 \times 3 + 2 \times 1$$

= 60 + 48 + 2 = 110 www.boighar.com

= 60 + 48 + 2 = 110

যেকোন 3টি ব্যঞ্জন বর্ণ নিয়ে গঠিত শব্দ সংখ্যা = 3টি ভিন্ন ব্যঞ্জন বর্ণ N. G ও R একত্রে নিয়ে গঠিত শব্দ সংখ্যা + 2টি N বা. 2 টি G এবং অপর 2টি ভিন্ন ব্যঞ্জন বর্ণ হতে 1টি নিয়ে গঠিত শব্দ সংখ্যা + 3টি N দ্বারা গঠিত শব্দ সংখ্যা

=
$$3! + {}^{2}C_{1} \times {}^{2}C_{1} \times \frac{3!}{2!} + \frac{3!}{3!} = 6 + 2 \times 2 \times 3 + 1 = 6 + 12 + 1 = 19$$

অন্তত 1টি স্বরবর্ণ নিয়ে 3টি বর্ণ দ্বারা গঠিত শব্দ সংখ্যা = যেকোন 3টি বর্ণ নিয়ে গঠিত শব্দ সংখ্যা – কোন স্বরবর্ণ না নিয়ে অর্থাৎ যেকোন 3টি ব্যঞ্জন বর্ণ নিয়ে গঠিত শব্দ সংখ্যা = 110 – 19 = 91

17. (a) n সংখ্যক বিভিন্ন জিনিসের r (n> r) সংখ্যক একবারে নিয়ে গঠিত বিন্যাসের যেগুলোতে একটি বিশেষ জিনিস অনতর্ভুক্ত থাকে তাদের সংখ্যা এবং যেগুলোতে উহা অনতর্ভুক্ত থাকেনা তাদের সংখ্যা সমান হলে দেখাও যে, n = 2r. সমাধান ঃ n সংখ্যক বিভিন্ন জিনিসের একটি বিশেষ জিনিস অন্তর্ভুক্ত থাকলে অবশিষ্ট (n-1) সংখ্যক জিনিস হতে বাকি (r-1) সংখ্যক জিনিসকে ⁿ⁻¹C_{r-1} উপায়ে অন্তর্ভুক্ত করা যাবে। এক্ষেত্রে গঠিত বিন্যাস সংখ্যা = ⁿ⁻¹C_{r-1} × r! একটি বিশেষ জিনিস অন্তর্ভুক্ত না থাকলে অবশিষ্ট (n-1) সংখ্যক জিনিস হতে r সংখ্যক জিনিসকে $^{n-1}C_r$ উপায়ে সন্তর্ভুক্ত করা যাবে। এক্ষেত্রে গঠিত বিন্যাস সংখ্যা = ⁿ⁻¹C, ×r!

প্রমতে,
$${}^{n-1}C_{r-1} \times r! = {}^{n-1}C_r \times r! \Rightarrow \frac{(n-1)!}{(r-1)!(n-1-r+1)!} = \frac{(n-1)!}{r!(n-1-r)!}$$

$$\Rightarrow \frac{1}{(r-1)!(n-r).(n-r-1)!} = \frac{1}{r.(r-1)!(n-1-r)!} \Rightarrow \frac{1}{n-r} = \frac{1}{r}$$

$$\Rightarrow n-r = r \Rightarrow n = 2r \text{ (Showed)}$$

(b) n সংখ্যক বিভিন্ন জিনিসের r সংখ্যক একবারে নিয়ে গঠিত বিন্যাসের যেগুলোতে দুইটি বিশেষ জিনিস অন্তর্ভুক্ত ৎাকে তাদের সংখ্যা নির্ণয় কর। এদের কতগুলোতে বিশেষ জিনিস দুইটি পাশাপাশি থাকবে। স্মাধান ঃ ১ম অংশ ঃ n সংখ্যক বিভিন্ন জিনিসের দুইটি বিশেষ জিনিস অন্তর্ভুক্ত থাকলে অবশিষ্ট (n-2) সংখ্যক ন্দিনস হতে বাকি (r – 2) সংখ্যক জিনিসকে ^{n–2}C_{r–2} উপায়ে অন্দতর্ভুক্ত করা যাবে।

উচ্চতর গণিত : ১ম পত্রের সমাধান বইঘর.কম

n সংখ্যক বিভিন্ন জিনিসের r সংখ্যক একবারে নিয়ে গঠিত বিন্যাসের যেগুলোতে দুইটি বিশেষ জিনিস অশতর্ভুক্ত থাকে তাদের সংখ্যা = ${}^{n-2}C_{r-2} \times r! = \frac{(n-2)!r!}{(r-2)!(n-2-r+2)!} = \frac{(n-2)!r!}{(r-2)!(n-r)!}$ (Ans.)

২**য় অংশ ঃ** এই দুইটি বিশেষ জিনিসকে একটি একক জিনিস বিবেচনা করলে (r – 1) সংখ্যক ভিন্ন জিনিস (r – 1)! ভাবে বিন্যস্ত হবে এবং বিশেষ জিনিস দুইটি 2! ভাবে বিন্যস্ত হবে।

নির্ধেয় বিন্যাস সংখ্যা =
$${}^{n-2}C_{r-2} \times (r-1)! \times 2! = \frac{(n-2)!}{(r-2)!(n-2-r+2)!} 2.(r-1)!$$

= $\frac{(n-2)!}{(r-2)!(n-r)!} 2.(r-1).(r-2)! = \frac{2(r-1).(n-2)!}{(n-r)!}$ (Ans.)

17. (c) n সংখ্যক বিভিন্ন জিনিসের r সংখ্যক একবারে নিয়ে গঠিত বিন্যাসের যেগুলোতে দুইটি বিশেষ জিনিস অন্তর্ভুক্ত থাকলে উভয়েই থাকে তাদের সংখ্যা নির্ণয় কর।

সমাধান ঃ n সংখ্যক বিভিন্ন জিনিসের দুইটি বিশেষ জিনিস অশতর্ভুক্ত থাকলে অবশিস্ট (n-2) সংখ্যক জিনিস হতে বাকি (r-2) সংখ্যক জিনিসকে ${}^{n-2}C_{r-2}$ উপায়ে অশতর্ভুক্ত করা যাবে। এক্ষেত্রে বিন্যাস সংখ্যা = ${}^{n-2}C_{r-2} \times r!$ n সংখ্যক বিভিন্ন জিনিসের দুইটি বিশেষ জিনিসের কোনটি অশতর্ভুক্ত না থাকলে অবশিস্ট (n-2) সংখ্যক জিনিস হতে r সংখ্যক জিনিসের দুইটি বিশেষ জিনিসের কোনটি অশতর্ভুক্ত না থাকলে অবশিস্ট (n-2) সংখ্যক জিনিস হতে r সংখ্যক জিনিসকে ${}^{n-2}C_r$ উপায়ে অশতর্ভুক্ত করা যাবে। এক্ষেত্রে বিন্যাস সংখ্যা = ${}^{n-2}C_r \times r!$

মিধিয় বিদ্যাস সংখ্যা =
$${}^{n-2}C_{r-2} \times r! + {}^{n-2}C_r \times r! = \frac{(n-2)!r!}{(r-2)!(n-2-r+2)!} + \frac{(n-2)!r!}{r!(n-2-r)!}$$

$$= \frac{(n-2)!r(r-1).(r-2)!}{(r-2)!(n-r)!} + \frac{(n-2)!}{(n-2-r)!} = \frac{(n-2)!r(r-1)}{(n-r)(n-r-1)(n-r-2)!} + \frac{(n-2)!}{(n-2-r)!}$$

$$= \frac{(n-2)!\{r(r-1)+(n-r)(n-r-1)\}}{(n-r)(n-r-1)(n-r-2)!} = \frac{(n-2)!(r^2-r+n^2-2nr+r^2-n+r)}{(n-r)!}$$

$$= \frac{(n-2)!}{(n-r)!}(2r^2+n^2-2nr-n) \text{ (Ans.)}$$

(d) একটি সংকেত তৈরি করতে তিনটি পতাকার প্রয়োজন হয়। 6টি বিভিন্ন রং-এর প্রত্যেটির 4টি করে 24টি পতাকা দ্বারা কতগৃলো সংকেত দেয়া যেতে পারে?

সমাধান : সক্ণুলো পতাকা ভিন্ন ভিন্ন রঙের নিয়ে সংকেত দেয়ার সংখ্যা = ⁶ P₃ = 120 6টি বিভিন্ন রঙের পতাকা হতে এক রঙের 2টি পতাকা বাছাই করা যায় ⁶C₁ উপায়ে। আবার অবশিষ্ট 5টি বিভিন্ন রঙের পতাকা হতে এক রঙের 1টি পতাকা বাছাই করা যায় ⁵C₁ উপায়ে। এই বেছে নেয়া এক রঙের 2টি ও অন্য রঙের 1টি পতাকাকে $\frac{3!}{2!} = 3$ উপায়ে সাজানো যায়।

2টি এক রঙের এবং অপরটি অন্য এক রঙের নিয়ে সংকেত দেয়ার সংখ্যা = ${}^{6}C_{1} \times {}^{5}C_{1} \times 3 = 6 \times 5 \times 3 = 90$ সবগুলো পতাকা একই রঙের নিয়ে সংকেত দেয়ার সংখ্যা = ${}^{6}C_{1} \times \frac{3!}{3!} = 6$

নির্ণেয় মোট সংখ্যা = 120 + 90 + 6 = 216

18. n সংখ্যক বিভিন্ন জিনিস থেকে প্রতিবার r সংখ্যক জিনিস নিয়ে যত প্রকারে বিন্যাস (Permutation) করা যায় তার সংখ্যা "P, এবং যতগুলি সমাবেশ (Combination) হতে পারে তার সংখ্যা "C,.

- (a) ${}^{n+1}P_3 + {}^nC_3 + {}^nC_2 = 343$ হল n এর মান নির্ণয় কর
- (b) প্রমাণ কর যে, ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$

[ण.'>०,'>২; त्रा. '०৮; ह. '०९,'<u>>8; जि.</u> '०९, '०৯; कू.'०९,'>২,'>8; त.'०৮,'>२,'>8; मि.'>०,'>७; य.'>8]

(c) 'Combination' শব্দটির বর্ণগুলি থেকে অন্তত একটি বর্ণ কত উপায়ে বাছাই করা যায় এবং স্বরবর্ণগুলির স্থান পরিবর্তন না করে ' Permutation ' শব্দটির বর্ণগুলি কত উপায়ে পুনর্বিন্যাস করা যায়?

[ব.০৫ ; চ.'০৪; ঢা. '০৯; দি.'১৩]

সমাধান ঃ (a) ${}^{n+1}P_3 + {}^{n}C_3 + {}^{n}C_2 = 392 \Longrightarrow {}^{n+1}P_3 + ({}^{n}C_3 + {}^{n}C_{3-1}) = 392$

 $\Rightarrow \quad {}^{n+1}C_3 \times 3! + {}^{n+1}C_3 = 392 \Rightarrow 7 \times {}^{n+1}C_3 = 392 \Rightarrow {}^{n+1}C_3 = 56 = {}^8C_3 \Rightarrow n+1 = 8 \therefore n = 7$

- (b) মূল বইয়ের ১৩৮ পৃষ্ঠা দ্রষ্টব্য।
- (c) 'Combination' শব্দটিতে 2টি O, 2টি N, 2টি I ও 5টি ভিন্ন ভিন্ন বর্ণ আছে। অন্তত একটি বর্ণ বাছাই করা যাই (2 + 1) (2 + 1) (2 + 1)2⁵ - 1 = 863 উপায়ে।

' PERMUTATION ' শব্দটিতে মোট 11টি বর্ণ আছে যাদের 5টি স্বরবর্ণ।

5 টি স্বরবর্ণের স্থান পরিবর্তন না করে 2টি T সহ অবশিষ্ট (11 – 5) বা, 6টি ব্যঞ্জন বর্ণকে $\frac{6!}{2!} = \frac{720}{2} = 360$ উপায়ে সাজানো যায়।

নির্ণেয় পুনর্বিন্যাস করার উপায় = 360 - 1 = 359 (Ans.)

- **19.** সাতটি সরল রেখার দৈর্ঘ্য যথাক্রমে 1, 2, 3, 4, 5, 6, 7 সে.মি. ।
- (a) 1234567 সংখ্যাটির অঙ্কগুলি থেকে অন্তত একটি জোড় অঙ্ক ও অন্তত একটি বিজোড় অঙ্ক কতভাবে বাছাই করা যায়?
 উ: 105
- (b) "P, এর মান নির্ণয় কর। [কু.'০৮;ব.'০৯ ; চ.'০৬,'০৯,'১৩;য.'০৭,'১১; দি.'১৪]
- (c) দেখাও যে , একটি চতুর্ভুজ গঠন করার জন্য চারটি সরল রেখা যত প্রকারে বাছাই করা যায় তার সংখ্যা 32. [চ.'০৮,'১২;সি.'০৮,'১২; দি.'০৯;য.'০৯;ব.'০৮,'১০]

সমাধান: (a) 1234567 সংখ্যাটির তিনটি জোড় অঙ্ক ও চারটি বিজোড় অঙ্ক আছে।

অন্তত একটি জোড় অঙ্ক ও অন্তত একটি বিজোড় অঙ্ক বাছাই করা যায় $(2^3 - 1)(2^4 - 1) = 105$ উপায়ে।

- (b) মূল বইয়ের ১২৭ পৃষ্ঠা দ্রষ্টব্য।
- (c) প্রশ্নমালা VB এর 6(a) দ্রষ্টব্য।
- **20.** যেকোনো সংখ্যা গঠনে 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 অজ্ঞকগুলি ব্যবহার করা হয়।
- (a) প্রত্যেক সংখ্যায় প্রত্যেক অঙ্জ কেবল একবার ব্যবহার করে 10 অঙ্জ্বের কতগুলি অর্থপূর্ণ সংখ্যা গঠন করা যায়।
- (b) প্রত্যেক সংখ্যায় প্রত্যেক অঙ্জ কেবল একবার ব্যবহার করে 10 অঙ্জের কতগুলি অর্থপূর্ণ জোড় সংখ্যা গঠন করা যায়।
- (c) প্রত্যেক সংখ্যায় 1 নয়বার ও 9 একবার ব্যবহার করে 10 অঙ্জের যতগুলি সংখ্যা গঠন করা যায় তাদের গড় নির্ণয় কর।

সমাধান ঃ (a) প্রদন্ত 10টি অঙ্ক ব্যবহার করে 10! সংখ্যক সংখ্যা গঠন করা যায়। কিন্তু 0 দ্বারা শুরু 9! সংখ্যক সংখ্যা হর্পপর্ণ সংখ্যা নয়।

গ. (১ম পত্র) সমাধান-২৬

নির্ণেয় অর্থপূর্ণ সংখ্যা = 10! - 9! = 3265920

(b) সংখ্যাগুলির শেষে 0, 2, 4, 6 অথবা 8 থাকলে সংখ্যাগুলি জোড় হবে। আবার , সংখ্যার প্রথ<u>মে 0 থা</u>কলে তা অর্থপূর্ণ সংখ্যা হবেনা।

0 শেষে রেখে প্রথম স্থানটি 1,2,3,4,5,6,7,8 বা9 দ্বারা 9 উপায়ে পূরণ করা যায়। অবশিষ্ট মাঝের ৪টি স্থান বাকী ৪টি অঞ্চক দ্বারা 8! = 40320 উপায়ে পূরণ করা যায়।

0 শেষে রেখে অর্থপূর্ণ জোড় সংখ্যা গঠন করার উপায় সংখ্যা = 9 × 40320 = 362880 আবার, 2 শেষে রেখে প্রথম স্থানটি 1, 3, 5, 6, 7, 8 বা 9 দ্বারা 8 উপায়ে পূরণ করা যায় । অবশিষ্ট মাঝের ৪টি স্থান বাকী ৪টি অঞ্চন দ্বারা 8! = 40320 উপায়ে পূরণ করা যায় ।

2 শেষে রেখে অর্থপূর্ণ জোড় সংখ্যা গঠন করার উপায় সংখ্যা = 8 × 40320 = 322560 অনুরূপভাবে, 4, 6 অথবা 8 শেষে রেখে অর্থপূর্ণ বিজোড় সংখ্যা গঠন করার উপায় সংখ্যা = 322560

নির্গেয় অর্থপূর্ণ বিজ্ঞাড় সংখ্যা = 362880 + 4×322560 = 1653120 সংখ্যক।

(c) প্রত্যেক সংখ্যায় 1 নয়বার ও 9 একবার ব্যবহার করে যতগুলি সংখ্যা গঠন করা যায় তাদের সংখ্যা $=\frac{10!}{9!}=10$

প্রত্যেক স্থানে (একক, দশক,শতক ইত্যাদি) 9 একবার ও 1 নয়বার পুনরাবৃত্ত হয়।

দশ অঙ্জ বিশিষ্ট সংখ্যার প্রত্যেক স্থানের অঙ্জগুলির সমষ্টি = $9 + 1 \times 9 = 18$

প্রত্যেক সংখ্যায় 1 নয়বার ও 9 একবার ব্যবহার করে 10 অঙ্কের গঠিত সংখ্যার সমষ্টি

= 18×1111111111 = 19999999998

নির্ণেয় গড় = 19999999998 ÷ 10 = 19999999998

অথবা.

নির্ণেয় গড় = 19999999998 ÷ 10 = 19999999998

কাজ:

১। 10 টি জিনিসের মধ্যে 2টি এক জাতীয় এবং বাকীগুলো ভিন্ন ভিন্ন জিনিস। ঐ জিনিসগুলো থেকে প্রতিবারে 5টি নিয়ে কত প্রকারে বাছাই করা যায়?

সমাধান ঃ সবগুলোই জিনিস ভিন্ন ভিন্ন এর্প বাছাই সংখ্যা = (10 - 2 + 1) অর্থাৎ 9টি বিভিন্ন জিনিস থেকে প্রতিবারে 5টি নিয়ে বাছাই সংখ্যা = ${}^{9}C_{5}$ = 126

2টি জিনিস এক জাতীয় এবং অপর 3টি জিনিস ভিন্ন ভিন্ন এর্থ বাছাই সংখ্যা = ²C₂ × ⁸C₃=1×56= 56 নির্ণেয় মোট বাছাই সংখ্যা = 126 + 56 = 182

২। 13 জন বালকের একটি দলে 5 জন বালক সেনা আছে। কত প্রকারে 7 জন বালক বাছাই করা যায় যাতে (i) ঠিক 3 জন বালক সেনা থাকে , (ii) অন্যতত 3 জন বালক সেনা থাকে?

(i) সমাধান ঃ 5 জন বালক সেনা থেকে প্রতিবারে ঠিক 3 জনকে ${}^{5}C_{3} = 10$ উপায়ে এবং অন্যান্য (13 - 5) অর্থাৎ, 8 জন বলক থেকে প্রতিবারে বাকি (7 - 3) অর্থাৎ, 4 জনকে ${}^{8}C_{4} = 70$ উপায়ে বাছাই করা যায়।

7 জনের দল গঠন করা যাবে = $10 \times 70 = 700$ উপায়ে।

(ii) 8 নিমন্নুপে 7 জনের একটি দল গঠন করা যেতে পারে --

ব	ালক সেনা (5)	অন্যান্য বালক (8)	কমিটি	গঠনের উপায়
3	4	${}^{5}C_{3} \times {}^{8}C_{4} = 10 \times 70 = 700$		
4	3	${}^{5}C_{4} \times {}^{8}C_{3} = 5 \times 56 = 280$		
5	2	${}^{5}C_{5} \times {}^{8}C_{2} = 1 \times 28 = 28$		
(7	00 + 280 + 28	৪) অর্থাৎ, 1008 প্রকারে দল গঠন করা যাবে।		

৩। 1, 2, 3, 4, 5, 6, 7, 8 চিহ্নিত আটটি কাউন্টার থেকে অন্যুন একটি বিজ্ঞাড় ও একটি জ্ঞোড় কাউন্টার নিয়ে চারটি কাউন্টারের কতগুলো সমাবেশ গঠন ব্রুরা যেতে পারে?

সমাধান ঃ নিমন্নুপে 4টি কাউন্টারের সমাবেশ গঠন করা যেতে পারে ---

জোড় কাউন্টার (4)	বিজোড় কাউন্টার (4)	সমাবেশ গঠনের উপায়
1	3	${}^{4}C_{1} \times {}^{4}C_{3} = 4 \times 4 = 16$
2	2	${}^{4}C_{2} \times {}^{4}C_{2} = 6 \times 6 = 36$
3	1	${}^{4}C_{3} \times {}^{4}C_{1} = 4 \times 4 = 16$
নির্পেয় মোট সংখ্যা 🗕 🛛	16 + 36 + 16 - 68	

নির্ণেয় মোট সংখ্যা = 16 + 36 + 16 == 68

অতিরিক্ত প্রশ্ন (সমাধানসহ)

1. (a) একটি সমতলে n- সংখ্যক সরলরেখা টানলে, যদি কোন দুইটি সরলরেখা সমানতরাল না হয়, এবং কোন তিনটিও সমবিন্দু না হয়, তবে সেখানে কতগুলো হেদবিন্দু থাফবে?

সমাধান ঃ দুইটি অসমানতরাল সরগরেখা একটি কিন্দুতে ছেনে করে।

যেকোন দুইটি সমান্তরাল নয় এর্থ n- সংখ্যক সরলরেখা ছেদ করবে "C₂ = $rac{1}{2}n(n-1)$ সংখ্যক ক্ষিদুতে।

(b) শুন্যে অবস্থিত n- সংখ্যক কিন্দুর মধ্যে কোন তিনটি কিন্দুও সমরেখ নয় এবং কোন চারটি এক সমতলে নয়। n-এর কত মানের জন্য কিন্দুগুলোর সংযোগ রেখার দ্বারা প্রাম্ত সরলরেখার সংখ্যা ও সমতলের সংখ্যা সমান হবে? সমাধান ঃ একটি সঁরলরেখার জন্য দুটি কিন্দু এবং একটি সমতলের জন্য তিনটি কিন্দুর প্রয়োজন।এখানে মোট n- সংখ্যক কিন্দু।অতএব, মোট সরলরেখার সংখ্যা "C, এবং মোট সমতলের সংখ্যা "C₃.

প্রমতে,
$${}^{n}C_{3} = {}^{n}C_{2} \Longrightarrow \frac{1}{6}n(n-1)(n-2) = \frac{1}{2}n(n-1) \Longrightarrow n-2 = 3 \therefore n = 5$$

(c) শুন্যে অবস্থিত n- সংখ্যক কিন্দুর মধ্যে কোন তিনটি কিন্দুও সমরেখ নয় এবং কোন চারটি এক সমতলে নয়, কেবল p-সংখ্যক কিন্দু এক সমতলে অবস্থিত। ঐ কিন্দুগুলো দ্বারা কতগুলো ভিন্ন সমতল গঠন করা যেতে পারে? সমাধান ঃ একটি সমতল গঠন করাতে তিনটি কিন্দুর প্রয়োজন।

প্রদন্ত n- সংখ্যক বিন্দু দ্বারা গঠিত সমতলের সংখ্যা = "C₃ কিন্দ্তু যেহেতু p- সংখ্যক বিন্দু একসমতলে অবস্থিত; সুতরাং তারা ^pC₃ সংখ্যক সমতলের পরিবর্তে কেবল একটি সমতল

নির্দেয় সমতলের সংখ্যা =
$${}^{n}C_{3} - {}^{p}C_{3} + 1 = \frac{1}{6}n(n-1)(n-2) - \frac{1}{6}p(p-1)(p-2) + 1$$

(d) কোন সমতলে অবস্থিত n- সংখ্যক কিন্দুর মধ্যে , p- সংখ্যক কিন্দু সমরেখ, বাকিগুলোর যে কোন তিনটি কিন্দু একই সরলরেখায় অবস্থিত নয়। ঐ n- সংখ্যক কিন্দুগুলো সংযোগ করে মোট কতগুলো সরলরেখা পাওয়া যাবে? এদের ঘারা উৎপন্ন ত্রিভুচ্চের সংখ্যাও নির্ণয় কর।

সমাধান ঃ প্রথম অংশ ঃ দুই কিন্দুর সংযোগে একটি সরলরেখা উৎপন্ন হয়।

প্রদন্ত n- সংখ্যক কিন্দু দ্বারা গঠিত সরলরেখার সংখ্যা = "C2

কিম্তু যেহেতু p- সংখ্যক কিন্দু সমরেখ; সুতরাং তারা ^pC, সংখ্যক রেখার পরিবর্তে কেবল একটি রেখা গঠন করে।

নির্শেয় রেখার সংখ্যা =
$${}^{n}C_{2} - {}^{p}C_{2} + 1 = \frac{1}{2}n(n-1) - \frac{1}{2}p(p-1) + 1$$

দ্বিতীয় অংশ ঃ অসমরেখ তিনটি বিন্দুর সংযোগ রেখা দ্বারা একটি ত্রিভুজ গঠিত হয়।

উপরের যুক্তি অনুযায়ী নির্গেয় ত্রিভুজ সংখ্যা = ${}^{n}C_{3} - {}^{p}C_{3} = \frac{n(n-1)(n-2)}{3!} - \frac{p(p-1)(p-2)}{3!}$ $= \frac{n(n-1)(n-2)}{6} - \frac{p(p-1)(p-2)}{6}$

সমাধান : 8টি দলের 2টি করে দল পরস্পরের সাথে খেললে মোট খেলার সংখ্যা হয় $^{\circ}C_{2}$ বা 28 টি।

কিম্তু শীর্ষ আটে নিজ গ্রুপের দল দুইটি পরস্পরের সাথে খেলেনি বলে 4টি গ্রুপের 4টি খেলা অনুষ্ঠিত হয়নি ।

শীর্ষ আটে মোট খেলা অনুষ্ঠিত হয় (28 – 4) বা , 24 টি

4. (a) প্রত্যেক অজ্ঞকে প্রত্যেক সংখ্যায় একবার মাত্র ব্যবহার করে 2, 3, 4, 5, 6, 7 এবং 8 অজ্ঞগুলো দ্বারা চার অজ্ঞ বিশিষ্ট কতগুলো পৃথক সংখ্যা গঠন করা যায়?

সমাধান ঃ এখানে 7টি অজ্ঞ আছে। প্রত্যেক অজ্ঞকে প্রত্যেক সংখ্যায় একবার মাত্র ব্যবহার করে 7টি অজ্ঞ দ্বারা চার অজ্ঞের গঠিত মোট সংখ্যা = $^7 P_a = 840$

(b) প্রত্যেক অজ্ঞকে প্রত্যেক সংখ্যায় একবার মাত্র ব্যবহার করে 3, 1, 7, (), 9, 5 অজ্ঞকগুলো ঢারা ছয় অজ্ঞ বিশিষ্ট কতগুলো সংখ্যা গঠন করা যেতে পারে? এদের মধ্যে কতগুলো সংখ্যার দশকের স্থানে শূন্য থাকবে?

সমাধান ঃ এখানে শূন্যসহ মেট 6টি বিভিন্ন অজ্ঞ আছে । সংখ্যার প্রথমে 0 থাকলে তা অর্থপূর্ণ সংখ্যা হবেনা।

প্রথম স্থানটি 5টি অঙ্জ 3, 1, 7, 9, 5 এর যেকোন একটি দ্বারা ${}^{5}P_{1}$ উপায়ে পূরণ করে অবশিষ্ট 5টি স্থান বাকি 5টি অঙ্জ দ্বারা পূরণ করা যাবে 5! উপায়ে। : নির্ণেয় মোট সংখ্যা = ${}^{5}P_{1} \times 5! = 5 \times 120 = 600$

২য় জংশ : প্রথম স্থানটি 5টি জঙ্জ্ব 3, 1, 7, 9, 5 এর যেকোন একটি দ্বারা ${}^{5}P_{1}$ উপায়ে এবং দশকের স্থান শূন্য দ্বারা পূরণ করে অবশিষ্ট 4টি স্থান বাকি 4টি জঙ্জ্ব দ্বারা পূরণ করা যাবে 4! উপায়ে। \therefore নির্ণেয় মোট সংখ্যা = ${}^{5}P_{1} \times 4! = 5 \times 24 = 120$

(c) 3, 4, 0, 5, 6 অঙ্জগুলোর একটিকেও পুনরাবৃষ্টি না করে 10 এবং 1000 মধ্যবর্তী কতগুলো সংখ্যা গঠন করা যেতে পারে? সমাধান ঃ 10 এবং 1000 মধ্যবর্তী সংখ্যাগুলো দুই অঙ্জের ও তিন অঙ্জের হবে। এখানে শূন্যসহ মোট 5টি বিভিন্ন অঙ্জ আছে। সংখ্যার প্রথমে 0 থাকলে তা অর্থপূর্ণ সংখ্যা হবেনা।

দুই অজ্ঞের গঠিত মোট সংখ্যা = 5টি অজ্ঞ দ্বারা দুই অজ্ঞের গঠিত মোট সংখ্যা – 0 প্রথমে রেখে বাকি 4টি অজ্ঞ দ্বারা এক অজ্ঞের গঠিত মোট সংখ্যা = ${}^{5}P_{2} - {}^{4}P_{1} = 20 - 4 = 16$

অনুরূপভাবে, তিন অঞ্চের গঠিত মোট সংখ্যা = ${}^{5}P_{3} - {}^{4}P_{2} = 60 - 12 = 48$

নির্শেয় মোট সংখ্যা = 16 + 48 = 64

 $[MCQ এর জন্য : নির্ণেয় মোট সংখ্যা = 4 ({}^{4}P_{1} + {}^{4}P_{2}) = 64]$

5. (a) প্রত্যেক অজ্ঞ্বকে প্রত্যেক সংখ্যায় একবারের বেশি ব্যবহার না করে 0, 1, 2, 3, 4, 5, 6, 7 অজ্ঞকগুলো দ্বারা 10000 এর ছোট কতগুলো সংখ্যা গঠন করা যায়?

সমাধান : এখানে শূন্যসহ মোট 8টি অজ্ঞ আছে । সুংখ্যার প্রথমে 0 থাকলে তা অর্থপূর্ণ সংখ্যা হবেনা। 10000 এর ছোট সংখ্যা নিমুরূপে গঠন করা যায় ঃ

শূন্য ব্যতীত বাকী 7টি অজ্ঞ দারা এক অজ্ঞ বিশিষ্ট মোট সংখ্যা = ⁷ P₁ = 7

দুই অভক বিশিষ্ট মোট সংখ্যা = 8টি অভক দ্বারা দুই অভক বিশিষ্ট মোট সংখ্যা — 0 প্রথমে রেখে বাকি 7টি অভক দ্বারা এক অভক বিশিষ্ট মোট সংখ্যা = ${}^8P_2 - {}^7P_1 = 49$

অনুরূপভাবে, তিন অজ্ঞ বিশিষ্ট মোট সংখ্যা = ⁸ P₃ - ⁷ P₂ = 294

এবং চার অজ্ঞ বিশিষ্ট মোট সংখ্যা = ${}^{8}P_{4} - {}^{7}P_{3} = 1470$

10000 এর ছোট মোট সংখ্যা = (7 + 49 + 294 + 1470) = 1820

[MCQ এর জন্য : নির্ণেয় মোট সংখ্যা = ${}^{7}P_{1}$ ($1 + {}^{7}P_{1} + {}^{7}P_{2} + {}^{7}P_{3}$) = 1820]

(b) প্রত্যেক অচ্চকে প্রত্যেক সংখ্যায় একবারের বেশি ব্যবহার না করে 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 অচ্চগুলো দ্বারা 1000-এর চেয়ে ছোট এবং 5 দ্বারা বিভাচ্চ্য কতগুলো সংখ্যা গঠন করা যায়?

সমাধান ঃ এখানে শূন্যসহ মোট 10টি ভিন্ন অজ্ঞ আছে । সংখ্যার প্রথমে 0 থাকলে তা অর্থপূর্ণ সংখ্যা হবেনা। 5 দারা সংখ্যাগুলোর শেষে 0 বা 5 থাকতে হবে।

1000-এর চেয়ে ছোট এবং 5 দ্বারা বিভাজ্য সংখ্যা নিমুরপে গঠন করা যায় ঃ

এক অজ্ঞক বিশিষ্ট মোট সংখ্যা = 1

দুই অজ্ঞ বিশিষ্ট মোট সংখ্যা = শেষে 0 থাকে এরূপ মোট সংখ্যা + শেষে 5 থাকে এরূপ মোট সংখ্যা

$$= {}^{9}P_{1} + {}^{8}P_{1} = 9 + 8 = 17$$

তিন অঙ্জ বিশিষ্ট মোট সংখ্যা = শেষে () থাকে এরুপ মোট সংখ্যা + শেষে 5 থাকে এরুপ মোট সংখ্যা

$$= {}^{9}P_{2} + ({}^{9}P_{2} - {}^{8}P_{1}) = 72 + 72 - 8 = 136$$

নির্ণেয় মোট সংখ্যা = 1 + 17 + 136 = 154

(c) প্রত্যেক অঙ্জকে প্রত্যেক সংখ্যায় একবারের বেশি ব্যবহার না করে 0, 1, 2, 3, 4 অঙ্জগুলো দ্বারা তিন অঙ্জের বেশি নয়, এর্প কতগুলো সংখ্যা গঠন করা যায়?

সমাধান ঃ এখানে শূন্যসহ মোট 5টি ভিন্ন অজ্ঞ আছে । সংখ্যার প্রথমে () থাকলে তা অর্থপূর্ণ সংখ্যা হবেনা। তিন অজ্ঞের বেশি নয় এরূপ সংখ্যা নিম্নরূপে গঠন করা যায় ঃ

দুই অঙ্জ বিশিষ্ট মোট সংখ্যা = ${}^{5}P_{2} - {}^{4}P_{1} = 20 - 4 = 16$

তিন অজ্ঞ বিশিষ্ট মোট সংখ্যা = ${}^{5}P_{3} - {}^{4}P_{2} = 60 - 12 = 48$

নির্ণেয় মোট সংখ্যা = 4 + 16 + 48 = 68

(d) 1, 2, 3, 4, 5 অঞ্চকগুলি যে কোন সংখ্যকবার ব্যবহার করে চার অঞ্চকবিশিষ্ট কতগুলি সংখ্যা গঠন করা যায় १ এ সংখ্যাগুলির কয়টিতে একই অঞ্চ একাধিকবার ধাকবে। সমাধান ঃ প্রদত্ত পাঁচটি অজ্ঞক দ্বারা চার অজ্ঞকবিশিষ্ট প্রত্যেক সংখ্যার প্রতিটি স্থান 5 উপায়ে পূরণ করা যায়।

প্রদন্ত অঙ্জগুলি যে কোন সংখ্যকবার ব্যবহার করে চার অঙ্জবিশিষ্ট সংখ্যা গঠন করা যায় 5⁴ = 625 উপায়ে। আবার, প্রদন্ত অঙ্জগুলি প্রত্যেক সংখ্যায় একবারের বেশি ব্যবহার না করে চার অঙ্জবিশিষ্ট সংখ্যা গঠন করা যায় ⁵ P₄ = 120 উপায়ে।

625 - 120 = 505 টি সংখ্যায় একই অজ্ঞ একাধিকবার থাকবে।

6. কোনো পরীক্ষায় তিনটি বিষয়ের প্রতিটির পূর্ণমাণ-100 । একজন ছাত্র কতভাবে 200 নস্বর পেতে পারে? সমাধান : একজন ছাত্রকে 200 নস্বর পেতে হলে প্রতিটি বিষয়ে 0 হতে 100 নস্বর পেতে হবে। ছাত্রটি নিমুরূপে পরীক্ষায় 200 নস্বর পেতে পারে -

বিষয়ে প্রাপত নস্বর	২য় বিষয়ে প্রাপত নম্বর	৩য় বিষয়ে প্রাপত নস্বর	মোট প্রাপ্ত নস্বর
0	100	100	200
1	100	99	200
1	99	100	200
2	100	88	200
2	99	99	200
2	88	100	200

লক্ষ্যনীয় যে, ১ম বিষয়ে 0 পাওয়া যায় 1 উপায়ে, 1 পাওয়া যায় 2 উপায়ে, 2 পাওয়া যায় 3 উপায়ে। অনুরূপভাবে, ১ম বিষয়ে 3 পাওয়া যায় 4 উপায়ে, 4 পাওয়া যায় 5 উপায়ে, 5 পাওয়া যায় 6 উপায়ে ..., 100 পাওয়া যায় 101 উপায়ে।

নির্ণেয় সংখ্যা = $1 + 2 + 3 + \cdots + 101 = \frac{101(101+1)}{2} = \frac{101 \times 102}{2} = 5151$ 7 (a) n (A) = 4 হলে, P(A) সেটের কমপক্ষে একটি উপাদান কতভাবে বাছাই করা যায়? সমাধান ঃ দেওয়া আরছে, n (A) = 4 P(A) সেটের উপাদান সংখ্যা = $2^4 = 16$

P(A) সেটের কমপক্ষে একটি উপাদান বাছাই করা যায় (2¹⁶ – 1) বা 65535 উপায়ে।

(b) n(A) = 2, n(B) = 3 হলে, $P(A \times B)$ সেটের কমপক্ষে একটি উপাদান কতভাবে বাছাই করা যায়? সমাধান ঃ দেওয়া আরছে, n(A) = 2, n(B) = 3 $n(A \times B) = 2 \times 3 = 6$

 $P(A \times B)$ সেটের উপাদান সংখ্যা = $2^6 = 64$

P(A imes B) সেটের কমপক্ষে একটি উপাদান বাছাই করা যায় $(2^{64}-1)$ উপায়ে।

8. n(A) = 3, n(B) = 4 হলে A, B ও J_5 প্রত্যেক সেটের কমপক্ষে একটি উপাদান কতভাবে বাছাই করা যায়? সমাধান $s n(J_5) = 5$.

প্রত্যেক সেটের কমপক্ষে একটি উপাদান বাছাই করার উপায় = $(2^3 - 1) (2^4 - 1) (2^5 - 1) = 3255$

9. 'EQUATION' শন্দটির সক্র্লো প্রশ্নমালা V(A + B) কারে দুইটি শব্দ গঠন করা যেতে পারে, যেন E, Q, U অক্ষর তিনটি এক শব্দে এবং C, সমাধান ঃ A, T, I অক্ষর তিনটি থেকে যেকোন 0, 1, 2 ও 3টি অক্ষর ১ম শব্দে (E, Q, U অন্তর্ভুক্ত শব্দে) অনতর্ভুক্ত করা হলে ২য় শব্দে (O, N অন্তর্ভুক্ত শব্দে) যথাক্রমে 3, 2, 1 ও 0টি অক্ষর অন্তর্ভুক্ত করতে হবে। এ 3টি

२०8

১ম

মক্ষরকে ১ম শব্দে 1টি ও ২য় শব্দে 2টি অন্তর্ভুক্ত করা যায় $rac{3!}{1! imes 2!}$ উপায়ে।

A, T, I অক্ষর তিনটি নিমন্নরপে অন্তর্ভুক্ত করে দুইটি শব্দ গঠন করা যায় –

E, Q, U অন্তর্ভুক্ত শব্দ	O, N অনতর্ভুক্ত শব্দ	দুইটি শব্দ গঠন করার উপায়
3 + 0 = 3	2 + 3 = 5	$\frac{3!}{0! \times 3!} \times 3! \times 5! = 720$
3 + 1 = 4	2 + 2 = 4	$\frac{3!}{1! \times 2!} \times 4! \times 4! = 1728$
3 + 2 = 5	2 + 1 = 3	$\frac{3!}{2! \times 1!} \times 5! \times 3! = 2160$
3 + 3 = 6	2 + 0 = 6	$\frac{3!}{3! \times 0!} \times 6! \times 2! = 1440$

নির্ণেয় মোট সংখ্যা = 720 + 1728 + 2160 + 1440 = 6048

10. (a) 11 ডিচ্চিট বিশিষ্ট গ্রমীণফোন মোবাইল নম্বরে বাম দিক হতে প্রথম চারটি 0171 দ্বারা নির্ধারিত । গ্রামীণফোন স্রা দেশে সর্বাধিক কত সংখ্যক মোবাইল সংযোগ দিতে পারবে? এদের কত সংখ্যক 5 দ্বারা বিভাজ্য হবে ? কতগুলোর ঠিক .শব্বে তিনটি ডিচ্চিট এক রকম হবে তাও নির্ণয় কর ।

স্নাধান ঃ ১ম জংশ ঃ 0 হতে 9 পর্যন্ত মোট 10টি অঞ্জ (0,1,2,3,4,5,6,7,8,9) আছে। বাম নির্ব হতে প্রথম চারটি ডিজিট 0171 দ্বারা নির্ধারিত করে অবশিষ্ট (11 – 4)বা, 7টি ডিজিট প্রত্যেকটি 10টি নির্দ্ধারা 10 উপায়ে পূরণ করা যাবে।

নির্ণেয় টেলিফোন সংযোগ সংখ্যা = $10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 = 10^7$ - ব জেশে ঃ 5 দ্বারা বিভাজ্য বলে শেষের ডিজিট 0 জথবা 5 হবে এবং তা ${}^2C_1 = 2$ উপায়ে পূরণ করা যাবে এবং হব শিষ্ট (14 – 4 – 1) বা , 6টি ডিজিট প্রত্যেকটি 10টি জঞ্জ দ্বারা 10 উপায়ে পূরণ করা যাবে।

নির্শেয় টেলিফোন সংযোগ সংখ্যা = 10 imes 10 imes 10 imes 10 imes 10 imes 10 imes 2 = $2 imes 10^6$

রু অংশ ঃ শেষের তিনটি ডিজিট 10টি অঞ্জের যেকোন একটির তিনটি দ্বারা 10 উপায়ে পূরণ করা যাবে। শেষের ফেন্টি ডিজিট 10টি অঞ্জের যেকোন একটি দ্বারা পূরণ করার পর ডান দিক হতে 8র্থ ডিজিট অবশিষ্ট 9টি ফের্রুর যেকোন একটি দ্বারা 9 উপায়ে পূরণ করা যাবে। অবশিষ্ট (7 – 3 – 1) বা, 3টি ডিজিট প্রত্যেকটি 10টি ফ্রু দ্বারা 10 উপায়ে পূরণ করা যাবে।

শেষের তিনটি ডিজিট ঠিক এক রকম এমন টেলিফোন সংযোগ সংখ্যা = $10 \times 9 \times 10 \times 10 \times 10 = 9 \times 10^4$

11 ডিজিট বিশিষ্ট টেলিটক মোবাইল নম্বরে বাম দিক হতে প্রথম চারটি 0155 দ্বারা নির্ধারিত। বাম দিক হতে ৫ম (রুক্ট) ছোড় সংখ্যা দ্বারা নির্ধারিত হলে, সারা দেশে কত সংখ্যক টেলিটকের মোবাইল সংযোগ দেওয়া যাবে তা নির্ণয় কর। স্বাহান ঃ 0 হতে 9 পর্যন্দত মোট 4টি অর্জন (2, 4, 6, 8) জোড়। বাম দিক হতে ৫ম ডিজিট 4টি অর্জন (যায়) অবশিষ্ট 6টি ডিজিট প্রত্যেকটি 10টি অর্জন দ্বারা 10 উপায়ে পূরণ করা মোট সংযোগ সংখ্যা = ${}^{4}C_{1} \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 = 4 \times 10^{6}$

তিন অঙ্ক বিশিষ্ট একটি সংখ্যার বাম দিক থেকে প্রথম দুইটি অঙ্কের সমষ্টি 4, প্রত্যেক অঙ্ককে প্রত্যেক সংখ্যায় ব্যবহার করে গঠিত সংখ্যার সমষ্টি 1998 এবং সংখ্যাটির উৎপাদকের সংখ্যা 8 হলে সংখ্যাটি নির্ণয় কর।

স্কাহন ঃ মনে করি, সংখ্যাটি (100a + 10b + c).

- $(3-1)! \times (a + b + c) \times 111 = 1998 \Rightarrow a + b + c = \frac{1994}{222} = 9 \Rightarrow 4 + c = 9 \Rightarrow c = 5$ (i) হতে পাই, (a, b) = (4, 0), (2, 2), (3, 1) অথবা, (1, 3). নির্দেয় সংখ্যাটি হবে 405, 225, 315 অথবা, 135. এখন, 405 = $3^4 \times 5$. $225 = 3^2 \times 5^2$ 225 এর উৎপাদকের সংখ্যা = (4 + 1)(1 + 1) = 10 $225 = 3^2 \times 5^2$ 225 এর উৎপাদকের সংখ্যা = (2 + 1)(2 + 1) = 9
 - $315 = 3^2 \times 5 \times 7$ $135 = 3^3 \times 5$ $135 = 3^3 \times 5$ 315 এর উৎপাদকের সংখ্যা = (2 + 1)(1 + 1)(1 + 1) = 12135 এর উৎপাদকের সংখ্যা = (3 + 1)(1 + 1) = 8

নির্ণেয় সংখ্যা 135.

ভর্তি পরীক্ষার MCQ:

- মদি TIME শব্দটির অক্ষরগৃলি পুনর্বিন্যাস করা হয় তবে কতগৃলো বিন্যাস স্বরবর্ণ দারা শুরু হবে ? [DU 88-99]

 Sol^n : নির্ণেয় সাজানো সংখ্যা = ${}^2P_1 \times 3! = 12$
- SCIENCE শব্দটির স্বরবর্ণগৃলোকে একত্রে রেখে সবকয়টি বর্ণকে যত উপায়ে সাজানো যায় তাদের সংখ্যা কত ? [DU 97-98]

 Sol^{n} : নির্ধেয় সাজানো সংখ্যা = $\frac{5!}{2!} \times \frac{3!}{2!} = 180$

- প্রতিটি সংখ্যায় প্রতিটি অভক একবার ব্যবহার করে 0,1,2,3,4,5 দ্বারা কতগুলি সংখ্যা গঠন করা যায় ?[IU 06-07] Sol" : নির্ণেয় উপায় = 6! - 5! = 600
- 4. SCHOOL শব্দটি হতে তিনটি অক্ষর বাছাই করা যায় ? [DU 07-08] Sol^n : নির্ধেয় উপায় = ${}^5C_3 + {}^4C_1 = 14$

 5.
 6 জন ছাত্র ও 5 জন ছাত্রী হতে 5 জনের একটি কমিটি কতভাবে গঠন করা যাবে যাতে অস্তত: একজন ছাত্র ও একজন ছাত্রী অস্তর্ভুক্ত থাকে ?

 [DU 05-06; Jt.U 06-07]

 Sol^{n} : নির্ণেয় সংখ্যা = ${}^{5}C_{1} \times {}^{6}C_{4} + {}^{5}C_{2} \times {}^{6}C_{3} + {}^{5}C_{3} \times {}^{6}C_{2} + {}^{5}C_{4} \times {}^{6}C_{1} = 455$ 6. আটজন ব্রক্তি হতে পাঁচ সদস্যের একটি কমিটি কতভাবে হঠন করা যায় যাতে তিনজন বিশেষ ব্যক্তির সর্বাধিক একজন অন্দতর্ভুক্ত থাকে? [DU 97-98]

 $Sol^{"}$: কমিটি গঠনের উপায় সংখ্যা = ${}^{3}C_{1} \times {}^{5}C_{4} + {}^{3}C_{0} \times {}^{5}C_{5} = 16$

7. 8 জন লোক প্রত্যেকে প্রত্যেকের সাথে করমর্দন করলে করমর্দনের সংখ্যা কত হবে? [SU 07-08]
 Sol" নির্ণেয় সংখ্যা = ⁸C₂ = 28 [·· করমর্দনে দুইজন ব্যক্তি লাগে।]

8. একটি টেনিম টুনামেন্টে 150 জন খেলোয়াড় আছে। এক জন খেলোয়াড় একটি ম্যাচ হারলে টুনামেন্ট থেকে বিদ্যায় নেয়। টুনামেন্টে কতটি ম্যাচ খেলা হয়েছে? [SU 06-07]

Sol" টুনামেন্টে একজন বিজায়ী হয় এবং অবশিষ্ট (150 -1) = 149 জন খেলোয়াড় 149টি ম্যাচে পরাজিত হয়ে টুনামেন্ট থেকে বিদ্যায় নেয়।অতএব. নির্ণেয় ম্যাচ সংখ্যা =149.

9. ${}^{n}P_{5} = 84 \times {}^{n-1}P_{2}$ হলে n এর মান কত ?

ত্রিকোণামাতক অনপাত 1. প্রমাণ কর যে. (a) $(\tan \theta + \sec \theta)^2 = \frac{1 + \sin \theta}{1 - \sin \theta}$ প্রমাণ : L.H.S. = $(\tan \theta + \sec \theta)^2$ $= \left\{ \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta} \right\}^2 = \left\{ \frac{\sin \theta + 1}{\cos \theta} \right\}^2$ $=\frac{(1+\sin\theta)^2}{\cos^2\theta}=\frac{(1+\sin\theta)^2}{1-\sin^2\theta}$ $=\frac{(1+\sin\theta)^2}{(1-\sin\theta)(1+\sin\theta)}=\frac{1+\sin\theta}{1-\sin\theta}=\text{R.H.S.}$ $\frac{\sec\theta\cdot\cos ec\theta-2}{\sec\theta\cdot\cos ec\theta+2} = \left(\frac{1-\tan\theta}{1+\tan\theta}\right)^2$ 1(b) L.H.S.= $\frac{\sec\theta\cdot\cos ec\theta-2}{2}$ $\sec\theta\cdot\cos ec\theta+2$ $= \frac{\frac{1}{\cos\theta}\frac{1}{\sin\theta} - 2}{\frac{1}{\cos\theta}\frac{1}{\sin\theta} + 2} = \frac{1 - 2\sin\theta\cos\theta}{1 + 2\sin\theta\cos\theta}$ $= \frac{\sin^2\theta + \cos^2\theta - 2\sin\theta\cos\theta}{\sin\theta\cos\theta}$ $\sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta$ $= \frac{(\sin\theta - \cos\theta)^2}{(\sin\theta + \cos\theta)^2} = \frac{\cos^2\theta(\frac{\sin\theta}{\cos\theta} - 1)^2}{\cos^2\theta(\frac{\sin\theta}{\cos\theta} + 1)^2}$ $= \frac{(\tan\theta - 1)^2}{(\tan\theta + 1)^2} = \frac{(1 - \tan\theta)^2}{(1 + \tan\theta)^2} = \left(\frac{1 - \tan\theta}{1 + \tan\theta}\right)^2$ = R.H.S. (Proved) $1(c) 1 - 4\sin^2\theta \cos^2\theta = \sin^4\theta (1 - \cot^2\theta)^2$ **L.H.S.** = $1 - 4\sin^2 \Theta \cos^2 \Theta$ $=(\sin^2\theta + \cos^2\theta)^2 - 4\sin^2\theta \cos^2\theta$ $=\sin^4\Theta + \cos^4\Theta + 2\sin^2\Theta \cos^2\Theta - 4\sin^2\Theta \cos^2\Theta$ $= (\sin^2 \theta)^2 + (\cos^2 \theta)^2 - 2(\sin^2 \theta)(\cos^2 \theta)$

 $= (\sin^2 \Theta - \cos^2 \Theta)^2 = \{\sin^2 \Theta (1 - \frac{\cos^2 \theta}{\sin^2 \Theta})^2\}$ $=\sin^4(1-\cot^2\Theta)^2 = R.H.S.$ (Proved) 1(d) $\sin \theta + \sec \theta$)² + ($\cos \theta + \csc \theta$)² = $(1 + \sec \Theta \csc \Theta)^2$ **L.H.S.**= $(\sin\theta + \sec\theta)^2 + (\cos\theta + \csc\theta)^2$ $= \sin^2 \Theta \left(1 + \frac{\sec \theta}{\sin \theta} \right)^2 + \cos^2 \Theta \left(1 + \frac{\cos ec\theta}{\cos \theta} \right)^2$ = $(1 + \sec\theta \csc\theta)^2 (\sin^2\theta + \cos^2\theta)$ = $(1 + \sec\theta \csc\theta)^2$.1 = $(1 + \sec\theta\csc\theta)^2$ = R.H.S. (Proved) 1(e) $\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \cos ec\theta + \cot\theta$ L.H.S.= $\sqrt{\frac{1+\cos\theta}{1-\cos\theta}}$ $= \frac{\sqrt{1+\cos\theta}}{\sqrt{1-\cos\theta}} = \frac{\sqrt{1+\cos\theta}\sqrt{1+\cos\theta}}{\sqrt{1-\cos\theta}\sqrt{1+\cos\theta}}$ $=\frac{1+\cos\theta}{\sqrt{1-\cos^2\theta}}=\frac{1+\cos\theta}{\sqrt{\sin^2\theta}}=\frac{1+\cos\theta}{\sin\theta}$ $=\frac{1}{\sin\theta} + \frac{\cos\theta}{\sin\theta} = \csc\theta + \cot\theta$ = R.H.S. (proved) 1(f) $\sin^2 \Theta (1 + \cot^2 \Theta) + \cos^2 \Theta (1 + \tan^2 \Theta)$ = 2**L.H.S.**= $\sin^2 \Theta (1 + \cot^2 \Theta) + \cos^2 \Theta (1 + \tan^2 \Theta)$ $= \sin^2 \Theta + \sin^2 \Theta \cot^2 \Theta + \cos^2 \Theta + \cos^2 \Theta \tan^2 \Theta$ = $(\sin^2 \theta + \cos^2 \theta) + \sin^2 \theta \frac{\cos^2 \theta}{\sin^2 \theta}$ + $\cos^2 \theta$. $\frac{\sin^2 \theta}{\cos^2 \theta}$ $= 1 + \cos^2 \Theta + \sin^2 \Theta = 1 + 1 = 2 = R.H.S.$ $1(g) \ \frac{1+2\sin\theta\cos\theta}{(\sin\theta+\cos\theta)(\cot\theta+\tan\theta)}$

উচ্চতর গণিত : ১ম পত্রের সমাধান াইঘর কম $=\sin\theta\cos\theta(\sin\theta+\cos\theta)$ $2\sin\theta\cos\theta$ **L.H.S.**= $\frac{1 + 2\sin\theta\cos\theta}{(\sin\theta + \cos\theta)(\cot\theta + \tan\theta)}$ $\cos\theta(\sin\theta + \cos\theta - 1)$ $\frac{1}{\sin\theta}(\sin\theta+\cos\theta-1)$ $\sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta$ $(\sin\theta + \cos\theta)(\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta})$ $= \frac{2}{1 + \cot \theta - \cos ec\theta} = \text{R.H.S.}$ (Proved) $(\sin\theta + \cos\theta)^2$ $(\sin\theta + \cos\theta)(\frac{\cos^2\theta + \sin^2\theta}{\sin\theta\cos\theta})$ 2. (a) $a \cos \theta - b \sin \theta = c$ হলে দেখাও যে, $a\sin\Theta + b\cos\Theta = \pm \sqrt{a^2 + b^2 - c^2}$ $=\frac{\sin\theta\cos\theta(\sin\theta+\cos\theta)}{\sin\theta+\cos\theta}$ প্রমাণ ঃ দেওয়া আছে . $a \cos \theta - b \sin \theta = c$ $\cos^2\theta + \sin^2\theta$ $\Rightarrow a^2 \cos^2 \Theta + b^2 \sin^2 \Theta - 2ab \sin \Theta \cos \Theta = c^2$ $= \sin \theta \cos \theta (\sin \theta + \cos \theta) = R.H.S.$ $\Rightarrow a^2(1 - \sin^2 \theta) + b^2(1 - \cos^2 \theta)$ (Proved) $-2ab \sin\theta \cos\theta = c^2$ $\Rightarrow a^2 - a^2 \sin^2 \Theta + b^2 - b^2 \cos^2 \Theta$ 1.(h) $3(\sin \theta + \cos \theta) - 2(\sin^3 \theta + \cos^3 \theta)$ = $(\sin \theta + \cos \theta)^3$ $-2absin\Theta cos\Theta = c^2$ $\Rightarrow -\{(asin\theta)^2 + (bcos)^2 \theta + 2.asin\theta.bcos\theta\}$ L.H.S. = $3(\sin\theta + \cos\theta) - 2(\sin^3\theta + \cos^3\theta)$ $= c^2 - a^2 - b^2$ = $3(\sin\theta + \cos\theta) - 2(\sin\theta + \cos\theta)$ $\Rightarrow (asin\Theta + bcos\Theta)^2 = a^2 + b^2 - c^2$ $(\sin^2 \Theta + \cos^2 \Theta - \sin \Theta \cos \Theta)$ $asin\Theta + bcos\Theta = \pm \sqrt{a^2 + b^2 - c^2}$ = $(\sin\theta + \cos\theta) \{3 - 2(1 - \sin\theta\cos\theta)\}$ (Proved) = $(\sin\theta + \cos\theta)(1 + 2\sin\theta\cos\theta)$ 2(b) $\sin \theta + \csc \theta = 2$ হলে প্রমাণ কর যে, $=(\sin\theta + \cos\theta)(\sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta)$ $\sin^{n} \Theta + \csc^{n} \Theta = 2$ = $(\sin\theta + \cos\theta)(\sin\theta + \cos\theta)^2$ = $(\sin\theta + \cos\theta)^3 = L.H.S.$ (Proved) প্রমাণ : দেওয়া আছে . $\sin \theta + \operatorname{cosec} \theta = 2$ 1(i) 1 + tan θ + sec $\theta = \frac{2}{1 + \cot \theta - \cos ec \theta}$ $\Rightarrow \sin\theta + \frac{1}{\sin\theta} = 2 \Rightarrow \sin^2\theta - 2\sin\theta + 1 = 0$ $\Rightarrow (\sin \theta - 1)^2 = 0 \Rightarrow \sin \theta - 1 = 0 \therefore \sin \theta = 1$ **L.H.S.=** $1 + \tan \Theta + \sec \Theta$ এখন , L.H.S.= $\sin^n \Theta$ + $\csc^n \Theta$ $= 1 + \frac{\sin\theta}{\cos\theta} + \frac{1}{\cos\theta} = \frac{\cos\theta + \sin\theta + 1}{\cos\theta}$ $= \sin^{n} \Theta + \frac{1}{\sin^{n} \Theta} = 1^{n} + \frac{1}{1^{n}} = 1 + 1 = 2 =$ $(\cos\theta + \sin\theta + 1)(\cos\theta + \sin\theta - 1)$ R.H.S. (Proved) $\cos\theta(\cos\theta+\sin\theta-1)$ $=\frac{(\cos\theta+\sin\theta)^2-1}{(\cos\theta+\sin\theta)^2}$ $2(c) x \sin^{3} \theta + y \cos^{3} \theta = \sin \theta \cos \theta$ धनर $\cos\theta(\cos\theta+\sin\theta-1)$ $x\sin \theta - y\cos \theta = 0$ হলে দেখাও যে, $x^2 + y^2 = 1$ $= \frac{\cos^2\theta + \sin^2\theta + 2\sin\theta\cos\theta - 1}{\sin^2\theta + 2\sin\theta\cos\theta}$ প্রমাণ ঃ দেওয়া আছে, $\cos\theta(\cos\theta+\sin\theta-1)$ $x\sin^3 \Theta + y\cos^3 \Theta = \sin \Theta \cos \Theta \cdots (1)$ এবং $1+2\sin\theta\cos\theta-1$ $x\sin\theta - y\cos\theta = 0 \Rightarrow x\sin\theta = y\cos\theta$ $\cos\theta(\sin\theta + \cos\theta - 1)$

:

4

1 .

ſ

$$\therefore x = y \frac{\cos \theta}{\sin \theta} \dots (2)$$
(1) $4x = y \frac{\cos \theta}{\sin \theta} \sqrt[3]{7}(x) \sqrt{x}$
 $y \frac{\cos \theta}{\sin \theta} .sin^3 \theta + ycos^3 \theta = sin\theta cos\theta$
 $\Rightarrow ysin^2 \theta cos\theta + ycos^3 \theta = sin\theta cos\theta$
 $\Rightarrow ycos \theta (sin^2 \theta + cos^2 \theta) = sin\theta cos\theta$
 $\Rightarrow ycos \theta (sin^2 \theta + cos^2 \theta) = sin\theta cos\theta$
 $\Rightarrow ycos \theta (sin^2 \theta + cos^2 \theta) = sin\theta cos\theta$
 $\Rightarrow ycos \theta (sin^2 \theta + cos^2 \theta) = sin\theta cos\theta$
 $y = sin\theta$
(2) $\sqrt[3]{7}(\sqrt[3]{9} + \sqrt[3]{2})^2 = cos^2 \theta + sin^2 \theta = 1$
 $x^2 + y^2 = 1$ (Showed)
2. (d) k tan $\theta = tan k \theta \sqrt[3]{7}(\sqrt[3]{7} + \sqrt[3]{2})^2 = 1$
 $x^2 + y^2 = 1$ (Showed)
2. (d) k tan $\theta = tan k \theta \sqrt[3]{7}(\sqrt[3]{7} + \sqrt[3]{2})^2 = 1$
 $x^2 + y^2 = 1$ (Showed)
2. (d) k tan $\theta = tan k \theta \sqrt[3]{7}(\sqrt[3]{7} + \sqrt[3]{7})^2 = 1$
 $x^2 + y^2 = 1$ (Showed)
2. (d) k tan $\theta = tan k \theta \sqrt[3]{7}(\sqrt[3]{7} + \sqrt[3]{7})^2 = 1$
 $x^2 + y^2 = 1$ (Showed)
2. (d) k tan $\theta = tan k \theta \sqrt[3]{7}(\sqrt[3]{7} + \sqrt[3]{7})^2 = 1$
 $x^2 + y^2 = 1$ (Showed)
2. (d) k tan $\theta = tan k \theta \sqrt[3]{7}(\sqrt[3]{7} + \sqrt[3]{7})^2 = 1$
 $x^2 + y^2 = 1$ (Showed)
2. (d) k tan $\theta = tan k \theta \sqrt[3]{7}(\sqrt[3]{7} + \sqrt[3]{7})^2 = 1$
 $x^2 + y^2 = 1$ (Showed)
2. (d) k tan $\theta = tan k \theta \sqrt[3]{7}(\sqrt[3]{7} + \sqrt[3]{7})^2 = 1$
 $x^2 + y^2 = 1$ (Showed)
2. (e) $3 \sec^4 \theta + 8 = 10 \sec^2 \theta \sqrt[3]{7}$ (Proved)
2. (e) $3 \sec^4 \theta + 8 = 10 \sec^2 \theta \sqrt[3]{7}$ (Proved)
2. (e) $3 \sec^4 \theta + 8 = 10 \sec^2 \theta \sqrt[3]{7}$ (Proved)

প্রমাণ : দেওয়া আছে.,
$$3\sec^4\Theta + 8 = 10\sec^2\Theta$$

 $\Rightarrow 3\sec^4\Theta - 10\sec^2\Theta + 8 = 0$
 $\Rightarrow 3\sec^4\Theta - 6\sec^2\Theta - 4\sec^2\Theta + 8 = 0$

VI A२०७⇒
$$3\sec^2\Theta(\sec^2\Theta - 2) - 4(\sec^2\Theta - 2) = 0$$
⇒ $(\sec^2\Theta - 2)(3\sec^2\Theta - 4) = 0 \Rightarrow \sec^2\Theta = 2$ ⇒ $1 + \tan^2\Theta = 2 \Rightarrow \tan^2\Theta = 1$ $\therefore \tan\Theta = \pm 1$ जयता, $\sec^2\Theta = \frac{4}{3} \Rightarrow 1 + \tan^2\Theta = \frac{4}{3}$ ⇒ $\tan^2\Theta = \frac{4}{3} - 1 = \frac{1}{3}$ $\therefore \tan\Theta = \pm \frac{1}{\sqrt{3}}$ $\tan\Theta = \pm 1, \pm \frac{1}{\sqrt{3}}$.2(f) $(a^2 - b^2) \sin \Theta + 2ab \cos \Theta = a^2 + b^2$ जता Θ त्रुच ७ रागावर त्रांग रता, $\tan \Theta$ जता $\cosec\Theta$ अत्र मान निर्भ करा।श्राग s $(a^2 - b^2) \tan\Theta + 2ab \cos\Theta = a^2 + b^2$ $\Rightarrow (a^2 - b^2) \tan\Theta + 2ab \cos\Theta = a^2 + b^2$ $\Rightarrow (a^2 - b^2) \tan\Theta + 2ab (a^2 + b^2) \sec\Theta$ $\Rightarrow (a^2 - b^2) \tan\Theta + 2ab = (a^2 + b^2) \sec\Theta$ $\Rightarrow (a^2 - b^2) \tan\Theta + 2ab = (a^2 + b^2) \sec\Theta$ $\Rightarrow (a^2 - b^2) \tan\Theta + 2ab = (a^2 + b^2) \sec\Theta$ $\Rightarrow (a^2 - b^2) \tan\Theta + 2ab = (a^2 + b^2) \sec\Theta$ $\Rightarrow (a^2 - b^2) \tan\Theta + 2ab = (a^2 + b^2) \tan\Theta$ $\Rightarrow (a^2 - b^2) \tan\Theta + 2ab = (a^2 + b^2) \tan\Theta$ $\Rightarrow (a^2 - b^2) \tan\Theta + 2ab = (a^2 + b^2) \tan\Theta$ $\Rightarrow (a^2 - b^2) \tan\Theta + 2ab = (a^2 + b^2) \tan\Theta$ $\Rightarrow (a^2 - b^2) \tan\Theta + 4a(a^2 - b^2) \tan\Theta + 4a^2b^2$ $= (a^2 + 2ab + b^2) + (a^2 + b^2) \tan\Theta + 4a^2b^2$ $= (a^2 - b^2) \tan\Theta + 4a^2b^2 - a^4 - 2a^2b^2 - b^4 = 0$ $\Rightarrow - 4a^2b^2 \tan^2\Theta + 4ab(a^2 - b^2) \tan\Theta$ $= (a^2 - b^2) \tan\Theta + 4a^2b^2 - a^4 - 2a^2b^2 - b^4 = 0$ $\Rightarrow 4a^2b^2 \tan^2\Theta - 4ab(a^2 - b^2) \tan\Theta$ $= (a^2 - b^2)^2 = 0$ $\Rightarrow 2ab \tan\Theta - (a^2 - b^2) = 0$ $\Rightarrow 2ab \tan\Theta - (a^2 - b^2) = 0$ $\Rightarrow 2ab \tan\Theta = a^2 - b^2$ $\tan\Theta = \frac{a^2 - b^2}{2ab}$ $\tan\Theta = \frac{a^2 - b^2}{2ab}$ $\operatorname{and} = \frac{a^2 - b^2}{2ab}$ $\operatorname{and} = \frac{a^2 - b^2}{2ab}$ $\operatorname{and} = \frac{a^2 - b^2}{2ab}$

[::
$$\Theta$$
 ধনাত্মক সৃক্ষ কোণ ।]
 $\overline{(a^2 - b^2)^2 + 4a^2b^2}$

$$=\sqrt{1-\left(\frac{2ab}{a^2-b^2}\right)^2} = \sqrt{\frac{(a^2-b^2)^2+4a^2b^2}{(a^2-b^2)^2}}$$
$$=\sqrt{\frac{(a^2+b^2)^2}{(a^2-b^2)^2}} = \frac{a^2+b^2}{a^2-b^2} \quad (Ans.)$$

230 উচ্চতর গণিত : ১ম পত্রের সমাধান 2(g) $\cot A + \cot B + \cot C = 0$ হলে প্রমাণ **Φ** $\overline{\mathbf{A}}$ (Σ tan A)² = Σ tan² A প্রমাণ ঃ দেওয়া আছে , $\cot A + \cot B + \cot C = 0$ $\Rightarrow \frac{1}{\tan A} + \frac{1}{\tan B} + \frac{1}{\tan C} = 0$ $\Rightarrow \frac{\tan B \tan C + \tan C \tan A + \tan A \tan B}{1} = 0$ tan A tan R tan \Rightarrow tan A tan B + tan B tan C+ tan C tan A=0 \Rightarrow 2(tanAtanB +tanBtanC + tanC tanA)= 0 $\Rightarrow \tan^2 A + \tan^2 B + \tan^2 C + 2(\tan A \tan B +$ $\tan B \tan C + \tan C \tan A = \tan^2 A +$ $\tan^2 B + \tan^2 C$ \Rightarrow (tanA + tanB + tanC)² = tan²A + tan²B $+ \tan^2 C$ $(\sum \tan A)^2 = \sum \tan^2 A$ (Showed) 2(h) cos θ + sec $\theta = \frac{5}{2}$ হলে প্র্মাণ কর যে , $\cos^{n}\Theta + \sec^{n}\Theta = 2^{n} + 2^{-n}$ প্রমাণ ঃ দেওয়া আছে , $\cos \Theta$ + $\sec \Theta = \frac{2}{2}$ $\Rightarrow \cos\theta + \frac{1}{\cos\theta} = \frac{5}{2}$ www.boighar.com $\Rightarrow \cos^2 \theta + 1 = \frac{5}{2} \cos \theta$ $\Rightarrow 2\cos^2\theta + 2 = 5\cos\theta$ $\Rightarrow 2\cos\theta - 5\cos\theta + 2 = 0$ $\Rightarrow 2\cos^2\theta - 4\cos\theta - \cos\theta + 2 = 0$ $\Rightarrow 2\cos\theta (\cos\theta - 2) - 1(\cos\theta - 2) = 0$ $\Rightarrow (\cos \theta - 2)(2\cos \theta - 1) = 0$ $\cos \theta - 2 = 0$ অথবা, $2\cos \theta - 1 = 0$ $[\mathbf{\hat{q}}_{\mathbf{m}} \mathbf{\hat{g}} \cos \theta - 2 \neq \mathbf{0} \quad [\because -1 \le \cos \theta \le 1]$ $2\cos\theta - 1 = 0 \Rightarrow \cos\theta = \frac{1}{2}$: $\sec\theta = 2$ এখন , L.H.S. $= \cos^n \Theta + \sec^n \Theta$ $=\left(\frac{1}{2}\right)^{n} + (2)^{n}$ $= 2^{n} + 2^{-n} = R.H.S.$ L.H.S. = R.H.S. (প্রমাণিত)

2(i) $a_1 \sin \theta + b_1 \cos \theta + c_1 = 0$ and $a_2 \sin \theta + b_2 \cos \theta + c_2 = 0$ সমীকরণদ্ব হতে θ অপসারণ কর। সমাধান ঃ দেওয়া আছে, $a_1 \sin \theta + b_1 \cos \theta + c_1 = 0$ $a_2 \sin \theta + b_2 \cos \theta + c_2 = 0$ বজ্র্গণন প্রণালীর সাহায্যে পাই $\frac{\sin\theta}{b_1c_2 - b_2c_1} = \frac{\cos\theta}{a_2c_1 - a_1c_2} = \frac{1}{a_1b_2 - a_2b_1}$ $\sin \theta = \frac{b_1 c_2 - b_2 c_1}{a_1 b_2 - a_2 b_1}$, $\cos \theta = \frac{a_2 c_1 - a_1 c_2}{a_1 b_2 - a_2 b_1}$ এখন, $\sin^2 \Theta + \cos^2 \Theta = 1$ $\Rightarrow \left(\frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}\right)^2 + \left(\frac{a_2c_1 - a_1c_2}{a_1b_2 - a_2b_1}\right)^2 = 1$ $\Rightarrow (b_1c_2 - b_2c_1)^2 + (a_2c_1 - a_1c_2)^2$ $= a_1b_2 - a_2b_1$ সমাধান ঃ $DE = s = r \theta = 8 \times \frac{30\pi}{180} \qquad A = \frac{30^{\circ}}{100}$ = 4.189 মিটার (প্রায়)। ABCDE সম্পূর্ণ ক্ষেত্রের ক্ষেত্রফল = ABCD আয়তক্ষেত্রের ক্ষেত্রফল + ADE বৃত্তকলার ক্ষেত্রফল = $8 \times 7 + \frac{r^2 \theta}{2}$ $=56+\frac{8^2}{2}\times\frac{30\pi}{180}$ = 56 + 16·755 = 80·755 বর্গ মিটার (প্রায়)। 4. সমাধান : এখানে AD = BC = 3 মিটার। DC = AB = 4[°]মিটার। 1 E $\tan CAD = \frac{DC}{AD} = \frac{4}{3}$ $= \tan (0.927)^{2}$ ধরি, $\Theta = \angle \text{CAD} = 0.927$ রেডিয়ান। $r = AC = \sqrt{4^2 + 3^2} = 5$ মিটার। বৃত্তাংশ CE এর দৈর্ঘ্য = r θ = 5×0.927 = 4.635 মিটার (প্রায়)

577 প্রশ্নমালা VIA বইঘর কম ত্রিভুজ ক্ষেত্র ACD এর ক্ষেত্রফল = ADC অর্ধ্ববৃত্তের ক্ষেত্রফল - (AECB বৃত্তকলার ক্ষেত্রফল – ABC ত্রিভুজের ক্ষেত্রফল) $=\frac{1}{2}(AD \times CD) = \frac{1}{2}(3 \times 4) = 6$ কগ মিটার। $= 4\pi - 4\pi + 8 = 8$ বর্গ মিটার ACE বৃত্তকলার ক্ষেত্রফল = $\frac{r^2\theta}{2} = \frac{25 \times 0.927}{2}$ 6. সমাধান ঃ A, P; P,Q; A,Q যোগ করি। তাহলে = 11.5875 বর্গ মিটার। APO একটি সমবাহু ত্রিভুজ। CDE ক্ষেত্রের ক্ষেত্রফল = (11.5875 - 6) = 5·5875 বর্গ মিটার (প্রায়)। Ρ 0 5. সমাধান : AECB একটি বৃত্তকলা বলে AB = BC = 4 মিটার । APQ ত্রিভুন্জের ক্ষেত্রফল = $\frac{\sqrt{3}}{4}(1)^2 = \frac{\sqrt{3}}{4}$ বর্গ একক। APQ বৃত্তকলার ক্ষেত্রফল = $\frac{r^2\theta}{2} = \frac{1^2}{2} \times \frac{60\pi}{180} = \frac{\pi}{6}$ ৰ্কা একক। B 4 m APBQ ক্ষেত্রের ক্ষেত্রফল = $4(\frac{\pi}{6} - \frac{\sqrt{3}}{4})$ $AC = \sqrt{4^2 + 4^2} = 4\sqrt{2}$ মিটার ADC অর্ধ্ববৃত্তের ব্যাসার্ধ r = $\frac{1}{2} \times 4\sqrt{2}$ $= 2 \sqrt{2}$ মিটার অতিরিক্ত প্রশ্ন (সমাধানসহ) 2 সে.মি. বাহুবিশিষ্ট ABCD রমসের সুড়াকোণ 1. ADC অর্ধর্বৃত্তের ক্ষেত্রফল = $\frac{1}{2} \pi r^2 = \frac{1}{2} \pi \times 8$ $A = 60^{\circ}$ । ABPD একটি বুত্তকলা । বৃত্তাংশ BPD = 4 π বর্গ মিটার ৷ এর দৈর্ঘ্য এবং BPDC ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। বৃত্তাংশ AEC এর দৈর্ঘ্য = r θ = 4× $\frac{\pi}{2}$ = 2×3·1416 = 6·2832 মিটার। AECB বৃত্তকলার ক্ষেত্রফল = $\frac{r^2\theta}{2} = \frac{4^2}{2} \times \frac{\pi}{2}$ সমাধান: এখানে, ABPD বৃত্তকলার BPD বৃত্তাংশ = 4 π বর্গ মিটার। দ্বারা কেন্দ্রে উৎপন্ন কোণ $\theta = \angle BAD = 60^0 = \frac{\pi}{2}$, ABC ত্রিভুজের ক্ষেত্রফল = $\frac{1}{2} \times a^2 = \frac{1}{2} \times 4^2$ বৃত্তের ব্যাসার্ধ , r = রম্বসের বাহুর দৈর্ঘ্য = 2 সে.মি. = 8 বর্গ মিটার। AECD ক্ষেত্রের ক্ষেত্রফল = ADC অর্ধ্ববৃত্তের ক্ষেত্রফল – AEC ক্ষেত্রের ক্ষেত্রফল

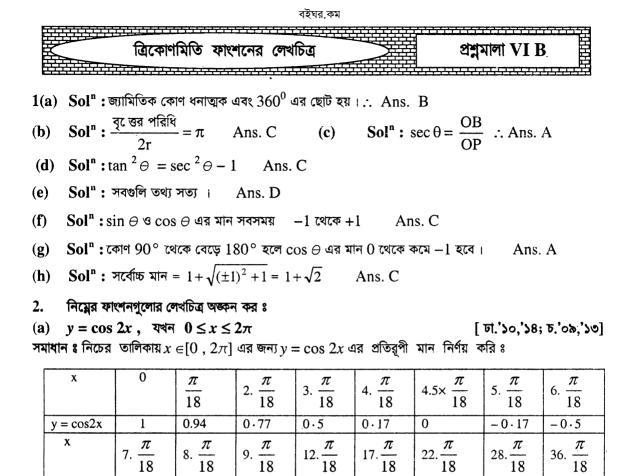
বৃত্তাংশ BPD এর দৈর্ঘ্য = $r\theta = 2 \times \frac{\pi}{2} = 2.1$ সে. মি. (প্রায়)। ABPD ক্ষেত্রের ক্ষেত্রফল = $\frac{1}{2} \theta r^2 = \frac{1}{2} \times \frac{\pi}{3} \times 2^2$ $=\frac{1}{2} \times \frac{\pi}{3} \times 2^2 = 2 \cdot 1$ বর্গ সে.মি. (প্রায়) $DE \perp AB$ ও $AF \perp CD$ অঙ্কন করি যা AB কে Fবিন্দতে ও CD এর বর্ধিতাংশকে F বিন্দুতে ছেদ করে। $\triangle ABD$ এ, $\angle A = 60^{\circ}$ (সক্ষকোণ) $BD^2 = AB^2 + AD^2 - 2$, AB, AE $= AB^2 + AD^2 - 2$, AB, AD cos A $= 2^2 + 2^2 - 2 \times 2 \times \cos 60^{\circ}$ $= 8 - 8 \times \frac{1}{2} = 4$ BD = 2 ल.म.। আবার, \triangle ACD, \angle ADC = 120⁰ (স্থলকোণ) $AC^2 = AD^2 + DC^2 + 2CD \times DF$ $= AD^{2} + DC^{2} + 2CD \times AD\cos ADF$ $= AD^2 + DC^2 + 2CD \times AD\cos 60^0$ $= 2^{2} + 2^{2} + 2 \times 2 \times 2 \times (\frac{1}{2}) = 12$ $AC = 2\sqrt{3}$ এখন, ABCD রম্বসের ক্ষেত্রফল = $\frac{1}{2}$ (AC×BD) $=\frac{1}{2}(2\sqrt{3}\times 2)=2\sqrt{3}$ বর্গ সে.মে. ।

BPDC ক্ষেত্রের ক্ষেত্রফল = ABCD রম্বসের ক্ষেত্রফল – ABPD ক্ষেত্রের ক্ষেত্রফল

$$= 2\sqrt{3} - \frac{2\pi}{3} = 1.37$$
 বর্গ সে.মি. (প্রায়) ।

2. 6 মিটার লম্বা ঘড়ির সেকেন্ডের কাঁটার শীর্ষবিন্দ 5 সেকেন্ডে কতটুকু বৃত্তাকার পথ অতিক্রম করবে? সমাধান: ঘডির সেকেন্ডের কাঁটা 60 সেকেন্ডে 360^{0} কোণ উৎপন্ন করে 20 সেকেন্ডে 30^0 কোণ উৎপন্ন করে। এখানে, উৎপন্ন কোণ $\theta = 30^0 = \frac{\pi}{6}$ রেডিয়ান, r = 6 মি. । ধরি, সেকেন্ডের কাঁটাটি s মি. বৃত্তাকার পথ অতিক্রম করবে। $s = r\theta = 6 \times \frac{\pi}{6} = \pi = 3.1416$ নির্ণেয় বত্তাকার পথ = 3.1416 মি. । 3. O কেন্দ্র বিশিষ্ট বৃত্তের ব্যাসার্ধ 5 সে.মে.। বৃত্তাংশ APB এর দৈর্ঘ্য 6 সে.মি.। (a) θ=∠AOB নির্ণায় কর। উ: 1.2 রেডিয়ান (b) OAB বৃত্তকলার ক্ষেত্রফল নির্ণয় কর। উ: 15 বৰ্গ সে.মি. A বিন্দুতে অঙ্কিত বৃত্তের স্পর্শক OB এর (c) বর্ধিতাংশকে C বিন্দুতে ছেদ করে। APBC ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। উ: 17.15 বর্গ সে.মি.। ভর্তি পরীক্ষার MCQ প্রশ্ন উত্তরসহ ঃ <u>
 5π</u>
 রেডিয়ান কোণের ষাটমূলক পদ্ধতিতে মান কত ?
 [CU 07-08] Sol^{n} :: $\frac{3\pi}{2}$ রেডিয়ান = $\frac{3 \times 180^{\circ}}{2} = 67^{\circ} 30'$ ক্যালকুলেটরের সাহায্যে,

3 × 1 8 0 ÷ 8 = 67.5 ০,,, 67°30° 2. 50°37′30″ = কত রেডিয়ান ? [CU 05-06] Sol″ .: 50°37′30″ = $\frac{50.625 \times \pi}{180} = \frac{9\pi}{32}$



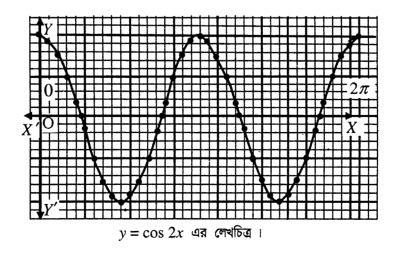
একটি ছক কাগজে স্থানাজ্ঞের অক্ষরেখা X'OX ও YOY' আঁকি।

-1.

-0.93

-0.77

y = cos2x



-0.5

0.94

0.94

1

-0.17

স্কেল নির্ধারণ s_x -অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^c}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 10 বাহু = 1এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত ক্দিণুগুলো ছক কাগজে স্থাপন করি। স্থাপিত ক্দিণুগুলো মুক্ত হস্তে বক্তাকারে যোগ করে প্রদন্ত সীমা অনুযায়ী y = cos2x এর লেখ অঞ্চন করা হল।

(b)
$$y = \sin 3x$$
, যখন $0 \le x \le \pi$

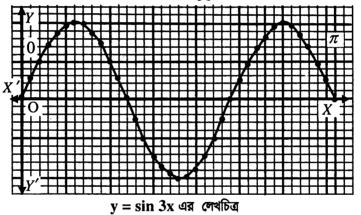
[কু. '০৯,'১২; রা.'১৪; দি.'১৩]

সমাধান ঃ নিচের তালিকায় x \in [0, π] এর জন্য y = sin3x এর প্রতিরূপী মান নির্ণয় করি ঃ

x	0	$\frac{\pi}{36}$	$2. \frac{\pi}{36}$	3. $\frac{\pi}{36}$	4. $\frac{\pi}{36}$	5. $\frac{\pi}{36}$	$6. \frac{\pi}{36}$	7. $\frac{\pi}{36}$
y = sin3x	0	0.26	0.5	0.71	0 · 87	0.97	1	0.97
x	8. $\frac{\pi}{36}$	9. $\frac{\pi}{36}$	10. $\frac{\pi}{36}$	12. $\frac{\pi}{36}$	17. $\frac{\pi}{36}$	$22. \frac{\pi}{36}$	$28. \frac{\pi}{36}$	$36. \frac{\pi}{36}$
y = sin3x	0.87	0.71	0.5	0	-0.97	-0.5	0.87	0

একটি ছক কাগজে স্থানাজ্ঞের অক্ষরেখা X'OX ও YOY' আঁকি।

স্কেন্স নির্ধারণ ঃ x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^2}{36}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 10 বাহু=1



এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত কিন্দুগুলো ছক কাগজে স্থাপন করি। স্থাপিত কিন্দুগুলো মুক্ত হস্তে বক্তাকারে যোগ করে প্রদন্ত সীমা অনুযায়ী y = sin 3x এর লেখ অঞ্জন করা হল।

2. (c)
$$y = \cos 3x$$
, যখন $0 \le x \le \pi$

[চ. '০১, '০৪; ঢা. '০৩ ; য. '০৫]

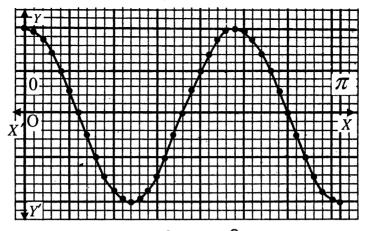
সমাধান ঃ নিচের তালিকায় $x \in [0, \pi]$ এর জন্য $y = \cos 3x$ এর প্রতিরূপী মান নির্ণয় করি ঃ

x	0	$\frac{\pi}{36}$	2. $\frac{\pi}{36}$	3. $\frac{\pi}{36}$	4. $\frac{\pi}{36}$	5. $\frac{\pi}{36}$	6. $\frac{\pi}{36}$	7. $\frac{\pi}{36}$
$y = \cos 3x$	1	0.97	0.87	0.71	0.5	0.26	0	-0.26
x	$8. \frac{\pi}{36}$	9. $\frac{\pi}{36}$	10. $\frac{\pi}{36}$	12. $\frac{\pi}{36}$	17. $\frac{\pi}{36}$	22. $\frac{\pi}{36}$	28. $\frac{\pi}{36}$	36. $\frac{\pi}{36}$
$y = \cos 3x$	-0.5	-0.71	0.87	-1	-0.26	-0.5	0.5	-1

একটি ছক কাগজে স্থানাজ্ঞের অক্ষরেখা X'OX ও YOY' আঁকি।

স্কেন্স নির্ধারণ ঃ x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু = $\frac{\pi^2}{36}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 10-বাহু = 1

প্রশ্নমূলা - $\sum_{n=1}^{\infty} B$



y = cos 3x. এর লেখচিত্র।

এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত কিন্দুগুলো ছক কাগজে স্থাপন করি। স্থাপিত কিন্দুগুলো মুক্ত হস্তে বক্রাকারে যোগ করে প্রদন্ত সীমা অনুযায়ী y = cos 3x এর লেখ অঞ্চন করা হল।

2. (d) $y = \sin^2 x$ যখন $-\pi^2 \le x \le \pi$

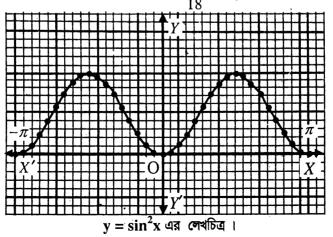
[ব. '০১;সি. '১, '১০; ঢা. '০৪; কু. '১৩; চ. '১৩]

সমাধান ঃ নিচের তালিকায় $x \in [-\pi, \pi]$ এর জন্য $y = \sin^2 x$ এর প্রতিরূপী মান নির্ণয় করি ঃ

x	0	$\pm \frac{\pi}{18}$	$\pm 2. \frac{\pi}{18}$	$\pm 3.\frac{\pi}{18}$	$\pm 4 \cdot \frac{\pi}{18}$	$\pm 5. \frac{\pi}{18}$	$\pm 6. \frac{\pi}{18}$
$y = \sin^2 x$	0	0.03	Ö•117	0.25	0.41	0.59	0.75
x	$\pm 7. \frac{\pi}{18}$	$.\pm 8. \frac{\pi}{18}$	$\pm 9. \frac{\pi}{18}$	$\pm 12. \frac{\pi}{18}$	$\pm 14. \frac{\pi}{18}$	$\pm 16. \frac{\pi}{18}$	$\pm 18. \frac{\pi}{18}$
$y = \sin^2 x$	0.88	0.97	1	0.75	0.41	0.117	0

একটি ছক কাগজে স্থানাজ্ঞের অক্ষরেখা X'OX ও YOY' আঁকি।

স্কেন্স নির্ধারণ s_x -অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^c}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 10 বাহু =1



উচ্চতর গণিত্ব্বরুপ্লমু পত্র সমাধান

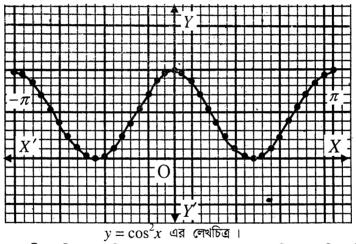
২১৬

এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত কিন্দুগুলো ছক কাগজে স্থাপন করি। স্থাপিত কিন্দুগুলো মুক্ত হস্তে বক্রাকারে যোগ করে প্রদন্ত সীমা অনুযায়ী $y = \sin^2 x$ এর লেখ অঞ্জন করা হল।

X	0	$\pm \frac{\pi}{18}$	$\pm 2.\frac{\pi}{18}$	$\pm 3.\frac{\pi}{18}$	$\pm 4.\frac{\pi}{18}$	$\pm 5.\frac{\pi}{18}$	$\pm 6.\frac{\pi}{18}$
$y = \cos^2 x$	1	0.97	0.88	0.75	0.59	0.41	0.25
x	$\pm 7.\frac{\pi}{18}$	$\pm 8.\frac{\pi}{18}$	$+9.\frac{\pi}{18}$	$\pm 10\frac{\pi}{18}$	$\pm 12.\frac{\pi}{18}$	$\pm 15.\frac{\pi}{18}$	$\pm 18.\frac{\pi}{18}$
$y = \cos^2 x$	0.12	0.03	0	0.97	0.25	0.75	1

একটি ছক কাগজে স্থানাংকের অক্ষরেখা X'OX ও YOY' আঁকি।

স্কেন্স নির্ধারণ ঃ x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^c}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 10 বাহু =1



এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত কিন্দুগুলো ছক কাগজে স্থাপন করি। স্থাপিত কিন্দুগুলো মুক্ত হস্তে বক্রাকারে যোগ করে প্রদন্ত সীমা অনুযায়ী $y = \cos^2 x$ এর লেখ অঞ্চক করা হল।

2. (f)
$$y = \sin^{3} x$$
, যখন $0 \le x \le \pi$

[য. '০০; চ. '০২]

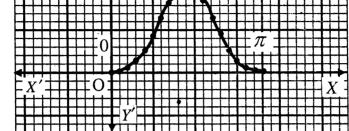
সমাধান ঃ নিচের তালিকায় $x \in [0, \pi]$ এর জন্য $y = \sin^3 x$ এর প্রতিরূপী মান নির্ণয় করি ঃ

x	0	$\frac{\pi}{18}$	2. $\frac{\pi}{18}$	$3.\frac{\pi}{18}$	$4 \cdot \frac{\pi}{18}$	5. $\frac{\pi}{18}$	6. $\frac{\pi}{18}$
$y = \sin^3 x$	0	0.005	0.04	0.13	0.27	0.45	0.65
x	7. $\frac{\pi}{18}$	$8. \frac{\pi}{18}$	9. $\frac{\pi}{18}$	12. $\frac{\pi}{18}$	14. $\frac{\pi}{18}$	16. $\frac{\pi}{18}$	18. $\frac{\pi}{18}$
$y = \sin^3 x$	0.83	0.96	1	0.65	0.27	0.04	0

একটি ছক কাগজে স্থানাজ্ঞের অক্ষরেখা X'OX ও YOY' আঁকি।

প্রশ্নমালা - VI B বইঘর কম

স্কেন্স নির্ধারণ ঃ x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^{\prime}}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 10 বাহু =1



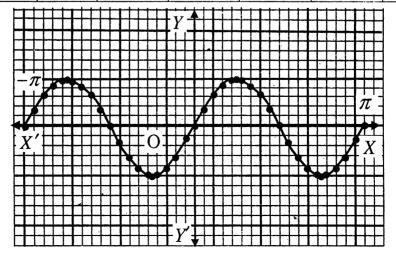
এখন নির্ধরিত স্কেল অনুযায়ী তালিকাভুক্ত কিন্দুগুলো ছক কাগজে স্থাপন করি। স্থাপিত কিন্দুগুলো মুক্ত হস্তে বক্তাকারে যোগ করে প্রদন্ত সীমা অনুযায়ী y = sin ³x এর লেখ অঞ্জন করা হল।

2. (g) $y = \sin x \cos x$, যখন $-\pi \le x \le \pi$

সমাধান ঃ $y = \sin x \cos x \Rightarrow y = \frac{1}{2} \sin 2x$

নিচের তালিকায় x \in [$-\pi$, π] এর জন্য y = $\frac{1}{2}\sin 2x$ এর প্রতিরূপী মান নির্ণয় করি

x	0	$\pm \frac{\pi}{18}$	$\pm 2. \frac{\pi}{18}$	$\pm 3. \frac{\pi}{18}$	$\pm 4. \frac{\pi}{18}$	$\pm \frac{\pi}{4}$	$\pm 5. \frac{\pi}{18}$
$y = \frac{1}{2}\sin 2x$	0	±0.17	± 0.32	± 0.43	± 0 · 49	± 0.5	± 0.49
x	$\pm 6. \frac{\pi}{18}$	$\pm 7 \frac{\pi}{18}$	$\pm 8. \frac{\pi}{18}$	$\pm 9. \frac{\pi}{18}$	$\pm 14. \frac{\pi}{18}$	$\pm 15. \frac{\pi}{18}$	$\pm 18. \frac{\pi}{18}$
$y = \frac{1}{2}\sin 2x$	±0.43	± 0.32	± 0.17	0	∓ 0.49	∓ 0.43	0



y = sinx cosx এর লেখচিত্র।

একটি ছক কাগজ্জে স্থানাজ্ঞের অক্ষরেখা X'OX ও YOY' আঁকি।

স্কেন্স নির্ধারণ s_x -অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু = $\frac{\pi^c}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 10 বাহু = 1 এখন নির্ধরিত স্কেল অনুযায়ী তালিকাভুক্ত বিন্দুগুলো ছক কাগজে স্থাপন করি। স্থাপিত বিন্দুগুলো মুক্ত হস্তে বক্তাকারে যোগ করে প্রদন্ত সীমা অনুযায়ী y = sinx cosx এর লেখ অঞ্জন করা হল।

3. লেখচিত্রের সাহায্যে সমাধান কর ৪

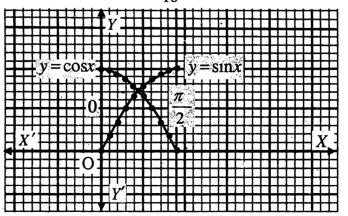
(a) $\sin x - \cos x = 0$, $0 \le x \le \frac{\pi}{2}$ [কু. 'ob; রা.'১৩; চ.'১২; য.'১১,'১৪; ব.'ob; সি.'ob; ঢা. 'ob,'১২,'১৪; মা.'১৪] সমাধান ঃ দেওয়া আছে $\sin x - \cos x = 0 \Rightarrow \sin x = \cos x$ মনে করি, $y = \sin x = \cos x$ $\therefore y = \sin x$ এবং $y = \cos x$

নিচের তালিকায় x $\in [0, \frac{\pi}{2}]$ এর জন্য y = sinx ও y = cosx এর প্রতিরূপী মান নির্ণয় করি **ঃ**

x	0	$\frac{\pi}{18}$	$2.\frac{\pi}{18}$	$3.\frac{\pi}{18}$	$4.\frac{\pi}{18}$	$\frac{\pi}{4}$	$5.\frac{\pi}{18}$
y = sinx	0	$10 \\ 0.17$	0.34	0.5	0.64	0.71	0.77
y = cosx	1	0.98	0.94	0.87	0.77	0.71	0.64
x	$\frac{\pi}{6}$	$\frac{\pi}{7}$	$\frac{\pi}{8}$	$9.\frac{\pi}{2}$,		
	18	18	18	18			
y = sinx	0.87	0.94	0.98	1			
y = cosx	0.5	0.34	0.17	0]		

একটি ছক কাগজে স্থানাজ্ঞের অক্ষরেখা X'OX ও YOY' আঁকি।

স্কেল নির্ধারণ ঃ x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^c}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 10 বাহু =1

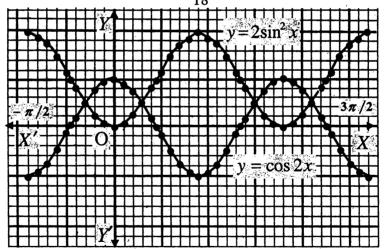


এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত কিন্দুগুলো ছক কাগজে স্থাপন করে y = sinx ও y = cosx ফাংশনদ্বয়ের লেখচিত্র দুইটি অঞ্জন করি। লেখচিত্র থেকে দেখা যাচ্ছে যে প্রদন্ত সীমার মধ্যে ছেদ কিন্দুর ভুজ

3. (b) $2 \sin^2 x$	হচ্ছে $\frac{\pi}{4}$. সূতরাং নির্ধেয় সমাধান, $x = \frac{\pi}{4}$. 3. (b) $2 \sin^2 x = \cos 2x$, $-\frac{\pi}{2} \le x \le \frac{3\pi}{2}$ [য়.'ov,'o৮,'o১] সমাধান ঃ মনে করি, $y = 2\sin^2 x = \cos 2x$ $y = 2\sin^2 x$ এবং $y = \cos 2x$										
নিচের তালিকায় $\mathbf{x} \in [-rac{\pi}{2}, rac{3\pi}{2}]$ এর জন্য $\mathbf{y} = 2 \sin^2 \mathbf{x}$ ও $\mathbf{y} = \cos 2\mathbf{x}$ এর প্রতিরূপী মান নির্ণয় করিঃ											
X	0	$\pm \frac{\pi}{18}$	$\pm 2.\frac{\pi}{18}$	$\pm 3.\frac{\pi}{18}$	$\pm 4.\frac{\pi}{18}$	$\pm \frac{\pi}{4}$	$\pm 5.\frac{\pi}{18}$				
$y = 2sin^2x$	0	0.06.	0·23	0.5	0.83	1	1.17				
y = cos2x	1	0.94	0.77	0.5	0.17	0	-0.17				
x	$\pm 6.\frac{\pi}{18}$	$\pm 7.\frac{\pi}{18}$	$\pm 8.\frac{\pi}{18}$	$\pm 9.\frac{\pi}{18}$	$15.\frac{\pi}{18}$	$21.\frac{\pi}{18}$	$27.\frac{\pi}{18}$				
$y = 2sin^2x$	1.5	1.77	1.94	2	0.5	0.5	2				
$y = \cos 2x$	-0.5	-0.77	0.94	-1	0.5	0.5	1				

একটি ছক কাগজে স্থানাজ্ঞের অক্ষরেখা X'OX ও YOY' আঁকি।

স্কেন্স নির্ধারণ ঃ x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^2}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 5 বাহু =1



াখন নির্ধারিত স্কেন্স অনুযায়ী তালিকাভুক্ত কিন্দুগুলো ছক কাগজে স্থাপন করে $y = 2\sin^2 x$ ও $y = \cos 2x$ उत्थनদহয়ের লেখচিত্র দুইটি অঞ্জন করি। লেখচিত্র থেকে দেখা যাচ্ছে যে প্রদন্ত সীমার মধ্যে ছেদ কিন্দুর হচ্ছে $-\frac{\pi}{6}$, $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$. সুতরাং, নির্ণেয় সমাধান, $x = -\frac{\pi}{6}$, $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$

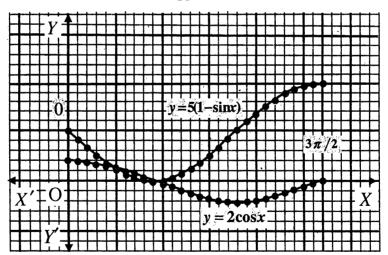
3. (c) 5 sin x + 2 cos x = 5, 0 ≤ x ≤ 3π/2 [য.'08; চ.'১০; রা.,ব.'১8]
 স্মাধান ঃ দেওয়া আছে , 5 sin x + 2 cos x = 5 ⇒ 2cosx = 5(1 - sinx)

২২০	উচ্চতর গণিত <u>্র প্রথম</u> পত্র সমাধান
	www.boighar.com
	$y = 5(1 - \sin x) = 2\cos x$ $\therefore y = 5(1 - \sin x)$ वत्र $y = 2\cos x$
সমাধান ঃ নি	ফের তালিকায় x ∈[0, $rac{3\pi}{2}$] এর জন্য , y = 2sin²x ও y = cos2x এর প্রতির্পী মান নির্ণয় করিঃ

·····							
x	0	π	$2.\frac{\pi}{18}$	$3.\frac{\pi}{2}$	$4,\frac{\pi}{4}$	$5.\frac{\pi}{5}$	$6.\frac{\pi}{18}$
		18	18	18	18	18	18-
$y = 5(1 - \sin x)$	5	4.13	3.29	$2 \cdot 5$	1.79	1.17	0.67
$y = 2\cos x$	2	1.97	1.88	1.73	1.53	1.29	1
x	7. $\frac{\pi}{10}$	<u>8.</u> π	$9.\frac{\pi}{2}$	$11.\frac{\pi}{1}$	$15.\frac{\pi}{1}$	$19.\frac{\pi}{1}$	$20.\frac{\pi}{2}$
		18	18	18	18	18	18
$y = 5(1 - \sin x)$	0.3	0.08	0	0.3	2.5	5.89	6.7
$y = 2\cos x$	·68	0.35	0	0.68	-1.73	-1.97	-1.88
x	$21.\frac{\pi}{2}$	$22.\frac{\pi}{2}$	$23.\frac{\pi}{2}$	$24.\frac{\pi}{}$	$25.\frac{\pi}{2}$	$26.\frac{\pi}{2}$	$27.\frac{\pi}{2}$
	18	18	18	18	18	18	18
$y = 5(1 - \sin x)$	7.5	8.2	8.83	9.93	9.7	9.9	10
$y = 2\cos x$	73	1 · 53	-1.29	-1	-0.68	-0.35	0

একটি ছক কাগজে স্থানাজ্ঞের অক্ষরেখা X'OX ও YOY' আঁকি।

স্কেন্স নির্ধারণ ঃ x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=rac{\pi'}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 1 বাহু =1

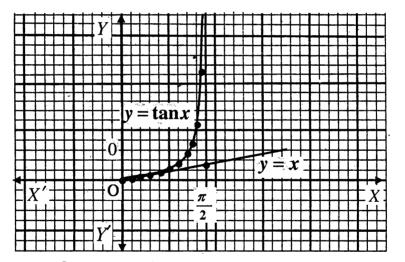


এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত কিন্দুগুলো ছক কাগজে স্থাপন করে $y = 5(1 - \sin x)$ ও $y = 2\cos x$. ফাংশনদ্বয়ের লেখচিত্র দুইটি অঞ্জন করি। লেখচিত্র থেকে দেখা যাচ্ছে যে প্রদন্ত সীমার মধ্যে ছেদ কিন্দুর ভূজসমূহ হচ্ছে $46.4^{\circ} = \frac{232}{9}\pi$, $90^{\circ} = \frac{\pi}{2}$. সুতরাং, নির্ণেয় সমাধান, $x = 46.4^{\circ} = \frac{232}{9}\pi$, $90^{\circ} = \frac{\pi}{2}$ 3. (d) $x - \tan x = 0$, $0 \le x \le \frac{\pi}{2}$ [রা.'o8,'o3; ব.'o8,'35,'50.'o€,'50,'54; কু. 'o9,'50; দি.'50,'54; চ.'55; ए.'55; য.'55; সমাধান ঃ দেওয়া আছে , $x - \tan x = 0 \Rightarrow x = \tan x$ মনে করি $y = x = \tan x$ $\therefore y = x$ এবং $y = \tan x$ নিচের তালিকায় $x \in [0, \frac{\pi}{2}]$ এর জন্য y = x ও $y = \tan x$ এর প্রতিরূপী মান নির্ণয় করি ঃ

х	0	π	$_{2}\pi$	π			
		18	$3.\frac{11}{18}$	$\overline{2}$			
y = x	0	0.18	0.52	1.57			
х	0	π	π	π	π	$\int_{\Sigma} \pi$	π
		18	$2.\frac{1}{18}$	$3.\overline{18}$	$4.\frac{1}{18}$	18	0. 18
y = tanx	0	0.18	0.36	0.58	0.84	1 · 19	1.73
x	$\frac{\pi}{2}$	$7.5 \times \frac{\pi}{18}$	π	$8.5 \times \frac{\pi}{10}$	$9,\frac{\pi}{2}$		
	$\frac{1}{18}$	18	8. 18	18	$9.{18}$		
y = tanx	. 2.75	3.73	5.67	11.43	অসংজ্ঞায়িত		

একটি ছক কাগজে স্থানাজ্ঞের অক্ষরেখা X'OX ও YOY' আঁকি।

স্কেন্স নির্ধারণ ঃ x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=rac{\pi^c}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 1 বাহু =1



এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত কিন্দুগুলো ছক কাগজে স্থাপন করে y = x ও $y = \tan x$ ফাংশনদ্বয়ের লেখচিত্র দুইটি অঞ্জন করি। লেখচিত্র থেকে দেখা যাচ্ছে যে প্রদন্ত সীমার মধ্যে ছেদ কিন্দুর হুজসমূহ হচ্ছে $0, \frac{\pi}{18}$. সুতরাং নির্ণেয় সমাধান $x = 0, \frac{\pi}{18}$

 3 (e) 2 x = tan x ,
 -π/2 ≤ x ≤ π/2
 [▷.'o২]

 সমাধান ঃ মনে করি y = 2x = tanx ∴ y = 2x এবং y = tanx
 ∴ y = 2x এবং y = tanx

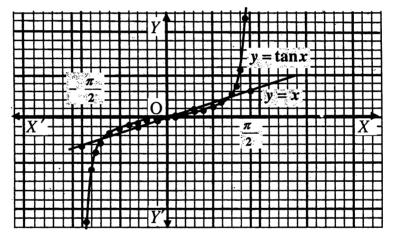
 Դৈচের তালিকায় x ∈ [-π/2 , π/2] এর জন্য y = 2x ও y = tanx এর প্রতিরূপী মান নির্ণয় করি ঃ

উচ্চতর গণিত : প্রথম পত্র সমাধান বইঘর.কম

			$\pm 3.\frac{\pi}{18}$ ± 1.05	$\begin{array}{c} \pm \frac{\pi}{2} \\ \pm 3.14 \end{array}$			
x	0	$\pm \frac{\pi}{18}$	$\pm 2.\frac{\pi}{18}$	$\pm 3.\frac{\pi}{18}$	$\pm 4.\frac{\pi}{18}$	$\pm 5.\frac{\pi}{18}$	$\pm 6.\frac{\pi}{18}$
y = tanx	0	± 0.18	± 0.36	1 1 50	1 + 0 01	$\pm 1 \cdot 19$	± 1.73
x	$\pm 7\frac{\pi}{18}$	$\pm 7.5 \times \frac{\pi}{18}$	$\pm 8.\frac{\pi}{18}$	$\frac{\pm}{8.5\times\frac{\pi}{18}}$	$\pm 9.\frac{\pi}{18}$	×.	
y = tanx	± 2.75	± 3.73	±5.67	±11.43	অসংজ্ঞায়িত]	

একটি ছক কাগজে স্থানাজ্ঞের অক্ষরেখা X'OX ও YOY' আঁকি।

স্কেন্স নির্ধারণ ঃ x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=rac{\pi^c}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 1 বাহু =1



এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত কিন্দুগুলো ছক কাগজে স্থাপন করে y = 2x ও $y = \tan x$ ফাংশনদ্বয়ের লেখচিত্র দুইটি অঞ্জন করি। লেখচিত্র থেকে দেখা যাচ্ছে যে প্রদন্ত সীমার মধ্যে ছেদ কিন্দুর ভূজসমূহ হচ্ছে $0, -66^{\circ} = -\frac{11\pi}{30}, 66^{\circ} = \frac{11\pi}{30}$. সুতরাং, নির্ণেয় সমাধান, $x = 0, -\frac{11\pi}{30}, \frac{11\pi}{30}$ 3. (f) $\cot x - \tan x = 2$, $0 \le x \le \pi$ [য. 'oc ; চ.'o\s; সি.'o\o,'S\s; ঢা.'o\s; রা.'So,'S\s; কু.'S\s সমাধান ঃ দেওয়া আছে , $\cot x - \tan x = 2 \Rightarrow \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} = 2 \Rightarrow \cos^2 x - \sin^2 x = 2 \sin x \cos x$ $\Rightarrow \cos 2x = \sin 2x$ মনে করি , $y = \sin 2x = \cos 2x$ $\therefore y = \sin 2x$, $y = \cos 2x$

নিচের তালিকায় x ∈[0, π] এর জন্য y = sin2x ও y = cos2x এর প্রতিরূপী মান নির্ণয় করি ঃ

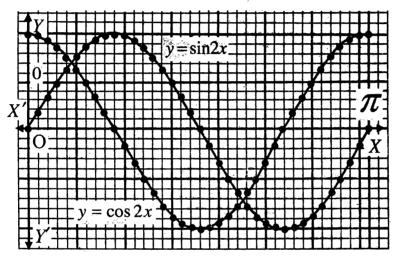
x 0
$$\frac{\pi}{36}$$
 2. $\frac{\pi}{36}$ 3. $\frac{\pi}{36}$ 4. $\frac{\pi}{36}$ 5. $\frac{\pi}{36}$ 6. $\frac{\pi}{36}$

প্রশাহার VI B

y = sin2x	0	0.17	0.34	0.5	0.64	0.77	0.87
$y = \cos 2x$	1	0.98	0.94	0.87	0.77	0.64	0.5
x	7. $\frac{\pi}{36}$	8. $\frac{\pi}{36}$	9. $\frac{\pi}{36}$	10. $\frac{\pi}{36}$	24. $\frac{\pi}{36}$	32. $\frac{\pi}{36}$	36. $\frac{\pi}{36}$
y = sin2x	0.94	0.98	1	0.98	- 0.87	- 0.64	0
$y = \cos 2x$	0.34	0.17	0	-0.17	- 0.5	0.77	1

একটি ছক কাগজে স্থানাংকের অক্ষরেখা X'OX ও YOY' আঁকি।

স্কেন্স নির্ধারণ ঃ x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু = $\frac{\pi^c}{36}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 10 বাহু = 1



এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত বিন্দুগুলো ছক কাগজে স্থাপন করে $y = \sin 2x$ ও $y = \cos 2x$ ফাংশনদ্বয়ের লেখচিত্র দুইটি অঞ্জন করি। লেখচিত্র থেকে দেখা যাচ্ছে যে প্রদন্ত সীমার মধ্যে ছেদ বিন্দুর ভূজসমূহ হচ্ছে $\frac{\pi}{8}, \frac{5\pi}{8}$. সুতরাং নির্দোয় সমাধান $x = \frac{\pi}{8}, \frac{5\pi}{8}$.

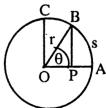
4. (a) প্রমাণ : OA ⊥ OC টানি ।

<u>বৃত্তকলা AOB এর জোত্রফল</u> বৃত্তকলা AOC এর জোত্রফল = <u>∠AOB এর পরিমাপ</u> ∠AOC এর পরিমাপ

$$\Rightarrow$$
 বৃত্তকলা AOB এর ক্ষেত্রফল = $\frac{\theta}{\pi/2} \times$ বৃত্তকলা AOC এর ক্ষেত্রফল

$$= \frac{2\theta}{\pi} \times \frac{1}{4} \times \overline{3}$$
 থের ক্ষেত্রফল = $\frac{\theta}{2\pi} \times \pi r^2 = \frac{r^2\theta}{2}$
(b) সমাধান: OBP ত্রিভূজের ক্ষেত্রে, $\sin \theta = \frac{BP}{OB} = \frac{BP}{r}$ ও $\cos \theta = \frac{OP}{OB} = \frac{OP}{r}$

উত্তরের অবশিষ্ট অংশ প্রশ্নমালা VI B এর 3(a) দ্রষ্টব্য ।



(c) সমাধান: দেওয়া আছে,
$$\theta = 60^0 = \frac{\pi}{3}$$
, $r = 5$ সে.মি., BP = 4 সে.মি.
 $OP = \sqrt{OB^2 - BP^2} = \sqrt{5^2 - 4^2} = \sqrt{25 - 16} = \sqrt{9} = 3$ সে.মি.
বৃত্তাংশ s এর দৈর্ঘ্য = $r\theta = 5 \times \frac{\pi}{3} = \frac{5\pi}{3}$ সে.মি.
এবং ABP ক্ষেত্রের ক্ষেত্রফল = বৃত্তকলা AOB এর ক্ষেত্রফল – ত্রিভূজ OBP এর ক্ষেত্রফল
 $= \frac{r^2\theta}{2} - \frac{1}{2}(OP \times BP) = \frac{1}{2} \times 5^2 \times \frac{\pi}{3} - \frac{1}{2}(3 \times 4)$
 $= \frac{25\pi}{6} - 6 = \frac{25\pi - 36}{6}$ বর্গ সে.মি.

- 5. চিত্রে ABC সমকোণী ত্রিভুজে ABC একটি অর্ধ্ববৃত্ত ও ADC একটি বৃত্তাংশ।
- (a) সমাধান: ADC একটি বৃত্তাংশ বলে AB = BC = 5 মিটার।

বৃত্তাংশ ADC এর দৈর্ঘ্য =AB ×
$$\angle ABC = 5 \times \frac{\pi}{2} = \frac{5\pi}{2}$$
 মিটার ।

(b) প্রশ্নমালা VI B এর উদাহরণ-1 দ্রষ্টব্য।

(c) $AC = \sqrt{4^2 + 4^2} = 4\sqrt{2}$ মিটার । সুতরাং, ABC একটি অর্ধ্ববৃত্তের ব্যাসার্ধ $= \frac{AC}{2} = 2\sqrt{2}$ মিটার ।

ABCD সম্পূর্ণ ক্ষেত্রের ক্ষেত্রফল = ABC অর্ধ্ববৃত্তের ক্ষেত্রফল

+ (ABC বৃত্তকলার ক্ষেত্রফল – ABC ত্রিভুজের ক্ষেত্রফল)

5m

$$= \frac{1}{2}\pi \times (2\sqrt{2})^2 + (\frac{1}{2} \times 5^2 \times \frac{\pi}{2} - \frac{1}{2} \times 5 \times 5)$$
$$= 4\pi + (\frac{25\pi}{4} - \frac{25}{2}) = \frac{16\pi + 25\pi - 50}{4} = \frac{41\pi - 50}{4}$$

૨૨8

3. $f(x) = 1 + \sqrt{\sin^2 x + 1}$ ফাংশনের সংবোচ্চ মান ভর্তি পরীক্ষার MCO ঃ হবে-[CU 07-08] 1. sin(4x + 1) এর পর্যায় কত ? Sol".: সর্বোচ্চ মান = $1 + \sqrt{(\pm 1)^2 + 1} = 1 + \sqrt{2}$ [RU 06-07;BUET 00-01] $Sol^n: 4x = 2\pi \implies x = \frac{\pi}{2}$: Atilian = $\frac{\pi}{2}$ 4. $f(x) = 2\cos|x|$ এর সীমা - [RU 03-04] $Sol^{n} :: \cos |x|$ এর বিস্তার = [-1,1] नियम $\sin x, \cos x, \sec x, \cos ecx$ अन्न भयांस = 2π धवर tan x.cot x धन्न পर्याय = π . $\therefore -2 \leq f(x) \leq 2$ 2. $\sqrt{3}\sin\theta + \cos\theta$ এর সর্বোচ্চ মান- [SU 08-09] $5 \cdot \cos^2 x$ (x $\in \mathbb{R}$) এর বৃহত্তম এবং ক্ষুদ্রতম মান Sol^{n} : সর্বোচ্চ মান = $\sqrt{1+3} = 2$ [CU 03-04] হচ্ছে– वि.मु. a cos x + b sin x Sol".: বৃহত্তম এবং ক্ষুদ্রতম মান যথাক্রমে 1 ও 0. $=\sqrt{a^2+b^2}\sin(x+\tan^{-1}\frac{b}{a})$ 6. sin 2x - cos x এর স্বনিয়ু মান - [IU 07-08] Sol^n : $x = -45^0$ এর জন্য প্রদন্ত রাশির সর্বনিমু মান $a\cos\theta + b\sin\theta$ সংবাচ্চ হবে যদি $\sin(x + \tan^{-1}\frac{b}{c})$ পাওয়া যায় $-\sqrt{3}$. সবোচ্চ হয় অর্ধাৎ $\sin(x + \tan^{-1}\frac{b}{a}) = 1$ হয়। $\therefore x = 90^{\circ} - \tan^{-1} \frac{b}{c}$ এর জন্য $a \cos x + b \sin x$ এর সর্বোচ্চ মান = $\sqrt{a^2 + b^2}$

সংযুক্ত ও যৌগিক কোণের ত্রিকোণমিতিক অনুপান্ত	প্রশ্নমালা VII A
1(a) sin (-1230°) - cos {(2n + 1) π + $\frac{\pi}{3}$ }	$=\sin^2\frac{\pi}{12} + \sin^2\frac{3\pi}{12} + \sin^2\frac{5\pi}{12} + \sin^2(\frac{\pi}{2} + \frac{\pi}{12})$
$= -\sin 1230^{\circ} - \cos \left\{ 2n\pi + (\pi + \frac{\pi}{3}) \right\}$	$+\sin^{2}(\frac{\pi}{2}+\frac{3\pi}{12})+\sin^{2}(\frac{\pi}{2}+\frac{5\pi}{12})$
$= -\sin(3.360^\circ + 150^\circ) - \cos(\pi + \frac{\pi}{3})$	$=\sin^{2}\frac{\pi}{12} + \sin^{2}\frac{3\pi}{12} + \sin^{2}\frac{5\pi}{12} + \cos^{2}\frac{\pi}{12}$
$=-\sin 150^\circ - (-\cos \frac{\pi}{3})$	$+\cos^2\frac{3\pi}{12}+\cos^2\frac{5\pi}{12}$
$=-\sin(180^{\circ}-30^{\circ})+\cos\frac{\pi}{3}$	$= (\sin^2 \frac{\pi}{12} + \cos^2 \frac{\pi}{12}) + (\sin^2 \frac{3\pi}{12} + \cos^2 \frac{3\pi}{12})$
$= -\sin 30^\circ + \cos \frac{\pi}{3} = -\frac{1}{2} + \frac{1}{2} = 0 \text{ (Ans.)}$	+ $(\sin^2 \frac{5\pi}{12} + \cos^2 \frac{5\pi}{12})$
1(b) sin 780° cos 390°+	= 1 + 1 + 1 = 3 (Ans.)
sin (- 330°) cos(- 300°) [5.'03]	2.(c) $\sin^2 \frac{17\pi}{18} + \sin^2 \frac{5\pi}{8} + \cos^2 \frac{37\pi}{18} + \cos^2 \frac{3\pi}{8}$
$= \sin 780^\circ \cos 390^\circ - \sin 330^\circ \cos 300^\circ$	
$= \sin (2.360^\circ + 60^\circ) \cos (360^\circ + 30^\circ) -$	$=\sin^{2}(\pi - \frac{\pi}{18}) + \sin^{2}(\pi - \frac{3\pi}{8}) +$
$\sin(360^\circ - 30^\circ)\cos(360^\circ - 60^\circ)$	$\cos^{2}(2\pi + \frac{\pi}{18}) + \cos^{2}\frac{3\pi}{8}$
$= \sin 60^{\circ} \cos 30^{\circ} - (-\sin 30^{\circ}) \cos 60^{\circ}$	10 0
$= \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4} + \frac{1}{4} = \frac{4}{4} = 1 \text{ (Ans.)}$	$= \sin^2 \frac{\pi}{18} + \sin^2 \frac{3\pi}{8} + \cos^2 \frac{\pi}{18} + \cos^2 \frac{3\pi}{8}$
2. মান নির্ণয় কর ঃ	$= (\sin^2 \frac{\pi}{18} + \cos^2 \frac{\pi}{18}) + (\sin^2 \frac{3\pi}{8} + \cos^2 \frac{3\pi}{8})$
(a) $\sin^2 \frac{\pi}{7} + \sin^2 \frac{5\pi}{14} + \sin^2 \frac{8\pi}{7} + \sin^2 \frac{9\pi}{14}$	= 1 + 1 = 2 (Ans.)
(আ) গানি 7 14 7 14 [ঢা. '০২; সি. '০৯; মা.বো.'০৯; ব.'১০; য.'১১]	3.(a) $\sec^2 \frac{14\pi}{17} - \sec^2 \frac{39\pi}{17} + \cot^2 \frac{41\pi}{34} - \cot^2 \frac{23\pi}{34}$
$= \sin^2 \frac{\pi}{7} + \sin^2 \left(\frac{\pi}{2} - \frac{\pi}{7}\right) + \sin^2 \left(\pi + \frac{\pi}{7}\right) +$	$= \sec^{2}(\pi - \frac{3\pi}{17}) - \sec^{2}(2\pi + \frac{5\pi}{17}) +$
$\sin^2(\frac{\pi}{2} + \frac{\pi}{7})$	$\cot^{2}(\pi + \frac{7\pi}{34}) - \cot^{2}(\pi - \frac{11\pi}{34})$
$= \sin^2 \frac{\pi}{7} + \cos^2 \frac{\pi}{7} + \sin^2 \frac{\pi}{7} + \cos^2 \frac{\pi}{7}$	$= \sec^{2} \frac{3\pi}{17} - \sec^{2} \frac{5\pi}{17} + \cot^{2} \frac{7\pi}{34} - \cot^{2} \frac{11\pi}{34}$
= $2\left(\sin^2\frac{\pi}{7} + \cos^2\frac{\pi}{7}\right) = 2.1 = 2$ (Ans.)	$= \sec^{2} \frac{3\pi}{17} - \sec^{2} \frac{5\pi}{17} + \cot^{2} (\frac{\pi}{2} - \frac{5\pi}{17}) -$
2(b) $\sin^2 \frac{\pi}{12} + \sin^2 \frac{3\pi}{12} + \sin^2 \frac{5\pi}{12} + \sin^2 \frac{7\pi}{12} + \sin^2 \frac{\pi}{12}$	$\cot^{2}(\frac{\pi}{2}-\frac{3\pi}{17})$
$\sin^2 \frac{9\pi}{12} + \sin^2 \frac{11\pi}{12}$	$= \sec^{2} \frac{3\pi}{17} - \sec^{2} \frac{5\pi}{17} + \tan^{2} \frac{5\pi}{17} - \tan^{2} \frac{3\pi}{17}$
	$= (\sec^2 \frac{3\pi}{17} - \tan^2 \frac{3\pi}{17}) - (\sec^2 \frac{5\pi}{17} - \tan^2 \frac{5\pi}{17})$

$$= 1 - 1 = 0 \text{ (Ans.)}$$

$$3(b) \tan 15^{\circ} + \tan 45^{\circ} + \tan 75^{\circ} + \dots + \tan 165^{\circ}$$

$$= \tan 15^{\circ} + \tan 45^{\circ} + \tan 75^{\circ} + \tan 105^{\circ} + \tan 135^{\circ} + \tan 165^{\circ}$$

$$= \tan 15^{\circ} + \tan 45^{\circ} + \tan (90^{\circ} - 15^{\circ}) + \tan (90^{\circ} + 15^{\circ}) + \tan (180^{-} 45^{\circ}) + \tan (180^{\circ} - 15^{\circ}) + \tan (180^{\circ} - 15^{\circ}) = \tan 15^{\circ} + \tan 45^{\circ} + \cot 15^{\circ} - \cot 15^{\circ} - \tan 45^{\circ} - \tan 15^{\circ} = 0 \text{ (Ans.)}$$

$$3(c) \cos^{2} 15^{\circ} + \cos^{2} 25^{\circ} + \cos^{2} 35^{\circ} + \cos^{2} 45^{\circ} + \cos^{2} 55^{\circ} + \cos^{2} 25^{\circ} + \cos^{2} 35^{\circ} + \cos^{2} 45^{\circ} + \cos^{2} 55^{\circ} + \cos^{2} 25^{\circ} + \cos^{2} 35^{\circ} + \cos^{2} 45^{\circ} + \cos^{2} 55^{\circ} + \cos^{2} 25^{\circ} + \cos^{2} 35^{\circ} + (\frac{1}{\sqrt{2}})^{2} + \cos^{2} (90^{\circ} - 35^{\circ}) + \cos^{2} (90^{\circ} - 35^{\circ}) + \cos^{2} (90^{\circ} - 35^{\circ}) + \cos^{2} (90^{\circ} - 15^{\circ})$$

$$= \cos^{2} 15^{\circ} + \cos^{2} 25^{\circ} + \cos^{2} 35^{\circ} + \frac{1}{2} + \sin^{2} 35^{\circ} + \sin^{2} 25^{\circ} + \cos^{2} 25^{\circ} + \cos^{2} 25^{\circ} + \sin^{2} 25^{\circ} + \cos^{2} 25^{\circ} + \cos^{2} 25^{\circ} + (\sin^{2} 35^{\circ} + \cos^{2} 35^{\circ}) + \frac{1}{2}$$

$$= 1 + 1 + 1 + \frac{1}{2} = 3 + \frac{1}{2} = \frac{7}{2} \text{ (Ans.)}$$

$$4a) = \tan 4 \text{ and } a \cos 4 \pi \frac{\pi}{2} < \Theta < \pi$$

$$\cos \cos 6 = \frac{13}{5}, \cos \theta = -\sqrt{1 - \sin^{2} \theta}$$

$$= -\sqrt{1 - \frac{25}{169}} = -\sqrt{\frac{144}{169}} = -\frac{12}{13}$$

$$\sec \theta = -\frac{13}{12} = \sqrt{\pi}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{5}{13} \times (-\frac{13}{12}) = -\frac{5}{12}$$

$$\Rightarrow \cot\theta = -\frac{12}{5}$$

$$deter, \quad \frac{\tan\theta + \sec(-\theta)}{\cot\theta + \csc ec(-\theta)} = \frac{\tan\theta + \sec\theta}{\cot\theta - \csc ec\theta}$$

$$= \frac{-5}{12} + \frac{-13}{12} = \frac{-5 - 13}{12}$$

$$= \frac{-12}{-\frac{12}{5}} - \frac{13}{5} = \frac{-5 - 13}{12}$$

$$= (-\frac{18}{12}) \times (-\frac{5}{25}) = \frac{3}{2} \times \frac{1}{5} = \frac{3}{10}$$

$$\therefore \quad \frac{\tan\theta + \sec(-\theta)}{\cot\theta + \csc ec(-\theta)} = \frac{3}{10}$$

$$4.(b) \ cace ec(-\theta) = \frac{3}{4} \Rightarrow \tan\theta = \frac{4}{3} \quad determ \cos\theta$$

$$ec(-\theta) = \frac{3}{4} \Rightarrow \tan\theta = \frac{4}{3} \quad determ \cos\theta$$

$$ec(-\theta) = -\sqrt{1 + \tan^2 \theta} = -\sqrt{1 + \frac{16}{9}}$$

$$= -\sqrt{\frac{25}{9}} = -\frac{5}{3}$$

$$\therefore \quad \cos\theta = -\frac{3}{5} \quad determ + \frac{16}{3} = -\sqrt{1 + \frac{16}{9}}$$

$$= -\sqrt{\frac{25}{9}} = -\frac{5}{4}$$

$$determ, \quad \frac{\cot(-\theta) + \csc ec\theta}{\cos\theta + \sin(-\theta)} = \frac{-\cot\theta + \csc ec\theta}{\cos\theta - \sin\theta}$$

$$= -\frac{\frac{3}{4} + (-\frac{5}{4})}{-\frac{3}{5} - \frac{-4}{5}} = -\frac{3 - 5}{4} \times \frac{5}{-3 + 4}$$

$$= -\frac{40}{4} = -10 \text{ (Ans.)}$$

5. Finite if the set of th

(a) $\sin x + \sin(\pi + x) + \sin(2\pi + x) + \cdots + (n + 1)$ তম পদ পর্যন্দত = $\sin x - \sin x + \sin x - \sin x + \cdots + (n + 1)$ তম পদ পর্যন্দত n = 1 হলে , (1+1) বা ২য় পদ পর্যন্যত যোগফল $= \sin x - \sin x = 0$ n = 3 হলে, (3 + 1) বা ৪র্থ পদ পর্যন্যত যোগফল = $\sin x - \sin x + \sin x - \sin x = 0$ তদুপ, n যেকোন বিজোড় সংখ্যা হলে নির্দেয় যোগফল = 0 আবার, n = 2 হলে (2 + 1) বা ৩য় পদ পর্যনত যোগফল $= \sin x - \sin x + \sin x = \sin x$ n = 4 হলে, (4 + 1) বা ৫ম পদ পর্যন্দত যোগফল $= \sin x - \sin x + \sin x - \sin x + \sin x$ $= \sin x$ তদপ.nযেকোন জোড সংখ্যা হলে নির্ণেয় যোগফল = sinx **5(b)** $\tan \theta + \tan(\pi + \theta) + \tan(2\pi + \theta) +$ $tan(n\pi + \Theta)$ + $= \tan \Theta + \tan \Theta + \tan \Theta + \cdots n$ on π π $= (n + 1) \tan \Theta$ (Ans.) 6(a) দেওয়া আছে, $\theta = \frac{\pi}{20} \Rightarrow \frac{\pi}{2} = 100$ L.H.S.= $\cot \Theta \cot 3\Theta \cot 5\Theta \cot 7\Theta$ $\cot 9\theta \cot 11\theta \cot 13\theta \cot 15\theta \cot 17\theta$ cot19∂ $= \cot\theta \cot3\theta \cot5\theta \cot7\theta \cot9\theta$ $\cot(10\theta + \theta) \cot(10\theta + 3\theta)$ $\cot(10\theta + 5\theta) \cot(10\theta + 7\theta)$ $\cot(10\theta + 9\theta)$ $= \cot\theta \cot3\theta \cot5\theta \cot7\theta \cot9\theta$ $\cot(\frac{\pi}{2}+\theta)\cot(\frac{\pi}{2}+3\theta)\cot(\frac{\pi}{2}+5\theta)$ $\cot\left(\frac{\pi}{2}+7\Theta\right)\cot\left(\frac{\pi}{2}+9\Theta\right)$ $=\frac{1}{\tan\theta\tan 3\theta\tan 5\theta\tan 7\theta\tan 9\theta}(-\tan\theta)$ $(-\tan 3\theta)$ $(-\tan 5\theta)$ $(-\tan 7\theta)$ $(-\tan 9\theta)$ = -1 = R.H.S.6. (b) দেওয়া আছে, $\theta = \frac{\pi}{28} \Rightarrow \frac{\pi}{2} = 14\theta$ L.H.S = $\tan\Theta$ $\tan 3\Theta$ $\tan 5\Theta$ $\tan 7\Theta$ $\tan 9\Theta$ $\tan 11\Theta$ $\tan 13\Theta$ $= \tan \Theta \tan 3\Theta \tan 5\Theta \tan 7\Theta$

 $\tan(14\Theta - 5\Theta) \tan(14\Theta - 3\Theta)$ $tan(14\Theta - \Theta)$ $=\frac{1}{\tan \theta \tan 3\theta \tan 5\theta} \tan \frac{\pi}{4}$ $\tan(\frac{\pi}{2}-5\Theta)$ $\tan(\frac{\pi}{2}-3\Theta)$ $\tan(\frac{\pi}{2}-\Theta)$ $=\frac{1}{\tan \theta \tan 3\theta \tan 5\theta}$.1.tan5 Θ . tan3 Θ . tan Θ = 1 = R.H.S.**6(c)** $\tan\Theta$. $\tan 2\Theta$. $\tan 3\Theta$. $\tan (2n-1)\Theta$ এখানে , পদসংখ্যা = 2n-1 , যা বিজ্ঞোড় সংখ্যা। <u>2n-1+1</u> অর্ধাৎ n তম পদ মধ্যপদ। :. भराषात्र = tan n Θ = tan $\frac{\pi}{4}$ = 1 [:: 4n Θ = π] $\tan \Theta$. $\tan (2n-1)\Theta = \tan \Theta$. $\tan (2n\Theta - \Theta)$ = tan Θ . tan $(\frac{\pi}{2} - \theta)$ [\because 4n Θ = π] $= \tan \Theta \cdot \cot \Theta = 1$ $\tan 2\Theta$. $\tan (2n - 2)\Theta = \tan 2\Theta$. $\tan (2n\Theta - 2\Theta)$ $= \tan 2\Theta \cdot \tan \left(\frac{\pi}{2} - 2\theta\right)$ $= \tan 2\theta$. $\cot 2\theta = 1$ অনুরপভাবে, $\tan 3\Theta$. $\tan (2n-3)\Theta = 1$ $\tan 4\Theta$. $\tan (2n - 4)\Theta = 1, \cdots$ ইত্যাদি। অর্ধাৎ,মধ্যপদ হতে সমদূরবর্তী পদ দুইটির গুণফল = 1 \therefore tan Θ .tan 2Θ .tan 3Θ tan $(2n-1)\Theta = 1$ অতিরিক্ত প্রশ্ন (সমাধানসহ) 1. মান নির্ণায় কর ৪ (a) $\tan(-1590^\circ) = -\tan(1590^\circ)$ $= -\tan(4.360^\circ + 150^\circ) = -\tan(150^\circ)$ $= -\tan(180^\circ - 30^\circ) = +\tan 30^\circ = \frac{1}{\sqrt{3}}$ (b) $\cos 420^{\circ} \sin (-300^{\circ}) - \sin 870^{\circ} \cos 570^{\circ}$ $= \cos 420^{\circ} (-\sin 300^{\circ}) - \sin 870^{\circ} \cos 570^{\circ}$ = - cos (360^{\circ} + 60^{\circ}) sin(360^{\circ} - 60^{\circ})

প্রশ্নমালা-VII A

 $-\sin(2.360^\circ + 150^\circ)\cos(2.360^\circ - 150^\circ)$ $= -\cos 60^{\circ}(-\sin 60^{\circ}) - \sin 150^{\circ}\cos 150^{\circ}$ $= \cos 60^{\circ} \sin 60^{\circ} - \sin (180^{\circ} - 30^{\circ})$ $\cos(180^{\circ}-30^{\circ})$ $= \cos 60^{\circ} \sin 60^{\circ} - \sin 30^{\circ} (-\cos 30^{\circ})$ $=\frac{1}{2}\cdot\frac{\sqrt{3}}{2}+\frac{1}{2}\cdot\frac{\sqrt{3}}{2}=2\cdot\frac{1}{2}\cdot\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}$ (Ans.) 2. $\cos^2 \frac{\pi}{24} + \cos^2 \frac{19\pi}{24} + \cos^2 \frac{31\pi}{24} + \cos^2 \frac{37\pi}{24}$ $=\cos^{2}\frac{\pi}{24}+\cos^{2}\frac{19\pi}{24}+\cos^{2}(\frac{\pi}{2}+\frac{19\pi}{24})$ $+\cos^{2}(3.\frac{\pi}{2}+\frac{\pi}{24})$ $=\cos^{2}\frac{\pi}{24}+\cos^{2}\frac{19\pi}{24}+\sin^{2}\frac{\pi}{24}+\sin^{2}\frac{19\pi}{24}$ $=(\sin^2\frac{\pi}{24}+\cos^2\frac{\pi}{24})+(\sin^2\frac{19\pi}{24}+\cos^2\frac{19\pi}{24})$ = 1 + 1 = 2 (Ans.) $3(a)\cos^2 25^\circ + \cos^2 35^\circ + \cos^2 45^\circ +$ $\cos^2 55^\circ + \cos^2 65^\circ$ $= \cos^{2}25^{\circ} + \cos^{2}35^{\circ} + \left(\frac{1}{\sqrt{2}}\right)^{2} +$ $\cos^{2}(90^{\circ} - 35^{\circ}) + \cos^{2}(90^{\circ} - 25^{\circ})$ $= \cos^2 25^\circ + \cos^2 35^\circ + \frac{1}{2} + \sin^2 35^\circ$ $+\sin^2 25^\circ$ $= (\sin^2 25^\circ + \cos^2 25^\circ) + \frac{1}{2} +$ $(\sin^2 25^\circ + \cos^2 25^\circ)$ $= 1 + \frac{1}{2} + 1 = \frac{5}{2}$ (Ans.) **3**b) $\sin^2 10^\circ + \sin^2 20^\circ + \sin^2 30^\circ + \cdots + \sin^2 80^\circ$ $= \sin^2 10^\circ + \sin^2 20^\circ + \sin^2 30^\circ$ $+\sin^{2}40^{\circ}+\sin^{2}50^{\circ}+\sin^{2}60^{\circ}$ $+\sin^{2}70^{\circ} + \sin^{2}80^{\circ}$ $\sin^2 10^\circ + \sin^2 20^\circ + \sin^2 30^\circ +$

 $\sin^2 40^\circ + \sin^2 (90^\circ - 40^\circ) +$ $\sin^{2}(90^{\circ} - 30^{\circ}) + \sin^{2}(90^{\circ} - 20^{\circ})$ $+\sin^{2}(90^{\circ}-10^{\circ})$ $= \sin^2 10^\circ + \sin^2 20^\circ + \sin^2 30^\circ$ $+\sin^{2}40^{\circ} + \cos^{2}40^{\circ} + \cos^{2}30^{\circ}$ $+\cos^{2}20^{\circ} + \cos^{2}10^{\circ}$ $= (\sin^2 10^\circ + \cos^2 10^\circ) + (\sin^2 20^\circ + \cos^2 20^\circ)$ $+(\sin^2 30^\circ + \cos^2 30^\circ) + (\sin^2 40^\circ + \cos^2 40^\circ)$ = 1 + 1 + 1 + 1 = 4 (Ans.) 4. $\tan \Theta = \frac{3}{4}$ and $\cos \Theta$ when $\sin \Phi$ even, $\frac{\sin \theta + \cos \theta}{\sec \theta + \tan \theta}$ এর মান নির্ণয় কর । সমাধান ঃ দেওয়া আছে $\tan \Theta = \frac{3}{4}$ এবং $\cos \Theta$ ঋণাত্মক $\therefore \sec \Theta = -\sqrt{1 + \tan^2 \Theta} = -\sqrt{1 + \frac{9}{16}}$ $= -\sqrt{\frac{25}{16}} = -\frac{5}{4} \quad \therefore \cos \Theta = -\frac{4}{5} \text{ and}$ $\sin \theta = \tan \theta \cos \theta = \frac{3}{4}(-\frac{4}{5}) = -\frac{3}{5}$ এখন , $\frac{\sin\theta + \cos\theta}{\sec\theta + \tan\theta} = \frac{-\frac{5}{5} - \frac{7}{5}}{-\frac{5}{5} + \frac{3}{3}}$ $=-\frac{3+4}{5}\times\frac{4}{-5+3}=-\frac{7}{5}\times\frac{4}{-2}=\frac{14}{5}$ (Ans.) 5. $\sin \Theta = \frac{12}{13}$ এবং $90^\circ < \Theta < 180^\circ$ হলে দেখাও যে, $\frac{\tan \theta + \sec (-\theta)}{\cot \theta + \cos ec (-\theta)} = \frac{10}{3}$ প্রমাণ : যেহেতু $\sin \theta = \frac{12}{13} \Rightarrow \csc \theta = \frac{13}{12}$ এবং 90°< θ < 180°. $\therefore \cos\theta = -\sqrt{1-\sin^2\theta}$

 $=-\sqrt{1-\frac{144}{160}}=-\sqrt{\frac{25}{160}}=-\frac{5}{12}$ $\sec \Theta = -\frac{13}{5}$ $\tan \Theta = \frac{\sin \Theta}{\cos \Theta} = \frac{12}{13} \times (-\frac{13}{5}) = -\frac{12}{5}$ $\Rightarrow \cot\theta = -\frac{5}{12}$ এখন, $\frac{\tan\theta + \sec(-\theta)}{\cot\theta + \cos ec(-\theta)} = \frac{\tan\theta + \sec\theta}{\cot\theta - \cos ec\theta}$ $=\frac{\frac{5}{5}}{\frac{5}{5}}\frac{1}{13}=\frac{-25}{5}\times\frac{12}{\frac{5}{5}}\times\frac{12}{\frac{5}{5}}$ $=5\times\frac{12}{18}=\frac{10}{2}$ 6. যোগফল নির্ণয় কর : $\cos \theta + \cos (\pi + \theta) +$ $\cos(2\pi + \theta) + \cdots$ $+\cos(n\pi + \Theta)$ সমাধান: $\cos \theta + \cos (\pi + \theta) + \cos (2\pi + \theta) +$ $+\cos(n\pi + \Theta)$ $= \cos \Theta + \{ -\cos \Theta + \cos \Theta - \cos \Theta + \cdots \}$ $+(-1)^n\cos\Theta$ n = 2 হলে যোগফল = $\cos\theta + \{ -\cos\theta + \cos\theta \}$ $= \cos \Theta$ $\cos\theta + \cos\theta = \cos\theta$ তদুপ, n যেকোন জোড় হলে নির্ণেয় যোগফল = cos x n = 1 হলে যোগফল = $\cos \Theta + (-\cos \Theta) = 0$ $\cos\theta = 0$ তদুপ, n যেকোন বিজ্ঞোড় হলে নির্ণেয় যোগফল = 0 $\mathbf{n} \in \mathbb{Z}$ হলে , $\sin\{\mathbf{n} \pi + (-1)^n \frac{\pi}{4}\}$ এর 7. মান নির্ণয় কর। সমাধান **ঃ (a)** sin { $n\pi + (-1)^n \frac{\pi}{4}$ }

া জোড় সংখ্যা হলে মনে করি, n = 2m, যেখানে m∈N. $\therefore \sin\{ n\pi + (-1)^n \frac{\pi}{4} \}$ $= \sin \{2m\pi + (-1)^{2m} \frac{\pi}{4}\}$ $= \sin (2m\pi + \frac{\pi}{4}) = \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$ n বিজোড় সংখ্যা হলে মনে করি , $n = 2m + 1; m \in \mathbb{N}$. $\therefore \sin \{n\pi + (-1)^n \frac{\pi}{4}\}$ $= \sin \{ (2m+1)\pi + (-1)^{2m+1} \frac{\pi}{4} \}$ $= \sin\{ 2m\pi + (\pi - \frac{\pi}{4}) \}$ $=\sin(\pi - \frac{\pi}{4}) = \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}$ (Ans.) 8. দেখাও যে , $\tan \frac{\pi}{12} \tan \frac{5\pi}{12} \tan \frac{7\pi}{12} \tan \frac{11\pi}{12} = 1$ **example:** $\tan \frac{\pi}{12} \tan \frac{5\pi}{12} \tan \frac{7\pi}{12} \tan \frac{11\pi}{12}$ $= \tan \frac{\pi}{12} \tan \frac{5\pi}{12} \tan (\frac{\pi}{2} - \frac{\pi}{12}) \tan (\frac{\pi}{2} - \frac{5\pi}{12})$ $= \tan \frac{\pi}{12} \tan \frac{5\pi}{12} \cot \frac{\pi}{12} \cot \frac{5\pi}{12}$ $=(\tan\frac{\pi}{12}.\cot\frac{\pi}{12})(\tan\frac{5\pi}{12}.\cot\frac{5\pi}{12})$ = 1.1 = 1 [:: tan Θ .cot Θ =1]

প্রশ্নমালা VII B

1. মান নির্ণয় কর **:** (a) tan 105° (b) cot165° (c) cosec 165° (a) tan 105° = tan(60° + 45°) $= \frac{\tan 60^{\circ} + \tan 45^{\circ}}{1 - \tan 60^{\circ} \tan 45^{\circ}} = \frac{\sqrt{3} + 1}{1 - \sqrt{3} \cdot 1}$ $= \frac{(1 + \sqrt{3})^{2}}{(1 - \sqrt{3})(1 + \sqrt{3})} = \frac{1 + 2\sqrt{3} + 3}{1 - 3}$ $= \frac{2(\sqrt{3} + 2)}{-2} = -(\sqrt{3} + 2).$ अन्नभाना VII B

 $1(b) \cot 165^\circ = \cot(90^\circ + 75^\circ) = -\tan 75^\circ$ $= -\tan(30^{\circ} + 45^{\circ}) = -\frac{\tan 30^{\circ} + \tan 45^{\circ}}{1 - \tan 30^{\circ} \tan 45^{\circ}}$ $= -\frac{\frac{1}{\sqrt{3}} + 1}{1 - \frac{1}{\sqrt{5}} \cdot 1} = -\frac{1 + \sqrt{3}}{\sqrt{3} - 1} = -\frac{(\sqrt{3} + 1)(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)}$ $= -\frac{3+2\sqrt{3}+1}{3-1} = -\frac{2(\sqrt{3}+2)}{2} = -(\sqrt{3}+2)$ 1(c) cosec $165^{\circ} = cosec (90^{\circ} + 75^{\circ})$ $= \sec 75^\circ = \frac{1}{\cos 75^\circ} = \frac{1}{\cos (45^\circ + 30^\circ)}$ $= \frac{1}{\cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ}}$ $=\frac{1}{\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\cdot\frac{1}{2}}=\frac{2\sqrt{2}}{\sqrt{3}-1}$ $=\frac{2\sqrt{2}(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}=\frac{2(\sqrt{6}+\sqrt{3})}{3-1}$ $=\frac{2(\sqrt{6}+\sqrt{3})}{2}=\sqrt{6}+\sqrt{3}$ 2. মান নির্ণয় কর ঃ (a) $\cos 38^{\circ}15' \sin 68^{\circ}15'$ cos51°45'sin21°45' $= \cos 38^{\circ}15' \sin 68^{\circ}15'$ cos (90°-38°15') sin (90°-68°15') $= \cos 38^{\circ}15' \sin 68^{\circ}15'$ sin 38°15′ cos 68°15′ $= \sin(68^{\circ}15^{\circ} - 38^{\circ}15^{\circ}) = \sin 30^{\circ} = \frac{1}{2}$ $2(b) \cos 69^{\circ}22^{\prime} \cos 9^{\circ}22^{\prime} +$

 $\cos 80^{\circ}38' \cos 20^{\circ}38'$ = cos 69°22' cos 9°22' + cos (90° - 9°22') cos (90° - 69°22') = cos 69°22' cos 9°22' + sin 9°22' sin 69°22'

 $= \cos (69^{\circ}22^{\prime} - 9^{\circ}22^{\prime}) = \cos 60^{\circ} = \frac{1}{2}$ 3. প্রমাণ কর যে, (a) L.H.S. = sin $(25^{\circ} + A) \cos (25^{\circ} - A) +$ $\cos (25^\circ + A) \cos (115^\circ - A)$ $= \sin (25^{\circ} + A) \cos (25^{\circ} - A) +$ $\cos (25^\circ + A) \cos \{ 90^\circ + (25^\circ - A) \}$ $= \sin (25^{\circ} + A) \cos (25^{\circ} - A) \cos (25^{\circ} + A) \sin (25^{\circ} - A)$ $= sin\{ (25^{\circ} + A) - (25^{\circ} - A) \}$ $= \sin (25^{\circ} + A - 25^{\circ} + A)$ $= \sin 2A = R.H.S.$ (Proved) 3(b) $\cos\left(\frac{\pi}{3}-\alpha\right)\cos\left(\frac{\pi}{6}-\beta\right)$ - $\sin\left(\frac{\pi}{3}-\alpha\right)\sin\left(\frac{\pi}{6}-\beta\right)$ $=\cos\{\left(\frac{\pi}{3}-\alpha\right)+\left(\frac{\pi}{6}-\beta\right)\}$ $=\cos\{\left(\frac{\pi}{2}+\frac{\pi}{6}\right)-(\alpha+\beta)\}$ $= \cos \left\{ \frac{\pi}{2} - (\alpha + \beta) \right\}$ $= \sin (\alpha + \beta) = R.H.S.$ (Proved) 3(c) L.H.S.= sin(n + 1)x cos(n - 1)x $-\cos{(n+1)x} \sin{(n-1)x}$ $= \sin\{ (n+1)x - (n-1)x \}$ $= \sin(nx + x - nx + x)$ $= \sin 2x = R.H.S.$ (Proved) 4. প্রমাণ কর যে. (a) L.H.S.= sin A sin(B – C) + $\sin B \sin (C - A) + \sin C \sin (A - B)$ $= \sin A (\sin B \cos C - \sin C \cos B) +$ $\sin B (\sin C \cos A - \sin A \cos C) +$ $\sin C (\sin A \cos B - \sin B \cos A)$ = sin A sin B cos C - sin A cos B sin C + cos A sin B sin C – sin A sin B cos C + sin A cos B sin C - cos A sin B sin C = 0 = R.H.S. (Proved)

উচ্চতর গণিত : ১ম পত্র সমাধান

4(b) L.H.S. = sin (B + C) sin (B - C) + sin (C + A) sin (C - A) + sin (A + B) sin (A - B) = sin²B - sin²C + sin²C - sin²A + sin²A - sin²B = 0 = R.H.S. (Proved) 4(c) L.H.S. = sin(135° - A) + cos (135° + A) = sin{ 180° - (45° + A)} + cos { 180° - (45° + A)} + sin (45° + A) - cos (45° - A) = sin (45° + A) - cos { 90° - (45° + A)} = sin (45° + A) - sin (45° + A) = 0 = R.H.S. (Proved)

5. প্রমাণ কর যে,

(a) L.H.S.= $\frac{\cos 15^{\circ} + \sin 15^{\circ}}{\cos 15^{\circ} - \sin 15^{\circ}}$ $\frac{\cos 15^{\circ} (1 + \frac{\sin 15^{\circ}}{\cos 15^{\circ}})}{\cos 15^{\circ} (1 - \frac{\sin 15^{\circ}}{\cos 15^{\circ}})} = \frac{1 + \tan 15^{\circ}}{1 - \tan 15^{\circ}}$ $=\frac{\tan 45^{\circ} + \tan 15^{\circ}}{1 - \tan 45^{\circ} \tan 15^{\circ}} = \tan(45^{\circ} + 15^{\circ})$ $= \tan 60^\circ = \sqrt{3} = \text{R.H.S.}$ (Proved) 5(b) L.H.S.= $\frac{\cos 25^\circ - \sin 25^\circ}{\cos 25^\circ + \sin 25^\circ}$ $=\frac{\cos 25^{\circ}(1-\frac{\sin 25^{\circ}}{\cos 25^{\circ}})}{\cos 25^{\circ}(1+\frac{\sin 25^{\circ}}{\cos 25^{\circ}})}=\frac{1-\tan 25^{\circ}}{1-\tan 25^{\circ}}$ $=\frac{\tan 45^{\circ}-\tan 25^{\circ}}{}$ $\frac{1}{1 + \tan 45^{\circ} \tan 25^{\circ}} = \tan(45^{\circ} - 25^{\circ})$ $= \tan 20^{\circ} = R.H.S.$ (proved) 5(c) L.H.S.= $\frac{\sin 75^\circ + \sin 15^\circ}{\sin 75^\circ - \sin 15^\circ}$

 $=\frac{\sin(90^{\circ}-15^{\circ})+\sin 15^{\circ}}{\sin(90^{\circ}-15^{\circ})-\sin 15^{\circ}}$ $=\frac{\cos 15^{\circ} + \sin 15^{\circ}}{\cos 15^{\circ} - \sin 15^{\circ}} = \frac{\cos 15^{\circ} (1 + \frac{\sin 15^{\circ}}{\cos 15^{\circ}})}{\cos 15^{\circ} (1 - \frac{\sin 15^{\circ}}{\cos 15^{\circ}})}$ $=\frac{1+\tan 15^{\circ}}{1-\tan 15^{\circ}}=\frac{\tan 45^{\circ}+\tan 15^{\circ}}{1-\tan 45^{\circ}\tan 15^{\circ}}$ $= \tan (45^{\circ} + 15^{\circ}) = \tan 60^{\circ} = \sqrt{3}$ 6. প্রমাণ কর যে. (a) $\tan \frac{\pi}{4} = \tan(\frac{\pi}{20} + \frac{\pi}{5})$ $\Rightarrow 1 = \frac{\tan\frac{\pi}{20} + \tan\frac{\pi}{5}}{1 - \tan\frac{\pi}{20}\tan\frac{\pi}{5}}$ $\Rightarrow \tan \frac{\pi}{20} + \tan \frac{\pi}{5} = 1 - \tan \frac{\pi}{20} \tan \frac{\pi}{5}$ $\therefore \tan \frac{\pi}{20} + \tan \frac{\pi}{5} + \tan \frac{\pi}{20} \tan \frac{\pi}{5} = 1$ **6(b)** $\tan 70^\circ = \tan (50^\circ + 20^\circ)$ চ.'০৫: তা.'১০: প্র.ভ.প.'০৩] $\Rightarrow \tan 70^\circ = \frac{\tan 50^\circ + \tan 20^\circ}{1 - \tan 50^\circ \tan 20^\circ}$ \Rightarrow tan70° - tan70° tan50° tan20° $= \tan 50^{\circ} + \tan 20^{\circ}$ \Rightarrow tan70° - tan(90° - 20°)tan50° tan20° $= \tan 50^{\circ} + \tan 20^{\circ}$ \Rightarrow tan 70° - cot 20° tan 50° tan 20° $= \tan 50^\circ + \tan 20^\circ$ \Rightarrow tan 70° - tan 50° = tan 50° + tan 20° \therefore tan 70° = tan 20° + 2 tan 50° $6(c) \tan (A - B) = -\tan (B - A)$ $= - \tan\{ (B - C) + (C - A) \}$ $= -\frac{\tan(B-C) + \tan(C-A)}{1 - \tan(B-C)\tan(C-A)}$ \Rightarrow tan (A - B) - tan (A - B) tan (B - C)

২৩২

 $\tan(C-A) = -\tan(B-C) - \tan(C-A)$ $\tan (B - C) + \tan (C - A) + \tan (A - B)$ $= \tan(B - C) \tan(C - A) \tan(A - B)$ 7(a) L.H.S. = $2\sin(\Theta + \frac{\pi}{4})\sin(\Theta - \frac{\pi}{4})$ = $2(\sin\Theta \cos\frac{\pi}{4} + \sin\frac{\pi}{4}\cos\Theta)$ $(\sin \Theta \cos \frac{\pi}{4} - \sin \frac{\pi}{4} \cos \Theta)$ $= 2 (\sin \Theta \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cos \Theta)$ $(\sin\theta, \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\cos\theta)$ = 2. $\frac{1}{2}(\sin\theta + \cos\theta)(\sin\theta - \cos\theta)$ $=\sin^2\theta - \cos^2\theta = R.H.S.$ (Proved) বিকল পন্দতি: L.H.S.= $2\sin(\Theta + \frac{\pi}{4})\sin(\Theta - \frac{\pi}{4})$ $=2(\sin^2\theta-\sin^2\frac{\pi}{4})$ [: $sin(A+B) sin(A - B) = sin^2 A - sin^2 B$] $= 2(\sin^2 \Theta - \frac{1}{2}) = 2\sin^2 \Theta - 1$ $= 2 \sin^2 \Theta - (\sin^2 \Theta + \cos^2 \Theta)$ $=\sin^2 \Theta - \cos^2 \Theta = R H S$. (Proved) L.H.S.= tan(A + B) tan(A - B)7(b) $=\frac{\sin(A+B)\sin(A-B)}{\cos(A+B)\cos(A-B)}$ $=\frac{\sin^2 A - \sin^2 B}{\cos^2 A - \sin^2 B} = \text{R.H.S.}$ 7.(c) L.H.S.= $\frac{\tan(\frac{\pi}{4}+\theta)-\tan(\frac{\pi}{4}-\theta)}{\tan(\frac{\pi}{4}+\theta)+\tan(\frac{\pi}{4}-\theta)}$ $= \left\{ \frac{\sin(\frac{\pi}{4} + \theta)}{\cos(\frac{\pi}{4} + \theta)} - \frac{\sin(\frac{\pi}{4} - \theta)}{\cos(\frac{\pi}{4} - \theta)} \right\} \div$

 $\left\{\frac{\sin(\frac{\pi}{4}+\theta)}{\cos(\frac{\pi}{4}+\theta)}+\frac{\sin(\frac{\pi}{4}-\theta)}{\cos(\frac{\pi}{4}-\theta)}\right\}$ $=\frac{\sin(\frac{\pi}{4}+\theta)\cos(\frac{\pi}{4}-\theta)-\cos(\frac{\pi}{4}+\theta)\sin(\frac{\pi}{4}-\theta)}{\cos(\frac{\pi}{4}+\theta)\cos(\frac{\pi}{4}-\theta)}\times$ $\sin(\frac{\pi}{4}+\theta)\cos(\frac{\pi}{4}-\theta)+\cos(\frac{\pi}{4}+\theta)\sin(\frac{\pi}{4}-\theta)$ $\cos(\frac{\pi}{4}+\theta)\cos(\frac{\pi}{4}-\theta)$ $=\frac{\sin(\frac{\pi}{4}+\theta-\frac{\pi}{4}+\theta)}{\sin(\frac{\pi}{4}+\theta+\frac{\pi}{4}-\theta)}=\frac{\sin 2\theta}{\sin\frac{\pi}{2}}$ $= \sin 2\Theta = R.H.S.$ (Proved) 8. (a) $a\cos(x + \alpha) = b\cos(x - \alpha)$ হলে দেখাও a, (a + b) tan $x = (a - b) \cot a$ [01.'00] প্রমাণ ঃ দেওয়া আছে, $a\cos(x + \alpha) = b\cos(x - \alpha)$ \Rightarrow a (cos x cos α – sin x sin α) $= b(\cos x \cos \alpha + \sin x \sin \alpha)$ \Rightarrow (a - b)cos x cos α = (a + b) sin x sin α $\Rightarrow (a+b)\frac{\sin x}{\cos^2 x} = (a-b)\frac{\cos \alpha}{\sin \alpha}$ \therefore (a + b) tan x = (a - b)cot α 8(b) $a \sin(x + \theta) = b \sin(x - \theta)$ হল creates ca, (a + b) tan $\Theta + (a - b)$ tan x = 0প্রমাণ ঃ দেওয়া আছে , a $sin(x + \Theta) = bsin(x - \Theta)$ \Rightarrow a (sin x cos θ + sin θ cos x) = b(sin x cos θ - sin θ cos x) \Rightarrow (a-b) sin x cos θ = - (a + b) sin θ cos x \Rightarrow (a - b) $\frac{\sin x}{\cos x} = -(a + b) \frac{\sin \theta}{\cos \theta}$ \Rightarrow (a - b) tan x = - (a + b) tan θ \therefore (a + b) tan Θ + (a - b) tan x = 0 8.(c) Θ কোণকে α এবং β এই দুই জ্বলে এমন ভাবে বিতক্ত করা হল যেন. $\tan \alpha : \tan \beta = x : y$ হয় ।

control ($\alpha - \beta$) = $\frac{x - y}{x + y} \sin \theta$ প্রমাণ : দেওয়া আছে $\Theta = \alpha + \beta$ এবং $\tan\beta = x : v$ tanά $\Rightarrow \frac{\tan \alpha}{\tan \beta} = \frac{x}{\gamma} \Rightarrow \frac{\tan \alpha + \tan \beta}{\tan \alpha - \tan \beta} = \frac{x + y}{x - \gamma}$ $\Rightarrow \tan\alpha + \tan\beta = \frac{x+y}{x-y} (\tan\alpha - \tan\beta)$ $\Rightarrow \frac{\sin \alpha}{\cos \alpha} + \frac{\sin \beta}{\cos \beta} = \frac{x + y}{x - y} \left(\frac{\sin \alpha}{\cos \alpha} - \frac{\sin \beta}{\cos \beta} \right)$ $\Rightarrow \frac{\sin\alpha\cos\beta + \sin\beta\cos\alpha}{\cos\alpha\cos\beta}$ $=\frac{x+y}{r-v}(\frac{\sin\alpha\cos\beta-\sin\beta\cos\alpha}{\cos\alpha\cos\beta})$ $\Rightarrow \sin (\alpha + \beta) = \frac{x + y}{x - y} \sin (\alpha - \beta)$ $\Rightarrow \sin\theta = \frac{x+y}{x-y}\sin(\alpha - \beta)$ $\sin(\alpha - \beta) = \frac{x - y}{x + y} \sin \theta$ 8(d) $\tan \theta$ + sec $\theta = \frac{x}{y}$ হলে দেখাও যে, $\sin \theta = \frac{x^2 - y^2}{x^2 + y^2}$ প্রমাণ : দেওয়া আছে , $\tan \theta + \sec \theta = \frac{x}{y}$ $\Rightarrow \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta} = \frac{x}{y} \Rightarrow \frac{1 + \sin \theta}{\cos \theta} = \frac{x}{y}$ ⇒ $\frac{1+2\sin\theta+\sin^2\theta}{\cos^2\theta} = \frac{x^2}{y^2}$ [উত্তয় পক্ষকে বর্গ করে।] $\Rightarrow \frac{1+2\sin\theta+\sin^2\theta+\cos^2\theta}{1+2\sin\theta+\sin^2\theta-\cos^2\theta} = \frac{x^2+y^2}{x^2-y^2}$ [যোজন–বিয়োজন করে।] $\Rightarrow \frac{1+2\sin\theta + (\sin^2\theta + \cos^2\theta)}{(1-\cos^2\theta) + 2\sin\theta + \sin^2\theta} = \frac{x^2 + y^2}{x^2 - y^2}$

 $\cot \Theta = \frac{1 + k \sin \alpha}{k \cos \alpha}$ [ৰু.'১২] প্রমাণ ঃ দেওরা আছে , $\sin \theta = k \cos(\theta - \alpha)$ \Rightarrow sin θ = k(cos θ cos α - sin θ sin α) \Rightarrow sin θ + k sin θ sin α = k cos θ cos α \Rightarrow (1 + ksin α) sin θ = k cos θ cos α $\Rightarrow \frac{1+k\sin\alpha}{k\cos\alpha} = \frac{\cos\theta}{\sin\theta}$ $\cot\Theta = \frac{1+k\sin\alpha}{k\cos\alpha}$ 9(c) $\cot \alpha + \cot \beta = a$, $\tan \alpha + \tan \beta = b$ এবং $\alpha + \beta = \Theta$ হলে দেখাও যে, $(a - b) \tan \Theta = a b$ [ঢা. '০১. '১১: য. '০১: ব. '০৮] প্রমাণ ঃ দেওয়া আছেঁ. $\cot \alpha + \cot \beta = a \cdots (1), \tan \alpha + \tan \beta = b \cdots (2)$ এবং $\alpha + \beta = \Theta \cdots (3)$ (1) হতে আমরা পাই , $\frac{1}{\tan \alpha} + \frac{1}{\tan \beta} = a$ $\Rightarrow \frac{\tan\beta + \tan\alpha}{\tan\alpha \tan\beta} = a$ $\Rightarrow \frac{b}{\tan \alpha \tan \beta} = a \Rightarrow \tan \alpha \tan \beta = \frac{b}{a}$ এখন, $\theta = \alpha + \beta$ $\Rightarrow \tan \Theta = \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$ $=\frac{b}{1-\frac{b}{a-b}}=\frac{ab}{a-b}$ \therefore (a – b) tan Θ = a b 9(d) $\frac{\sin(\alpha + \theta)}{\sin \alpha} = \frac{2\sin(\beta + \theta)}{\sin \beta}$ হলে দেখাও \mathfrak{R} , $\cot \alpha - \cot \theta = 2 \cot \beta$ [ৰু.'১২] হমাণ ঃ দেওয়া আছে , $\frac{\sin(\alpha+\theta)}{\sin\alpha} = \frac{2\sin(\beta+\theta)}{\sin\beta}$ $\Rightarrow \sin\beta . \sin(\alpha + \theta) = 2\sin\alpha . \sin(\beta + \theta)$ \Rightarrow (sin α cos θ + cos α sin θ) sin β = $2\sin\alpha$ (sin β cos θ + sin θ cos β) \Rightarrow sin α cos θ sin β + cos α sin θ sin β

= $2\sin\alpha \sin\beta \cos\theta + 2\sin\alpha \sin\theta \cos\beta$ $\Rightarrow \cos\alpha \sin\theta \sin\beta - \sin\alpha \sin\beta \cos\theta$ = $2\sin\alpha \sin\theta \cos\beta$ ধরি , $\sin\Theta$ $\sin\alpha$ $\sin\beta \neq 0$ এবং উভয় পক্ষকে $\sin\theta \sin\alpha \sin\beta$ দারা ভাগ করে আমরা পাই . $\frac{\cos\alpha}{\sin\alpha} - \frac{\cos\theta}{\sin\theta} = 2\frac{\cos\beta}{\sin\beta}$ $\therefore \cot \alpha - \cot \theta = 2 \cot \beta$ 10. $A + B = \frac{\pi}{\Lambda}$ হলে দেখাও যে, $(1 + \tan A) (1 + \tan B) = 2$ প্রমাণ : দেওয়া আছে , $A + B = \frac{\pi}{4}$ $\Rightarrow \tan(A + B) = \tan \frac{\pi}{A} \Rightarrow \frac{\tan A + \tan B}{1 - \tan A \tan B} = 1$ \Rightarrow tanA + tanB = 1 - tanAtanB \Rightarrow tanA + tanB + tanA tanB + 1 = 2 $\Rightarrow 1(1 + \tan A) + \tan B(1 + \tan A) = 2$ \therefore (1 + tanA)(1 + tanB) = 2 (Showed) 11.(a) sin α sin β – cos α cos β + 1= 0 হল প্রমাণ কর যে. 1 + $\cot \alpha \tan \beta = 0$ যি. '০৭] প্রমাণঃ দেওয়া আছে. $\sin\alpha \sin\beta - \cos\alpha \cos\beta + 1 = 0$ $\Rightarrow \cos\alpha \cos\beta - \sin\alpha \sin\beta = 1$ $\Rightarrow \cos(\alpha + \beta) = 1 \Rightarrow \cos(\alpha + \beta) \stackrel{*}{=} \cos 0$ $\therefore \alpha + \beta = 0 \Longrightarrow \beta = -\alpha$ এখন, L.H.S. = 1 + $\cot \alpha \tan (-\alpha)$ $= 1 + \frac{1}{\tan \alpha} (-\tan \alpha) = 1 - 1 = 0 = \text{R.H.S.}$ 11. (b) $\tan \beta = \frac{2 \sin \alpha \sin \gamma}{\sin (\alpha + \gamma)}$ হলে দেখাও যে , $\frac{1}{\tan\alpha} + \frac{1}{\tan\nu} = \frac{2}{\tan\beta}.$ প্রমাণ ঃ দেওয়া আছে , $\tan\beta = \frac{2\sin\alpha\sin\gamma}{\sin(\alpha+\gamma)}$ $\Rightarrow \frac{\sin\beta}{\cos\beta} = \frac{2\sin\alpha\sin\gamma}{\sin(\alpha+\gamma)}$ ⇒ sinβ(sinαcosγ + sinγcosα)

= $2\sin\alpha\cos\beta\sin\gamma$ 1 \Rightarrow sin α sin β cos γ + cos α sin β sin γ = $2\sin\alpha\cos\beta\sin\gamma$ ধরি , $\sin\alpha \sin\beta \sin\gamma \neq 0$ এবং উভয় পক্ষকে $\sin\alpha \sin\beta \sin\gamma$ দ্বারা ভাগ করে আমরা পাই . $\frac{\cos\gamma}{\sin\gamma} + \frac{\cos\alpha}{\sin\alpha} = 2\frac{\cos\beta}{\sin\beta}$ $\Rightarrow \cot \gamma + \cot \alpha = 2 \cot \beta$ $\therefore \frac{1}{\tan \alpha} + \frac{1}{\tan \gamma} = \frac{2}{\tan \beta}$ (Showed) 11(c) $\tan \beta = \frac{n \sin \alpha \cos \alpha}{1 - n \sin^2 \alpha}$ zer create α , $\tan(\alpha - \beta) = (1 - n) \tan \alpha$ প্রমাণ : $\tan\beta = \frac{n\sin\alpha\cos\alpha}{1-n\sin^2\alpha}$ (1) 3 এখন , $\tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$ 3 $\sin \alpha$ $n \sin \alpha \cos \alpha$ $=\frac{\frac{\cos\alpha}{1-n\sin^2\alpha}}{1+\frac{\sin\alpha}{\cos\alpha}\cdot\frac{n\sin\alpha\cos\alpha}{1-n\sin^2\alpha}}$ $=\frac{\frac{\sin\alpha}{\cos\alpha}(1-\frac{n\cos^2\alpha}{1-n\sin^2\alpha})}{1+\frac{n\sin^2\alpha}{1-n\sin^2\alpha}}$ $= \tan \alpha (\frac{1 - n \sin^2 \alpha - n \cos^2 \alpha}{1 - n \sin^2 \alpha}) \times$ $\frac{1-n\sin^2\alpha}{1-n\sin^2\alpha+n\sin^2\alpha}$ $=\tan\alpha \frac{1-n(\sin^2\alpha+\cos^2\alpha)}{1}$ $\therefore \tan (\alpha - \beta) = (1 - n) \tan \alpha$ (Showed) $12(a)\tan\alpha - \tan\beta = x \quad \text{and} \quad \cot\beta - \cot\alpha = y$ হলে দেখাও যে, $\cot(\alpha - \beta) = \frac{1}{r} + \frac{1}{v}$. প্রমাণ ঃ দেওয়া আছে , $\tan \alpha - \tan \beta = x$ এবং $\cot\beta - \cot\alpha = y$

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{\tan \alpha - \tan \beta} + \frac{1}{\cot \beta - \cot \alpha}$$

$$= \frac{1}{\frac{1}{\cot \alpha} - \frac{1}{\cot \beta}} + \frac{1}{\cot \beta - \cot \alpha}$$

$$= \frac{\frac{1}{\frac{1}{\cot \beta} - \cot \alpha} + \frac{1}{\cot \beta - \cot \alpha}}{\frac{1}{\cot \beta - \cot \alpha} + \frac{1}{\cot \beta - \cot \alpha}}$$

$$= \frac{\frac{\cot \alpha \cot \beta + 1}{\cot \beta - \cot \alpha} = \cot (\alpha - \beta)$$

$$\therefore \cot (\alpha - \beta) = \frac{1}{x} + \frac{1}{y} \text{ (Showed)}$$

$$(b) \tan \theta = \frac{x \sin \varphi}{1 - x \cos \varphi} \quad \text{eff} \quad \tan \varphi = \frac{y \sin \theta}{1 - y \cos \theta}$$

$$\text{for events eq.} \quad \sin \theta = \frac{x}{y}.$$

$$\text{for events eq.} \quad \sin \theta = \frac{x}{y}.$$

$$\text{for events eq.} \quad \sin \theta = \frac{x \sin \varphi}{1 - x \cos \varphi}$$

$$\Rightarrow \frac{\sin \theta}{\cos \theta} = \frac{x \sin \varphi}{1 - x \cos \varphi}$$

$$\Rightarrow x \cos \theta \sin \varphi = \sin \theta - x \sin \theta \cos \varphi$$

$$\Rightarrow x \cos \theta \sin \varphi = \sin \theta - x \sin \theta \cos \varphi$$

$$\Rightarrow x \cos(\theta + \varphi) = \sin \theta \Rightarrow x = \frac{\sin \theta}{\sin(\theta + \varphi)}$$

$$\text{eff} \quad \tan \varphi = \frac{y \sin \theta}{1 - y \cos \theta} \Rightarrow \frac{\sin \varphi}{\cos \varphi} = \frac{y \sin \theta}{1 - y \cos \theta}$$

$$\Rightarrow y (\sin \theta \cos \varphi + \sin \varphi \cos \theta) = \sin \varphi$$

$$\Rightarrow y (\sin \theta \cos \varphi + \sin \varphi \cos \theta) = \sin \varphi$$

$$\Rightarrow y = \frac{\sin \varphi}{\sin(\theta + \varphi)} \times \frac{\sin(\theta + \varphi)}{\sin \varphi} = \frac{\sin \theta}{\sin \varphi}$$

$$\therefore \quad \frac{\sin \theta}{\sin \varphi} = \frac{x}{y} \text{ (Showed)}$$

$$13.(a) \sin x + \sin y = a \quad \text{eff} x = y = a$$

 $\Rightarrow \sin^2 x + \sin^2 y + 2\sin x \sin y = a^2 \cdots (1)$ এবং $\cos x + \cos y = b$ $\Rightarrow \cos^2 x + \cos^2 y + 2\cos x \cos y = b^2 \cdots (2)$ (1) ও (2) যোগ করে পাই, $(\sin^2 x + \cos^2 x) + (\sin^2 y + \cos^2 y) +$ $2(\cos x \cos y + \sin x \sin y) = a^2 + b^2$ \Rightarrow 1 + 1 + 2 cos (x - y) = $a^2 + b^2$ $\Rightarrow 2\{1 + \cos(x - y)\} = a^2 + b^2$ $\Rightarrow 2\{2\cos^2\frac{1}{2}(x-y)\} = a^2 + b^2$ $\Rightarrow 4\{1-\sin^2\frac{1}{2}(x-y)\} = a^2 + b^2$ $\Rightarrow 4\sin^2\frac{1}{2}(x-y) = 4 - a^2 + b^2$ $\Rightarrow \sin^2 \frac{1}{2}(x-y) = \frac{1}{4}(4-a^2-b^2)$ $\sin\frac{1}{2}(x-y) = \pm\frac{1}{2}\sqrt{4-a^2-b^2}$ 13(b) $\cos (\alpha - \beta) \cos \gamma = \cos (\alpha - \gamma + \beta)$ হলে দেখাও যে, $\cot \alpha$, $\cot \gamma$ এবং $\cot \beta$ সমান্তর গ্রগমন ভুক্ত। গ্রমাণ : $\cos(\alpha - \beta) \cos \gamma = \cos(\alpha - \gamma + \beta)$ $\Rightarrow \cos(\alpha - \beta) \cos \gamma - \cos \{(\alpha + \beta) - \gamma\} = 0$ $\Rightarrow \cos(\alpha - \beta) \cos \gamma - \{\cos(\alpha + \beta) \cos \gamma + \beta\}$ $\sin(\alpha + \beta) \sin \gamma = 0$ $\Rightarrow \{ \cos(\alpha - \beta) - \cos(\alpha + \beta) \} \cos \gamma$ $-\sin(\alpha + \beta)\sin\gamma = 0$ $\Rightarrow 2 \sin \alpha \sin \beta \cos \gamma - (\sin \alpha \cos \beta +$ $\sin\beta\cos\alpha$) $\sin\gamma=0$ $\Rightarrow 2 \sin \alpha \sin \beta \cos \gamma - \sin \alpha \cos \beta \sin \gamma$ $-\sin\beta\cos\alpha\sin\gamma=0$ $\Rightarrow 2 \cot \gamma - \cos \beta - \cot \alpha = 0$ [উভয় পক্ষকে $\sin\alpha \sin\beta \sin\gamma$ দারা ভাগ করে] $\Rightarrow \cot \gamma - \cos \beta = \cot \alpha - \cot \gamma$ $\Rightarrow \cot \alpha - \cot \gamma = \cot \gamma - \cos \beta$ cotα, cotγ একং cotβ সমাশতর প্রগমন ভুক্ত।

13(c) $\cos (\beta - \gamma) + \cos (\gamma - \alpha) + \cos (\alpha - \beta)$ $=-\frac{3}{2}$ হলে দেখাও যে, $\Sigma \cos \alpha = 0$ এবং $\Sigma \sin \alpha = 0$ প্রমাণ ঃ দেওয়া আছে . $\cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) = -\frac{3}{2}$ $\Rightarrow 2(\cos\beta\cos\gamma + \sin\beta\sin\gamma + \cos\gamma\cos\alpha +$ $\sin\gamma\sin\alpha + \cos\alpha\cos\beta + \sin\alpha\sin\beta = -3$ $\Rightarrow 2(\cos\alpha\cos\beta + \cos\beta\cos\gamma + \cos\gamma\cos\alpha)$ + $2(\sin\alpha \sin\beta + \sin\beta \sin\gamma + \sin\gamma \sin\alpha)$ + 1 + 1 + 1 = 0 $\Rightarrow 2(\cos\alpha\cos\beta + \cos\beta\cos\gamma + \cos\gamma\cos\alpha)$ + $2(\sin\alpha \sin\beta + \sin\beta \sin\gamma + \sin\gamma \sin\alpha)$ + $(\sin^2 \alpha + \cos^2 \alpha) + (\sin^2 \beta + \cos^2 \beta) +$ $(\sin^2\gamma + \cos^2\gamma) = 0$ $\Rightarrow (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + 2)(\cos \alpha \cos \beta + \cos^2 \beta + \cos^2$ $\cos\beta \cos\gamma + \cos\gamma \cos\alpha$) + { $\sin^2\alpha$ + $\sin^2\beta + \sin^2\gamma + 2(\sin\alpha \sin\beta + \sin\beta \sin\gamma)$ $+\sin\gamma\sin\alpha$ = 0 $\Rightarrow (\cos \alpha + \cos \beta + \cos \gamma)^2 + (\sin \alpha + \sin \beta + \sin \gamma)^2 = 0$:. $\cos\alpha + \cos\beta + \cos\gamma = 0$ are $\sin\alpha + \sin\beta + \sin\gamma = 0$ [∵ দুইটি সংখ্যার বর্গের সমষ্টি শূন্য হলে সংখ্যা দুইটি পৃথক পৃথক ভাবে শূন্য হয়।] :. $\sum \cos \alpha = 0$ and $\sum \sin \alpha = 0$ অতিরিক্ত প্রশ্ন (সমাধানসহ) 1. মান নির্ণয় কর ঃ (a) $\sin 76^{\circ}40^{\prime} \cos 16^{\circ}40^{\prime}$ cos 73°20'sin 13°20' $= \sin 76^{\circ} 40' \cos 16^{\circ} 40' - \cos (90^{\circ} - 16^{\circ} 40')$ $\sin (90^{\circ} - 76^{\circ}40^{\circ})$ $= \sin 76^{\circ}40' \cos 16^{\circ}40'$ sin16°40'cos 76°40' $= \sin (76^{\circ}40^{\prime} - 16^{\circ}40^{\prime}) = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$ **(b)** $\cos 17^{\circ}40' \sin 77^{\circ}40' +$ cos 107°40' sin 12°20' $= \cos 17^{\circ}40' \sin 77^{\circ}40' +$

উচ্চতর গণিত : ১ম পত্র সমাধান ২৩৮ রইহার কম $\cos(90^\circ + 17^\circ 40^\circ) \sin(90^\circ - 77^\circ 40^\circ)$ $= \cos 17^{\circ} 40' \sin 77^{\circ} 40'$ sin17°40′cos77°40′ $= \sin (77^{\circ}40^{\prime} - 17^{\circ}40^{\prime}) = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$ (Proved) (c) $\frac{\tan 68^{\circ}35' - \cot 66^{\circ}25'}{1 + \tan 68^{\circ}35' \cot 66^{\circ}25'}$ $=\frac{\tan 68^{\circ}35' - \cot(90^{\circ} - 23^{\circ}35')}{1 + \tan 68^{\circ}35'\cot(90^{\circ} - 23^{\circ}35')}$ $=\frac{\tan 68^{\circ}35'-\tan 23^{\circ}35'}{\tan 23^{\circ}35'}$ $1 + \tan 68^{\circ}35' \tan 23^{\circ}35'$ $= \tan(68^{\circ}35' - 23^{\circ}35') = \tan 45^{\circ} = 1$ (Ans.) প্রমাণ কর যে. 2. $\cos(A - B)\cos(A - C) + \sin(A - B)$ sin(A-C) = cos(B-C)**L.H.S.=** $\cos (A - B) \cos (A - C) +$ sin(A - B) sin(A - C) $= \cos\{ (A - B) - (A - C) \}$ $= \cos (A - B - A + C) = \cos (-B + C)$ $= \cos (B - C) = R.H.S.$ (Proved) 3. $\frac{\cot(3A-B)\cot B-1}{-\cot B-\cot(3A-B)} = -\cot 3A$ L.H.S.= $\frac{\cot(3A-B)\cot B-1}{-\cot B-\cot(3A-B)}$ $= \frac{\cot(3A-B)\cot B - 1}{-\{\cot B + \cot(3A-B)\}}$ $= -\frac{\cot(3A-B)\cot B - 1}{\cot B - 1}$ $\cot B + \cot(3A - B)$ $=-\cot(3A-B+B)=-\cot 3A$ = R.H.S. (Proved) 4. $\cos A + \cos \left(\frac{2\pi}{3} - A\right) + \cos \left(\frac{2\pi}{3} + A\right) = 0$ **L.H.S.** = cos A + cos $(\frac{2\pi}{3} - A)$ + $\cos\left(\frac{2\pi}{2}+A\right)$

 $=\cos A + 2\cos \frac{2\pi}{3}\cos A$ $=\cos A + 2 \cdot (-\frac{1}{2})\cos A$ $= \cos A - \cos A = 0 = R.H.S.$ 5. $\frac{\sin 75^\circ - \sin 15^\circ}{\sin 75^\circ + \sin 15^\circ} = \frac{1}{\sqrt{3}}$ **L.H.S.**= $\frac{\sin 75^{\circ} - \sin 15^{\circ}}{\sin 75^{\circ} + \sin 15^{\circ}}$ $=\frac{\sin(90^{\circ}-15^{\circ})-\sin 15^{\circ}}{\sin(90^{\circ}-15^{\circ})+\sin 15^{\circ}}$ $=\frac{\cos 15^{\circ} - \sin 15^{\circ}}{\cos 15^{\circ} + \sin 15^{\circ}} = \frac{\cos 15^{\circ} (1 - \frac{\sin 15^{\circ}}{\cos 15^{\circ}})}{\cos 15^{\circ} (1 + \frac{\sin 15^{\circ}}{\cos 15^{\circ}})}$ $=\frac{1-\tan 15^{\circ}}{1+\tan 15^{\circ}}=\frac{\tan 45^{\circ}-\tan 15^{\circ}}{1+\tan 45^{\circ}\tan 15^{\circ}}$ $= \tan(45^\circ - 15^\circ) = \tan 30^\circ$ $=\frac{1}{\sqrt{2}}$ = R.H.S. (proved) **6.** (a) $\tan 5A \tan 3A \tan 2A = \tan 5A$ tan 3A - tan 2A (b) $\tan 32^\circ + \tan 13^\circ + \tan 32^\circ \tan 13^\circ = 1$ (c) $\tan \frac{\pi}{20} + \tan \frac{\pi}{5} + \tan \frac{\pi}{20} \tan \frac{\pi}{5} = 1$ প্রমাণ: (a) $\tan 5A = \tan (3A + 2A)$ $\Rightarrow \tan 5A = \frac{\tan 3A + \tan 2A}{1 - \tan 3A \tan 2A}$ \Rightarrow tan 3A + tan 2A = tan 5A tan 5A tan 3A tan 2A \therefore tan5A tan3A tan2A = tan5A tan3A – tan2A (b) $\tan 45^\circ = \tan (32^\circ + 13^\circ)$ $\Rightarrow 1 = \frac{\tan 32^0 + \tan 13^0}{1 - \tan 32^0 \tan 13^0}$ $\Rightarrow \tan 32^\circ + \tan 13^\circ = 1 - \tan 32^\circ \tan 13^\circ$:. $\tan 32^\circ + \tan 13^\circ + \tan 32^\circ \tan 13^\circ = 1$

(c) $\tan 50^\circ = \tan 40^\circ + 10^\circ$) $\Rightarrow \tan 50^\circ = \frac{\tan 40^0 + \tan 10^0}{1 - \tan 40^0 \tan 10^0}$ \Rightarrow tan 50° - tan 50° tan 40° tan 10° $= \tan 40^{\circ} + \tan 10^{\circ}$ \Rightarrow tan50° - tan (90° - 40°) tan 40° $\tan 10^\circ = \tan 40^\circ + \tan 10^\circ$ \Rightarrow tan 50° - cot 40° tan 40° tan 10° $= \tan 40^{\circ} + \tan 10^{\circ}$ $\Rightarrow \tan 50^\circ - \tan 10^\circ = \tan 40^\circ + \tan 10^\circ$ $\tan 50^\circ = \tan 40^\circ + 2\tan 10^\circ$ 7. (a) $\tan (45^\circ + A) \tan (45^\circ - A) = 1$ (b) $\cos^2(A - B) - \sin^2(A + B) = \cos 2A$ cos 2B. (a) L.H.S. = $\tan (45^{\circ} + A) \tan (45^{\circ} - A)$ $= \tan (45^\circ + A) \tan \{ 90^\circ - (45^\circ + A) \}$ $= \tan (45^{\circ} + A) . \cot (45^{\circ} + A)$ = 1 = R.H.S. (Proved) (b) L.H.S.= $\cos^2(A - B) - \sin^2(A + B)$ $= \cos\{(A - B) + (A + B)\}$ $\cos\{(A - B) - (A + B)\}$ $= \cos (A - B + A + B) \cos(A - B - A - B)$ $=\cos 2A\cos(-2B)=\cos 2A\cos 2B=R.H.S.$ 11.(a) sin $\alpha = k \sin(\alpha + \beta)$ হলে দেখাও যে, $\tan\left(\alpha+\beta\right)=\frac{\sin\beta}{\cos\beta-k}.$ প্রমাণ ঃ দেওয়া আছে, $\sin \alpha = k \sin (\alpha + \beta)$ $\Rightarrow \sin \alpha = k (\sin \alpha \cos \beta + \sin \beta \cos \alpha)$ \Rightarrow sin α = k sin α cos β + k sin β cos α $\Rightarrow \sin\alpha (1 - k \cos \beta) = k \sin \beta \cos \alpha$ $\Rightarrow \tan \alpha = \frac{k \sin \beta}{1 - k \cos \beta}$ $\pm \sin(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$ $=\frac{\frac{k\sin\beta}{1-k\cos\beta}+\frac{\sin\beta}{\cos\beta}}{1-\frac{k\sin\beta}{1-k\cos\beta}\frac{\sin\beta}{\cos\beta}}$

 $k \sin \beta \cos \beta + \sin \beta - k \sin \beta \cos \beta$ $\frac{(1-k\cos\beta)\cos\beta}{\cos\beta-k\cos^2\beta-k\sin^2\beta}$ $(1 - k \cos \beta) \cos \beta$ $\sin\beta$ $\frac{1}{\cos\beta - k(\cos^2\beta + \sin^2\beta)}$ $\tan (\alpha + \beta) = \frac{\sin \beta}{\cos \beta - k}$ (Showed) (b) $\tan \alpha = \frac{b}{a}$ হলে দেখাও যে, $a\cos\Theta + b\sin\Theta = \sqrt{a^2 + b^2}\cos(\Theta - \alpha).$ প্রমাণ ঃ দেওয়া আছে , $\tan \alpha = \frac{b}{c}$ এখন, $\sqrt{a^2 + b^2} \cos(\Theta - \alpha)$ $= \sqrt{a^2(1+\frac{b^2}{a^2})\cos(\Theta-\alpha)}$ = $a\sqrt{1 + \tan^2 \alpha} \cos(\theta - \alpha)$ $=a\sqrt{\sec^2\alpha}\cos\left(\Theta-\alpha\right)=a\sec\alpha\,\cos\left(\Theta-\alpha\right)$ $= -\frac{a}{\cos \alpha} (\cos \alpha \cos \theta + \sin \alpha \sin \theta)$ $= a \cos \Theta + a \sin \Theta \tan \alpha$ $= a \cos \theta + a \sin \theta \frac{b}{a}$ $= a \cos \Theta + b \sin \Theta$ $a\cos\theta + b\sin\theta = \sqrt{a^2 + b^2} \cos(\theta - \alpha)$ বিকল্প পদ্ধতি: দেওয়া আছে, $\tan \alpha = \frac{b}{a} \Rightarrow \frac{\sin \alpha}{\cos \alpha} = \frac{b}{a}$ $\Rightarrow \frac{\sin \alpha}{h} = \frac{\cos \alpha}{a} = \frac{\sqrt{\sin^2 \alpha + \cos^2 \alpha}}{\sqrt{1 + \cos^2 \alpha}} = \frac{\sqrt{1}}{\sqrt{1 + \cos^2 \alpha}}$ $b = \sqrt{a^2 + b^2} \sin \alpha$, $a = \sqrt{a^2 + b^2} \cos \alpha$ এখন , $a \cos \theta + b \sin \theta$ $=\sqrt{a^2+b^2}\left(\cos\alpha\cos\Theta+\sin\alpha\sin\Theta\right)$ $\therefore a \cos \Theta + b \sin \Theta = \sqrt{a^2 + b^2} \cos (\Theta - \alpha)$ (showed)

280 উচ্চতর গণিত : ১ম পত্র সমাধান বইঘর কম 12.(a) $\cos \alpha + \cos \beta = a \, \operatorname{ares} \sin \alpha + \sin \beta = b$ হলে দেখাও যে, $\cos (\alpha - \beta) = \frac{1}{2} (a^2 + b^2 - 2)$ প্রমাণ ঃ দেওয়া আছে , $\cos \alpha + \cos \beta = a$ $\Rightarrow \cos^2 \alpha + \cos^2 \beta + 2\cos \alpha \cos \beta = \alpha^2 \cdots (1)$ এবং $\sin \alpha + \sin \beta = b$ $\Rightarrow \sin^2 \alpha + \sin^2 \beta + 2 \sin \alpha \sin \beta = b^2$ (2)(1) ও (2) যোগ করে পাই. $(\sin^2 \alpha + \cos^2 \alpha) + (\sin^2 \beta + \cos^2 \beta) +$ $2(\cos\alpha\cos\beta + \sin\alpha\sin\beta) = a^2 + b^2$ \Rightarrow 1+1+2 cos (α - β) = $a^2 + b^2$ $\Rightarrow 2\cos(\alpha - \beta) = a^2 + b^2 - 2$ $\cos(\alpha - \beta) = \frac{1}{2}(a^2 + b^2 - 2)$ (Showed) (b) $\tan \Theta = \frac{a \sin x + b \sin y}{a \cos x + b \cos y}$ হলে দেখাও যে, a $\sin(\Theta - x) + b \sin(\Theta - y) = 0.$ প্রমাণ ঃ দেওরা আছে , $\tan \beta = \frac{a \sin x + b \sin y}{a \cos x + b \cos y}$ $\Rightarrow \frac{\sin \theta}{\cos \theta} = \frac{a \sin x + b \sin y}{a \cos y + b \cos y}$ \Rightarrow a sin Θ cos x + b sin Θ cos y = a sin $x \cos \Theta + b \cos \Theta \sin y$ \Rightarrow a (sin Θ cos x - sin x cos Θ) + b (sin $\Theta \cos y - \cos \Theta \sin y$) = 0 $a \sin (\Theta - x) + b \sin (\Theta - y) = 0$ (Showed) $\beta = \frac{\sin 2\alpha}{5 + \cos 2\alpha}$ যে. হলে (c) tan দেখাও $3 \tan (\alpha - \beta) = 2 \tan \alpha$. প্রমাণ : দেওয়া আছে , $\tan\beta = \frac{\sin 2\alpha}{5 + \cos 2\alpha}$ $\Rightarrow \tan\beta = \frac{1 + \tan^2 \alpha}{5 + \frac{1 - \tan^2 \alpha}{2}}$

 $2 \tan \alpha$ $= \frac{1+\tan^2 \alpha}{5+5\tan^2 \alpha+1-\tan^2 \alpha} = \frac{2\tan \alpha}{6+4\tan^2}$ $1 + \tan^2 \alpha$ $=\frac{\tan\alpha}{3+2\tan^2\alpha}$ এখন, 3 tan $(\alpha - \beta) = 3 \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$ $= 3 \frac{\tan \alpha - \frac{\tan \alpha}{3 + 2 \tan^2 \alpha}}{1 + \tan \alpha \cdot \frac{\tan \alpha}{3 + 2 \tan^2 \alpha}}$ $= 3 \frac{3 \tan \alpha + 2 \tan^3 \alpha - \tan \alpha}{3 + 2 \tan^2 \alpha + \tan^2 \alpha}$ $= 3 \frac{2 \tan \alpha + 2 \tan^3 \alpha}{3 + 3 \tan^2 \alpha}$ $= 3 \frac{2 \tan \alpha (1 + \tan^3 \alpha)}{3(1 + \tan^2 \alpha)} = 2 \tan \alpha$ \therefore 3 tan ($\alpha - \beta$) = 2 tan α 13. (a) $\cos (\alpha + \beta) \sin(\gamma + \theta) = \cos(\alpha - \beta)$ $sin (\gamma - \theta)$ হলে দেখাও যে, $tan\theta = tan\alpha tan\beta$ tany প্রমাণ ঃ দেওয়া আছে , $\cos(\alpha + \beta) \sin(\gamma + \theta) =$ $\cos(\alpha - \beta) \sin(\gamma - \theta)$ $\implies \frac{\cos(\alpha+\beta)}{\cos(\alpha-\beta)} = \frac{\sin(\gamma-\theta)}{\sin(\gamma+\theta)}$ $\Rightarrow \frac{\cos(\alpha+\beta)+\cos(\alpha-\beta)}{\cos(\alpha+\beta)-\cos(\alpha-\beta))} = \frac{\sin(\gamma-\theta)+\sin(\gamma+\theta)}{\sin(\gamma-\theta)-\sin(\gamma+\theta)}$ $\Rightarrow \frac{2\cos\alpha\cos\beta}{-2\sin\alpha\sin\beta} = \frac{2\sin\gamma\cos\theta}{-2\sin\theta\cos\gamma}$ $\Rightarrow \frac{1}{\tan \alpha \tan \beta} = \frac{\tan \gamma}{\tan \theta}$ $\tan \Theta = \tan \alpha \tan \beta \tan \gamma$ (Showed) (b) $(\theta - \phi)$ সুক্ষকোণ এবং $\sin \theta + \sin \phi =$ $\sqrt{3}$ (cos φ - cos Θ) হলে দেখাও যে, sin 3 Θ + sin $3\omega = 0$ প্রমাণ $\sin\theta + \sin\phi = \sqrt{3} (\cos\phi - \sin\theta)$

প্রশ্নমালা VII C

1. প্রমাণ কর যে,

(a) $\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ} = \frac{1}{16}$ L.H.S.= $\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}$ = $\sin 10^{\circ} \cdot \frac{1}{2} \cdot \frac{1}{2} \{\cos(70^{\circ} - 50^{\circ}) - \cos(70^{\circ} + 50^{\circ})\}$ = $\frac{1}{4} \sin 10^{\circ} (\cos 20^{\circ} - \cos 120^{\circ})$ = $\frac{1}{4} \sin 10^{\circ} \cos 20^{\circ} - \frac{1}{4} (-\frac{1}{2}) \sin 10^{\circ}$ = $\frac{1}{4} \cdot \frac{1}{2} \{\sin(20^{\circ} + 10^{\circ}) - \sin(20^{\circ} - 10^{\circ})\} + \frac{1}{8} \sin 10^{\circ}$ = $\frac{1}{8} \sin 30^{\circ} - \frac{1}{8} \sin 10^{\circ} + \frac{1}{8} \sin 10^{\circ}$ $=\frac{1}{8}\cdot\frac{1}{2}=\frac{1}{16}=$ R.H.S. (Proved) 1(b) $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$ L.H.S.= $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}$ $=\frac{1}{2}\left\{\cos(40^\circ + 20^\circ) + \right.$ $\cos(40^{\circ}-20^{\circ})$ $\frac{1}{2}$ $\cos 80^{\circ}$ $= \frac{1}{4} \{ \cos 60^\circ + \cos 20^\circ \} \cos (90^\circ - 10^\circ) \}$ $=\frac{1}{4}(\frac{1}{2}+\cos 20^{\circ})\sin 10^{\circ}$ $=\frac{1}{8}\sin 10^\circ + \frac{1}{4}\cos 20^\circ\sin 10^\circ$ $=\frac{1}{9}\sin 10^{\circ} + \frac{1}{9}\left(\sin(20^{\circ} + 10^{\circ})\right)$ $-\sin(20^{\circ}-10^{\circ})$ $= \frac{1}{2}\sin 10^\circ + \frac{1}{2}\sin 30^\circ - \frac{1}{2}\sin 10^\circ$ $=\frac{1}{8} \cdot \frac{1}{2} = \frac{1}{16} = R.H.S.$ (Proved) 1(c) $\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = 3$ **L.H.S.** = $\tan 20^{\circ} \tan 40^{\circ} \tan 60^{\circ} \tan 80^{\circ}$ $= \tan 20^{\circ} \tan 40^{\circ} \sqrt{3} \tan 80^{\circ}$ $=\sqrt{3} \tan 20^{\circ} \tan 40^{\circ} \tan 60^{\circ}$ $=\sqrt{3} \cdot \frac{2\sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ}}{2\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}}$ $=\frac{\sqrt{3}\left\{\cos(40^{0}-20^{0})-\cos(40^{0}+20^{0})\right\}\sin(90^{0}-10^{0})}{\left\{\cos(40^{0}+20^{0})+\cos(40^{0}-20^{0})\right\}\cos(90^{0}-10^{0})}$ $=\sqrt{3} \frac{(\cos 20^{\circ} - \cos 60^{\circ}) \cos 10^{\circ}}{(\cos 60^{\circ} + \cos 20^{\circ}) \sin 10^{\circ}}$ $=\sqrt{3} \frac{\cos 20^{\circ} \cos 10^{\circ} - \frac{1}{2} \cos 10^{\circ}}{\frac{1}{2} \sin 10^{\circ} + \cos 20^{\circ} \sin 10^{\circ}}$

 $=\sqrt{3} \frac{\frac{1}{2} \{\cos(20^{\circ} + 10^{\circ}) + \cos(20^{\circ} - 10^{\circ})\} - \frac{1}{2}\cos 10^{\circ}}{\frac{1}{2} \sin 10^{\circ} + \frac{1}{2} \{\sin(20^{\circ} + 10^{\circ}) - \sin(20^{\circ} - 10^{\circ})\}}$ $= \sqrt{3} \cdot \frac{\frac{1}{2}\cos 30^{\circ} + \frac{1}{2}\cos 10^{\circ} - \frac{1}{2}\cos 10^{\circ}}{\frac{1}{2}\sin 10^{\circ} + \frac{1}{2}\sin 30^{\circ} - \frac{1}{2}\sin 10^{\circ}}$ $= \sqrt{3} \cdot \frac{\frac{1}{2} \cdot \frac{\sqrt{3}}{2}}{\frac{1}{1} \cdot \frac{1}{1}} = \sqrt{3} \cdot \frac{\sqrt{3}}{4} \times 4$ $=\sqrt{3}\sqrt{3}=3=R.H.S.$ 2.(a) $\cos\theta \cos(60^\circ - \theta) \cos(60^\circ + \theta) = \frac{1}{4}\cos 3\theta$ **L.H.S.** = $\cos\theta \cos(60^\circ - \theta) \cos(60^\circ + \theta)$ $= \cos\Theta \cdot \frac{1}{2} \left\{ \cos(60^\circ + \Theta + 60^\circ - \Theta) \right\}$ $+\cos(60^\circ + \Theta - 60^\circ + \Theta)\}$ $= \frac{1}{2}\cos\Theta(\cos 120^\circ + \cos 2\Theta)$ $= \frac{1}{2}\cos\theta(-\frac{1}{2}) + \frac{1}{2}\cos\theta\cos2\theta$ $= -\frac{1}{4}\cos\theta + \frac{1}{2} \cdot \frac{1}{2} \left\{ \cos(2\theta + \theta) + \cos(2\theta - \theta) \right\}$ $= -\frac{1}{4}\cos\theta + \frac{1}{4}\cos\theta + \frac{1}{4}\cos\theta$ $=\frac{1}{4}\cos 3\theta = \text{R.H.S.}$ (Proved) 2(b) cos ($36^{\circ} - \Theta$) cos ($36^{\circ} + \Theta$) + $\cos(54^\circ + \Theta)\cos(54^\circ - \Theta) = \cos 2\Theta$ L.H.S.= $\cos (36^\circ - \Theta) \cos (36^\circ + \Theta) +$ $\cos(54^\circ + \Theta)\cos(54^\circ - \Theta)$ $=\frac{1}{2}(\cos 72^\circ + \cos 2\theta) + \frac{1}{2}(\cos 108^\circ + \cos 2\theta)$ $= \frac{1}{2} \{ \cos(90^{\circ} - 18^{\circ}) + \cos 2\theta \} +$ $\frac{1}{2}\left\{\cos(90^\circ + 18^\circ) + \cos 2\theta\right\}$

 $=\frac{1}{2}(\cos 2\theta + \cos 18^\circ) + \frac{1}{2}(\cos 2\theta - \cos 18^\circ)$ $= \frac{1}{2}(\cos 2\theta + \cos 18^\circ + \cos 2\theta - \cos 18^\circ)$ $=\frac{1}{2}.2\cos 2\Theta = \cos 2\Theta = R.H.S.$ (Proved) 3. প্রমাণ কর যে. (a) $\cos(60^\circ - \theta) + \cos(60^\circ + \theta) - \cos\theta = 0$ **L.H.S.** = $\cos(60^\circ - \Theta) + \cos(60^\circ + \Theta) - \cos \Theta$ $= 2\cos 60^{\circ} \cos \theta - \cos \theta$ $=2.\frac{1}{2}\cos\theta-\cos\theta$ $=\cos\Theta - \cos\Theta = 0 = R.H.S.$ (Proved) (b) $\sin \theta + \sin (120^\circ + \theta) + \sin (240^\circ + \theta) = 0$ [ঢা.'১২] **L.H.S.**= $\sin\theta$ + $\sin(120^{\circ} + \theta)$ + $\sin(240^{\circ} + \theta)$ = sin θ + sin{180° - (60° - θ)} + $sin\{180^{\circ} + (60^{\circ} + \Theta)\}$ $= \sin \theta + \sin(60^{\circ} - \theta) - \sin(60^{\circ} + \theta)$ $= \sin \Theta - \{ \sin(60^\circ + \Theta) - \sin(60^\circ - \Theta) \}$ $=\sin\theta - 2\cos60^{\circ}\sin\theta = \sin\theta - 2$. $\frac{1}{2}\sin\theta$ $= \sin \Theta - \sin \Theta = 0 = R.H.S.$ (Proved) $3(c) \cos 70^{\circ} - \cos 10^{\circ} + \sin 40^{\circ} = 0$ $L.H.S. = cos70^{\circ} - cos10^{\circ} + sin40^{\circ}$ $= 2\sin\frac{1}{2}(70^{\circ} + 10^{\circ})\sin\frac{1}{2}(10^{\circ} - 70^{\circ}) + \sin 40^{\circ}$ $= 2\sin 40^{\circ} \sin(-30^{\circ}) + \sin 40^{\circ}$ $= -2 \sin 40^{\circ} \cdot (\frac{1}{2}) + \sin 40^{\circ}$ $= -\sin 40^{\circ} + \sin 40^{\circ} = 0 = R.H.S.$ 4(a) $\sin 18^\circ + \cos 18^\circ = \sqrt{2} \cos 27^\circ$ [{{}'}] **L.H.S.=** $sin18^{\circ} + cos18^{\circ}$ $= \sin (90^{\circ} - 72^{\circ}) + \cos 18^{\circ}$ $= \cos 72^{\circ} + \cos 18^{\circ}$ $= 2\cos\frac{1}{2}(72^{\circ} + 18^{\circ})\cos\frac{1}{2}(72^{\circ} - 18^{\circ})$

পশমালা VII C $= 2 \cos 45^{\circ} \cos 27^{\circ} = 2. \frac{1}{\sqrt{2}} \cos 27^{\circ}$ $=\sqrt{2}\cos 27^{\circ}$ 4.(b) $\frac{\cos 10^{\circ} - \sin 10^{\circ}}{\cos 10^{\circ} + \sin 10^{\circ}} = \tan 35^{\circ}$ **L.H.S.**= $\frac{\cos 10^{\circ} - \sin 10^{\circ}}{\cos 10^{\circ} + \sin 10^{\circ}}$ $=\frac{\cos 10^{\circ}(1-\tan 10^{\circ})}{\cos 10^{\circ}(1+\tan 10^{\circ})}=\frac{\tan 45^{\circ}-\tan 10^{\circ}}{1+\tan 45^{\circ}\tan 10^{\circ}}$ $= \tan (45^{\circ} - 10^{\circ}) = \tan 35^{\circ} = R.H.S.$ (Proved) $5.(a)\cot(A + 15^{\circ}) - \tan(A - 15^{\circ})$ $=\frac{4\cos 2A}{2\sin 2A+1}$ **L.H.S.** = $\cot(A + 15^{\circ}) - \tan(A - 15^{\circ})$ $=\frac{\cos(A+15^{\circ})}{\sin(A+15^{\circ})}-\frac{\sin(A-15^{\circ})}{\cos(A-15^{\circ})}$ $=\frac{\cos(A+15^0)\cos(A-15^0)-\sin(A+15^0)\sin(A-15^0)}{\sin(A+15^0)\cos(A-15^0)}$ $=\frac{\cos(A+15^{\circ}+A-15^{\circ})}{\frac{1}{2}(\sin 2A+\sin 30^{\circ})}=\frac{2\cos 2A}{\sin 2A+\frac{1}{2}}$ $=\frac{4\cos 2A}{2\sin 2A+1}$ = R.H.S. (Proved) 5(b) $(\cos \alpha + \cos \beta)^2 + (\sin \alpha - \sin \beta)^2$ $=4\cos^2\frac{1}{\alpha}(\alpha+\beta)$ যি.'১২ী L.H.S. = $(\cos \alpha + \cos \beta)^2 + (\sin \alpha - \sin \beta)^2$ = $\cos^2 \alpha + \cos^2 \beta + 2\cos \alpha \cos \beta +$ $\sin^2 \alpha + \sin^2 \beta - 2\sin^2 \alpha \sin \beta$ = $1 + 1 + 2 (\cos \alpha \cos \beta - \sin \alpha \sin \beta)$ $= 2 \{ 1 + \cos (\alpha + \beta) \}$ = 2. 2 $\cos^2 \frac{1}{2} (\alpha + \beta)$ = $4\cos^2\frac{1}{2}(\alpha+\beta)$ = R.H.S. (Prived) 5 c) $2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + \cos\frac{3\pi}{13} + \cos\frac{5\pi}{13} = 0$

L.H.S. = $2\cos\frac{\pi}{12}\cos\frac{9\pi}{12} + \cos\frac{3\pi}{12} + \cos\frac{5\pi}{12}$ $= 2\cos\frac{\pi}{12}\cos\frac{9\pi}{12} + 2\cos\frac{1}{2}(\frac{5\pi}{12} + \frac{3\pi}{12})$ $\cos\frac{1}{2}(\frac{5\pi}{12}-\frac{3\pi}{12})$ $= 2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + 2\cos\frac{4\pi}{13}\cos\frac{\pi}{13}$ $= 2\cos\frac{\pi}{12}\cos\frac{9\pi}{12} + 2\cos(\pi - \frac{9\pi}{12})\cos\frac{\pi}{12}$ $= 2\cos\frac{\pi}{12}\cos\frac{9\pi}{12} - 2\cos\frac{\pi}{13}\cos\frac{9\pi}{13}$ = 0 = R.H.S. (Proved) 6. $\left(\frac{\cos A + \cos B}{\sin A - \sin B}\right)^n + \left(\frac{\sin A + \sin B}{\cos A - \cos B}\right)^n$ $=2\cot^n\frac{1}{2}(A-B)$ অথবা 0 যখন n যথাক্রমে জোড় অথবা বিজ্ঞোড সংখ্যা । $\left(\frac{\cos A + \cos B}{\sin A - \sin B}\right)^n + \left(\frac{\sin A + \sin B}{\cos A - \cos B}\right)^n$ $= \left(\frac{2\cos\frac{1}{2}(A+B)\cos\frac{1}{2}(A-B)}{2\cos\frac{1}{2}(A+B)\sin\frac{1}{2}(A-B)}\right)^{n} +$ $\left(\frac{2\sin\frac{1}{2}(A+B)\cos\frac{1}{2}(A-B)}{2\sin\frac{1}{2}(A+B)\sin\frac{1}{2}(B-A)}\right)^{n}$ $= \left(\cot\frac{1}{2}(A-B)\right)^{n} + \left(\frac{\cos\frac{1}{2}(A-B)}{-\sin\frac{1}{2}(A-B)}\right)$ $= \cot^{n} \frac{1}{2}(A-B) + \left(-\cot \frac{1}{2}(A-B)\right)^{n}$ $= \cot^{n} \frac{1}{2} (A - B) + (-1)^{n} \cot^{n} \frac{1}{2} (A - B)$ যখন n বিজোড় সংখ্যা, $\cot^{n} \frac{1}{2}(A-B) + (-1)^{n} \cot^{n} \frac{1}{2}(A-B)$

উচ্চতর গণিত : ১ম পত্র সমাধান

 $= \cot^{n} \frac{1}{2} (A - B) - \cot^{n} \frac{1}{2} (A - B) = 0,$ যখন n জোড় সংখ্যা, $\cot^{n} \frac{1}{2}(A-B) + (-1)^{n} \cot^{n} \frac{1}{2}(A-B)$ $= \cot^{n} \frac{1}{2}(A-B) + \cot^{n} \frac{1}{2}(A-B)$ $= 2 \cot^n \frac{1}{2} (A - B)$ $\left(\frac{\cos A + \cos B}{\sin A - \sin B}\right)^{a} + \left(\frac{\sin A + \sin B}{\cos A - \cos B}\right)^{a} =$ $\left(\frac{\sin A - \sin B}{2}\right)^{-1} \left(\cos A - \cos B\right)$ $2\cot^{n}\frac{1}{2}(A - B)$ অথবা ০ যখন যথাক্রমে জোড় অথবা $\Rightarrow \frac{\cot\frac{y - x}{2}}{\tan\frac{x + y}{2}} = \frac{k + 1}{k - 1}$ বিজোড সংখ্যা। 7. (a) $a\cos\alpha + b\sin\alpha = a\cos\beta + b\sin\beta$ হল দেখাও যে, $\cos^2 \frac{\alpha + \beta}{2} - \sin^2 \frac{\alpha + \beta}{2} = \frac{a^2 - b^2}{a^2 + b^2}$ দেওয়া আছে, $a \cos \alpha + b \sin \alpha = a \cos \beta + b \sin \beta$ \Rightarrow a (cos α - cos β) = b (sin β - sin α) \Rightarrow a .2 sin $\frac{\alpha + \beta}{2}$ sin $\frac{\beta - \alpha}{2}$ = b.2 $\sin \frac{\beta - \alpha}{2} \cos \frac{\alpha + \beta}{2}$ $\Rightarrow \frac{\cos\frac{\alpha+\beta}{2}}{\sin\frac{\alpha+\beta}{2}} = \frac{a}{b} \Rightarrow \frac{\cos^2\frac{\alpha+\beta}{2}}{\sin^2\frac{\alpha+\beta}{2}} = \frac{a^2}{b^2}$ $\Rightarrow \frac{\cos^2 \frac{\alpha + \beta}{2} + \sin^2 \frac{\alpha + \beta}{2}}{\cos^2 \frac{\alpha + \beta}{2} - \sin^2 \frac{\alpha + \beta}{2}} = \frac{a^2 + b^2}{a^2 - b^2}$ [যোজন – বিয়োজন করে ।] $\Rightarrow \frac{1}{\cos^2 \frac{\alpha + \beta}{2} - \sin^2 \frac{\alpha + \beta}{2}} = \frac{a^2 + b^2}{a^2 - b^2}$ $\cos^{2}(\frac{\alpha+\beta}{2}) - \sin^{2}(\frac{\alpha+\beta}{2}) = \frac{a^{2}-b^{2}}{a^{2}+b^{2}}$

7.(b) cos x = k cos y হলে দেখাও যে, $\tan\frac{x+y}{2} = \frac{k-1}{k+1}\cot\frac{y-x}{2}$ প্রমাণ ঃ দেওয়া আছে , $\cos x = k \cos y$ $\Rightarrow \frac{\cos x}{\cos y} = \frac{k}{1} \Rightarrow \frac{\cos x + \cos y}{\cos x - \cos y} = \frac{k+1}{k-1}$ $\Rightarrow \frac{2\cos\frac{x+y}{2}\cos\frac{y-x}{2}}{2\sin\frac{y-x}{2}\sin\frac{x+y}{2}} = \frac{k+1}{k-1}$ $\tan \frac{x+y}{2} = \frac{k-1}{k+1} \cot \frac{x+y}{2}$ 7(c) $\sin \theta = k \sin (\alpha - \theta)$ $\tan (\Theta - \frac{\alpha}{2}) = \frac{k-1}{k+1} \tan \frac{\alpha}{2}$ প্রমাণ ঃ দেওয়া আছে , $\sin \theta = k \sin (\alpha - \theta)$ $\Rightarrow \frac{\sin \theta}{\sin(\alpha - \theta)} = \frac{k}{1}$ $\Rightarrow \frac{\sin \theta + \sin(\alpha - \theta)}{\sin \theta - \sin(\alpha - \theta)} = \frac{k + 1}{k - 1}$ $\Rightarrow \frac{2\sin\frac{\theta+\alpha-\theta}{2}\cos\frac{\theta-\alpha+\theta}{2}}{2\cos\frac{\theta+\alpha-\theta}{2}\sin\frac{\theta-\alpha+\theta}{2}} = \frac{k+1}{k-1}$ $\Rightarrow \frac{\tan\frac{\alpha}{2}}{\tan(\theta - \frac{\alpha}{2})} = \frac{k+1}{k-1}$ $\tan\left(\Theta - \frac{\alpha}{2}\right) = \frac{k-1}{k+1} \tan \frac{\alpha}{2}$ (Showed). $7(d) \frac{\tan(\theta + \alpha)}{\tan(\theta + \beta)} = \frac{a}{h}$ হলে দেখাও যে, $\frac{a+b}{a-h} \sin^2$ $(\alpha - \beta) = \sin^2(\Theta + \alpha) - \sin^2(\Theta + \beta)$ প্রমাণ ঃ দেওরা আছে , $\frac{\tan(\theta + \alpha)}{\tan(\theta + \beta)} = \frac{a}{b}$

প্রশ্নমান্ত্রা VII C

 $\Rightarrow \frac{\tan(\theta + \alpha) + \tan(\theta + \beta)}{\tan(\theta + \alpha) - \tan(\theta + \beta)} = \frac{a + b}{a - b}$ [যোজন – বিয়োজন করে।] $\Rightarrow \frac{\frac{\sin(\theta + \alpha)}{\cos(\theta + \alpha)} + \frac{\sin(\theta + \beta)}{\cos(\theta + \beta)}}{\frac{\sin(\theta + \alpha)}{\sin(\theta + \alpha)} = \frac{a + b}{a - b}}$ $\cos(\theta + \alpha) = \cos(\theta + \beta)$ $\sin(\theta + \alpha)\cos(\theta + \beta) + \sin(\theta + \beta)\cos(\theta + \alpha)$ $\sin(\theta + \alpha)\cos(\theta + \beta) - \sin(\theta + \beta)\cos(\theta + \alpha)$ $=\frac{a+b}{a-b}$ $\Rightarrow \frac{\sin\{(\theta + \alpha) + (\theta + \beta)\}}{\sin\{(\theta + \alpha) - (\theta + \beta)\}} = \frac{a + b}{a - b}$ $\Rightarrow \frac{a+b}{a-b}\sin(\alpha-\beta) = \sin\{(\theta+\alpha) + (\theta+\beta)\}$ $\Rightarrow \frac{a+b}{a-b}\sin^2(\alpha-\beta) =$ $sin\{(\theta + \alpha) + (\theta + \beta)\} sin\{(\theta + \alpha) - (\theta + \beta)\}$ $\therefore \frac{a+b}{b} \sin^2(\alpha - \beta) = \sin^2(\theta + \alpha) - \sin^2(\theta + \beta)$ $[:: \sin(A+B)\sin(A-B) = \sin^2 A - \sin^2 B]$ 8. $\frac{x}{\tan(\theta + \alpha)} = \frac{y}{\tan(\theta + \beta)} = -\frac{z}{\tan(\theta + \gamma)}$ and দেখাও যে, $\frac{x+y}{x-y}\sin^2(\alpha-\beta) +$ $\frac{y+z}{y-z}\sin^2(\beta-\gamma) + \frac{z+x}{z-x}\sin^2(\gamma-\alpha) = 0$ প্রমাণ: দেওয়া আছে. $\frac{x}{\tan(\theta + \alpha)} = \frac{y}{\tan(\theta + \beta)} = \frac{z}{\tan(\theta + \gamma)}$ ১ম ও ২য় অনুপাত হতে পাই, $\tan(\theta + \alpha)$ $\tan(\theta + \beta)$ $\Rightarrow \frac{\tan(\theta + \alpha)}{\tan(\theta + \beta)} = \frac{x}{y}$ $\Rightarrow \frac{\tan(\theta + \alpha) + \tan(\theta + \beta)}{\tan(\theta + \alpha) - \tan(\theta + \beta)} = \frac{x + y}{x - v}$ [যোজন – বিয়োজন করে।]

 $\frac{\sin(\theta + \alpha)}{1} + \frac{\sin(\theta + \beta)}{1}$ $\Rightarrow \frac{\cos(\theta + \alpha)}{\sin(\theta + \alpha)} + \frac{\cos(\theta + \beta)}{\sin(\theta + \beta)} = \frac{x + y}{x - y}$ $\cos(\theta + \beta)$ $\cos(\theta + \alpha)$ $\Rightarrow \frac{\sin(\theta + \alpha)\cos(\theta + \beta) + \sin(\theta + \beta)\cos(\theta + \alpha)}{\sin(\theta + \alpha)\cos(\theta + \beta) - \sin(\theta + \beta)\cos(\theta + \alpha)}$ $=\frac{x+y}{x-y}$ $\Rightarrow \frac{\sin\{(\theta + \alpha) + (\theta + \beta)\}}{\sin\{(\theta + \alpha) + (\theta + \beta)\}} = \frac{x + y}{x - y}$ $\Rightarrow \frac{x+y}{y-y} \sin(\alpha-\beta) = \sin\{(\theta+\alpha)+(\theta+\beta)\}$ $\Rightarrow \frac{x+y}{x-y} \sin^2(\alpha-\beta) =$ $sin\{(\theta + \alpha) + (\theta + \beta)\} sin\{(\theta + \alpha) - (\theta + \beta)\}$ $\therefore \frac{x+y}{x-y} \sin^2(\alpha-\beta) = \sin^2(\theta+\alpha) - \sin^2(\theta+\beta)$ অনুরূপভাবে, $\frac{v}{\tan(\theta + \beta)} = \frac{z}{\tan(\theta + \gamma)}$ $\Rightarrow \frac{y+z}{y-z} \sin^2(\beta - \gamma) = \sin^2(\theta + \beta) - \sin^2(\theta + \gamma)$ এবং $\frac{z}{\tan(\theta + \chi)} = \frac{x}{\tan(\theta + \alpha)}$ $\Rightarrow \frac{z+x}{z-x} \sin^2(\gamma - \alpha) = \sin^2(\theta + \gamma) - \sin^2(\theta + \alpha)$ $\frac{x+y}{x-y}\sin^2(\alpha-\beta) + \frac{y+z}{y-z}\sin^2(\beta-\gamma) +$ $\frac{z+x}{z-x}\sin^2(\gamma-\alpha) = \sin^2(\theta+\alpha) - \sin^2(\theta+\beta) + \frac{z+x}{z-x}\sin^2(\theta+\beta) + \frac{z+x}{z-x}\cos^2(\theta+\beta) + \frac{z+x}{z-x}\cos^2(\theta+\beta) + \frac{z+x}{z-x}\cos^2(\theta+\beta)$ $\sin^{2}(\theta + \beta) - \sin^{2}(\theta + \gamma) + \sin^{2}(\theta + \gamma)$ $-\sin^2(\theta + \alpha) = 0$ 9 (a) $\sin \Lambda + \cos A = \sin B + \cos B$ even

দেখাও যে, A + B = $\frac{\pi}{2}$ [সি. '০৯; চ., াদ. '১০; ৰ. ১২] প্রমাণঃ দেওয়া আছে, sinA + cosA = sinB + cosB \Rightarrow sinA - sinB = cosB - cosA $\Rightarrow 2 \cos{\frac{1}{2}}(A + B) \sin{\frac{1}{2}}(A - B)$ উচ্চতর গণিত: ১ম পত্র সমাধান বইঘর কম

$$= 2\sin\frac{1}{2}(A + B)\sin\frac{1}{2}(A - B)$$

$$\Rightarrow \frac{\sin\frac{1}{2}(A + B)}{\cos\frac{1}{2}(A + B)} = 1$$

$$\Rightarrow \tan\frac{1}{2}(A + B) = \tan\frac{\pi}{4} \Rightarrow \frac{1}{2}(A + B) = \frac{\pi}{4}$$

$$\therefore A + B = \frac{\pi}{2}$$

 $9(b) \sin \Theta + \sin \phi = a$ এবং $\cos \Theta + \cos \phi = b$ হলে দেখাও যে, $\tan \frac{\theta - \varphi}{2} = \pm \sqrt{\frac{4 - a^2 - b^2}{a^2 + b^2}}$ প্রমাণ ঃ দেওয়া আছে , $\sin \Theta + \sin \varphi = a$ $\Rightarrow 2\sin\frac{1}{2}(\theta + \phi)\cos\frac{1}{2}(\theta - \phi) = a$ উভয় পক্ষকে বর্গ করে আমরা পাই $4\sin^2\frac{1}{2}(\Theta + \phi)\cos^2\frac{1}{2}(\Theta - \phi) = a^2\cdots(1)$ এবং $\cos\theta + \cos\theta = \mathbf{b}$ $\Rightarrow 2\cos\frac{1}{2} (\Theta + \varphi)\cos\frac{1}{2} (\Theta - \varphi) = b$ উভয় পক্ষকে বর্গ করে আমরা পাই , $4\cos^2\frac{1}{2}(\Theta + \phi)\cos^2\frac{1}{2}(\Theta - \phi) = b^2\cdots(2)^{-1}$ (1) ও (2) যোগ করে আমরা পাই $4\cos^2\frac{1}{2}(\Theta-\phi)\left\{\sin^2\frac{1}{2}(\Theta+\phi)+\right.$ $\cos^2\frac{1}{2}\left(\Theta + \varphi\right) = a^2 + b^2$ $\Rightarrow \cos^2 \frac{1}{2} (\epsilon - \varphi) = \frac{a^2 + b^2}{4}$ \Rightarrow s. $\frac{1}{2}(\Theta - \varphi) = \frac{4}{a^2 + b^2}$ $\Rightarrow 1 + \tan^2 \frac{1}{2} (\Theta - \varphi) = \frac{4}{a^2 + b^2}$ $\Rightarrow \tan^2 \frac{1}{2} (\Theta - \varphi) = \frac{4}{a^2 + b^2} - 1$ $=\frac{4-a^2-b^2}{a^2+b^2}$

 $\therefore \tan \frac{1}{2} (\Theta - \varphi) = \pm \sqrt{\frac{4 - a^2 - b^2}{a^2 + b^2}}$ 9.(c) $\operatorname{cosec} A + \operatorname{sec} A = \operatorname{cosec} B + \operatorname{sec} B$ হলে দেখাও যে, tan A tan B = $\cot \frac{A+B}{2}$ প্রমাণঃ দেওয়া আছে. $\operatorname{cosec} A + \operatorname{sec} A = \operatorname{cosec} B + \operatorname{sec} B$ \Rightarrow cosec A - cosec B = sec B - sec A $\Rightarrow \frac{1}{\sin A} - \frac{1}{\sin B} = \frac{1}{\cos B} - \frac{1}{\cos A}$ $\Rightarrow \frac{\sin B - \sin A}{\sin A \sin B} = \frac{\cos A - \cos B}{\cos A \cos B}$ $\Rightarrow \frac{\sin B - \sin A}{\cos A - \cos B} = \frac{\sin A \sin B}{\cos A \cos B}$ $\Rightarrow \frac{2\cos\frac{A+B}{2}\sin\frac{B-A}{2}}{2\sin\frac{A+B}{2}\sin\frac{B-A}{2}} = \tan A \tan B$ $\tan A \tan B = \cot\left(\frac{A+B}{2}\right)$ 10. $x \cos \alpha + y \sin \alpha = k = x \cos \beta + \beta$ y sin β হলে দেখাও যে, $\frac{x}{\cos\frac{1}{2}(\alpha+\beta)} = \frac{y}{\sin\frac{1}{2}(\alpha+\beta)} = \frac{k}{\cos\frac{1}{2}(\alpha-\beta)}$ প্রমাণ ঃ দেওয়া আছে . $x \cos \alpha + y \sin \alpha - k = 0 \cdots (1)$ $x \cos \beta + y \sin \beta - k = 0 \cdots (2)$ বজ্রগুণন প্রক্রিয়ায সাহায়্যে (1) ও (2) হতে আমরা পাই $\frac{x}{\sin \alpha + \sin \beta} = \frac{y}{-\cos \beta + \cos \alpha}$ $=\frac{k}{\cos\alpha\sin\beta}-\sin\alpha\cos\beta$ $\Rightarrow \frac{x}{2\cos\frac{1}{2}(\alpha+\beta)\sin\frac{1}{2}(\beta-\alpha)}$ $=\frac{y}{2\sin\frac{1}{2}(\alpha+\beta)\sin\frac{1}{2}(\beta-\alpha)}=\frac{k}{\sin(\beta-\alpha)}$

প্রশ্নমালা VII C

 $\Rightarrow \frac{x}{2\cos\frac{1}{2}(\alpha+\beta)\sin\frac{1}{2}(\beta-\alpha)}$ $=\frac{y}{2\sin\frac{1}{2}(\alpha+\beta)\sin\frac{1}{2}(\beta-\alpha)}$ $=\frac{\kappa}{2\sin\frac{1}{2}(\beta-\alpha)\cos\frac{1}{2}(\beta-\alpha)}$ $\therefore \frac{x}{\cos\frac{1}{2}(\alpha+\beta)} = \frac{y}{\sin\frac{1}{2}(\alpha+\beta)} = \frac{k}{\cos\frac{1}{2}(\alpha-\beta)} = \frac{1}{4} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{8} = \text{R.H.S.} \text{ (Proved)}$ 11. sin $\frac{\pi}{16}$.sin $\frac{3\pi}{16}$.sin $\frac{5\pi}{16}$.sin $\frac{7\pi}{16}$ এর মান নির্ণয সমাধান: $\sin \frac{\pi}{16} \sin \frac{3\pi}{16} \sin \frac{5\pi}{16} \sin \frac{7\pi}{16}$ $= \frac{1}{4} (2\sin\frac{7\pi}{16}\sin\frac{\pi}{16})(2\sin\frac{5\pi}{16}\sin\frac{3\pi}{16})$ $= \frac{1}{4} \{ \cos(\frac{7\pi}{16} - \frac{\pi}{16}) - \cos(\frac{7\pi}{16} + \frac{\pi}{16}) \}$ $\left\{\cos(\frac{5\pi}{16} - \frac{3\pi}{16}) - \cos(\frac{5\pi}{16} + \frac{3\pi}{16})\right\}$ $= \frac{1}{4} \left(\cos \frac{3\pi}{2} - \cos \frac{\pi}{2} \right) \left(\cos \frac{\pi}{2} - \cos \frac{\pi}{2} \right)$ $= \frac{1}{4} \{ \cos(\frac{\pi}{2} - \frac{\pi}{8}) - 0 \} (\cos \frac{\pi}{8} - 0)$ $= \frac{1}{4}\sin\frac{\pi}{8}\cos\frac{\pi}{8} = \frac{1}{8}\sin 2.\frac{\pi}{8}$ $=\frac{1}{8}\sin\frac{\pi}{4}=\frac{1}{8}\cdot\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{16}$ (Ans.) অতিরিক্ত প্রশ্ন (সমাধানসহ) প্রমাণ কর যে, $1(a)\cos 10^{\circ}\cos 50^{\circ}\cos 70^{\circ} = \frac{\sqrt{3}}{2}$ [প্র.জ.প. '৯৩] $L.H.S = cos10^{\circ} cos50^{\circ} cos70^{\circ}$ $= \frac{1}{2} \{ \cos(50^\circ + 10^\circ) + \cos(50^\circ - 10^\circ) \}$ $\cos(90^{\circ} - 20^{\circ})$

ট. গ. (১ম পত্র) সমাধান–৩২

 $=\frac{1}{2} (\cos 60^\circ + \cos 40^\circ) \sin 20^\circ$ $=\frac{1}{2}.\frac{1}{2}\sin 20^{\circ}+\frac{1}{2}\cos 40^{\circ}\sin 20^{\circ}$ $= \frac{1}{4}\sin 20^\circ + \frac{1}{2} \cdot \frac{1}{2} \{ \sin(40^\circ + 20^\circ)$ $sin (40^{\circ} - 20^{\circ})$ $=\frac{1}{4}\sin 20^\circ + \frac{1}{4}\sin 60^\circ - \frac{1}{4}\sin 20^\circ$ 1.(b) sin 20° sin 40° sin 60° sin 80° = $\frac{3}{16}$ **L.H.S** = $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}$ $=\frac{1}{2}\left(\cos(40^{\circ}-20^{\circ})-\right)$ $\cos(40^\circ + 20^\circ)$. $\frac{\sqrt{3}}{2}$. $\sin 80^\circ$ $=\frac{\sqrt{3}}{4}(\cos 20^{\circ} - \cos 60^{\circ})\sin(90^{\circ} - 10^{\circ})$ $=\frac{\sqrt{3}}{4}(\cos 20^\circ - \frac{1}{2})\cos 10^\circ$ $=\frac{\sqrt{3}}{4}\cos 20^{\circ}\cos 10^{\circ}-\frac{\sqrt{3}}{2}\cos 10^{\circ}$ $=\frac{\sqrt{3}}{4}\frac{1}{2}\left\{\cos(20^\circ-10^\circ)+\cos(20^\circ+10^\circ)\right\}$ $-\frac{\sqrt{3}}{2}\cos 10^{\circ}$ $=\frac{\sqrt{3}}{9}\cos 10^{\circ} + \frac{\sqrt{3}}{9}\cos 30^{\circ} - \frac{\sqrt{3}}{9}\cos 10^{\circ}$ $=\frac{\sqrt{3}}{2}$. $\frac{\sqrt{3}}{2}=\frac{3}{16}=$ R.H.S. (Proved) 1(c) cos 10° cos 30° cos 50° cos 70° = $\frac{3}{16}$ **L.H.S.** = $\cos 10^{\circ} \cos 30^{\circ} \cos 50^{\circ} \cos 70^{\circ}$ $= \cos 10^{\circ} \cdot \frac{\sqrt{3}}{2} \frac{1}{2} \left\{ \cos(70^{\circ} + 50^{\circ}) + \right.$

 $\cos(70^{\circ} - 50^{\circ})$ $=\frac{\sqrt{3}}{4}.\cos 10^{\circ}\cos 120^{\circ}+\frac{\sqrt{3}}{4}\cos 20^{\circ}\cos 10^{\circ}$ $=\frac{\sqrt{3}}{4}\cos 10^{\circ} \cdot (-\frac{1}{2}) + \frac{\sqrt{3}}{4} \cdot \frac{1}{2} \left\{\cos(20^{\circ} + 10^{\circ})\right\}$ $+\cos(20^{\circ}-10^{\circ})$ $=-\frac{\sqrt{3}}{2}\cos 10^\circ + \frac{\sqrt{3}}{2}\cos 30^\circ + \frac{\sqrt{3}}{2}\cos 10^\circ$ $=\frac{\sqrt{3}}{8}.\frac{\sqrt{3}}{2}=\frac{3}{16}=$ R.H.S. (Proved) 2(a) $4\cos\theta\cos(\frac{2\pi}{3}+\theta)\cos(\frac{4\pi}{3}+\theta)=\cos 3\theta$ **LH.S.** = $4\cos\Theta\cos(\frac{2\pi}{2} + \Theta)\cos(\frac{4\pi}{2} + \Theta)$ = $4\cos\theta \cdot \frac{1}{2}\left\{\cos\left(\frac{4\pi}{3} + \frac{2\pi}{3} + 2\theta\right) + \right.$ $\cos(\frac{4\pi}{2}-\frac{2\pi}{2})\}$ $= 2\cos\theta \left\{ \cos\left(2\pi + 2\theta\right) + \cos\frac{2\pi}{2} \right\}$ $= 2\cos\Theta\cos2\Theta + 2\cos\Theta(-\frac{1}{2})$ $= \cos (2\theta + \theta) + \cos (2\theta - \theta) - \cos \theta$ $= \cos 3\theta + \cos \theta - \cos \theta$ $= \cos 3\Theta = R.H.S.$ (Proved) 2(b) sin (45°+A) sin (45°-A) = $\frac{1}{2}$ cos2A **L.H.S.** = sin $(45^{\circ} + A) sin(45^{\circ} - A)$ $=\frac{1}{2}\left(\cos(45^\circ + A - 45^\circ + A) - 45^\circ + A\right)$ $\cos(45^{\circ} + A + 45^{\circ} - A)$ $=\frac{1}{2}(\cos 2A - \cos 90^{\circ}) = \frac{1}{2}(\cos 2A - 0)$ $=\frac{1}{2}\cos 2A = R.H.S.$ (Proved) $2(c) 4 \cos \frac{B+C}{2} \cos \frac{C+A}{2} \cos \frac{A+B}{2}$ $= \cos A + \cos B + \cos C + \cos (A + B + C)$ L.H.S.= $4\cos\frac{B+C}{2}\cos\frac{C+A}{2}\cos\frac{A+B}{2}$ $=2\{\cos\frac{1}{2}(B+C+C+A)+$ $\cos\frac{1}{2}(B+C-C-A) \right\} \cos\frac{A+B}{2}$ $= 2\cos{\frac{1}{2}}(B + 2C + A)\cos{\frac{A+B}{2}} +$ $2\cos\frac{1}{2}(B-A)\cos\frac{A+B}{2}$ $=\cos\frac{1}{2}(A + B + 2C + A + B) +$ $\cos \frac{1}{2} (A + B + 2C - A - B) +$ $\cos\frac{1}{2}(B-A+A+B) +$ $\cos\frac{1}{2}(B-A-A-B)$ $= \cos(A + B + C) + \cos C + \cos B$ $+\cos(-A)$ $= \cos A + \cos B + \cos C + \cos (A + B + C)$ = R.H.S. (Proved) 3(a) $\sin\theta + \sin(60^{\circ} - \theta) - \sin(60^{\circ} + \theta) = 0$ **L.H.S.** = $\sin\theta + \sin(60^\circ - \theta) - \sin(60^\circ + \theta)$ $= \sin \Theta - \{\sin(60^\circ + \Theta) - \sin(60^\circ - \Theta)\}$ $=\sin\theta - 2\sin\theta\cos^{2}\theta = \sin\theta - 2(\frac{1}{2})\sin\theta$ $= \sin \theta - \sin \theta = 0 = R.H.S.$ (Proved) (b) $\cos 40^\circ + \cos 80^\circ + \cos 160^\circ = 0$ **L.H.S.** = $\cos 40^{\circ} + \cos 80^{\circ} + \cos 160^{\circ}$ $= \cos 40^{\circ} + 2\cos \frac{1}{2}(160^{\circ} + 80^{\circ})$ $\cos\frac{1}{2}(160^{\circ} - 80^{\circ})$ $= \cos 40^{\circ} + 2 \cos 120^{\circ} \cos 40^{\circ}$ $=\cos 40^{\circ} + 2(-\frac{1}{2})\cos 40^{\circ}$ $= \cos 40^{\circ} - \cos 40^{\circ} = 0 = R.H.S.$ 4. $\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ$

श्रम्भाष्ट्रा VII C

L.H.S. = $\sin 65^{\circ} + \cos 65^{\circ}$ $= \sin 65^{\circ} + \cos (90^{\circ} - 25^{\circ})$ $= \sin 65^\circ + \sin 25^\circ$ $= 2 \sin \frac{1}{2} (65^{\circ} + 25^{\circ}) \cos (65^{\circ} - 25^{\circ})$ $= 2 \sin 45^{\circ} \cos 20^{\circ} = 2. \frac{1}{\sqrt{2}} \cos 20^{\circ}$ $=\sqrt{2}\cos 20^\circ = R.H.S.$ (Proved) 5.(a) $\tan(\frac{\pi}{6} + \Theta) \tan(\frac{\pi}{6} - \Theta) = \frac{2\cos 2\theta - 1}{2\cos 2\theta + 1}$ **L.H.S.**= $\tan(\frac{\pi}{6} + \Theta) \tan(\frac{\pi}{6} - \Theta)$ $=\frac{\sin(\frac{\pi}{6}+\theta)\sin(\frac{\pi}{6}-\theta)}{\cos(\frac{\pi}{6}+\theta)\cos(\frac{\pi}{6}-\theta)}$ $=\frac{2\sin(\frac{\pi}{6}+\theta)\sin(\frac{\pi}{6}-\theta)}{1-\frac{\pi}{6}-\theta}$ $2\cos(\frac{\pi}{\epsilon}+\theta)\cos(\frac{\pi}{\epsilon}-\theta)$ $=\frac{\cos(\frac{\pi}{6}+\theta-\frac{\pi}{6}+\theta)-\cos(\frac{\pi}{6}+\theta+\frac{\pi}{6}-\theta)}{2}$ $\cos(\frac{\pi}{6} + \theta - \frac{\pi}{6} + \theta) + \cos(\frac{\pi}{6} + \theta + \frac{\pi}{6} - \theta)$ $=\frac{\cos 2\theta - \cos \frac{\pi}{3}}{\cos 2\theta + \cos \frac{\pi}{3}} = \frac{\cos 2\theta - \frac{1}{2}}{\cos 2\theta + \frac{1}{2}}$ $=\frac{2\cos 2\theta - 1}{2\cos 2\theta + 1} = \text{R.H.S.} \text{ (Proved)}$ 5.(b) $\sin(\alpha + \beta + \gamma) + \sin(\alpha - \beta - \gamma) + \sin(\alpha + \beta)$ $-\gamma$) + sin($\alpha - \beta + \gamma$) = 4 sin $\alpha \cos\beta \cos\gamma$ L.H.S.= $sin(\alpha + \beta + \gamma) + sin(\alpha - \beta - \gamma)$ $+\sin(\alpha + \beta - \gamma) + \sin(\alpha - \beta + \gamma)$ $= \sin\{\alpha + (\beta + \gamma)\} + \sin\{\alpha - (\beta + \gamma)\} +$ $sin{\alpha + (\beta - \gamma)} + sin{\alpha - (\beta - \gamma)}$ = $2 \sin \alpha \cos(\beta + \gamma) + 2 \sin \alpha \cos(\beta - \gamma)$ = $2 \sin \alpha \{ \cos(\beta + \gamma) + \cos(\beta - \gamma) \}$ = $2 \sin \alpha . 2 \cos \beta \cos \gamma$ = $4 \sin \alpha \cos \beta \cos \gamma = R.H.S.$ (Prived)

 $6 \sin x = k \sin y$ হলে দেখাও যে, $\tan\frac{x-y}{2} = \frac{k-1}{k+1}\tan\frac{x+y}{2}$ [প্র.ড.প. '৯৭] **প্রমাণ ঃ** দেওয়া আছে , sin x = k sin y $\Rightarrow \frac{\sin x}{\sin y} = \frac{k}{1} \Rightarrow \frac{\sin x + \sin y}{\sin x - \sin y} = \frac{k+1}{k-1}$ $\Rightarrow \frac{2\sin\frac{x+y}{2}\cos\frac{x-y}{2}}{2\sin\frac{x-y}{2}\cos\frac{x+y}{2}} = \frac{k+1}{k-1}$ $\Rightarrow \frac{\tan \frac{x+y}{2}}{\tan \frac{x-y}{2}} = \frac{k+1}{k-1}$ $\therefore \tan \frac{x-y}{2} = \frac{k-1}{k+1} \tan \frac{x+y}{2}$ 7. $x \sin \varphi = y \sin (2\Theta + \varphi)$ হলে দেখাও যে, $\cot(\Theta + \varphi) = \frac{x - y}{x + y} \cot \Theta$ প্রমাণ ঃ দেওয়া আছে, $x \sin \varphi = y \sin (2\Theta + \varphi)$ $\Rightarrow \frac{\sin(2\theta + \varphi)}{\sin \varphi} = \frac{x}{y}$ $\Rightarrow \frac{\sin(2\theta + \varphi) - \sin\varphi}{\sin(2\theta + \varphi) + \sin\varphi} = \frac{x - y}{x + y}$ $\Rightarrow \frac{2\cos\frac{2\theta+\phi+\phi}{2}\sin\frac{2\theta+\phi-\phi}{2}}{2\sin\frac{2\theta+\phi+\phi}{2}\cos\frac{2\theta+\phi-\phi}{2}} = \frac{x-y}{x+y}$ $\Rightarrow \frac{\cot(\theta + \phi)}{\cot \theta} = \frac{x - y}{x + y}$ $\therefore \cot(\Theta + \varphi) = \frac{x - y}{x + y} \cot \Theta \text{ (Showed)}$ প্রশ্নমালা -VII D প্রমাণ কর যে. 1. (a) $\frac{1+\cos 2\theta}{\sin 2\theta} = \cot \theta$

L.H.S.= $\frac{1 + \cos 2\theta}{\sin 2\theta} = \frac{2\cos^2 \theta}{2\sin \theta \cos \theta} = \frac{\cos \theta}{\sin \theta}$ $= \cot \theta = R.H.S.$ (proved) 1(b) $\sin 2x \tan 2x = \frac{4\tan^2 x}{1-\tan^4 x}$ **L.H.S.** = sin $2x \tan 2x$ $= \frac{2\tan x}{1+\tan^2 x} \times \frac{2\tan x}{1-\tan^2 x}$ $=\frac{4\tan^2 x}{1-\tan^4 x}$ = R.H.S. (proved) 1(c) $\tan \theta$ + 2 $\tan 2\theta$ + 4 $\tan 4\theta$ + [য. '০২; সি. '০৮] 8 cot 8 Θ = cot Θ প্রমাণ : 4 tan 4Θ + 8 cot 8Θ $=4(\frac{\sin 4\theta}{\cos 4\theta}+2\frac{\cos 8\theta}{\sin 8\theta})$ $=4(\frac{\sin 4\theta}{\cos 4\theta}+\frac{2\cos 8\theta}{2\sin 4\theta\cos 4\theta})$ $=4(\frac{\sin^2 4\theta + 1 - 2\sin^2 4\theta}{\sin 4\theta \cos 4\theta})$ $=4\frac{1-\sin^2 4\theta}{\sin 4\theta \cos 4\theta} = 4(\frac{\cos^2 4\theta}{\sin 4\theta \cos 4\theta})$ $= 4 \cot 4\Theta$ অনুরুপতাবে প্রমাণ করা যায় . $2 \tan 2\Theta + 4 \cot 4\Theta = 2 \cot 2\Theta$ $\tan \Theta + 2 \cot 2\Theta = \cot \Theta$ L.H.S.= $\tan \Theta$ + $2\tan 2\Theta$ + $4\tan 4\Theta$ + $8 \cot 8\Theta$ $= \tan \Theta + 2 \tan 2\Theta + 4 \cot 4\Theta$ $= \tan \Theta + 2\cot 2\Theta = \cot \Theta = R.H.S.$ (Proved) 2.(a) 4 (sin $^{3}10^{\circ} + \cos^{3}20^{\circ}$) $= 3 (\sin 10^{\circ} + \cos 20^{\circ})$ **L.H.S.** = $4(\sin^3 10^\circ + \cos^3 20^\circ)$ $= 4 \sin^3 10^\circ + 4 \cos^3 20^\circ$ $= 3 \sin 10^{\circ} - \sin (3.10^{\circ}) + \cos (3.20^{\circ})$ $+3\cos 20^{\circ}$ $= 3 (\sin 10^{\circ} + \cos 20^{\circ}) - \sin 30^{\circ} + \cos 60^{\circ}$ $= 3(\sin 10^\circ + \sin 20^\circ) - \frac{1}{2} + \frac{1}{2}$ $= 3(\sin 10^\circ + \cos 20^\circ) = R.H.S.$ (Proved)

উচ্চতর গণিত : ১ম পত্র সমাধান বইঘর কম (b) $\sin^2(60^\circ + A) + \sin^2 A + \sin^2(60^\circ - A) = \frac{3}{2}$ **L.H.S.** = $\sin^2(60^\circ + A) + \sin^2 A +$ \sin^2 (60 - A) $= \frac{1}{2} \{1 - \cos 2(60^\circ + A) + 1 - \cos 2A + 1\}$ $-\cos 2(60^{\circ} - A)$ $= \frac{1}{2} \{3 - \cos(120^\circ + 2A) - \cos(120^\circ - 2A)\}$ $-\cos 2A$ $=\frac{1}{2}[3 - (\cos(120^\circ + 2A) +$ $cos(120^{\circ}-2A)$ - cos2A] $=\frac{1}{2}\{3-2.\cos 120^{\circ}\cos 2A - \cos 2A\}$ $= \frac{1}{2} \{3 - 2(-\frac{1}{2})\cos 2A - \cos 2A\}$ $=\frac{1}{2}\{3+\cos 2A-\cos 2A\}=\frac{3}{2}=R.H.S.$ $2(c) \sin^2(\frac{\pi}{8} + \frac{\theta}{2}) - \sin^2(\frac{\pi}{8} - \frac{\theta}{2}) = \frac{1}{\sqrt{2}} \sin\theta$ [রা.'১১] **L.H.S.** = $\sin^2(\frac{\pi}{2} + \frac{\theta}{2}) - \sin^2(\frac{\pi}{2} - \frac{\theta}{2})$ $=\frac{1}{2}\left\{1-\cos \left(\frac{\pi}{8}+\frac{\theta}{2}\right)\right\}-\frac{1}{2}\left\{1-\cos \left(\frac{\pi}{8}-\frac{\theta}{2}\right)\right\}$ $= \frac{1}{2} \{ 1 - \cos(\frac{\pi}{4} + \theta) - 1 + \cos(\frac{\pi}{4} - \theta) \}$ $=\frac{1}{2}\left\{\cos\left(\frac{\pi}{4}-\Theta\right)-\cos\left(\frac{\pi}{4}+\Theta\right)\right\}$ $=\frac{1}{2}.2\sin\frac{\pi}{4}\sin\theta=\frac{1}{\sqrt{2}}\sin\theta=\text{R.H.S.}$ 2. (d) $\cos^2(A - 120^\circ) + \cos^2 A + \cos^2 (A - 120^\circ)$ $+120^{\circ})=3/2$ [ঢা. '০৩; বৃ. '০৭; য. '০৮] **L.H.S.** = $\cos^2(A - 120^\circ) + \cos^2 A$ $+\cos^{2}(A+120^{\circ})$ $= \frac{1}{2} \{1 + \cos 2(A - 120^\circ) + 1 + \cos 2A + 1\}$ $+\cos^{2}(A + 120^{\circ})$

$$= \frac{1}{2} \{3 + \cos (2A - 240^{\circ}) + \cos(2A + 240^{\circ}) + \cos(2A + 240^{\circ}) + \cos(2A) \}$$

$$= \frac{1}{2} \{3 + 2\cos(2A) \cos(180^{\circ} + \cos(2A)) + \cos(2A) \}$$

$$= \frac{1}{2} \{3 + 2\cos(2A) \cos(180^{\circ} + \cos(2A)) + \cos(2A) \}$$

$$= \frac{1}{2} \{3 + 2\cos(2A) (-\cos(60^{\circ})) + \cos(2A) \}$$

$$= \frac{1}{2} \{3 + 2\cos(2A) (-\frac{1}{2}) + \cos(2A) \}$$

$$= \frac{1}{2} \{3 - \cos(2A) + \cos(2A) + \frac{3}{2} = R.H.S.$$

$$2(e) \cos^{2} \frac{A}{2} + \cos^{2} (\frac{\pi}{3} + \frac{A}{2}) + \cos^{2} (\frac{A}{2} - \frac{\pi}{3}) = \frac{3}{2}$$

$$LHS. = \cos^{2} \frac{A}{2} + \cos^{2} (\frac{\pi}{3} + \frac{A}{2}) + \cos^{2} (\frac{A}{2} - \frac{\pi}{3}) = \frac{1}{2} \{1 + \cos(2A) + \sin(2A) + \cos(2A) + \cos(2A) + \sin(2A) + \cos(2A) + \sin(2A) + \sin$$

$$\frac{\sin^{2} \sqrt{11} D}{\cos^{2} (\alpha + \frac{\pi}{3}) + \frac{\sin(\alpha - \frac{\pi}{3})}{\cos(\alpha + \frac{\pi}{3}) + \frac{\cos(\alpha - \frac{\pi}{3})}{\cos(\alpha - \frac{\pi}{3})}} = \frac{\frac{\sin(\alpha + \frac{\pi}{3}) \cos(\alpha - \frac{\pi}{3})}{\cos(\alpha + \frac{\pi}{3}) \cos(\alpha - \frac{\pi}{3})}}{\frac{\sin(\alpha + \frac{\pi}{3} + \alpha - \frac{\pi}{3})}{\cos(\alpha + \frac{\pi}{3}) \cos(\alpha - \frac{\pi}{3})}} = \frac{\frac{\sin(\alpha + \frac{\pi}{3} + \alpha - \frac{\pi}{3})}{\cos(\alpha + \frac{\pi}{3}) \cos(\alpha - \frac{\pi}{3})}}$$

$$= \frac{\frac{\sin(\alpha + \frac{\pi}{3} + \alpha - \frac{\pi}{3})}{\frac{1}{2}(\cos(\alpha + \cos(\alpha + \frac{\pi}{3})))} = \frac{2\sin(\alpha - \frac{\pi}{3})}{\cos(\alpha + \frac{\pi}{3})} = \frac{2\sin(\alpha - \frac{\pi}{3})}{\cos(\alpha + \frac{\pi}{3})}$$

$$= \frac{4\sin(\alpha + \frac{\pi}{3} + \alpha - \frac{\pi}{3})}{\frac{1}{2}(\cos(\alpha + \alpha + \frac{\pi}{3}))} = \frac{2\sin(\alpha - \frac{\pi}{3})}{\cos(\alpha - \frac{\pi}{3})}$$

$$= \frac{4\sin(\alpha + \frac{\pi}{3} + \alpha - \frac{\pi}{3})}{\frac{1}{2}(\cos(\alpha + \frac{\pi}{3}))} = \frac{2\sin(\alpha - \frac{\pi}{3})}{\cos(\alpha - \frac{\pi}{3})}$$

$$= \frac{4\sin(\alpha + \frac{\pi}{3} + \alpha - \frac{\pi}{3})}{\frac{1}{2}(\cos(\alpha + \frac{\pi}{3}))} = \frac{2\sin(\alpha - \frac{\pi}{3})}{\cos(\alpha - \frac{\pi}{3})}$$

$$= \frac{4\sin(\alpha + \frac{\pi}{3} + \alpha - \frac{\pi}{3})}{\cos(\alpha - \frac{\pi}{3})} = \frac{2\sin(\alpha - \frac{\pi}{3})}{\frac{1}{2}(\cos(\alpha - \frac{\pi}{3}))} = \frac{2\sin(\alpha - \frac{\pi}{3})}{\cos(\alpha - \frac{\pi}{3})}$$

$$= \frac{4\sin(\alpha + \frac{\pi}{3} + \alpha - \frac{\pi}{3})}{\cos(\alpha - \frac{\pi}{3})} = \frac{2\sin(\alpha - \frac{\pi}{3})}{\frac{1}{2}(\cos(\alpha - \frac{\pi}{3}))} = \frac{1}{4}(3\cos(\alpha + \frac{\pi}{3})) = \frac{1}{4}(\cos(\alpha + \frac{\pi}{3})) = \frac{1}{4}$$

202

 $\frac{1}{4} (3\sin x - \sin 3x) \sin 3x$ $=\frac{1}{4}(\cos^2 3x + 3\cos x \cos 3x +$ $3\sin x \sin 3x - \sin^2 3x$ $=\frac{1}{4}\left\{\cos 2.3x + 3\cos(3x - x)\right\}$ $= \frac{1}{4} \{\cos 3.2x + 3\cos 2x\} = \cos^3 2x = \text{R.H.S.}$ 3. (c) $\cos^4 x = \frac{3}{8} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x$ **L.H.S.** = $\cos^4 x = (\cos^2 x)^2$ $= \{\frac{1}{2}(1+\cos 2x)\}^2$ $= \frac{1}{4} \{1 + 2\cos 2x + \cos^2 2x\}$ $= \frac{1}{4} \{1 + 2\cos 2x + \frac{1}{2}(1 + \cos 4x)\}$ $= \frac{1}{4} \{1 + 2\cos 2x + \frac{1}{2} + \frac{1}{2}\cos 4x\}$ $= \frac{1}{4} \{ \frac{3}{2} + 2\cos 2x + \frac{1}{2}\cos 4x \} \}$ $= \frac{3}{8} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x = \text{R.H.S.}$ 3(d) $\sin^4 x + \cos^4 x = 1 - \frac{1}{2} \sin^2 2x$ **L.H.S.**= $\sin^4 x + \cos^4 x$ $=(\sin^2 x)^2 + (\cos^2 x)^2$ $=(\sin^{2}x + \cos^{2}x)^{2} - 2\sin^{2}x\cos^{2}x$ $= 1^{2} - \frac{1}{2} (2 \sin x \cos x)^{2} = 1 - \frac{1}{2} (\sin 2 x)^{2}$ $= 1 - \frac{1}{2} \sin^2 2x = \text{R.H.S.}$ (Proved) 4.(a) $\sec \theta = \frac{2}{\sqrt{2 + \sqrt{2 + 2\cos 4\theta}}}$ [fr.'ox; tr.'38] L.H.S. = $\sec \theta = \frac{1}{\cos \theta} = \frac{2}{2\cos \theta}$ $=\frac{2}{\sqrt{4\cos^2\theta}}=\frac{2}{\sqrt{2(1+\cos 2\theta)}}$

গণিত : ১ম পত্র সমাধান $\frac{2}{\sqrt{2+2\cos 2\theta}} = \frac{2}{\sqrt{2+\sqrt{4\cos^2 2\theta}}}$ $=\frac{2}{\sqrt{2+\sqrt{2(1+\cos 4\theta)}}}=\frac{2}{\sqrt{2+\sqrt{2+2\cos 4\theta}}}$ = R.H.S.4.(b) $\frac{1}{\sin 10^0} - \frac{\sqrt{3}}{\cos 10^0} = 4$ [क्.'ov; त्रा.'ov; ঢা. '০৭; চ., ব. '০৮; দি. '১১; সি. '১২; য. '১৩] L.H.S. = $\frac{1}{\sin 10^{\circ}} - \frac{\sqrt{3}}{\cos 10^{\circ}}$ $=\frac{\cos 10^{0}-\sqrt{3}\sin 10^{0}}{\sin 10^{0}\cos 10^{0}}$ $-\frac{\frac{1}{2}\cos 10^{\circ}-\frac{\sqrt{3}}{2}\sin 10^{\circ}}{-\frac{\sqrt{3}}{2}\sin 10^{\circ}}$ $\frac{1}{2}\sin 10^{\circ}\cos 10^{\circ}$ $=\frac{\cos 60^{\circ} \cos 10^{\circ} - \sin 60^{\circ} \sin 10^{\circ}}{\frac{1}{4} \sin 20^{\circ}}$ $=\frac{4\cos(60^{\circ}+10^{\circ})}{\sin(00^{\circ}-70^{\circ})}=\frac{4\cos 70^{\circ}}{\cos 70^{\circ}}=4=\text{R.H.S.}$ 4(c) $\frac{\sqrt{3}}{\sin 20^{\circ}} - \frac{1}{\cos 20^{\circ}} = 4$ [vt.'>0;v.'>8] L.H.S. = $\frac{\sqrt{3}}{\sin 20^{\circ}} - \frac{1}{\cos 20^{\circ}}$ $=\frac{\sqrt{3}\cos 20^{\circ}-\sin 20^{\circ}}{\sin 20^{\circ}\cos 20^{\circ}}$ $=\frac{\frac{\sqrt{3}}{2}\cos 20^{\circ}-\frac{1}{2}\sin 20^{\circ}}{\frac{1}{2}\sin 20^{\circ}\cos 20^{\circ}}$ $= \frac{\cos 30^{\circ} \cos 20^{\circ} - \sin 30^{\circ} \sin 10^{\circ}}{\sin 10^{\circ} \sin 10^{\circ}}$ $\frac{1}{4}$ sin 40° $=\frac{4\cos(30^{\circ}+20^{\circ})}{\sin(90^{\circ}-50^{\circ})}=\frac{4\cos 50^{\circ}}{\cos 50^{\circ}}=4=\text{R.H.S.}$

প্রশ্নমলা VII D

5. (a) $\tan \theta = \frac{1}{7}$ এবং $\tan \phi = \frac{1}{3}$ হলে দেখাও $(\mathfrak{A}, \cos 2\theta = \sin 4\phi)$. প্রমাণ : দেওয়া আছে , $\tan \theta = \frac{1}{7}$, $\tan \varphi = \frac{1}{2}$. $\cos 2\Theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \frac{1 - (1/7)^2}{1 + (1/7)^2}$ $=\frac{1-1/49}{1+1/49}=\frac{49-1}{49+1}=\frac{48}{50}=\frac{24}{25}$ $\sin 4\varphi = 2 \sin 2\varphi \cos 2\varphi$ $=2\frac{2\tan\varphi}{1+\tan^2\varphi}\frac{1-\tan^2\varphi}{1+\tan^2\varphi}$ $=\frac{4\cdot\frac{1}{3}(1-\frac{1}{9})}{(1+\frac{1}{9})^2}=\frac{4\cdot\frac{1}{3}\cdot\frac{8}{9}}{(\frac{10}{9})^2}=\frac{32}{27}\times\frac{81}{100}=\frac{24}{25}$ $\cos 2\Theta = \sin 4\varphi$ (Showed) 5.(b) $2\tan \alpha = 3\tan \beta$ হলে প্রমাণ কর যে, $\tan (\alpha - \beta) = \frac{\sin 2\beta}{5 - \cos 2\beta}$ হমাণ ঃ দেওয়া আছে , $2 \tan \alpha = 3 \tan \beta$ $\Rightarrow \tan \alpha = \frac{3}{2} \tan \beta$ $-H.S. = \tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$ $=\frac{(\frac{3}{2}-1)\tan\beta}{1+\frac{3}{2}\tan^2\beta}=\frac{\tan\beta}{2+3\tan^2\beta}$ $=\frac{\overline{\cos\beta}}{2+3\frac{\sin^2\beta}{2\cdot 3}}=\frac{\sin\beta\cos\beta}{2\cos^2\beta+3\sin^2\beta}$ $=\frac{2\sin\beta\cos\beta}{2.2\cos^2\beta+3.2\sin^2\beta}$ sin 2B $=\frac{1}{2(1+\cos 2\beta)+3(1-\cos 2\beta)}$

 $=\frac{\sin 2\beta}{2+2\cos 2\beta+3-3\cos 2\beta}=\frac{\sin 2\beta}{5-\cos 2\beta}$ = R.H.S. (Proved) $6.(a) \ x = \sin \frac{\pi}{18}$ হলে দেখাও যে, $8x^{4} + 4x^{3} - 6x^{2} - 2x + \frac{1}{2} = 0$ প্রমাণ ঃ আমরা জানি, $4 \sin^3 \Theta = 3 \sin \Theta - \sin 3\Theta$ $\therefore 4 \sin^3 \frac{\pi}{18} = 3 \sin \frac{\pi}{18} - \sin 3 \frac{\pi}{18}$ $\Rightarrow 4x^3 = 3x - \sin\frac{\pi}{6}$ [$x = \sin\frac{\pi}{18}$] $\Rightarrow 4x^3 - 3x + \frac{1}{2} = 0$ এখন, $8x^4 + 4x^3 - 6x^2 - 2x + \frac{1}{2}$ $= 2x \left(4x^3 - 3x + \frac{1}{2}\right) + 1 \left(4x^3 - 3x + \frac{1}{2}\right)$ $= 2 x \times 0 + 1 \times 0 = 0$ (Showed) 6(b)প্রমাণ কর : $\cos 5\theta = 16 \cos^5 \theta - 20 \cos^3 \theta$ [রা.'১১] + 5 cos Θ প্রমাণ $\cos 5\theta = \cos (3\theta + 2\theta)$ $= \cos 3\theta \cos 2\theta - \sin 3\theta \sin 2\theta$ = $(4\cos^3\theta - 3\cos\theta)(2\cos^2\theta - 1) (3 \sin \Theta - 4 \sin^3 \Theta)$. $2 \sin \Theta \cos \Theta$ $= 8\cos^5\theta - 6\cos^3\theta - 4\cos^3\theta + 3\cos\theta - 4$ $2\cos\theta(3\sin^2\theta - 4\sin^4\theta)$ $= 8 \cos^5 \Theta - 10 \cos^3 \Theta + 3 \cos \Theta - \Theta$ $2\cos\theta$ { 3 (1 - $\cos^2\theta$) - 4 (1 - $\cos^2\theta$)² } $= 8 \cos^5 \Theta - 10 \cos^3 \Theta + 3 \cos \Theta - \Theta$ $2\cos\theta$ {3-3cos² θ -4(1-2cos² θ + cos⁴ θ)} $= 8\cos^5\theta - 10\cos^3\theta + 3\cos\theta - (6\cos\theta -$ $6\cos^3\theta - 8\cos\theta + 16\cos^3\theta - 8\cos^5\theta$ $= 8 \cos^5 \Theta - 10 \cos^3 \Theta + 3 \cos \Theta - 6 \cos \Theta +$ $6\cos^3\theta + 8\cos\theta - 16\cos^3\theta + 8\cos^5\theta$ $\therefore \cos 5\theta = 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$ 7.(a) $\tan \alpha \, \tan \beta = \sqrt{\frac{a-b}{a-b}}$ হলে প্রমাণ কর যে , $(a - b\cos 2\alpha)(a - b\cos 2\beta) = a^2 - b^2$

প্রমাণ ঃ দেওয়া আছে , $\tan \alpha \tan \beta = \sqrt{\frac{a-b}{a-b}}$ $\Rightarrow \tan^2 \alpha \tan^2 \beta = \frac{a-b}{a+b}$ \Rightarrow (a - b) = (a + b) tan² α tan² β (1) L.H.S = $(a - b \cos 2\alpha) (a - b \cos 2\beta)$ $= \left\{ a - b \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha} \right\} \left\{ a - b \frac{1 - \tan^2 \beta}{1 + \tan^2 \beta} \right\}$ $=\frac{a+a\tan^2\alpha-b+b\tan^2\alpha}{1+\tan^2\alpha}\times$ $\frac{a + a \tan^2 \beta - b + b \tan^2 \beta}{1 + \tan^2 \beta}$ $=\frac{(a-b)+(a+b)\tan^2\alpha}{1+\tan^2\alpha}\times$ $\frac{(a-b)+(a+b)\tan^2\beta}{1+\tan^2\beta}$ $=\frac{(a+b)\tan^2\alpha\tan^2\beta+(a+b)\tan^2\alpha}{1+\tan^2\alpha}\times$ $\frac{(a+b)\tan^2\alpha\tan^2\beta+(a+b)\tan^2\beta}{}$ $1 \pm tan^2 \beta$ $=\frac{(a+b)\tan^2\alpha(\tan^2\beta+1)}{1+\tan^2\alpha}\times$ $(a+b)\tan^2\alpha(\tan^2\beta+1)$ $1 \pm \tan^2 \beta$ $= (a + b)^2 \tan^2 \alpha \tan^2 \beta = (a + b)^2 \frac{a - b}{a + b}$ $= a^{2} - b^{2} = R.H.S.$ (Proved) 7. (b) যদি α ও β কোণদ্বয় ধনাত্মক ও সৃষ্ণ এবং $\cos 2\alpha = \frac{3\cos 2\beta - 1}{3 - \cos 2\beta}$ হয়, তবে দেখাও যে, $\tan \alpha = \pm \sqrt{2} \tan \beta$ প্রমাণ ঃ দেওয়া আছে, $\cos 2\alpha = \frac{3\cos 2\beta - 1}{3 - \cos 2\beta}$ $\Rightarrow \frac{1}{\cos 2\alpha} = \frac{3 - \cos 2\beta}{3\cos 2\beta - 1}$ $\Rightarrow \frac{1-\cos 2\alpha}{1+\cos 2\alpha} = \frac{3-\cos 2\beta - 3\cos 2\beta + 1}{3-\cos 2\beta + 3\cos 2\beta - 1}$

 $\Rightarrow \frac{2\sin^2 \alpha}{2\cos^2 \alpha} = \frac{4(1-\cos 2\beta)}{2(1+\cos 2\beta)}$ $\Rightarrow \tan^2 \alpha = \frac{2.2 \sin^2 \beta}{2 \cos^2 \beta} = 2 \tan^2 \beta$ \therefore tan $\alpha = \pm \sqrt{2} \tan \beta$ (Showed) 7(c) cos A sin (A – $\frac{\pi}{6}$) এর মান বৃহত্তম হলে A এর মান নির্ণয় কর। সমাধান : cos A sin(A – $\frac{\pi}{6}$) $=\frac{1}{2}.2\cos A\cos (A-\frac{\pi}{6})$ $=\frac{1}{2}\left\{\sin\left(A+A-\frac{\pi}{6}\right)-\sin(A-A+\frac{\pi}{6})\right\}$ $=\frac{1}{2}\{\sin(2A-\frac{\pi}{6})-\sin\frac{\pi}{6}\}$ $=\frac{1}{2}\{\sin(2A-\frac{\pi}{6})-\frac{1}{2}\}$ ইহা বৃহত্তম হলে , sin($2A - \frac{\pi}{6}$) = 1 $\Rightarrow \sin(2A - \frac{\pi}{2}) = \sin \frac{\pi}{2}$ $\therefore 2A - \frac{\pi}{6} = \frac{\pi}{2} \Longrightarrow 2A = \frac{\pi}{2} + \frac{\pi}{6} = \frac{3\pi + \pi}{6}$ $\Rightarrow 2A = \frac{4\pi}{6} \therefore A = \frac{\pi}{2}$ (Ans.) অতিরিক্ত প্রশ্ন (সমাধানসহ) প্রমাণ কর যে. 1(a) $\tan \Theta (1 + \sec 2\Theta) = \tan 2\Theta$ **L.H.S.**= $\tan \Theta (1 + \sec 2\Theta)$ $= \tan \Theta \left(1 + \frac{1}{\cos 2\theta} \right)$ $= \tan \Theta \left(1 + \frac{1 + \tan^2 \theta}{1 + \tan^2 \theta} \right)$ $= \tan\Theta \left(\frac{1 - \tan^2 \theta + 1 + \tan^2 \theta}{1 - \tan^2 \theta} \right)$

উচ্চতর গণিত : ১ম পত্র সমাধান

$$= \frac{2 \tan \theta}{1 - \tan^2 \theta} = \tan 2\theta = \text{R.H.S.} \text{ (proved)}$$

1.(b)
$$\frac{\sin A + \sin 2A}{1 + \cos A + \cos 2A} = \tan A$$

L.H.S. =
$$\frac{\sin A + \sin 2A}{1 + \cos A + \cos 2A}$$

=
$$\frac{\sin A + 2\sin A \cos A}{1 + \cos A + 2\cos^2 A - 1}$$

=
$$\frac{\sin A(1 + 2\cos A)}{\cos A(1 + 2\cos A)} = \tan A = R.H.S.$$

1(c)
$$\frac{\cos^3 x + \sin^3 x}{\cos x + \sin x} = 1 - \frac{1}{2}\sin 2x$$

L.H.S. =
$$\frac{\cos^3 x + \sin^3 x}{\cos x + \sin x}$$

=
$$\frac{(\cos x + \sin x)(\cos^2 x + \sin^2 x - \cos x \sin x)}{\cos x + \sin x}$$

=
$$1 - \cos x \sin x = 1 - \frac{1}{2}\sin 2x = R.H.S.$$

2.
$$\frac{\tan^2(\theta + \frac{\pi}{4}) - 1}{\tan^2(\theta + \frac{\pi}{4}) + 1} = \sin 2\theta$$

tan²($\theta + \frac{\pi}{4}$) + 1
L.H.S. =
$$\frac{\tan^2(\theta + \frac{\pi}{4}) - 1}{\tan^2(\theta + \frac{\pi}{4}) + 1}$$

=
$$-\frac{1 - \tan^2(\theta + \frac{\pi}{4}) - 1}{1 + \tan^2(\theta + \frac{\pi}{4})} = -\cos 2(\theta + \frac{\pi}{4})$$

=
$$-\cos (\frac{\pi}{2} + 2\theta) = -(-\sin 2\theta)$$

=
$$\sin 2\theta = R.H.S (Proved)$$

3
$$4\cos^3 x \sin 3x + 4\sin^3 x \cos 3x = 3\sin^2 \theta$$

$$= (\cos^{3} x + 3 \cos^{3} \sin 3x + 4 \sin^{2} x \cos 3x + (3 \sin x - \sin 3 x) \cos 3x + (3 \sin x - \sin 3 x) \cos 3x + (3 \sin 3 x - \sin 3 x \cos 3 x + (3 \sin 3 x \cos 3 x + (3 \sin 3 x \cos x + \sin x \cos 3 x)) = 3 \sin (3 x + x)$$

= $3 \sin 4x = R.H.S$ (Proved) 4. $\tan^2 \theta = 1 + 2 \tan^2 \omega$ হলে দেখাও যে. $\cos 2\omega = 1 + 2 \cos 2\Theta$ প্রমাণ : দেওয়া আছে , $\tan^2 \Theta = 1 + 2 \tan^2 \omega$ এখন, $1 + 2\cos 2\theta = 1 + 2\frac{1 - \tan^2 \theta}{1 - \tan^2 \theta}$ $=\frac{1+\tan^{2}\theta+2-2\tan^{2}\theta}{1+\tan^{2}\theta}=\frac{3-\tan^{2}\theta}{1+\tan^{2}\theta}$ $=\frac{3-1-2\tan^2\phi}{1+1+2\tan^2\phi}=\frac{2(1-\tan^2\phi)}{2(1+\tan^2\phi)}$ $=\frac{1-\tan^2\varphi}{1+\tan^2\varphi}=\cos 2\varphi$ $\cos 2\varphi = 1 + \cos 2\Theta$ (Showed) বিকন্ন পন্ধতি: দেওয়া আছে , $\tan^2 \Theta = 1 + 2 \tan^2 \omega$ $\Rightarrow \tan^2 \Theta - 1 = 2 \tan^2 \varphi$ $\Rightarrow \frac{1}{\tan^2 \omega} = \frac{2}{\tan^2 \Theta - 1}$ $\Rightarrow \frac{1-\tan^2 \varphi}{1+\tan^2 \varphi} = \frac{2-\tan^2 \theta + 1}{2+\tan^2 \theta - 1}$ [যোজন-বিয়োজ $\Rightarrow \cos 2\varphi = \frac{3 - \tan^2 \theta}{1 + \tan^2 \theta}$ $= \frac{1 + \tan^2 \theta + 2(1 - \tan^2 \theta)}{1 + \tan^2 \theta}$ [যোজন–বিয়োজন করে] $= \frac{1 + \tan^2 \theta}{1 + \tan^2 \theta} + 2 \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$ $\therefore \cos 2\varphi = 1 + 2\cos 2\Theta$ $\int \cos \alpha = \frac{1}{2}(x+\frac{1}{x})$ হলে প্রমাণ কর যে , $\cos 2\alpha$ $4x \quad \left| = \frac{1}{2} (x^2 + \frac{1}{x^2}), \cos 3\alpha = \frac{1}{2} (x^3 + \frac{1}{x^3}) \right|$ $\left| \ , \cos 4\alpha = \frac{1}{2}(x^4 + \frac{1}{x^4}) \right|$ প্রমাণ ঃ দেওয়া আছে , $\cos \alpha = \frac{1}{2}(x + \frac{1}{x})$ $\cos 2\alpha = 2\cos^2 \alpha - 1$

উচ্চতর গণিত: ১ম পত্র সমাধান বইঘর কম

 $=2.\left(\frac{1}{2}(x+\frac{1}{x})\right)^2-1$ $=2.\frac{1}{4}(x^{2}+2.x.\frac{1}{r}+\frac{1}{r^{2}})-1$ $= \frac{1}{2}(x^{2} + 2 + \frac{1}{x^{2}} - 2) = \frac{1}{2}(x^{2} + \frac{1}{x^{2}})$ $\cos 2\alpha = \frac{1}{2}(x^2 + \frac{1}{x^2})$ $\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$ $= 4\left(\frac{1}{2}(x+\frac{1}{r})\right)^3 - 3.\frac{1}{2}(x+\frac{1}{r})$ = 4. $\frac{1}{8}(x^3 + 3x^2)$. $\frac{1}{r} + 3x\frac{1}{r^2} + \frac{1}{r^3}$ $-3. \frac{1}{2}(x+\frac{1}{2})$ $=\frac{1}{2}(x^3+3x+3,\frac{1}{x}+\frac{1}{x^3}-3x-3,\frac{1}{x})$ $=\frac{1}{2}(x^3+\frac{1}{x^3})$ $\therefore \cos 3\alpha = \frac{1}{2}(x^3 + \frac{1}{x^3})$ $\cos 4\alpha = \cos 2.2\alpha = 2\cos^2 2\alpha - 1$ $= 2. \left\{ \frac{1}{2} \left(x^2 + \frac{1}{x^2} \right) \right\}^2 - 1$ $= \frac{1}{2} (x^4 + 2.x^2 + \frac{1}{x^2} + \frac{1}{x^4}) - 1$ $=\frac{1}{2}(x^4+2+\frac{1}{x^4}-2)$ $\cos 4\alpha = (x^4 + \frac{1}{x^4})$ $6 \tan \theta = \frac{\tan x + \tan y}{1 + \tan x \tan y} \quad \text{in the call of the call of$ $\sin 2\Theta = \frac{\sin 2x + \sin 2y}{1 + \sin 2x \cdot \sin 2y}$ প্রমাণঃ দেওয়া আছে, $\tan \theta = \frac{\tan x + \tan y}{1 + \tan x \tan y}$

$$= \frac{\frac{\sin x}{\cos x} + \frac{\sin y}{\cos y}}{1 + \frac{\sin x}{\cos x} \frac{\sin y}{\cos y}} = \frac{\sin x \cos y + \sin y \cos x}{\cos x \cos y + \sin x \sin y}$$

$$\therefore \quad \tan \theta = \frac{\sin(x+y)}{\cos(x-y)}$$

$$\sin 2\theta = \frac{2 \tan \theta}{1 + \tan^2 \theta} = \frac{2 \frac{\sin(x+y)}{\cos(x-y)}}{1 + \{\frac{\sin(x+y)}{\cos(x-y)}\}^2}$$

$$= \frac{2 \sin(x+y)}{\cos(x-y)} \times \frac{\cos^2(x-y)}{\cos^2(x-y) + \sin^2(x+y)}$$

$$= \frac{2 \sin(x+y) \cos(x-y)}{\frac{1}{2} \{1 + \cos 2(x-y)\} + \frac{1}{2} \{1 - \cos 2(x+y)\}}$$

$$= \frac{\sin(x+y+x-y) + \sin(x+y-x+y)}{\frac{1}{2} \{2 + \cos 2(x-y) - \cos 2(x+y)\}}$$

$$= \frac{\sin 2x + \sin 2y}{1 + \frac{1}{2} \cdot 2 \sin \frac{2(x+y) - 2(x-y)}{2}}$$

$$\therefore \quad \sin 2\theta = \frac{\sin 2x + \sin 2y}{1 + \sin 2x + \sin 2y} \quad \text{(Showed)}$$

7. $\tan \theta = \frac{y}{x}$ and end on $\theta = \frac{y}{x}$

$$x \cos 2\theta + y \sin 2\theta = x.$$

Sim is the end of x of end on $\theta = \frac{y}{x}$

$$x \cos 2\theta + y \sin 2\theta = x.$$

Sim is $\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} + y \frac{2 \tan \theta}{1 + \tan^2 \theta}$

$$= \frac{1 - \frac{y^2}{x^2} + \frac{2y}{x^2}}{1 + \frac{y^2}{x^2}} + y(\frac{2y}{x} \times \frac{x^2}{x^2 + y^2})$$

$$= \frac{x^3 - xy^2}{x^2 + y^2} + \frac{2xy^2}{x^2 + y^2}$$

 $\frac{x^3 - xy^2 + 2xy^2}{x^2 + y^2} = \frac{x(x^2 + y)}{x^2 + y^2}$ $x \cos 2\theta + y \sin 2\theta = x$ (Showed) $\sqrt{2}\cos A = \cos B + \cos^3 B$ এক $\sqrt{2}\sin A =$ sinB-sin³B হলে দেখাও যে, sin(A-B) = $\pm \frac{1}{2}$. গ্রেশ ঃ দেওয়া আছে, $\sqrt{2} \cos A = \cos B + \cos^3 B$ $\sqrt{2}$ sinA = sinB - sin³B $\sin(A-B) = \sin A \cos B - \sin B \cos A$ $=\frac{1}{\sqrt{2}}(\sin B - \sin^3 B)\cos B \frac{1}{\sqrt{2}}$ sinB (cosB + cos³ B) $\Rightarrow \sqrt{2} \sin (A-B) = \sin B \cos B - \sin^3 B \cos B$ $-\sin B\cos B - \sin B\cos^3 B$ $\Rightarrow \sqrt{2} \sin(A-B=-\sin B\cos B(\sin^2 B + \cos^2 B))$ $\Rightarrow \sqrt{2} \sin (A - B) = -\frac{1}{2} \sin 2B$ $\Rightarrow 2\sqrt{2} \sin (A - B) = -\sin 2B \cdots (1)$ $\sqrt{2}\cos(A-B) = \sqrt{2}\cos A \cos B - \sqrt{2}\sin A \sin B$ $=(\cos B + \cos^3 B)\cos B - \sin B(\sin B - \sin^3 B)$ $= \cos^{2}B + \sin^{2}B + \cos^{4}B - \sin^{4}B$ $= 1 + (\cos^2 B + \sin^2 B) (\cos^2 B - \sin^2 B)$ $\sqrt{2} \cos (A - B) = 1 + \cos 2B$ $\Rightarrow \sqrt{2} \cos (A - B) - 1 = \cos 2B \cdots (2)$) ও (2) র্কা করে যোগ করলে আমরা পাই $(\sqrt{2})^{2} \sin^{2}(A-B) + (\sqrt{2})^{2} \cos^{2}(A-B) +$ $-2\sqrt{2}\cos(A-B) = \sin^2 2B + \cos^2 2B$ $= 8 \{ 1 - \cos^2(A - B) \} + 2 \cos^2(A - B)$ $+1-2\sqrt{2}\cos(A-B) = 1$ $= 8 - 8 \cos^{2}(A - B) + 2 \cos^{2}(A - B)$ $-2\sqrt{2}\cos(A-B) = 0$ $= 6 \cos^{2}(A - B) - 2\sqrt{2} \cos(A - B) - 8 = 0$ $= 3 \cos^{2}(A - B) - \sqrt{2} \cos(A - B) - 4 = 0$ $= 3 \cos^{2}(A - B) - 3\sqrt{2} \cos(A - B)$ $+2\sqrt{2}\cos(A-B)-4=0$

প্রশ্নমান VII D $\Rightarrow 3 \cos (A - B) \{ \cos (A - B) - \sqrt{2} \}$ $+2\sqrt{2} \{ \cos(A-B) - \sqrt{2} \} = 0$ $\Rightarrow \{\cos(A-B) - \sqrt{2}\} \{3\cos(A-B) + 2\sqrt{2}\} = 0$ ∴ $\cos(A-B) = \sqrt{2}$ অথবা, $\cos(A-B) = -\frac{2\sqrt{2}}{2}$ কিম্তৃ $-1 \le \cos \theta \le 1$ বলে $\cos (A - B) \neq \sqrt{2}$ $\therefore \cos (A - B) = -\frac{2\sqrt{2}}{2}$ $\therefore \sin(A-B) = \pm \sqrt{1-\sin^2(A-B)}$ $=\pm\sqrt{1-\left(-\frac{2\sqrt{2}}{3}\right)^2}=\pm\sqrt{1-\frac{8}{9}}$ $\therefore \sin(A - B) = \pm \sqrt{\frac{1}{2}} = \pm \frac{1}{2}$ 9. Critics CI, $\frac{\tan 2^n \theta}{\tan \theta} = (1 + \sec 2\theta) (1 + \sec 2\theta)$ $2^{2}\Theta$ $(1 + \sec 2^{3}\Theta) \cdots (1 + \sec 2^{n}\Theta)$ ধ্ৰমাণ : $\tan \Theta$ (1 + sec 2 Θ) = $\tan \Theta$ $\left(1+\frac{1+\tan^2\theta}{1-\tan^2\theta}\right)=$ tan⊖ $\left(\frac{1-\tan^2\theta+1+\tan^2\theta}{1-\tan^2\theta}\right)$ $= \tan \Theta \frac{2}{1-\tan^2 \Theta} = \frac{2 \tan \Theta}{1-\tan^2 \Theta} = \tan 2\Theta$ $\therefore \frac{\tan 2\theta}{\tan \theta} = 1 + \sec 2\theta$ অনুরূপভাবে আমরা পাই, $\frac{\tan 2^2 \theta}{\tan 2\theta} = 1 + \sec 2^2$ $\Theta, \frac{\tan 2^{3} \Theta}{\tan 2^{2} \Theta} = 1 + \sec 2^{3} \quad \Theta, \cdots, \frac{\tan 2^{n} \Theta}{\tan 2^{n-1} \Theta} = 1 + \frac{1}{2}$ $\sec 2^n \Theta$... $\tan 2\theta \ \tan 2^2\theta \ \tan 2^3\theta$ $\frac{\tan 2^n \theta}{\tan 2^{n-1} \theta} =$ $\tan \theta$ $\tan 2\theta$ $\tan 2^2 \theta$ $(1 + \sec 2\theta) (1 + \sec 2^2 \theta)$

২৫৭

 $(1 + \sec 2^3 \Theta) \cdots (1 + \sec 2^n \Theta)$ $\Rightarrow \frac{\tan 2^{n}\theta}{\tan \theta} = (1 + \sec 2\theta) (1 + \sec 2^{2}\theta) ($ $1 + \sec 2^3 \Theta$)..... $(1 + \sec 2^n \Theta)$ 10.(a) দেখাও বে, $\frac{2\cos 2^n \theta + 1}{2\cos \theta + 1} = (2\cos \theta - 1)$ $(2\cos 2\theta - 1)(2\cos 2^2\theta - 1)\cdots(2\cos 2^{n-1} - 1)$ প্রমাণ: আমরা পাই . $(2\cos\theta + 1)(2\cos\theta - 1) = 4\cos^2\theta - 1$ $=4.\frac{1}{2}(1+\cos 2\theta)-1=2+2\cos 2\theta-1$ $2\cos\theta - 1 = \frac{2\cos 2\theta + 1}{2\cos \theta + 1}$ অনুরপভাবে, $2\cos 2\theta - 1 = \frac{2\cos 2^2\theta + 1}{2\cos 2\theta + 1}$ $2\cos^2\theta - 1 = \frac{2\cos^2\theta + 1}{2\cos^2\theta + 1}$ $2\cos 2^{n-1}\Theta - 1 = \frac{2\cos 2^n \Theta + 1}{2\cos 2^{n-1}\Theta + 1}$ গুণ করে আমরা পাই . $(2\cos\theta -1)(2\cos2\theta - 1)$ ($2\cos2^2 \theta -1$) $\cdots (2\cos 2^{n-1}\Theta - 1)$ $\frac{2\cos 2\theta + 1}{2\cos \theta + 1} \cdot \frac{2\cos 2^2\theta + 1}{2\cos 2\theta + 1} \cdot \frac{2\cos 2^3\theta + 1}{2\cos 2^2\theta + 1}$ $\cdots \cdots \frac{2\cos 2^n \theta + 1}{2\cos 2^{n-1} \theta + 1} = \frac{2\cos 2^n \theta + 1}{2\cos \theta + 1}$ $\frac{2\cos 2^n \theta + 1}{2\cos \theta + 1} = (2\cos \theta - 1)((2\cos 2\theta - 1))$ $(2\cos^2\theta - 1)\cdots(2\cos^{2^{n-1}}\theta - 1)$ 10.(b) $13 \Theta = \pi$ হলে দেখাও যে, $\cos \Theta_1 \cos 2\Theta$. $\cos 3\Theta$. $\cos 4\Theta$. $\cos 5\Theta$. $\cos 6\Theta = \frac{1}{2^6}$ প্রমাণ : $\cos\theta$ $\cos2\theta$ $\cos3\theta$ $\cos4\theta$ $\cos5\theta$ $\cos6\theta$

আমরা জানি, $2 \sin \Theta \cos \Theta = \sin 2\Theta$ $\Rightarrow \sin \theta \cos \theta = \frac{1}{2} \sin 2\theta$ $\therefore \quad \sin \Theta \cos \Theta \cos 2\Theta = \frac{1}{2} \sin 2\Theta \cos 2\Theta$ $=\frac{1}{2^2}\sin 4\theta$ অনুরূপভাবে, sin \ominus cos \ominus cos 2 \ominus .cos4 \ominus = $\frac{1}{2^3}$ sin 8 θ $\sin\theta \cos\theta \cos 2\theta \cos 4\theta \cos 8\theta = \frac{1}{2^3} \sin 16\theta$ $\sin\theta\cos\theta\cos2\theta\cos4\theta\cos8\theta\cos16\theta$ $\cos 32 \Theta = \frac{1}{2^6} \sin 64\theta$ \Rightarrow sin θ cos θ cos 2 θ .cos 4θ cos (13 θ - 5 θ) $\cos(13\theta + 3\theta)\cos(26\theta + 6\theta)$ $=\frac{1}{2^6}\sin(65\theta-\theta)$ \Rightarrow sin θ cos θ cos 2 θ .cos 4 θ cos (π - 5 θ) $\cos(\pi + 3\theta) \cos(2\pi + 6\theta)$ $=\frac{1}{2^6}\sin(5\pi-\theta)$ \Rightarrow sin θ cos θ cos 2 θ .cos 4 θ (- cos 5 θ) $(-\cos 3\theta) \cdot \cos 6\theta = \frac{1}{2\theta} (\sin \theta)$ $\therefore \cos \theta \cos 2\theta \cos 3\theta \cos 4\theta$ $\cos 5\theta \cos 6\theta = \frac{1}{2^6}$ (Showed) 10.(c) $\theta = \frac{\pi}{2^n + 1}$ হলে প্রমাণ কর যে , 2ⁿ cos θ $\cos 2\theta \cos 2^2 \theta \cdots \cos 2^{n-1} \theta = 1$. প্রমাণ : দেওয়া আছে, $\theta = \frac{\pi}{2^n + 1} \Longrightarrow 2^n \theta + \theta = \pi$ $\Rightarrow 2^n \theta = \pi - \theta \Rightarrow \sin 2^n \theta = \sin (\pi - \theta)$ $\Rightarrow 2 \sin 2^{n-1} \theta \cos 2^{n-1} \theta = \sin \theta$ $\Rightarrow 2\cos 2^{n-1}\theta(2\sin 2^{n-2}\theta\cos 2^{n-2}\theta) = \sin \theta$ $\Rightarrow 2^2 \cos 2^{n-1} \theta \cos 2^{n-2} \theta \sin 2^{n-2} \theta = \sin \theta$

$$\Rightarrow 2^{n} \cos 2^{n-1} \theta \cos 2^{n-2} \theta \cos 2^{n-3} \theta \cdots \\ \sin 2^{n-n} \theta \cos 2^{n-n} \theta = \sin \theta \\\Rightarrow 2^{n} \cos 2^{n-1} \theta \cos 2^{n-2} \theta \cos 2^{n-3} \theta \cdots \\ \sin 2^{0} \theta \cos 2^{0} \theta = \sin \theta \\\Rightarrow 2^{n} \cos 2^{n-1} \theta \cos 2^{n-2} \theta \cos 2^{n-3} \theta \cdots \\ \sin \theta \cos \theta = 1 \\2^{n} \cos \theta \cdot \cos 2\theta \cdot \cos 2^{2} \theta \cdots \cos 2^{n-1} \theta = 1 \\ (Showed) \\2^{n} (Sho$$

$$= \frac{1}{2} \{3 + \cos \alpha + \cos(\alpha - 120^{\circ}) + \cos(\alpha + 120^{\circ})\}$$

$$= \frac{1}{2} \{3 + \cos \alpha + 2\cos \alpha \cos 120^{\circ}\}$$

$$= \frac{1}{2} \{3 + \cos \alpha - \cos \alpha\} = \frac{3}{2}$$
1.(c) $\sin^{2} (\frac{\alpha}{2} - 36^{\circ}) + \sin^{2} (\frac{\alpha}{2} + 36^{\circ})$

$$= \frac{1}{4} \{4 - (\sqrt{5} - 1) \cos \alpha\}$$
L.H.S.= $\sin^{2} (\frac{\alpha}{2} - 36^{\circ}) + \sin^{2} (\frac{\alpha}{2} + 36^{\circ})$

$$= \frac{1}{2} \{1 - \cos 2(\frac{\alpha}{2} - 36^{\circ}) + 1 - \cos 2(\frac{\alpha}{2} + 36^{\circ})\}$$

$$= \frac{1}{2} \{2 - (\cos(\alpha - 72^{\circ}) + \cos(\alpha + 72^{\circ}))\}$$

$$= \frac{1}{2} \{2 - 2\cos \alpha \cos 72^{\circ}\} = 1 - \cos \alpha \cos 72^{\circ}$$

$$= 1 - \cos \alpha \cos (90^{\circ} - 18^{\circ})$$

$$= 1 - \frac{1}{4} (\sqrt{5} - 1)\cos \alpha$$

$$= \frac{1}{4} \{4 - (\sqrt{5} - 1)\cos \alpha \}$$
R.H.S. (Proved)
2.(a) $2\cos \frac{\pi}{16} = 2\cos 11^{\circ} 15'$

$$= \sqrt{2 + \sqrt{2 + \sqrt{2}}} \quad [\text{F.'o}, 3, 30, 5.' \text{ o}, 3, 31.' \text{ oo}]$$
R.H.S.= $\sqrt{2 + \sqrt{2 + \sqrt{2}}} \quad [\text{F.'o}, 3, 30, 5.' \text{ o}, 3, 31.' \text{ oo}]$
R.H.S.= $\sqrt{2 + \sqrt{2 + \sqrt{2}}} \quad [\text{F.'o}, 3, 30, 5.' \text{ o}, 3, 31.' \text{ oo}]$

$$= \sqrt{2 + \sqrt{2(1 + \frac{\sqrt{2}}{2})}} = \sqrt{2 + \sqrt{2(1 + \frac{1}{\sqrt{2}})}} \quad = \sqrt{2 + \sqrt{2(1 + \cos 45^{\circ})}} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 22^{\circ} 30')} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 22^{\circ} 30')} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 22^{\circ} 30')} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 22^{\circ} 30')} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 22^{\circ} 30')} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 22^{\circ} 30')} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 52^{\circ} 30')} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 52^{\circ} 30')} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 52^{\circ} 30')} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 52^{\circ} 30')} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 52^{\circ} 30')} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 52^{\circ} 30')} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 52^{\circ} 30')} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 52^{\circ} 30')} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 52^{\circ} 30')} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 52^{\circ} 30')} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 52^{\circ} 30')} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 52^{\circ} 30')} \quad = \sqrt{2 + 2\cos 22^{\circ} 30'} = \sqrt{2(1 + \cos 52^{\circ} 30')} = \sqrt{2(1 + \cos 52^{\circ} 30')} \quad = \sqrt{2(1 + \cos 52^{\circ}$$

জাবার , $2\cos\frac{\pi}{16} = 2\cos(11^{\circ})15'$ $2\cos\frac{\pi}{16} = 2\cos 11^{\circ} 15' = \sqrt{2 + \sqrt{2 + \sqrt{2}}}$ 2. (b) $\cos(7\frac{1}{2})^0 = \frac{1}{2}\sqrt{2 + \sqrt{2 + \sqrt{3}}}$ [রা '০২; ক্.,চ.'১০] **R.H.S.**= $\frac{1}{2}\sqrt{2+\sqrt{2}+\sqrt{3}}$ $=\frac{1}{2}\sqrt{2}+\sqrt{2(1+\frac{\sqrt{3}}{2})}$ $=\frac{1}{2}\sqrt{2+\sqrt{2(1+\cos 30^{\circ})}}$ $=\frac{1}{2}\sqrt{2+\sqrt{2.2\cos^2 15^0}}=\frac{1}{2}\sqrt{2+2\cos 15^0}$ $=\frac{1}{2}\sqrt{2(1+\cos 15^{\circ})}=\frac{1}{2}\sqrt{2.2\cos^{2}(7\frac{1}{2})^{\circ}}$ $=\frac{1}{2}.2\cos(7\frac{1}{2})^{0} = \cos(7\frac{1}{2})^{0} = \text{RH.S.}$ 2(c) $\tan(7\frac{1}{2})^0 = \sqrt{6} - \sqrt{3} + \sqrt{2} - 2$ **L.H.S.** = $\tan (7\frac{1}{2})^0 = \tan 7^0 30'$ $= \frac{\sin 7^{0} 30'}{\cos 7^{0} 30'} = \frac{2 \sin^{2} 7^{0} 30'}{2 \sin 7^{0} 30' \cos 7^{0} 30'}$ $= \frac{1 - \cos 15^{\circ}}{\sin 15^{\circ}} = \frac{1 - \cos(45^{\circ} - 30^{\circ})}{\sin(45^{\circ} - 30^{\circ})}$ $= \frac{1 - (\cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ})}{\sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}}$ $= \frac{1 - \frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \frac{1}{2}}{\frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \frac{1}{2}} = \frac{2\sqrt{2} - \sqrt{3} - 1}{\sqrt{3} - 1}$ $= \frac{(2\sqrt{2} - \sqrt{3} - 1)(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)}$ $= \frac{2\sqrt{6} - 3 - \sqrt{3} + 2\sqrt{2} - \sqrt{3} - 1}{2}$

$$= \frac{2\sqrt{6} + 2\sqrt{2} - 4 - 2\sqrt{3}}{2}$$

$$= \sqrt{6} - \sqrt{3} + \sqrt{2} - 2 = \text{R.H.S (Proved)}$$
3. $\frac{\sec \alpha - \tan \alpha}{\sec \alpha + \tan \alpha} = \cot^2(\frac{\pi}{4} + \frac{\alpha}{2})$
L.H.S. $= \frac{\sec \alpha - \tan \alpha}{\sec \alpha + \tan \alpha}$

$$= \frac{\frac{1}{\cos \alpha} - \frac{\sin \alpha}{\cos \alpha}}{\frac{1}{\cos \alpha} + \frac{\sin \alpha}{\cos \alpha}} = \frac{1 - \sin \alpha}{1 + \sin \alpha}$$

$$= \frac{\sin^2 \frac{\alpha}{2} + \cos^2 \frac{\alpha}{2} - 2\sin \frac{\alpha}{2}\cos \frac{\alpha}{2}}{\sin^2 \frac{\alpha}{2} + \cos^2 \frac{\alpha}{2} + 2\sin \frac{\alpha}{2}\cos \frac{\alpha}{2}}$$

$$= \frac{(\sin \frac{\alpha}{2} - \cos \frac{\alpha}{2})^2}{(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2})^2} = \left(\frac{\cos \frac{\alpha}{2}(\cot \frac{\alpha}{2} - 1)}{\cos \frac{\alpha}{2}(\cot \frac{\alpha}{2} + 1)}\right)^2$$

$$= \left(\frac{\cot \frac{\alpha}{2}\cot \frac{\pi}{2} - 1}{\cot \frac{\pi}{2} + \cot \frac{\alpha}{2}}\right)^2 = \left(\cot(\frac{\alpha}{2} + \frac{\pi}{2})\right)^2$$

$$= \cot^2(\frac{\alpha}{2} + \frac{\pi}{2}) = \text{R.H.S. (Proved)}$$
4. $\cos \theta = \frac{a \cos \varphi - b}{a - b \cos \varphi}$ are created at $\frac{1}{a - b}$ and $\frac{1}{a - b}$ a

अन्नमुङ्गात VII E

 $\Rightarrow \frac{1-\tan^2\frac{\theta}{2}}{1+\tan^2\frac{\theta}{2}} = \frac{a\frac{1-\tan^2\frac{\phi}{2}}{1+\tan^2\frac{\phi}{2}}-b}{a-b\frac{1-\tan^2\frac{\phi}{2}}}{a-b\frac{1-\tan^2\frac{\phi}{2}}}{a-b\frac{1-\tan^2\frac{$ $\frac{1}{1+\tan^2\frac{\phi}{\Phi}}$ or, $\frac{1-\tan^2\frac{\theta}{2}}{1+\tan^2\frac{\theta}{2}} = \frac{a(1-\tan^2\frac{\phi}{2})-b(1+\tan^2\frac{\phi}{2})}{a(1+\tan^2\frac{\phi}{2})-b(1-\tan^2\frac{\phi}{2})}$ or, $\frac{2}{-2\tan^2\theta} =$ $\Rightarrow \frac{1}{-\tan^2 \frac{\theta}{2}} = \frac{2a-2b}{-2a\tan^2 \frac{\phi}{2} - 2b\tan^2 \frac{\phi}{2}}$ $\Rightarrow \frac{1}{\tan^2 \frac{\theta}{a}} = \frac{a-b}{(a+b)\tan^2 \frac{\theta}{a}}$ $\Rightarrow \frac{\tan^2 \frac{1}{2}\theta}{a+b} = \frac{\tan^2 \frac{1}{2}\phi}{a+b}$ $\therefore \frac{\tan \frac{1}{2}\theta}{\sqrt{a+b}} = \frac{\tan \frac{1}{2}\phi}{\sqrt{a-b}}$ (Showed) 5. (a) sec $(\Theta + \alpha)$ + sec $(\Theta - \alpha)$ = 2 sec Θ হলে দেখাও যে , $\cos \Theta = \pm \sqrt{2} \cos \frac{\alpha}{2}$. প্রমাণ ঃ sec $(\Theta + \alpha)$ + sec $(\Theta - \alpha)$ = 2 sec Θ $\Rightarrow \frac{1}{\cos(\theta + \alpha)} + \frac{1}{\cos(\theta - \alpha)} = \frac{2}{\cos\theta}$ $\Rightarrow \frac{\cos(\theta - \alpha) + \cos(\theta + \alpha)}{\cos(\theta + \alpha)\cos(\theta - \alpha)} = \frac{2}{\cos\theta}$ $\Rightarrow \frac{2\cos\theta\cos\alpha}{\cos^2\theta - \sin^2\alpha} = \frac{2}{\cos\theta}$

 $\Rightarrow \cos^2 \Theta \cos \alpha = \cos^2 \Theta - \sin^2 \alpha$ $\Rightarrow \cos^2 \theta \ (1 - \cos \alpha) = \sin^2 \alpha$ $\Rightarrow \cos^2 \theta = \frac{1 - \cos^2 \alpha}{1 - \cos^2 \alpha} = 1 + \cos \alpha$ $\Rightarrow \cos^2 \theta = 2 \cos^2 \frac{\alpha}{2}$ $\therefore \cos \Theta = \pm \sqrt{2} \cos \frac{\alpha}{2}$ (Showed) 5(b) sin A = $\frac{1}{\sqrt{2}}$ এবং sinB = $\frac{1}{\sqrt{3}}$ হলে দেখাও যে , $\tan \frac{A+B}{2} \cot \frac{A-B}{2} = 5 + 2\sqrt{6}$ প্রমাণ ঃ দেওয়া আছে, $\sin A = \frac{1}{\sqrt{2}}$ এবং $\sin B = \frac{1}{\sqrt{2}}$ $\Rightarrow \frac{\sin A + \sin B}{\sin A + \sin B} = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{2} + \sqrt{2}} [(2i) - 4i) - 4i]$ $\Rightarrow \frac{2\sin\frac{A+B}{2}\cos\frac{A-B}{2}}{2\cos\frac{A+B}{2}\sin\frac{A-B}{2}} = \frac{(\sqrt{3}+\sqrt{2})^2}{(\sqrt{3})^2 - (\sqrt{2})^2}$ $\Rightarrow \tan(\frac{A+B}{2}) \cot(\frac{A-B}{2}) = \frac{3+2\sqrt{3\sqrt{2}+2}}{2}$ $\therefore \tan(\frac{A+B}{2})\cot(\frac{A-B}{2}) = 5 + 2\sqrt{6}$ (Showed) 6 (a) $\tan \frac{\theta}{2} = \sqrt{\frac{1-e}{1+e}} \tan \frac{\varphi}{2}$ হলে প্রমাণ কর যে, $\cos \varphi = \frac{\cos \theta - e}{1 - e \cos \theta}$ [5.'ob; जि.'.ob', '32; ता.'ob] প্রমাণ ঃ দেওয়া আছে , $\tan \frac{\theta}{2} = \sqrt{\frac{1-e}{1+e}} \tan \frac{\theta}{2}$ $\Rightarrow \tan^2 \frac{\theta}{2} = \frac{1-e}{1+e} \tan^2 \frac{\varphi}{2}$

২৬১

૨৬૨ $\Rightarrow \frac{1}{\tan^{2^*} \frac{\varphi}{2}} = \frac{1-e}{1+e} \frac{1}{\tan^2 \frac{\theta}{2}} = \frac{(1-e)\cos^2 \frac{\theta}{2}}{(1+e)\sin^2 \frac{\theta}{2}}$ $\Rightarrow \frac{1 - \tan^2 \frac{\varphi}{2}}{1 + \tan^2 \frac{\varphi}{2}} = \frac{(1 - e)\cos^2 \frac{\theta}{2} - (1 + e)\sin^2 \frac{\theta}{2}}{(1 - e)\cos^2 \frac{\theta}{2} + (1 + e)\sin^2 \frac{\theta}{2}}$ $(\cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2}) - e(\sin^2\frac{\theta}{2} + \cos^2\frac{\theta}{2})$ $(\sin^2\frac{\theta}{2}+\cos^2\frac{\theta}{2})-e(\cos^2\frac{\theta}{2}-\sin^2\frac{\theta}{2})$ $\cos \varphi = \frac{\cos \theta - e}{1 - e \cos \theta}$ 6.(b) $A + B \neq 0$ are sin $A + \sin B = 1$ $2 \sin (A + B)$ হলে দেখাও যে, $\tan \frac{A}{2} \tan \frac{B}{2} = \frac{1}{3}$ [ক্.'০১] ধমাণ ঃ দেওয়া আছে, sinA + sinB = 2sin(A+B) $\Rightarrow 2\sin\frac{1}{2}(A+B)\cos\frac{1}{2}(A-B)$ $= 2 \times 2 \sin \frac{1}{2} (A + B) \cos \frac{1}{2} (A + B)$ $\Rightarrow \sin \frac{1}{2}(A + B) \{ \cos \frac{1}{2}(A - B) -$ $2\cos\frac{1}{2}(A+B) = 0$ A + B $\neq 0$ বলে $\sin \frac{1}{2}(A + B) \neq 0$ $\cos \frac{1}{2}(A - B) - 2\cos \frac{1}{2}(A + B) = 0$ $\Rightarrow \cos{\frac{A}{2}}\cos{\frac{B}{2}} + \sin{\frac{A}{2}}\sin{\frac{B}{2}} 2(\cos\frac{A}{2}\cos\frac{B}{2} - \sin\frac{A}{2}\sin\frac{B}{2}) = 0$ $\Rightarrow 3 \sin \frac{A}{2} \sin \frac{B}{2} = \cos \frac{A}{2} \cos \frac{B}{2}$ $\Rightarrow \frac{\sin \frac{A}{2} \sin \frac{B}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}} = \frac{1}{3}$

চতর গণিত : ১ম পত্র সমাধান $\therefore \tan \frac{A}{2} \tan \frac{B}{2} = \frac{1}{2}$ (Showed) 7.(a) $\sin \theta = \frac{a-b}{a+b}$ হলে প্রমাণ কর যে, $\tan\left(\frac{\pi}{4}-\frac{\theta}{2}\right)=\sqrt{\frac{b}{\pi}}$. প্রমাণ ঃ দেওয়া আছে , $\sin \Theta = \frac{a-b}{a+b}$ L.H.S. = $\tan \left(\frac{\pi}{4} - \frac{\theta}{2}\right) = \frac{\sin(\frac{\pi}{4} - \frac{\theta}{2})}{\cos(\frac{\pi}{4} - \frac{\theta}{2})}$ $=\frac{2\sin(\frac{\pi}{4}-\frac{\theta}{2})\cos(\frac{\pi}{4}-\frac{\theta}{2})}{2\cos^{2}(\frac{\pi}{4}-\frac{\theta}{2})}=\frac{\sin 2(\frac{\pi}{4}-\frac{\theta}{2})}{1+\cos 2(\frac{\pi}{4}-\frac{\theta}{2})}$ $=\frac{\sin(\frac{\pi}{2}-\theta)}{1+\cos(\frac{\pi}{2}-\theta)}=\frac{\cos\theta}{1+\sin\theta}$ $=\frac{\sqrt{1-\sin^2\theta}}{1+\sin\theta}=\frac{\sqrt{1-(\frac{a-b}{a+b})^2}}{1+\frac{a-b}{1+b}}$ www.boighar.com $= \frac{\frac{\sqrt{(a+b)^{2} - (a-b)^{2}}}{a+b}}{a+b+a-b} = \frac{\sqrt{4ab}}{2a}$ $=\frac{2\sqrt{a}\sqrt{b}}{2a}=\sqrt{\frac{b}{a}}=\text{R.H.S.}$ বিকল্প পন্ধতি : দেওয়া আছে , sin $\Theta = \frac{a-b}{a+b}$ $\Rightarrow \frac{1}{\sin\theta} = \frac{a+b}{a-b} \Rightarrow \frac{1-\sin\theta}{1+\sin\theta} = \frac{a+b-a+b}{a+b+a-b}$ [বিয়োজন–যোজন করে।] $\Rightarrow \frac{\cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2} - 2\cos\frac{\theta}{2}\sin\frac{\theta}{2}}{\cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2} + 2\cos\frac{\theta}{2}\sin\frac{\theta}{2}} = \frac{2b}{2a}$

धन्नमार्ग्न्य NAL E

$$\Rightarrow \frac{(\cos\frac{\theta}{2} - \sin\frac{\theta}{2})^2}{(\cos\frac{\theta}{2} + \sin\frac{\theta}{2})^2} = \frac{b}{a} \Rightarrow \frac{\cos\frac{\theta}{2} - \sin\frac{\theta}{2}}{\cos\frac{\theta}{2} + \sin\frac{\theta}{2}} = \sqrt{\frac{b}{a}}$$
$$\Rightarrow \frac{1 - \tan\frac{\theta}{2}}{1 + \tan\frac{\theta}{2}} = \sqrt{\frac{b}{a}} \Rightarrow \frac{\tan\frac{\pi}{4} - \tan\frac{\theta}{2}}{1 + \tan\frac{\pi}{4}\tan\frac{\theta}{2}} = \sqrt{\frac{b}{a}}$$
$$\tan(\frac{\pi}{4} - \frac{\theta}{2}) = \sqrt{\frac{b}{a}}$$

7. (b) $a \cos \Theta + b \sin \Theta = c$ সমীকরণটি Θ এর দুইটি ভিন্ন মান α , β দ্বারা সিন্দ হলে দেখাও যে,

$$\sin(\alpha + \beta) = \frac{2ab}{a^2 + b^2}$$

 $a \cos \alpha + b \sin \alpha = c$ and $a \cos \beta + b \sin \beta = c$

a cos
$$\alpha$$
 + b sin β = c
a cos α + b sin α = a cos β + b sin β
 \Rightarrow a(cos α - cos β) = b(sin β - sin α)
 \Rightarrow a .2 sin $\frac{1}{2}(\alpha + \beta) sin \frac{1}{2}(\beta - \alpha)$
 $= b.2cos \frac{1}{2}(\alpha + \beta) sin \frac{1}{2}(\beta - \alpha)$
 $\alpha \neq \beta$ ace, sin $\frac{1}{2}(\beta - \alpha) \neq 0$
a sin $\frac{1}{2}(\alpha + \beta) = b cos \frac{1}{2}(\alpha + \beta)$
 $\Rightarrow tan \frac{1}{2}(\alpha + \beta) = \frac{b}{a}$
 $a = \frac{2tan \frac{1}{2}(\alpha + \beta)}{1 + tan^2 \frac{1}{2}(\alpha + \beta)} = \frac{2\frac{b}{a}}{1 + (\frac{b}{2})^2}$

$$= \frac{2b}{a} \times \frac{a^2}{a^2 + b^2} = \frac{2ab}{a^2 + b^2} = \text{R.H.S.}$$

অতিরিক্ত প্রশ্ন (সমাধানসহ)

$$\begin{aligned} & \operatorname{ATMP} \, \overline{\operatorname{PR}} \, \operatorname{CI}, \\ & 1. \, \cos^2 \left(\frac{\alpha}{2} - 18^\circ \right) \, + \, \cos^2 \left(\frac{\alpha}{2} + 18^\circ \right) \\ &= \frac{1}{4} \left\{ 4 + \left(\sqrt{5} + 1 \right) \cos \alpha \right\} \\ & L.H.S. = \cos^2 \left(\frac{\alpha}{2} - 18^\circ \right) + \cos^2 \left(\frac{\alpha}{2} + 18^\circ \right) \\ &= \frac{1}{2} \left\{ 1 + \cos 2 \left(\frac{\alpha}{2} - 18^\circ \right) + 1 + \cos 2 \left(\frac{\alpha}{2} + 18^\circ \right) \right\} \\ &= \frac{1}{2} \left\{ 1 + \cos 2 \left(\frac{\alpha}{2} - 18^\circ \right) + 1 + \cos 2 \left(\frac{\alpha}{2} + 18^\circ \right) \right\} \\ &= \frac{1}{2} \left\{ 2 + \cos \left(\alpha - 36^\circ \right) + \cos \left(\alpha + 36^\circ \right) \right\} \\ &= \frac{1}{2} \left\{ 2 + 2 \cos \alpha \cos 36^\circ \right) \\ &= \frac{1}{2} \left(2 + 2 \cos \alpha \cos 36^\circ \right) \\ &= \left\{ 1 + \frac{1}{4} \left(\sqrt{5} + 1 \right) \cos \alpha \right\} = R.H.S.(Proved) \\ &2.(a) \, \sin(292.5)^\circ = -\frac{1}{2} \sqrt{2 + \sqrt{2}} \\ L.H.S. = \sin(292.5)^\circ \\ &= -\sqrt{\cos^2(22.5)^\circ} = -\sqrt{\frac{1}{2}} (1 + \cos 45^\circ) \\ &= -\sqrt{\frac{1}{2}} (1 + \frac{1}{\sqrt{2}}) = -\sqrt{\frac{\sqrt{2} + 1}{2\sqrt{2}}} \\ &= -\sqrt{\frac{1}{2} (1 + \frac{1}{\sqrt{2}})} = -\sqrt{\frac{\sqrt{2} + 1}{2\sqrt{2}}} \\ &= -\sqrt{\frac{1}{2} + \sqrt{2}} \\ L.H.S. = \cot(142.5)^\circ = \sqrt{2} + \sqrt{3} - 2 - \sqrt{6} \\ L.H.S. = \cot(142.5)^\circ = -\cot 142^\circ 30' \\ &= \cot(180^\circ - 37^\circ 30') = -\cot 37^\circ 30' \\ &= -\frac{\cos 37^\circ 30'}{\sin 37^\circ 30'} = -\frac{2\cos^2 37^\circ 30'}{2\sin 37^\circ 30' \cos 37^\circ 30'} \\ &= -\frac{1 + \cos 75^\circ}{\sin 75^\circ} = -\frac{1 + \cos 45^\circ \sin 30^\circ}{\sin 45^\circ + 30^\circ)} \\ &= 4 - \frac{1 + \cos 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ}{\sin 30^\circ + \cos 45^\circ \sin 30^\circ} \end{aligned}$$

 $= -\frac{1 + \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2}}{\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2}} = -\frac{2\sqrt{2} + \sqrt{3} - 1}{\sqrt{3} - 1}$ $= -\frac{(2\sqrt{2} + \sqrt{3} - 1)(\sqrt{3} - 1)}{(\sqrt{3} + 1)(\sqrt{3} - 1)}$ $= -\frac{2\sqrt{6}+3-\sqrt{3}-2\sqrt{2}-\sqrt{3}+1}{3-1}$ $= -\frac{2\sqrt{6}+4-2\sqrt{3}-2\sqrt{2}}{2}$ $= -(\sqrt{6} + 2 - \sqrt{3} - \sqrt{2}) = \sqrt{3} + \sqrt{2} - 2 - \sqrt{6}$ 2(c) $\tan(82.5)^0 = \sqrt{6} + \sqrt{3} + \sqrt{2} + 2$ **L.H.S.** = $\tan(82.5)^{\circ} = \tan 82^{\circ}30'$ $= \tan (90^{\circ} \rightarrow 7^{\circ}_{.}30') = \cot 7^{\circ}_{.}30'$ $= \frac{\cos 7^{\circ} 30'}{\sin 7^{\circ} 30'} = \frac{2\cos^2 7^{\circ} 30'}{2\sin 7^{\circ} 30' \cos 7^{\circ} 30'}$ $= \frac{1 + \cos 15^{\circ}}{\sin 15^{\circ}} = \frac{1 + \cos(45^{\circ} - 30^{\circ})}{\sin(45^{\circ} - 30^{\circ})}$ $=\frac{1+\cos 45^{\circ}\cos 30^{\circ}+\sin 45^{\circ}\sin 30^{\circ}}{\cos 45^{\circ}\cos 30^{\circ}-\sin 45^{\circ}\cos 30^{\circ}}$ $=\frac{1+\frac{1}{\sqrt{2}}\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\frac{1}{2}}{\frac{1}{\sqrt{2}}\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\frac{1}{2}}=\frac{2\sqrt{2}+\sqrt{3}+1}{\sqrt{3}-1}$ $=\frac{(2\sqrt{2}+\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$ $= \frac{2\sqrt{6} + 3 + \sqrt{3} + 2\sqrt{2} + \sqrt{3} + 1}{2}$ $= \frac{2\sqrt{6} + 4 + 2\sqrt{3} + 2\sqrt{2}}{2}$ $=\sqrt{6}+2+\sqrt{3}+\sqrt{2}=\sqrt{6}+\sqrt{3}+2+\sqrt{2}$ 3. $a\sin \Theta + b \sin \phi = c = a \cos \Theta + b \cos \phi$

হলে দেখাও যে,

 $\begin{aligned} \mathfrak{A} \mathfrak{M} \mathfrak{H} : \sin x &= \sin 2 \cdot \frac{x}{2} = 2 \sin \frac{x}{2} \cdot \cos \frac{x}{2} \\ &= 2 \cos \frac{x}{2} \cdot \sin 2 \cdot \frac{x}{2^2} = 2 \cos \frac{x}{2} \cdot 2 \sin \frac{x}{2^2} \cdot \cos \frac{x}{2^2} \\ &= (2 \cos \frac{x}{2}) \cdot (2 \cos \frac{x}{2^2}) \cdot \sin \frac{x}{2^2} \\ &= (2 \cos \frac{x}{2}) \cdot (2 \cos \frac{x}{2^2}) \cdot (2 \cos \frac{x}{2^3}) \cdot \sin \frac{x}{2^3} \\ &= (2 \cos \frac{x}{2}) \cdot (2 \cos \frac{x}{2^2}) \cdot (2 \cos \frac{x}{2^3}) \cdot \sin \frac{x}{2^3} \\ &= (2 \cos \frac{x}{2}) \cdot (2 \cos \frac{x}{2^2}) \cdot (2 \cos \frac{x}{2^3}) \cdot \sin \frac{x}{2^n} \\ &\quad (2 \cos \frac{x}{2^{n-1}}) \cdot (2 \cos \frac{x}{2^n}) \cdot \sin \frac{x}{2^n} \\ &\quad \therefore \sin x = 2^n \cos \frac{x}{2} \cdot \cos \frac{x}{2^2} \cdot \cdots \cdot \cos \frac{x}{2^n} \cdot \sin \frac{x}{2^n} \end{aligned}$

 $\cos\frac{1}{2}(\Theta-\varphi)=\pm\sqrt{\frac{2c^2-(a-b)^2}{4}}$

...(1)

...(2)

প্রমাণ ঃ দেওয়া আছে, $a \sin \Theta + b \sin \varphi = c$ $\Rightarrow a^{2} \sin^{2} \Theta + b^{2} \sin^{2} \varphi + 2ab \sin \Theta \sin \varphi = c^{2}$

 $\Rightarrow a^2 \cos^2 \Theta + b^2 \cos^2 \varphi + 2ab \cos \Theta \cos \varphi = c^2$

 $a^{2} + b^{2} + 2ab(\sin\theta \sin\varphi + \cos\theta \cos\varphi) = 2c^{2}$

 $\Rightarrow 2ab\{2\cos^2\frac{1}{2}(\Theta - \varphi) - 1\} = 2c^2 - a^2 - b^2$

 $\Rightarrow 4ab \cos^2 \frac{1}{2} (\Theta - \varphi) = 2c^2 - a^2 - b^2 + 2ab$

 $= 2c^2 - (a - b)^2$

 $\Rightarrow 2ab \cos(\Theta - \varphi) = 2c^2 - a^2 - b^2$

 $\Rightarrow \cos^2 \frac{1}{2} (\Theta - \varphi) = \frac{2c^2 - (a-b)^2}{4c^{1/2}}$

 $\therefore \cos \frac{1}{2} (\Theta - \varphi) = \pm \sqrt{\frac{2c^2 - (a-b)^2}{4c^4}}$

4. দেখাও যে, $\sin x = 2^n \cos \frac{x}{2} \cdot \cos \frac{x}{2^2}$.

 $\cos\frac{x}{2^3}$ $\cos\frac{x}{2^n}$. $\sin\frac{x}{2^n}$

এবং $a \cos \theta + b \cos \theta = c$

(1) ও (2) যোগ করে পাই,

প্রশ্নমালা VII·F

প্রশ্নমালা VII F

 $A + B + C = \pi$ হলে প্রমাণ কর যে, 1. (a) $\sin A + \sin B + \sin C$ $= 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2} \qquad [4.2]$ থমাণ : L.H.S. = sinA + sinB + sinC $=2\sin{\frac{1}{2}(A+B)\cos{\frac{1}{2}(A-B)}}+2\sin{\frac{C}{2}\cos{\frac{C}{2}}}$ $= 2\sin(\frac{\pi}{2} - \frac{C}{2})\cos(\frac{1}{2})(A-B) + 2\sin(\frac{C}{2})\cos(\frac{C}{2})$ $= 2\cos{\frac{C}{2}}\cos{\frac{1}{2}}(A - B) + 2\sin{\frac{C}{2}}\cos{\frac{C}{2}}$ $= 2\cos{\frac{C}{2}} \{\cos{\frac{1}{2}} (A - B) + \sin{\frac{C}{2}} \}$ $= 2\cos\frac{C}{2} \left\{ \cos\frac{1}{2} \left(A - B \right) + \sin\left(\frac{\pi}{2} - \frac{A + B}{2}\right) \right\}$ $= 2\cos{\frac{C}{2}} \left\{ \cos{\left(\frac{A}{2} - \frac{B}{2}\right)} + \cos{\left(\frac{A}{2} + \frac{B}{2}\right)} \right\}$ $= 2\cos\frac{C}{2}\left(2\cos\frac{A}{2}\cos\frac{B}{2}\right)$ = $4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$ = R.H.S. (Proved) 1.(b) $\sin A + \sin B - \sin C =$ $4\sin\frac{A}{2}\sin\frac{B}{2}\cos\frac{C}{2} \quad [\underline{\mathtt{V}}.'\mathtt{ob}]$ প্রমাণ 8 L.H.S.= sinA + sinB - sinC $=2\sin{\frac{1}{2}}(A+B)\cos{\frac{1}{2}}(A-B) - 2\sin{\frac{C}{2}}\cos{\frac{C}{2}}$ $=2\sin(\frac{\pi}{2}-\frac{C}{2})\cos\frac{1}{2}(A-B)-2\sin\frac{C}{2}\cos\frac{C}{2}$ $= 2 \cos{\frac{C}{2}}\cos{\frac{1}{2}}(A - B) - 2\sin{\frac{C}{2}}\cos{\frac{C}{2}}$ $= 2\cos{\frac{C}{2}} \{\cos{\frac{1}{2}}(A - B) - \sin{\frac{C}{2}}\}$ $=2\cos\frac{C}{2}\left\{\cos\frac{1}{2}(A-B)-\sin(\frac{\pi}{2}-\frac{A+B}{2})\right\}$ $= 2\cos\frac{C}{2} \left\{ \cos(\frac{A}{2} - \frac{B}{2}) - \cos(\frac{A}{2} + \frac{B}{2}) \right\}$

$= 2\cos\frac{C}{2}(2\sin\frac{A}{2}\sin\frac{B}{2})$ $=4\sin\frac{A}{2}\sin\frac{B}{2}\cos\frac{C}{2}$ = R.H.S. (Proved) 1. (c) $\sin 2A - \sin 2B + \sin 2C = 4\cos A \sin B$ cosC [रू. '०১] প্রমাণ 8 L.H.S. = sin2A - sin2B + sin2C $= 2 \sin \frac{2A - 2B}{2} \cos \frac{2A + 2B}{2} + \cos 2C$ $= 2 \sin(A - B) \cos(A + B) + 2 \sin C \cos C$ $= 2 \sin(A - B) \cos(\pi - C) + 2 \sin C \cos C$ $= -2 \cos C \sin(A - B) + 2 \sin C \cos C$ $= 2\cos C \{ \sin C - \sin(A - B) \}$ $= 2 \cos C [\sin{\pi - (A + B)} - \sin{(A - B)}]$ $= 2\cos C \{\sin(A + B) - \sin(A - B)\}$ $= 2\cos C.2 \sin B \cos A = 4\cos A \sin B \cos C$ = R.H.S. (Proved) 1.(d) $\cos 2A - \cos 2B + \cos 2C = 1 - 4 \sin A$ cos B sin C প্রমাণ : L.H.S. = cos 2A - cos 2B + cos 2C $= \cos 2A + \cos 2C - \cos 2B$ $= 2\cos(A + C)\cos(A - C) - (2\cos^2 B - 1)$ $= 2\cos(\pi - B)\cos(A - C) - 2\cos^2 B + 1$ $= -2\cos B \cos(A - C) - 2\cos^{2}B + 1$ $= 1 - 2\cos B \{\cos(A - C) + \cos B\}$ $=1 - 2\cos B[\cos(A-C) + \cos{\pi - (A+C)}]$ $= 1 - 2\cos B \{\cos(A - C) - \cos(A + C)\}$ =1 - 2cosB.2sinAsinC $= 1 - 4 \sin A \cos B \sin C = R.H.S.$ (Proved) $(\mathbf{e})\frac{\cos A}{\sin B \sin C} + \frac{\cos B}{\sin C \sin A} + \frac{\cos C}{\sin A \sin B} = 2$ 5.'55] প্রমাণ ঃ

L.H.S. = $\frac{\cos A}{\sin B \sin C} + \frac{\cos B}{\sin C \sin A} + \frac{\cos C}{\sin A \sin B}$ = $\frac{\cos A \sin A + \cos B \sin B + \cos C \sin C}{\sin A \sin B \sin C}$ উচ্চতর গণিত : ১ম পত্র সমাধান

 $\sin 2A + \sin 2B + \sin 2C$ 2 sin A sin B sin C এখন, sin 2A + sin 2B + sin 2C $= 2\sin(A + B)\cos(A - B) + 2\sin C \cos C$ $= 2\sin(\pi - C)\cos(A - B) + 2\sin C\cos C$ $= 2 \sin C \cos(A - B) + 2 \sin C \cos C$ $= 2 \sin C \{ \cos(A - B) + \cos C \}$ $= 2 \sin C \left\{ \cos(A - B) + \cos(\pi - A + B) \right\}$ $= 2 \sin C \left\{ \cos \left(A - B \right) - \cos \left(A + \omega \right) \right\}$ $= 2 \sin C \cdot 2 \sin A \sin B = 4 \sin A \sin B \sin C$ L.H.S.= $\frac{4 \sin A \sin B \sin C}{2 \sin A \sin B \sin C} = 2 = R.H.S.$ **2.(a)**sin (B + 2C) + sin (C+2A) + sin (A+2B) $= 4 \sin \frac{B-C}{2} \sin \frac{C-A}{2} \sin \frac{A-B}{2}$ প্রমাণ * L.H.S.= sin(B + 2C) + sin(C + 2A) $+\sin(A+2B)$ $= sin{A + B + C + (C - A)} + sin{A + B + C}$ +(A-B) + sin { A + B + C + (B - C) } $= \sin{\pi - (A - C)} + \sin{\pi - (B - A)} +$ $sin{\pi - (C - B)}$ = sin(A - C) + sin(B - A) + sin(C - B) $= 2\sin{\frac{1}{2}(A - C + B - A)\cos{\frac{1}{2}(A - C - B + A)}}$ $-\sin(B-C)$ $= 2\sin\frac{1}{2}(B - C)\cos\frac{1}{2}(2A - B - C) 2\sin\frac{1}{2}(B-C)\cos(B-C)$ $= 2\sin\frac{1}{2}(B-C) \left\{\cos\frac{1}{2}(2A-B-C) - \right\}$ $\cos (B - C)$ $=2\sin\frac{B-C}{2}\left\{2\sin\frac{1}{2}\left(\frac{2A-B-C+B \neq C}{2}\right)\right\}$ $\sin\frac{1}{2}\left(\frac{B-C-2A+B+C}{2}\right)\}$ $= 2\sin\frac{B-C}{2} \cdot 2\sin\frac{A-C}{2}\sin\frac{B-A}{2}$

$$= 4\sin \frac{B-C}{2} \sin \frac{C-A}{2} \sin \frac{A-B}{2} = R.H.S.$$
2.(b) $\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2} =$

$$4 \cos \frac{\pi-A}{4} \cos \frac{\pi-B}{4} \cos \frac{\pi-C}{4}$$
R.H.S.= $4 \cos \frac{\pi-A}{4} \cos \frac{\pi-B}{4} \cos \frac{\pi-C}{4}$

$$= 2.2 \cos \frac{B+C}{4} \cos \frac{C+A}{4} \cos \frac{A+B}{4}$$

$$= 2[\cos(\frac{B+C}{4} + \frac{C+A}{4})] \cos \frac{A+B}{4}$$

$$= 2[\cos(\frac{A+B+2C}{4} + \cos \frac{B-A}{4})] \cos \frac{A+B}{4}$$

$$= 2\cos \frac{A+B+2C}{4} \cos \frac{A+B}{4} + \cos \frac{A+B}{4}$$

$$= \cos \frac{A+B+2C}{2} \cos \frac{A+B}{4} + \cos \frac{C}{2} + \cos \frac{A+B}{4} + 2\cos \frac{A+B}{4} + 2\cos \frac{A+B}{4} + 2\cos \frac{A+B}{4} + \cos \frac{$$

২৬৬

প্রশ্নমাল্লা VIII F

 $\Rightarrow \frac{\tan \frac{A}{2} + \tan \frac{B}{2}}{1 - \tan \frac{A}{2} \tan \frac{B}{2}} = \cot \frac{C}{2} = \frac{1}{\tan \frac{C}{2}}$ $\Rightarrow \tan \frac{A}{2} \tan \frac{C}{2} + \tan \frac{B}{2} \tan \frac{C}{2} = 1 - \tan \frac{A}{2} \tan \frac{B}{2}$ $\tan\frac{B}{2}\tan\frac{C}{2} + \tan\frac{C}{2}\tan\frac{A}{2} + \tan\frac{A}{2}\tan\frac{B}{2} = 1$ $3(b) \cot B \cot C + \cot C \cot A + \cot A$ $\cot \mathbf{B} = 1$ [2.5.9.'06] $A + B + C = \pi$ মোণ ঃ দেওয়া আছে \Rightarrow A+B = π -C \Rightarrow cot(A + B) = cot(π -C) $\Rightarrow \frac{\cot A \cot B - 1}{\cot B + \cot A} = -\cot C$ \Rightarrow cotA cotB -1 = - cotBcotC - cotCcotA $\cot B \cot C + \cot C \cot A + \cot A \cot B = 1$ 4. (a) $\sin^2 A - \sin^2 B + \sin^2 C = 2 \sin A$ cos B sin C [ঢা. '০২ ; চ. '০২. '১৩; সি. '০৭; রা. '১১] $\exists M : L.H.S. = \sin^2 A - \sin^2 B + \sin^2 C$ $= \frac{1}{2} (1 - \cos 2A + 1 - \cos 2C) - \sin^2 B$ $= 1 - \sin^2 B - \frac{1}{2} .2 \cos (A + C) \cos (A - C)$ $=\cos^2 B - \cos (\pi - B) \cos (A - C)$ $=\cos^2 B + \cos B \cos (A - C)$ $= \cos B \{\cos B + \cos (A - C)\}$ $= \cos B [\cos{\pi - (A + C)} + \cos{(A - C)}]$ $= \cos B \left[-\cos \left(A + C \right) + \cos \left(A - C \right) \right]$ $= \cos B \cdot 2 \sin A \sin C$ = $2 \sin A \cos B \sin C = R.H.S.$ (Proved) b) $\cos^2 A + \cos^2 B - \cos^2 C = 1 - 2 \sin A$ [ঢা. '০৩, '০৭, '০১; য. '০৭] an B cos C **514 :** L.H.S. = $\cos^2 A + \cos^2 B - \cos^2 C$ $= \frac{1}{2}(1 + \cos 2A + 1 + \cos 2B) - \cos^2 C$ $= 1 + \frac{1}{2} \cdot 2 \cos (A + B) \cos (A - B) - \cos^2 C$ $= 1 + \cos (\pi - C) \cos (A - B) - \cos^2 C$ $= 1 - \cos C \cos (A - B) - \cos^2 C$

 $= 1 - \cos C \{\cos (A - B) + \cos C\}$ = 1-cosC [cos(A-B) + cos{ π - (A + B)}] $= 1 - \cos(A - B) - \cos(A + B)$ $=1-2 \cos C \sin A \sin B = R.H.S$ (c) $\cos^2 A + \cos^2 B + \cos^2 C = 1 - 2 \cos A$ cos B cos C[मि. '০২, '০৭, দি. '০১; ঢা. '১১; চ. '১৩] প্রমাণ : L.H.S.= $\cos^2 A + \cos^2 B + \cos^2 C$ $= \frac{1}{2}(1 + \cos 2A + 1 + \cos 2B) + \cos^2 C$ $= 1 + \frac{1}{2}.2\cos(A + B)\cos(A - B) + \cos^{2}C$ $= 1 + \cos(\pi - C) \cos(A - B) + \cos^2 C$ $= 1 - \cos C \cos(A - B) + \cos^2 C$ $= 1 - \cos C \left[\cos(A - B) - \cos C \right]$ = $1 - \cos C \left[\cos(A - B) - \cos \{ \pi - (A + B) \} \right]$ $= 1 - \cos C[\cos(A - B) + \cos(A + B)]$ $= 1 - \cos C$. $2 \cos A \cos B$ $= 1 - 2 \cos A \cos B \cos C = R.H.S.$ 4(d) $\cos^2 2A + \cos^2 2B + \cos^2 2C = 1 + \frac{1}{2}$ 2 cos 2A cos 2B cos 2C প্রমাণ : L.H.S.= $\cos^2 2A + \cos^2 2B + \cos^2 2C$ $= \frac{1}{2} [1 + \cos 4A + 1 + \cos 4B] + \cos^2 2C$ $=1+\frac{1}{2}.2\cos 2(A+B)\cos 2(A-B)+\cos^{2}2C$ $= 1 + \cos(2\pi - 2C)\cos 2(A - B) + \cos^2 2C$ $= 1 + \cos 2C \{\cos 2(A - B) + \cos 2C\}$ $= 1 + \cos 2C \left[\cos 2(A - B) + \right]$ $\cos\{2\pi - 2(A + B)\}\}$ $= 1 + \cos 2C[\cos 2(A - B) + \cos 2(A + B)]$ $= 1 + \cos 2C.2\cos 2A \cos 2B$ $= 1 + 2\cos 2A \cos 2B \cos 2C = R.H.C.$ (Proved) 4(e) $\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} = 1 - 2$ $\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$ [ৰু. '০১]

$$\begin{aligned} \text{RMM} : \mathbf{i} \mathbf{L.H.S.} = \sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} \\ = \frac{1}{2} (1 - \cos A + 1 - \cos B) + \sin^2 \frac{C}{2} \\ = 1 - \frac{1}{2} (2 \cos A + 1 - \cos B) + \sin^2 \frac{C}{2} \\ = 1 - \frac{1}{2} (2 \cos A + 1 - \cos B) + \sin^2 \frac{C}{2} \\ = 1 - \cos(\frac{\pi}{2} - \frac{C}{2}) \cos \frac{1}{2} (A - B) + \sin^2 \frac{C}{2} \\ = 1 - \sin \frac{C}{2} \cos \frac{1}{2} (A - B) + \sin^2 \frac{C}{2} \\ = 1 - \sin \frac{C}{2} \cos \frac{1}{2} (A - B) + \sin^2 \frac{C}{2} \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \sin \frac{C}{2} \right] \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \sin \frac{C}{2} \right] \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \sin \frac{C}{2} \right] \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \sin \frac{C}{2} \right] \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \sin \frac{C}{2} \right] \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \sin \frac{C}{2} \right] \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \sin \frac{C}{2} \right] \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \cos \frac{1}{2} (A + B) \right] \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \cos \frac{1}{2} (A + B) \right] \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \cos \frac{1}{2} (A + B) \right] \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \cos \frac{1}{2} (A + B) \right] \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \cos \frac{1}{2} (A + B) \right] \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \cos \frac{1}{2} (A + B) \right] \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \cos \frac{1}{2} (A + B) \right] \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \cos \frac{1}{2} (A + B) \right] \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \cos \frac{1}{2} (A + B) \right] \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \cos \frac{1}{2} (A + B) \right] \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \cos \frac{1}{2} (A + B) \right] \\ = 1 - \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \cos \frac{1}{2} (A + B) \right] \\ = 1 - \sin \frac{1}{2} \left[\cos \frac{1}{2} (A - B) - \cos \frac{1}{2} \left[\cos \frac{1}{2} (A + B) \right] \\ = 1 - \sin \frac{1}{2} \left[\cos \frac{1}{2} (A - B) - \cos \frac{1}{2} \left[\cos \frac{1}{2} (A + B) \right] \\ = 1 - \sin \frac{1}{2} \left[\cos \frac{1}{2} (A - B) - \cos \frac{1}{2} \left[\cos \frac{1}{2}$$

 $= 1 + \cos C[\cos(A - B) + \cos(A + B)]$ $-2\cos A\cos B\cos C$ $= 1 + \cos C.2 \cos A.\cos B - 2 \cos A \cos B \cos C$ = 1 - 2cosAcosBcosC + 2cosAcosBcosC = 1 6(b) A + B + C = 0 হলে প্রমাণ কর যে. cos A + $\cos B + \cos C = 4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} - 1$ প্রমাণ $L.H.S. = \cos A + \cos B + \cos C$ $= 2\cos\frac{1}{2}(A+B)\cos\frac{1}{2}(A-B) + 2\cos^{2}\frac{1}{2}C - 1$ $= 2\cos\frac{1}{2}(-C)\cos\frac{1}{2}(A-B) + 2\cos^{2}\frac{1}{2}C - 1$ $= 2\cos{\frac{1}{2}C} \left[\cos{\frac{1}{2}(A-B)} + \right]$ $\cos \frac{1}{2} \{ -(A + B) \}] - 1$ $= 2\cos\frac{1}{2}C[\cos\frac{1}{2}(A-B) + \cos\frac{1}{2}(A+B)] - 1$ $= 2\cos{\frac{1}{2}}C.2\cos{\frac{1}{2}}A.\cos{\frac{1}{2}}B - 1$ = $4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2} - 1 = \text{R.H.S.}$ (Proved) 6. (c) A + B + C = $(2n + 1)\frac{\pi}{2}$ হলে দেখাও যে, tanA tan C + tanC tanA + tanA tanB = 1হমাণ ঃ দেওয়া আছে , A + B + C = $(2n + 1)\frac{\pi}{2}$ \Rightarrow A + B = (n π + $\frac{\pi}{2}$) - C $\Rightarrow \tan(A + B) = \tan\{(n\pi + \frac{\pi}{2}) - C\}$ $= \tan\{n\pi + (\frac{\pi}{2} - C)\}$ $= \tan(\frac{\pi}{2} - C) = \cot C$ $\Rightarrow \frac{\tan A + \tan B}{1 - \tan A \tan B} = \frac{1}{\tan C}$

 \Rightarrow tanA tanC + tan B tanC = 1 - tanA tanB $\tan A \tan C + \tan C \tan A + \tan A \tan B = 1$ 7. (a) $A + B + C = \pi \ arcot A + \cot B + cot B$ $\cot C = \sqrt{3}$ হলে দেখাও যে. A = B = C. [ব.'oe] প্রমাণ ঃ দেওয়া আছে, $A + B + C = \pi$ \Rightarrow A + B = π - C $\Rightarrow \cot(A + B) = \cot(\pi - C)$ $\Rightarrow \frac{\cot A \cot B - 1}{\cot B + \cot A} = -\cot C$ \Rightarrow cotA cotB -1= cot B cot C- cot C cotA \Rightarrow cotA cotB + cotB cotC + cotC cotA = 1 এখন, $\cot A + \cot B + \cot C = \sqrt{3}$ $\Rightarrow \cot^2 A + \cot^2 B + \cot^2 C + 2$ (cotA cotB $+ \cot B \cot C + \cot C \cot A) = 3(\cot A)$ $\cot B + \cot B \cot C + \cot C \cot A$) $\Rightarrow \cot^2 A + \cot^2 B + \cot^2 C - (\cot A \cot B +$ $\cot B \cot C + \cot C \cot A = 0$ $\Rightarrow \frac{1}{2} \{ (\cot A - \cot B)^2 + (\cot B - \cot C)^2 \}$ $+ (\cot C - \cot A)^{2} = 0$ প্রত্যেকটি শূন্য না হলে তিনটি বর্গের সমষ্টি শূন্য হতে পারে না। $\cot A - \cot B = 0 \Rightarrow \cot A = \cot B$ $\cot B - \cot C = 0 \Longrightarrow \cot B = \cot C$ $\cot A = \cot B = \cot C$ $\Rightarrow A = B = C$ $7(b)A + B + C = \pi \ \text{arg} \ \sin^2 A + \sin^2 B + C$ $\sin^2 C = \sin B \sin C + \sin C \sin A + \sin A$ $\sin B$ হলে দেখাও যে. A = B = Cপ্রমাণ ঃ দেওয়া আছে , $\sin^2 A + \sin^2 B + \sin^2 C =$ $\sin A \sin B + \sin B \sin C + \sin C \sin A$ $\Rightarrow \sin^2 A + \sin^2 B + \sin^2 C - (\sin A \sin B +$ $\sin B \sin C + \sin C \sin A = 0$ $\Rightarrow \frac{1}{2} \{ (\sin A - \sin B)^2 + (\sin B - \sin C)^2 \}$ + (sin C - sin A)² } = 0 প্রত্যেকটি শূন্য না হলে তিনটি বর্গের সমষ্টি শূন্য হতে পারে না।

$$\begin{aligned} \sin A - \sin B = 0 \Rightarrow \sin A = \sin B \\ \Rightarrow \sin A = \sin B = \sin (\pi - B) \\ \sin A = \sin B = \sin (\pi - B) \\ A = B = \sin (\pi - B) \\ A = B = \sin (\pi - B) \\ A = B = \sin (\pi - B) \\ A = B = max (\pi - B) \\ A = B = max (\pi - B) \\ A = B = C \\ (Showed) \end{aligned}$$

$$= 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right) - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} - 1 \right) + \sin \frac{C}{2} + 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} - 1 \right) + \sin \frac{C}{2} + 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} - 1 \right) + \sin \frac{C}{2} - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} - 1 \right) + \sin \frac{C}{2} - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} - 1 \right) + 2 \sin \frac{C}{2} - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} - 1 \right) + 2 \sin \frac{C}{2} - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} - 1 \right) + 2 \sin \frac{C}{2} - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} - 1 \right) + 2 \sin \frac{C}{2} - 1 \\ = 2 \sin \frac{C}{2} \left(2 \cos \frac{A}{2} - 1 \right) + 2 \sin \frac{C}{2} - 1 \\ = 2 \sin \frac{C}{2} \left(\cos \frac{A}{2} - 1 \right) + 2 \sin \frac{C}{2} - 1 \\ = 2 \sin \frac{C}{2} \left(\cos \frac{A}{2} - 1 \right) + 2 \sin \frac{C}{2} - 1 \\ = 2 \sin \frac{C}{2} \left(\cos \frac{A}{2} - 1 \right) + 2 \sin \frac{C}{2} - 1 \\ = 2 \sin \frac{C}{2} \left(\cos \frac{A}{2} - 1 \right) + 2 \sin \frac{C}{2} - 1 \\ = 2 \sin \frac{C}{2} \left(\cos \frac{A}{2} - 1 \right) + 2 \sin \frac{C}{2} - 1 \\ = 2 \sin \frac{C}{2} \left(\cos \frac{A}{2} - 1 \right) + 2 \sin \frac{C}{2} - 1 \\ = 2 \sin \frac{A}{2} \left(\cos \frac{A}{2} - 1 \right) + 2 \sin \frac{A}{2} \left(\frac{A}{A} \right) + 2 \sin \frac{A}{A} \right)$$

$$(A + B + C - A) + 2 \sin$$

 $= 1 + 2\cos\frac{B-A}{4}\sin\frac{A+B}{4} 2\cos\frac{A+B+2C}{a}\sin\frac{A+B}{A}$ $=1+\sin(\frac{A+B}{A}+\frac{B-A}{A})+$ $\sin(\frac{A+B}{A}-\frac{B-A}{A}) \left\{\sin\left(\frac{A+B}{A}+\frac{A+B+2C}{A}\right)+\right\}$ $\sin(\frac{A+B}{A}-\frac{A+B+2C}{A})$ $= 1 + \sin \frac{B}{2} + \sin \frac{A}{2} -$ www.boighar.com $\sin \frac{A+B+C}{2} - \sin(-\frac{C}{2})$ $= 1 + \sin \frac{A}{2} + \sin \frac{B}{2} - \sin \frac{\pi}{2} + \sin \frac{C}{2}$ $= 1 + \sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} - 1$ $=\sin\frac{A}{2}+\sin\frac{B}{2}+\sin\frac{C}{2}=$ L.H.S. Again, $1 + 4\sin\frac{B+C}{4}\sin\frac{C+A}{4}\sin\frac{A+B}{4}$ $=1 + 4\sin\frac{\pi - A}{A}\sin\frac{\pi - B}{A}\sin\frac{\pi - C}{A} = \text{R.H.S.}$ (c) $\sin A \cos B \cos C + \sin B \cos C \cos A$ $+ \sin C \cos A \cos B = \sin A \sin B \sin C$ প্রমাণ **L.H.S**. = sinA cos B cos C + $\sin B \cos C \cos A + \sin C \cos A \cos B$ $(\sin A \cos B + \sin B \cos A) \cos C +$ = sin C cos A cos B sin (A + B) cos C + sin C cos A cos BΞ $sin (\pi - C) cos \{\pi - (A + B)\} +$ = sin C cos A cos B. $sin C \{ -cos (A + B) + cos A cos B \}$ = $\sin C (-\cos A \cos B + \sin A \sin B +$ = $\cos A \cos B$ $\sin A \sin B \sin C = R.H.S.$ (Proved) =

श्रम्भाष्ट्रस्त Votil F 3. $\tan 2A + \tan 2B + \tan 2C =$ tan 2A tan 2B tan 2C প্রমাণ ঃ দেওয়া আছে , $A + B + C = \pi$ \Rightarrow 2A + 2B = 2 π - 2C $\Rightarrow \tan(2A + 2B) = \tan(2\pi - 2C)$ $\frac{\tan 2A + \tan 2B}{1 - \tan 2A + \tan 2B} = -\tan 2C$ \Rightarrow tan2A + tan2B = - tan2C + tan2Atan2Btan2C $\therefore \tan 2A + \tan 2B + \tan 2C$ = tan2A tan2Btan2C 4. $\cos^2 \frac{A}{2} + \cos^2 \frac{B}{2} + \cos^2 \frac{C}{2}$ $= 2 + 2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$ থমাণ : L.H.S. = $\cos^2 \frac{A}{2} + \cos^2 \frac{B}{2} + \cos^2 \frac{C}{2}$ $=\frac{1}{2}(1 + \cos A + 1 + \cos B) + \cos^2 \frac{C}{2}$ $= 1 + \frac{1}{2} \cdot 2\cos\frac{1}{2} (A + B) \cos\frac{1}{2} (A - B) + \cos^2\frac{C}{2}$ $= 1 + \cos(\frac{\pi}{2} - \frac{C}{2})\cos(\frac{1}{2}(A - B)) + \cos^{2}\frac{C}{2}$ $= 1 + \sin{\frac{C}{2}}\cos{\frac{1}{2}}(A - B) + 1 - \sin^{2}{\frac{C}{2}}$ $=2 + \sin{\frac{C}{2}} \{\cos{\frac{1}{2}}(A - B) - \sin{\frac{C}{2}}\}$ $= 2 + \sin \frac{C}{2} [\cos \frac{1}{2} (A - B) \sin\{\frac{\pi}{2} - \frac{1}{2}(A + B)\}]$ $= 2 + \sin \frac{C}{2} \left[\cos \frac{1}{2} (A - B) - \cos \frac{1}{2} (A + B) \right]$ $= 2 + \sin \frac{C}{2} \cdot 2 \sin \frac{A}{2} \sin \frac{B}{2}$ = 2+2sin $\frac{A}{2}$ sin $\frac{B}{2}$ sin $\frac{C}{2}$ = R.H.S (Proved) উচ্চতর গণিত : ১ম পত্র সমাধান

5. A + B + C = $(2n + 1)\frac{\pi}{2}$ হলে দেখাও যে, $sin2A + sin2B + sin2C = \pm 4cosA cosB cosC$ প্রমাণ $\sin\{(2n+1)\frac{\pi}{2}-\Theta\}=\sin\{n\pi+(\frac{\pi}{2}-\Theta)\}$ $=\pm\sin\left(\frac{\pi}{2}-\Theta\right)=\pm\cos\Theta$ এখন, sin 2A + sin 2B + sin 2C $2\sin(A+B)\cos(A-B) + 2\sin C\cos C$ = $2 \sin \{(2n+1)\frac{\pi}{2} - C\}\cos(A - B) +$ $2\sin\{(2n+1)\frac{\pi}{2} - (A+B)\}\cos C$ $2(\pm \cos C) \cos (A - B) +$ = $2\{\pm \cos(A+B)\}\cos C$ = $\pm 2 \cos C \{ \cos (A - B) + \cos (A + B) \}$ $\pm 2 \cos C (2 \cos A \cos B)$ = $\pm 4 \cos A \cos B \cos C$ $\sin 2A + \sin 2B + \sin 2C =$ $\pm 4 \cos A \cos B \cos C$ 6. $\cos^{2}A + \cos^{2}B + \cos^{2}C + 2\cos A \cos^{2}C$ B cos C = 1 হলে দেখাও যে, A \pm B \pm C = (2n + 1) π, যেখানে n যে কোন অখন্ড সংখ্যা । প্রমাণ ঃ দেওয়া আছে . $\cos^2 A + \cos^2 B + \cos^2 C +$ $2 \cos A \cos B \cos C = 1$ $\Rightarrow \frac{1}{2}(1 + \cos 2A + 1 + \cos 2B) + \cos^2 C +$ $\cos C \cdot 2 \cos A \cos B = 1$ $\Rightarrow 1 + \frac{1}{2} \cdot 2 \cos (A + B) \cos (A - B) +$ $\cos^2 C + \cos C \left\{ \cos (A + B) + \right\}$ $\cos (A - B) = 1$ $\Rightarrow \cos (A + B) \cos (A - B) + \cos^2 C +$ $\cos C \cos (A + B) + \cos (A - B) \cos C = 0$ $\Rightarrow \cos (A - B) \{\cos (A + B) + \cos C\} +$ $\cos C \{ \cos (A + B) + \cos C \} = 0$ $\Rightarrow \{ \cos (A + B) + \cos C \}$ $\{\cos (A - B) + \cos C\} = 0$ $\cos (A \pm B) + \cos C = 0$

 \Rightarrow cos (A ± B) = - cos C = cos (π ± C) = $\cos(3\pi \pm C) =$ $= \cos \{(2n+1)\pi \pm C\},$ त्यथात्न $n \in \mathbb{Z}$. \Rightarrow A ± B = (2n + 1) π ±C $A \pm B \pm C = (2n + 1)\pi$ \Rightarrow 7. x + y + z = x y z হলে প্রমাণ কর যে, $\frac{2x}{1-x^2} + \frac{2y}{1-x^2} + \frac{2z}{1-z^2} =$ $\frac{2x}{1-x^2}, \frac{2y}{1-y^2}, \frac{2z}{1-z^2}$ মনে করি, $x = \tan A \Rightarrow A = \tan^{-1} x$ $y = \tan B \Rightarrow A = \tan^{-1} y$ $z = \tan C \Rightarrow C = \tan^{-1} z$ $\tan A + \tan B + \tan C = \tan A \tan B \tan C$ \Rightarrow tanA + tanB = - tanC (1 - tan A tan B) $\Rightarrow \frac{\tan A + \tan B}{1 - \tan A \tan B} = -\tan C$ \Rightarrow tan (A + B) = tan (π - C) \Rightarrow A + B = π - C \Rightarrow 2A + 2B = 2 π - 2C \Rightarrow tan (2A + 2B) = tan (2 π - 2C) $\Rightarrow \frac{\tan 2A + \tan 2B}{1 + \tan 2A \tan 2B} = -\tan 2C$ $\Rightarrow \tan 2A + \tan 2B =$ tan 2C + tan A tan B tan C \Rightarrow tan 2A + tan 2B + tan 2C = tan A tan B tan C $\Rightarrow \frac{2\tan A}{1-\tan^2 A} + \frac{2\tan B}{1-\tan^2 B} + \frac{2\tan C}{1-\tan^2 C} =$ $2 \tan A$ $2 \tan B$ $2 \tan C$ $\frac{1}{1-\tan^2 A} \frac{1}{1-\tan^2 B} \frac{1}{1-\tan^2 C}$ $\Rightarrow \frac{2x}{1-r^2} + \frac{2x}{1-r^2} + \frac{2x}{1-r^2} =$ $\frac{2x}{1-x^2} \frac{2x}{1-x^2} \frac{2x}{1-x^2}$ 8. x + y + z = xyz হলে প্রমাণ কর যে, $\frac{3x - x^3}{1 - 3x^2} + \frac{3y - y^3}{1 - 3y^2} + \frac{3z - z^3}{1 - 3z^2}$

প্রশ্নমিলির 🕅 IF

.

.

 $=\frac{3x-x^{3}}{1-3y^{2}}\cdot\frac{3y-y^{3}}{1-3y^{2}}\cdot\frac{3z-z^{3}}{1-3z^{2}}$ প্রমাণ ঃ মনে করি, $x = \tan A$, $y = \tan B$, $z = \tan C$ $\tan A + \tan B + \tan C = \tan A \cdot \tan B$ tan C $[\because x + y + z = x y z]$ \Rightarrow tanA + tan B = tan C (tan A .tan B - 1) $\Rightarrow \frac{\tan A + \tan B}{1 - \tan A \tan B} = -\tan C$ $\Rightarrow \tan(A + B) = \tan(\pi - C)$ $\mathbf{A} + \mathbf{B} = \pi - \mathbf{C}$ \Rightarrow 3A + 3B + 3C = 3 π $\tan (3A + 3B + 3C) = \tan 3\pi$ $\Rightarrow \frac{\tan 3A + \tan 3B + \tan 3C - \tan 3A \cdot \tan 3B \cdot \tan 3C}{1 - \tan 3A \cdot \tan 3B - \tan 3B \cdot \tan 3C - \tan 3C \cdot \tan 3A}$ ± 0 \Rightarrow tan 3A + tan 3B + tan 3C - $\tan 3A$. $\tan 3B$. $\tan 3C = 0$ $\Rightarrow \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A} + \frac{3\tan B - \tan^3 B}{1 - 3\tan^2 B}$ $+\frac{3\tan C-\tan^3 C}{1-3\tan^2 C}$ $=\frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A} \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}$ $\frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}$ $\frac{3x-x^3}{1-3x^2} + \frac{3y-y^3}{1-3y^2} + \frac{3z-z^3}{1-3z^2}$ $=\frac{3x-x^3}{1-3x^2}\frac{3y-y^3}{1-3y^2}\frac{3z-z^3}{1-3z^2}$ (Proved) 9. yz + zx + xy = 1 হলে প্রমাণ কর যে,

$$\frac{(x^2-1)(y^2-1)}{xy} + \frac{(y^2-1)(z^2-1)}{yz} + \frac{(y$$

$$\frac{(z^2 - 1)(x^2 - 1)}{zx} = 4$$

$$gnific : \pi(\pi \neq n, x) = \cot A \Rightarrow A = \cot^{-1}x$$

$$y = \cot B \Rightarrow A = \cot^{-1}y$$

$$z = \cot C \Rightarrow C = \cot^{-1}z$$

$$\cot A \cot B + \cot B \cot C +$$

$$\cot C \cot A = 1$$

$$\Rightarrow \cot A \cot B - 1 = -(\cot B + \cot A)\cot C$$

$$\Rightarrow \frac{\cot A \cot B - 1}{\cot A + \cot B} = -\cot C$$

$$\Rightarrow \cot (A + B) = \cot (\pi - C)$$

$$\Rightarrow A + B = \pi - C$$

$$\Rightarrow 2A + 2B = 2\pi - 2C$$

$$\Rightarrow \cot (2A + 2B) = \cot (2\pi - 2C)$$

$$\Rightarrow \frac{\cot 2A \cot 2B - 1}{\cot 2B + \cot 2A} = -\cot 2C$$

$$\Rightarrow \cot (2A + 2B) = \cot (2\pi - 2C)$$

$$\Rightarrow \frac{\cot 2A \cot 2B - 1}{\cot 2B + \cot 2A} = -\cot 2C$$

$$\Rightarrow \cot (2A + 2B) = \cot (2\pi - 2C)$$

$$\Rightarrow \frac{\cot^2 A - 1}{2 \cot 2A} = -\cot 2C$$

$$\Rightarrow \cot (2A - 2B) = \cot (2\pi - 2C)$$

$$\Rightarrow \frac{\cot^2 A - 1}{2 \cot 2A} = -\cot 2C$$

$$\Rightarrow \cot (2A - 2B) = \cot (2\pi - 2C)$$

$$\Rightarrow \frac{\cot^2 A - 1}{2 \cot 2A} = -\cot 2C$$

$$\Rightarrow \cot (2A - 2B) = \cot (2\pi - 2C)$$

$$\Rightarrow \frac{\cot^2 A - 1}{2 \cot 2A} = -\cot 2C$$

$$\Rightarrow \cot (2A - 2B) = -\cot 2C$$

$$\Rightarrow \frac{\cot^2 A - 1}{2 \cot 2A} = -\cot 2C$$

$$\Rightarrow \frac{\cot^2 A - 1}{2 \cot 2A} = -\cot 2C$$

$$\Rightarrow \frac{\cot^2 A - 1}{2 \cot 2A} = -\cot 2C$$

$$\Rightarrow \frac{\cot^2 A - 1}{2 \cot 2A} = -\cot 2C$$

$$\Rightarrow \frac{1}{2} \frac{1}{2} = -\cot 2C$$

$$\Rightarrow \frac{1}{2$$

290

1. (a) Solⁿ : sec $(-135^{\circ}) = \sec 135^{\circ}$ $= \sec(180^{\circ} - 45^{\circ}) = -\sec 45^{\circ} = -\sqrt{2}$ **(b)** Solⁿ : sec $\theta = \pm \sqrt{1 + \tan^2 \theta}$ $=\pm \sqrt{1+\frac{25}{144}} =\pm \frac{13}{12}$ $\cos \Theta =\pm \frac{12}{12}$ (c) Solⁿ: $\cot 45^{\circ} + \cot (\pi + 45^{\circ}) + \cot (2\pi$ $+45^{\circ}$ ++ cot ($97t + 45^{\circ}$) $= (9 + 1) \cot 45^{\circ} = 10.1 = 10$ (d) Solⁿ : A ও B পুরক কোণ হলে, $\sin A = \cos B$ Ans. A. (e) Solⁿ : অ্যালকুলেটরের সাহায্যে, $\sin 15^\circ$ এবং $\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}}$ এর আসন মান = 0.258 \therefore Ans. C. (f) $Sol^n : \cos 68 \circ 20' \cos 8 \circ 20' + \cos 81 \circ$ $40^{\circ}\cos 21^{\circ} 40^{\circ} = \cos (68^{\circ} 20^{\circ} - 8^{\circ} 20^{\circ})$ $= \cos 60^{\circ} = \frac{1}{2}$ (g) Solⁿ : $\frac{\cos 8^{0} + \sin 8^{0}}{\cos 8^{0} - \sin 8^{0}} = \frac{1 + \tan 8^{0}}{1 - \tan 8^{0}}$ $=\frac{\tan 45^{\circ} + \tan 8^{\circ}}{\tan 45^{\circ} - \tan 8^{\circ}} = \tan (45^{\circ} + 8^{\circ}) = \tan 53^{\circ}$ (h) Solⁿ : সবগুলি তথ্য সত্য। .: Ans. D. (i) Solⁿ: $\tan \Theta = \pm \frac{\sqrt{13^2 - 12^2}}{12} = \pm \frac{5}{12}$ Ans. A (j) Solⁿ : $\angle C = 180^{\circ} - (60^{\circ} + 75^{\circ}) = 45^{\circ}$ $\frac{a}{\sin A} = \frac{c}{\sin C} \Longrightarrow \frac{a}{\sin 60^{\circ}} = \frac{\sqrt{6}}{\sin 45^{\circ}}$ $\Rightarrow a = \sqrt{6} \times \frac{\sqrt{3}/2}{1/\sqrt{2}} = \frac{6}{2} = 3$: Ans. B (k) Sol^n : $\theta = 20^\circ$ ধরে প্রদন্ত রাশি = 0.766 এবং $\cos 2\theta = 0.766$. : Ans. C (1) Solⁿ: $\tan \theta = \pm \sqrt{\frac{1 - \cos 2\theta}{1 + \cos 2\theta}}$

ত্রিভুচ্জের গুণাবলী

 $=\pm \sqrt{\frac{25-24}{25+24}} =\pm \frac{1}{7}$ (m) Solⁿ: 9² + 40² = 41² : ত্রিভজটি সমকোণী ত্রিভুজ , যার পরিবৃত্তের ব্যাসার্ধ = $\frac{41}{2}$ = 20.5 ABC ত্রিডুচ্ছে প্রমাণ কর যে, 2. (a) $\frac{a-b}{a+b} = \tan \frac{A-B}{2} \tan \frac{C}{2}$ **ঢ. '০৩; য. '**০৯; রা. '১০] প্রমাণ : L.H.S. = $\frac{a-b}{a+b} = \frac{2R\sin A - 2R\sin B}{2R\sin A + 2R\sin B}$ $=\frac{\sin A - \sin B}{\sin A + \sin B} = \frac{2\sin\frac{1}{2}(A - B)\cos\frac{1}{2}(A + B)}{2\sin\frac{1}{2}(A + B)\cos\frac{1}{2}(A - B)}$ $=\tan\frac{A-B}{2}\cot\frac{A+B}{2}=\tan\frac{A-B}{2}\cot(\frac{\pi}{2}-\frac{C}{2})$ $=\tan\frac{A-B}{2}\tan\frac{C}{2}$ = R.H.S. (Proved) 2(b) $\cos \frac{B-C}{2} = \frac{b+c}{a} \sin \frac{A}{2}$ [ग.'\0; ज.'\2] প্রমাণ : R.H.S. = $\frac{b+c}{a}\sin\frac{A}{2}$ $=\frac{2R\sin B+2R\sin C}{2R\sin A}\sin\frac{A}{2}$ $=\frac{\sin B + \sin C}{\sin A} \sin \frac{A}{2}$ $=\frac{2\sin\frac{B+C}{2}\cos\frac{B-C}{2}}{2\sin\frac{A}{2}\cos\frac{A}{2}}\sin\frac{A}{2}$ $=\frac{\sin(\frac{\pi}{2}-\frac{A}{2})\cos\frac{B-C}{2}}{2}$ $\cos\frac{A}{2}$ $=\frac{\cos\frac{A}{2}\cos\frac{B-C}{2}}{\cos\frac{A}{2}}=\cos\frac{B-C}{2}=\text{L.H.S.}$

প্রশ্নমলা VII G

3.(a) $a^2 (\cos^2 B - \cos^2 C) + b^2 (\cos^2 C - b^2)$ $\cos^{2} A + c^{2} (\cos^{2} A - \cos^{2} B) = 0$ রো. '০৭. য. '০৭.'১২] প্রমাণ : L.H.S. = $a^2 (\cos^2 B - \cos^2 C) +$ $b^{2}(\cos^{2}C - \cos^{2}A) + c^{2}(\cos^{2}A - \cos^{2}B)$ $= 4R^{2} \sin^{2} A (\cos^{2} B - \cos^{2} C) +$ $4R^{2} \sin^{2} B (\cos^{2} C - \cos^{2} A) +$ $4R^{2}\sin^{2}C(\cos^{2}A-\cos^{2}B)$ $= 4R^{2}(\sin^{2}A\cos^{2}B - \sin^{2}A\cos^{2}C +$ $\sin^2 B \cos^2 C - \cos^2 A \sin^2 B +$ $\sin^2 C \cos^2 A - \cos^2 B \sin^2 C$) $= 4R^{2}(\sin^{2}A(1 - \sin^{2}B) - \sin^{2}A(1 - \sin^{2}C))$ $+\sin^2 B(1-\sin^2 C) - \sin^2 B(1-\sin^2 A) +$ $\sin^2 C(1 - \sin^2 A) - \sin^2 C(1 - \sin^2 B)$ $= 4R^2(\sin^2 A - \sin^2 A \sin^2 B - \sin^2 A + \sin^2 A)$ $\sin^2 C + \sin^2 B - \sin^2 B \sin^2 C - \sin^2 B$ + $\sin^2 B \sin^2 A$ + $\sin^2 C$ - $\sin^2 C \sin^2 A$ - $\sin^2 C + \sin^2 C \sin^2 B$) = $4R^2 \times 0 = 0 = R.H.S.$ (proved) $3(b) (b + c) \cos A + (c + a) \cos B + (a + b)$ $\cos C = a + b + c$ [व.'oe; जि.'ov,'o9; त्रा.')8] গ্রমাণ : L.H.S.= $(b + c) \cos A + (c + a) \cos B$ $+(a+b)\cos C$ $= b \cos A + c \cos A + c \cos B + a \cos B + a$ $a \cos C + b \cos C$ $= (c \cos B + b \cos C) + (c \cos A + a \cos C)$ $-(b \cos A + a \cos B) = a + b + c = R.H.S.$ [लाँघ $a = c \cos B + b \cos C$] $3(c) a^{2} (\sin^{2}B - \sin^{2}C) + b^{2} (\sin^{2}C - \sin^{2}A)$ $+ c^{2} (\sin^{2} A - \sin^{2} B) = 0$ [ঢা.'০০, য.'০৪] **EXAMPLE 1.** L.H.S.= $a^2 (\sin^2 B - \sin^2 C) + \frac{1}{2}$ $b^{2}(\sin^{2}C - \sin^{2}A) + c^{2}(\sin^{2}A - \sin^{2}B)$ $= (2R \sin A)^2 (\sin^2 B - \sin^2 C) + (2R \sin B)^2$ $\sin^{2}C - \sin^{2}A + (2R\sin C)^{2}(\sin^{2}A - \sin^{2}B)$ $= 4 R^{2} \{ \sin^{2} A \sin^{2} B - \sin^{2} A \sin^{2} C +$ $\sin^2 B \sin^2 C - \sin^2 B \sin^2 A +$ $\sin^2 C \sin^2 A - \sin^2 C \sin^2 B$

প্রশ্রমালা – VII G 290 $= 4 R^{2} \times 0 = 0 = R.H.S.$ (Proved) 4. (a) $a (\cos C - \cos B) = 2 (b - c) \cos^2 \frac{A}{2}$ যি. '08; রা. '0১; দি. '১০; ঢা. '১১; সি. '১২] প্রমাণ: L.H.S. = $a (\cos C - \cos B)$ $= a \cos C - a \cos B$ $= (b - c \cos A) - (c - b \cos A)$ $= b - c + (b - c) \cos A$ $= (b-c)(1+\cos A) = (b-c).2\cos \frac{A}{2}$ $= 2 (b - c) \cos^{2} \frac{A}{2} = R.H.S.$ 4(b) a (cos B + cos C) = 2 (b + c) sin² $\frac{A}{2}$ [য. '00; ব. '08; তা. '0৮; চ. '0১; গি. '১৪] প্রমাণ : L.H.S. = $a (\cos B + \cos C)$ $= a \cos B + a \cos C$ $= c - b \cos A + b - c \cos A$ $= b + c - (b + c)\cos A = (b + c)(1 - \cos A)$ $= (b + c) 2. \sin^2 \frac{A}{2}$ = 2 (b + c) $\sin^2 \frac{A}{2}$ = R.H.S. $4(c) b^{2} \sin 2C + c^{2} \sin 2B = 4\Delta$ প্রমাণ: L.H.S.= $b^2 \sin 2C + c^2 \sin 2B$ $= b^2.2 \sin C \cos C + c^2.2 \sin B \cos B$ $= 2b^2 \frac{c}{2R} \cos C + 2c^2 \frac{b}{2R} \cos B$ $=\frac{bc}{R}(b\cos C + c\cos B) = \frac{bc}{R}a$ $=\frac{abc}{R}=4\Delta$ = R.H.S. 4(d) $a^{3} \cos (B - C) + b^{3} \cos (C - A) +$ $c^{3}\cos(A - B) = 3abc$ ব.'০৩] প্রমাণ: $a^3 \cos(B - C)$ = a ($a^2 \cos B \cos C + a^2 \sin B \sin C$) $= a(a \cos B \cdot a \cos C + a \sin B, a \sin C)$

 $= a\{(c - b \cos A)(b - c \cos A) + b \sin A \cdot c \sin A\}$

বইঘব কম $= a\{bc - b^2 \cos A - c^2 \cos A + bc \cos^2 A\}$ + bc $\sin^2 A$ $= a\{bc - (b^2 + c^2) \cos A + bc\}$ $= 2abc - a(b^2 + c^2) \cos A$. অনুরপডাবে আমরা পাই. $b^{3}cos(C - A) = 2abc - b(c^{2} + a^{2}) cos B$ are $c^{3} \cos (A - B) = 2abc - c(a^{2} + b^{2}) \cos C$ এখন, L.H.S.= $a^3 \cos(B - C) + b^3 \cos(C - A)$ $+ c^{3}cos(A - B)$ $= 6abc - a(b^2 + c^2) cos A - b(c^2 + a^2)$ $\cos B - c(a^2 + b^2) \cos C$ $= 6abc - ab^2 cosA - c^2 a cosA - bc^2 cosB$ $a^{2}b \cos B - ca^{2}\cos C - b^{2}c \cos C$ $= 6abc - bc(c \cos B + b\cos C) - ab(a\cos B + b\cos C)$ bcosA) – ca(c cosA + a cosC)= 6abc - bc.a - ab.c - ca.b= 6abc - 3abc = 3abc = R.H.S. (Proved) 5.(a) $a^{3} \sin (B - C) + b^{3} \sin (C - A) +$ $c^{3}\sin\left(\mathbf{A}-\mathbf{B}\right)=0$ থমাণ : $a^{3} \sin(B - C) = a^{2} \cdot a \sin(B - C)$ $= a^2.2R \sin A \sin(B - C)$ $= 2Ra^{2}sin{\pi - (B + C)} sin(B - C)$ $= 2R a^2 sin(B + C) sin(B - C)$ $= 2R.4R^2 \sin^2 A(\sin^2 B - \sin^2 C)$ $= 8R^3 sin^2 A(sin^2 B sin^2 C)$ অনুরপডাবে আমরা পাই, $b^{3} \sin(C - A) = 8R^{3} \sin^{2}B(\sin^{2}C - \sin^{2}A)$ $c^{3} \sin(A - B) = 8R^{3} \sin^{2}C (\sin^{2}A - \sin^{2}B)$ এখন , L.H.S.= $a^{3} \sin(B - C) + b^{3} \sin(C - A)$ $+ c^{3} sin(A - B)$ $= 8R^{3}(\sin^{2}A\sin^{2}B - \sin^{2}A\sin^{2}B + \sin^{2}B\sin^{2}C)$ $-\sin^2 A \sin^2 B + \sin^2 C \sin^2 A - \sin^2 B \sin^2 C$) $= 8R^3 \times 0 = 0 = R.H.S$ (Proved). 5. (b) $(b^2 - c^2) \cot A + (c^2 - a^2) \cot B +$ $(a^2 - b^2) \cot C = 0$ প্রমাণ : $(b^2 - c^2) \cot A$ $=(b^2-c^2)\frac{R}{aba}(b^2+c^2-a^2)$

 $= \frac{R}{aba} \{ (b^2 - c^2)(b^2 + c^2) - a^2(b^2 - c^2) \}$ $= \frac{R}{aba} \{b^4 - c^4 - a^2(b^2 - c^2)\}$ অনুরপভাবে আমরা পাই , $(c^2 - a^2) \cot B = \frac{R}{a^4 - b^2} \{c^4 - a^4 - b^2(c^2 - a^2)\},\$ $(a^2 - b^2) \cot C = \frac{R}{abc} \{a^4 - b^4 - c^2(a^2 - b^2)\}$ L.H.S. = $(b^2 - c^2) \cot A + (c^2 - a^2) \cot B$ + $(a^2 - b^2) \cot C$ $= \frac{R}{L} \{b^4 - c^4 + c^4 - a^4 + a^4 - b^4 - (a^2b^2 - c^2a^2)\}$ + $b^{2}c^{2} - a^{2}b^{2} + c^{2}a^{2} - b^{2}c^{2}$) $=\frac{R}{R} \times 0 = 0 = R.H.S.$ (Proved) 5(c) $(a-b)^2 \cos^2 \frac{C}{2} + (a+b)^2 \sin^2 \frac{C}{2} = c^2$ ିବୁ. '୦୪ থমাণ:L.H.S.= $(a-b)^2 \cos^2 \frac{C}{2} + (a+b)^2 \sin^2 \frac{C}{2}$ $= (a - b)^{2} \frac{1}{2} (1 + \cos C) + (a + b)^{2} \frac{1}{2} (1 - \cos C)$ $= \frac{1}{2} [\{(a - b)^2 + (a + b)^2\} \{(a+b)^2 - (a-b)^2\} \cos C$ $=\frac{1}{2}.\{2(a^2+b^2)-4ab\cos C\}$ $= a^{2} + b^{2} - 2ab \cos C = c^{2} = R.H.S.$ (Proved) 6. (a) (s - a) $\tan \frac{A}{2} = (s - b) \tan \frac{B}{2} =$ $(s-c)\cot\frac{C}{2}$ প্রমাণ : $(s - a) \tan \frac{A}{2}$ $= (s-a) \frac{\sqrt{(s-b)(s-c)}}{\sqrt{s(s-a)}}$ $=\frac{\sqrt{s-a}\sqrt{s-a}\sqrt{(s-b)(s-c)}}{\sqrt{s(s-a)}}$

$$= \frac{\sqrt{(s-a)(s-b)(s-c)}}{\sqrt{s}}$$

$$(s-b) \tan \frac{B}{2} = (s-b) \frac{\sqrt{(s-c)(s-a)}}{\sqrt{s(s-b)}}$$

$$= \frac{\sqrt{s-b}\sqrt{s-b}\sqrt{(s-c)(s-a)}}{\sqrt{s(s-b)}}$$

$$= \frac{\sqrt{(s-a)(s-b)(s-c)}}{\sqrt{s}}$$

$$(s-c) \tan \frac{C}{2} = (s-c) \frac{\sqrt{(s-a)(s-b)}}{\sqrt{s(s-c)}}$$

$$= \frac{\sqrt{s-c}\sqrt{s-c}\sqrt{(s-a)(s-b)}}{\sqrt{s}}$$

$$: (s-a) \tan \frac{A}{2} = (s-b) \tan \frac{B}{2} = (s-c) \cot \frac{C}{2}$$

$$6(b) \sin A + \sin B + \sin C = \frac{s}{R}$$

$$fatter : L.H.S.= sinA + sinB + sinC$$

$$= \frac{a}{2R} + \frac{b}{2R} + \frac{c}{2R} = \frac{a+b+c}{2R}$$

$$= \frac{2s}{2R} = \frac{s}{R} = R.H.S. (Proved)$$

$$6(c) a \sin (\frac{A}{2} + B) = (b+c) \sin \frac{A}{2}$$

$$= (2R sin (\frac{A}{2} + B)) = (b+c) \sin \frac{A}{2}$$

$$= (2R sin B + 2R sin C) sin \frac{A}{2}$$

$$= 2R (sin B + sin C) sin \frac{A}{2}$$

$$= 2R (sin B + sin C) sin \frac{A}{2}$$

$$= 4R sin (\frac{\pi}{2} - \frac{A}{2}) sin (\frac{\pi}{2} + \frac{B-C}{2}) sin \frac{A}{2}$$

$$= 2R.2 \cos \frac{A}{2} \sin \frac{A}{2} \sin \frac{\pi + B - C}{2}$$

$$= 2R \sin A \sin \frac{A + B + C + B - C}{2}$$

$$= a \sin (\frac{A}{2} + B) = R.H.S. (Proved)$$
7.(a) $a \sin B \sin C + b \sin C \sin A + c \sin A \sin B = \frac{3\Delta}{R}$
equive :L.H.S.= $a \sinh B \sinh C + b \sin C \sinh A + c \sinh A \sin B$

$$= a. \frac{b}{2R} \cdot \frac{c}{2R} + b\frac{c}{2R}\frac{a}{2R} + c\frac{a}{2R}\frac{b}{2R}$$

$$= \frac{abc}{4R^2} + \frac{abc}{4R^2} + \frac{abc}{4R^2} = \frac{3abc}{4R^2}$$

$$= \frac{abc}{4R} \cdot \frac{3}{R} = \Delta \cdot \frac{3}{R} = \frac{3\Delta}{R} = R.H.S. (Proved)$$
7(b) $\frac{1}{a} \sin A + \frac{1}{b} \sin B + \frac{1}{c} \sin C = \frac{6\Delta}{abc}$

$$[a \otimes A \cdot b \otimes C + \frac{1}{2R} + \frac{1}{2R} = \frac{3}{2R}$$

$$= \frac{3}{2} \cdot \frac{1}{R} = \frac{3}{2} \cdot \frac{4\Delta}{abc} = \frac{6\Delta}{abc} = R.H.S. (Proved)$$
8.(a) $\frac{\cos B \cos C}{bc} + \frac{\cos C \cos A}{ca} + \frac{\cos A \cos B}{ab}$

$$= \frac{1}{abc} \{ 2R \sin A \cos B \cos C + 2R \sin C \cos A \cos B \}$$

$$= \frac{1}{abc} \{ 2R \sin A \cos B \cos C + 2R \sin C \cos A \cos C + 2R \sin B \cos C \cos A + 2R \sin C \cos A \cos C + 2R \sin B \cos C \cos A + 2R \sin C \cos A \cos C + 2R \sin B \cos C \cos A + 2R \sin C \cos A \cos C + 2R \sin B \cos C \cos A + 2R \sin C \cos A \cos C + 2R \sin B \cos C \cos A + 2R \sin C \cos A \cos C + 2R \sin B \cos C \cos A + 2R \sin C \cos A \cos C + 2R \sin B \cos C \cos A + 2R \sin C \cos A \cos C + 2R \sin B \cos C \cos A + 2R \sin C \cos A \cos C + 2R \sin B \cos C \cos A + 2R \sin C \cos A \cos C + 2R \sin B \cos C \cos A + 2R \sin C \cos A \cos C + 2R \sin B \cos C \cos A + 2R \sin C \cos A \cos C + 2R \sin B \cos C \cos A + 2R \sin C \cos A \cos C + 2R \sin B \cos C \cos A + 2R \sin C \cos A \cos C + 2R \sin B \cos C \cos A + 2R \sin C \cos A \cos C + 2R \sin B \cos C \cos A + 2R \sin C \cos A \cos C + 2R \sin B \cos C \cos A + 2R \sin C \cos A \cos C + 2R \sin B \cos C \cos A + 2R \sin C \cos A \cos C + 2R \sin B \cos C \cos A + 2R \sin C \cos A \cos C + 2R \sin A \cos B \cos C + 2R \sin B \cos A \cos C + 2R \sin A \cos B \cos C + 2R \sin B \cos A \cos B \cos C + 2R \sin B \cos A \cos B \cos C + 2R \sin B \cos A \cos B \cos C + 2R \sin A \cos B \cos C + 2R \sin B \cos A \cos B \cos C + 2R \sin B \cos A \cos B \cos C + 2R \sin A \cos B \sin B \cos A \cos B \cos C + 2R \sin A \cos B \cos C \sin A \cos B \cos C + 2R \sin A \cos B \sin B \cos A \cos B \cos C + 2R \sin A \cos B \cos B \sin B \cos A \cos B \sin B \cos A \cos B \sin B \cos A$$

 $+ \sin C \cos A \cos B$ $= \frac{2R}{\pi \hbar c} \{\sin(A + B)\cos C + \cos A \cos B \sin C\}$ $= \frac{2R}{aba} \{\sin(\pi - C)\cos C + \cos A\cos B\sin C\}$ $=\frac{2R}{aba}\left[\sin C \sin\{\pi - (A + B)\}\right]$ $+\cos A \cos B \sin C$ $=\frac{2R}{aba}\sin C\{-\cos(A+B)+\cos A\cos B\}$ $=\frac{2R}{aba}\sin C(-\cos A\cos B + \sin A\sin B +$ $\cos A \cos B$ $= \frac{2R}{abc} \sin A \sin B \sin C = \frac{2R}{abc} \frac{a}{2R} \cdot \frac{b}{2R} \cdot \frac{c}{2R}$ $=\frac{1}{4R^2}$ = R.H.S. (Proved) 8(b) $\frac{b^2 - c^2}{c^2} \sin 2A + \frac{c^2 - a^2}{b^2} \sin 2B$ $+\frac{a^2-b^2}{a^2}\sin 2C=0$ প্রমাণ : $\frac{b^2-c^2}{c^2}\sin 2A$ $=\frac{4R^2(\sin^2 B - \sin^2 C)}{4R^2\sin^2 A} \cdot 2\sin A\cos A$ $= 2\cos A \frac{\sin(B+C)\sin(B-C)}{\sin A}$ $= 2\cos A \ \frac{\sin(\pi - A)\sin(B - C)}{\sin A}$ $=\frac{2\cos\{\pi-(B+C)\}\sin A\sin(B-C)}{\sin A}$ $= -2 \cos (B + C) \sin (B - C)$ $= -(\sin 2B - \sin 2C) = \sin 2C - \sin 2B$ অনুরূপভাবে আমরা পাই, $\frac{c^2-a^2}{b^2}\sin 2B=\sin 2A-\sin 2C,$ $\frac{a^2 - b^2}{c^2} \sin 2C = \sin 2B - \sin 2A$

উচ্চতর গণিত : ১ম পত্র সমাধান এখন L.H.S.= $\frac{b^2 - c^2}{r^2} \sin 2A$ $+\frac{c^2-a^2}{b^2}\sin 2B+\frac{a^2-b^2}{c^2}\sin 2C$ = sin2C - sin2B + sin2A - sin2C $+\sin 2B - \sin 2A$ = 0 = R.H.S. (Proved) 9. (a) $a^4 + b^4 + c^4 = 2c^2(a^2 + b^2)$ হলে দেখাও যে. $C = 45^{\circ}$ অথবা 135 $^{\circ}$ যি.'০৬.'১১: চ.'১৪; রা.'১০,'১৪; ঢা.'০৬,'১১,'১৪; কৃ.'০৬,'০৮] প্রমাণ ঃ দেওয়া আছে $a^4 + b^4 + c^4 = 2c^2(a^2 + b^2)$ $\Rightarrow a^4 + b^4 + c^4 - 2c^2a^2 - 2b^2c^2 = 0$ $\Rightarrow (a^2)^2 + (b^2)^2 + (-c^2)^2 + 2a^2 b^2 +$ $2b^{2}(-c^{2}) + 2(-c^{2})a^{2} = 2a^{2}b^{2}$ $\implies (a^{2} + b^{2} - c^{2})^{2} = 2a^{2}b^{2}$ $\Rightarrow a^2 + b^2 - c^2 = \pm \sqrt{2} ab$ \Rightarrow 2ab cosC = $\pm \sqrt{2}$ ab \Rightarrow cosC = $\pm \frac{1}{\sqrt{2}}$ $\cos C = \frac{1}{\sqrt{2}} \sqrt{2}$, $\cos C = \cos 45^{\circ}$ $C = 45^{\circ}$ $\cos C = -\frac{1}{\sqrt{2}}$ रत्न , $\cos C = -\cos 45^\circ$ $\Rightarrow \cos C = \cos (180^{\circ} - 45^{\circ}) = \cos 135^{\circ}$ C = 135° C = 45° অথবা, 135° (Showed) 9(b) $c^4 - 2(a^2 + b^2) c^2 + a^4 + a^2 b^2 +$ $b^4 = 0$ হলে দেখাও যে. $C = 60^\circ$ অথবা 120° সমাধান ঃ দেওয়া আছে . $c^4 - 2(a^2 + b^2)c^2 + a^4 + a^2b^2 + b^4 = 0$ $\Rightarrow c^4 - 2a^2c^2 - 2b^2c^2 + a^4 + a^2b^2 + b^4 = 0$ $\Rightarrow (a^{2})^{2} + (b^{2})^{2} + (-c^{2})^{2} + 2a^{2}b^{2} - 2a^{2}c^{2}$ $- 2b^{2}c^{2} = a^{2}b^{2}$ $\Rightarrow (a^2 + b^2 - c^2)^2 = 4a^2b^2 \cdot \frac{1}{4}$ $\Rightarrow \left(\frac{a^2 + b^2 - c^2}{2ab}\right)^2 = \frac{1}{4}$

$$\Rightarrow \cos^{2}C = \frac{1}{4} \Rightarrow \cos C = \pm \frac{1}{2}$$
$$\cos C = \frac{1}{2} = \cos 60^{\circ} \Rightarrow C = 60^{\circ}$$

त्रथवा, $\cos C = -\frac{1}{2} = \cos 120^{\circ} \Rightarrow C = 120^{\circ}$
$$C = 60^{\circ}$$
 अथवा, 120°

10.(a) কোন ত্রিভুজের বাহ্ণুলো 13, 14 এবং 15 হলে, ত্রিভুজটির ক্ষেত্রফল নির্ণয় কর।

বি. '০২; চ. '০৫; য. '০৭; চা. '০৯] a = 13, b = 14, c = 15সমাধান : মনে করি অর্ধপরিসীমা s = $\frac{1}{2}(a + b + c)$ $=\frac{1}{2}(13 + 14 + 15) = \frac{1}{2} \times 42 = 21$ ত্রিভুজের ক্ষেত্রফল = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{21(21-13)(21-14)(21-15)}$ $=\sqrt{21.8.7.6} = \sqrt{7056} = 84$ (Ans.) 10(b) কোন ত্রিভূচ্ছের বাহ্যুলো $\frac{y}{z} + \frac{z}{x}, \frac{z}{x} + \frac{x}{y}$ এবং x + y হলে,ত্রিভূচ্চটির ক্ষেত্রফল নির্ণয় কর। [সি.বো.০৭] সমাধান 8 মনে করি, $a = \frac{y}{z} + \frac{z}{r}$, $b = \frac{z}{r} + \frac{x}{r}$ এবং $c = \frac{x}{v} + \frac{y}{z}$ অর্ধপরিসীমা s = $\frac{1}{2}(a + b + c)$ $=\frac{1}{2}\left(\frac{y}{z} + \frac{z}{x} + \frac{z}{x} + \frac{x}{y} + \frac{x}{y} + \frac{y}{z}\right)$ $=\frac{1}{2} \cdot 2(\frac{y}{z} + \frac{z}{r} + \frac{x}{v}) = \frac{y}{v} + \frac{z}{r} + \frac{x}{v}$ $s - a = \frac{y}{z} + \frac{z}{x} + \frac{x}{v} - \frac{y}{z} - \frac{z}{x} = \frac{x}{v}$ $s - b = \frac{y}{z} + \frac{z}{r} + \frac{x}{v} - \frac{z}{r} - \frac{x}{v} = \frac{y}{z}$

$$s - c = \frac{y}{z} + \frac{z}{x} + \frac{x}{y} - \frac{x}{y} - \frac{y}{z} = \frac{z}{x}$$

ত্রিভুজের ক্ষেত্রফল = $\sqrt{s(s-a)(s-b)(s-c)}$

$$= \sqrt{\left(\frac{y}{z} + \frac{z}{x} + \frac{x}{y}\right)\frac{x}{y}\frac{y}{z}\frac{z}{x}}$$

$$= \sqrt{\left(\frac{y}{z} + \frac{z}{x} + \frac{x}{y}\right)}$$
 (Ans.)

10. (c) (a + b + c) (b + c - a) = 3b c হব, A কোণের মান নির্ণয় কর। [চ.'oo; य.'oc,'ob; রা. '০৭. '১১. '১৩; ঢা. '০৮ ; সি. '১০; দি. '১১, '১৪] সমাধান ঃ দেওয়া আছে . (a + b + c)(b + c - a) = 3bc \Rightarrow (b + c)² - a² = 3bc \Rightarrow b² + 2bc + c² - a² = 3bc \Rightarrow b² + c² - a² = bc \Rightarrow 2 bc cos A = bc $\Rightarrow \cos A = \frac{1}{2} = \cos 60^\circ$ $\therefore A = 60^\circ$ (Ans.) $10(d) \triangle ABC$ -এ যদি $A = 60^\circ$ হয়, তবে দেখাও $a, b + c = 2a \cos \frac{B - C}{2}$ ঢ়া. সি '১০; ব. '০৯; রা. '০৯, '১৪] প্রমাণ $b + c = 2R(\sin B + \sin C)$ $2R.2 \sin \frac{1}{2}(B+C) \cos \frac{1}{2}(B-C)$ $= 4R \sin \frac{1}{2} (120^{\circ}) \cos \frac{1}{2} (B - C)$ $| \cdot \cdot A = 60^\circ$ $\therefore B + C = 120^\circ]$ $= 4R\cos 60^{\circ}\cos \frac{1}{2}(B-C)$ $= 2.2R \cos A \cos \frac{1}{2} (B - C)$ $= 2 \operatorname{a} \cos \frac{1}{2} (B - C) = R.H.S.$ ΔABC -এ $C = 60^{\circ}$ হলে দেখাও যে **(e)** $\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$

11.(a) কোন ত্রিভুজের বাহ্ন্যুলো সমান্ডর প্রামন ভুক্ত হলে দেখাও যে, $\cot \frac{A}{2}$, $\cot \frac{B}{2}$ ও $\cot \frac{C}{2}$ সমান্ডর প্রামন ভুক্ত। ধমাণ ঃ দেওয়া আছে, ABC ত্রিভুজের বাহু a, b, c সমান্তর শ্রেণীন্তব্ত। a - b = b - c \Rightarrow (s-b) - (s - a) = (s - c) - (s - b) \Rightarrow s(s - b) - s(s - a) = s(s - c) - s(s - b) $\Rightarrow \frac{s(s-b)}{A} - \frac{s(s-a)}{A} = \frac{s(s-c)}{A} - \frac{s(s-b)}{A}$ $\Rightarrow \cot \frac{B}{2} - \cot \frac{A}{2} = \cot \frac{C}{2} - \cot \frac{B}{2}$ $\Rightarrow \cot \frac{A}{2} - \cot \frac{B}{2} = \cot \frac{B}{2} - \cot \frac{C}{2}$ $\cot \frac{A}{2}, \cot \frac{B}{2}$ ও $\cot \frac{C}{2}$ সমাশতর শ্রেণীভুক্ত। 11(b) a^2 , b^2 ও c^2 সমানতর প্রামন ভুক্ত হলে প্রমাণ কর থে, $\cot A$, $\cot B$ ও $\cot C$ সমাশতর প্রগমন তক্ত। প্রমান $\mathbf{s} \mathbf{a}^2$, \mathbf{b}^2 ও \mathbf{c}^2 সমান্দতরাল শেণীতক বলে, $a^{2}-b^{2}=b^{2}-c^{2} \implies 2a^{2}-2b^{2}=2b^{2}-2c^{2}$ $\Rightarrow 2b^2 - 2a^2 = 2c^2 - 2b^2$ \Rightarrow b² + c² - a² - c² - a² + b² $= c^{2} + a^{2} - b^{2} - a^{2} - b^{2} + c^{2}$ $\Rightarrow \frac{R}{aba} \{ (b^2 + c^2 - a^2) - (c^2 + a^2 - b^2) \}$ $= \frac{R}{abc} \{ (c^2 + a^2 - b^2) - (a^2 + b^2 - c^2) \}$ $\Rightarrow \frac{R(b^2+c^2-a^2)}{a^2-a^2} - \frac{R(c^2+a^2-b^2)}{a^2-a^2-a^2}$ $=\frac{R(c^{2}+a^{2}-b^{2})}{abc}-\frac{R(a^{2}+b^{2}-c^{2})}{abc}$ $\Rightarrow \cot A - \cot B = \cot B - \cot C$ ∴cotA, cotB ও cotC সমান্দতরা শ্রেণীভুক্ত। 11(c) কোন ত্রিভুষ্ণের বাস্থাুলো , n , m $\sqrt{m^2 + mn + n^2}$ হলে , বৃহন্তম কোণটি নির্পন্ন কর । সমাধান 8 m, n এবং $\sqrt{m^2 + mn + n^2}$ একটি

ত্রিভুজের বাহু বলে, প্রত্যেকেই ধনাত্মক এবংm ও n

এর যেকোন ধনাত্মক মানের জন্য, $\sqrt{m^2 + mn + n^2} > m$ $\overline{\triangleleft}$, n $\therefore \sqrt{m^2 + mn + n^2}$ বৃহত্তম বাহু।বৃহত্তম কোণ A হলে, $\cos A = \frac{m^2 + n^2 - (\sqrt{m^2 + mn + n^2})^2}{(\sqrt{m^2 + mn + n^2})^2}$ $=\frac{m^2+n^2-m^2-mn-n^2}{2mn}$ $=-\frac{1}{2}=\cos 120^{\circ}$: A = 120° ত্রিস্তুজটি স্থৃলকোণী। অতএব 11.(d) কোন ত্রিভুজের বাহ্যুলো 2x + 3, $x^2 + 3x + 3$, x² + 2 x হলে, বৃহত্তম কোণটি নির্ণয় কর। সমাধান : 2x + 3, $x^2 + 3x + 3$ এবং $x^2 + 2x$ একটি ত্রিন্ডজের বাহু বলে , প্রত্যেকেই ধনাত্মক । $2x+3>0 \Longrightarrow x>-\frac{3}{2},$ $x^{2} + 3x + 3 > 0 \Longrightarrow (x + \frac{3}{2})^{2} + 3 - \frac{9}{4} > 0$ $\implies (x + \frac{3}{2})^2 + \frac{3}{4} > 0 \quad \text{if } x - \text{arg states and } x + \frac{3}{4} > 0$ মানের জনা সত্য এবং $x^{2} + 2 x > 0 \Longrightarrow x (x + 2) > 0$ x > 0 অথবা x < -2-2 3 -1 0x > 0 - এর সকল বাস্তব মানের জন্য 2x + 3 $x^{2} + 3x + 3 = x^{2} + 2x$ প্রত্যেকেই ধনাত্মক এবং $x^{2} + 3x + 3 > 2x + 3$, $x^{2} + 3x + 3 > x^{2} + 2x$. : x² + 3 x + 3 বৃহত্তম বাহু । বৃহত্তম কোণ A হলে, $(x^{2} + 3x + 3)^{2} = (2x + 3)^{2} + (x^{2} + 2x)^{2} 2(2x+3)(x^2+2x)\cos A$ $\Rightarrow x^{4} + 9x^{2} + 9 + 6x^{3} + 18x + 6x^{2} = 4x$ $x^{2} + 9 - 12x + x^{4} + 4x^{2} + 4x^{3}$ $-2(2x^{3}+7x^{2}+6x)\cos A$ $\Rightarrow 2$, $+7x^2 + 6x =$ $-2(2x^{3}+7x^{2}+6x)\cos A$

 $\Rightarrow \cos A = -\frac{1}{2} = \cos 120^{\circ}$ $A = 120^{\circ}$ 11(e) যদি কোন ত্রিভুঞ্জের যে কোন দুইটি কোণের কোসাইন তাদের বিপরীত বাহুর সম্বে ব্যস্ত ভেদে অন্দিবত হয়, তবে দেখাও যে, ত্রিভুজটি সমদ্বিবাহু অথবা সমকোণী । প্রমাণ ঃ মনে করি . △ABC -এ. $\frac{\cos A}{\cos B} = \frac{b}{a} \implies \frac{\cos A}{\cos B} = \frac{2R\sin B}{2R\sin A}$ \Rightarrow cosAsinA = cosB sinB \Rightarrow 2 sinA cosA = 2 sinB cosB \Rightarrow sin2A = sin2B $\Rightarrow \sin 2A - \sin 2B = 0$ $\Rightarrow 2\sin(A - B)\cos(A + B) = 0$ $\Rightarrow \sin(A - B) \cos(A + B) = 0$ $sin(A - B) = 0 \Rightarrow sin(A - B) = sin0$ $A - B = 0 \implies A = B$ জথবা , $\cos(A + B) = 0$ $\Rightarrow \cos(A + B) = \cos 90^{\circ} \Rightarrow A + B = 90^{\circ}$ $C = 90^{\circ}$ অতএব , ত্রিভুজটি সমবাহু অথবা সমকোণী । 11(f)দেখাও যে, কোন ত্রিভুজের বাহুর দৈর্ঘ্য 3,5 ও 7 হলে ত্রিভুন্ধটি একটি স্থলকোণী ত্রিভুন্ধ ; স্থলকোণটির মান নির্ণয় কর। [চ.,বু.'১০; দি.'১২] প্রমাণ 8 এখানে , বৃহত্তম বাহু = 7. ∴ বৃহন্তম কোণটি A হলে আমরা পাই $\cos A = \frac{3^2 + 5^2 - 7^2}{2 \cdot 2 \cdot 5} = \frac{9 + 25 - 49}{20}$ $=\frac{34-49}{30}=\frac{-15}{30}=-\frac{1}{2}=\cos 120^{\circ}$ A = 120°, যা স্থলকোণ। অতএব, ত্রিভূজটি একটি স্থৃলকোণী এবং স্থৃলকোণটির মান 120° 12.(a) $\triangle ABC$ - 4 यपि $A = 75^{\circ}$, $B = 45^{\circ}$ হয় , তবে দেখাও যে , $c: b = \sqrt{3}: \sqrt{2}$ [1.'09] প্রমাণ ঃ দেওয়া আছে, $\Delta ABC - 4$ $A = 75^{\circ}, B = 45^{\circ}$ $\therefore C = 180^{\circ} - (75^{\circ} + 45^{\circ}) = 180^{\circ} - 120^{\circ} = 60^{\circ}$

ত্রিভুজের সাইন সূত্র হতে পাই, $\frac{b}{\sin R} = \frac{c}{\sin C}$ $\Rightarrow \frac{b}{\sin 45^{\circ}} = \frac{c}{\sin 60^{\circ}} \Rightarrow \frac{b}{\frac{1}{\sqrt{2}}} = \frac{c}{\frac{\sqrt{3}}{2}}$ $c: a = \frac{\sqrt{3}}{2}: \frac{1}{\sqrt{2}} = \sqrt{3}: \sqrt{2}$ 12. (b) \triangle ABC- এ यपि A = 45°, B = 75° হয় . তবে দেখাও যে . $a + \sqrt{2} c = 2b$. প্রমাণ ঃ দেওয়া আছে, $\Delta ABC - 4$ $A = 45^{\circ}$, $B = 75^{\circ}$ $\therefore C = 180^{\circ} - (45^{\circ} + 75^{\circ}) = 180^{\circ} - 120^{\circ} = 60^{\circ}$ ত্রিডুজের সাইন সূত্র হতে পাই, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\Rightarrow \frac{a}{\sin 45^{\circ}} = \frac{b}{\sin 75^{\circ}} = \frac{c}{\sin 60^{\circ}}$ এখন, $\sin 75^\circ = \sin (45^\circ + 30^\circ)$ $= \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$ $=\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\cdot\frac{1}{2}=\frac{\sqrt{3}+1}{2\sqrt{2}}$ $\frac{a}{\frac{1}{\sqrt{2}}} = \frac{b}{\frac{1+\sqrt{3}}{2\sqrt{2}}} = \frac{c}{\frac{\sqrt{3}}{2}} = k \ (\ 4 \ fa)$ $a = \frac{k}{\sqrt{2}}, b = \frac{k(1+\sqrt{3})}{2\sqrt{2}}, c = \frac{\sqrt{3}}{2}k$ এখন, $u + \sqrt{2}c = \frac{k}{\sqrt{2}} + \sqrt{2} \cdot \frac{\sqrt{3}}{2}k = \frac{1+\sqrt{3}}{\sqrt{2}}k$ $= 2.\frac{1+\sqrt{3}}{2\sqrt{2}}k = 2b$ $a + \sqrt{2}c = 2b$ 12(c) a = 2b এবং A = 3B হলে, ত্রিভুঞ্জের [বু. '০৯, '১২ ; প্র. .প'০৩] কোণত্রেয় নির্ণয় কর। সমাধান 8 দেওয়া আছে, a = 2b·····(1) এবং $A = 3B \cdots (2)$ (1) হতে পাই, 2R sin A = 2.2R sin B $\Rightarrow \sin A = 2\sin B \Rightarrow \sin 3B = 2\sin B$; (2) घांता। \Rightarrow 3sinB - 4sin³B = 2sinB

উচ্চতর গণি<u>ত্র : ১ম</u> পত্র সমাধান

⇒ $4\sin^{3}B - \sin B = 0 \Rightarrow \sin B(4\sin^{2}B - 1)$ ⇒ $\sin B(2\sin B + 1) (2\sin B - 1) = 0$ $\sin B = 0$ र(4) $\sin B = 0$	= 0
$2 \sin B + 1 = 0$ হলে , $\sin B = -\frac{1}{2}$	
B = 150° এবং A = $3B = 450^{\circ}$ কিশ্তু ABC ত্রিভুজের জন্য, B = 0 A = 450° সম্ভব নয়। $\sin B \neq 0$ এবং $\sin B \neq -1/2$. $\sin B = \frac{1}{2} = \sin 30^{\circ} \implies B = 30^{\circ}$ A = $3B = 3 \times 30^{\circ} = 90^{\circ}$ এবং C = $180^{\circ} - (90^{\circ} + 30^{\circ})$	এবং
$= 180^{\circ} - 120^{\circ} = 60^{\circ}$	
ত্রিন্ডুঙ্গের কোণ তিনটি 30°, 60°, 90°	
13. (a) $\triangle ABC - a, a = 2, b = \sqrt{3} + 1$	এবং
C = 60° হলে ত্রিভুক্ষটির অপর বহু ও কোণদয়	নির্ণয়
কর। [প্র.ড.প	০২]
সমাধান ঃ দেওয়া আছে, ΔABC –এ $a = 2, b = \sqrt{3}$	+1
এবং $C=60^{ m 0}$. ত্রিভুজের সাইন সূত্র হতে পাই ,	
$c^2 = a^2 + b^2 - 2ab\cos C$	
$= 2^{2} + (\sqrt{3} + 1)^{2} - 2.2.(\sqrt{3} + 1)\cos 60^{0}$	
$= 4 + 3 + 2\sqrt{3} + 1 - 4(\sqrt{3} + 1)/2$	
$= 8 + 2\sqrt{3} - 2\sqrt{3} - 2 = 6 \qquad c = \sqrt{6}$	
ত্রিভুজের সাইন সূত্র হতে পাই, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{a}{\sin B}$	$\frac{c}{C}$
$2 \sqrt{3} + 1 \sqrt{6}$	
$\implies \frac{2}{\sin A} = \frac{\sqrt{3} + 1}{\sin B} = \frac{\sqrt{6}}{\sin 60^{\circ}}$	
$\Rightarrow \frac{2}{\sin A} = \frac{\sqrt{3}+1}{\sin B} = \frac{\sqrt{3}\sqrt{2}}{\sqrt{3}/2} = 2\sqrt{2}$	
$\sin A = \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}} = \sin 45^\circ \implies A = 45^\circ$	
$\sin B = \frac{\sqrt{3}+1}{2\sqrt{2}} = \sin 75^\circ \implies B = 75^\circ$	
$2\sqrt{2}$ ত্রিভুঙ্জটির অপর বাহু $c = \sqrt{6}$ এবং বে $A = 45^{\circ}$ ও $B = 75^{\circ}$	গণদ্বয়

 $13(b) \triangle ABC$ - a, $A = 45^{\circ}$, $C = 105^{\circ}$ are $c = \sqrt{3} + 1$ হলে ত্রিভুজটির অপর কোণ ও বহুদ্বয় নির্ণয় কর। সমাধানঃ দেওয়া আছে, $\Delta ABC - 4$ $A = 45^{\circ}$ $C = 105^{\circ}$ अवश $c = \sqrt{3} + 1$. $\therefore B = 180^{\circ} - (45^{\circ} + 105^{\circ}) = 180^{\circ} - 150^{\circ} = 30^{\circ}$ ত্রিভুজের সাইন সূত্র হতে পাই, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\implies \frac{a}{\sin 45^{\circ}} = \frac{b}{\sin 30^{\circ}} = \frac{\sqrt{3} + 1}{\sin 105^{\circ}}$ এখন, $\sin 105^{\circ} = \sin (60^{\circ} + 45^{\circ})$ $= \sin 60^\circ \cos 45^\circ + \cos 60^\circ \sin 45^\circ$ $=\frac{\sqrt{3}}{2}\cdot\frac{1}{\sqrt{2}}+\frac{1}{2}\cdot\frac{1}{\sqrt{2}}=\frac{\sqrt{3}+1}{2\sqrt{2}}$ $\frac{a}{\frac{1}{\sqrt{2}}} = \frac{b}{\frac{1}{2}} = \frac{\sqrt{3}+1}{\frac{\sqrt{3}+1}{2\sqrt{2}}} \implies \sqrt{2}a = 2b = 2\sqrt{2}$ $\Rightarrow a=2, b=\sqrt{2}$ ত্রিভুজটির অপর কোণ 30 0 এবং বাহুদ্বয় 2 ও $\sqrt{2}$ $13(c) \triangle ABC-4$, $B = 30^{\circ}$, $C = 45^{\circ}$ \odot $a = (\sqrt{3} + 1)$ সেমি. দেখাও যে, ABC ট্রিজুজের ক্ষেত্ৰফল $\frac{1}{2}(\sqrt{3}+1)$ বগ সেমি. প্রমাণ ঃ দেওয়া আছে, $\Delta ABC - a B = 30^{\circ}, C = 45^{\circ}$ এবং $a = (\sqrt{3} + 1)$ সে.মি. : $A = 180^{\circ} - (30^{\circ} + 45^{\circ}) = 180^{\circ} - 75^{\circ} = 105^{\circ}$ ত্রিভুন্জের সাইন সূত্র হতে পাই, $\frac{a}{\sin A} = \frac{c}{\sin C}$ $\Rightarrow \frac{a}{\sin 105^0} = \frac{c}{\sin 45^0}$ এখন , $\sin 105^\circ = \sin (60^\circ + 45^\circ)$ $= \sin 60^\circ \cos 45^\circ + \cos 60^\circ \sin 45^\circ$ $=\frac{\sqrt{3}}{2}\cdot\frac{1}{\sqrt{2}}+\frac{1}{2}\cdot\frac{1}{\sqrt{2}}=\frac{\sqrt{3}+1}{2\sqrt{2}}$ $\frac{\sqrt{3}+1}{\sqrt{3}+1} = \frac{c}{\frac{1}{\sqrt{2}}} \Rightarrow 2\sqrt{2} = \sqrt{2}c \Rightarrow c = 2$

প্রশ্নমালা – VII G

ABC ত্রিন্ডুজের ক্ষেত্রফল =
$$\frac{1}{2}ac\sin B$$
 রগ একক
= $\frac{1}{2}(\sqrt{3}+1) \times 2\sin 30^{0}$ বর্গ সে.মি.
= $\frac{1}{2}(\sqrt{3}+1) \times 2 \times \frac{1}{2}$ বর্গ সে.মি.
= $\frac{1}{2}(\sqrt{3}+1)$ বর্গ সে.মি.

14. ABC ত্রিভুজে A, B ও C কোণের বিপরীত বাহু যথাক্রমে a, b ও c. ত্রিভুজটির ড্রোত্রে প্রমাণ কর যে,

- (a) tanA = tanB + tanC , যখন cosA = cos B cos C. [য.'০৩,'০৯; ব.,কু.,দি.'১৩; রা.'১৪]
- (b) $\cos A + \cos B + \cos C = 1 + 4$ $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$ [vi.'>>; \overline{a} .'>>; \overline{a} .'>>] (c) $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ [\overline{a} .'>>; $\overline{$
- চ.'১০; দি.'১১; রা.'১৩; মা.'১০,'১২,'১৪] অথবা, প্রত্যেক বাহুর দৈর্ঘ্য তার বিপরীত কোণের সাইন (sine)-এর সমানুপাতিক। [ঢা.'১৩ ; ব.'১০,'১৪; রা.'১২ ; কু.'১০; য.'০৮;

দি.'১০,'১৩; চ.'১৪]

সমাধান : (a) প্রশ্নমালা VII B এর উদাহরণ 7 দ্রষ্টব্য।

- (b) প্রশ্নমালা VII F এর উদাহরণ 2 দ্রষ্টব্য।
- (c) প্রশ্নমালা VII G এর কোসাইন সূত্র ও সাইন সূত্র দ্রষ্টব্য।
- 15. পাশের চিত্রে, ABC একটি ত্রিভুজ।
- (a) ত্রিভুজটির বাহু তিনটি a = 3

 একক , b = 5 একক ও c = 7
 একক হলে, এর পরিব্যাসার্ধ
 নির্ণায় কর ।
 B a

b

- (b) $A = \frac{\pi}{16}$ হলে প্রমাণ কর যে, $2 \sin A = \sqrt{2 - \sqrt{2 + \sqrt{2}}}$ [য়. '১৪; কু.'০৩; ব. '১০,'১৪; রা.'১২,'১৪; চ.'১৪]
- (c) cos A = sin B cos C হলে দেখাও যে, ত্রিভুজটি সমকোণী । [কু.'১৩ ;, রা.'১২; চ.'০৮ ;

য.'০৯.'১২.'১৪ ; সি.'১১; চা.'০৭.'১৩; ব.'১০.'১২; মা.'০৯.'১৪ প্র.ভ.প.'০৪.'০৫] সমাধান : (a) ত্রিভুজটির অর্ধপরিসীমা, s = $\frac{3+5+7}{2}$ = 7.5 একক। ত্রিভজটির ৰেত্রফল, $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{7\cdot 5(7\cdot 5-3)(7\cdot 5-5)(7\cdot 5-7)}$ $=\sqrt{7\cdot5\times4\cdot5\times2\cdot5\times0\cdot5}$ = 6.495 বর্গ একক। ত্রিভুজটির পরিব্যাসার্ধ , R = $\frac{abc}{4A} = \frac{3 \times 5 \times 7}{4 \times 6 \times 405}$ $=\frac{3\times5\times7}{4\times6.495}=4.041$ একক (থায়) (b) প্রশ্নমালা VII D এর উদাহরণ 1 দ্রষ্টব্য। (c) প্রশ্নমালা VII G এর উদাহরণ 2 দ্রষ্টব্য। 16. 4 cm সমাধান: (a) AC= $\sqrt{AB^2 + BC^2} = \sqrt{4^2 + 3^2} = 5$ $\cos x^\circ = \frac{BC}{AC} = \frac{3}{5}, \sin x^\circ = \frac{AB}{AC} = \frac{4}{5}$ (b) △ ADC এ কোসাইন সূত্র প্রয়োগ করে পাই, $AD^2 = AC^2 + CD^2 - 2AC.CD \cos x^2$ $=5^{2}+2^{2}-2\times5\times2\times\frac{3}{5}$ = 25 + 4 - 12 = 17 বর্গ সে.মি. (c) ABCD চতুর্ভুজের ৰেত্রফল = ABC ত্রিভুজের

$$=\frac{1}{2}(AB \times BC) + \frac{1}{2}(AC \times CD \sin x^{0})$$

ৰেত্ৰফল + ACD ত্ৰিভজেৱ ৰেত্ৰফল

উচ্চতর গণিত : ১ম পত্র সমাধান বইঘর কম $=\frac{1}{2}(4\times3)+\frac{1}{2}(5\times2\times\frac{4}{5})$ = 6 + 4 = 10 বর্গ সে.মি.। অতিরিক্ত প্রশ্ন (সমাধানসহ) ABC ত্রিভুজে প্রমাণ কর যে. 1(a) $(b - c) \sin A + (c - a) \sin B + (a - b)$ $\sin C = 0$ প্রমাণ: L.H.S. = $(b - c) \sin A + (c - a) \sin B$ $+(a-b) \sin C$ $= (2R \sin B - 2R \sin C) \sin A + (2R \sin C)$ -2RsinA) sinB + (2RsinA-2Rsin B) sinC = 2R (sin A sin B - sin A sin C + sin B sin C) $-\sin A \sin B + \sin A \sin C - \sin B \sin C$) $= 2R \times 0 = 0 = R.H.S.$ (Proved) 1(b) $a(\sin B - \sin C) + b(\sin C - \sin A)$ $+c(\sin A - \sin B) = 0$ প্রমাণ: L.H.S. = a ($\sin B - \sin C$) + b($\sin C - \sin A$) + c ($\sin A - \sin B$) $= 2R \sin A (\sin B - \sin C) + 2R \sin B$ $(\sin C - \sin A) + 2R \sin C (\sin A - \sin C)$ $= 2R(\sin A \sin B - \sin A \sin C + \sin B \sin C)$ $-\sin A \sin B + \sin A \sin C - \sin B \sin C$) $= 2R \times 0 = 0 = R.H.S.$ (Proved) 2.(a) $(b^2 - c^2) \sin^2 A + (c^2 - a^2) \sin^2 B$ $+(a^{2}-b^{2})\sin^{2}C=0$ প্রমাণ : L.H.S.= $(b^2 - c^2) \sin^2 A$ $+(c^{2}-a^{2})sin^{2}B + (a^{2}-b^{2})sin^{2}C$ $= (4R^2 \sin^2 B - 4R^2 \sin^2 C) \sin^2 A +$ $(4R^2 \sin^2 C - 4R^2 \sin^2 A) \sin^2 B +$ $(4R^2\sin^2 A - 4R^2\sin^2 B)\sin^2 C$ $=4R^{2}(\sin^{2}A\sin^{2}B-\sin^{2}C\sin^{2}A+\sin^{2}B\sin^{2}C)$ $-\sin^2 A \sin^2 B + \sin^2 C \sin^2 A - \sin^2 B \sin^2 C$ $= 4^{1}R^{2} \times 0 = 0 = R.H.S.$ (Proved) $2(b) a \sin (B - C) + b \sin (C - A) +$ $c\sin(\mathbf{A}-\mathbf{B})=0$ र्. '00]

প্রমাণ: L.H.S. = $a \sin(B - C) + b \sin(C - A)$ + c sin(A - B)= 2RsinA(sinB cosC - cosBsinC) +2RsinB(sinCcosA - sinAcosC) +2RsinC(sinAcosB - sinBcosA) = 2R(sinAsinBcosC - sinAcosBsinC +cosAsinBsinC - sinAsinBcosC + sinAcosBsinC - cosAsinBsinC) $= 2R \times 0 = 0 = R.H.S.$ (Proved) 3. (a) $\frac{a^2 \sin(B-C)}{\sin A} + \frac{b^2 \sin(C-A)}{\sin B} + \frac{b^2 \sin(C-A)}{\sin B}$ $\frac{c^2 \sin(A-B)}{\sin C} = 0$ প্রমাণ: $\frac{a^2 \sin(B-C)}{\sin A}$ $= \frac{(2R\sin A)^2 \sin(B-C)}{\sin A}$ $=4R^2 \sin A \sin(B-C)$ $=4R^{2}\sin\{\pi-(B+C)\}\sin(B-C)$ $= 4R^2 \sin(B + C) \sin(B - C)$ $= 4R^2(\sin^2 B - \sin^2 C)$ অনুরূপভাবে আমরা পাই, $\frac{b^2 \sin(C-A)}{\sin B} = 4R^2(\sin^2 C - \sin^2 A)$ এবং $\frac{c^2 \sin(A-B)}{\sin C} = 4R^2(\sin^2 A - \sin^2 B)$ এখন , L.H.S.= $\frac{a^2 \sin(B-C)}{\sin A} + \frac{b^2 \sin(C-A)}{\sin B}$ $+\frac{c^2\sin(A-B)}{\sin C}$ $= 4R^{2}(\sin^{2}B - \sin^{2}C + \sin^{2}C - \sin^{2}A +$ $\sin^2 A - \sin^2 B$) $= 4R^2 \times 0 = 0 = R.H.S.$ (Proved) 3(b) $a \sin \frac{A}{2} \sin \frac{B-C}{2} + b \sin \frac{B}{2} \sin \frac{C-A}{2}$ $+c\sin\frac{C}{2}\sin\frac{A-B}{2}=0$ রি. '০৩]

ধমাণ : a $\sin \frac{A}{2} \sin \frac{B-C}{2}$ $= 2R \sin A \sin \frac{1}{2}A \sin \frac{B-C}{2}$ = 2R sin A sin $(\frac{\pi}{2} - \frac{B+C}{2})$ sin $\frac{B-C}{2}$ = 2R sin A cos $\frac{B+C}{2}$ sin $\frac{B-C}{2}$ $= R \sin A (\sin B - \sin C)$ অনুৱপভাবে আমরা পাই . $b \sin \frac{B}{2} \sin \frac{C-A}{2} = \text{RsinB}(\sin C - \sin A)$ এবং $c \sin \frac{C}{2} \sin \frac{A-B}{2} = \text{RsinC}(\sin A - \sin B)$ এখন , L.H.S.= a $\sin \frac{A}{2} \sin \frac{B-C}{2}$ + b $\sin \frac{B}{2}$ $\sin \frac{C-A}{2} + c \sin \frac{C}{2} \sin \frac{A-B}{2}$ $= R(\sin A \sin B - \sin C \sin A + \sin B \sin C$ sinA sinB + sinC sinA - sinB sinC) $= \mathbf{R} \times \mathbf{0} = \mathbf{0}$ 4(a) $\frac{2\cot A + \cot B + \cot C}{\cot A - \cot B + 2\cot C} = \frac{b^2 + c^2}{2b^2 - c^2}$ প্রমান : $2\cot A + \cot B + \cot C$ $=2\frac{R}{aba}(b^{2} + c^{2} - a^{2}) + \frac{R}{aba}(c^{2} + a^{2} - b^{2}) +$ $\frac{R}{abc}(a^2+b^2-c^2)$ $= \frac{R}{aba} (2b^2 + 2c^2 - 2a^2 + c^2 + a^2 - b^2 + a^2 + a^2)$ $h^2 - c^2$) $=\frac{R}{abc}(2b^{2} + 2c^{2}) = \frac{2R}{abc}(b^{2} + c^{2})$ $\operatorname{arc} \cot A - \cot B + 2 \cot C = \frac{R}{aba} \left\{ b^2 + c^2 - \frac{1}{aba} \right\}$ $a^{2} - (c^{2} + a^{2} - b^{2}) + 2(a^{2} + b^{2} - c^{2})$ $= \frac{R}{aba} (b^2 + c^2 - a^2 - c^2 - a^2 + b^2 + 2a^2 + b^2 + b^2$ $2b^2 - 2c^2$)

$$= \frac{R}{abc} (4b^2 - 2c^2) = \frac{2R}{abc} (2b^2 - c^2)$$

and A, L.H.S. $= \frac{2\cot A + \cot B + \cot C}{\cot A - \cot B + 2\cot C}$
 $= \frac{\frac{2R}{abc} (b^2 + c^2)}{\frac{2R}{abc} (2b^2 - c^2)} = \frac{b^2 + c^2}{2b^2 - c^2} = R.H.S.$
4(b)4 Δ (cotA + cotB + cotC) = $a^2 + b^2 + c^2$
and the set of the equation of

 $=\frac{2(s-a)(s-b)(s-c)}{\Lambda}$ **M.H.S.** = (c + a - b) $\tan \frac{B}{2}$ $= (2s - 2b) \frac{(s - c)(s - a)}{a}$ $=\frac{2(s-a)(s-b)(s-c)}{s}$ **R.H.S.** = $(a + b - c) \tan \frac{C}{2}$ $= (2s - 2c) \frac{(s - a)(s - b)}{a}$ $=\frac{2(s-a)(s-b)(s-c)}{4}$ \therefore L.H.S. = M.H.S. = R.H.S. (Proved) $6.(a)\frac{1}{a}\cos^2\frac{A}{2} + \frac{1}{b}\cos^2\frac{B}{2} + \frac{1}{c}\cos^2\frac{C}{2} = \frac{s^2}{aba}$ 2.5.9. '00] **L.H.S.** = $\frac{1}{2}\cos^2\frac{A}{2} + \frac{1}{2}\cos^2\frac{B}{2} + \frac{1}{2}\cos^2\frac{C}{2}$ $=\frac{1}{a}\frac{s(s-a)}{bc}+\frac{1}{b}\frac{s(s-b)}{ca}+\frac{1}{c}\frac{s(s-c)}{ab}$ $=\frac{s(s-a)+s(s-b)+s(s-c)}{abc}$ $=\frac{3s^2 - s(a+b+c)}{abc} = \frac{3s^2 - s.2s}{abc}$ $=\frac{s^2}{s}=R.H.S.$ 6(b) $\frac{a^2-b^2}{2} \cdot \frac{\sin A \sin B}{\sin(A-B)} = \Delta$ প্রমাণ : $\frac{a^2-b^2}{2} \cdot \frac{\sin A \sin B}{\sin (A-B)}$ $=\frac{4R^2(\sin^2 A - \sin^2 B)}{2} \cdot \frac{\sin A \sin B}{\sin(A - B)}$ $=\frac{2R^2\sin(A+B)\sin(A-B)\sin A\sin B}{\sin(A-B)}$ $= 2R^{2} \sin\{\pi - (A+B)\} \sin A \sin B$

$$= 2R^{2} \sin A \sin B \sin C = 2R^{2} \frac{a}{2R} \cdot \frac{b}{2R} \cdot \frac{c}{2R}$$
$$= \frac{abc}{4R} = \triangle = R.H.S.(Proved)$$

7. (a) $\frac{b^{2} - c^{2}}{\cos B + \cos C} + \frac{c^{2} - a^{2}}{\cos C + \cos A}$
$$+ \frac{a^{2} - b^{2}}{\cos A + \cos B} = 0$$

2NIM : $\frac{b^{2} - c^{2}}{\cos B + \cos C} = \frac{4R^{2}(\sin^{2} B - \sin^{2} C)}{\cos B + \cos C}$
$$= \frac{4R^{2}(\cos^{2} C - \cos^{2} B)}{\cos B + \cos C}$$
$$= \frac{4R^{2}(\cos C + \cos B)(\cos C - \cos B)}{\cos B + \cos C}$$
$$= 4R^{2}(\cos C - \cos B)$$

Weighting with the equation of the equat

 $+\frac{a-b}{c}\times\frac{s(s-c)}{ab}$ $=\frac{s}{abc}\{(b-c)(s-a)+(c-a)(s-b)\}$ +(a-b)(s-c) $=\frac{s}{abc}$ {s(b - c + c - a + a - b) + (-ab + ca - bc + ab - ca + bc) $=\frac{s}{abc}\{s \times 0 + 0\} = 0 = R.H.S.$ (Proved) 8(a) $\triangle ABC$ -cos $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13}$ scen প্রমাণ কর যে, $\frac{\cos A}{7} = \frac{\cos B}{19} = \frac{\cos C}{25}$ প্রমাণ ঃ দেওরা আছে $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13} = \frac{b+c+c+a+a+b}{11+12+13}$ $\Rightarrow \frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13} = \frac{2(a+b+c)}{36}$ $\Rightarrow \frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{12} = \frac{a+b+c}{12}$ $\frac{a+b+c}{19} = \frac{b+c}{11} = \frac{a+b+c-b-c}{18-11} = \frac{a}{7},$ $\frac{a+b+c}{18} = \frac{c+a}{12} = \frac{a+b+c-c-a}{18-12} = \frac{b}{6}$ are $\frac{a+b+c}{18} = \frac{a+b}{13} = \frac{a+b+c-a-b}{18-13} = \frac{c}{5}$ $\frac{a}{7} = \frac{b}{6} = \frac{c}{5} = k$ (say) \Rightarrow a = 7 k, b = 6k, c = 5k এখন . $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{36k^2 + 25k^2 - 49k^2}{2.6k}$ $=\frac{61-49}{60}=\frac{12}{60}=\frac{1}{5}$ $\cos B = \frac{c^2 + a^2 - b^2}{2ca} = \frac{25k^2 + 49k^2 - 36k^2}{2.5k7k}$ $=\frac{74-36}{70}=\frac{38}{70}=\frac{19}{35}$

 $\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{49k^2 + 36k^2 - 25k^2}{2.7k.6k}$ $= \frac{85 - 25}{84} = \frac{60}{84} = \frac{5}{7}$ $\therefore \cos A \quad \cos B: \cos C = \frac{1}{5}: \frac{19}{35}: \frac{5}{7} = 7 \quad 19: 25$ $\frac{\cos A}{7} = \frac{\cos B}{19} = \frac{\cos C}{25} \quad (\text{Showed})$ 8. (b) $\triangle ABC$ - 4, a = 6, $b = 3\sqrt{3}$ are $A = 90^{\circ}$ হল B কোশের মান নির্ণয় কর। সমাধান ঃ দেওয়া আছে, $\triangle ABC - 4 = 6.b = 3\sqrt{3}$ $\Im A = 90^{\circ}$ হল B কোশের মান নির্ণয় কর। সমাধান ঃ দেওয়া আছে, $\triangle ABC - 4 = 6.b = 3\sqrt{3}$ $\Im A = 90^{\circ}$ জিভুজের সাইন সূত্র হতে পাই, $\frac{a}{\sin A} = \frac{b}{\sin B}$ $\Rightarrow \frac{6}{\sin 90^{\circ}} = \frac{3\sqrt{3}}{\sin B} \Rightarrow \frac{6}{1} = \frac{3\sqrt{3}}{\sin B}$ $\Rightarrow \sin B = \frac{3\sqrt{3}}{6} = \frac{\sqrt{3}}{2} = \sin 60^{\circ} \quad B = 60^{\circ}$ ব্যবহারিক অনুশীলনী

 একটি ত্রিভুজের বাহুগুলি যথাক্রমে 40 সে.মি., 50
 সে.মি. এবং 60 সে.মি. হলে ঐ ত্রিভুজের বৃহত্তম ও ক্ষুদ্রতম কোণ নির্ণয় কর ।

পরীক্ষণের নাম ঃ একটি ত্রিভুজের বাহুগুলি যথাক্রমে 40 সে.মি., 50 সে.মি. এবং 60 সে.মি. হলে এ ত্রিভুজের বৃহত্তম ও ক্ষুদ্রতম কোণ নির্ণয় ।

মূলতত্ব : মনে করি, ABC একটি ত্রিভূজ যার তিনটি বাহু যথারুমে a = 40 সে.মি., b = 50 সে.মি. এবং c = 60 সে.মি. । Δ ABC তে বৃহত্তম বাহু c = 60সে.মি. এর বিপরীত কোণ $\angle C$ বৃহত্তম কোণ এবং ফুল্রতম বাহু a = 40 সে.মি. এর বিপরীত কোণ $\angle A$ ফুল্রতম কোণ। তাহলে প্রদন্ত উপান্ডের সাহাব্যে Δ ABC অজ্ঞকন করে চাঁদার সাহায্যে বৃহত্তম ও ফুল্রতম কোণ নির্ণয় করি এবং সূত্র $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ ও

 $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ থেকে প্রাপ্ত মানের সাথে সভ্যান্ডা যাচাই করি।

$$= \frac{2(s-a)(s-b)(s-c)}{\Delta}$$

M.H.S. = $(c + a - b) \tan \frac{B}{2}$
= $(2s - 2b) \frac{(s-c)(s-a)}{\Delta}$
= $\frac{2(s-a)(s-b)(s-c)}{\Delta}$
R.H.S. = $(a + b - c) \tan \frac{C}{2}$
= $(2s - 2c) \frac{(s-a)(s-b)}{\Delta}$
= $\frac{2(s-a)(s-b)(s-c)}{\Delta}$ www.boighar.com
 \therefore L.H.S. = M.H.S. = R.H.S. (Proved)
6.(a) $\frac{1}{a} \cos^2 \frac{A}{2} + \frac{1}{b} \cos^2 \frac{B}{2} + \frac{1}{c} \cos^2 \frac{C}{2} = \frac{s^2}{abc}$
[8.8.9.1 'oo]
L.H.S. = $\frac{1}{a} \cos^2 \frac{A}{2} + \frac{1}{b} \cos^2 \frac{B}{2} + \frac{1}{c} \cos^2 \frac{C}{2}$
= $\frac{1}{a} \frac{s(s-a)}{bc} + \frac{1}{b} \frac{s(s-b)}{ca} + \frac{1}{c} \frac{s(s-c)}{abc}$
= $\frac{3s^2 - s(a+b+c)}{abc} = \frac{3s^2 - s.2s}{abc}$
= $\frac{s^2}{abc}$ = R.H.S.
6(b) $\frac{a^2 - b^2}{2} \cdot \frac{\sin A \sin B}{\sin(A-B)} = \Delta$
SUMM : $\frac{a^2 - b^2}{2} \cdot \frac{\sin A \sin B}{\sin(A-B)} = \Delta$
= $\frac{4R^2(\sin^2 A - \sin^2 B)}{sin(A-B)} \cdot \frac{\sin A \sin B}{sin(A-B)}$
= $\frac{2R^2 \sin(\pi - (A+B)) \sin A \sin B}{\sin(A-B)}$

$$= 2R^{2} \sin A \sin B \sin C = 2R^{2} \frac{a}{2R} \cdot \frac{b}{2R} \cdot \frac{c}{2R}$$
$$= \frac{abc}{4R} = \Delta = R.H.S.(Proved)$$

7. (a) $\frac{b^{2} - c^{2}}{\cos B + \cos C} + \frac{c^{2} - a^{2}}{\cos C + \cos A}$
$$+ \frac{a^{2} - b^{2}}{\cos A + \cos B} = 0$$

24114 : $\frac{b^{2} - c^{2}}{\cos B + \cos C} = \frac{4R^{2}(\sin^{2} B - \sin^{2} C)}{\cos B + \cos C}$
$$= \frac{4R^{2}(\cos C - \cos B)}{\cos B + \cos C}$$
$$= \frac{4R^{2}(\cos C - \cos B)}{\cos B + \cos C}$$
$$= 4R^{2}(\cos C - \cos B)$$

3473 ($\frac{c^{2} - a^{2}}{\cos C + \cos A} = 4R^{2}(\cos A - \cos C)$ and $\frac{a^{2} - b^{2}}{\cos C + \cos A} = 4R^{2}(\cos B - \cos A)$
and $\frac{a^{2} - b^{2}}{\cos C + \cos A} = 4R^{2}(\cos B - \cos A)$
and $\frac{a^{2} - b^{2}}{\cos C + \cos A} = 4R^{2}(\cos B - \cos A)$
and $\frac{a^{2} - b^{2}}{\cos C + \cos A} = 4R^{2}(\cos B - \cos A)$
and $\frac{a^{2} - b^{2}}{\cos C + \cos A} = 4R^{2}(\cos B - \cos A)$
and $\frac{a^{2} - b^{2}}{\cos C + \cos A} = 4R^{2}(\cos B - \cos A)$
and $\frac{a^{2} - b^{2}}{\cos C + \cos A} + \frac{c^{2} - a^{2}}{\cos A + \cos B} = 4R^{2}\{\cos C - \cos B + \cos A - \cos C \cos B - \cos A\}$
 $= 4R^{2}\{\cos C - \cos B + \cos A - \cos C \cos B - \cos A\}$
 $= 4R^{2} x 0 = 0 = R.H.S. (Proved)$
7(b) $\frac{b - c}{a} \cos^{2} \frac{A}{2} + \frac{c - a}{b} \cos^{2} \frac{B}{2} + \frac{a - b}{c} \cos^{2} \frac{C}{2} = 0$
24114 : L.H.S. $= \frac{b - c}{a} \cos^{2} \frac{A}{2} + \frac{c - a}{b} \cos^{2} \frac{B}{2} + \frac{a - b}{c} \cos^{2} \frac{C}{2} = 0$
25114 : L.H.S. $= \frac{b - c}{a} \cos^{2} \frac{A}{2} + \frac{c - a}{b} \cos^{2} \frac{B}{2} + \frac{a - b}{c} \cos^{2} \frac{C}{2} = 0$

थन्मगना - VII G

 $+\frac{a-b}{c}\times\frac{s(s-c)}{ab}$ $=\frac{s}{abc}\{(b-c)(s-a)+(c-a)(s-b)\}$ +(a-b)(s-c) $=\frac{s}{abc}$ {s(b - c + c - a + a - b) + (-ab + ca - bc + ab - ca + bc) $=\frac{s}{abc}\{s \times 0 + 0\} = 0 = R.H.S.$ (Proved) 8(a) $\triangle ABC$ - राज $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13}$ হল প্রমাণ কর যে , $\frac{\cos A}{7} = \frac{\cos B}{19} = \frac{\cos C}{25}$ প্রমাণ ঃ দেওরা আছে . $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13} = \frac{b+c+c+a+a+b}{11+12+13}$ $\Rightarrow \frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13} = \frac{2(a+b+c)}{36}$ $\Rightarrow \frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13} = \frac{a+b+c}{18}$ $\frac{a+b+c}{19} = \frac{b+c}{11} = \frac{a+b+c-b-c}{18-11} = \frac{a}{7},$ $\frac{a+b+c}{18} = \frac{c+a}{12} = \frac{a+b+c-c-a}{18-12} = \frac{b}{6}$ $\frac{a+b+c}{18} = \frac{a+b}{13} = \frac{a+b+c-a-b}{18-13} = \frac{c}{5}$ $\frac{a}{7} = \frac{b}{6} = \frac{c}{5} = k$ (say) \Rightarrow a = 7 k, b = 6k, c = 5k এখন , $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{36k^2 + 25k^2 - 49k^2}{2.6k}$ $=\frac{61-49}{60}=\frac{12}{60}=\frac{1}{5}$ $\cos B = \frac{c^2 + a^2 - b^2}{2ca} = \frac{25k^2 + 49k^2 - 36k^2}{25k7k}$ $=\frac{74-36}{70}=\frac{38}{70}=\frac{19}{35}$

 $\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{49k^2 + 36k^2 - 25k^2}{2.7k.6k}$ $= \frac{85 - 25}{84} = \frac{60}{84} = \frac{5}{7}$ $\therefore \cos A \quad \cos B: \cos C = \frac{1}{5}: \frac{19}{35}: \frac{5}{7} = 7 \quad 19: 25$ $\frac{\cos A}{7} = \frac{\cos B}{19} = \frac{\cos C}{25} \quad (\text{Showed})$ 8. (b) $\triangle ABC$ - 4, a = 6, $b = 3\sqrt{3}$ এবং $A = 90^\circ$ হল B কোণের মান নির্ণয় কর। সমাধান : দেওয়া আছে, $\triangle ABC - 4a = 6.b = 3\sqrt{3}$ ও $A = 90^\circ$ জিহুজের সাইন সূত্র হতে পাই, $\frac{a}{\sin A} = \frac{b}{\sin B}$ $\Rightarrow \frac{6}{\sin 90^\circ} = \frac{3\sqrt{3}}{\sin B} \Rightarrow \frac{6}{1} = \frac{3\sqrt{3}}{\sin B}$ $\Rightarrow \sin B = \frac{3\sqrt{3}}{6} = \frac{\sqrt{3}}{2} = \sin 60^\circ \quad B = 60^\circ$ $= 3\sqrt{3}$

 একটি ত্রিভুজের বাহুগুলি যথাক্রমে 40 সে.মি., 50
 সে.মি. এবং 60 সে.মি. হলে ঐ ত্রিভুজের বৃহত্তম ও ক্ষদ্রতম কোণ নির্ণয় কর ।

পরীক্ষণের নাম । একটি ত্রিভুজের বাহুগুলি যথাক্রমে 40 সে.মি., 50 সে.মি. এবং 60 সে.মি. হলে ঐ ত্রিভুজের বৃহত্তম ও ক্ষুদ্রতম কোণ নির্ণয় ।

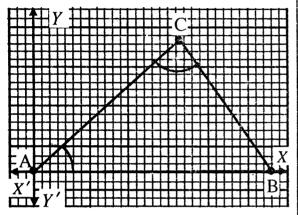
মূলতজ্ব : মনে করি, ABC একটি ত্রিভুজ যার তিনটি বাহু যথাক্রমে a = 40 সে.মি., b = 50 সে.মি. এবং c = 60 সে.মি. । Δ ABC তে বৃহত্তম বাহু c = 60সে.মি. এর বিপরীত কোণ $\angle C$ বৃহত্তম কোণ এবং ক্ষুদ্রতম বাহু a = 40 সে.মি. এর বিপরীত কোণ $\angle A$ ক্ষুদ্রতম বাহু a = 40 সে.মি. এর বিপরীত কোণ $\angle A$ ক্ষুদ্রতম কোণ। তাহলে প্রদন্ত উপান্ডের সাহায্যে Δ ABC জজ্জন করে চাঁদার সাহায্যে বৃহত্তম ও ক্ষুদ্রতম কোণ নির্ণয় করি এবং সূত্র $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ ও $b^2 + c^2 = a^2$

 $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ থেকে প্রাপ্ত মানের সাথে সত্যতা যাচাই করি। প্রয়োজনীয় উপকরণ ३ (i) পেন্সিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) চাঁদা (vii) পেন্সিল কম্পাস (viii) সায়েন্টিফিক ক্যালকুলেটর।

কাৰ্যপন্ধতি ঃ

একটি গ্রাফ পেপারে স্থানান্ডেকর জক্ষ রেখা X'AX
 ও YAY' জাঁকি ।

 x অফ ও y অফ বরাবর ক্ষুদ্রতম বর্গের 1 বাহুর দৈর্ঘ = 2 সে.মি. ধরি ।



3. গ্রাফ পেপারে AX বরাবর ক্ষুদ্রতম $(60 \div 2)$ অর্থাৎ 30 বর্গের বাহুর সমান করে বৃহত্তম বাহু AB = 60সে.মি. কেটে নেই।

4. A কে কেন্দ্র করে ক্ষুদ্রতম ($50 \div 2$) অর্থাৎ 25 বর্গের বাহুর সমান ব্যাসার্ধ নিয়ে একটি বৃত্তচাপ আঁকি এবং B কে কেন্দ্র করে ($40 \div 2$) অর্থাৎ 20 বর্গের বাহুর সমান ব্যাসার্ধ নিয়ে আরও একটি বৃত্তচাপ আঁকি। বৃত্তচাপদ্বয় পরস্পর C কিন্দুতে ছেদ করে। A, B এবং B, C যোগ করি। তাহলে \triangle ABC তে AB = c = 60 সে.মি., BC = a = 40 সে.মি. এবং AC = b = 50 সে.মি. সূচিত করে।

 চাঁদার সাহায্যে বৃহন্তম কোণ ∠C এবং ক্ষুদ্রতম কোণ ∠A নির্ণয় করি।

रिमाव श $\cos C = \frac{40^2 + 50^2 - 60^2}{2 \times 40 \times 50}$ = $\frac{1600 + 2500 - 3600}{4000} = \frac{500}{4000} = 0.125$ $\angle C = 82.82^{\circ}$

$$\cos A = \frac{50^2 + 60^2 - 40^2}{2 \times 50 \times 60}$$
$$= \frac{2500 + 3600 - 1600}{6000} = \frac{4500}{6000} = 0.75$$
$$\angle A = 41.41^{\circ}$$

ফল সংকলন ঃ

বৃহত্তম কোণ	C নির্ণয়	ক্ষ্দুদ্রতম কে	াণ A নির্ণয়
গ্রাফ থেকে প্রাশ্ত মান	সূত্র থেকে প্রাপ্ত মান	গ্রাফ থেকে প্রাপ্ত মান	সূত্র থেকে প্রাপ্ত মান
∠C	∠C	∠A	∠A
= 83°	=	= 41·5°	=41.41°
	82·82°		

ফলাফল ঃ নির্ণেয় বৃহত্তম কোণ $\angle C = 83^\circ$ এবং ফ্রদ্রতম কোণ $\angle A = 41.5^\circ$ ৷

মন্তব্য ঃ গ্রাফ থেকে গ্রান্ত মান এবং গাণিতিক্তাবে নির্ণীত মান প্রায় সমান। অতএব ফলাফল সঠিক।

2. একটি ত্রিভুঙ্জের কোণগুলি 105°, 60°, 15° হলে ত্রিভুজ্জটির বাহুগুলির অনুপাত নির্ণয় কর।

পরীক্ষণের নাম ঃ একটি ত্রিভুজের কোণগুলি 105° 60°, 15° হলে ত্রিভুজটির বাহুগুলির অনুপাত নির্ণয়

মূলতত্ত্ব ঃ মনে করি, $\triangle ABC$ এর কোণগুলি $\angle A = 105^{\circ} \angle B = 60^{\circ}$ ও $\angle C = 15$ এর বিপরীত বাহুগুলি যথাক্রমে a, b ও c । তাহলে প্রদন্ত উপাত্ত হতে গ্রাফের সাহাব্যে এবং $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

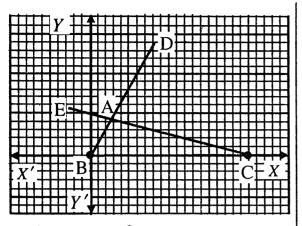
সূত্রের সাহায্যে a, b ও c এর অনুপাত নির্ণয় করি।

প্রয়োজনীয় উপকরণ ঃ (i) পেন্সিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) চাঁদা (vii) পেন্সিল কম্পাস (viii) সায়েন্টিফিক ক্যালকুলেটর।

কাৰ্যপন্ধতি ঃ

1. একটি গ্রাফ পেপারে স্থানাজ্ঞের জন্ধ রেখা X'BX ও YBY' আঁকি ।

2. x জক্ষ ও y জক্ষ বরাবর ক্ষুদ্রতম বগৈর 2 বাহুর দৈর্ঘ্য = 1 সে.মি. ধরে BC = a = 10 সে.মি. কেটে নেই ।



3. চাঁদার সাহায্যে B বিন্দুতে∠CBD = 60° ও C বিন্দুতে ∠BCE = 15° অঙ্জন করি। BD ও CE রেখা পরস্পরকে A বিন্দুতে ছেদ করে।

 থ্রাফ থেকে চাঁদার সাহায্যে ∠ A এবং পেন্সিল কম্পাসের সাহায্যে AB ও AC বাহুর দৈর্ঘ্য মেপে BX বরাবর বসিয়ে যথাতক্রমে c ও b বাহুদ্বয়ের দৈর্ঘ্য নির্ণয় করি।

হিসাব ঃ আমরা জানি,∆ABC তে

 $\angle A + \angle B + \angle C = 180^{\circ} \Rightarrow \angle A + 60^{\circ} + 15^{\circ} = 180^{\circ}$ $\angle A = 105^{\circ}$ $\forall A = 105^{\circ}$ $\forall A = \frac{105^{\circ}}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\Rightarrow \frac{a}{\sin 105^{\circ}} = \frac{b}{\sin 60^{\circ}} = \frac{c}{\sin 15^{\circ}}$ $\Rightarrow \frac{a}{0.966} = \frac{b}{0.866} = \frac{c}{0.259}$ $\Rightarrow \frac{a}{0.966 \times 10} = \frac{b}{0.866 \times 10} = \frac{c}{0.259 \times 10}$ $\Rightarrow \frac{a}{10} = \frac{b}{8.96} = \frac{c}{2.68}$

a:b:c=10 8.96:2.68

ফল সংকলন ৪

a : b : c নির্ণয়

গ্রাফ থেকে প্রাপ্ত অনুপাত ঃ	সূত্র থেকে প্রাপ্ত অনুপাত ঃ
a b c	a b:c
= 10 : 9 : 2.7	= 10 : 8.96 : 2.68

ফলাফল ঃ নির্ণেয় অনুপাত

a b c = 10 8.96 2.68

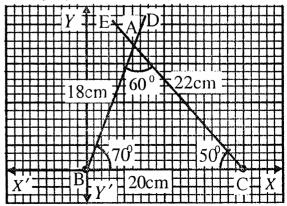
মন্তব্য ঃ গ্রাফ থেকে প্রাপত মান এবং গাণিতিক্তাবে নির্ণীত মান প্রায় সমান। অতএব ফলাফল সঠিক।

 একটি ত্রিন্থজের একটি বাহু 20 সে.মি. এবং এ বাহু সংলগ্ন দুইটি কোণ 70° ও 50° দেওয়া আছে, অপর কোণ ও বাহুদ্বয় নির্ণয় কর।

পরীক্ষণের নাম ঃ একটি ত্রিভুজের একটি বাহু 20 লে.মি. এবং এ বাহু সংলগ্ন দুইটি কোণ 70° ও 50° দেওয়া আছে, অপর কোণ ও বাহুদ্বয় নির্ণয় করতে হবে ।

মূলতন্ত্ব ঃ মনে করি, ABC একটি ত্রিভুজ যার একটি বাহু a = 20 সে.মি. এবং এ বাহু সংলগ্ন দুইটি কোণ $\angle B = 70^{\circ}$ $\angle C = 50^{\circ}$ দেওয়া আছে। তাহলে প্রদন্ত উপাত্ত থেকে a বাহুর বিপরীত কোণ $\angle A$ এবং $\angle B$ ও $\angle C$ কোণের বিপরীত বাহু যথারুমে b ও c থাফের সাহায্যে এবং $\angle A + \angle B + \angle C = 180^{\circ}$ ও $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ সূত্রের সাহায্যে নির্ণয় করি।

প্রয়োজনীয় উপকরণ ঃ (i) পেন্দিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) চাঁদা (vii) পেন্দিল কম্পাস (viii) সায়েন্টিফিক ক্যালকুলেটর।



কাৰ্যপন্ধতি ঃ

একটি গ্রাফ পেপারে স্থানাজ্ঞের জক্ষ রেখা X'BX
 YBY' আঁকি ।

2. x জক্ষ ও y জক্ষ বরাবর ক্ষুদ্রতম বর্গের l বাহুর দৈর্ঘ্য = 1 সে.মি. ধরে BX বরাবর ক্ষুদ্রতম 20 বর্গের বাহুর সমান করে BC = 20 সে.মি. কেটে নেই।

3. চাঁদার সাহায্যে BC রেখার B কিন্দুতে ∠CBD = 70° এবং C কিন্দুতে ∠BCE = 50° অজ্ঞকন করি। BD ও CE রেখা পরস্পরকে A কিন্দুতে ছেদ করে।

दिस्राव श आमज्ञा জानि, $\triangle ABC$ टक $\angle A + \angle B + \angle C = 180^{\circ}$ $\Rightarrow \angle A + 70^{\circ} + 50^{\circ} = 180^{\circ}$ $\angle A = 60^{\circ}$ আবার, $\frac{a}{\sin A} = \frac{b}{\sin B} \Rightarrow \frac{20}{\sin 60^{\circ}} = \frac{b}{\sin 70^{\circ}}$ $\Rightarrow b = \frac{\sin 70^{\circ}}{\sin 60^{\circ}} \times 20 = \frac{0.939}{0.866} \times 20$ = 21.69 टन.মি.(প্রায়)

জ্ব্প, $\frac{a}{\sin A} = \frac{c}{\sin C} \Rightarrow \frac{20}{\sin 60^{\circ}} = \frac{c}{\sin 50^{\circ}}$

$$\Rightarrow c = \frac{\sin 50^{0}}{\sin 60^{0}} \times 20 = \frac{0.766}{0.866} \times 20$$
$$= 17.69 সে.মি. (প্রায়)$$

যম্ব সংকলন ঃ

	গ্রাফ থেকে প্রাম্ত মান ঃ	সূত্র থেকে প্রাশ্ত মান ঃ	
∠A	60°	60°	
Ъ.	22 সে.মি. 21.69 সে.মি.(প্রা		
с	18 লে.মি.	17.69 সে.মি.(প্রায়)	

ফলাফল ঃ নির্ণেয় ∠A = 60°

b বাহুর দৈর্ঘ্য AC = 21.69 সে.মি. (প্রায়) ও c বাহুর দৈর্ঘ্য AB = 17.69 সে.মি. (প্রায়)

মন্তব্য ঃ গ্রাফ থেকে প্রান্ত মান এবং গাণিতিকভাবে নির্ণীত মান প্রায় সমান। অতএব ফলাফল সঠিক। 4. একটি ত্রিভুজের দুইটি বাহুর দৈর্ঘ্য 9 সে.মি. 6 সে.মি.-এবং এদের অন্তর্ভুক্ত কোণ 60° দেওয়া আছে, অপর বাহু ও কোণদয় নির্ণয় কর।

পরীক্ষণের নাম ঃ একটি ত্রিভুজের দুইটি বাহুর দৈর্ঘ্য 9 সে.মি. , 6 সে.মি. এবং এদের অন্তর্ভুক্ত কোণ 60° দেওয়া আছে, অপর বাহু ও কোণদ্বয় নির্ণয় ।

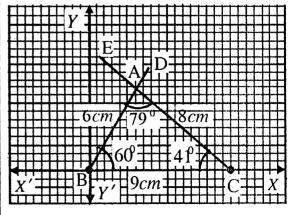
মূলতত্ব ? মনে করি, ABC একটি ত্রিভুজ যার দুইটি বাহু BC = a = 9 সে.মি., AB = c = 6 সে.মি. এবং এদের জম্তর্ভুক্ত কোণ $\angle B = 60^{\circ}$ দেওয়া আছে । তাহলে প্রদন্ত উপান্ত থেকে a বাহুর বিপরীত কোণ $\angle A$, c বাহুর বিপরীত কোণ $\angle C$ এবং AC = b গ্রাফের সাহায্যে এবং $b^2 = a^2 + c^2 - 2ac\cos B$ ও $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ সূত্রের সাহায্যে নির্ণয় করি।

প্রয়োজনীয় উপকরণ ঃ (i) পেন্সিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) চাঁদা (vii) পেন্সিল কম্পাস (viii) সায়েন্টিফ্রিক ক্যালকুলেটর।

কাৰ্যপন্ধতি ঃ

1. একটি গ্রাফ পেপারে স্থানাজ্জের অক্ষ রেখা X'BX ও YBY' আঁকি ।

2. x জক্ষ ও y জক্ষ বরাবর ক্ষুদ্রতম বর্গের 2 বাহুর দৈর্ঘ্য = 1 সে.মি. ধরে BX বরাবর ক্ষুদ্রতম 18 বর্গের বাহুর সমান করে BC = a = 9 সে.মি. কেটে নেই।



3. চাঁদার সাহায্যে BC রেখার B ফিন্দুতে ∠CBD = 60° অজ্ঞন করি।

4. BD রেখা হতে ক্ষুদ্রতম 12 বর্গবাহুর সমান করে BA = c = 6 সে.মি. কেটে নেই। A, C যোগ করি।
4. গ্রাফ থেকে চাঁদার সাহায্যে ∠A, ∠C এবং পেন্সিল কম্পাসের সাহায্যে AC বাহুর দৈর্ঘ্য মেপে BX বরাবর বসিয়ে b বাহুর দৈর্ঘ্য নির্ণয় করি।
হিসাব ঃ

আমরা জানি, b² = a² + c² - 2ac cos B = 9² + 6² - 2×9×6 cos 60° = 81 + 36 - 108(·5) \Rightarrow b² = 117 - 54 = 63 b = 7.94 रन. মি. (थाय्र) आवाब, $\frac{a}{\sin A} = \frac{b}{\sin B} \Rightarrow \frac{9}{\sin A} = \frac{7.94}{\sin 60^{0}}$ $\Rightarrow \sin A = \frac{9 \times 0.866}{7.94} =$ $\Rightarrow \sin A = \frac{17.32}{18} = 0.982$ A = 78.99° (थाय्र) $\Im q$, $\frac{b}{\sin B} = \frac{c}{\sin C} \Rightarrow \frac{7.94}{\sin 60^{0}} = \frac{6}{\sin C}$ $\Rightarrow \sin C = \frac{6 \times 0.866}{7.94} = 0.65$

ফল সংকলন ৪

	গ্রাফ থেকে প্রাম্ত মান ঃ	সূত্র থেকে প্রাম্ত মান ঃ
b	8 সে.মি.	7·94 সে.মি.(প্রায়)
∠A	79°(প্রায়)	78·99° (প্রায়)
∠C	41° (প্রায়)	40·87° (প্রায়)

ফলাফল : নির্ণেয় b = 7·94 সে.মি. (প্রায়), ∠A = 79° এবং ∠C = 41°

মন্দতব্য ৪ গ্রাফ থেকে প্রান্ত মান এবং গাণিতিকভাবে নির্ণীত মান প্রায় সমান। অতএব ফলাফল সঠিক।

ভর্তি পরীক্ষার MCQ প্রশ্ন উত্তরসহ ঃ

 $1.(a) \tan \theta = \frac{5}{12}$ and θ সুম্ম্রকোণ হলে [DU 08-09] $\sin \theta + \sec(-\theta)$ এর মান-(b) যদি $\cos A = \frac{4}{5}$ হয়, তবে $\frac{1 + \tan^2 A}{1 - \tan^2 A}$ এর মান--[BUET 06-07] Sol".:(a) ↔ সুক্ষকোণ বলে 3 $\sin \theta + \sec(-\theta) = \frac{5}{13} + \frac{13}{12} = \frac{229}{155}$ **(b)** $\tan A = \frac{3}{4} \qquad \frac{1 + \tan^2 A}{1 - \tan^2 A} = \frac{25}{7}$ (ক্যা**ল**কুলেটরের সাহায্যে) 2. cot A - tan A সমান-[DU 08-09] **Sol**".: $\cot A - \tan A = \frac{\cos^2 \theta - \sin^2 \theta}{\sin \theta \cos \theta}$ $= \frac{2\cos 2\theta}{2\sin \theta \cos \theta} = 2\cot 2\theta$ 3.(a) $\cos^2 0^0 + \cos^2 10^0 + \cos^2 20^0 + \dots +$ cos² 90° এর মান -[DU 08-09] (b) $\cos^2 30^\circ + \cos^2 60^\circ + \cos^2 90^\circ +$ cos² 180° এর মান -[BUET 06-07] Sol".:(a) এখানে পদ সংখ্যা = $\frac{90-0}{10} + 1 = 10$ অর্থাৎ 5 জোড়া পদ। Ans. 5 (b) এখানে পদ সংখ্যা = $\frac{180-30}{30} + 1 = 6$ জর্থাৎ 3 জোড়া পদ। Ans. 3 4. cos 75° এর সঠিক মান –[BUET, DU 07-08] A. $\frac{\sqrt{3}+1}{2\sqrt{2}}$ B. $\frac{\sqrt{3}}{2\sqrt{2}}$ C. $\frac{-\sqrt{3}}{2\sqrt{2}}$ D. $\frac{\sqrt{3}-1}{2\sqrt{2}}$ **Sol".:** क्यानकुलिएँ दिवंत्र नाराय्य, $\cos 75^0 = 0.2588$ Option D = 0.2588Ans. D $5.\sin(780^{\circ})\cos(390^{\circ}) - \sin(330^{\circ})\cos(-300^{\circ})$ এর মান-[DU 02-03, 05-06;Jt U 05-06,08-09] Sol" .: ক্যালকুলেটরের সাহায্যে রাশি মান = 1.

উচ্চতর গণিত : ১ম পত্র সমাধান বইঘর কম

6. tan 54° - tan 36° এর মান-[DU 03-04; BUET 03-04] Sol^{n} .: প্রদন্ত মান = $2\tan(54^{0} - 36^{0})$ $= 2 \tan 18^{\circ}$ [नियम $= A + B = 90^{\circ}$ হল $\tan A - \tan B = 2 \tan(A - B)$ অথবা, ক্যালকুলেটরের সাহায্যে করতে হবে। 7. sin 65° + cos 65° সমান-[DU 02-03; KU 06-07] প্রদন্ত মান = $\sqrt{2} \sin(65^\circ + 45^\circ) = \sqrt{2} \sin 115^\circ$ $=\sqrt{2}\cos(65^{\circ}-45^{\circ}) = \sqrt{2}\cos 20^{\circ}$ নিয়ম 8 a cos A + b sin A $=\sqrt{a^2+b^2}\sin(A+\tan^{-1}\frac{b}{a})$ $= \sqrt{a^2 + b^2} \cos(A - \tan^{-1}\frac{b}{a})$ 8. tan 15° এর মান- [DU 00-01; CU 07-08] A. $2 + \sqrt{2}$ **B.** $2 - \sqrt{3}$ **D.** $3 + \sqrt{2}$ C. $2 + \sqrt{3}$ Sol^{*} : क्यानकलिए दात्र माशाया, $\tan 15^{\circ} = 0.268$ Option B = 0.268. Ans.B 9. $\frac{\sin 75^\circ - \sin 15^\circ}{\sin 75^\circ + \sin 15^\circ}$ এর মান-[DU 99-00, 04-05] $Sol^{"}$:: প্রদন্ত রাশি = $\frac{\cos 15^{\circ} - \sin 15^{\circ}}{\cos 15^{\circ} + \sin 15^{\circ}}$ $= \tan(45^{\circ} - 15^{\circ}) = \frac{1}{\sqrt{3}}$ নিয়ম : 1. $\frac{\cos A - \sin A}{\cos A + \sin A} = \tan(45^{\circ} - A)$ 2. $\frac{\cos A + \sin A}{\cos A - \sin A} = \tan(45^\circ + A)$ অথবা, ক্যালকুলেটরের সাহায্যে প্রদন্ত রাশি = 0.57735 10. $\cot \frac{\pi}{20} \cot \frac{3\pi}{20} \cot \frac{5\pi}{20} \cot \frac{7\pi}{20} \cot \frac{9\pi}{20}$ [RU 07-08] .Sol".: ক্যালকুলেটরের সাহায্যে প্রদত্ত মান = 1

 $\frac{\pi}{20} = \frac{180}{20} = 9$ 1 🕂 tan Ans Ian 3 Ans Ian 53 Aus Itan 7 Ans. Itan 9 Ans. = 11. $\frac{1 - \cos 2\theta + \sin 2\theta}{1 + \cos 2\theta + \sin 2\theta} = ?$ [CU 02-03, RU 07-08] A. $\sec \theta$ B. $\sin \theta$ C. tan⊖ D. coto $Sol^{"}$: $\theta = 30^{\circ}$ বসিয়ে প্রদন্ত রাশি = 0.5773 $\tan 30^{\circ} = 0.5773$ Ans. D 12. n একটি পূর্ণ সংখ্যা হল $\cos\{(2n+1)\pi + \pi/3\}$ [SU 06-070] A. $-\frac{1}{2}$ B. 0 C. 1 D. কোনটিই নয়। $Sol^{"}$:n =0 হলে প্রদন্ত রাশি = $cos(\pi + \pi/3) = -\frac{1}{2}$ n = 1 হলে প্রদন্ত রাশি = $cos(3\pi + \pi/3) = -\frac{1}{2}$ 13.(a) tan 27° + tan 18° + tan 27° tan 18° এর মান--[IU 05-06] (b) $\tan 75^\circ - \tan 30^\circ - \tan 75^\circ \tan 30^\circ$ and মান--[DU 03-04] $Sol^{"}$.:(a) প্রদন্ত রাশি = $tan(27^{0} + 18^{0}) = 1$ (b) প্রদন্ত রাশি = 1 অথবা, ক্যালকুলেটরের সাহায্যে প্রদন্ত রাশি =1 নিয়ম : (a) $A + B = n\pi + \pi/4$ হলে, $\tan A + \tan B + \tan A \tan B = 1$ (b) $A - B = \pi / 4$ হল, $\tan A - \tan B - \tan A \tan B = 1$ অথবা, ক্যালকুলেটরের সাহায্যে প্রদন্ত রাশি = 1 14. $\sin A = \frac{1}{2}$ এবং $\tan B = \sqrt{3}$ হয় তবে sin A cos B + cos A sin B এর মান-[KU 03-04] **Sol**".: $A = 30^{\circ}$, $B = 60^{\circ}$ প্রদন্ত রাশি = sin (A + B) = sin $90^{\circ} = 1$ **16.** $A + B + C = \pi$ दला sin 2A + sin 2B + sin 2C এর মান-[KU; RU 07-08]

a. 4sinA sinB sinC b. $4 \sin^2 A \sin^2 B \sin^2 C$

বইঘর কম c. 1 – 4sinA sinB sinC d. 4sinA sinB sinC -1 Sol^{n} :: A=B=C= 60° ধরে প্রদন্ত রাশি = 2.598 Option গুলোতে $A=B=C=60^{\circ}$ বসালে a = 2.59817. tanA + tanB + tanC = tanA tanBtan Cহল A + B + C এর মান কত? [EA 05-06] A. $\pi/2$ **B.** 0 С. л $D.2\pi$ Sol".: Ans. π 18. $\sin^2(60^0 + A) + \sin^2 A + \sin^2(60^0 - A)$ এর মান - Sol^{n} .: $A = 30^{\circ}$ 4(3, (**G** sin 9) (0) (sin 2 19. ABC ত্রিত্ত cos A + cos C = sin B হলে, $\angle C$ সমান – [DU 04-05] A .30° **B**.60° C. 90° D. 45° কৌশল ঃ কোন ত্রিভুচ্জের দুইটি কোণের cosine অনুপাতের যোগফল অপর কোণের sine এর সমান হলে ত্রিভুচ্জটি সমকোশী এবং cosine এর সাথের কোণদ্বয়ের যেকোন একটি কোণ সমকোণ। Sol" .: Ans. C 20. ABC खिष्ट्राप्स a = 8, b = 4, c = 6 হল $\angle A = ?$ [SU 08-09] A. $\sin^{-1} \frac{\sqrt{5}}{2}$ B. $2\sin^{-1}\frac{\sqrt{5}}{2}$ C. $\sin^{-1}\frac{4}{5}$ D. $2\sin^{-1}\frac{4}{5}$ Solⁿ.: $\cos A = \frac{4^2 + 6^2 - 8^2}{24.6} = -\frac{1}{4}$ A= 104.48° Option भूलाएक D = 106.26° = 104.48° 21. ABC সমদিবাহু ত্রিভুজ যার a = 10 cm এবং b = c ত্রিভুন্ধটির পরিলিখিত বৃত্তের ব্যাসার্ধ 10 cm হলে $\angle B = ?$ [SU 08-09] Solⁿ.: $\frac{a}{\sin A} = 2R \Rightarrow \sin A = \frac{10}{2.10}$ $\Rightarrow A = 30^{\circ}$: B + C = 180° - 30° = 150°

প্রশালা - VII G

 $B = 150^{\circ}/2 = 75^{\circ}$ 22. একটি ত্রিভুন্জের বাহুগুলোর পরিমাপ যথাব্রুমে 3. 5 ও 7 হলে স্থলকোণটির মান - [IU 06-07; RU 07-08] Sol".: স্थ्लाकाणणि = $\cos^{-1} \frac{3^2 + 5^2 - 7^2}{225} = 120^{\circ}$ 23. কোন ত্রিভুঙ্গের বাহুগুলো 13, 14, 15 হলে ত্রিতুজটির ক্ষেত্রফল - [RU 07-08; BUET 06-07] **Sol**": $S = \frac{13 + 14 + 15}{2} = 21$ ক্ষেত্ৰফল = $\sqrt{2!(2!-13)(2!-14)(2!-15)} = 84$ **24.** ABC discuss $\angle A = 60^{\circ}, \angle B = 75^{\circ}$ are $c = \sqrt{6} cm$ and a = ?F SU 06-071 **Sol**^{*u*}.: $\angle C = 180^{\circ} - (60^{\circ} + 75^{\circ}) = 45^{\circ}$ $\frac{a}{\sin A} = \frac{c}{\sin C} \Rightarrow a = \sqrt{6} \frac{\sin 60^{\circ}}{\sin 45^{\circ}} = 3$ 25. $(a-b)^2 \cos^2 \frac{C}{2} + (a+b)^2 \sin^2 \frac{C}{2} = ?$ [SU 06-07] প্রদন্ত রাশি = $a^2 + b^2 - 2ab(\cos^2\frac{C}{2} - \sin^2\frac{C}{2})$ $= a^{2} + b^{2} - 2ab \cos C = c^{2}$ 26. ABC একটি ত্রিভুচ্চ হলে 2(bc cos A + $ca\cos B + ab\cos C = ?$ [RU 06-07] Sol".: थानख जाभि = 2bc $\frac{b^2 + c^2 - a^2}{2br}$ + $2 \operatorname{ca} \frac{c^2 + a^2 - b^2}{2ca} + 2 \operatorname{bc} \frac{a^2 + a^2 - b^2}{2ab}$ $= a^{2} + b^{2} + c^{2}$ যেকোন ত্রিভূজের ক্ষেত্রে $bc \cos^2 \frac{A}{2} +$ 27. $ca\cos^2\frac{B}{2} + ab\cos^2\frac{C}{2} = ?$ [IU 05-06] Sol".: প্রদন্ত রাশি = bc $\frac{s(s-a)}{bc}$ + ca $\frac{s(s-b)}{ca}$ $+ ab \frac{s(s-c)}{ab} = s \{3s - 2(a + b + c)\}$ $= s (3s - 2s) = s^{2}$

২৯৩

ফাংশন ও ফাংশনের লেখচিত্র প্রশ্রমালা VIII Solⁿ: [-2,2] এর ভিন্ন উপাদান -2 ও 2 **(b)** কিছু বিশেষ সূত্র / কৌশল যা ভর্তি পরীক্ষায় দ্রুত উত্তর এর ছবি 4 কিন্তু [0,4] সেটের সকল উপাদানই করতে সাহায্য করবে : [-2, 2] সেটের উপাদানের ছবি ::: Ans. B.1. $f(x) = \frac{ax+b}{ax+d}$ even, $f^{-1}(x) = \frac{-dx+b}{ax+d}$, Solⁿ : সবগুলি তথ্য সত্য । ∴ Ans. D. (c) তোমেন $f = \mathbb{R} - \{-\frac{d}{a}\}$, রেঞ্জ $f = \mathbb{R} - \{\frac{a}{a}\}$ Solⁿ: দ্বিঘাত ফাংশনের লেখ y অক্ষ অথবা y (**d**) অক্ষের সমান্তরাল রেখার সাপেক্ষে প্রতিসম হয়। 2. f(x) = ax + b হল, $f^{-1}(x) = \frac{x - b}{x}$, Ans.B. $Sol^n : f(x)$ এর রপান্তরি ফাংশন f(x-4) ডানে ডোমেন $f = \mathbb{R}$. রেঞ্জ $f = \mathbb{R}$ **(e)** 3. $f(x) = \frac{x^2 - a^2}{x}$ হলে, স্থান্তরিত হয় । Ans. B. $Sol^n : x$ অক্ষের সাপেক্ষে $y = x^2$ এর **(f)** ডোমেন $f = \mathbb{R} - \{a\}$, রেঞ্জ $f = \mathbb{R} - \{2a\}$ প্রতিচ্ছবি $v = -x^2$ 4. $f(x) = \sqrt{x^2 - a^2}$ set. (g) Solⁿ: 3 বিজোড় বলে $\operatorname{cosec}^3(4\theta + \frac{\pi}{2})$ এর where $f = \{x \in \mathbb{R} \mid x \leq -a \text{ or } x \geq a\}$, পর্যায় = $\frac{\pi}{|4|} = \frac{\pi}{4}$. \therefore Ans.**D**. $\mathsf{TAGS} f = \{ x \in \mathbb{R} \mid x \ge 0 \}$ (h) Solⁿ: $1-x^2 \ge 0 \Rightarrow x^2 - 1 \le 0$ 5. $f(x) = \sqrt{x^2 - a^2}$ 3. $\Rightarrow -1 \le x \le 1$ \therefore Ans. B ডোমেন $f = \{x \in \mathbb{R} : -a \le x \le a\} = [-a, a],$ (i) Solⁿ: x > 0 হলে $\frac{x}{|x|} = 1$, x < 0 হলে $\frac{x}{|x|} = -1$ $f = \{x \in \mathbb{R} : 0 \le x \le a\} = [0, a]$ বিস্তার $f = \{-1, 1\}$: Ans. A. 6. $f(x) = \log(a + bx)$ হল, ডোমেন $f = \{x \in \mathbb{R} : x > -\frac{a}{b}\}$, রেঞ্জ $f = \mathbb{R}$ (j) Solⁿ : f(x) ফাংশনের গ্রাফ থেকে এর রপান্তরিত ফাংশন f(x + 2) এর গ্রাফ 2 একক স্থানান্তরিত হবে 7. $f(x) = e^x$ হলে, ডোমেন $f = \mathbb{R}$, : Ans. A. বামে। $f = \{x \in \mathbb{R} : x > 0\}$ (k) Solⁿ : f(x) = x + 1 এবং g(x) = 2x হলে, প্রশ্নমালা VIII $(fog)(2) = f(g(2)) = f(2 \times 2) = f(4) = 4 + 1 = 5$ 1. (a) Solⁿ: $f(x) = x^2$ দ্বারা সংজ্ঞায়িত f: [0, এর মান নিচের কোনটি? D. একক নয়, সার্বিক নয় g(x) = 2x \therefore $g^{-1}(x) = \frac{x}{2}$. 21→ ফাংশনটি একক কিন্তু সার্বিক নয়। [0, 2] এর ভিন্ন ভিন্ন উপাদানের ছবি ভিন্ন ভিন্ন কিন্তু R সেটের সকল উপাদানই A সেটের উপাদানের ছবি $(fog^{-1})(2) = f(g^{-1}(2)) = f(\frac{2}{2}) = f(1)$ নয় । ∴ Ans. C. = 1 + 1 = 2

2. (a) দেওয়া আছে, f (x) = $\begin{cases} 3x - 1, x > 3 \\ x^2 - 2, -2 \le x \le 3 \end{cases}$ 2x + 3, x < -2[ঢা.'১২; য.'০৭, রা '০৮; চ .'০৮,'১২; কু.'১৩] $f(2) = 2^2 - 2$ $[:: -2 \le 2 \le 3]$ = 4 - 2 = 2[4 > 3] $f(4) = 3 \times 4 - 1$ = 12 - 1 = 11 $f(-1) = (-1)^2 - 2$ $[:: -2 \le -1 \le 3]$ =1 - 2 = -1[::-3 < -2] $f(-3) = 2 \times (-3) + 3$ = -6 + 3 = -32(b) f (x) = $x^{2} + ax + b$, f (1) = 1 f(2) = 2 হলে, f (3) এর মান নির্ণয় কর। [8°.'4] সমাধানঃ দেওয়া আছে, $f(x) = x^2 + ax + b \cdots (1)$ $f(1) = 1^2 + a \cdot 1 + b = 1 \Longrightarrow a + b = 0 \cdots (2)$ $f(2) = 2^2 + a \cdot 2 + b = 1$ $\Rightarrow 2a + b = -3$...(3) (3) থেকে (2) বিয়োগ করে পাই. a = - 3 (2) থেকে পাই. $-3 + b = 0 \Longrightarrow b = 3$ (1) \Rightarrow f (x) = $x^2 - 3x + 3$ $f(3) = 3^2 - 3 \times 3 + 3 = 9 - 9 + 3 = 3$ (Ans.) 2.(c) A = [-3, 5] are f:A→ R ফাংশনটি $f(x) = 2x^2 - 7$ दातां সংজ্ঞায়িত | f(2), f(6)এবং f(t-2) নির্ণয় কর সমাধান ঃ 2∈ A = [-3, 5], সুতরাং f(2) সংজ্ঞায়িত এবং f(2) = 2.2² - 7 = 8 - 7 = 1 6∉ A = [-3,5], সুতরাং f(6) অসংজ্ঞায়িত। यपि $t - 2 \in A = [-3, 5]$ i.e. $-3 \le t - 2 \le 5$ i.e. $-1 \le t \le 7$ হয় তবে f(t - 2) সংজ্ঞায়িত হবে এবং f (t - 2) = $2.(t - 2)^2 - 7$ $= 2(t^2 - 4t + 4) - 7 = 2t^2 - 8t + 8 - 7$ $= 2 t^{2} - 8t + 1$ $3.(a) f(x) = b \frac{x-a}{b-a} + a \frac{x-b}{a-b}$ হলে, দেখাও যে, f(a) + f(b) = f(a + b) বে.'০৮; য.'১২; ঢা.'০৭; রা.'০৮,'১৩; কু.'০৮]

প্রমাণ ঃ দেওয়া আছে, $f(x) = b \frac{x-a}{b-a} + a \frac{x-b}{a-b}$ $f(a) = b\frac{a-a}{b-a} + a\frac{a-b}{a-b} = a$ $f(b) = b\frac{b-a}{b-a} + a\frac{b-b}{a-b} = b \quad \text{are}$ $f(a+b) = b\frac{a+b-a}{b-a} + a\frac{a+b-b}{a-b}$ $=\frac{b^2}{b-a}+\frac{a^2}{a-b}=\frac{a^2}{a-b}-\frac{b^2}{a-b}$ $=\frac{a^2-b^2}{a-b}=\frac{(a-b)(a+b)}{(a-b)}=a+b$ = f(a) + f(b)f(a) + f(b) = f(a+b) (Showed) **3(b)** $f(x) = \frac{1}{2}(3^x + 3^{-x}), g(x) = \frac{1}{2}(3 - 3^{-x})$ হলে, প্রমাণ কর যে, f(x + y) = f(x) f(y) + g(x)[য.'০৯;সি.'১২; দি.'১৩; চ.'১8] g(y)প্রমাণঃ L.H.S. = $f(x + y) = \frac{1}{2}(3^{x+y} + 3^{-x-y})$ R.H.S.= f(x) f(y) + g(x) g(y) $= \frac{1}{2}(3^{x} + 3^{-x}) \frac{1}{2}(3^{y} + 3^{-y}) + \frac{1}{2}(3^{y} +$ $\frac{1}{2}(3^{x}-3^{-x})\frac{1}{2}(3^{y}-3^{-y})$ $= \frac{1}{4} (3^{x+y} + 3^{x-y} + 3^{-x+y} + 3^{-x-y} + 3^{x+y})$ $-3^{x-y}-3^{-x+y}+3^{-x-y}$ $= \frac{1}{4} \cdot 2 \left(3^{x+y} + 3^{-x-y} \right) = \frac{1}{2} \left(3^{x+y} + 3^{-x-y} \right)$ L.H.S. = R.H.S. (Proved) 4(a) $y = f(x) = \frac{ax+b}{cx-a}$ হলে, x এর মাধ্যমে f (y) এর মান নির্ণয় কর। [য. '০৭; প্র.ভ.প. '০৪] প্রমাণ ঃ দেওয়া আছে, $y = f(x) = \frac{ax+b}{ax+b}$ $f(x) = \frac{ax+b}{cx-a} \Longrightarrow f(y) = \frac{ay+b}{cx-a} \cdots (1)$

উচ্চতর গণিত : ১ম পত্রের সমাধান বইঘর কম

এবং
$$y = \frac{ax+b}{cx-a} \Rightarrow cxy - ay = ax + b$$

 $\Rightarrow cxy - ax = ay + b$ www.boighar.com
 $\Rightarrow (cy-a) x = ay + b$
 $\Rightarrow x = \frac{ay+b}{cy-a} = f(y) [(1) ঘারা]$
 $f(y) = x$
 $4(b) \phi(x) = \frac{x-1}{x+1}$ হলে, প্রমাণ কর যে,
 $\frac{\phi(x) - \phi(y)}{1 + \phi(x)\phi(y)} = \frac{x-y}{1+xy}$ [직.'০২; সি.'০৫]

$$\begin{aligned} \phi(x) &= \frac{x-1}{x+1}, \qquad \phi(y) = \frac{y-1}{y+1} \\ \frac{\phi(x) - \phi(y)}{1 + \phi(x)\phi(y)} &= \frac{\frac{x-1}{x+1} - \frac{y-1}{y+1}}{1 + \frac{x-1}{x+1} \frac{y-1}{y+1}} \\ &= \frac{\frac{xy + x - y - 1 - (xy - x + y - 1)}{(x+1)(y+1)}}{\frac{xy + x + y + 1 + xy - x - y + 1}{(x+1)(y+1)}} \\ &= \frac{xy + x - y - 1 - xy + x - y + 1}{2xy + 2} = \frac{2(x-y)}{2(1 + xy)} \\ \frac{\phi(x) - \phi(y)}{1 + \phi(x)\phi(y)} &= \frac{x-y}{1 + xy} \text{ (Proved)} \end{aligned}$$

$$\begin{aligned} \mathbf{3(c)} \ \overline{\text{uff}} \quad f(x) &= \frac{2x + 1}{2x - 1} \ \overline{\text{val}}, \ \overline{\text{otecm}} \ \overline{\text{val}} \ \overline{\text{val}}, \\ \hline{\text{f}(x) - 1} &= 2x \end{aligned} \qquad [\text{fr.'so; a.'so]} \end{aligned}$$

প্রমাণ ঃ দেওয়া আছে,
$$f(x) = \frac{2x+1}{x-1}$$

$$\Rightarrow \quad \frac{f(x)}{1} = \frac{2x+1}{2x-1}$$

$$\Rightarrow \quad \frac{f(x)+1}{f(x)-1} = \frac{(2x+1)+(2x-1)}{(2x+1)-(2x-1)}$$

$$\Rightarrow \frac{f(x)+1}{f(x)-1} = \frac{4x}{2} \qquad \frac{f(x)+1}{f(x)-1} = 2x$$

$$4(d) \ \text{ufr} f(x) = \frac{3x+5}{3x-5} \quad \text{ex}, \text{ oracer shuff } \text{ex},$$

$$q, \frac{f(x)+1}{f(x)-1} = \frac{3x}{5}, \qquad [5.55]$$

$$\text{shuff } \text{s crossli once}, \ f(x) = \frac{3x+5}{3x-5}$$

$$\Rightarrow \frac{f(x)}{1} = \frac{3x+5}{3x-5}$$

$$\Rightarrow \frac{f(x)+1}{f(x)+1} = \frac{(3x+5)+(3x-5)}{(3x+5)-(3x-5)}$$

$$[(\text{cutoral-factore exactly}) = \frac{5x+3}{5}$$

$$4(e) \ \text{ufr} \ y = f(x) = \frac{5x+3}{4x-5} \text{ex}, \text{ oracer creates}$$

$$q, x = f(y). \qquad [\text{bi.'}35; \text{Fi.'}30]$$

এখন,
$$y = \frac{5x+3}{4x-5} \Rightarrow 4xy - 5y = 5x + 3$$

 $\Rightarrow 4xy - 5x = 5y + 3$

$$\Rightarrow (4y-5)x = 5y + 3$$

$$\Rightarrow x = \frac{5y+3}{4y-5} = f(y) \quad \therefore x = f(y)$$

$$4(f) \quad y = f(x) = \frac{4x - 7}{2x - 4} \quad \text{হলে, প্রমাণ কর যে,}$$

$$f(y) = x \quad [রা.'১২; ব.'১১; চ.'১২; দি. '০৯,'১8;$$

$$\overline{\mathfrak{P}.'08; \, \overline{\mathfrak{p}.'59}}$$

$$\overline{\mathfrak{Aurr}} : \operatorname{crogal} \operatorname{arce}, y = \frac{4x - 7}{2x - 4}$$

$$\Rightarrow 4x - 7 = 2xy - 4y$$

-

$$\begin{aligned} f(x) &= e^{-x} + e^{-x} \quad \text{ect}, \quad \text{Halfer and } (x, \\ f(x+y)f(x-y) &= f(2x) + f(2y) \\ [5.'os,'so; &= .'so; &= 1.'so, 's8; &= .'os; &= 1.'os; &= 1.'so; \\ \hline b.'sv; &= .'ov,'sv] \\ &= 1 \\ \text{MIMP 8 } L.H.S. &= f(x+y)f(x-y) \\ &= \{e^{x+y} + e^{-(x+y)}\}\{e^{x-y} + e^{-(x-y)}\} \\ &= e^{x+y+x-y} + e^{-(x+y)}\}\{e^{x-y} + e^{-(x-y)}\} \\ &= e^{x+y+x-y} + e^{x+y-x+y} + e^{-x-y+x-y} + e^{-x-y-x+y} \\ &= e^{2x} + e^{2y} + e^{-2y} + e^{-2x} \\ &= (e^{2x} + e^{-2x}) + (e^{2y} + e^{-2y}) \\ &= f(2x) + f(2y) = R.H.S. \\ L.H.S. &= R.H.S. \quad (Proved) \\ &= 5(b) \quad \phi(x) = \ln(\frac{1-x}{1+x}) \quad \text{Ref of } CT \\ &= x + z \end{aligned}$$

$$\phi(z) = \phi(\frac{y+z}{1+yz})$$
 [রা.'১০; য.'০৬; কু.'১১; ব.'১২]

 $f(\phi(x)) = 3f(x)$ (Showed)

২৯৮

উচ্চতর গণিত : ১ম পত্রের সমাধান বইঘর কম $5(f) f(x) = \ln(x)$ ও $\phi(x) = x^n$ হলে, দেখাও যে, $f(\phi(x)) = n f(x)$ [রা. '০৩, '০৭; সি. '০৬] প্রমাণ ঃ $f(\phi(x)) = f(x^n)$ [:: $\phi(x) = x^n$] $= ln(x^n)$ [: f(x) = ln(x)] $= n \ln(x) = n f(x)$ [: $f(x) = \ln(x)$] $f(\phi(x)) = nf(x)$ (Showed)

6. (a)
$$f(x) = \cos x$$
 হলে, দেখাও বে,
 $f(2x) = 2{f(x)}^2 - 1$ এবং
 $f(3x) = 4{f(x)}^3 - 3f(x)$ [ਯ.'o১, ч.'১৩]
প্রমাণ ঃ দেওয়া আছে, $f(x) = \cos x$
 $f(2x) = \cos 2x = 2\cos^2 x - 1$
 $= 2(\cos x)^2 - 1$
 $f(2x) = 2{f(x)}^2 - 1$ (Showed)
 $f(3x) = \cos 3x = 4\cos^3 x - 3\cos x$
 $= 4(\cos x)^3 - 3\cos x$
 $\therefore f(3x) = 4{f(x)}^3 - 3f(x)$ (Showed)
6(b) $f(x) = \sin^3 x \cos x$ হবে, $f(x - \frac{3\pi}{2})$ এর
মান নির্ণয় কর। [প্র.ড.৭.'০৬]
সমাধান ঃ দেওয়া আছে, $f(x) = \sin^3 x \cos x$
 $f(x - \frac{3\pi}{2}) = \sin^3(x - \frac{3\pi}{2})\cos(x - \frac{3\pi}{2})$
 $= [\sin\{-(\frac{3\pi}{2} - x)\}]^3\cos\{-(\frac{3\pi}{2} - x)\}$
 $= [-\sin(\frac{3\pi}{2} - x)]^3 \cos(\frac{3\pi}{2} - x)$
 $= [+\cos x]^3 {-\sin x}$
 $= -\cos^3 x \sin x$ (Ans.)
6.(c) $f(x) = \frac{1-x}{1+x}$ হবে, প্রমাণ কর বে,
 $f(\cos \theta) = \tan^2 \frac{\theta}{2}$ [ক্.'০৭,'০৯,'১৪;দি.'১১; সি.'১১]
প্রমাণ ঃ দেওয়া আছে, $f(x) = \frac{1-x}{1+x}$

 $f(\cos\theta) = \frac{1 - \cos\theta}{1 + \cos\theta} = \frac{2\sin^2\frac{\theta}{2}}{2\cos^2\frac{\theta}{2}}$ $f(\cos\theta) = \tan^2 \frac{\theta}{2}$ (Showed) 7.(a) $\phi(x) = \tan x$ হলে. দেখাও যে. $\phi(\mathbf{a} - \mathbf{b}) = \frac{\phi(\mathbf{a}) - \phi(\mathbf{b})}{1 + \phi(\mathbf{a})\phi(\mathbf{b})}$ [সি.'০৩] প্রমাণ : দেওয়া আছে, $\phi(x) = \tan x$ $\phi(a) = \tan a$, $\phi(b) = \tan b$ and $\phi(a-b) = \tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$ $\phi(a-b) = \frac{\phi(a) - \phi(b)}{1 + \phi(a)\phi(b)}$ (Showed) **7(b)** $f(x) = \tan x$ হলে. দেখাও যে, $f(x+y) = \frac{f(x) + f(y)}{1 - f(x)f(y)}$ [**v**].'o@] প্রমাণ ঃ দেওয়া আছে, $f(x) = \tan x$ $f(y) = \tan y$ এবং $f(x+y) = \tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$ $f(x+y) = \frac{f(x) + f(y)}{1 - f(x)f(y)}$ (Showed) 7(c)f(x) = cos(lnx) হল, f(x) f(y) $rac{1}{2}[f(rac{x}{y})+f(xy)]$ এর মান নির্ণয় কর। [य. '०৫; क. '०९, '०४; त्रि. फि. '১১] সমাধান ঃ দেওয়া আছে, f $(x) = \cos(lnx)$ $f(x) f(y) - \frac{1}{2} [f(\frac{x}{y}) + f(xy)]$ $= \cos(lnx)\cos(lny) \frac{1}{2}\left[\cos(\ln\frac{x}{y}) + \cos(\ln xy)\right]$ $= \cos (ln x) \cos (ln y) \frac{1}{2}\left[\cos\left(lnx - lny\right) + \cos\left(lnx + lny\right)\right]$ $= \cos (\ln x) \cos (\ln y) -$

বইঘর কম $\frac{1}{2}$ [2cos (lnx) cos (lny)] $=\cos(lnx)\cos(lny)-\cos(lnx)\cos(lny)$ =0 (Ans.) 8. (a) দেওয়া আছে, $f(x) = x^2 - 2|x|$ এবং $g(x) = x^2 + 1$ (i) (gof)(-4) = g(f(-4)) [**ঢ**.'o¢; 귀'o৮] $=g((-4)^{2}-2|-4|) = g(16-2.4)$ $= g(16 - 8) = g(8) = 8^{2} + 1$ = 64 + 1 = 65(ii) (fog)(5) = f(g(5))[ঢা.'০৫ ; সি'০৮] $= f(5^{2} + 1) = f(25 + 1) = f(26)$ $= 26^{2} - 2 |26| = 676 - 2 \times 26$ = 676 - 52 = 624(iii) $(g \circ f)(3) = g(f(3))$ বি.'০৭] $= g(3^2 - 2|3|) = g(9 - 6)$ $= g(3) = 3^{2} + 1 = 9 + 1 = 10$ (iv) (f o g) (-2) = f(g(-2)) [4.'00; 4.'09] $=f((-2)^{2}+1)=f(4+1)=f(5)$ $=5^{2}-2|5|=25-10=15$ 8. (b) দেওয়া আছে, f(x) = 2x - 5 এবং $g(x) = x^{2} + 6$ বি.'০৬: সি.'০৬ ; চ.'০৭; য.'০৬.'০৯; রা.'১৩] $g(f(2)) = g(2 \times 2 - 5) = g(4 - 5)$ $= g(-1) = (-1)^{2} + 6 = 1 + 6 = 7$ $f(g(5)) = f(5^2 + 6) = f(25 + 6) = f(31)$ $= 2 \times 31 - 5 = 62 - 5 = 57$ 8(c) দেওয়া আছে, f (x) = $x^{2} + 3x + 1$ এবং g(x) = 2x - 3[চ.'০৭; ব.'১২; দি.'১৩] $(gof)(2) = g(\tilde{f}(2)) = g(2^2 + 3.2 + 1)$ $= g(4 + 6 + 1) = g(11) = 2 \times 11 - 3$

fog)(2) =
$$f(g(2)) = f(2.2 - 3) = f(4 - 3)$$

= $f(1) = 1^2 + 3 \times 1 + 1 = 1 + 3 + 1 = 5$

= 22 - 3 = 19

(d) f $\mathbb{R} \to \mathbb{R}$, available f $(x) = x^2$; g \mathbb{R} $\rightarrow \mathbb{R}$, যেখানে g(x) = x³ + 1 এবং x = -3 হলে দেখাও যে, (f o g) (x) ≠ (g o f) (x) [ঢা.'০৭.'১১] 8(e) দেওয়া আছে, $f(x) = x^2 + 2x - 3$ এবং [কু. '০৬; দি. '১০; সি. '১২] g(x) = 3x - 4 $(f \circ g)(x) = f (g (x)) = f (3x - 4)$ $= (3x-4)^{2} + 2(3x-4) - 3$ $= 9x^2 - 24x + 16 + 6x - 8 - 3$ $= 9x^{2} - 18x + 5$ (Ans.) $(f \circ g)(3) = 9 \times 3^2 - 18 \times 3 + 5$ = 81 - 54 + 5 = 32 (Ans.) 8(f) f(x) = $2x^3 + 3$ are g (x) = $\sqrt[3]{\frac{x-3}{2}}$ হলে, দেখাও যে, $(fog)(x) = (g \circ f)(x)$ [গ্র.ভ.গ.'০০] সমাধান : (fog)(x) = f(g(x)) = f($\sqrt[3]{\frac{x-3}{2}}$) $=2\left(\sqrt[3]{\frac{x-3}{2}}\right)^{3}+3=2\times\frac{x-3}{2}+3$ = x - 3 + 3 = x $(g \circ f)(x) = g(f(x)) = g(2x^3 + 3)$ $= \sqrt[3]{\frac{2x^3 + 3 - 3}{2}} = \sqrt[3]{\frac{2x^3}{2}} = \sqrt[3]{x^3} = x$ $\therefore (\text{fog })(x) = (\text{g o f})(x)$ (Showed 9.(a) নিমের ফাংশনসমূহের ডোমেন ও রেঞ্জ নির্ণয় কর (i) $f(x) = \frac{x}{r-1}$ [4.30] (ii) $f(x) = \frac{x}{|x|}$ (iii) $f(x) = \sqrt{x^2 - 9}$ (iv) $f(x) = \sqrt{16 - x^2}$ (i) $f(x) = \frac{x}{x-1} \in \mathbb{R}$ হবে যদি ও কেবল যদি $x \in \mathbb{R}$ এবং $x - 1 \neq 0$ i.e., $x \neq 1$ হয়। ডোমেন $f = \mathbb{R} - \{1\}$. মনে করি, f এর অধীন x এর ছবি y $y = f(x) = \frac{x}{x-1} \Longrightarrow xy - y = x$

উচ্চতর গণিত: ১ম পত্রের সমাধান বইঘর কম

 $\Rightarrow xy - x = y \Rightarrow x(y - 1) = y \Rightarrow x = \frac{y}{y - 1}$ $x = \frac{y}{y-1} \in \mathbb{R}$ হবে যদি ও কেবল যদি $y \in \mathbb{R}$ এবং v-1≠0 i.e. y≠1 হয়। রেঞ্জ $f = \mathbb{R} - \{1\}$ (ii) x = 0 ব্যতীত সকল $x \in \mathbb{R}$ এর জন্য প্রদন্ত ফাংশন $f(x) = \frac{x}{|x|}$ সংজ্ঞায়িত হয়। ডোমেন $f = \mathbb{R} - \{0\}$ x > 0 হলে |x| = x অতএব, ডোমেন f এর সকল x > 0 উপাদানের জন্য , f(x) = $\frac{x}{x} = 1$ x < 0 হলে |x| = -x অতএব, ডোমেন f এর সকল x < 0 উপাদানের জন্য, f(x) = $\frac{x}{-x} = -1$ রেঞ্চ $f = \{-1, 1\}$ (iii) $f(x) = \sqrt{x^2 - 9} \in \mathbb{R}$ হবে যদি ও কেবল যদি $\mathbf{x} \in \mathbb{R}$ এবং $x^2 - 9 \ge 0 \Longrightarrow (\mathbf{x} - 3)(\mathbf{x} + 3) \ge 0$ অর্থাৎ x ≥ 3 অথবা, x ≤ – 3 হয়। ডোমেন $f = \{ x \in \mathbb{R} : x \ge 3$ অথবা, $x \le -3 \}$ $x = \pm 3 \in$ ডোমেন f এর জন্য f(x) = 0 এবং x>3 অথবা x < -3 এর জন্য f(x) > 0. রেঞ্চ $f = \{ x \in \mathbb{R} : x \ge 0 \}$ (iv) $f(x) = \sqrt{16 - x^2} \in \mathbb{R}$ হবে যদি ও কেবল যদি $x \in \mathbb{R}$ এবং $16 - x^2 \ge 0 \implies x^2 - 16 \le 0$ ⇒ $(x-4)(x+4) \le 0$ অর্থাও $-4 \le x \le 4$ হয়। ডোমেন = { $x \in \mathbb{R} : -4 \le x \le 4$ } $x = \pm 4$ এর জন্য f(x) = 0, যা f(x) এর ক্ষুদ্রতম মান এবং x = 0 এর জন্য f(x) = 4, যা f(x) এর বৃহত্তম মান। রেঞ্চ f = { $x \in \mathbb{R} : 0 \le x \le 4$ } 9.(b) f $\mathbb{R} \to \mathbb{R}$ ফাংশনটি (i) f (x) = x^3 (ii) $f(x) = x^2 + 1$ দ্বারা প্রকাশিত হলে, উহাদের রেঞ্জ নির্নিয় কর। र्. '०१]

(i) প্রদত্ত ফাংশন, $f(x) = x^{3}$ $x \in \mathbb{R}$ এর যেকোন মানের জন্য $f(x) = x^3$ এর মান যেকোন বাস্তব সংখ্যা । রেঞ্জ f = R (ii) প্রদন্ত ফাংশন, $f(x) = x^2 + 1$ মনে করি , f এর অধীন x এর ছবি v $y = f(x) = x^2 + 1 \Longrightarrow x^2 = y - 1$ ⇒ $x = \pm \sqrt{y-1} \in \mathbb{R}$ यपि ও কেবল यपि $x \in \mathbb{R}$ এবং $y \ge 1$ $f = \{ y \in \mathbb{R} \mid y \ge 1 \}$ (Ans.) 9(c) IR বাস্তব সংখ্যার সেট এবং $A = \{-3, -1, 0, ..., 0\}$ 1. 3 }; f: A \rightarrow R ফাংশনটি f (x) = $x^2 + x + 1$ দ্বারা সংজ্ঞায়িত হলে, f(x) এর রেঞ্জ নির্ণয় কর। [য.'০০] সমাধান : $f(-3) = (-3)^2 + (-3) + 1$ = 9 - 3 + 1 = 7 $f(-1) = (-1)^{2} + (-1) + 1 = 1 - 1 + 1 = 1$ $f(0) = 0^2 + 0 + 1 = 1$ $f(1) = 1^2 + 1 + 1 = 3$ $f(3) = 3^2 + 3 + 1 = 9 + 3 + 1 = 13$ f(x) - এর রেঞ্জ = {7, 1, 3, 13} 9(d) A = { -4, -2, 0, 2, 4 } এবং f : A → \mathbb{R} ফাংশনটি f (x) = $x^2 + 2x + 3$ দ্বারা সংজ্ঞায়িত। ি এর রেঞ্চ নির্ণয় কর। [5.'05] সমাধান ঃ $f(-4) = (-4)^2 + 2(-4) + 3$ = 16 - 8 + 3 = 11 $f(-2) = (-2)^{2} + 2(-2) + 3 = 4 - 4 + 3 = 3$ $f(0) = 0^2 + 2 \times 0 + 3 = 3$ $f(2) = 2^{2} + 2 \times 2 + 3 = 4 + 4 + 3 = 11$ $f(4) = 4^2 + 2 \times 4 + 3 = 16 + 8 + 3 = 27$: f -এর রেঞ্ = {11, 3, 3, 11, 27} $= \{3, 11, 27\}$ (Ans.) 9(e) দেওয়া আছে, f (x) = \sqrt{x} এবং $g(x) = x^2 - 1$ [চ. '০২ ; সি. '০৫] $(fog)(x) = f(g(x)) = f(x^2 - 1)$

প্রশ্রমালা VIII

রইহার কয $=\sqrt{x^2-1} \qquad \text{fog}=\sqrt{x^2-1}$ $(fog)(x) = \sqrt{x^2 - 1} = \sqrt{(x - 1)(x + 1)} \in \mathbb{R}$ হবে যদি ও কেবল যদি $x \in \mathbb{R}$ এবং $(x-1)(x+1) \ge 0$. $x \ge 1$ অথবা $x \le -1$ [:: 1 > -1]ডোমেন (fog) = { $x \in \mathbb{R} : x \ge 1$ অথবা $x \le -1$ } $x = 1 \in$ ডোমেন (fog) অথবা $x = -1 \in$ ডোমেন (fog) এর জন্য (fog)(x) = 0; যা fog এর ক্ষুদ্রতম মান এবং এর বৃহত্তম মান $\rightarrow \infty$. রেঞ্জ (fog) = { $x \in \mathbb{R}$: $0 \le x < \infty$ } আবার, (g o f) (x) = $g(f(x)) = g(\sqrt{x})$ $=(\sqrt{x})^2 - 1 = x - 1$ $g \circ f = x - 1$ এখন, g o f = $x - 1 \in \mathbb{R}$ যদি ও কেবল যদি $x \in \mathbb{R}$ ডোমেন $(gof) = \mathbb{R}$ সকল $x \in$ ডোমেন (gof) = \mathbb{R} এর জন্য gof এর মান বাস্তব সংখ্যা। রেঞ্জ (g o f) = R 10. (a) নিয়ের ফাংশনসমূহে কোনটি এক-এক এবং সার্বিক কারণসহ উল্লেখ কর। এক – এক এবং সার্বিক ফাংশনগুলোর জন্য বিপরীত ফাংশন নির্ণয় কর। (i) f(x) = 2x - 3[চ.'১০; রা.'১১] সমাধান 8 প্রদন্ত ফাংশন, f(x) = 2x - 3যদি সম্ভব হয় কল্পনা করি , f(x) = 2x - 3 একটি এক – এক ফাংশন নয় এবং যেকোন দুইটি অসমান উপাদান $x_1, x_2 \in$ ডোমেন í এর ছবি সমান , অর্থাৎ $f(x_1) = f(x_2)$ $2x_1 - 3 = 2x_2 - 3 \Longrightarrow 2x_1 = 2x_2$ $x_1 = x_2$; যা আমাদের কল্পনাকে অযৌক্তিক প্রতিপন্ন করে , কেননা $x_1 \neq x_2$ f(x) একটি এক – এক ফাংশন নয় তা সম্ভব নয় । f(x) একটি এক – এক ফাংশন । $x \in \mathbb{R}$ (ডোমেন f) এর জন্য, f(x) = 2x - 3 এর মান সকল বাস্তব সংখ্যা। রেঞ্জ f = R. অর্থাৎ , f(R) = R অতএব, f(x) একটি সার্বিক ফাংশন । এখন, f(x) = 2x - 3 $f(f^{-1}(x)) = 2 f^{-1}(x) - 3$

 \Rightarrow x = 2 f⁻¹(x) - 3 \Rightarrow 2 f⁻¹(x) = x + 3 $f^{-1}(x) = \frac{x+3}{2}$ (ii) প্রদন্ত ফাংশন, $f: \mathbb{R} \rightarrow \mathbb{R}$; $f(x) = x^3 + 5$ [সি. '০৩:ব.'১৩] যেকোন $x_1, x_2 \in \mathbb{R}$ -এর জন্য , $f(x_1) = f(x_2)$ যদি ও কেবল যদি , $x_1^3 + 5 = x_2^3 + 5$ $\Rightarrow x_1^3 = x_2^3 \Rightarrow x_1 = x_2$ f(x) একটি এক – এক ফাংশন । $f(x) = x^3 + 5$ এর মান সকল x∈R এর জন্য বাস্তব সংখ্যা। রেঞ্জ $f = \mathbb{R}$. i.e., $f(\mathbb{R}) = \mathbb{R}$ অতএব , f(x) একটি সার্বিক ফাংশন । যদি ফাংশন f -এর অধীন x এর ছবি y অর্থাৎ y = f(x) হয়, তবে ফাংশন f^{-1} -এর অধীন y এর ছবি x অর্থাৎ $x = f^{-1}(y)$ হবে । এখন, $y = f(x) \Longrightarrow y = x^3 + 5 \Longrightarrow x^3 = y - 5$ $\Rightarrow x = \sqrt[3]{y-5}$ $\therefore f^{-1}(y) = \sqrt[3]{y-5}$ v কে x দ্বারা প্রতিস্থাপন করে পাই, $f^{-1}(x) = \sqrt[3]{x-5}$ 10(a) (iii) প্রদন্ত ফাংশন, $A = \mathbb{R} - \{3\}, B = \mathbb{R} - \{1\}$, f : A → B এবং f (x) = $\frac{x-2}{x-3}$ যেকোন $x_1, x_2 \in A$ -এর জন্য, $f(x_1) = f(x_2)$ হবে যদি ও কেবল যদি, $\frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$ $\Rightarrow x_1x_2 - 3x_1 - 2x_2 + 6 = x_1x_2 - 2x_1 - 3x_2 + 6$ $\Rightarrow -x_1 = -x_2 \Rightarrow x_1 = x_2$ অতএব, f(x) একটি এক – এক ফাংশন। মনে করি, f -এর অধীন x এর ছবি y $y = f(x) = \frac{x-2}{x-3} \Rightarrow xy - 3y = x - 2$ $\Rightarrow x(y-1) = 3y - 2 \Rightarrow x = \frac{3y-2}{y-1} \dots \dots (1)$ এখন , $x = \frac{3y-2}{y-1} \in \mathbb{R}$ হবে যদি ও কেবল যদি y ∈ R এবং y-1≠0 i.e., y ≠1 হয়। $a \in \mathbb{R} - \{1\} = B$

f(A) = Bঅতএব , f(x) একটি সার্বিক ফাংশন । (1) হতে পাই , $x = \frac{3y-2}{y-1}$ $\Rightarrow f^{-1}(y) = \frac{3y-2}{y-1} [\because y = f(x) \text{ iff } x = f^{-1}(y)]$ y কে x দ্বারা প্রতিস্থাপন করে পাই, $f^{-1}(x) = \frac{3x-2}{x-1}$ 10(a) (iv) প্রদন্ত ফাংশন, $A = \{ x \in \mathbb{R} : x \ge 0 \}$ এবং f $A \rightarrow A$, f $(x) = x^2$ যেকোন $x_1, x_2 \in A$ -এর জন্য , $f(x_1) = f(x_2)$ হবে যদি ও কেবল যদি , $x_1^2 = x_2^2$ \Rightarrow x₁ = x₂ [:: x ≥ 0] অতএব, f(x) একটি এক – এক ফাংশন। মনে করি, $y = f(x) = x^2 \Longrightarrow x^2 = y$ $\Rightarrow x = \sqrt{y}$ (1) [$\because x \ge 0$] $x = \sqrt{y} \in \mathbb{R}$ হবে যদি ও কেবল যদি $y \in \mathbb{R}$ এবং v ≥ 0 হয়। রেঞ্জ f = {y∈ ℝ: $y \ge 0$ } = {x∈ ℝ: $x \ge 0$] = A f(A) = Aঅতএব , f(x) একটি সার্বিক ফাংশন । এখন , (1) হতে পাই , $x = \sqrt{y}$ $f^{-1}(y) = \sqrt{y}$ [:: y = f(x) iff x = $f^{-1}(y)$] \mathbf{y} কে x দ্বারা প্রতিস্থাপন করে পাই, $f^{-1}(\mathbf{x}) = \sqrt{x}$ 10(a) (v) প্রদন্ত ফাংশন, f $\mathbb{R} \to \mathbb{R}$, f (x) = x² $x_1=1, x_2 = -1 \in \mathbb{R}$ (ডোমেন f) এর জন্য, $f(x_1) = f(1) = (1)^2 = 1$ এবং $f(x_2) = f(-1) = (-1)^2 = 1$ $f(x_1) = f(x_2) = 1$, কিন্তু $x_1 \neq x_2$. অতএব, f(x) এক – এক ফাংশন নয়। মনে করি, $y = f(x) = x^2 \Longrightarrow x^2 = y$ $\Rightarrow x = \pm \sqrt{v}$ $\mathbf{x} = \pm \sqrt{\mathbf{y}} \in \mathbb{R}$ হবে যদি ও কেবল যদি $\mathbf{y} \in \mathbb{R}$ এবং y ≥ 0 হয়।

 $f = \{y \in \mathbb{R} \mid y \ge 0\}$ অর্থাৎ রেঞ্জ $f = \{x \in \mathbb{R} : x \ge 0\} \subset \mathbb{R}$ $f(\mathbb{R}) \subset \mathbb{R}$. অতএব , f(x) একটি সার্বিক ফাংশন নয়। 10(a)(vi) প্রদন্ত ফাংশন, f: $\mathbb{R} \to \mathbb{R}$, f (x) = $x^3 + 1$ যেকোন $x_1, x_2 \in \mathbb{R}$ -এর জন্য, $f(x_1) = f(x_2)$ হবে যদি ও কেবল যদি $x_1^3 + 1 = x_2^3 + 1$ \Rightarrow $x_1^3 = x_2^3 \Rightarrow x_1 = x_2$ অতএব , f(x) একটি এক – এক ফাংশন । এখন, $x \in \mathbb{R}($ ডোমেন f) এর জন্য, $f(x) = x^3 + 1$ - এর মান সকল বাস্তব সংখ্যা। রেজ $f = \mathbb{R}$ i.e., $f(\mathbb{R}) = \mathbb{R}$ অতএব , f(x) একটি সার্বিক ফাংশন । এখন , $y = f(x) = x^3 + 1 \Longrightarrow x^3 = y - 1$ $\Rightarrow x = \sqrt[3]{v-1}$: $f^{-1}(y) = \sqrt[3]{y-1}$ [: y = f(x) iff $x = f^{-1}(y)$] y কে x দ্বারা প্রতিস্থাপন করে পাই, $f^{-1}(x) = \sqrt[3]{x-1}$ 10(a) (vii) প্রদন্ত ফাংশন, $f: \mathbb{R} \rightarrow \mathbb{R}$, f(x) = |x-1| $x_1 = 0, x_2 = 2 \in \mathbb{R}$ (ডোমেন f) এর জন্য, $f(x_1) = f(0) = |0 - 1| = |-1| = 1$ এবং $f(x_2) = f(2) = |2 - 1| = |1| = 1$ $f(x_1) = f(x_2) = 1$, किन्छ $x_1 \neq x_2$. অতএব , f(x) এক – এক ফাংশন নয়। $x \in \mathbb{R}$ (ডোমেন f) এর জন্য, f(x) = |x - 1| এর মান সকল বাস্তব সংখ্যা। রেঞ্জ f = R. অর্থাৎ , f(R) = R অতএব, f(x) একটি সার্বিক ফাংশন । 10(a) (viii) প্রদন্ত ফাংশন ,A = [-2 , 2] $B = [0.4], f \quad A \rightarrow B, f(x) = x^2$ $x_1 = -2$, $x_2 = 2 \in \mathbb{R}$ (ডোমেনf) এর জন্য, $f(x_1) = f(-2) = (-2)^2 = 4$ and $f(x_2) = f(2) = 2^2 = 4$ $f(x_1) = f(x_2) = 4$, किन्छ $x_1 \neq x_2$

অতএব , f(x) এক – এক ফাংশন নয়। সকল $x \in$ ডোমেন f এর জন্য, $f(x) = x^2$ এর মান অঋণাত্মক এবং $x \leq 4$ রেঞ্জ f = {x∈ ℝ : $x \ge 0$ এবং $x \le 4$ } $= \{x \in \mathbb{R} : 0 \le x \le 4\} = [0, 4] = B$ f(A) = Bঅতএব , f(x) একটি সার্বিক ফাংশন । $10.(b) A = \{1, 2, 3, 4\}$ are $B = \{1, 2, 3, 4\}$ 4, 5}; f: A \rightarrow B ফাংশনটি f (x) = x + 1 দ্বারা প্রকাশিত। ফাংশনটির ডোমেন এবং রেঞ্জ নির্ণয় কর। ফাংশনটি কি এক-এক ? [বু.'১২; প্র.ভ.প. ০৫] সমাধান ঃ দেওয়া আছে, f(x) = x + 1f(1) = 1 + 1 = 2, f(2) = 2 + 1 = 3f(3) = 4; f(4) = 5ডোমেন $f = \{1, 2, 3, 4\} = A$ $f = \{2, 3, 4, 5\}$ প্রতীয়মান হয় যে, $x \in \{1, 2, 3, 4\}$ এর ভিন্ন ভিন্ন মানের জন্য f(x) = x + 1 এর ভিনু ভিনু মান পাওয়া যায়। অতএব , f(x) একটি এক – এক ফাংশন । 10(c) বাস্তব সংখ্যা সেট IR এর উপর S ={(x, y): $y = \sqrt{x}$ } जन्दारात ডোমেন এবং রেঞ্জ নির্ণয় কর । S^{-1} निर्भग्न केंद्र । সমাধান ঃ দেওয়া আছে, $S = \{(x, y) : y = \sqrt{x}\}$ S সেটের বর্ণনাকারী শর্ত , $v = \sqrt{x}$. $v = \sqrt{x} \in \mathbb{R}$ হবে যদি ও কেবল যদি $x \in \mathbb{R}$ এবং *x* ≥ 0 হয়। ডোমেন $S = \{ x \in \mathbb{R} \mid x \ge 0 \}$ সকল $x \in$ ডোমেন S এর জন্য, $f(x) = x^2$ এর মান অঝণাত্মক । T_{A} (S = { $x \in \mathbb{R} : x \ge 0$ } এখন . $v = \sqrt{x} \Longrightarrow x = y^2$ $S^{-1} = \{(y, x) | x = y^2\}$ x কে y দারা y এবং কে x দারা প্রতিস্থাপন করে পাই, $S^{-1} = \{(x, y) : y = x^2\}$

10.(d)A = $\mathbb{R} - \{-\frac{1}{2}\}$ अर B = $\mathbb{R} - \{\frac{1}{2}\}$ বাস্তব সংখ্যার সেট IR -এর দুইটি উপসেট এবং $f: A \rightarrow B$; যেখানে $f(x) = \frac{x-3}{2x+1}$. দেখাও যে, ফাংশনটি এক–এক ও সার্বিক। ঢা. '০৯] সমাধান ঃ যেকোন x_1 , $x_2 \in \mathbf{A} = \mathbb{R} - \{-\frac{1}{2}\}$ এর জন্য, $f(x_1) = f(x_2)$ यपि ও কেবল यपि, $\frac{x_1 - 3}{2x_1 + 1} = \frac{x_2 - 3}{2x_2 + 1}$ $\Rightarrow 2x_1x_2 - 6x_2 + x_1 - 3x_1 - 1$ $=2x_1x_2-6x_1+x_2-3$ \Rightarrow 7 $x_1 = 7 x_2 \Rightarrow x_1 = x_2$ অতএব, f(x) একটি এক – এক ফাংশন। ধরি, $y = f(x) = \frac{x-3}{2x+1} \Longrightarrow 2xy + y = x-3$ $\Rightarrow (2y-1)x = -y-3 \Rightarrow x = \frac{y+3}{1-2y}$ এখন , $x = \frac{y+3}{1-2y} \in A = \mathbb{R} - \{-\frac{1}{2}\}$ যদি ও কেবল যদি $y \in \mathbb{R}$ এবং $1-2y \neq 0$ অর্থাৎ $y \neq \frac{1}{2}$. রেঞ্জ $f = \mathbb{R} - \{\frac{1}{2}\} = B.$ f(A) = B. অতএব , f(x) একটি সার্বিক ফাংশন । 10(e) A = R - {3} একং B = R - {1} কাস্তব সংখ্যার সেট \mathbb{R} -এর দুইটি উপসেট এবং $f: A \rightarrow B$; যেখানে $f(x) = \frac{x-2}{x-3}$. দেখাও যে, ফাংশনটি এক-এক ও সার্বিক। সমাধান ঃ যেকোন $x_1, x_2 \in A = \mathbb{R} - \{3\}$ এর জন্য, $f(x_1) = f(x_2)$ यपि ७ कर्का यपि, $\frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$ $\Rightarrow x_1x_2 - 2x_2 - 3x_1 + 6$

$$= x_{1}x_{2} - 2x_{1} - 3x_{2} + 6$$

$$\Rightarrow -x_{1} = -x_{2} \Rightarrow x_{1} = x_{2}$$

$$= x_{2} \Rightarrow (y - 1) x = 3y - 2 \Rightarrow x = \frac{3y - 2}{y - 1}$$

$$= x_{1} = x_{2} \Rightarrow (y - 1) x = 3y - 2 \Rightarrow x = \frac{3y - 2}{y - 1}$$

$$= x_{1} = x_{2} = x_{2} \Rightarrow (y - 1) x = 3y - 2 \Rightarrow x = \frac{3y - 2}{y - 1}$$

$$= x_{1} = x_{2} = x_{2} \Rightarrow (y - 1) x = 3y - 2 \Rightarrow x = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{2} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = x_{1} = \frac{3y - 2}{y - 1}$$

$$= x_{2} = \frac{3y - 2}{y - 1}$$

$$=$$

(iv)
$$\operatorname{Incl} \operatorname{vin}, y = f(x) = x - 2 \sqrt{y}$$

 $f^{-1}(y) = \pm \sqrt{y}$
 $f^{-1}(y) = \pm \sqrt{y}$
 $f^{-1}(16) = \pm \sqrt{16} = \pm 4 \cdot \operatorname{deq}$
 $f^{-1}(36) = \pm \sqrt{36} = \pm 6$
 $f^{-1}(\{16,36\}) = \{-6, -4, 4, 6\}$ (Ans.)
(11(b) f: $\mathbb{R} \to \mathbb{R}$ cos f (x) = x² + 1 vial
resolate order of (x) = x² + 1 vial
resolate order of (x) = x² + 1 vial
resolate order of (x) = x² + 1 vial
resolate order of (x) = x² + 1 vial
resolate order of (x) = x² + 1 vial
resolate order of (x) = x² + 1 vial
(i) f⁻¹(5) [5.'oo] (ii) f⁻¹(0) [4.'ob] (vi) f⁻¹((1, 10))
(i) vice order of (x) = y iff f⁻¹(y) = x]
 $\Rightarrow x^{2} + 1 = 5 \Rightarrow x^{2} = 4 \Rightarrow x = \pm 2$
 $f^{-1}(5) = \{-2, 2\}$
(ii) vice order of (x) = y iff f⁻¹(y) = x]
 $\Rightarrow x^{2} + 1 = 5 \Rightarrow x^{2} = 4 \Rightarrow x = \pm 2$
 $f^{-1}(5) = \{-2, 2\}$
(iii) vice order of (x) = y iff f⁻¹(y) = x]
 $\Rightarrow x^{2} + 1 = 0 \Rightarrow x^{2} = -1$; vice order ord

 $\Rightarrow x^2 + 1 = -5 \Rightarrow x^2 = -6$: যা x এর বাস্তব মানের জন্য সম্ভব নয়। $f^{-1}(-5) = \emptyset$ (v) মনে করি, $f^{-1}(10) = x$ f(x) = 10 $[::f(x) = y \text{ iff } f^{-1}(y) = x]$ $\Rightarrow x^{2} + 1 = 10 \Rightarrow x^{2} = 9 \Rightarrow x = \pm 3$ $f^{-1}(10) = \{-3, 3\}$ (vi) মনে করি, $y = f(x) = x^2 + 1$ $\Rightarrow x = \pm \sqrt{y-1}$ $f^{-1}(v) = \pm \sqrt{v-1}$ [: f(x) = y iff $f^{-1}(y) = x$] $f^{-1}(1) = \pm \sqrt{1-1} = 0$ এবং $f^{-1}(10) = \pm \sqrt{10-1} = \pm 3$ $f^{-1}(\{1,10\}) = \{-3, 0, 3\}$ 11.(c) f: $\mathbb{R} \to \mathbb{R}$ (क f (x) = $x^2 - 7$ घांता সংজ্ঞায়িত করা হলে, মান নির্ণয় কর ঃ (i) $f^{-1}(2)$ [5.'00; at.'50] (ii) $f^{-1}(-3)$ (i) মনে করি , $f^{-1}(2) = x$ f(x) = 2 [: f(x) = y iff $f^{-1}(y) = x$] $\Rightarrow x^2 - 7 = 2 \Rightarrow x^2 = 9 \Rightarrow x = \pm 3$ $f^{-1}(2) = \{-3, 3\}$ (ii) মনে করি , $f^{-1}(-3) = x$ f(x) = -3 [: f(x) = y iff $f^{-1}(y) = x$] $\Rightarrow x^2 - 7 = -3 \Rightarrow x^2 = 4 \Rightarrow x = \pm 2$ $\therefore f^{-1}(-3) = \{-2, 2\}$ (d) f : $\mathbb{R} \rightarrow \mathbb{R}$ ফাংশনটি $f(x) = x^3 + 7$ ঘারা সংজ্ঞায়িত হলে $f^{-1}(x)$, $f^{-1}(34)$ এবং f⁻¹ (- 57) এর মান নির্ণয় কর। গ্রি.ড.প. '০৪] সমাধান ঃ মনে করি, $y = f(x) = x^3 + 7$ $x^3 = y - 7 \Rightarrow x = \sqrt[3]{y - 7}$ $f^{-1}(y) = \sqrt[3]{y-7}$

 $[:: f(x) = y \text{ iff } f^{-1}(y) = x]$ v এর পরিবর্তে x লিখে পাই. $f^{-1}(x) = \sqrt[3]{x-7}$ (Ans.) $f^{-1}(2) = \sqrt[3]{34-7} = \sqrt[3]{27} = 3$ এবং $f^{-1}(-57) = \sqrt[3]{-57-7} = \sqrt[3]{-64} = -4$ 12(a) f (x) = $ln(\frac{1-x}{1+x})$ হলে, দেখাও যে, $f^{-1}(x) = (\frac{1-e^x}{1-e^x}).$ প্রমাণ ঃ ধরি, $y = f(x) = ln(\frac{1-x}{1+x})$ $y = f(x) \Longrightarrow x = f^{-1}(y) \cdots (1)$ वर्ष $y = ln\left(\frac{1-x}{1+x}\right) \Rightarrow \frac{1-x}{1+x} = e^{y}$ $\Rightarrow e^{y} + xe^{y} = 1 - x \Rightarrow x + xe^{y} = 1 - e^{y}$ $\Rightarrow (1 + e^{y}) \mathbf{x} = 1 - e^{y} \Rightarrow \mathbf{x} = \frac{1 - e^{y}}{1 + e^{y}}$ $\Rightarrow f^{-1}(y) = \frac{1 - e^y}{1 + e^y} [(1) \text{ visi}]$ $f^{-1}(x) = \frac{1 - e^x}{1 + e^x}$ (Showed) 12(b) f(2x-1) = x + 2 राज, f(x+3) अवर $f^{-1}(x)$ এর মান নির্ণয় কর। প্রমাণ ঃ ধরি, 2x - 1 = y : f(y) = x + 2 এবং $2x = y + 1 \Rightarrow x = \frac{1}{2}(y + 1)$ \Rightarrow x + 2 = 2 + $\frac{1}{2}(y+1) = \frac{4+y+1}{2}$ \Rightarrow f(y) = $\frac{y+5}{2}$ $f(x+3) = \frac{x+3+5}{2} = \frac{x+8}{2}$ (Ans.) আবার, f (2x - 1) = x + 2 $\Rightarrow f^{-1}(x+2) = 2x - 1$ $f^{-1}{(x-2)+2} = 2(x-2) - 1$

 $\Rightarrow f^{-1}(x) = 2x - 4 - 1 = 2x - 5$ (Ans.) $12(c) \phi(x) = \cot^{-1}(1 + x + x^2)$ হলে দেখাও যে, $\varphi(0) + 2\varphi(1) + \varphi(2) = \frac{\pi}{2}$ ঢা. '০১] প্রমাণ : দেওয়া আছে, $\varphi(x) = \cot^{-1}(1 + x + x^2)$ $\varphi(0) = \cot^{-1}(1+0+0) = \cot^{-1}(1) = \tan^{-1}(1)$ $\varphi(1) = \cot^{-1}(1+1+1) = \cot^{-1}(3) = \tan^{-1}\frac{1}{2}$ $\varphi(2) = \cot^{-1}(1+2+4) = \cot^{-1}(7) = \tan^{-1}\frac{1}{7}$ $\phi(0) + 2\phi(1) + \phi(2)$ $= \tan^{-1}(1) + 2\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7}$ = { $\tan^{-1}(1) + \tan^{-1}\frac{1}{7}$ } + 2 $\tan^{-1}\frac{1}{3}$ $= \tan^{-1} \frac{1 + \frac{1}{7}}{1 - \frac{1}{7}} + \tan^{-1} \frac{2 \cdot \frac{1}{3}}{1 - (\frac{1}{7})^2}$ $= \tan^{-1} \frac{7+1}{7-1} + \tan^{-1} (\frac{2}{3} \times \frac{9}{9-1})$ $= \tan^{-1}\frac{4}{2} + \tan^{-1}\frac{6}{8} = \tan^{-1}\frac{4}{2} + \cot^{-1}\frac{4}{2}$ $\varphi(0) + 2\varphi(1) + \varphi(2) = \frac{\pi}{2}$ (Showed), $[\therefore \tan^{-1}\theta + \cot^{-1}\theta = \frac{\pi}{2}]$ 12(d) যদি f(x) = $\sqrt{1-x^2}$, $-1 \le x \le 0$ হয়, তবে $f^{-1}(x)$ নির্ণয় কর এবং $f^{-1}(\frac{1}{2})$ -এর মান নির্ণয় কর। [রা.'১১] সমাধান ঃ ধরি, $y = f(x) = \sqrt{1 - x^2}$ $v^2 = 1 - x^2 \Longrightarrow x^2 = 1 - v^2$ $\Rightarrow x = -\sqrt{1-y^2}, [:: -1 \le x \le 0]$ $\Rightarrow f^{-1}(y) = -\sqrt{1-y^2} \qquad f^{-1}(x) = -\sqrt{1-y^2} \qquad \text{arg} \quad \frac{x^2}{9} + \frac{y^2}{16} = 1$ [: y = f(x) iff $x = f^{-1}(y)$]

এখন, $f^{-1}(\frac{1}{2}) = -\sqrt{1-(\frac{1}{2})^2} = -\sqrt{\frac{4-1}{4}}$ $f^{-1}(\frac{1}{2}) = -\frac{\sqrt{3}}{2}$ (Ans.) 13. (a) $F = \{(x, y) : x \in \mathbb{R}, y \in \mathbb{R} \$ $\frac{x^2}{16} + \frac{y^2}{0} = 1$ }. অম্বয় F এর ডোমেন ও রেঞ্জ নির্ণায় কর। F⁻¹ নির্ণয় কর। সমাধান ঃ F সেটের বর্ণনাকারী শর্ত $\frac{x^2}{16} + \frac{y^2}{0} = 1$ $\Rightarrow \frac{y^2}{9} = 1 - \frac{x^2}{16} \Rightarrow y^2 = \frac{9}{16}(16 - x^2)$ $\Rightarrow y = \pm \frac{3}{4} \sqrt{16 - x^2} \cdots \cdots \cdots (1)$ $y = \pm \frac{3}{4}\sqrt{16 - x^2} \in \mathbb{R}$ হবে যদি ও কেবল যদি $x \in \mathbb{R}$ and $16 - x^2 \ge 0 \Rightarrow x^2 - 4^2 \le 0$ $\Rightarrow (x-4)(x+4) \le 0 \Rightarrow -4 \le x \le 4 = 33$ ডোমেন $F = \{x \in \mathbb{R} : -4 \le x \le 4\} = [-4, 4]$ এখন, $x=0 \in$ ডোমেন F এর জন্য. $y = \pm \frac{3}{4}\sqrt{16-0^2} = \pm \frac{3}{4} \times 4 = \pm 3$ या त्रख F এর যথাক্রমে বৃহত্তম ও ক্ষুদ্রতম মান। রেঞ্জ F = [-3, 3] $F^{-1} = \{(y, x) : y \in [-3, 3], x \in [-4, 4] \text{ uar}\}$ $\frac{x^2}{16} + \frac{y^2}{9} = 1$ x কে y দ্বারা এবং y কে x দ্বারা প্রতিস্থাপন করে পাই $F^{-1} = \{(x, y) : x \in [-3, 3], y \in [-4, 4]$ এবং $\frac{y^2}{16} + \frac{x^2}{9} = 1$ $F^{-1} = \{(x, y) : x \in [-3, 3], y \in [-4, 4]\}$ 13(b) f (x)= $\sqrt{x^2 + 4}$ দারা প্রকাশিত f: [- 2,2] $\rightarrow \mathbb{R}$

অম্বয়ের রেঞ্জ নির্ণয় কর। $f^{-1}([\sqrt{5}, \frac{5}{2}])$ ও নির্ণয় কর । সমাধান ঃ দেওয়া আছে, f (x) = $\sqrt{x^2 + 4}$ f (0) = $\sqrt{4} = 2$ যা $x \in [-2, 2]$ এর জন্য f (x) অর্থাৎ রেঞ্জ f এর ক্ষুদ্রতম মান। $f(\pm 2) = \sqrt{(\pm 2)^2 + 4} = \sqrt{4 + 4} = 2\sqrt{2}$ যা $x \in [-2, 2]$ এর জন্য f(x) অর্থাৎ রেঞ্জ f এর বহুত্তম মান। রেঞ্জ f = $[2, 2\sqrt{2}]$ মরে করি. $v = f(x) = \sqrt{x^2 + 4}$ $y^2 = x^2 + 4 \Longrightarrow x^2 = y^2 - 4$ কর । $\Rightarrow x = \pm \sqrt{y^2 - 4}$ $f^{-1}(y) = \pm \sqrt{y^2 - 4}$ $y = f(x) \Leftrightarrow x = f^{-1}(y)$ $f^{-1}(\sqrt{5}) = \pm \sqrt{5-4} = \pm 1$ are $f^{-1}(\frac{5}{2}) \doteq \pm \sqrt{\frac{25}{4}} - 4 \doteq \pm \sqrt{\frac{25 - 16}{4}} = \pm \frac{3}{2}$ $f^{-1}([\sqrt{5}, \frac{5}{2}]) = [-\frac{3}{2} -1] \cup [1, \frac{3}{2}]$ 13(c) f(x) = 5 - 3x দ্বারা প্রকাশিত $f: [-5, 3] \rightarrow \mathbb{R}$ ফাংশনের রেঞ্জ নির্ণয় কর। $f^{-1}([-4,rac{1}{2}])$ ও নির্ণয় কর। সমাধান ঃ দেওয়া আছে , f(x) = 5 - 3x $f(-5) = 5 - 3 \times (-5) = 5 + 20 = 20$ যা $x \in [-5, 3]$ এর জন্য f(x) এর বৃহত্তম মান। $f(3) = 5 - 3 \times (3) = 5 - 9 = -4$ x ∈ [0,2] এর জন্য f (x) এর ক্ষুদ্রতম মান। $c_{\text{ASS}} f = [-4, 20]$ (Ans.) মনে করি, y = f(x) y = 5 - 3x $\Rightarrow 3x = 5 - y \Rightarrow x = \frac{5 - y}{2}$ $f^{-1}(y) = \frac{5-y}{2}$ $y = f(x) \Leftrightarrow x = f^{-1}(y)$ ſ

 $\therefore f^{-1}(-4) = \frac{5+4}{3} = 3$; या $y \in [-4, \frac{1}{2}]$ अत জন্য $f^{-1}(y)$ এর বৃহত্তম মান। $f^{-1}(\frac{1}{2}) = \frac{5 - \frac{1}{2}}{3} = \frac{9}{2 \times 3} = \frac{3}{2}; \forall y \in [-4, \frac{1}{2}]$ এর জন্য $f^{-1}(v)$ এর ক্ষ্দ্রতম মান। $f^{-1}([-4, \frac{1}{2}]) = [\frac{3}{2}, 3]$ (Ans.) 13(d) $f(x) = 2x^2 + 1$ घाता जख्छांग्रिज $f: [0, 2] \rightarrow \mathbb{R}$ ফাংশনের রেঞ্জ নির্ণয় কর । $f^{-1}([\frac{3}{2},3])$ এর মান নির্ণয় সমাধান ঃ দেওয়া আছে , f (x) = $2x^2 + 1$ $f(0) = 2 \times (0)^2 + 1 = 1$; $\forall x \in [0, 2]$ এর জন্য f (x) এর ক্ষুদ্রতম মান। $f(2) = 2 \times (2)^2 + 1 = 9$; যা $x \in [0, 2]$ এর জন্য f (x) এর বৃহত্তম মান । রেজ f = [1, 9] (Ans.) মনে করি, y = f(x) $y = 2x^2 + 1$ $\Rightarrow 2x^2 = y - 1 \Rightarrow x^2 = \frac{y - 1}{2}$ $\Rightarrow x = \sqrt{\frac{y-1}{2}} \qquad [\qquad x \in [0, 2]]$ $f^{-1}(y) = \sqrt{\frac{y-1}{2}}$ $y = f(x) \Leftrightarrow x = f^{-1}(y)$ $f^{-1}(3) = \sqrt{\frac{3-1}{2}} = \sqrt{\frac{2}{2}} = 1; \forall y \in [\frac{3}{2}, 3]$ ধর জন্য f⁻¹(y) এর বৃহত্তম মান। $f^{-1}(\frac{3}{2}) = \sqrt{\frac{3}{2}-1} = \sqrt{\frac{1}{4}} = \frac{1}{2}; \forall y \in [\frac{3}{2}, 3]$ এর জন্য f⁻¹(y) এর ক্ষুদ্রতম মান। $f^{-1}([\frac{3}{2},3]) = [\frac{1}{2},1]$ (Ans.) 14(a) $f(\frac{1-x}{1+x}) = x + 2$ হলে f(x+3) এবং

উচ্চতর গণিত: ১ম পত্রের সমাধান বইঘর কম

 $f^{-1}(x)$ নির্ণিয় কর। সমাধান ঃ মনে করি, $\frac{1-x}{1-x} = y$: f (y) = x + 2এবং $y + xy = 1 - x \Longrightarrow x(y+1) = 1 - y$ $\Rightarrow x = \frac{1-y}{1+y} \Rightarrow x+2 = \frac{1-y}{1+y}+2$ $\Rightarrow f(y) = \frac{1 - y + 2 + 2y}{1 + y} [\because f(y) = x + 2]$ \Rightarrow f(y) = $\frac{3+y}{1+y}$ $f(x+3) = \frac{3+(x+3)}{1+(x+3)} = \frac{x+6}{x+4}$ (Ans.) ২য় অংশ: দেওয়া আছে, $f(\frac{1-x}{1+x}) \doteq x+2$ $\Rightarrow f^{-1}(x+2) = \frac{1-x}{1+x}$ $f^{-1}{(x-2)+2} = \frac{1-(x-2)}{1+(x-2)}$ $\Rightarrow f^{-1}(x) = \frac{3-x}{x-1}$ (Ans.) 14 (b) f (2x-1) = x + 2 হল f (x + 3) এবং $f^{-1}(x)$ निर्भग्न कत्र। সমাধান ঃ মনে করি, 2x - 1 = y : f (y) = x + 2 $a \ll 2x = y + 1 \Longrightarrow x = \frac{y + 1}{2}$ $\Rightarrow x + 2 = \frac{y+1}{2} + 2$ $\Rightarrow f(y) = \frac{y+1+4}{2} [\because f(y) = x+2]$ \Rightarrow f(y) = $\frac{y+5}{2}$ $f(x+3) = \frac{(x+3)+5}{2} = \frac{x+8}{2}$ (Ans.) ২য় অংশ: দেওয়া আছে, f(2x-1) = x + 2 $\Rightarrow f^{-1}(x+2) = 2x-1$ $f^{-1}{(x-2)+2} = 2(x-2)-1$ $f^{-1}(x) = 2x - 5$ (Ans.) ⇒

14(c) দেখাও যে, $A = \{ x \in \mathbb{R} : x \ge 0 \}$ এবং $f: A \rightarrow A$, $f(x) = x^2$ दांता সংজ্ঞায়িত ফাংশনের $f^{-1}(x)$ বিদ্যমান ৷ $f^{-1}(x)$ নির্ণয় কর ৷ যেকোন $x_1, x_2 \in A$ এর জন্য, $f(x_1) = f(x_2)$ হবে যদি ও কেবল যদি, $x_1^2 = x_2^2 \Longrightarrow x_1 = x_2$ হয় [:: $x \ge 0$] f (x) একটি এক– এক ফাংশন । ধরি , $y = f(x) = x^2 \Longrightarrow x^2 = y$ $\Rightarrow x = \sqrt{y} \cdots (1) \quad [\because x \ge 0]$ এখন, $x = \sqrt{y} \in \mathbb{R}$ যদি ও কেবল যদি, $y \in \mathbb{R}$ এবং $v \ge 0$ $f = \{y \in \mathbb{R} : y \ge 0\} = \{x \in \mathbb{R} : x \ge 0\} = A$ f(A) = Af(x) একটি সার্বিক ফাংশন । যেহেতু f(x) একটি এক – এক ও সার্বিক ফাংশন সুতরাং f(x) -এর বিপরীত ফাংশন বিদ্যমান । এখন (1) হতে পাই , $x = \sqrt{y}$ $f^{-1}(y) = \sqrt{y}$ [:: y = f(x) iff $x = f^{-1}(y)$] y কে x দ্বারা প্রতিস্থান করে পাই, $f^{-1}(x) = \sqrt{x}$ 14 (d) A, B ⊂ R এবং $f(x) : A \rightarrow B$ হব $\P \P (i) f(x) = \sqrt{x-2} (ii) f(x) = x^2$ (iii) $f(x) = (x - 1)^2$ ফাংশনগুলোর বিপরীত ফাংশন $f^{-1}(x)$ বিদ্যমান থাকলে \mathbf{A} এবং \mathbf{B} সেটের মান নির্ণায় কর ; যেখানে A বৃহত্তম। (i) যেহেতু $f(x) = \sqrt{x-2}$ ফাংশনের বিপরীত ফাংশন f^{-1} বিদ্যমান সুতরাং প্রদন্ত ফাংশনটি এক – এক এবং সার্বিক । রেঞ্জ f = B. এখন , $f(x) = \sqrt{x-2} \in \mathbb{R}$ হবে যদি ও কেবল যদি, $x \in \mathbb{R}$ এবং $x - 2 \ge 0$ i.e., $x \ge 2$ হয়। ডোমেন f = { $x \in \mathbb{R}$: $x \ge 2$ } ডোমেন $f = \{x \in \mathbb{R} : x \ge 2\}$ এর জন্য, f(x) $=\sqrt{x-2}$ একটি এক – এক ফাংশন। A =ডোমেন $f = \{x \in \mathbb{R} : x \ge 2\}$ x∈ ডোমেন f এর জন্য , f(x) এর মান অঋণাত্মক । রেঞ্জ f = { $x \in \mathbb{R}$: $x \ge 0$ }.

 $\mathbf{B} = \{x \!\!\in\! \mathbb{R} \colon x \!\geq\! 0\}$

(ii) যেহেতু $f(x) = x^2$ ফাংশনের বিপরীত ফাংশন f^{-1} বিদ্যমান, সুতরাং প্রদন্ত ফাংশনটি এক – এক এবং সার্বিক।

রেঞ্জ f = B এখন, f(x) = $x^2 \in \mathbb{R}$ যদি ও কেবল যদি , $x \in \mathbb{R}$.

ডোমেন. $f = \mathbb{R}$

ডোমেন f = R এর জন্য, f(x) = x^2 ফাংশনটি এক – এক নয় ।

কিম্তু ডোমেন f-এর সর্বাধিক মান $\{x \in \mathbb{R} : x \ge 0\}$ অথবা $\{x \in \mathbb{R} : x \le 0\}$ এর জন্য f(x) = x^2 ফাংশনটি এক-এক ।

 $A = \{x \in \mathbb{R} : x \ge 0\}$ অথবা $A = \{x \in \mathbb{R} : x \le 0\}$ x \in ডোমেন f এর জন্য, f(x) -এর মান অঞ্চণাত্মক । রেঞ্জ f = $\{x \in \mathbb{R} : x \ge 0\}$ B = $\{x \in \mathbb{R} : x \ge 0\}$

(iii) যেহেতু $f(x) = (x - 1)^2$ ফাংশনের বিপরীত ফাংশন f^{-1} বিদ্যমান , সুতরাং প্রদন্ত ফাংশনটি এক – এক এবং সার্বিক ।

রেঞ্জ f = B

এখন , f (x) = $(x-1)^2 \in \mathbb{R}$ হবে যদি ও কেবল যদি , $x \in \mathbb{R}$

ডোমেন $f = \mathbb{R}$

ডোমেন f = IR-এর জন্য ,পদত্ত ফাংশন $f(x) = (x-1)^2$ এক-এক নয়।

কিন্তু ডোমেন f -এর সর্বাধিক মান $\{x \in \mathbb{R} : x \ge 1\}$ অথবা $\{x \in \mathbb{R} : x \le 1\}$ এর জন্য $f(x) = (x-1)^2$ ফাংশনটি এক–এক ।

 $A = \{x \in \mathbb{R} : x \ge 1\}$ অথবা $A = \{x \in \mathbb{R} : x \le 1\}$ x \in ডোমেন f এর জন্য, f(x) এর মান অঋণাত্মক

 $f = \{x \in \mathbb{R} : x \ge 0\}.$ B = {x∈ℝ : x ≥ 0}

15. নিমের অম্বয়্গুলোর লেখ অজ্ঞন কর । কোন্গুলো ফাংশন এবং কোন্গুলো ফাংশন নয় তা লেখচিত্র থেকে কারণসহ উল্লেখ কর। সমাধান :

(a) নিচের তালিকায় x ∈ [-3,3] এর ভিন্ন ভিন্ন মানের জন্য v = x² এর প্রতিরপী মান নির্ণয় করি

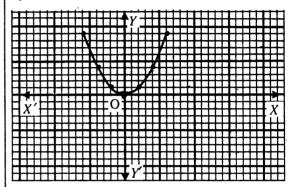
x	±3	± 2	± 1	0
$y = x^2$	9	4	1	0

একটি ছক কাগজে স্থানাংকের অক্ষু রেখা X'OX ও YOY' আঁকি।

স্কেল নিধারণ ঃ

x-অক্ষ বরাবর ক্ষুদ্রতম বর্গক্ষেত্রের 2 বাহু = 1 একক।

y-অক্ষ বরাবর ক্ষুদ্রতম বর্গক্ষেত্রের 1 বাহু = 1 একক।



এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত কিন্দুগুলো ছক কাগজে স্থাপন করি । স্থাপিত কিন্দুগুলো মুক্ত হস্তে বক্রাকারে যোগ করে $\mathbf{R} = \{(x, y) \mid y = x^2 \text{ এবং} -3 \le x \le 3\}$ এর লেখ অজ্ঞকন করা হল।

-3 ≤ x ≤ 3 সীমার মধ্যে y-অক্ষের সমান্তরাল প্রতিটি উলম্ব রেখায় প্রদন্ত অন্বয়ের লেখচিত্রটির একটি মাত্র কিন্দু আছে। অতএব, প্রদত্ত অন্বয় একটি ফাংশন।

15(b) নিচের তালিকায় $x \in [0, 4]$ এর ভিন্ন ভিন্ন মানের জন্য $y^2 = x \implies y = \pm \sqrt{x}$ এর প্রতিরূপী মান নির্ণয় করি :

X	0	i	2	3	4
$y = \pm \sqrt{x}$	0	±1	± 1.42	± 1.73	±2

একটি ছক কাগজে স্থানাংকের অক্ষ রেখা X'OX ও YOY' আঁকি ।

স্কেল নিধারণ ঃ

x-অক্ষ বরাবর ক্ষুদ্রতম বর্গক্ষেত্রের 2 বাহু = 1 একক। y-অক্ষ বরাবর ক্ষুদ্রতম বর্গক্ষেত্রের 2 বাহু = 1 একক। এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত কিদুগুলো ছক কাগজে স্থাপন করি। স্থাপিত কিদুগুলো মুক্ত হস্তে উচ্চতর গণিত<u>় ১ম প</u>ুত্রের সমাধান

বক্রাঁকারে যোগ করে $\mathbf{R} = \{(x, y) \mid y^2 = x \text{ এবং} \\ 0 \le x \le 4\}$ এর লেখ অঙ্জন করা হল।

 $0 < x \le 4$ সীমার মধ্যে y-অক্ষের সমানতরাল প্রতিটি উলম্ব রেখায় প্রদন্ত অন্দ্বয়ের লেখচিত্রটির একাধিক (দুইটি) কিন্দু আছে । অতএব , প্রদন্ত অন্দ্বয় ফাংশন নয় । 15(c) নিচের তালিকায় $x \in [0, 4]$ এর ভিন্ন ভিন্ন মানের জন্য $y^2 = x \implies y = \sqrt{x}$ ($y \ge 0$) এর প্রতিরূপী মান নির্ণয় করি ঃ

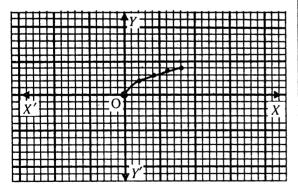
X		1	2	3	4
$y = \sqrt{x}$	0	1.	1.42	1.73	2

একটি ছক কাগজে স্থানাংকের অক্ষ রেখা X'OX ও

YOY' आँकि ।

স্কেল নিধারণ ঃ

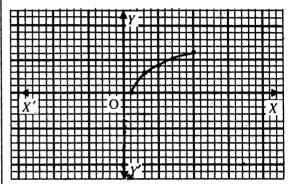
x-অক্ষ বরাবর ক্ষুদ্রতম বর্গক্ষেত্রের 2 বাহু = 1 একক । y-অক্ষ বরাবর ক্ষুদ্রতম বর্গক্ষেত্রের 2 বাহু = 1 একক ।



এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত কিন্দুগুলো ছক কাগজে স্থাপন করি। স্থাপিত কিন্দুগুলো মুক্ত হস্তে বক্তাকারে যোগ করে $R = \{(x, y): y^2 = x, 0 \le x \le 4$ এবং $y \ge 0\}$ এর লেখ অজ্জন করা হল। 0 ≤ x ≤ 4 সীমার মধ্যে y-অক্ষের সমানতরাল প্রতিটি উলম্ব রেখায় প্রদন্ত অন্বয়ের লেখচিত্রটির একটি মাত্র কিন্দু আছে। অতএব , প্রদন্ত অন্বয় একটি ফাংশন।

15(d) নিচের তালিকায় *x* ∈ [0, 10] এর ভিন্ন ভিন্ন মানের জন্য *y* = √*x*−1 এর প্রতিরূপী মান নির্ণয় করি

x	1	3	5	7	10
$y = \sqrt{x-1}$	0	1.42	2	2.45	3



এখন নির্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত কিন্দুগুলো ছক কাগজে স্থাপন করি । স্থাপিত কিন্দুগুলো মুক্ত হস্তে বক্তাকারে যোগ করে $\mathbf{R} = \{(x, y) \ y = \sqrt{x-1}$ এবং $1 \le x \le 10$ } এর লেখ অজ্ঞকন করা হল। $1 \le x \le 10$ সীমার মধ্যে y-অক্ষের সমাশতরাল প্রতিটি উলম্ব রেখায় প্রদন্ত অন্বয়ের লেখচিত্রটির একটি মাত্র কিন্দু আছে । অতএব, প্রদন্ত অন্বয় একটি ফাংশন ।

15(e) প্রদন্ত অন্দ্রয় R এর বর্ণনাকারী সমীকরণ

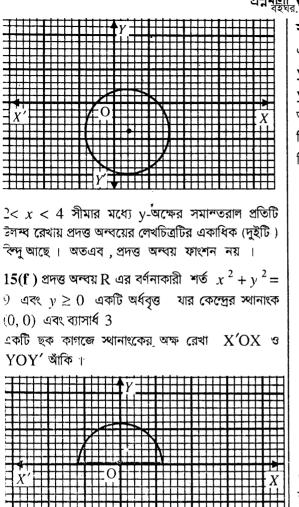
 $(x-1)^2 + (y + 2)^2 = 9$ একটি বৃত্ত , যার কেন্দ্রের স্থানাংক (1, – 2) এবং ব্যাসার্ধ 3 একটি ছক কাগজে স্থানাংকের অক্ষ রেখা X'OX ও YOY' আঁকি ।

স্কেল নিধারণ ঃ

x-অক্ষ বরাবর ক্ষুদ্রতম বর্গক্ষেত্রের 2 বাহু = 1 একক । y-অক্ষ বরাবর ক্ষুদ্রতম বর্গক্ষেত্রের 2 বাহু = 1 একক ।

 (1, -2) কিন্দুকে কেন্দ্র করে 3 একক ব্যাসার্ধ নিয়ে একটি বৃত্ত অজ্জন করি ।

 $R = \{(x, y) | (x-1)^2 + (y+2)^2 = 9\}$ এর লেখ অন্তকন করা হল । প্রশ্নমালা VIII

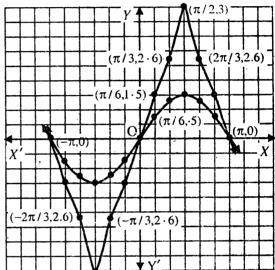


ফেকল নিধারণ ঃ

x-অক্ষ বরাবর ক্ষুদ্রতম বর্গক্ষেত্রের 2 বাহু = 1 একক। y-অক্ষ বরাবর ক্ষুদ্রতম বর্গক্ষেত্রের 2 বাহু = 1 একক। y-অক্ষের সমান্দতরাল কোন সরললেখা প্রদন্ত অন্দ্রয়ের লেখকে একাধিক কিন্দুতে ছেদ করেনা। অতএব প্রদন্ত অন্বয় একটি ফাংশন।

y ≥ 0 সীমার মধ্যে y-অক্ষের সমান্তরাল প্রতিটি উলম্ব রেখায় প্রদত্ত অন্বয়ের লেখচিত্রটির একটি মাত্র কিন্দু আছে । অতএব, প্রদত্ত অন্বয় একটি ফাংশন ।

16. (a) $y = \sin x$, $-\pi \le x \le \pi$ এর গ্রাফ হতে $y = 3 \sin x$ এর গ্রাফ অঙ্কন কর। সমাধান: x-অক্ষ বরাবর ছোট বর্গের এক বাহু = 30° এবং y- অক্ষ বরাবর ছোট বর্গের 3 বাহু = 1 ধরে y = sin x, $-\pi \le x \le \pi$ লেখচিত্র অঙ্কন করি। y = sin x এর রূপান্তরিত ফাংশন y = 3 sin x, y অক্ষের দিকে সংকূচিত হয় । y = sin x লেখের প্রতিটি বিন্দুর y – স্থানাঙ্ককে 3 গুণ বৃদ্ধি করে বিন্দুটিকে উপরের দিকে সরিয়ে y = 3 sin x লেখ নিচে অঞ্চন করা হলো। ।



(b) y = *e^x* এর লেখ হতে y = *ln x* এর লেখ অঙ্কন কর।

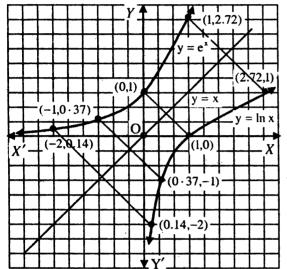
নিচের তালিকায় x এর ভিন্ন ভিন্ন মানের জন্য y = e^x এ**র** প্রতিরূপী মান নির্ণয় করি :

x	-2	-1	0	1	2
$y = e^x$	0.14	0.37	1	2.72	7.39

x - অক্ষ ও y - অক্ষ বরাবর ক্ষুদ্রতম বর্গের 3 বাহু = 1 একক ধরে তালিকাভুক্ত বিন্দুগুলি ছক কাগজে স্থাপন করি এবং সরূ পেসিল দিয়ে স্থাপিত বিন্দুগুলি মুক্ত হন্তে বক্রাকারে যোগ করে f (x) = e^x এর লেখ অঙ্কন করি।

f (x) = e^x ফাংশনের লেখের উপরস্থ (-2, 0.14), (-1, 0.37), (0,1) ও (1, 2.72) বিন্দুগুলির x স্থা নঙ্ক ও y স্থানাঙ্কের স্থান বিনিময় করে যথাক্রমে (0.14, -2) (0.37, -1), (1,0) ও (2.72,1) বিন্দুগুলি ছক কাগজে স্থাপন করি এবং সরু পেসিল দিয়ে স্থাপিত বিন্দুগুলি মুক্ত হস্তে বক্রাকারে যোগ করে $f(x) = e^x$ এর বিপরীত ফাংশন $f^{-1}(x) = \ln x$ এর লেখ অঞ্চন করা হলো। (অন্যভাবে, y = x সরলরেখা হতে (-2, 0.14) (-1, 0.37), (0,1) ও (1, 2.72) বিন্দুগুলির

সমদূরবর্তী বিন্দুগুলির সাহায্যে $f^{-1}(x) = \ln x$ এর লেখ অঙ্কন করা যায়)



17. ফাংশনগুলির পর্যায় নির্ণয় কর: (a) sin (5θ+

$$\frac{\pi}{4}$$
) (b) 7 tan (-3θ) (c) cos $\frac{1}{2}$ θ tan θ

সমাধান: (a) ধরি, f(θ) = sin (5 θ + $\frac{\pi}{4}$)

$$f(\theta) = \sin(5\theta + \frac{\pi}{4} + 2\pi)$$

[∵ sin θ এর পর্যায় 2π]

$$= \sin 5(\theta + \frac{\pi}{20} + \frac{2\pi}{5}) = f(\theta + \frac{2\pi}{5})$$

$$\sin (5\theta + \frac{\pi}{4}) \text{ us পর্যায় } \frac{2\pi}{5}.$$

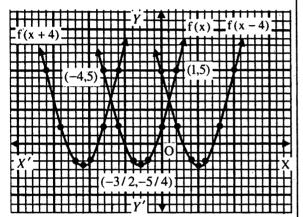
(b) ধরি, $f(\theta) = 7 \tan (-3\theta)$
 $f(\theta) = 7 \tan (-3\theta + \pi)$
[:: $\tan \theta \text{ us পর্যায় } \pi$]

= $7 \tan 3(-\theta + \frac{\pi}{3}) = f(\theta + \frac{\pi}{3})$ 7 tan (-3θ) এর পর্যায় $\frac{\pi}{3}$. (c) ধরি, $f(\theta) = \cos \frac{1}{2} \theta \tan \theta$ $\cos\frac{1}{2}\theta = \cos\left(\frac{1}{2}\theta + 2\pi\right) = \cos\frac{1}{2}(\theta + 4\pi)$ [:: sin θ এর পর্যায় 2π] এবং $\tan \theta = \tan (\theta + \pi) = \tan (\theta + 2\pi)$ $= \tan (\theta + 3\pi) = \tan (\theta + 4\pi)$ [∵ tan θ এর পর্যায় π] $f(\theta) = \cos \frac{1}{2}(\theta + 4\pi) \tan (\theta + 4\pi)$ $= f(\theta + 4\pi)$ $\cos\frac{1}{2}\theta$ tan θ এর পর্যায় 4π . **18.** দেওয়া আছে. $f(x) = x^2 + 3x + 1$. g(x) = 2x - 3. (a) $g(\frac{1}{2})$ এর মান নির্ণয় কর । f(x) = 19 হলে, x এর মান নির্ণয় কর। (b) (g o f) (2) এবং (f o g) (2) নির্ণয় কর। [४.'०१; र.'১२; मि.'১৩] (c) f(x) ফাংশনের এবং এর রূপান্তরিত ফাংশন f(x + 4) ও f(x - 4) এর ক্ষেচ অঙ্কন কর। সমাধান: (a) দেওয়া আছে, g(x) = 2x - 3 $g(\frac{1}{2}) = 2 \times \frac{1}{2} - 3 = 1 - 3 = -2$ $f(x) = 19 \implies x^2 + 3x + 1 = 19$ $\Rightarrow x^2 + 3x - 18 = 0$ \Rightarrow (x + 6) (x - 3) = 0 x + 6 = 0 হলে, x = - 6 x - 3 = 0 হলে, x = 3. (b) 8(c) দ্রষ্টব্য।

(c) নিচের তালিকায় x এর ভিন্ন ভিন্ন মানের জন্য $f(x) = x^2 + 3x + 1$ এর প্রতিরূপী মান নির্ণয় করি :

x	0	-1	-2	-3	1	-4	$-\frac{3}{2}$
$f(x) = x^2 + 3x + 1$	1	-1	-1	1	5	5	$-\frac{5}{4}$

x - অক্ষ ও y - অক্ষ বরাবর ক্ষুদ্রতম বর্গের 2 বাহ্ = 1 একক ধরে তালিকাভুক্ত বিন্দুগুলি ছক কাগজে স্থাপন করি এবং সরু পেন্সিল দিয়ে স্থাপিত বিন্দুগুলি মুক্ত হস্তে বক্তাকারে যোগ করে f(x) = x² + 3x +1 এর ক্ষেচ অন্ধকন করি ।



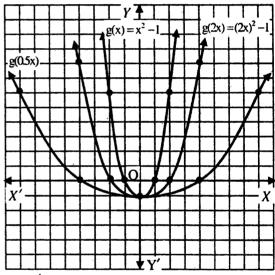
f(x) ফাংশনের লেখের প্রতিটি বিন্দুকে 4 একক অর্থাৎ 8 ঘর বামে সরিয়ে f(x) এর রূপান্তরিত ফাংশন f(x + 4)এর এবং 4 একক অর্থাৎ 8 ঘর ডানে সরিয়ে f(x - 4)এর ক্ষেচ অঙ্কন করা হলো।

19. দেওয়া আছে, f (x) = √x , g (x) = x²-1.
(a) g⁻¹({-1,8}) এর মান নির্ণয় কর ।
(b) (fog)(x) এবং (gof)(x) নির্ণয় কর । প্রথম
[চ.'০৯ ; সি.'০৫; ব.'০৯]
(c) g(x) ফাংশনের এবং এর রূপান্তরিড ফাংশন
g(2x) ও f(0.5x) এর স্কেচ অঞ্চন কর ।
সমাধান : ধরি, y = g (x) = x²-1 ⇒ x² = y+1
⇒ x = ±√y+1
g⁻¹(y) = ±√y+1

www.boighar.com y = g(x) iff $x = g^{-1}(y)$] এখন, $g^{-1}(-1) = \pm \sqrt{-1+1} = 0$ এবং $g^{-1}(8) = \pm \sqrt{8+1} = \pm \sqrt{9} = \pm 3$ $g^{-1}(\{-1, 8\}) = \{-3, 0, 3\}$ (b) 9(e) দ্রষ্টব্য ।

$$f(x) = \sqrt{x}$$
, $g(x) = x^2 - 1$

(c) x - অক্ষ ও y - অক্ষ বরাবর ক্ষুদ্রতম বর্গের 2 বাহু
 1 একক ধরে g(x) ফাংশনের এবং এর রপান্তরিত ফাংশন g(2x) ও g(0.5x) এর নিচে ক্ষেচ অঙ্কন করা হলো।



20. f $\{x \in \mathbb{R} : x \ge 0\} \rightarrow \mathbb{R}$ কে $f(x) = x^2 + 1$ দ্বারা সংজ্ঞায়িত করা হলে,

সমাধান : (a)
$$x = 0$$
 হলে $f(0) = 0 + 1 = 1$, যা
 $f(x)$ এর ক্ষুদ্রতম মান এবং $x > 0$ হলে $f(x) > 1$.
 $f(x)$ এর রেজ = $\{x \in \mathbb{R} : x \ge 1\}$
(b) মনে করি, $y = f(x) = x^2 + 1$
 $\Rightarrow x^2 = y - 1 \Rightarrow x = \sqrt{y - 1}$, [$\because x \ge 0$]
 $f^{-1}(y) = \sqrt{y - 1}$
[$\because f(x) = y$ iff $f^{-1}(y) = x$]
 $f^{-1}(1) = \sqrt{1 - 1} \ge 0$ এবং

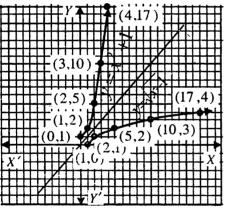
(c) f(x) এর লেখচিত্র থেকে f⁻¹(x) এর লেখচিত্র অন্তকন কর।

একটি ছক কাগজে স্থানাৎকের অক্ষ রেখা X'OX ও YOY' আঁকি ।

 সংযুক্ত তালিকায় x≥0 এর তিন্ন তিন্ন মানের জন্য y = x² + 1 এর প্রতিরূপী মান নির্ণয় করি ঃ

	x	0	1	2	3	4
-	f (<i>x</i>)	1	2	5	10	17

x - অক্ষ ও y - অক্ষ বরাবর ক্ষুদ্রতম বগের l বাহ্ = l একক ধরে তালিকাভুক্ত কিন্দুগুলি ছক কাগজে স্থাপন করি এবং সরু পেন্সিল দিয়ে স্থাপিত কিন্দুগুলি মুক্ত হস্তে বক্রাকারে যোগ করে y = x² +l এর লেখ অঙ্চকন করি ।



y = x সরলরেখার লেখ অজ্ঞকন করি। y = x রেখা হতে (0, 1) (1, 2), (2,5), (3,10), (4, 17) ইত্যাদি কিন্দুগুলির সমদূরবর্তী যথাক্রমে (1,0), (2,1), (5,2), (10,3), (17,4) ইত্যাদি কিন্দুগুলি মুক্ত হস্তে বক্রাকারে যোগ করে f(x) এর লেখ থেকে $f^{-1}(x) = \sqrt{1-x}$ এর লেখ অজ্ঞকন করা হলো।

ব্যবহারিক অনুশীলনী

 y = - x² ফাংশনের এবং রুপাম্তরিত y = - (x + 3)² ও y = (x - 3)² ফাংশনের লেখচিত্র অজ্ঞকন কর। পরীক্ষণের নাম : $y = -x^2$ ফাংশনের ও রূপান্তরিত $y = -(x + 3)^2$ ও $y = (x - 3)^2$ ফাংশনের লেখচিত্র অঙ্জন

মূ**লতত্ত্ব ঃ** y = - x² একটি পরাবৃত্তের সমীকরণ যার শীর্ষবিন্দু মূলবিন্দুতে এবং অক্ষ y -অক্ষ। y = - x² এর লেখ নিজের সমান্তরালে 3 একক বামে সরিয়ে দিয়ে y = - (x + 3)² পরাবৃত্তের লেখ পাওয়া যায় যার শীর্ষবিন্দু (-3, 0) । আবার, x অক্ষের সাপেক্ষে y = - x² এর প্রতিচ্ছবি y = x² এর লেখকে 3 একক ডানে সরিয়ে দিয়ে y = (x - 3)² পরাবৃত্তের লেখ পাওয়া যায় যার শীর্ষবিন্দু (3, 0).

প্রয়োজনীয় উপকরণ ঃ (i) পেন্সিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) পেন্সিল কম্পাস (vii) সায়েন্টিফিক ক্যালকুলেটর ইত্যাদি।

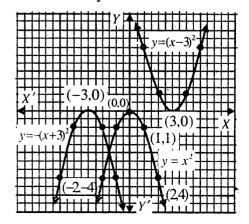
কাৰ্যপন্ধতি ঃ

 একটি ছক কাগজে স্থানাজ্ঞের অক্ষ রেখা X'OX ও YOY' আঁকি ।

 নিচের তালিকায় x এর তিন্ন তিন মানের জন্য y = -x² এর প্রতিরূপী মান নির্ণয় করি ঃ

X	-2	-1	0	1	2
f (<i>x</i>)	-4	- 1	0	-1	-4

 x - অক্ষ ও y - অক্ষ বরাবর ক্ষুদ্রতম বর্গের 2 বাহু
 1 একক ধরে তালিকাভুক্ত কিন্দুগুলি ছক কাগজে স্থাপন করি এবং সরৃ পেন্সিল দিয়ে স্থাপিত কিন্দুগুলি মুক্ত হস্তে বক্রাকারে যোগ করে y = -x² এর লেখ অজ্ঞকন করি ।



4. লেখটির প্রতিটি কিন্দুকে 2×3 বা 6 বর্গের বাহুর সমান অর্থাৎ 3 একক বাম দিকে সরিয়ে $y = -(x + 3)^2$ এর লেখ অজ্ঞকন করি ।

5. আবার, x অক্ষের সাপেক্ষে $y = -x^2$ এর প্রতিচ্ছবি $y = x^2$ এর লেখের প্রতিটি কিন্দুকে 2×3 বা 6 বর্গের বাহুর সমান অর্থাৎ 3 একক ডানে সরিয়ে দিয়ে $v = (x - 3)^2$ এর লেখ অজ্ঞকন করি ।

বৈশিষ্ট্য : (i) লেখচিত্র তিনটি পরাবৃত্ত। $y = -x^2$ এর শীর্ষবিন্দু $(0, 0), y = -(x + 3)^2$ এর শীর্ষবিন্দু (-3,0) এবং y = (x − 3)² এর শীর্ষকিন্দু (3, 0) । (ii) $y = -x^2$ এর লেখ y অক্ষের সাপেক্ষে, $y = -(x + 3)^2$ এর লেখ x = -3 রেখার সাপেক্ষে ও y = (x-3)² এর লেখ x = 3 রেখার সাপেক্ষে প্রতিসম।

2. $y = x^2$ ফাংশনের ও রুপান্তরিত $y = -2x^2 +$ 4x – 5 ফাংশনের লেখচিত্র অজ্ঞকন কর

পরীক্ষণের নাম $y = x^2$ ফাংশনের ও রুপান্তরিত $y = -2x^2 + 4x - 5$ ফাংশনের লেখচিত্র অজ্জন

মূলতন্ত $x = x^2$ একটি পরাবৃত্তের সমীকরণ যার শীর্ষকিন্দু মূলকিদ্যতে এবং অক্ষ y -অক্ষ। y = x² এর লেখ থেকে $y = -2x^{2} + 4x - 5 = -2(x^{2} - 2x + 1) - 3$ = -2(x -1)² -3 এর লেখ অঙ্কন করা যায়।

প্রয়োজনীয় উপকরণ : (i) পেন্সিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) পেন্সিল কম্পাস (vii) সায়েন্টিফিক ক্যালকুলেটর ইত্যাদি।

কাৰ্যপদ্ধতি ঃ

1. একটি ছক কাগজে স্থানাজ্জের অক্ষ রেখা X'OX ও YOY' आँकि ।

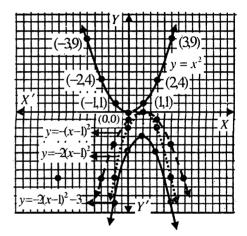
2. নিচের তালিকায় x এর ভিন্ন ভিন্ন মানের জন্য y = x² এর প্রতিরপী মান নির্ণয় করি ঃ

x	0	± 1	±2	± 3
f (<i>x</i>)	0	1	4	9

3. x - অক্ষ বরাবর ক্ষুদ্রতম বগের 2 বাহ = 1 একক ও y - অক্ষ বরাবর ক্ষুদ্রতম বগের 1 বাহ = 1 একক

ধরে তালিকাভুক্ত বিন্দুগুলি ছক কাগজে স্থাপন করি এবং সর পেন্সিল দিয়ে স্থাপিত কিন্দুগুলি মুক্ত হস্তে বক্রাকারে যোগ করে $y = x^2$ এর লেখ অজ্ঞন করি ।

4. x অক্ষের সাপেক্ষে $y = x^2$ এর প্রতিচ্ছবি $y = -x^2$ এর লেখের প্রতিটি কিন্দুকে 2×1 বা 2 বর্গের বাহর সমান অৰ্থাৎ 1 একক ডানে সরিযে দিযে $y = -(x - 1)^2$ এর লেখ অজ্ঞকন করি । এ লেখকে y অক্ষের দিকে 2 গুণ সংকৃচিত করে $y = -2(x - 1)^2$ এর লেখ অজ্ঞকন করি। সর্বশেষে এ লেখের প্রতিটি কিন্দুকে 3 একক নিচে স্থানান্তরিত করে $y = -2(x - 1)^2 - 3$ এর লেখ অজ্ঞকন করা হলো।



বৈশিষ্ট্য ঃ (i) লেখচিত্র দুইটি পরাবৃত্ত। $y = x^2$ এর শীর্ষকিদ্র (0, 0), এবং $y = -2(x - 1)^2 - 3$ এর শীর্ষবিন্দু (1, -3) ।

(ii) $y = x^2$ এর লেখ y অক্ষের সাপেক্ষে, $y = y = -2(x - 1)^2 - 3$ এর লেখ x = 1 রেখার সাপেক্ষে সাপেক্ষে প্রতিসম।

3. একই লেখচিত্রে y = 2x + 5 ফাংশনের ও তার বিপরীত ফাংশনের লৈখচিত্র অজ্ঞকন কর।

পরীক্ষণের নাম : একই লেখচিত্র f(x) = y = 2x + 5ফাংশনের ও তার বিপরীত ফাংশন $f^{-1}(x) = \frac{x-3}{2}$ এর লেখচিত্র অজ্ঞকন

526

মূলতন্ত্র : f(x) = 2x + 5 লেখের উপরস্থ কিন্দুগুলির ভুজ ও কোটির স্থান বিনিময় করে $f^{-1}(x) = \frac{x-5}{2}$ এর লেখচিত্র অঙ্জন করা যায় অথবা y = x রেখার সাপেক্ষে f(x) = 2x + 5 এন প্রতিচ্ছবি অঙ্জন করে $f^{-1}_{-1}(x) = \frac{x-5}{2}$ এর লেখ পাওয়া যায়।

প্রয়োজনীয় উপকরণ ঃ (i) পেন্সিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) পেন্সিল কস্পাস (vii) সায়েন্টিফিক ক্যালকুলেটর ইত্যাদি।

কাৰ্যপন্ধতি ঃ

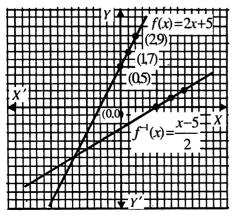
 একটি ছক কাগজে স্থানাজ্ঞের অক্ষ রেখা X'OX ও YOY' আঁকি।

 নিচের তালিকায় x এর তিন্ন তিন্ন মানের জন্য y = 2x + 5 এর প্রতিরূপী মান নির্ণয় করি ঃ

x	0	ł	2
у	5	7	9

 x - অক্ষ ও y - অক্ষ বরাবর ক্ষুদ্রতম বর্গের 1 বাহু
 1 একক ধরে তালিকাভুক্ত বিন্দুগুলি ছক কাগজে স্থাপন করি এবং সরু পেন্সিল দিয়ে স্থাপিত বিন্দুগুলি মুক্ত হস্তে বক্রাকারে যোগ করে y = 2x + 5 এর লেখ অজ্ঞকন করি ।
 একই স্কেলে (5, 0), (7, 1), (9, 2) বিন্দুগুলি ছক কাগজে স্থাপন করি এবং সরু পেন্সিল দিয়ে স্থাপিত বিন্দুগুলি মুক্ত হস্তে বক্রাকারে যোগ করে

$$f^{-1}(x) \!=\! rac{x-5}{2}$$
 এর লেখ অজ্ঞন করি 👘



 y = 5^x সূচক ফাংশনটির লেখ অজ্ঞকন করে লেখের বৈশিষ্ট্য নির্ণায় কর।

পরীক্ষণের নাম ঃ y = 5^x ফাংশনটির লেখ অজ্ঞকন করে লেখের বৈশিষ্ট নির্ণয় ।

মূলতত্ত্ব ঃ x এর যেকোন বাস্তব মানের জন্য f (x) = 5^x ফাংশনটির লেখচিত্র অজ্ঞকন করতে হবে এবং লেখের বৈশিষ্ট নির্ণয় করতে হবে।

প্রয়োজনীয় উপকরণ ঃ (i) পেন্সিল (ii) ফেকল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) পেন্সিল কম্পাস (vii) সায়েন্টিফিক ক্যালকুলেটর ইত্যাদি।

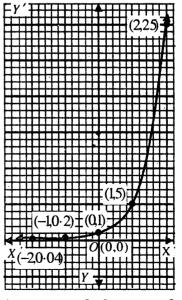
কাৰ্যপন্ধতি ঃ

 একটি ছক কাগজে স্থানাব্রুের অক্ষ রেখা X'OX ও YOY' আঁকি ।

 নিচের তালিকায় x এর ভিন্ন ভিন্ন মানের জন্য y = 5^x এর প্রতিরূপী মান নির্ণয় করি ঃ

x	-2	-1	0	1	2
У	0.04	0.2	1	5	25

3. x - অক্ষ ও y - অক্ষ বরাবর ক্ষুদ্রতম বগের l বাহু = l একক ধরে তালিকাভুক্ত কিন্দুগুলি ছক কাগজে স্থাপন করি এবং সরু পেন্সিল দিয়ে স্থাপিত কিন্দুগুলি মুক্ত হস্তে বক্তাকারে যোগ করে f (x) = 5^x এর লেখ অজ্ঞকন করি।



বৈশিষ্ট্য ঃ (1) লেখচিত্রটি x অক্ষের নিচে আসবে না (2) x অক্ষটি লেখটির একটি অসীমতট রেখা।

(4) (v)	 (3) লেখচিত্রটি y অক্ষকে (0, 1) কিন্দুতে ছেদ করে। (4) x অক্ষ বা y অক্ষের সাপেক্ষে লেখচিত্রটি প্রতিসম নয়। (v) লেখচিত্রটি x অক্ষের ধনাত্মক দিকে বিদ্যমান। 5. y = log₁₀ x লগারিদমিক ফাংশনটির লেখ অভ্জকন 					
করে পরীশ লেখ মৃ লত অসং জন্য লেখে	অঙ্জন করি বৈশিষ্ট্য ঃ প্রতিসম নয় (ii) লেখচি বিস্তৃত। (iii) লেখা (iv) y অ (v) লেখা 6. y = অঙ্জন করে					
পেপা (vii কার্যণ 1. YO 2.	প্রয়োজনীয় উপকরণ ঃ (i) পেঙ্গিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) পেঙ্গিল কস্পাস (vii) সায়েন্টিফিক ক্যালকুলেটর ইত্যাদি। কার্যপদ্ধতি ঃ 1. একটি ছক কাগজে স্থানাংকের অক্ষ রেখা X'OX ও YOY' আঁকি । 2. নিচের তালিকায় x এর ভিন্ন ভিন্ন মানের জন্য f (x) = log ₁₀ x এর প্রতিরূপী মান নির্ণয় করি ঃ					
	$\frac{x}{\log_{10} x}$	0.1 -1 1	0.3 -0·5 1·5	0.5 -0.3 2	0·7 -0.15 2.5	পেপার (iv ক্যালকুলেটর 1. একটি YOY' অঁ
	log ₁₀ x		0.7,-0·15) ,-0·3) <u>∓</u>	0.3	**	2. $fractors rac{1}{9} rac{1}{9} y = 1x -1y \pm 1x -5y \pm 63. x - 33 - 3y = 10^{\circ} d$
					111	স্থাপন করি

```
3. x - অক্ষ ও y - অক্ষ বরাবর ক্ষুদ্রতম বর্গের 10
বাহু = 1 একক ধরে তালিকাভুক্ত কিন্দুগুলি ছক কাগজে
স্থাপন করি এবং সরু পেন্সিল দিয়ে স্থাপিত কিন্দুগুলি মুক্ত
হস্তে বক্রাকারে যোগ করে y = log<sub>10</sub> x এর লেখ
অজ্ঞকন করি।
```

বৈশিষ্ট্য ঃ (i) লেখচিত্রটি x অক্ষ বা y অক্ষের সাপেক্ষে প্রতিসম নয়।

(ii) লেখচিত্রটি ১ম চতুর্ভাগ ও ৪র্থ চতুর্ভাগে অসীম পর্যন্ত বিস্তৃত।

(iii) লেখচিত্রটি x অক্ষকে (1,0) কিন্দুতে ছেদ করে।

(iv) y অক্ষ লেখটির একটি অসীমতট রেখা।

(v) লেখচিত্রটি y অক্ষের ধনাত্রক দিকে বিদ্যমান।

6. y = cos⁻¹ x ত্রিকোণমিতিক ফাংশনটির লেখ অজ্জন করে লেখের বৈশিষ্ট্য নির্ণয় ।

পরীক্ষণের নাম $x = \cos^{-1} x$ এর লেখচিত্র অঙ্কন করে লেখের বৈশিষ্ট্য নির্ণয়, যখন $-1 \le x \le 1$.

মূলতত্ত্ব: x∈[–1,1] এর বিভিন্ন বাস্তব মানের জন্য y = cos⁻¹ x এর লেখচিত্র অঙ্কন করতে হবে এবং লেখের বৈশিষ্ট্য নির্ণয় করতে হবে।

প্রয়োজনীয় উপকরণ ঃ (i) পেন্সিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) সায়েন্টিফিক ক্যালকুলেটর ইত্যাদি।

 একটি ছক কাগজে স্থানাজ্ঞের অক্ষ রেখা X'OX ও YOY' আঁকি।

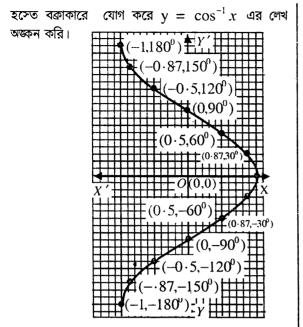
2.	নিচের তালিকায় x∈ [−1,1] এর ভিন্ন ভিন্ন মানের
জন্য	y = cos ⁻¹ x এর প্রতিরূপী মান নির্ণয় করি ঃ

x	-1	-0.87	-0.2	0
У	± 180°	± 150°	± 120°	± 90°
x	0.5	0.87	1	
У	± 60°	± 30°	90°	

3. x - অক্ষ বরাবর ক্ষুদ্রতম বর্গের 10 বাহু = 1 একক ও y অক্ষ বরাবর ক্ষুদ্রতম বর্গের 1 বাহু = 10° একক ধরে তালিকাভুক্ত বিন্দুগুলি ছক কাগজে ম্থাপন করি এবং সরু পেন্সিল দিয়ে স্থাপিত বিন্দুগুলি মুক্ত

৩১৭

উচ্চতর গণিত<u>্র ২১</u>মু প্রত্রের সমাধান



বৈশিষ্ট্য ঃ (i) লেখচিত্রটি অবিচ্ছিন্ন। (ii) লেখচিত্রটি ঢেউয়ের আকৃতি। (iii) লেখচিত্রটি মূলবিন্দুগামী নয়। 7. y = | 2x – 1| পরমমান ফাংশনটির লেখ অঙ্কন

করে লেখের বৈশিষ্ট্য নির্ণয় । পরীক্ষণের নাম ঃ y = |x| পরমমান ফাংশনটির লেখ অজ্জন করে লেখের বৈশিষ্ট নির্ণয় ।

মূ**লতন্ত্র ঃ** *y* = | 2x – 1 | সমীকরণে *x* এর সকল বাস্তব মানের জন্য y এর মান অঞ্চণাত্রক।

$$|2x-1| = \begin{cases} 2x-1, & \mbox{vit} = 2x-1 \ge 0\\ -(2x-1)x, & \mbox{vit} = 2x-1 < 0 \end{cases}$$

প্রয়োজনীয় উপকরণ ঃ (i) পেসিল (ii) তেকল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) সায়েন্টিফিক ক্যালকুলেটর ইত্যাদি।

কাৰ্যপন্ধতি ঃ

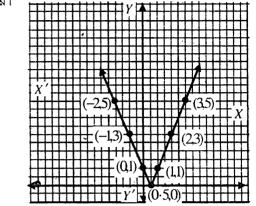
 একটি ছক কাগজে স্থান, এক্ষ রেখা X'ON ও YOY' আঁকি।

2. নিচের তালিকায় x এর তিন তিন মানের জন্য y = | 2x-1 | এর প্রতিরপী মান কিরি করি ঃ

$\int x$	0	-2	-1	1	2	3	0.5
y	1	5	3	1	3	5	0

3. x - অক্ষ ও y - অক্ষ বরাবর ক্ষুদ্রতম বর্গের 2 বাহু
 - 1 একক ধরে তালিকাভুক্ত বিন্দুগুলি ছক কাগজে স্থাপন

করি এবং সরু পেন্সিলের সাহায্যে স্থাপিত কিন্দুগুলি মুক্ত হস্তে বক্রাকারে যোগ করে y = | x | এর লেখ অজ্ঞকন করি।



বৈশিষ্ট্য ঃ (i) লেখচিত্রটি x = $\frac{1}{2}$ রেখার সাপেক্ষে প্রতিসম । (ii) লেখচিত্রটি ১ম চতুর্ভাগ ও ২য় চতুর্ভাগে অসীম পর্যন্ত বিস্তৃত। (iii) লেখচিত্রটি মূলকিন্দুতে ছেদ করে না। (iv) লেখচিত্রটি y অক্ষের ধনাত্মক দিকে বিদ্যমান।

অতিরিক্ত প্রশ্ন (সমাধানসহ)

1(a) $4f(x) + 2x f(\frac{1}{x}) = 10x + 17$ হলে, f(x)এর মান নির্ণয় কর।

সমাধান ঃ দেওয়া আছে,

4 f(x) + 2x f(
$$\frac{1}{x}$$
) = 10x + 17 (i)

x কে $\frac{1}{x}$ দ্বারা প্রতিস্থাপন করে পাই,

$$4 f(\frac{1}{x}) + 2\frac{1}{x} f(x) = 10\frac{1}{x} + 17$$

$$\Rightarrow 4 x f(\frac{1}{x}) + 2 f(x) = 10 + 17x$$

$$\Rightarrow 2 f(x) + 4 x f(\frac{1}{x}) = 17x + 10 \cdots$$
 (ii)

(i) × 2 - (ii) ⇒
(8 - 2)
$$f(x) = (20 - 17)x + 34 - 10$$

⇒ 6 $f(x) = 3x + 24$
 $f(x) = \frac{1}{2}x + 4$ (Ans.)

প্রশ্নমালা <u>V</u>III

1(b) 2f (x) + 3 f (-x) = $x^2 - x + 1$ হল, f(x) এর মান নির্ণয় কর। সমাধান ঃ দেওয়া আছে. $2 f(x) + 3 f(-x) = x^2 - x + 1$ ··· (i) x (-x) দ্বারা প্রতিস্থাপন করে পাই. $2 f(-x) + 3 f(x) = (-x)^2 - (-x) + 1$ \Rightarrow 3 f(x) + 2 f(-x) = x² + x + 1 ··· (ii) $(ii) \times 3 - (i) \times 2 \Rightarrow$ $(9-4) f(x) = (3-2) x^{2} + (3+2) x + 3 - 2$ \Rightarrow 5 f(x) = x² + 5 x + 1 $f(x) = \frac{1}{5}(x^2 + 5x + 1)$ ভর্তি পরীক্ষার MCO ঃ 1. $f(x) = \frac{1-x}{1-x}$ হলে $f(\cos\theta)$ এর মান নির্ণয় [RU 07-08; JU 09-10] কর। **Sol**ⁿ.: $f(\cos\theta) = \frac{1-\cos\theta}{1+\cos\theta} = \frac{2\sin^2\frac{\theta}{2}}{2\cos^2\frac{\theta}{2}}$ $= \tan^2 \frac{\theta}{2}$ 2. $f(x) = \frac{x}{1+x}$ হল f(2/3) + f(3/2) সমান-[DU 04-05] **Sol**ⁿ.: $f(2/3) + f(3/2) = \frac{2}{3} \times \frac{3}{5} + \frac{3}{2} \times \frac{2}{5} = 1$ 3. $f(a) = \ln(a)$ হলে $f(\frac{1}{a}) =$ কত ? [KUET 05-06; JU 09-10] **Sol**ⁿ.: $f(\frac{1}{a}) = \ln(\frac{1}{a}) = \ln(a^{-1}) = -\ln(a)$ 4. $g(\theta) = \frac{1 - \tan \theta}{1 + \tan \theta}$ হলে $g(\frac{\pi}{4} - \theta) = ?$ **[KUET 08-09] Sol**ⁿ.: $g(\theta) = \frac{1 - \tan \theta}{1 + \tan \theta} = \tan \left(\frac{\pi}{4} - \Theta\right)$ $g(\frac{\pi}{4}-\theta) = \tan \left\{\frac{\pi}{4}-(\frac{\pi}{4}-\theta)\right\} = \tan \theta$

 $f(x) = x^2 + 4$ এবং g(x) = 2x - 1 হল 5. (gof)(x) = ? [DU 07-08, 05-06; Jt.U 05-06; JU, CU 09-10] **Sol**^{*n*}.: $(gof)(x) = g(x^{2} + 4)$ $= 2(x^{2}+4)-1 = 2x^{2}+7$ 6. $f(x) = \sin x$, $g(x) = x^2$ হলে $f(g(\frac{\sqrt{\pi}}{2})) = ?$ [DU 09-10] **Sol**".: $f(g(\frac{\sqrt{\pi}}{2})) = f(\frac{\pi}{4}) = \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$ 7. $f(x) = 3x^3 + 2$, $g(x) = \sqrt[3]{\frac{x-2}{2}}$ হল (fog)(5) এর মান হবে-[BUET 08-09] **Sol**ⁿ.: (fog)(5)=f($\sqrt[3]{\frac{5-2}{2}}$)=f(1)=3.1³+2 8. $f(x) = x^2 + 3$ even f(f(-3)) = ?[KUET 07-08] **Sol**^{*n*}.: $f(f(-3)) = f((-3)^2 + 3) = f(12)$ $=12^{2} + 3 = 147$ 9. f(x) = x³ + 5 এর বিপরীত ফাম্পন [.IU 09-10] **Sol**ⁿ.: $f(f^{-1}(x)) = \{f^{-1}(x)\}^3 + 5$ \Rightarrow x ={ f⁻¹(x) }³ + 5 \Rightarrow f⁻¹(x) = $\sqrt[3]{x-5}$ 10. একটি ফাংশন f : $\mathbb{R} \rightarrow \mathbb{R}$, f(x) = 2x + 1 ঘারা সংজ্ঞায়িত করা হলে f⁻¹(2) এর মান হবে-[BUET 06-07; JU, RU 09-10] **Sol**".: $f^{-1}(x) = \frac{x-1}{2}$: $f^{-1}(2) = \frac{2-1}{2} = \frac{1}{2}$ 11. যদি $f(x): \mathbb{R} \to \mathbb{R}$ এবং $f(x) = x^2$ হয় তবে $f^{-1}(4) =$ কত? [CU 04-05; JU, Jt.U, RU 09-10] **Sol**": $x^2 = 4 \Rightarrow x = \pm 2$ $f^{-1}(4) = \{-2, 2\}$ 12. $f(x) = \frac{5x+3}{4x-5}$ दरल $f^{-1}(x) = ?$ [DU10-11] **Sol**ⁿ: $f^{-1}(x) = \frac{5x+3}{4x+5}$ [সূত্র ব্যবহার করে।]

13. একটি ফাংশন f: $\mathbb{R} \to \mathbb{R}$, f(x) = $\frac{x-2}{x-2}$ দারা সংজ্ঞায়িত করা হলে f⁻¹(0) সমান- [BUET 08-09] **Sol**ⁿ.: $f^{-1}(x) = \frac{+3x-2}{x-1}$ $f^{-1}(0) = 2$ 14. $f(x) = \frac{x-3}{2x+1}$ धर् $x \neq -\frac{1}{2}$ रल f⁻¹(-2) এর মান-[DU,RU 08-09] **Sol**ⁿ.: $f^{-1}(x) = \frac{-x-3}{2x-1}$ $f^{-1}(-2) = \frac{-(-2)-3}{2(-2)-1} = \frac{2-3}{-4-1} = \frac{1}{5}$ 15. $f(x) = \frac{2x-1}{x-2}$ ফাংশনের ডোমেন , রেঞ্জ এবং বিপরীত ফাংশন নির্ণয় কর।[IU, SU 07-08; CU 05-06, 08-09; JU 09-10] Sol^{n} .: ডোমেন = $\mathbb{R} - \{2, case = \mathbb{R} - \{\frac{2}{1}\} = \mathbb{R} - \{2\}$ $a \ll f^{-1}(x) = \frac{-2x-1}{x-(-2)} = \frac{-2x-1}{x+2}$ $16.\log(5x^2-7)$ ফাংশনের ডোমেন হবে-[CU 07-08] Sol".: $5x^2 - 7 > 0 \Rightarrow x^2 - \frac{7}{5} > 0$ $\Rightarrow (x - \sqrt{7/5})(x + \sqrt{7/5}) > 0$ ডোমেন={ $x \in \mathbb{R}$: $x > \sqrt{7/5}$ অথবা $x < -\sqrt{7/5}$ } 17. $f(x) = \frac{x}{|x|}$ ফাংশনের ডোমেন ও বিস্তার হবে– [CU 04-05, 06,07] Sol^{n} .: (ডামেন $f = \mathbb{R} - \{0\} = (-\infty, \infty) - \{0\}$ বিস্তার f = { - 1, 1} 18. $f(x) = \sqrt{\frac{1-x}{x}}$ ফাংশনটির ডোমেন কত ? [SU 05-06] A. (0,1) B. [0,1) C. (0,1] **D.** [0,1] **Sol**ⁿ: $f(x) \in \mathbb{R}$ iff $(1-x)x \ge 0$ but $x \ne 0$ \Rightarrow (x - 0)(x - 1) \leq 0 but x \neq 0 \Rightarrow 0<x \leq 1

19. $f(x) = x^2 - 1$ দ্বারা সংজ্ঞায়িত ফাংশন f এর ডোমেন [-1,1] হলে রেঞ্জ কত ? [IU 04-05] **Sol**ⁿ: $f(0) = 0^2 - 1 = -1$: या x∈ [-1,1] এর জন্য f (x) এর ক্ষুদ্রতম মান। f(±1) = (±1)² −1 = 0; যা x∈[−1,1] এর জন্য f (x) এর বৃহত্তম মান। f এর রেঞ্জ = [-1,0] $20. f(x) = \sqrt{x} + 1$ হলে এর ডোমেন এবং রেঞ্জ কত? [CU '03-04] Sol".: এখানে ডোমেন হল সকল অঞ্চণাত্মক সংখ্যার সেট অর্থাৎ $[0,\infty)$ + $f(0) = \sqrt{0} + 1 = 1$; য $x \in [0, \infty)$ এর জন্য f (x) এর ক্ষদ্রতম মান। রেঞ্জ f = [1, ∞) 21. $f(x) = \sqrt{1 - x^2}$ ফাংশনের ডোমেন কত ? [CU 03-04, 08-09] Sol^n : $1 - x^2 \ge 0 \Longrightarrow x^2 - 1 \le 0$ \Rightarrow $(x-1)(x+1) \le 0 \Rightarrow -1 \le x \le 1$ ডোমেন f = { $x \in \mathbb{R} : -1 \le x \le 1$ } 22. $f(x) = \sqrt{x-2}$ এবং $g(x) = x^2 + 1$ হয [−] ੰ)g এর ডোমেন হবে– [BUET 10 -11] **Sou** :: $fog = f(g(x) = f(x^2 + 1))$ $=\sqrt{x^{2}+1-2}=\sqrt{x^{2}-1}=\sqrt{(x-1)(x+1)}$ For Dom, $(x-1)(x+1) \ge 0 \Longrightarrow x \le -1$ or, $x \ge 1$ $Dom (fog) = (-\infty, -1) \cup (1, \infty)$ ফাংশনে ক্যালকুলেটরের ব্যবহার ৪ $f(x) = \frac{x}{1+x}$ হলে f(2/5) ÷ f(5/2) সমান-ALPHA SOLVE= calc Screen এ দেখাবে x? Press 2 ab/c 5 🚍 মান আসে 2 / 7 Again, press 📕 Screen এ দেখাবে x? Press 5 ab/c 2 = মান আসে 5 / 7 Press 2 / 7 😤 5 /7 = Screen এ আলে 2/5. Ans. 2/5.

🖅 সীমাগুলির মান নির্ণয় কর 🗴 $\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 5x + 6}$ ম্মাধান 8 ধরি x = 2 + h, $\therefore h \rightarrow 0$, যখন $x \rightarrow 2$ $\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 5x + 6}$ $= \lim_{h \to 0} \frac{(2+h)^2 - 4}{(2+h)^2 - 5(2+h) + 6}$ = $\lim_{k \to 0} \frac{4+4h+h^2-4}{k^2-4}$ $h \to 0$ $\overline{4 + 4h + h^2 - 10 - 5h + 6}$ $= \lim_{h \to 0} \frac{h(h+4)}{h(h-1)} = \lim_{h \to 0} \frac{h+4}{h-1}$ $= \frac{0+4}{0-1} = -4$ (Ans.) বিকল্প পদ্ধতি ঃ $\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 5x + 6}$ $= \lim_{x \to 2} \frac{(x-2)(x+2)}{(x-2)(x-3)} = \lim_{x \to 2} \frac{x+2}{x-3}$ $= \lim_{x \to 2^+} \frac{x+2}{x-3} = \frac{2+2}{2-3} = -4 \text{ (Ans.)}$ 1(b) $\lim_{x \to 0} \frac{(x+4)^3 - (x-8)^2}{x(x-3)}$ $= \lim_{x \to 0} \frac{x^3 + 12x^2 + 48x + 64 - x^2 + 16x - 64}{x(x - 3)}$ $= \lim_{x \to 0} \frac{x^3 + 12x^2 + 48x + 64 - x^2 + 16x - 64}{x(x-3)}$ $= \lim_{x \to 0} \frac{x^3 + 11x^2 + 64x}{x(x-3)}$ $= \lim_{x \to 0} \frac{x(x^2 + 11x + 64)}{x(x - 3)}$ $= \lim_{x \to 0} \frac{x^2 + 11x + 64}{x - 3} = \frac{0^2 + 11.0 + 64}{0 - 3}$ $= \frac{64}{-3} = -21\frac{1}{3}$ (Ans.)

$$2(a) \lim_{x \to 0} \frac{\sqrt{1+3x} - \sqrt{1-4x}}{x} \quad [fit.'ow]$$

$$= \lim_{x \to 0} \frac{(\sqrt{1+3x} - \sqrt{1-4x})(\sqrt{1+3x} + \sqrt{1-4x})}{x(\sqrt{1+3x} + \sqrt{1-4x})}$$

$$= \lim_{x \to 0} \frac{(\sqrt{1+3x})^2 - (\sqrt{1-4x})^2}{x(\sqrt{1+3x} + \sqrt{1-4x})}$$

$$= \lim_{x \to 0} \frac{1+3x - 1 + 4x}{x(\sqrt{1+3x} + \sqrt{1-4x})}$$

$$= \lim_{x \to 0} \frac{7x}{x(\sqrt{1+3x} + \sqrt{1-4x})}$$

$$= \lim_{x \to 0} \frac{7}{\sqrt{1+3x} + \sqrt{1-4x}}$$

$$= \frac{7}{\sqrt{1+3.0} + \sqrt{1-4.0}} = \frac{7}{1+1} = \frac{7}{2}$$

$$2(b) \lim_{x \to 0} \frac{\sqrt{1+2x} - \sqrt{1-3x}}{x(\sqrt{1+2x} + \sqrt{1-3x})} [\overline{4}.'ob,'5w]$$

$$= \lim_{x \to 0} \frac{(\sqrt{1+2x})^2 - (\sqrt{1-3x})^2}{x(\sqrt{1+2x} + \sqrt{1-3x})}$$

$$= \lim_{x \to 0} \frac{(\sqrt{1+2x})^2 - (\sqrt{1-3x})^2}{x(\sqrt{1+2x} + \sqrt{1-3x})}$$

$$= \lim_{x \to 0} \frac{(\sqrt{1+2x} - 1 + 3x)}{x(\sqrt{1+2x} + \sqrt{1-3x})}$$

$$= \lim_{x \to 0} \frac{5x}{x(\sqrt{1+2x} + \sqrt{1-3x})}$$

$$= \lim_{x \to 0} \frac{5}{\sqrt{1+2x} + \sqrt{1-3x}}$$

প্রশ্নমালা IX A

$$= \lim_{x \to 0} \left\{ \frac{\sqrt{1+x^2} - \sqrt{1+x}}{\sqrt{1+x^3} - \sqrt{1+x}} \times \frac{\sqrt{1+x^2} + \sqrt{1+x}}{\sqrt{1+x^2} + \sqrt{1+x}} \right. \\ \left. \times \frac{\sqrt{1+x^3} + \sqrt{1+x}}{\sqrt{1+x^3} + \sqrt{1+x}} \right\}$$

$$= \lim_{x \to 0} \frac{(1+x^2 - 1 - x)(\sqrt{1+x^3} + \sqrt{1+x})}{(1+x^3 - 1 - x)(\sqrt{1+x^2} + \sqrt{1+x})}$$

$$= \lim_{x \to 0} \frac{x(x-1)(\sqrt{1+x^3} + \sqrt{1+x})}{x(x^2 - 1)(\sqrt{1+x^2} + \sqrt{1+x})}$$

$$= \lim_{x \to 0} \frac{(x-1)(\sqrt{1+x^3} + \sqrt{1+x})}{(x^2 - 1)(\sqrt{1+x^2} + \sqrt{1+x})}$$

$$= \frac{(0-1)(\sqrt{1+0^3} + \sqrt{1+0})}{(0^2 - 1)(\sqrt{1+0^2} + \sqrt{1+0})} = \frac{2}{2} = 1$$
3(a)
$$\lim_{x \to \infty} \frac{2x^4 - 3x^2 + 1}{6x^4 + x^3 - 3x}$$

$$= \lim_{x \to \infty} \frac{x^4(2 - \frac{3}{x^2} + \frac{1}{x^4})}{x^4(6 + \frac{1}{x} - \frac{3}{x^3})}$$

$$= \lim_{x \to \infty} \frac{2 - \frac{3}{x^2} + \frac{1}{x^4}}{6 + \frac{1}{x} - \frac{3}{x^3}} \quad [5.co]$$

$$= \lim_{x \to \infty} \frac{3^x(1 - \frac{1}{3^{2x}})}{3^x(1 + \frac{1}{3^{2x}})} = \lim_{x \to \infty} \frac{1 - \frac{1}{3^{2x}}}{1 + \frac{1}{3^{2x}}}$$

$$= \frac{1 - 0}{1 + 0} = \frac{1 - 0}{1 + 0} = 1$$
3(c)
$$\lim_{x \to \infty} 1 + \frac{1}{2x}$$

$$= \lim_{x \to \infty} \ln \frac{2x-1}{x+5} = \lim_{x \to \infty} \ln \frac{x(2-\frac{1}{x})}{x(1+\frac{5}{x})}$$

$$= \lim_{x \to \infty} \ln \frac{2-\frac{1}{x}}{1+\frac{5}{x}} = \ln \frac{2-0}{1+0}$$

$$= \ln 2 \text{ (Ans.)}$$
3.(d) $\lim_{x \to \infty} 2^x \sin \frac{b}{2^x}$ [74.'od]
 $\forall fa, \frac{b}{2^x} = 0. \ d\forall fcff \ x \to \infty \ \forall cfff \ 2^x \to \infty$
 $\theta = \frac{b}{2^x} \to 0$
 $\lim_{x \to \infty} 2^x \sin \frac{b}{2^x} = \lim_{\theta \to 0} \frac{b}{\theta} \sin \theta$
 $= b \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = b \cdot 1 = b$
4.(a) $\lim_{x \to a} \frac{x^{7/2} - a^{7/2}}{\sqrt{x} - \sqrt{a}}$ [76.'ov]
 $= \frac{\lim_{x \to a} (x^{7/2} - a^{7/2})}{\lim_{x \to a} (x^{1/2} - a^{1/2})} = \frac{\lim_{x \to a} \frac{x^{7/2} - a^{7/2}}{x - a}}{\lim_{x \to a} \frac{x^{1/2} - a^{1/2}}{x - a}}$
 $= \frac{\frac{7}{2} a^{\frac{7}{2}-1}}{\frac{1}{2} a^{\frac{1}{2}-1}}$ [$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$]
 $= (\frac{7}{2} \times \frac{2}{1}) a^{\frac{7}{2} - 1 - \frac{1}{2} + 1} = 7 a^{\frac{7}{2} - \frac{1}{2}} = 7 a^3 \text{ (Ans.)}$
4(b) $\lim_{x \to a} \frac{x^{5/2} - a^{5/2}}{\lim_{x \to a} (x^{3/5} - a^{3/5})} = \frac{\lim_{x \to a} \frac{x^{5/2} - a^{5/2}}{\lim_{x \to a} \frac{x^{3/5} - a^{3/5}}{x - a}}$

$$\begin{aligned} &= \frac{5}{2} \frac{a^{\frac{5}{2}-1}}{3a^{\frac{3}{5}-1}} \qquad [\because \lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}] \\ &= (\frac{5}{2} \times \frac{5}{3}) a^{\frac{5}{2}-1-\frac{3}{5}+1} = \frac{25}{6} a^{\frac{5}{2}-\frac{3}{5}} \\ &= \frac{25}{6} a^{\frac{25-6}{10}} = \frac{25}{6} a^{\frac{19}{10}} \text{ (Ans.)} \\ &= \lim_{x \to 0} \frac{1 - \cos 3x}{3x^2} \qquad [\texttt{A.S.A.bc}] \\ &= \lim_{x \to 0} \frac{2\sin^2 \frac{3x}{2}}{3x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{3x}{2}}{\frac{9x^2}{4} \cdot \frac{4}{3}} \\ &= \frac{2.3 \lim_{x \to 0} \left\{ \frac{\sin(3x/2)}{3x/2} \right\}^2 = \frac{3}{2} \cdot 1 = \frac{3}{2} \\ &\text{5.(b)} \lim_{x \to 0} \frac{1 - \cos 7x}{3x^2} \left[\text{Fr. 'or, '54; \notherwises, '55; \end{tabular} \right] \\ &= \lim_{x \to 0} \frac{2\sin^2 \frac{7x}{2}}{3\cdot \frac{49x^2}{4} \cdot \frac{4}{39}} \\ &= \left(\frac{2}{3} \times \frac{49}{4}\right) \lim_{x \to 0} \left\{ \frac{\sin(7x/2)}{7x/2} \right\}^2 \end{aligned}$$

$$= \frac{49}{6} \cdot 1 = \frac{49}{6} (Ans.)$$

6. (a) $\lim_{x \to 0} \frac{\cos 2x - \cos 3x}{x^2}$

=

=

$$\begin{bmatrix} \overline{\textbf{q.'os}}, \overline{\textbf{ml.'od}} & \overline{\textbf{Pl.'os}} \end{bmatrix}$$

$$\lim_{x \to 0} \frac{2\sin\frac{1}{2}(2x+3x)\sin\frac{1}{2}(3x-2x)}{x^2}$$

$$\lim_{x \to 0} \frac{2\sin\frac{5x}{2}\sin\frac{x}{2}}{x^2}$$

$$= 2 \lim_{x \to 0} \frac{\sin \frac{5x}{2}}{\frac{5x}{2}} \times \lim_{x \to 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}} \times \frac{5}{2} \times \frac{1}{2}$$

$$= 2 \times 1 \times \frac{5}{4} = \frac{5}{2} (Ans.)$$
6(b) $\lim_{x \to 0} \frac{\cos 2x - \cos 4x}{x^2}$ [4, 'ov]
$$= \lim_{x \to 0} \frac{2 \sin \frac{1}{2} (2x + 4x) \sin \frac{1}{2} (4x - 2x)}{x^2}$$

$$= \lim_{x \to 0} \frac{2 \sin 3x \sin x}{x^2}$$

$$= 2.\lim_{x \to 0} \frac{\sin 3x}{3x} \times \lim_{x \to 0} \frac{\sin x}{x} \times 3$$

$$= 2 \times 1 \times 1 \times 3 = 6 (Ans.)$$
6. (c) $\lim_{x \to 0} \frac{\cos ax - \cos bx}{x^2}$ [4'.'sv]
$$= \lim_{x \to 0} \frac{2 \sin \frac{1}{2} (ax + bx) \sin \frac{1}{2} (bx - ax)}{x^2}$$

$$= 2 \lim_{x \to 0} \frac{\sin \frac{(a + b)x}{2}}{(a + b)x} \times \frac{a + b}{2} \times \frac{\sin \frac{(a + b)x}{2}}{2}$$

$$= 2 \times 1 \times \frac{a + b}{2} \times 1 \times \frac{b - a}{2} = \frac{1}{2} (b^2 - a^2)$$
6(d) $\lim_{x \to 0} \frac{1 - 2\cos x + \cos 2x}{x^2}$
[4.'od; 4.'58]
$$= \lim_{x \to 0} \frac{1 - 2\cos x + 2\cos^2 x - 1}{x^2}$$

 $= \lim_{x \to 0} \frac{2\cos x(-2\sin^2 \frac{x}{2})}{x^2}$ $= -4\lim_{x \to 0} \left\{ \frac{\sin(x/2)}{x/2} \right\} \times \frac{1}{4} \times \lim_{x \to 0} \cos x$ $= -4 \times 1 \times \frac{1}{4} \times \cos 0 = -1 \times 1 = -1$ 6(e) $\lim_{x \to 0} \frac{x(\cos x + \cos 2x)}{\sin x}$ যি. '০৯: রা. '১১: চ. '১৩] $= \lim_{x \to 0} \frac{x}{\sin x} \times \lim_{x \to 0} (\cos x + \cos 2x)$ $= 1 \times (\cos 0 + \cos 0)$ = 1 + 1 = 1 (Ans.) $\lim_{x \to 0} \frac{\tan x - \sin x}{r^3} \quad [\mathfrak{A}.'\circ\mathfrak{d}; \mathfrak{A}.'\mathfrak{d}],$ 7.(a) '১৪; কু.'১০; সি.'০৯; মা.'১৩ $= \lim_{x \to 0} \frac{\tan x(1 - \cos x)}{x^3} = \lim_{x \to 0} \frac{\tan x \cdot 2\sin^2 \frac{x}{2}}{x^3}$ $= 2 \lim_{x \to 0} \frac{\tan x}{x} \times \lim_{x \to 0} \left\{ \frac{\sin(x/2)}{x/2} \right\}^2 \times \frac{1}{4}$ = $2 \times 1 \times 1 \times \frac{1}{4} = \frac{1}{2}$ (Ans.) $\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{r^3}$ [মা.'08,'09] 7(b) $= \lim_{x\to 0} \frac{\tan 2x(1-\cos 2x)}{x^3}$ $= \lim_{x \to 0} \frac{\tan 2x \cdot 2 \sin^2 x}{x^3}$ $= 2 \lim_{x \to 0} \frac{\tan 2x}{2x} \times 2 \times \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^2$ $= 2 \times 1 \times 2 \times 1 = 4$ (Ans.) lim $\frac{\cos ecx - \cot x}{x}$ 7(c) ঢা. '০১] $x \rightarrow 0$

$$= \lim_{x \to 0} \frac{\frac{1}{\sin x} - \frac{\cos x}{\sin x}}{x} = \lim_{x \to 0} \frac{1 - \cos x}{x \sin x}$$

$$= \lim_{x \to 0} \frac{2 \sin^2 \frac{x}{2}}{x \cdot 2 \sin \frac{x}{2} \cos \frac{x}{2}} = \lim_{x \to 0} \frac{\tan \frac{x}{2}}{\frac{x}{2}} \times \frac{1}{2}$$

$$= 1 \times \frac{1}{2} = \frac{1}{2} \text{ (Ans.)}$$
7(d)
$$\lim_{x \to y} \frac{\sin x - \sin y}{x - y} \qquad [\Fi.'ot]$$

$$= \lim_{x \to y} \frac{2 \sin \frac{x - y}{2} \cos \frac{x + y}{2}}{x - y}$$

$$= 2 \cdot \lim_{x \to y} \frac{\sin \frac{x - y}{2}}{\frac{x - y}{2}} \times \frac{1}{2} \times \lim_{x \to y} \cos \frac{x + y}{2}$$

$$= 2 \times 1 \times \frac{1}{2} \cos \frac{y + y}{2} = \cos y \text{ (Ans.)}$$
7(e)
$$\lim_{x \to \alpha} \frac{\sin x - \tan \alpha}{x - \alpha} = \lim_{x \to \alpha} \frac{\sin x}{\cos x} - \frac{\sin \alpha}{\cos \alpha}$$

$$= \lim_{x \to \alpha} \frac{\sin x \cos \alpha - \cos x \sin \alpha}{(x - \alpha) \cos x \cos \alpha}$$

$$= \lim_{x \to \alpha} \frac{\sin (x - \alpha)}{(x - \alpha) \cos x \cos \alpha}$$

$$= \lim_{x \to \alpha} \frac{\sin (x - \alpha)}{(x - \alpha) \cos x \cos \alpha}$$

$$= \lim_{x \to \alpha} \frac{\sin (x - \alpha)}{(x - \alpha) \cos x \cos \alpha}$$

$$= \lim_{x \to 0} \frac{\sin (x - \alpha)}{\sin bx} \qquad [\mbox{in } \frac{\sin \alpha x}{\cos x} \times \frac{1}{\sin \alpha x} \times \alpha}{\lim_{b x \to 0} \frac{\sin b x}{bx} \times b}$$

$$= \frac{1 \times \alpha}{1 \times b} = \frac{\alpha}{b} \text{ (Ans.)}$$

 $\lim 1 - \cos ax$ [5.'05] 8(b) $x \rightarrow 0$ 1 - cos br $\lim_{x \to 0} \frac{2\sin^2 \frac{dx}{2}}{2\sin^2 \frac{bx}{2}}$ $=\frac{\lim_{x\to 0}\left\{\frac{\sin(ax/2)}{ax/2}\right\}^2 \times \frac{a^2}{4}}{\lim_{x\to 0}\left\{\frac{\sin(bx/2)}{bx/2}\right\}^2 \times \frac{b^2}{4}} = \frac{1 \times \frac{a^2}{4}}{1 \times \frac{b^2}{4}} = \frac{a^2}{b^2}$ 8(c) $\lim_{x \to 0} \frac{\cos 7x - \cos 9x}{\cos 3x - \cos 5x}$ [ज. 'oe; क्.'oe] $\lim_{x \to 0} \frac{2\sin\frac{1}{2}(7x+9x)\sin\frac{1}{2}(9x-7x)}{2\sin\frac{1}{2}(3x+5x)\sin\frac{1}{2}(5x-3x)}$ = $\lim_{x \to 0} \frac{\sin 8x \sin x}{\sin 4x \sin x} = \lim_{x \to 0} \frac{2 \sin 4x \cos 4x}{\sin 4x}$ $2 \lim \cos 4x = 2 \cos 0 = 2 \cdot 1 = 2$ = $\lim_{x \to 0} \frac{\sin 7x - \sin x}{\sin 6x} [5., মা. '00; দি. '32]$ 8(d) $\lim_{x \to 0} \frac{2\sin\frac{1}{2}(7x-x)\cos\frac{1}{2}(7x+x)}{\sin 6x}$ $\lim_{x \to 0} \frac{2\sin 3x \cos 4x}{2\sin 3x \cos 3x} = \lim_{x \to 0} \frac{\cos 4x}{\cos 3x}$ $= \frac{\cos 0}{\cos 0} = \frac{1}{1} = 1$ (Ans.) 8(e) $x \rightarrow \frac{\pi}{2} \{\sec x (\sec x - \tan x)\}$ [ঢা. '০৭] $= \frac{\lim_{x \to \frac{\pi}{2}} \frac{\pi}{\cos x} (\frac{1}{\cos x} - \frac{\sin x}{\cos x})}{x}$ $= \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos^2 x} = \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{1 - \sin^2 x}$

$= \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(1 - \sin x)(1 + \sin x)}$ $= \lim_{x \to \frac{\pi}{2}} \frac{1}{1 + \sin x} = \frac{1}{1 + \sin \frac{\pi}{2}} = \frac{1}{1 + 1} = \frac{1}{2}$ 8. (f) $\lim_{x \to 0} (\frac{1}{\sin x} - \frac{1}{\tan x})$ [চ. '০৯; ব. '১০; সি.'১৪; প্র.ড.প. '০৪] $= \lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{\cos x}{\sin x} \right) = \lim_{x \to 0} \frac{1 - \cos x}{\sin x}$ $= \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{2\sin \frac{x}{2}\cos \frac{x}{2}} = \lim_{x \to 0} \tan \frac{x}{2}$ $= \tan \frac{0}{2} = \tan 0 = 0$ (Ans.) 8(g) $\lim_{\theta \to 0} \frac{1}{\theta} \left(\frac{1}{\sin \theta} - \frac{1}{\tan \theta} \right)$ [ज.'o\; ता.'v] $= \lim_{\theta \to 0} \frac{1}{\theta} \left(\frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta} \right) = \lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta \sin \theta}$ $= \lim_{\theta \to 0} \frac{2\sin^2 \frac{\theta}{2}}{\theta \cdot 2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} = \lim_{x \to 0} \frac{\tan \frac{\theta}{2}}{\theta}$ $= \lim_{\theta \to 0} \frac{\tan \frac{\theta}{2}}{\frac{\theta}{2}} \times \frac{1}{2} = 1 \times \frac{1}{2} = \frac{1}{2} \text{ (Ans.)}$ 8(h) $\lim_{x \to 0} \frac{1 + \sin x}{\cos x}$ [রা. '০৪] $= \frac{1+\sin 0}{\cos 0} = \frac{1+0}{1} = 1 \text{ (Ans.)}$ 9(a) $\frac{\lim_{x \to 0} \frac{\sin 2x}{2x^2 + x}}{x(2x+1)} = \frac{\lim_{x \to 0} \frac{\sin 2x}{2x} \times 2}{\lim_{x \to 0} (2x+1)}$ [J. 'ox]

 $=\frac{1\times 2}{2\times 0+1}=2$ (Ans.) 9(b) $\lim_{\mathbf{r} \to 0} \frac{\sin x^2}{\mathbf{r}} = \lim_{\mathbf{r} \to 0} \frac{\sin x^2}{\mathbf{r}^2} \times \lim_{x \to 0} x$ $= 1 \times 0 = 0$ (Ans.) 10.(a) $\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos x}$ [য. '08; ব. '0৬; ঢা.'১৩ রা.'১৪] ধরি, $x = \frac{\pi}{2} + h$. $x \to \frac{\pi}{2}$ $h \to 0$ $\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos x} = \lim_{h \to 0} \frac{1 - \sin(\frac{\pi}{2} + h)}{\cos(\frac{\pi}{2} + h)}$ $= \lim_{h \to 0} \frac{1 - \cos h}{-\sin h} = \lim_{h \to 0} \frac{2\sin^2 \frac{h}{2}}{-2\sin \frac{h}{2}\cos \frac{h}{2}}$ $= -\frac{\lim_{h \to 0} \tan \frac{h}{2}}{\ln \frac{h}{2}} = -\tan \frac{0}{2} = -\tan 0 = 0$ 10(b) $\frac{\lim_{x \to \frac{\pi}{2}} (\frac{\pi}{2} - x) \tan x}{x \to \frac{\pi}{2} (\frac{\pi}{2} - x) \tan x}$ [٥٤'.ع] ধরি, $\frac{\pi}{2} - x = h$. $x \to \frac{\pi}{2}$ $h \to 0$ $\lim_{x \to \frac{\pi}{2}} (\frac{\pi}{2} - x) \tan x$ $= \lim_{x \to \frac{\pi}{2}} h \tan\left(\frac{\pi}{2} - h\right) = \lim_{h \to 0} h \cot h$ $= \lim_{h \to 0} \frac{h}{\tan h} = 1$ 10(c) $\frac{\lim_{x \to \frac{\pi}{2}} \frac{\sec x - \tan x}{\frac{\pi}{2} - x}}{\frac{\pi}{2} - x}$ [ব.'০২] $\forall \widehat{la}, \ \frac{\pi}{2} - x = h \ . \ \ x \to \frac{\pi}{2} \qquad h \to 0$

$$\lim_{k \to 0} \frac{\pi}{2} \frac{\sec(x - \tan x)}{\frac{\pi}{2} - x}$$

$$= \lim_{h \to 0} \frac{\sec(\frac{\pi}{2} - h) - \tan(\frac{\pi}{2} - h)}{h}$$

$$= \lim_{h \to 0} \frac{\csc h - \cot h}{h} = \lim_{h \to 0} \frac{\frac{1}{\sin h} - \frac{\cos h}{\sin h}}{h}$$

$$= \lim_{h \to 0} \frac{1 - \cos h}{h \sin h} = \lim_{h \to 0} \frac{2\sin^2 \frac{h}{2}}{h \cdot 2\sin \frac{h}{2}\cos \frac{h}{2}}$$

$$= \lim_{h \to 0} \frac{\tan \frac{h}{2}}{\frac{h}{2}} \times \frac{1}{2} = 1 \times \frac{1}{2} = \frac{1}{2} \text{ (Ans.)}$$

$$10(d) \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(\frac{\pi}{2} - x)^2} \quad [\mathbb{R} \cdot \infty, ::] \oplus :] \oplus \mathbb{R}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(\frac{\pi}{2} - x)^2} \quad [\mathbb{R} \cdot \infty, :] \oplus :] \oplus \mathbb{R}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(\frac{\pi}{2} - x)^2} = \lim_{h \to 0} \frac{1 - \sin(\frac{\pi}{2} - h)}{h^2}$$

$$= \lim_{x \to 0} \frac{1 - \cos h}{h^2} = \lim_{h \to 0} \frac{2\sin^2(h/2)}{h^2}$$

$$= \lim_{h \to 0} \frac{1 - \cos h}{h^2} = \lim_{h \to 0} \frac{2\sin^2(h/2)}{(h/2)^2 \times 4}$$

$$= \frac{1}{2} \lim_{h \to 0} \left\{ \frac{\sin(h/2)}{h/2} \right\}^2 = \frac{1}{2} \times 1 = \frac{1}{2} \text{ (Ans.)}$$

$$11.(a) \lim_{x \to 0} \frac{\sin^{-1} x}{x}$$

$$\approx 0 \quad \Theta \to 0$$

$$\lim_{x \to 0} \frac{\sin^{-1} x}{x} = \lim_{\theta \to 0} \frac{\Theta}{\sin \theta} = 1$$

11(b) $\lim_{x \to 0} \frac{\sin^{-1}(3x)}{4x}$ $4 \operatorname{da}, \sin^{-1}(3x) = \Theta \Longrightarrow \sin \Theta = 3x$ $x \rightarrow 0 \qquad \theta \rightarrow 0$ $\lim_{x \to 0} \frac{\sin^{-1}(3x)}{4x} = \lim_{\theta \to 0} \frac{\theta}{\frac{4}{3}\sin\theta}$ $= \frac{3 \lim_{\theta \to 0} \frac{\theta}{\sin \theta}}{\frac{1}{\sin \theta}} = \frac{3}{4} \times 1 = \frac{3}{4} \text{ (Ans.)}$ 12. (a) $\lim_{x \to 0} \frac{e^{2x} - (1+x)^7}{\ln(1+x)}$ $= \lim_{x \to 0} \frac{\{1 + 2x + \frac{(2x)^2}{2!} \cdots\} - (1 + 7x + 21x^2 + \cdots)}{x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots}$ $= \lim_{x \to 0} \frac{(2-7)x + (2-21)x^2 + \cdots}{x(1-\frac{x}{2}+\frac{x^2}{3}-\cdots)}$ $= \lim_{x \to 0} \frac{-5 - 19x + \dots}{1 - \frac{x}{2} + \frac{x^2}{2} - \dots}$ $= \frac{-5 - 19 \times 0 + 0 + \dots}{1 - \frac{0}{2} + \frac{0^2}{3} - 0 + \dots}$ $= \frac{-5}{1} = -5$ (Ans.) 12(b) $\lim_{x\to 0} \frac{a^x - 1}{x}$ $\lim_{x \to 0} \frac{\{1 + x \ln a + \frac{(x \ln a)^2}{2!} + \dots\} - 1}{\sum_{x \to 0} \frac{1}{x}}$ = $\lim_{x \to 0} \frac{x\{\ln a + \frac{x(\ln a)^2}{2!} + \frac{x^2(\ln a)^3}{3!} + \cdots\}}{x^2(\ln a)^3}$ = $\lim_{x \to 0} \{\ln a + \frac{x(\ln a)^2}{2!} + \frac{x^2(\ln a)^3}{2!} + \cdots \}$ =

$$= \ln a + \frac{0 \times (\ln a)^2}{2!} + \frac{0^2 (\ln a)^3}{3!} + \dots \}$$

$$= \ln a$$

$$12(c) \lim_{x \to 0} \frac{e^{\sin x} - 1}{\sin x} \quad [\P, 05_1 \text{ M.CPL}, 05_2 \text{ M.CPL}, 05_3 \text{ M.SPL}]$$

$$= \lim_{x \to 0} \frac{(1 + \sin x + \frac{\sin^2 x}{2!} + \frac{\sin^3 x}{3!} + \dots) - 1}{\sin x}$$

$$= \lim_{x \to 0} \frac{\sin x + \frac{\sin^2 x}{2!} + \frac{\sin^2 x}{3!} + \frac{\sin^3 x}{3!} + \dots}{\sin x}$$

$$= \lim_{x \to 0} (1 + \frac{\sin x}{2!} + \frac{\sin^2 x}{3!} + \frac{\sin^2 x}{3!} + \dots)$$

$$= 1 + \frac{\sin 0}{2!} + \frac{\sin^2 0}{2!} + \dots = 1 + 0 + 0 \dots$$

$$= 1$$

$$12(d) \lim_{x \to 0} \frac{a^x - a^{-x}}{x} \qquad [4.5 \cdot 4.5 \circ 5]$$

$$= \lim_{x \to 0} \frac{1}{x} [\{1 + x \ln a + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \dots \}]$$

$$= \lim_{x \to 0} \frac{1}{x} [2x \ln a + 2\frac{(x \ln a)^2}{3!} + \frac{(x \ln a)^3}{3!} + \dots]$$

$$= 2 \lim_{x \to 0} [\ln a + \frac{x^2 (\ln a)^3}{3!} + \frac{x^4 (\ln a)^5}{5!} + \dots]$$

$$= 2 \lim_{x \to 0} (1 + \frac{b}{x})^{\frac{x}{a}}, a > 0, b > 0$$

$$= \lim_{x \to \infty} (1 + \frac{b}{x})^{\frac{x}{a}}$$

+ $\frac{\frac{x}{a}(\frac{x}{a}-1)(\frac{x}{a}-2)}{2!}$ ($\frac{x}{a}$)³ +.....} $= \lim_{x \to \infty} \{1 + \frac{b}{a} + \frac{\frac{x^2}{a^2}(1 - \frac{a}{x})}{2!} + \frac{b^2}{x^2} + \frac{b^2}{x^2} + \frac{b^2}{a^2} + \frac{b^2}{x^2} + \frac{b^2}{x^$ $\frac{\frac{x^{3}}{a^{3}}(1-\frac{a}{x})(1-\frac{2a}{x})}{\frac{2a}{x}}\frac{b^{3}}{x}+\cdots\}$ $= \lim_{x \to \infty} \{1 + \frac{b}{x} + \frac{1 - \frac{a}{x}}{2!} + \frac{b^2}{2!} + \frac{b^2}{$ $\frac{(1-\frac{a}{x})(1-\frac{2a}{x})}{\frac{a}{x}+\cdots}b^{3}$ $= 1 + \frac{b}{a} + \frac{1-0}{2!} \frac{b^2}{a^2} + \frac{(1-0)(1-0)}{2!} \frac{b^3}{a^3} + \cdots$ $=1+\frac{b}{a}+\frac{1}{2!}(\frac{b}{a})^{2}+\frac{1}{2!}(\frac{b}{a})^{3}+\cdots=e^{\frac{b}{a}}$ 12(i) $f(x) = \sin x$ হল, $\lim_{h \to 0} \frac{f(x+nh) - f(x)}{h}$ এর মান নির্ণয় কর। [প্র.ড.প. '০০] $\lim_{h\to 0}\frac{f(x+nh)-f(x)}{h}$ $= \lim_{h \to 0} \frac{\sin(x+nh) - \sin x}{L}$ $= \lim_{h \to 0} \frac{2\sin\frac{nh}{2}\cos\frac{1}{2}(2x+nh)}{h}$ $=2\lim_{h\to 0}\frac{\sin\frac{nh}{2}}{nh}\times\frac{n}{2}\lim_{h\to 0}\cos\frac{1}{2}(2x+nh)$ $= 2 \times 1 \times \frac{n}{2} \times \cos \frac{1}{2} (2x + n \times 0)$ $= n \cos x$ (Ans.) 13. (a) $\lim_{n \to \infty} \frac{1^2 + 2^2 + \dots + n^2}{n^3}$

$$= \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{6n^3}$$

$$= \lim_{n \to \infty} \frac{n^3(1+\frac{1}{n})(2+\frac{1}{n})}{6n^3}$$

$$= \lim_{n \to \infty} \frac{(1+\frac{1}{n})(2+\frac{1}{n})}{6} = \frac{(1+0)(2+0)}{6}$$

$$= \frac{2}{6} = \frac{1}{3} \text{ (Ans.)}$$
13(b) $\lim_{n \to \infty} \frac{1}{n^4} \sum_{r=1}^n r^3$

$$= \lim_{n \to \infty} \frac{1}{n^4} (1^3 + 2^3 + 3^3 + \dots + n^3)$$

$$= \lim_{n \to \infty} \frac{n^2(n+1)^2}{4n^4} = \lim_{n \to \infty} \frac{n^4(1+\frac{1}{n})^2}{4n^4}$$

$$= \lim_{n \to \infty} \frac{n^2(n+1)^2}{4} = \frac{(1+0)^2}{4} = \frac{1}{4} \text{ (Ans.)}$$
13(c) $\lim_{n \to \infty} \frac{1.3 + 2.4 + \dots + n(n+2)}{n^3}$
statistic for $\sqrt[3]{n}$, $1.3 + 2.4 + \dots + n(n+2)$ statistic $u_n = n(n+2) = n^2 + 2n$

$$1.3 + 2.4 + \dots + n(n+2) = \sum_{n=1}^n n^2 + 2\sum_{n=1}^n n$$

$$= \frac{n(n+1)(2n+1)}{6} + 2\frac{n(n+1)}{2}$$

$$= n(n+1)(\frac{2n+1+6}{6} = \frac{n(n+1)(n+7)}{3}$$

$$\lim_{n \to \infty} \frac{1.3 + 2.4 + \dots + n(n+2)}{n^3}$$

$$= \lim_{n \to \infty} \frac{n^3 (1 + \frac{1}{n})(1 + \frac{6}{n})}{6n^3}$$
$$= \lim_{n \to \infty} \frac{(1 + \frac{1}{n})(1 + \frac{2}{n})}{6} = \frac{(1 + 0)(1 + 0)}{6}$$
$$= \frac{1}{6} \text{ (Ans.)}$$

14. যদি
$$f(x) = \frac{2x}{1-x}$$
 হয় , তবে (i) $\lim_{x \to 1+} f(x)$
এবং $\lim_{x \to 1-} f(x)$ এর মান নির্ণয় কর।

সমাধান ঃ ধরি x = 1 + h

 $\lim_{x \to 1^+} f(x) = \lim_{h \to 0^+} \frac{2(1+h)}{1-(1+h)} = \lim_{h \to 0^+} \frac{2+2h}{1-1-h}$

$$= \lim_{h \to 0^+} \frac{2+2h}{-h} = \lim_{h \to 0^+} (-\frac{2}{h} - 2)$$
$$= -\infty - 2 = -\infty \quad (Ans.)$$

 $\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0^{-}} \frac{2(1+h)}{1-(1+h)} = \lim_{h \to 0^{-}} \frac{2+2h}{1-1-h}$

$$= \lim_{h \to 0^{-}} \frac{2+2h}{-h} = \lim_{h \to 0^{-}} (-\frac{2}{h} - 2)$$
$$= +\infty - 2 = +\infty \quad (Ans.)$$

(ii) $\lim_{x\to\infty} f(x)$ এবং $\lim_{x\to\infty} f(x)$ এর মান নির্ণয় কর।

সমাধান :
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2x}{1-x}$$
$$= \lim_{x \to \infty} \frac{2x}{x(\frac{1}{x}-1)} = \lim_{x \to \infty} \frac{2}{\frac{1}{x}-1}$$
$$= \frac{2}{0-1} = -2 \quad (Ans.)$$
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2x}{1-x}$$

$$= \lim_{x \to \infty} \frac{2x}{x(\frac{1}{x}-1)} = \lim_{x \to \infty} \frac{2}{\frac{1}{x}-1}$$
$$= \frac{2}{-0-1} = -2 \text{ (Ans.)}$$

15. गांвछंदेष्ठ छेननांदगत्र माद्यारग्र मान निर्नग्न कत्तः
(a) $\lim_{x \to 0} x^2 \sin(\frac{1}{x})$
गांधांनः আমরা পাই, $-1 \le \sin(\frac{1}{x}) \le 1, x \ne 0$
এবং $x^2 \ge 0$
 $-x^2 \le x^2 \sin(\frac{1}{x}) \le x^2$
এখন, $\lim_{x \to 0} (-x^2) = -0^2 = 0$ छन्न्न, $\lim_{x \to 0} x^2 = 0$
गांछछंदेष्ठ এর উপপাদ্য অনুসারে পাই,
 $\lim_{x \to 0} x^2 \sin(\frac{1}{x}) = 0$
(b) $\lim_{x \to 0} x \sin(\frac{1}{x})$
 $x \ne 0$ এর জন্য আমরা পাই, $-1 \le \sin(\frac{1}{x}) \le 1$
 $x > 0$ এর জন্য, $-x \le x \sin(\frac{1}{x}) \le x$
 $x < 0$ এর জন্য, $-x \le x \sin(\frac{1}{x}) \le x$
 $\Rightarrow x \le x \sin(\frac{1}{x}) \le -x$
(य दश् छ, $\lim_{x \to 0} (-x) = 0 = \lim_{x \to 0} x,$ সুতরাং স্যাজ উইচ
এর উপপাদ্য অনুসারে পাই, $\lim_{x \to 0} x \sin(\frac{1}{x}) = 0$
(c) $\lim_{x \to \infty} \frac{\sin x}{x}$
সমাধান : আমরা পাই, $-1 \le \sin x \le 1$
 $-\frac{1}{x} \le \frac{\sin x}{x} \le \frac{1}{x}, [\because x \to \infty, \therefore x > 0]$

x

х

x

এখন, $\lim_{x \to \infty} (-\frac{1}{x}) = 0$ এবং $\lim_{x \to \infty} (\frac{1}{x}) = 0$ স্যান্ডউইচ এর উপপাদ্য অনুসারে পাই $\lim_{x \to \infty} \frac{\sin x}{x} = 0$ 15. (d) $\lim_{x \to 3} \frac{2 - \cos x}{r + 3}$ সমাধান : আমরা পাই. $-1 \le \cos x \le +1$ ⇒ $+1 \ge -\cos x \ge -1$, উভয় পক্ষকে (-1) ধারা গুণ করে ৷] $\Rightarrow -1 \leq -\cos x \leq +1$ $\Rightarrow 2-1 \le 2-\cos x \le 2+1$ $\Rightarrow \frac{1}{r+3} \le \frac{2 - \cos x}{r+3} \le \frac{3}{r+3}$ $[\therefore x \to \infty, \therefore x + 3 > 0]$ যেহেত্ $\lim_{x \to 3} \frac{1}{x+3} = 0 = \lim_{x \to 3} \frac{3}{x+3}$, স্যান্ডউইচ এর উপপাদ্য অনুসারে পাই, $\lim_{x \to \infty} \frac{2 - \cos x}{x + 3} = 0$ 15. (e) $\lim \frac{\cos^2(2x)}{3-2r}$ সমাধান : আমরা পাই, $-1 \le \cos(2x) \le +1$ $\Rightarrow 0 \le \cos^2(2x) \le 1$ $\Rightarrow \frac{0}{2-2r} \ge \frac{\cos^2(2x)}{3-2r} \ge \frac{1}{3-2r}$ $[\therefore x \to \infty, \therefore 3 - 2x > 0]$ $\Rightarrow \frac{1}{3-2r} \le \frac{\cos^2(2x)}{3-2r} \le \frac{0}{3-2r}$ যেহেতু $\lim_{x \to \infty} \frac{1}{3-2x} = 0 = \lim_{x \to \infty} 0$,স্যান্ডউইচ এর উপপাদ্য অনুসারে পাই, $\lim \frac{\cos^2(2x)}{3-2x} = 0$

প্রশ্নমালা IX A

15. (h)
$$\lim_{x \to \infty} \frac{5x^2 - \sin(3x)}{x^2 + 10}$$

AINIMIANEL & WINART MIR, $-1 \le \sin(3x) \le +1$
 $\Rightarrow +1 \ge -\sin(3x) \ge -1$
 $\Rightarrow -1 \le -\sin(3x) \le +1$
 $\Rightarrow 5x^2 - 1 \le 5x^2 - \sin(3x) \le 5x^2 + 1$
 $\Rightarrow \frac{5x^2 - 1}{x^2 + 10} \ge \frac{5x^2 - \sin(3x)}{x^2 + 10} \ge \frac{5x^2 + 1}{x^2 + 10}$
 $[\because x \to -\infty, x^2 + 10 < 0]$
 $\Rightarrow \frac{5x^2 + 1}{x^2 + 10} \le \frac{5x^2 - \sin(3x)}{x^2 + 10} \le \frac{5x^2 - 1}{x^2 + 10}$
 $aran, \lim_{x \to \infty} \frac{5x^2 + 1}{x^2 + 100} = \lim_{x \to \infty} \frac{x^2(5 + 1/x^2)}{x^2(1 + 100/x^2)}$
 $= \lim_{x \to \infty} \frac{5 + 1/x^2}{1 + 100/x^2} = \frac{5 + 0}{1 + 0} = 5$
 $arangent, \lim_{x \to \infty} \frac{5x^2 - 1}{x^2 + 10} = 5$
 $aragent, \lim_{x \to \infty} \frac{5x^2 - 1}{x^2 + 10} = 5$
 $rangent arg work of argent argent$

2.(a)
$$\lim_{x \to 2} \frac{4 - x^2}{3 - \sqrt{x^2 + 5}}$$

$$= \lim_{x \to 2} \frac{(4 - x^2)(3 + \sqrt{x^2 + 5})}{(3 - \sqrt{x^2 + 5})(3 + \sqrt{x^2 + 5})}$$

$$= \lim_{x \to 2} \frac{(4 - x^2)(3 + \sqrt{x^2 + 5})}{3^2 - (x^2 + 5)}$$

$$= \lim_{x \to 2} \frac{(4 - x^2)(3 + \sqrt{x^2 + 5})}{9 - x^2 - 5}$$

$$= \lim_{x \to 2} \frac{(4 - x^2)(3 + \sqrt{x^2 + 5})}{4 - x^2}$$

$$= \lim_{x \to 2} (3 + \sqrt{x^2 + 5}) = 3 + \sqrt{2^2 + 5}$$

$$= 3 + 3 = 6 \text{ (Ans.)}$$
2(b)
$$\lim_{x \to 1} \frac{x - 1}{\sqrt{x^2 - 1} + \sqrt{x - 1}} \text{ [fl.5.9]}$$

$$= \lim_{x \to 1} \frac{(x - 1)(\sqrt{x^2 - 1} - \sqrt{x - 1})}{(\sqrt{x^2 - 1} - \sqrt{x - 1})}$$

$$= \lim_{x \to 1} \frac{(x - 1)(\sqrt{x^2 - 1} - \sqrt{x - 1})}{(x^2 - 1) - (x - 1)}$$

$$= \lim_{x \to 1} \frac{(x - 1)(\sqrt{x^2 - 1} - \sqrt{x - 1})}{x^2 - 1 - x + 1}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 - 1} - \sqrt{x - 1}}{x(x - 1)^2}$$

$$= \lim_{x \to 1} \frac{((x + h)^{1/2} - x^{1/2})}{h((x + h)^{1/2} + x^{1/2}}}$$

=	$\lim_{h \to 0} \frac{x+h-x}{h\{(x+h)^{1/2}+x^{1/2}\}}$
=	$h \to 0 h\{(x+h)^{1/2} + x^{1/2}\}$
=	$\lim_{h \to 0} \frac{1}{(x+h)^{1/2} + x^{1/2}}$
=	$\frac{1}{(x+0)^{1/2} + x^{1/2}} = \frac{1}{x^{1/2} + x^{1/2}} = \frac{1}{2\sqrt{x}}$
2.(d) $\lim_{x \to 0} \frac{a - \sqrt{a^2 - x^2}}{x^2}$
Π	$\lim_{x \to 0} \frac{a - \sqrt{a^2 - x^2}}{x^2}$
Η	$\lim_{x \to 0} \frac{(a - \sqrt{a^2 - x^2})(a + \sqrt{a^2 + x^2})}{x^2(a + \sqrt{a^2 - x^2})}$
=	$\lim_{x \to 0} \frac{a^2 - (\sqrt{a^2 - x^2})^2}{x^2 (a + \sqrt{a^2 - x^2})}$
=	$\lim_{x \to 0} \frac{a^2 - a^2 + x^2}{x^2 (a + \sqrt{a^2 - x^2})}$
=	$\lim_{x \to 0} \frac{x^2}{x^2(a + \sqrt{a^2 - x^2})}$
=	$\lim_{x\to 0} \frac{1}{a+\sqrt{a^2-x^2}}$
=]	$\lim_{x \to 0} \frac{1}{a + \sqrt{a^2 - 0^2}} = \frac{1}{a + a} = \frac{1}{2a}$
3.	$\lim_{x \to \infty} \frac{2x^2 + 1}{6 + x - 3x^2}$
=	$\lim_{x \to \infty} \frac{x^2 (2 + \frac{1}{x^2})}{x^2 (\frac{6}{x^2} + \frac{1}{x} - 3)}$
=	$\lim_{x \to \infty} \frac{2 + \frac{1}{x^2}}{\frac{6}{x^2} + \frac{1}{x} - 3} = \frac{2 + 0}{0 + 0 - 3} = -\frac{2}{3}$

4.(a)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

= $\lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x^2}$
= $\lim_{x \to 0} \frac{\sin^2 \frac{x}{2}}{2 \cdot \frac{x^2}{4}} = \frac{1}{2} \lim_{x \to 0} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^2$
= $\frac{1}{2} \cdot 1 = \frac{1}{2}$ (Ans.)
4(b) $\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x}$
= $\lim_{x \to 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}} \times \lim_{x \to 0} \sin \frac{x}{2} = 1 \cdot \sin \frac{0}{2}$
= $1 \cdot 0 = 0$ (Ans.)
5. $\lim_{x \to 0} \frac{3\sin \pi x - \sin 3\pi x}{x^3}$
= $\lim_{x \to 0} \frac{4\sin^3 \pi x}{x^3} = 4\lim_{x \to 0} (\frac{\sin \pi x}{\pi x})^3 \cdot \pi^3$
= $4 \times 1 \times \pi^3 = 4\pi^3$
6.(a) $\lim_{x \to 0} \frac{\sin 5x}{\sin 3x} = \frac{\lim_{x \to 0} \frac{\sin 5x}{5x} \times 5}{\lim_{x \to 0} \frac{\sin 5x}{3x} \times 3}$
= $\frac{1 \times 5}{1 \times 3} = \frac{5}{3}$ (Ans.)
6(b) $\lim_{x \to 0} \frac{6x - \sin 2x}{x} = \frac{6 - \lim_{x \to 0} \frac{\sin 4x}{4x} \times 4}{2 + 3\lim_{x \to 0} \frac{\sin 4x}{4x} \times 4}$

$$= \frac{6-1\times 2}{2+3\times 1\times 4} = \frac{6-2}{2+12} = \frac{4}{14} = \frac{2}{7} \quad (Ans.)$$
7(a) $\lim_{x \to \frac{\pi}{4}} \frac{1-\sin 2x}{\cos 2x}$ [fl.w.fl.bw]
 $\widehat{rad}, x = \frac{\pi}{4} + h. \quad x \to \frac{\pi}{4} \quad h \to 0$
 $\lim_{x \to \frac{\pi}{4}} \frac{1-\sin 2x}{\cos 2x} = \lim_{h \to 0} \frac{1-\sin 2(\frac{\pi}{4}+h)}{\cos 2(\frac{\pi}{4}+h)}$
 $= \lim_{h \to 0} \frac{1-\sin(\frac{\pi}{2}+2h)}{\cos(\frac{\pi}{2}+2h)} = \lim_{h \to 0} \frac{1-\cos 2h}{-\sin 2h}$
 $= \lim_{h \to 0} \frac{2\sin^2 h}{-2\sin h \cos h} = -\lim_{h \to 0} \tan h$
 $= -\lim_{h \to 0} \frac{\tan h}{h} \times h = -1 \times 0 = 0$ (Ans.)
'(b) $\lim_{x \to \pi} \frac{\sin x}{\pi - x}$
 $\widehat{rad}, \pi - x = h. \quad x \to \pi \quad h \to 0$
 $\lim_{x \to \pi} \frac{\sin x}{\pi - x} = \lim_{h \to 0} \frac{\sin(\pi - h)}{h}$
 $= \lim_{x \to 0} \frac{\sin h}{h} = 1$ (Ans.)
'(a) $\lim_{x \to 0} \frac{x - \ln(1 + x)}{1 + x - e^x}$
 $= \lim_{x \to 0} \frac{x - (x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots)}{1 + x - (1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots)}$
 $= \lim_{x \to 0} \frac{x - x + \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \cdots}{1 + x - 1 - x - \frac{x^2}{2!} - \frac{x^3}{3!} - \cdots}$
 $= \lim_{x \to 0} \frac{x^2(\frac{1}{2} - \frac{x}{3} + \frac{x^2}{4} - \cdots)}{x^2(-\frac{1}{2!} - \frac{x}{3!} - \cdots)}$

বামদিকবর্তী লিমিট =
$$\lim_{x \to 0_{-}} f(x)$$

= $\lim_{x \to 0_{-}} e^{-|x|/2} = e^{-|0|/2} = e^{0} = 1$

বামদিকবর্তী লিমিট ও ডানদিকবর্তী লিমিট বিদ্যমান আছে কিন্তু সমান নয়।

> $\lim_{x \to \infty} f(x)$ বিদ্যমান নাই। r→0

ভর্তি পরীক্ষার MCO :

MCQ এর জন্য বিশেষ সত্র : L'Hospital's rule : कार्यञ्रणानी ः यपि x = a এর জন্য $\frac{f(x)}{g(x)}$ ভগ্নাংশটি অনির্ণেয় আকার যেমন $\frac{0}{0}$ বা $\frac{\infty}{2}$ হয়. তবে অনির্ণেয় আকার শেষ না হওয়া পর্যনত ভগ্রাৎশের অন্তরীকরণ পৃথকভাবে লব এবং হরকে (differentiation) করতে হবে। অতঃপর নতুন ভগ্নাংশে পদন্ত x = a স্থাপন করে ফাংশনের সীমায়িত মান নির্ণয় করতে হয় ।

যখন $x \rightarrow 0$, লিমিট $\frac{\sqrt{3+x}-\sqrt{3-x}}{\sqrt{3-x}}$ 1. কত? [DU 04-05, NU 08-09, 05-06] $Sol^n: \lim_{x\to \infty} \frac{\sqrt{3+x}-\sqrt{3-x}}{x}$ $= \lim_{x \to \infty} \frac{\frac{1}{2\sqrt{3+x}} - \frac{1}{2\sqrt{3-x}}(-1)}{\frac{1}{2\sqrt{3-x}}(-1)}$ $= \frac{1}{2\sqrt{3}} + \frac{1}{2\sqrt{3}} = \frac{1}{\sqrt{3}}$ By Calculator : (Mode Radian এ নিতে হবে) ALPHA (arg) $\begin{array}{c} \text{ALPHA} \\ \text{3} \\ \text{3}$ **0 0 1 =** 0.577 ≈1/√3

[DU 03-04, RU 06-07, 04-05; KU 03-04]

 $Sol^{n} : \lim_{x \to 0} \frac{x(\cos x + \cos 2x)}{\sin x}$ $= \lim_{x \to 0} \frac{(\cos x + \cos 2x) \cdot 1 + x(-\sin x - 2\sin x)}{\cos x}$ $=\frac{(\cos .0 + \cos 2.0).1 + 0.(-\sin 0 - 2\sin 0)}{\cos 0}$ = 23. যখন $x \rightarrow 0$, পিমিট $\frac{\sin 3x}{x}$ কত? [DU 99-00, RU 06-07] $Sol'': \lim_{x \to 0} \frac{\sin 3x}{x} = \lim_{x \to 0} \frac{3\cos 3x}{1}$ $= 3\cos 0 = 3$ 4. যখন $x \rightarrow 0$, লিমিট $\frac{\tan x - \sin x}{x^3}$ কত? [KU 03-04] $Sol^{n}: \lim_{x \to 0} \frac{\tan x - \sin x}{x^{3}} = \lim_{x \to 0} \frac{\sec^{2} x - \cos x}{2x^{2}}$ $= \lim_{x \to 0} \frac{2 \sec^2 x \tan x + \sin x}{6x}$ $= \frac{1}{6} \lim_{x \to 0} \{2(\sec^2 x . \sec^2 x)\}$ $+\tan x.2\sec^2 x\tan x$ + $\cos x$ $=\frac{1}{6}\{2(1+0)+1\}=\frac{1}{2}$ 5. $\lim_{x \to 0} \frac{\sin(2x)^2}{x} = ?$ [DU 08-09] $Sol'': \lim_{x \to 0} \frac{\sin(4x^2)}{x} = \lim_{x \to 0} \frac{\cos(4x^2) \cdot 8x}{1}$ $= \cos(4.0).8.0 = 0$ 6. যখন $x \rightarrow \frac{\pi}{2}$, পিমিট $\frac{1-\sin x}{\cos x}$ কত? [DU 00-01 , RU 06-07] 2. $\forall \forall \neg x \to 0$, $\forall \forall \forall \overline{x} \to 0$, $\forall \forall \forall \overline{x} \to 0$, $\forall \forall \forall \overline{x} \to 0$, $\forall \forall \forall x \to 0$, $\forall \forall \forall \forall x \to 0$, $\forall \forall \forall \forall x \to 0$, $\forall \forall x \to 0$, $\forall \forall x \to 0$, $\forall \forall \forall x \to 0$, $\forall x \to 0$, $\forall \forall x \to 0$, $\forall x \to 0$, \forall

$$= \frac{0}{1} = 0$$
7. $\forall \forall \forall x \rightarrow 2$, $\forall \forall \forall \forall \frac{\sin(x-2)}{x-2} \forall \forall \forall y$
[CU 07-08]
Solⁿ: $\lim_{x \to 2} \frac{\sin(x-2)}{x-2} = \lim_{x \to 2} \frac{\cos(x-2)}{1}$
= $\cos(2-2) = \cos 0 = 1$
8. $\forall \forall \forall x \rightarrow 0$, $\forall \forall \forall \frac{e^x - e^{-x} - 2x}{x - \sin x} \neq \forall \forall y$
[SU 04-05]
Solⁿ: $\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x} = \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x}$
= $\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x} = \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x}$
= $\lim_{x \to 0} \frac{e^x - e^{-x}}{x - \sin x} = \lim_{x \to 0} \frac{e^x + e^{-x}}{\cos x} = \frac{1 + 1}{1} = 2$
[DU
Shift e^x ALPHA x x Shift e^x ALPHA x
 x Solves x ? $\bullet 0$ $f \forall \forall \forall x$ x ? $\bullet 0$ $f \forall \forall x$ x ? $\bullet 0$? [CU 08-
19. $\forall \forall \neg x \rightarrow 0$, $\forall \forall \forall \frac{a^x - 1}{x} = \lim_{x \to 0} \frac{a^x \ln a}{1} = a^0 \log_e a$
= $\log_e a$ www.boighar.com
10. $\lim_{x \to 0} \frac{1 - e^{-2x}}{\ln(1 + x)}$, $0 < x < 1$ $d \forall \forall \forall \forall \forall 03-04$]
Solⁿ: $\lim_{x \to 0} \frac{1 - e^{-2x}}{\ln(1 + x)} = \lim_{x \to 0} \frac{2e^{-2x}}{1 + x} = \lim_{x \to 0} \frac{2e^{-2x}}{1 + x}$
= 2

$$\begin{array}{rcl}
11. \ \overline{u} & \overline{u} & x \to 0 \ , \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & \overline{u} & \overline{u} & \overline{u} \\ 09; \ RU \ 07-08; \ IU \ 04-05] \\
Sol^n : \ \lim_{x \to 0} \frac{\sin^{-1} x}{x} = \ \lim_{x \to 0} \frac{\sqrt{1-x^2}}{1} = 1 \\
12. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & 0 \ , \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & \overline{u} \\ 12. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & 0 \ , \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & \overline{u} \\ 13. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & 0 \ , \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & \overline{u} \\ 13. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & 0 \ , \ \overline{u} & \overline{u} & \overline{u} & \overline{u} \\ 13. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & 0 \ , \ \overline{u} & \overline{u} & \overline{u} & \overline{u} \\ 13. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & 0 \ , \ \overline{u} & \overline{u} & \overline{u} & \overline{u} \\ 13. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & 0 \ , \ \overline{u} & \overline{u} & \overline{u} & \overline{u} \\ 13. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & 0 \ , \ \overline{u} & \overline{u} & \overline{u} & \overline{u} \\ 13. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & 0 \ , \ \overline{u} & \overline{u} & \overline{u} & \overline{u} \\ 13. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & 0 \ , \ \overline{u} & \overline{u} & \overline{u} & \overline{u} \\ 13. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & 0 \ , \ \overline{u} & \overline{u} & \overline{u} & \overline{u} \\ 13. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & 0 \ , \ \overline{u} & \overline{u} & \overline{u} & \overline{u} \\ 13. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & 0 \ , \ \overline{u} & \overline{u} & \overline{u} & \overline{u} \\ 13. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & 0 \ , \ \overline{u} & \overline{u} & \overline{u} \\ 13. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & 0 \ , \ \overline{u} & \overline{u} & \overline{u} \\ 13. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & 0 \ , \ \overline{u} & \overline{u} & \overline{u} \\ 13. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & \overline{u} & \overline{u} \\ 13. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & \overline{u} & \overline{u} & \overline{u} \\ 13. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & \overline{u} & \overline{u} \\ 14. \ \overline{u} & \overline{u} & \overline{u} & \overline{u} & \overline{u} & \overline{u} \\ 14. \ \overline{u} & \overline{u} & \frac{e^x + e^{-x} - 2}{x^2} = \left[BUET \ 03-04] \\ 14. \ \overline{u} & \frac{e^x + e^{-x} - 2}{2x^2} = \left[BUET \ 07-08] \\ 14. \ \overline{u} & \frac{1-\cos 7x}{3x^2} = \left[BUET \ 07-08] \\ 15. \ \overline{u} & \frac{1-\cos 7x}{3x^2} = \left[BUET \ 07-08] \\ 15. \ \overline{u} & \frac{1-\cos 7x}{3x^2 - 9} = \left[BUET \ 05-06] \\ 16. \ \overline{u} & \frac{x^3 - 27}{x^2 - 9} = \left[BUET \ 05-06] \\ 16. \ \overline{u} & \frac{x^3 - 27}{x^2 - 9} = \left[BUET \ 05-06] \\ 16. \ \overline{u} & \frac{x^3 - 27}{2} = \frac{9}{2} \\ 14. \ \overline{u} & \frac{3x^2}{2x} = 1 \\ 14. \ \overline{u} & \frac{3x}{2} \\ 14. \ \overline{u} & \frac{3x}{2} \\ 14. \ \overline{u} & \frac{3x}{2} \\$$

1. যদি
$$f(x) = \begin{cases} -x, & ext{vth} x \le 0 \\ x, & ext{vth} 0 < x < 1 হয়, তবে \\ 1-x, & ext{vth} x \ge 1 \end{cases}$$
দেখাও যে $x = 0$ বিন্দুতে $f(x)$ ফাংশন অবিচ্ছিন্ন এবং $x = 1$ বিন্দুতে বিচ্ছিন্ন ।

সমাধানঃ x = 0 বিন্দুতে,
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x = 0$$
,

 $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} (-x) = 0$ এবং f(0) =−0=0

যেহেডু $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) = f(0)$ সুতরাং x = 0 বিন্দুতে f(x) অবিচ্ছিন্ন।

 $\begin{aligned} x &= 1 \ \overline{\operatorname{dreg}}(\mathbf{v}, \ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (1 - x) = 1 - 1 = 0 \\ \lim_{x \to 1^-} f(x) &= \lim_{x \to 1^-} x = 1 \\ \overline{\operatorname{categ}} \ \lim_{x \to 1^+} f(x) \neq \lim_{x \to 1^-} f(x), \ \overline{\operatorname{qcate}} x = 1 \\ \overline{\operatorname{dreg}}(\mathbf{v}) \ \overline{\operatorname{qcate}} x = 1 \end{aligned}$

2. যদি
$$\mathbf{f}(\mathbf{x}) = \begin{cases} \frac{\sin^2 ax}{x^2}, & \text{যখন } x \neq 0 \\ 1 & \text{যখন } x = 0 \end{cases}$$
 হয়, তবে

প্রমাণ কর যে a=1 না হলে x=0 বিন্দুতে f(x) ফাংশন বিচ্ছিন্ন হবে।

প্রমাণঃ x = 0 বিন্দুতে,

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sin^2 ax}{x^2} = \lim_{x \to 0^+} \left(\frac{\sin ax}{ax}\right)^2 .a^2$$
$$= 1 \times a^2 = a^2$$
$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\sin^2 ax}{x^2} = \lim_{x \to 0^-} \left(\frac{\sin ax}{ax}\right)^2 .a^2$$
$$= 1 \times a^2 = a^2 \text{ and } f(0) = 1$$
$$a \neq 1 \text{ RCP}, \lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) \neq f(0)$$

এবং a = 1 হলে, $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) = f(0)$

কাজেই, a = 1 না হলে x = 0 বিন্দুতে f(x) ফাংশন বিচ্ছিন্ন হবে।

3.
$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & \text{যখন } x \neq 2 \\ 3 & \text{যখন } x = 2 \end{cases}$$
 দারা প্রদন্ত

একটি বাস্তব ফাংশন । দেখাও যে, f ফাংশনটি x = 2 বিন্দুতে বিচ্ছিন্ন। f ফাংশনটিকে এরুপে সংজ্ঞায়িত কর বেন তা x = 2 বিন্দুতে অবিচ্ছিন্ন হয়।

প্রমাণঃ
$$x = 2$$
 বিন্দুতে, $f(2) = 3$,

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{x^2 - 4}{x - 2}$$

$$= \lim_{x \to 2^+} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2^+} (x + 2)$$

$$= 2 + 2 = 4$$
এবং $\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \frac{x^2 - 4}{x - 2}$

$$= \lim_{x \to 2^-} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2^-} (x + 2)$$

$$= 2 + 2 = 4$$
বেহেত্ $\lim_{x \to 2^+} f(x) = \lim_{x \to 1^-} f(x) \neq f(2)$
 $= 1$ বিন্দুতে $f(x)$ বিচ্ছিন্ন ।

(দিতীয় অংশ): x = 2 বিন্দুতে f(x) ফাংশনের অবিচ্ছিন্নতার জন্য নিমুরপে সংজ্ঞায়িত করা হলো-

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & \text{যখন } x \neq 2\\ 4 & \text{যখন } x = 2 \end{cases}$$

প্রশ্নমালা IX C

1. (a)]0, 4[ব্যবধিতে f(x) = (x - 1)(x - 2) (x- 3) ফাংশনের জন্য ল্যাগ্রাঞ্জের গড়মান উপপাদ্যের সত্যতা যাচাই কর।

সমাধান: এখানে, f(x) = (x - 1)(x - 2)(x - 3)

প্রশ্নমালা IX C

$$\Rightarrow f(x) = (x - 1)(x^{2} - 5x + 6)$$

$$= x^{3} - 5x^{2} + 6x - x^{2} + 5x - 6$$

$$= x^{3} - 6x^{2} + 11x - 6$$

$$R f'(x) = \lim_{h \to 0^{+}} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0^{+}} \frac{1}{h} [(x+h)^{3} - 6(x+h)^{2} + 11(x+h) - 6$$

$$- x^{3} + 6x^{2} - 11x + 6]$$

$$= \lim_{h \to 0^{+}} \frac{1}{h} [x^{3} + 3x^{2}h + 3xh^{2} + h^{3} - 6x^{2}$$

$$-12xh - 6h^{2} + 11x + 11h - x^{3} + 6x^{2} - 11x]$$

$$= \lim_{h \to 0^{+}} \frac{1}{h} [3x^{2}h + 3xh^{2} + h^{3} - 12xh$$

$$- 6h^{2} + 11h]$$

$$= \lim_{h \to 0^{+}} [3x^{2} + 3xh + h^{2} - 12x - 6h + 11]$$

$$= 3x^{2} - 12x + 11$$

$$\forall q q, L f'(x) = \lim_{h \to 0^{-}} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0^{-}} [3x^{2} + 3xh + h^{2} - 12x - 6h + 11]$$

$$= 3x^{2} - 12x + 11$$

যেহেতু R f'(x) = L f'(x), কাজেই x এর সকল মানের জন্য f(x) ফাংশন [0, 4] বন্দ্ধ ব্যবধিতে অবিচ্ছিন্ন এবং] 0, 4[খোলা ব্যবধিতে অন্তরীকরণযোগ্য।

f(x) ফাংশন ল্যাগ্রাঞ্জের গড়মান উপপাদ্যের সকল শর্জ পালন করে। অতএব ল্যাগ্রাঞ্জের গড়মান উপপাদ্যের শর্তানুসারে অন্ততঃপক্ষে একটি কিন্দু $c\in] 0, 4[$ এর জন্য $f(4) - f(0) = (4 - 0) f'(c) \cdots (1)$ হবে। এখন, f(4) = (4 - 1)(4 - 2) (4 - 3) = 6এবং f(0) = (0 - 1)(0 - 2) (0 - 3) = -6প্রদন্ত সমীকরণকে অন্তরীকরণ করে পাই, $f'(x) = 3x^2 - 12x + 11$

$$f'(c) = 3c^2 - 12c + 11$$

 $f'(c) = 3c^2 - 12c + 11$
(1) হতে পাই,6 + 6 = 4(3c^2 - 12c + 11)
 $\Rightarrow 3 = 3c^2 - 12c + 11$

$$\Rightarrow 3c^{2} - 12c + 8 = 0$$

$$c = \frac{12 \pm \sqrt{144 - 96}}{2 \times 3} = \frac{12 \pm \sqrt{48}}{2 \times 3}$$

$$= \frac{12 \pm 4\sqrt{3}}{2 \times 3} = 2 \pm \frac{2}{\sqrt{3}}$$

$$c = 2 \pm \frac{2}{\sqrt{3}} \in] 0, 4[$$

$$\therefore]0, 4[$$
 ব্যবধিতে প্রদন্ড ফাংশনে ল্যাগ্রাঞ্জের গড়মান
উপপাদ্যের সত্যতা প্রমাণিত হলো।
(b)]-1, 1[ব্যবধিতে f(x) = $\frac{1}{x}$ ফাংশনের জন্য
ল্যাগ্রাঞ্জের গড়মান উপপাদ্য প্রযোচ্চ্য কিনা যাচাই কর।
সমাধান: প্রদন্ত ফাংশন f(x) = $\frac{1}{x}$
 $f(0) = \frac{1}{0}$, বিদ্যমান নয়।
অর্থাৎ x = 0 বিন্দুতে প্রদন্ত ফাংশন অবিচ্ছিন্ন নয়।
]-1, 1[ব্যবধিতে ফাংশনটি অবিচ্ছিন্ন নয়।
স্বৃতরাং প্রদন্ত ব্যবধিতে ফাংশনটির জন্য ল্যাগ্রাঞ্জের গড়মান
উপপাদ্য প্রযোজ্য নয়।

(c)
$$f(x) = \begin{cases} -x, & যখন -1 \le x < 0 \\ x, & যখন & 0 \le x \le 1 \end{cases}$$
 ফাংশনের জন্য
[-1, 1] ব্যবধিতে ল্যাগ্রাঞ্জের গড়মান উপপাদ্য প্রযোজ্য
কিনা যাচাই কর।

সমাধান: প্ৰপন্ত ফাংশন
$$f(x) = \begin{cases} -x, & a \forall n - 1 \le x < 0 \\ x, & a \forall n & 0 \le x \le 1 \end{cases}$$

R f'(0) = $\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h}$
= $\lim_{h \to 0^+} \frac{f(h) - 0}{h} = \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} (1) = 1$
L f'(0) = $\lim_{h \to 0^-} \frac{f(0+h) - f(0)}{h}$
= $\lim_{h \to 0^-} \frac{f(h) - 0}{h} = \lim_{h \to 0^+} \frac{-h}{h}$
= $\lim_{h \to 0^+} (-1) = -1$

যেহেতু $Rf'(0) \neq Lf'(0)$, সেহেতু x = 0 বিন্দুতে (ফাংশনটি অন্তরীকরণযোগ্য নয় ∴ প্রদন্ত ব্যবধিতে ফাংশনটির জন্য ল্যাগ্রান্তের গডমান = উপপাদ্য প্রযোজ্য নয়। Ξ 2. x এর সাপেক্ষে নিম্নের ফাশেনগুলির অন্তরক সহগ নির্ণয় কর ঃ **2(a)** $(2x)^n - b^n$ · [5.'02] 3 र्षति. $v = (2x)^n - b^n = 2^n x^n - b^n$ $\frac{dy}{dx} = 2^n \frac{d}{dx}(x^n) - \frac{d}{dx}(b^n)$ $= 2^{n} (nx^{n-1}) - 0$ $\frac{d}{dx}\{(2x)^n - b^n\} = 2^n n x^{n-1} \text{ (Ans.)}$ **2(b)** $\frac{d}{dx}(x\sqrt{x}+x^2\sqrt{x}+\frac{x^2}{\sqrt{x}}-\sqrt{x}+\frac{1}{\sqrt{x}})$ $=\frac{d}{dt}\left(x^{1+\frac{1}{2}}+x^{2+\frac{1}{2}}+x^{2-\frac{1}{2}}-x^{\frac{1}{2}}+x^{\frac{1}{2}}\right)$ $=\frac{d}{dx}\left(x^{\frac{3}{2}}+x^{\frac{5}{2}}+x^{\frac{3}{2}}-x^{\frac{1}{2}}+x^{\frac{1}{2}}\right)$ $=\frac{d}{d}\left(2x^{\frac{3}{2}}+x^{\frac{5}{2}}-x^{\frac{1}{2}}+x^{-\frac{1}{2}}\right)$ $= 2 \cdot \frac{3}{2} x^{\frac{3}{2}-1} + \frac{5}{2} x^{\frac{5}{2}-1} - \frac{1}{2} x^{\frac{1}{2}-1} - \frac{1}{2} x^{-\frac{1}{2}-1}$ $= 3x^{\frac{1}{2}} + \frac{5}{2}x^{\frac{3}{2}} - \frac{1}{2\sqrt{x}} - \frac{1}{2x\sqrt{x}}$ (Ans.) **2(c)** $\frac{d}{dx}(a^x + x^a - e^x)$ $= \frac{d}{dx}(a^{x}) + \frac{d}{dx}(x^{a}) - \frac{d}{dx}(e^{x})$ $= a^{x} lna + a x^{a-1} - e^{x}$ (Ans.) 2(d) $\frac{d}{dx}(\log_a x + \log x^a + e^{\ln x} + \ln x + e^x)$ $= \frac{d}{dx} (\log_a x + a \log x + x + \ln x + e^x)$ $= \frac{1}{r \ln a} + a \frac{1}{r \ln 10} + 1 + \frac{1}{r} + e^{r}$

007

 $= 2 \sin (3x + 0) \cdot (-1 \cdot \frac{3}{2}) = -3 \sin 3x$ $3(c) \cos ax$ রো. '০১] মনে করি, $f(x) = \cos ax$. $f(x + h) = \cos a(x + h) = \cos(ax + ah)$ অন্তরক সহগের সংজ্ঞা হতে পাই. $\frac{d}{dx}\left\{ f(x) \right\} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\frac{d}{dx}(\cos ax) = \lim_{h \to 0} \frac{\cos(ax + ah) - \cos ax}{h}$ $= \lim_{h \to 0} \frac{1}{h} [2\sin\frac{ax+ah+ax}{2}\sin\frac{ax-ah-ax}{2}]$ $= 2 \limsup_{h \to 0} \sin(ax + \frac{ah}{2}) \times - \lim_{h \to 0} \frac{\sin(ah/2)}{ah/2} \times \frac{a}{2}$ = $2 \sin(ax + 0)$. $(-1, \frac{a}{2}) = -a \sin ax$ 3(d) tan 2x [Jo.'07] মনে করি. $f(x) = \tan 2x$. $f(x + h) = \tan 2(x + h) = \tan (2x + 2h)$ অম্তরক সহগের সংজ্ঞা হতে পাই $\frac{d}{dx}$ { f (x) } = $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\frac{d}{dx}(\tan 2x) = \lim_{h \to 0} \frac{\tan(2x+2h) - \tan 2x}{h}$ $= \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin(2x+2h)}{\cos(2x+2h)} - \frac{\sin 2x}{\cos 2x} \right]$ $= \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin(2x+2h)\cos 2x - \sin 2x\cos(2x+2h)}{\cos(2x+2h)\cos 2x} \right]$ $= \lim_{h \to 0} \frac{1}{h} \frac{\sin(2x+2h-2x)}{\cos(2x+2h)\cos 2x}$ $= \lim_{h \to 0} \frac{\sin 2h}{2h} \times 2 \times \lim_{h \to 0} \frac{1}{\cos(2x+2h)\cos 2x}$ $1 \times 2 \times \frac{1}{\cos(2x+0)\cos 2x} = \frac{2}{\cos^2 x}$ = $2 \sec^2 2x$ = [য়. '০২, '০৭; চ. '০৭, '১০] $3(e) \sec 2x$ মনে করি, $f(x) = \sec 2x$.

 $t (x + h) = \sec 2(x + h) = \sec (2x + 2h)$ অম্তরক সহগের সংজ্ঞা হতে পাই $\frac{d}{dx}$ { f (x) } = $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\frac{d}{dx}(\sec 2x) = \lim_{h \to 0} \frac{\sec(2x+2h) - \sec 2x}{h}$ $= \lim_{h \to 0} \frac{1}{h} \left[\frac{1}{\cos(2x+2h)} - \frac{1}{\cos(2x)} \right]$ $= \lim_{h \to 0} \frac{\cos 2x - \cos(2x + 2h)}{h \cos(2x + 2h) \cos 2x}$ $2\sin\frac{2x+2x+2h}{2}\sin\frac{2x+2h-2x}{2}$ $= \lim_{h \to 0} --- h\cos(2x+2h)\cos 2x$ $2\lim_{h\to 0}\frac{\sin(2x+h)}{\cos(2x+2h)\cos 2x}\times\lim_{h\to 0}\frac{\sin h}{h}$ $= 2 \frac{\sin(2x+0)}{\cos(2x+0)\cos 2x} \times 1$ $=\frac{2\sin 2x}{\cos 2x\cos 2x}=2\tan 2x \sec 2x$ $3(f) e^{2x}$ রো. '০৩] মনে করি. $f(x) = e^{2x}$. $f(x + h) = e^{2(x+h)} = e^{2x+2h}$ অন্তরক সহগের সংজ্ঞা হতে পাই. $\frac{d}{dx}\left\{f(x)\right\} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\frac{d}{dx}(e^{2x}) = \lim_{h \to 0} \frac{e^{2x+2h} - e^{2x}}{h}$ $= \lim_{h \to 0} \frac{e^{2x} e^{2h} - e^{2x}}{h} = \lim_{h \to 0} \frac{e^{2x}}{h} (e^{2h} - 1)$ $= e^{2x} \lim_{h \to 0} \frac{e^{2h} - 1}{2h} \times 2$ $= e^{2x} \times 1 \times 2 = 2e^{2x}$, [: $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$] 3. (g) cosec ax মনে করি, $f(x) = \operatorname{cosec} ax$. f(x + h) = cosec(ax + ah)অস্তরক সহগের সংজ্ঞা হতে পাই .

উচ্চতর গণিত: ১<u>ম</u> পত্র সমাধান

$$\frac{d}{dx} \{ f(x) \} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{d}{dx} (\operatorname{cosec} ax) =$$

$$\lim_{h \to 0} \frac{\cos ec(ax+ah) - \cos ecax}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} [\frac{1}{\sin(ax+ah)} - \frac{1}{\sin ax}]$$

$$= \lim_{h \to 0} \frac{\sin ax - \sin(ax+ah)}{h\sin(ax+ah)\sin ax}$$

$$= \lim_{h \to 0} \frac{2\sin(-h)\cos(ax+ah)}{h\sin(ax+ah)\sin ax}$$

$$= \lim_{h \to 0} \frac{2\sin(-h)\cos(ax+h)}{h\sin(ax+ah)\sin ax}$$

$$= -2\lim_{h \to 0} \frac{\sin h}{h} \times \lim_{h \to 0} \frac{\cos(ax+h)}{\sin(ax+ah)\sin ax}$$

$$= -2 \lim_{h \to 0} \frac{\sin h}{h} \times \lim_{h \to 0} \frac{\cos(ax+h)}{\sin(ax+ah)\sin ax}$$

$$= -2 \sum_{i} \frac{\cos(ax+0)}{\sin(ax+0)\sin ax}$$

$$= -2 \times 1 \times \frac{\cos(ax+0)}{\sin(ax+0)\sin ax}$$

$$= -2 \times 2 \operatorname{cos} \frac{ax}{\sin ax \sin ax}$$

$$= -2 \operatorname{cos} ax \qquad [\operatorname{vicet} \cdot \cos; \operatorname{vicet} \cdot \operatorname{vicet} \operatorname{vicet} \cdot \operatorname{vicet} \operatorname{v$$

भगण्डाक मহেलंब महला राष्ठ शिं,

$$\frac{d}{dx} \{ f(x) \} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{d}{dx} (e^{ax}) = \lim_{h \to 0} \frac{e^{ax+ah} - e^{ax}}{h}$$

$$= \lim_{h \to 0} \frac{e^{ax} e^{ah} - e^{ax}}{h} = \lim_{h \to 0} \frac{e^{ax}}{h} (e^{ah} - 1)$$

$$= e^{ax} \lim_{h \to 0} \frac{1}{h} [\{(1+ah + \frac{(ah)^2}{2!} + \frac{a^3h^3}{3!} + \cdots)\}] =$$

$$e^{ax} \lim_{h \to 0} \frac{1}{h} (ah + \frac{a^2h^2}{2!} + \frac{a^3h^2}{3!} + \cdots)$$

$$= e^{ax} \lim_{h \to 0} (a + \frac{a^2h}{2!} + \frac{a^3h^2}{3!} + h - a\pi \text{ bestion}$$

$$\pi \text{refers for strategy}$$

$$= e^{ax} (a + 0 + 0 + \cdots) = ae^{ax}$$
3(j) $\log_a x$ [5.'ob; 51.'55; 7.'54,'58; ff.'58]
4fit, f(x) = $\log_a x = \log_a e \times \log_e x$

$$= \frac{\ln x}{\log_e a} = \frac{\ln x}{\ln a}$$

$$f(x+h) = \frac{\ln(x+h)}{\ln a}$$

$$\text{we start strategy}$$

$$= \lim_{h \to 0} \frac{1}{h} \ln \frac{n(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h \ln a} \ln \frac{x+h}{x} = \lim_{h \to 0} \frac{1}{h \ln a} \ln(1 + \frac{h}{x})$$

$$= \frac{1}{\ln a} \lim_{h \to 0} \frac{1}{h} [\frac{h}{x} - \frac{1}{2}\frac{h^2}{x^2} + \frac{1}{3}\frac{h^3}{x^3} - \cdots]$$

$$= \frac{1}{\ln a} \lim_{h \to 0} \frac{1}{h} \frac{1}{x} - 0 = \frac{1}{x \ln a}$$
4.(a) **yer frace x** = 2 - co **x**⁵ af a **we started strategy**

$$f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{x^3 - 2^3}{x - 2}$$
$$= 5 \times (2)^4 \qquad [\because \lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}]$$
$$= 5 \times 16 = 80$$

4(b) মূল নিয়মে x = a -তে e^{mx} এর অন্দতরক সহগ নির্ণয়।

$$\begin{aligned} & \text{ACA } \phi \hat{\text{A}}, \text{ f } (x) = e^{mx} \quad \text{ f } (a) = e^{ma} \\ & f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \\ &= \lim_{x \to a} \frac{e^{mx} - e^{ma}}{x - a} = \lim_{x \to a} \frac{e^{ma}(e^{mx - ma} - 1)}{x - a} \\ &= e^{ma} \lim_{x - a \to 0} \frac{e^{m(x - a)} - 1}{m(x - a)} \times m \\ &= me^{ma} .1 \quad \left[\lim_{x \to 0} \frac{e^{x} - 1}{x} = 1 \right] \\ &= me^{ma} \end{aligned}$$

4(c) মূল নিয়মে $x = \frac{\pi}{4}$ -তে $\tan x$ এর অশতরক সহগ নির্ণয়।

 $\begin{aligned} & \overline{\operatorname{ACA}} \ \overline{\operatorname{PR}}, \ f(x) = \tan x. \qquad f(\frac{\pi}{4}) = \tan \frac{\pi}{4} \\ & f'(\frac{\pi}{4}) = \lim_{x \to \frac{\pi}{4}} \frac{f(x) - f(\frac{\pi}{4})}{x - \frac{\pi}{4}} \\ & = \lim_{x \to \frac{\pi}{4}} \frac{\tan x - \tan \frac{\pi}{4}}{x - \frac{\pi}{4}} \\ & = \lim_{x \to \frac{\pi}{4}} \frac{\sin x \cos \frac{\pi}{4} - \cos x \sin \frac{\pi}{4}}{(x - \frac{\pi}{4}) \cos x \cos \frac{\pi}{4}} \\ & = \lim_{x \to \frac{\pi}{4}} \frac{\sin(x - \frac{\pi}{4})}{(x - \frac{\pi}{4}) \cos x \cos \frac{\pi}{4}} \end{aligned}$

$$\lim_{x \to 0} \frac{\sin(x - \frac{\pi}{4})}{x - \frac{\pi}{4}} \times \lim_{x \to \frac{\pi}{4}} \frac{1}{\cos x \cos \frac{\pi}{4}}$$

$$= 1. \frac{1}{\cos \frac{\pi}{4} \cos \frac{\pi}{4}} = \frac{1}{(1/\sqrt{2})^2} = 2$$

$$(2)$$

$$(2)$$

$$x = 1 + \frac{1}{\cos \frac{\pi}{4} \cos \frac{\pi}{4}} = \frac{1}{(1/\sqrt{2})^2} = 2$$

$$(2)$$

$$(2)$$

$$x = 1 + \frac{1}{\cos \frac{\pi}{4} \cos \frac{\pi}{4}} = \frac{1}{(1/\sqrt{2})^2} = 2$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$($$

 $\frac{dy}{dx} = \frac{1}{\ln a} \frac{d}{dx} (\ln x) = \frac{1}{\ln a} \times \frac{1}{x}$ $\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$ (Ans.) 2. (a) $a^x \ln(x) + be^x \sin x$ $\frac{d}{dx}\left\{a^{x}\ln(x)+be^{x}\sin x\right\}=a^{x}\frac{d}{dx}\left\{\ln(x)\right\}$ + $\ln(x) \frac{d}{dx}(a^x)$ + $b\{e^x \frac{d}{dx}(\sin x) +$ $\sin x \frac{d}{dx}(e^x)$ $= a^{x} \frac{1}{x} + \ln(x)(a^{x} \ln a) + b\{e^{x}(\cos x) + b\}$ $\sin x (e^x)$ $=a^{x}\left\{\frac{1}{x} + \ln a \ln(x)\right\} + be^{x}\left(\cos x + \sin x\right)$ $2(b) x^{2} \log_{x} x - x^{3} \ln a^{x} + 6x e^{x} \ln x$ ধরি, $y = x^2 \log_2 x - x^3 \ln a^x + 6x e^x \ln x$ $= x^{2} \log_{a} x - x^{4} \ln a + 6x e^{x} \ln x$ $\frac{dy}{dx} = x^2 \frac{d}{dx} (\log_a x) + \log_a x \frac{d}{dx} (x^2) \ln a \frac{d}{dx}(x^4) + 6\{x e^x \frac{d}{dx}(\ln x) +$ $x \ln x \frac{d}{dx}(e^x) + e^x \ln x \frac{d}{dx}(x)$ $= x^{2} \frac{1}{x \ln a} + \log_{a} x . (2x) - \ln a . (4x^{3})$ $+6\{x e^{x} \cdot \frac{1}{x} + x \ln x \cdot e^{x} + e^{x} \ln x \cdot 1\}$ $= x(\frac{1}{\ln a} + 2\log_a x - 4x^2 \ln a)$ $+6 e^{x}(1 + x \ln x + \ln x)$ 3. (a) মনে করি, $y = \frac{x}{x^2 + a^2}$

$$\frac{d\bar{y}}{dx} = \frac{(x^2 + a^2)\frac{d}{dx}(x) - x\frac{d}{dx}(x^2 + a^2)}{(x^2 + a^2)^2}$$

$$= \frac{(x^2 + a^2).1 - x(2x + 0)}{(x^2 + a^2)^2} = \frac{x^2 + a^2 - 2x^2}{(x^2 + a^2)^2}$$

$$\frac{d}{dx}(\frac{x}{x^2 + a^2}) = \frac{a^2 - x^2}{(x^2 + a^2)^2}$$

$$3(b) \frac{d}{dx}(\frac{1 - \tan x}{1 + \tan x}) \qquad [fr.'so; f.'so]$$

$$= \frac{(1 + \tan x)\frac{d}{dx}(1 - \tan x) - (1 - \tan x)\frac{d}{dx}(1 + \tan x)}{(1 + \tan x)^2}$$

$$= \frac{(1 + \tan x)(-\sec^2 x) - (1 - \tan x)(\sec^2 x)}{(1 + \tan x)^2}$$

$$= \frac{(1 - \tan x - 1 + \tan x)\sec^2 x}{(1 + \tan x)^2}$$

$$= \frac{(-1 - \tan x - 1 + \tan x)\sec^2 x}{(1 + \tan x)^2} = \frac{(1 + \cos x)\frac{d}{dx}(1 + \sin x)}{(1 + \cos x)}$$

$$= \frac{(1 + \cos x)\frac{d}{dx}(\frac{1 + \sin x}{1 + \cos x}) = [fx.'so]$$

$$\frac{(1 + \cos x)\frac{d}{dx}(1 + \sin x) - (1 + \sin x)\frac{d}{dx}(1 + \cos x)}{(1 + \cos x)^2}$$

$$= \frac{\cos x + \cos^2 x + \sin x + \sin^2 x}{(1 + \cos x)^2}$$

$$= \frac{\cos x + \cos^2 x + \sin x + \sin^2 x}{(1 + \cos x)^2}$$

$$= \frac{\cos x + \sin x + 1}{(1 + \cos x)^2} (Ans.)$$

$$3(c) \frac{1 + \sin x}{1 - \sin x}$$

$$[fr.'so; f.'so]; f.'so]; f.'so]; f.'so]; fr.'so]$$

প্রশ্নমূলা IX D

$$\frac{(1-\sin x)\frac{d}{dx}(1+\sin x) - (1+\sin x)\frac{d}{dx}(1-\sin x)}{(1-\sin x)^2}$$

= $\frac{(1-\sin x)(\cos x) - (1+\sin x)\frac{d}{dx}(-\cos x)}{(1-\sin x)^2}$
= $\frac{(1-\sin x+1+\sin x)\cos x}{(1-\sin x)^2}$
= $\frac{2\cos x}{(1-\sin x)^2}$ (Ans.)

 $3(e) \frac{\cos x - \cos 2x}{1 - \cos x}$ $[\overline{4.'} > 0; \overline{31.}, \overline{4.'} > 0; \overline{4.'} > 0; \overline{51.'} > 8]$ $\frac{\cos x - \cos 2x}{1 - \cos x} = \frac{\cos x - (2\cos^2 x - 1)}{1 - \cos x}$ $= \frac{1 + \cos x - 2\cos^2 x}{1 - \cos x}$ $= \frac{(1 - \cos x)(1 + 2\cos x)}{1 - \cos x} = 1 + 2\cos x$ $\frac{d}{dx} (\frac{\cos x - \cos 2x}{1 - \cos x}) = -2\sin x$

$$3(f) \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} \quad [vi.'ob; \exists.'ob,'b]; \exists.'b]$$

$$\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} = \frac{\sin x + \cos x}{\sqrt{\sin^2 x + \cos^2 x + 2\sin x \cos x}}$$

$$= \frac{\sin x + \cos x}{\sqrt{(\sin x + \cos x)^2}} = \frac{\sin x + \cos x}{\sin x + \cos x} = 1$$

$$\frac{d}{dx}\left(\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}}\right) = 0 \text{ (Ans.)}$$

 $3(g) \, 4 \widehat{a}, \, y = \frac{x \ln x}{\sqrt{1 + x^2}} \qquad [a. ..., a. ...,$

$$= \frac{1}{1+x^{2}} \left[\frac{(1+x^{2})(1+\ln x) - x^{2} \ln x}{\sqrt{1+x^{2}}} \right]$$

$$= \frac{1}{1+x^{2}} \left[\frac{x \ln x}{\sqrt{1+x^{2}}} \right] = \frac{1+x^{2} + \ln x}{(\sqrt{1+x^{2}})^{3}}$$
Rever shows start $x, y = \frac{x \ln x}{\sqrt{1+x^{2}}}$

$$= \frac{x \ln x}{\sqrt{1+x^{2}}} \left[\frac{1}{x} \frac{d}{dx}(x) + \frac{1}{\ln x} \frac{d}{dx}(\ln x) - \frac{1}{\sqrt{1+x^{2}}} \frac{d}{dx}(\sqrt{1+x^{2}}) \right]$$

$$= \frac{x \ln x}{\sqrt{1+x^{2}}} \left[\frac{1}{x} + \frac{1}{\ln x} \cdot \frac{1}{x} - \frac{1}{\sqrt{1+x^{2}}} \cdot \frac{2x}{2\sqrt{1+x^{2}}} \right]$$

$$= \frac{x \ln x}{\sqrt{1+x^{2}}} \left[\frac{1}{x} + \frac{1}{\ln x} \cdot \frac{1}{x} - \frac{1}{\sqrt{1+x^{2}}} \cdot \frac{2x}{2\sqrt{1+x^{2}}} \right]$$

$$= \frac{x \ln x}{\sqrt{1+x^{2}}} \left[\frac{1}{x} + \frac{1}{\ln x} \cdot \frac{1}{x} - \frac{1}{\sqrt{1+x^{2}}} \cdot \frac{2x}{2\sqrt{1+x^{2}}} \right]$$

$$= \frac{x \ln x}{\sqrt{1+x^{2}}} \left[\frac{1}{x} + \frac{1}{\ln x} \cdot \frac{1}{x} - \frac{1}{\sqrt{1+x^{2}}} \cdot \frac{2x}{2\sqrt{1+x^{2}}} \right]$$

$$= \frac{x \ln x}{\sqrt{1+x^{2}}} \left[\frac{1}{x} + \frac{1}{\ln x} \cdot \frac{1}{x} - \frac{1}{\sqrt{1+x^{2}}} \cdot \frac{2x}{2\sqrt{1+x^{2}}} \right]$$

$$= \frac{x \ln x}{\sqrt{1+x^{2}}} \left[\frac{1}{x} + \frac{1}{\ln x} \cdot \frac{1}{x} - \frac{1}{\sqrt{1+x^{2}}} \cdot \frac{2x}{2\sqrt{1+x^{2}}} \right]$$

$$= \frac{x \ln x}{\sqrt{1+x^{2}}} \left[\frac{1}{x} + \frac{1}{\ln x} \cdot \frac{1}{x} - \frac{1}{\sqrt{1+x^{2}}} \cdot \frac{2x}{2\sqrt{1+x^{2}}} \right]$$

$$= \frac{x \ln x}{\sqrt{1+x^{2}}} \left[\frac{1}{x} + \frac{1}{\ln x} \cdot \frac{1}{x} - \frac{1}{\sqrt{1+x^{2}}} \cdot \frac{2x}{2\sqrt{1+x^{2}}} \right]$$

$$= \frac{x \ln x}{\sqrt{1+x^{2}}} \left[\frac{1}{x} + \frac{1}{\ln x} \cdot \frac{1}{x} - \frac{1}{\sqrt{1+x^{2}}} \cdot \frac{2x}{2\sqrt{1+x^{2}}} \right]$$

$$= \frac{x \ln x}{\sqrt{1+x^{2}}} \left[\frac{1}{x} + \frac{1}{\ln x} \cdot \frac{1}{x} - \frac{1}{\sqrt{1+x^{2}}} \cdot \frac{2x}{2\sqrt{1+x^{2}}} \right]$$

$$= \frac{x \ln x}{\sqrt{1+x^{2}}} \left[\frac{1}{x} + \frac{1}{\ln x} \cdot \frac{1}{x} - \frac{1}{\sqrt{1+x^{2}}} \cdot \frac{2x}{2\sqrt{1+x^{2}}} \right]$$

$$= \frac{x \ln x}{\sqrt{1+x^{2}}} \left[\frac{1}{x} + \frac{1}{\ln x} \cdot \frac{1}{\sqrt{1+x^{2}}} \cdot \frac{1}{\sqrt{1+x^{2}}} \cdot \frac{2x}{2\sqrt{1+x^{2}}} \right]$$

$$= \frac{x \ln x}{\sqrt{1+x^{2}}} \left[\frac{1}{x} + \frac{1}{\ln x} \cdot \frac{1}{\sqrt{1+x^{2}}} \cdot \frac{1}$$

 $=a^{px+q}$. lna (p. 1+0)

 $\frac{d}{dx}(a^{px+q}) = p a^{px+q}. lna (Ans.)$

1(c)
$$a^{\cos x}$$
 [5.'oo]
 $\frac{d}{dx}(a^{\cos x}) = a^{\cos x} \cdot \ln a \cdot \frac{d}{dx}(\cos x)$
 $= a^{\cos x} \cdot \ln a \cdot (-\sin x)$
 $= -a^{\cos x} \sin x \cdot \ln a$
1(d) 10^{ln (sin x)} [77.'o², 'o²; 5.'o⁴]
 $\sqrt[4]{R}, y = 10^{\ln (\sin x)} \cdot \ln 10 \frac{d}{dx} \{\ln (\sin x)\}$
 $= 10^{\ln (\sin x)} \cdot \ln 10 \frac{1}{\sin x} \frac{d}{dx} (\sin x)$
 $= 10^{\ln (\sin x)} \cdot \ln 10 \frac{1}{\sin x} (\cos x)$
 $\frac{d}{dx} \{10^{\ln (\sin x)}\} = 10^{\ln (\sin x)} \cdot \ln 10 \cdot \cot x$
1(e) 10^{ln (tan x)}
 $\sqrt[4]{R}, y = 10^{\ln (tan x)}$
 $\frac{dy}{dx} = 10^{\ln (tan x)} \cdot \ln 10 \frac{d}{dx} \{\ln (tan x)\}$
 $= 10^{\ln (tan x)} \cdot \ln 10 \frac{1}{\tan x} \frac{d}{dx} (\tan x)$
 $= 10^{\ln (tan x)} \cdot \ln 10 \frac{\cos x}{\sin x} (\sec^2 x)$
 $= 10^{\ln (\sin x)} \cdot \ln 10 \frac{\cos x}{\sin x} \cdot \frac{1}{\cos^2 x}$
 $= 10^{\ln (\sin x)} \cdot \ln 10 \frac{2}{\sin 2x}$
 $= 2 \csc 2x \cdot 10^{\ln ((\sin x))} \cdot \ln 10$
1(f) $a^{\ln (\cos x)}$
 $\frac{dy}{dx} = a^{\ln (\cos x)} \cdot \ln a \frac{d}{dx} \{\ln (\cos x)\}$
 $= a^{\ln (\cos x)} \cdot \ln a \frac{1}{\cos x} \frac{d}{dx} (\cos x)$
 $= a^{\ln (\cos x)} \cdot \ln a \frac{1}{\cos x} \frac{d}{(\cos x)}$
 $= a^{\ln (\cos x)} \cdot \ln a \frac{1}{\cos x} (-\sin x)$

$$\frac{d}{dx} \{a^{\ln(\cos x)}\} = -\tan x a^{\ln(\cos x)} \ln a$$

$$l(g) e^{2\ln(\tan 5x)} = e^{\ln(\tan 5x)^2} = (\tan 5x)^2 = (\tan 5x)^2$$

$$\frac{d}{dx} \{e^{2\ln(\tan 5x)}\} = 2\tan 5x \frac{d}{dx} (\tan 5x)$$

$$= 2\tan 5x (\sec^2 5x) \frac{d}{dx} (5x)$$

$$= 2\tan 5x (\sec^2 5x (5))$$

$$= 10\tan 5x \sec^2 5x$$

$$l(h) (\ln \sin x^2)^n \qquad [\widehat{n}.'ou, \widehat{n}.'ou]$$

$$4\widehat{n}, y = (\ln \sin x^2)^n \qquad [\widehat{n}.'ou, \widehat{n}.'ou]$$

$$4\widehat{n}, y = (\ln \sin x^2)^{n-1} \frac{d}{dx} (\ln \sin x^2)$$

$$= n (\ln \sin x^2)^{n-1} \frac{1}{\sin x^2} \frac{d}{dx} (\sin x^2)$$

$$= n (\ln \sin x^2)^{n-1} \frac{1}{\sin x^2} (\cos x^2) (2x)$$

$$\frac{d}{dx} \{(\ln \sin x^2)^n\} = nx \cot x^2 (\ln \sin x^2)^{n-1}$$

$$l(i) \cos (e^{\tan^2 2x})$$

$$\frac{d(e^{\tan^2 2x})}{d(\tan^2 2x)} \frac{d(\tan^2 2x)}{d(2x)} \frac{d(\tan 2x)}{dx} \frac{d(2x)}{dx}$$

$$= -\sin (e^{\tan^2 2x}) \cdot e^{\tan^2 2x} \cdot 2\tan 2x \sec^2 2x \cdot 2$$

$$= -4\tan 2x \sec^2 2x \sin (e^{\tan^2 2x}) e^{\tan^2 2x}$$

$$l(j) \frac{d}{dx} (\sin^3 x^2) \qquad [5.'ou]$$

$$= \frac{d(\sin x^2)^2}{d(\sin x^2)} \frac{d(\sin x^2)}{d(x^2)} \frac{d(x^2)}{dx}$$

$$= -3(\sin x^2)^2 \cdot \cos x^2 \cdot 2x$$

$$= 6x \sin^2 x^2 \cos x^2 (Ans.)$$

$$l(k) e^{5\ln(\tan x)} = (\tan x)^5$$

প্রশ্নমালা ÎX E

 $\frac{d}{dx}\left\{e^{5\ln(\tan x)}\right\} = 5\tan^4 x \frac{d}{dx}(\tan x)$ $= 5 \tan^4 x \sec^2 x$ $1(l) x^n \ln(2x)$ 5.'09] মনে করি, $y = x^n \ln(2x)$ $\frac{dy}{dx} = x^{n} \frac{d}{dx} \{ ln(2x) \} + ln(2x) \frac{d}{dx} (x^{n})$ $= x^{n} \frac{1}{2} \frac{d}{dx} (2x) + \ln(2x) \ln x^{n-1}$ $= x^{n-1} \frac{1}{2} (2) + nx^{n-1} \ln(2x)$ $\frac{d}{dx} \{ x^n \ln(2x) \} = x^{n-1} \{ 1 + n \ln(2x) \}$ $1(m) x \sqrt{\sin x}$ णि.'०৮] মনে করি, $v = x\sqrt{\sin x} = x(\sin x)^{\frac{1}{2}}$ $\frac{dy}{dx} = x \frac{d}{dx} \{(\sin x)^{\frac{1}{2}}\} + (\sin x)^{\frac{1}{2}} \frac{d}{dx}(x)$ $= x \cdot \frac{1}{2} (\sin x)^{-\frac{1}{2}} \frac{d}{dx} (\sin x) + \sqrt{\sin x} \cdot 1$ $= \frac{1}{2}x \frac{1}{\sqrt{\sin x}} (\cos x) + \sqrt{\sin x}$ $\frac{d}{dr}(x\sqrt{\sin x}) = \frac{x\cos x + 2\sin x}{2\sqrt{\sin x}}$ $1(n) e^{ax} \tan^2 x$ ঢা.'০১] মনে করি, $y = e^{ax} \tan^2 x$ $\frac{dy}{dx} = e^{ax} \frac{d}{dx} (\tan^2 x) + \tan^2 x \frac{d}{dx} (e^{ax})$ = $e^{ax}(2\tan x)\frac{d}{dx}(\tan x) + \tan^2 x \cdot e^{ax}(a)$ $= e^{ax} \tan x (2 \sec^2 x + a \tan x) \text{ (Ans.)}$ 2.(a) $ln(\cos x)$ [রা.'০৩.'০৫.'১০] $\frac{d}{dx}\{\ln(\cos x)\} = \frac{1}{\cos x}\frac{d}{dx}(\cos x)$ $=\frac{1}{\cos x}(-\sin x) = -\tan x$ (Ans.)

$$\frac{a}{dx} \{ \ln(e^{x} + e^{-x}) \} = \frac{1}{e^{x} + e^{-x}} \frac{a}{dx} (e^{x} + e^{-x}) \\ = \frac{1}{e^{x} + e^{-x}} (e^{x} - e^{-x}) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \\ 2(c) \log_{x} a \qquad [\pi! \cdot o_{5}; 5 \cdot o_{5}; o_{$$

$$\therefore \frac{dy}{dx} = \frac{\ln x \frac{d}{dx} \{\ln(\tan x)\} - \ln(\tan x) \frac{d}{dx} (\ln x)}{(\ln x)^2}}{(\ln x)^2}$$

$$= \frac{\ln x \frac{1}{\tan x} \sec^2 x - \ln(\tan x) \cdot \frac{1}{x}}{(\ln x)^2}$$

$$= \frac{\ln x \frac{\cos x}{\sin x} \frac{1}{\cos^2 x} - \frac{1}{x} \ln(\tan x)}{(\ln x)^2}$$

$$= \frac{\ln x \frac{2}{\sin 2x} - \frac{1}{x} \ln(\tan x)}{(\ln x)^2}$$

$$= \frac{2x \ln x \cos e c 2x - \ln(\tan x)}{(\ln x)^2} \text{ (Ans.)}$$
2(g) $ln(\sin 2x)$ [v].'ss; fr.'se]

$$\frac{d}{dx} \{ ln(\sin 2x)\} = \frac{1}{\sin 2x} \frac{d}{dx} (\sin 2x)$$

$$= \frac{1}{\sin 2x} (\cos 2x) \frac{d}{dx} (2x) = 2 \cot 2x$$
(h) $\ln(\sin x^2)$ [st.'ss]

$$\frac{d}{dx} \{ \ln(\sin x^2)\} = \frac{1}{\sin x^2} \frac{d}{dx} (\sin x^2)$$

$$= \frac{1}{\sin x^2} (\cos x^2) \frac{d}{dx} (x^2) = 2x \cot x^2$$
3(a) $ln [x - \sqrt{x^2 - 1}]$ [st. 'os; st.'oe]

$$\frac{d}{dx} \{ ln(x - \sqrt{x^2 - 1}) \}$$

$$= \frac{1}{x - \sqrt{x^2 - 1}} \frac{d}{1 - \frac{1}{2\sqrt{x^2 - 1}} (2x)}$$

$$= \frac{1}{\sqrt{x^2 - 1}} \{ \frac{\sqrt{x^2 - 1} - x}{\sqrt{x^2 - 1}} \}$$

$$= -\frac{1}{\sqrt{x^2 - 1}} (Ans.)$$

3(b)
$$ln [x - \sqrt{x^2 + 1}]$$
 [Al. 'o.2; \mathfrak{F} , 'o.9, '50]

$$\frac{d}{dx} \{ ln (x - \sqrt{x^2 + 1}) \}$$

$$= \frac{1}{x - \sqrt{x^2 + 1}} \frac{d}{dx} (x - \sqrt{x^2 + 1})$$

$$= \frac{1}{x - \sqrt{x^2 + 1}} \{ 1 - \frac{1}{2\sqrt{x^2 + 1}} (2x) \}$$

$$= \frac{1}{x - \sqrt{x^2 + 1}} \{ \frac{\sqrt{x^2 + 1} - x}{\sqrt{x^2 + 1}} \}$$

$$= -\frac{1}{\sqrt{x^2 + 1}} (Ans.)$$
3(c) $ln (\sqrt{x - a} + \sqrt{x - b})$ [\mathfrak{F} , 'o.5]

$$\frac{d}{dx} \{ ln (\sqrt{x - a} + \sqrt{x - b}) \}$$

$$= \frac{1}{\sqrt{x - a} + \sqrt{x - b}} \{ \frac{1}{2\sqrt{x - a}} + \frac{1}{2\sqrt{x - b}} \}$$

$$= \frac{1}{\sqrt{x - a} + \sqrt{x - b}} \{ \frac{1}{2\sqrt{x - a}} + \frac{1}{2\sqrt{x - b}} \}$$

$$= \frac{1}{\sqrt{x - a} + \sqrt{x - b}} \{ \frac{\sqrt{x - b} + \sqrt{x - b}}{2\sqrt{x - a}\sqrt{x - b}} \}$$

$$= \frac{1}{2\sqrt{(x - a)(x - b)}} (Ans.)$$
3(d) $ln \left\{ e^x \left(\frac{x - 1}{x + 1} \right)^{3/2} \right\}$ [\mathfrak{F} .'oo]
4(Al, y = ln $\left\{ e^x \left(\frac{x - 1}{x + 1} \right)^{3/2} \right\}$

$$= ln e^x + \frac{3}{2} \{ ln (x - 1) - ln (x + 1) \}$$

$$= x + \frac{3}{2} \{ ln (x - 1) - ln (x + 1) \}$$

$$= 1 + \frac{3}{2} \{ \frac{x + 1 - x + 1}{(x - 1)(x + 1)} \}$$

-

$$= 1 + \frac{3}{2} \{ \frac{2}{x^2 - 1} \} = \frac{x^2 - 1 + 3}{x^2 - 1}$$

$$= \frac{x^2 + 2}{x^2 - 1} \text{ (Ans.)}$$
www.boighar.com
4. (a) $\frac{\tan x - \cot x}{\tan x + \cot x}$ [5.'o9; \forall .'ob]
 $\frac{\tan x - \cot x}{\tan x + \cot x} = \frac{\frac{\sin x}{\cos x} - \frac{\cos x}{\sin x}}{\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}}$

$$= \frac{\sin^2 x - \cos^2 x}{\sin^2 x + \cos^2 x} = \frac{-\cos 2x}{1} = -\cos 2x$$

 $\frac{d}{dx} (\frac{\tan x - \cot x}{\tan x + \cot x}) = \sin 2x.2 = 2\sin 2x$
4(b) $\left(\frac{\sin 2x}{1 + \cos 2x}\right)^2 = \left(\frac{\sin x}{\cos x}\right)^2 = \tan^2 x$
 $\frac{d}{dx} \left(\frac{\sin 2x}{1 + \cos 2x}\right)^2 = 2 \tan x \frac{d}{dx} (\tan x)$

$$= 2 \tan x \sec^2 x$$

4(c) $\ln \sqrt{\frac{1 - \cos x}{1 + \cos x}}$ [5.'o9,'30,'31.'33; $\frac{\pi}{2}$ '38]

$$= \ln \sqrt{\frac{2\sin^2 \frac{x}{2}}{2\cos^2 \frac{x}{2}}} = \ln \sqrt{\tan^2 \frac{x}{2}} = \ln \tan \frac{x}{2}$$

 $\frac{d}{dx} \{ \ln \sqrt{\frac{1 - \cos x}{1 + \cos x}} \} = \frac{1}{\tan \frac{x}{2}} \sec^2 \frac{x}{2} \cdot \frac{1}{2}$

$$= \frac{1}{2} \frac{\cos \frac{x}{2}}{\sin \frac{x}{2}} \frac{1}{\cos^2 \frac{x}{2}} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}}$$

$$= \frac{1}{\sin x} = \csc x \text{ (Ans.)}$$

4(d)
$$\sqrt{\frac{1+x}{1-x}}$$
 [a.e.a. begin and its]
 $4fa, y = \sqrt{\frac{1+x}{1-x}} = \frac{\sqrt{1+x}}{\sqrt{1-x}}$
 $\frac{dy}{dx} = \frac{\sqrt{1-x} \frac{d}{dx} (\sqrt{1+x}) - \sqrt{1+x} \frac{d}{dx} (\sqrt{1-x})}{(\sqrt{1-x})^2}$
 $= \frac{\sqrt{1-x} \frac{1}{2\sqrt{1+x}} \cdot 1 - \sqrt{1+x} \frac{1}{2\sqrt{1-x}} (-1)}{1-x}$
 $= \frac{\sqrt{1-x} \frac{1}{2\sqrt{1+x}} \cdot 1 - \sqrt{1+x} \frac{1}{2\sqrt{1-x}} (-1)}{1-x}$
 $= \frac{\sqrt{1-x} \frac{1}{2\sqrt{1+x}} \cdot 1 - \sqrt{1+x} \frac{1}{2\sqrt{1-x}} (-1)}{1-x}$
 $= \frac{1-x+1+x}{2(1-x)\sqrt{(1+x)(1-x)}} = \frac{2}{2(1-x)\sqrt{1-x^2}}$
 $\frac{d}{dx} (\sqrt{\frac{1+x}{1-x}}) = \frac{1}{(1-x)\sqrt{1-x^2}}$
4.(e) $\ln \sqrt[3]{\frac{1-\cos x}{1+\cos x}}$ [fr.'54; g.e.a.'od]
 $= \ln \left(\frac{2\sin^2(x/2)}{2\cos^2(x/2)}\right)^{1/3} = \frac{1}{3}\ln \tan^2 \frac{x}{2}$
 $= \frac{2}{3}\ln \tan \frac{x}{2}$
 $\frac{d}{dx} (\ln \sqrt[3]{\frac{1-\cos x}{1+\cos x}}) = \frac{2}{3}\frac{\sec^2(x/2)}{\tan(x/2)} \cdot \frac{1}{2}$
 $= \frac{1}{3}\frac{\cos \frac{x}{2}}{\cos^2 \frac{x}{2} \sin \frac{x}{2}} = \frac{2}{3}\frac{1}{2\cos \frac{x}{2} \sin \frac{x}{2}}$
 $= \frac{2}{3}\frac{1}{\sin x} = \frac{2}{3}\cos ex$
5. (a) $\sin^2 [ln (\sec x)]$ [at.'oa,'se; $\mathbf{P}, [\mathbf{A}, \mathbf{A}]$
 $4fa, y = \sin^2 [ln (\sec x)]$

উচ্চতর গ<u>ণিত: ১ম</u> পত্র সমাধান

.

.

$$\frac{d\{\ln(\sec x)\}}{d(\sec x)} \frac{d(\sec x)}{dx}$$

$$= 2 \sin[\ln(\sec x)] \cos[\ln(\sec x)] \frac{1}{\sec x}$$

$$\sec x \tan x$$

$$= \tan x \sin[2\ln(\sec x)]$$
5(b) $\sin^{2}\{\ln(x^{2})\}$

$$[\mathbb{A}.'\circ9,'ob; 5.'ob,'bo; 51, fA,'58]$$

$$\frac{d}{dx} [\sin^{2}\{\ln(x^{2})\}] = \frac{d[\sin\{\ln(x^{2})\}]^{2}}{d[\sin(x^{2})]^{2}}$$

$$\frac{d[\sin\{\ln(x^{2})\}]}{d[\ln(x^{2})]} \frac{d[\ln(x^{2})]}{d(x^{2})} \frac{d(x^{2})}{dx}$$

$$= 2 \sin\{\ln(x^{2})\} \cos\{\ln(x^{2})\} \frac{1}{x^{2}} \cdot 2x$$

$$= \frac{2}{x} \sin\{2\ln(x^{2})\} = \frac{2}{x} \sin\{4\ln(x)\}$$
5(c) $\sqrt{\sin\sqrt{x}}$

$$[5.'ob; 51.'oc,'o9]$$

$$\frac{d}{dx} (\sqrt{\sin\sqrt{x}})$$

$$= \frac{d(\sqrt{\sin\sqrt{x}})}{d(\sin\sqrt{x})} \frac{d(\sin\sqrt{x})}{d(\sqrt{x})} \frac{d(\sqrt{x})}{dx}$$

$$= \frac{1}{2\sqrt{\sin\sqrt{x}}} \cos\sqrt{x} \cdot \frac{1}{2\sqrt{x}}$$

$$= \frac{\cos\sqrt{x}}{4\sqrt{x}\sqrt{\sin\sqrt{x}}} (Ans.)$$
5(d) $\cos(\ln x) + \ln(\tan x)$

$$[\mathbb{A}.'ob; fA.'ob]$$

$$\frac{d}{dx} \{\cos(\ln x)\} + \frac{d}{dx} \{\ln(\tan x)\}$$

$$= -\sin(\ln x) \cdot \frac{1}{x} + \frac{1}{\tan x} \cdot \sec^{2} x$$

$$= -\frac{1}{x} \sin(\ln x) + \frac{\cos x}{\sin x} \frac{1}{\cos^{2} x}$$

$$= \frac{2}{2 \sin x \cos x} - \frac{1}{x} \sin (\ln x)$$

= 2 cesec 2x $-\frac{1}{x} \sin (\ln x)$
5(e) 2cosec2x cos (ln tanx) [al.'ob]
 $\frac{d}{dx} \{2 \operatorname{cosec} 2x \cos (\ln \tan x)\}$
= 2 [cosec 2x $\frac{d}{dx} \{\cos (\ln \tan x)\} + \cos (\ln \tan x) \frac{d}{dx} (\operatorname{cosec} 2x)]$
= 2 [cosec 2x { - sin (ln tanx)}. $\frac{1}{\tan x}$.
sec² x +cos(lntanx) (-cosec2x cot2x. 2)]
= 2 [- cosec 2x sin (ln tanx)]. $\frac{\cos x}{\sin x}$.
 $\frac{1}{\cos^2 x} - 2\operatorname{cosec} 2x \cot 2x \cos (\ln \tan x)]$
= 2[- cosec 2x sin (ln tanx)] $\frac{2}{2 \sin x \cos x}$
- 2cosec2x cot2x cos(lntanx)]
= -4[cosec² 2x sin (ln tanx)]
+ cosec 2x cot 2x cos(ln tanx)]
= -4[cosec² 2x sin (ln tanx)]
= $\frac{1}{3} \{1 + \tan(1 + \sqrt{x})\}^{\frac{1}{3}-1} \{0 + \sec^2(1 + \sqrt{x})\}$
 $(0 + \frac{1}{2\sqrt{x}})$
= $\frac{1}{6\sqrt{x}} \{1 + \tan(1 + \sqrt{x})\}^{-\frac{2}{3}} \sec^2(1 + \sqrt{x})\}$
 $(0 + \frac{1}{2\sqrt{x}})$
= $\frac{1}{6\sqrt{x}} \{1 + \tan(1 + \sqrt{x})\}^{-\frac{2}{3}} \sec^2(1 + \sqrt{x})\}$
 $\frac{1}{6\sqrt{x}} \left(\sqrt{\tan e^{x^2}}\right) \frac{1}{6(x^2)} \frac{1}{6(x^2)} \frac{1}{6(x^2)}}{\frac{1}{6(x^2)}} \frac{1}{6(x^2)} \frac{1}{6(x^2)}}{\frac{1}{6(x^2)}} \frac{1}{6(x^2)} \frac{1}{6(x^2)}}{\frac{1}{6(x^2)}} \frac{1}{6(x^2)} \frac{1}{6(x^2)}}{\frac{1}{6(x^2)}} \frac{1}{6(x^2)} \frac{1}{6(x^2)}}{\frac{1}{6(x^2)}} \frac{1}{6(x^2)} \frac{1}{6(x^2)}}{\frac{1}{6(x^2)}} \frac{1}{6(x^2)}}{\frac{1}{6(x^2)}} \frac{1}{6(x^2)} \frac{1}{6(x^2)}}{\frac{1}{6(x^2)}} \frac{1}{6(x^2)}}{\frac{1}{6(x^2)}} \frac{1}{6(x^2)}}{\frac{1}{6(x^2)}}$

.

$$= \frac{1}{2\sqrt{\tan e^{x^2}}} \sec^2 e^x \cdot e^x \cdot 2x = \frac{xe^x \sec^2 e^x}{\sqrt{\tan e^x}}$$

$$= \frac{1}{2\sqrt{\tan e^{x^2}}} \sec^2 e^x \cdot e^x \cdot 2x = \frac{xe^x \sec^2 e^x}{\sqrt{\tan e^x}}$$

$$= \frac{1}{2\sqrt{\tan e^x}} \exp^2 e^x \cdot e^x \cdot 2x = \frac{xe^x \sec^2 e^x}{\sqrt{\tan e^x}}$$

$$= 2\sin\{\log(\sec x)\} \cdot \cos\{\log(\sec x)\} \times \frac{1}{4x} \{\log(\sec x)\}$$

$$= \sin\{2\log(\sec x)\} \cdot \cos\{\log(\sec x)\} \times \frac{1}{\sec x \ln 10} \frac{d}{dx} (\sec x)$$

$$= \frac{\sin\{2\log(\sec x)\} \cdot \tan x}{\ln 10}$$

$$= \frac{\sin\{2\log(\sec x)\} \cdot \tan x}{\ln 10}$$

$$= \cos \sqrt{x} \cdot \frac{d}{dx} (\sqrt{x})$$

$$= \cos \sqrt{x} \cdot \frac{1}{2\sqrt{x}} = \frac{\cos \sqrt{x}}{2\sqrt{x}}$$

$$= \frac{\sin (2\log(\cos x)) \cdot \sin x}{\sin (\cos x)}$$

$$= \frac{\sin (2\log(\sec x))}{\sin (\cos x)} = \frac{\sin (2\log(\sec x))}{\sin (\cos x)}$$

$$= \frac{\sin (2\log(\cos x))}{\sin (\cos x)}$$

$$= \frac{\sin (2$$

$$\frac{d}{dx}(\sqrt{e^{\sqrt{x}}}) = \frac{1}{2\sqrt{e^{\sqrt{x}}}} \frac{d}{dx}(e^{\sqrt{x}})$$

$$= \frac{1}{2\sqrt{e^{\sqrt{x}}}} e^{\sqrt{x}} \frac{d}{dx}(\sqrt{x})$$

$$= \frac{(e^{\sqrt{x}})^{1-\frac{1}{2}}}{2} \cdot \frac{1}{2\sqrt{x}} = \frac{\sqrt{e^{\sqrt{x}}}}{4\sqrt{x}} \text{ (Ans.)}$$

$$6.(c) \frac{1}{\sqrt{x+1} + \sqrt{x+2}} \text{ [5.'oo]}$$

$$= \frac{\sqrt{x+1} - \sqrt{x+2}}{(\sqrt{x+1} + \sqrt{x+2})(\sqrt{x+1} - \sqrt{x+2})}$$

$$= \frac{\sqrt{x+1} - \sqrt{x+2}}{(x+1) - \sqrt{x+2}} = \sqrt{x+2} - \sqrt{x+1}$$

$$\therefore \frac{d}{dx}(\frac{1}{\sqrt{x+1} + \sqrt{x+2}}) = \frac{1}{2\sqrt{x+2}} - \frac{1}{2\sqrt{x+1}}$$

$$= -\frac{\sqrt{x+2} - \sqrt{x+1}}{2\sqrt{(x+2)(x+1)}} \text{ (Ans.)}$$

$$6(d) \frac{d}{dx}\{\frac{(x+1)^2\sqrt{x-1}}{(x+4)^3e^x}\} \text{ [$\frac{1}{x}, 'ob]}$$

$$= \frac{(x+1)^2\sqrt{x-1}}{(x+4)^3e^x}[\frac{1}{(x+1)^2}\frac{d}{dx}(x+1)^2 + \frac{1}{\sqrt{x-1}}\frac{d}{dx}(\sqrt{x-1}) - \frac{1}{(x+4)^3}\frac{d}{dx}(x+4)^3}$$

$$- \frac{1}{e^x}\frac{d}{dx}(e^x)]$$

$$= \frac{(x+1)^2\sqrt{x-1}}{(x+4)^3e^x}[\frac{2(x+1)}{(x+1)^2} + \frac{1}{\sqrt{x-1}}\frac{1}{2\sqrt{x-1}} - \frac{3(x+4)^2}{(x+4)^3} - \frac{1}{e^x}(e^x)]$$

$$= \frac{(x+1)^2\sqrt{x-1}}{(x+4)^3e^x}[\frac{2}{x+1} + \frac{1}{2(x-1)} - \frac{3}{x+4} - 1]$$

$$7.(a) \frac{\ln(\cos x)}{x} \text{ [$t.'ob}; $ft.'obj;'ob,'^xb; $t.'so]}$$

 $=\frac{x\frac{d}{dx}\{\ln(\cos x) - \ln(\cos x)\frac{d}{dx}(x)\}}{x}$ $=\frac{x\frac{1}{\cos x}(-\sin x)-\ln(\cos x).1}{2}$ $=\frac{\{x\tan x+\ln(\cos x)\right)}{\frac{1}{2}}$ 7(b) ধরি , y = $\frac{e^{-3x}(3x+5)}{7x-1}$ [য.'০৫] $\ln y = \ln e^{-3x} + \ln (3x + 5) - \ln(7x - 1)$ $= -3x + \ln (3x + 5) - \ln(7x - 1)$ ইহাকে এর সাপেক্ষে অন্তরীকরণ করে পাই. $\frac{1}{y}\frac{dy}{dx} = -3 + \frac{1}{3x+5}(3) - \frac{1}{7x-1}(7)$ $=\frac{-3(21x^2+32x-5)+21x-3-21x-35}{(3x+5)(7x-1)}$ $\Rightarrow \frac{dy}{dx} = y \frac{-63x^2 - 96x + 15 - 38}{(3x + 5)(7x - 1)}$ $\Rightarrow \frac{dy}{dx} = \frac{e^{-3x}(3x+5)}{7x-1} \cdot \frac{-(63x^2+96x+23)}{(3x+5)(7x-1)}$ $=\frac{-(63x^2+96x+23)e^{-3x}}{(7x-1)^2}$ 7. (c) $\frac{x^4}{\ln x}$ ঢা. '০৪] $\frac{d}{dx}\left(\frac{x^4}{\ln x}\right) = \frac{\ln x \frac{d}{dx}(x^4) - x^4 \frac{d}{dx}(\ln x)}{(\ln x)^2}$ $= \frac{\ln x (4x^3) - x^4 \frac{1}{x}}{(\ln x)^2} = \frac{x^3 (4 \ln x - 1)}{(\ln x)^2}$ 8. (a) $\cos x^{\circ}$ রো. '০৪] $\cos x^\circ = \cos \frac{\pi x}{100}$ $\frac{d}{dx}(\cos x^{\circ}) = -\sin\frac{\pi x}{180} \cdot \frac{d}{dx}(\frac{\pi x}{180})$ $= -\sin x^{\circ} \cdot \frac{\pi}{180} = -\frac{\pi}{180}\sin x^{\circ}$

উচ্চতর গণিত: ১ম পত্র সমাধান 8(i) $e^{5x} \sin x^{\circ}$ [সি.'০২] $= e^{5x} \sin \frac{\pi x}{100}$ $\frac{d}{dx}(e^{5x}\sin\frac{\pi x}{180}) = e^{5x} \cdot \cos\frac{\pi x}{180}$ $\frac{d}{dx}(\frac{\pi x}{180}) + \sin \frac{\pi x}{180}$. e^{5x} $\frac{d}{dx}(5x)$ $= e^{5x} \cdot \cos x^{\circ} \cdot (\frac{\pi}{180}) + \sin x^{\circ} \cdot e^{5x} \cdot 5$ $= e^{5x}(\frac{\pi}{100}\cos x^{\circ} + 5\sin x^{\circ})$ 8(c) $2x^{\circ}\cos 3x^{\circ}$ [5.'00; य.'00; \overline{a} .'30,'30; সি. '০৬.'০৮,'১১; ব., রা.'০৭,'১৪; দি.'০৯,'১১] $2x^{\circ}\cos 3x^{\circ} = 2\frac{\pi x}{180}\cos \frac{3\pi x}{180}$ $\frac{d}{dx}(2 \ x^{\circ} \cos \ 3x^{\circ}) = \frac{\pi}{90} [x \ (- \sin \frac{3\pi x}{180}).$ $\frac{d}{dx}(\frac{3\pi x}{180}) + \cos\frac{3\pi x}{180}\frac{d}{dx}(x)$] $=\frac{\pi}{90}[x(-\sin 3x^\circ),(\frac{3\pi}{180})+\cos 3x^\circ.1]$ $= \frac{\pi}{90}(\cos 3x^\circ - \frac{\pi}{60}x\sin 3x^\circ)$ প্রশ্নমালা IX F 1. (a) $\sqrt{\sin^{-1} r^5}$ রি.'08, '০৬] $\frac{d}{dx}(\sqrt{\sin^{-1}x^5}) = \frac{1}{2\sqrt{\sin^{-1}x^5}} \frac{d}{dx}(\sin^{-1}x^5)$ $=\frac{1}{2\sqrt{\sin^{-1}x^5}}\frac{1}{\sqrt{1-(x^5)^2}}\frac{d}{dx}(x^5)$ $= \frac{1}{2\sqrt{\sin^{-1} x^5} \sqrt{1 - x^{10}}} (5 x^4)$ $=\frac{5x^4}{2\sqrt{\sin^{-1}x^5}\sqrt{1-x^{10}}}$

> 1.(b) $\tan^{-1}(\sin e^x)$ [5. 'o¢; 4. 'o¢; 4.'ob] $\frac{d}{dx} \{ \tan^{-1}(\sin e^x) \} = \frac{d \{ \tan^{-1}(\sin e^x) \}}{d(\sin e^x)}$

 $\frac{d(\sin e^x)}{d(e^x)}\frac{d(e^x)}{dx}$ $= \frac{1}{1 + (\sin e^x)^2} (\cos e^x) \cdot e^x = \frac{e^x \cos e^x}{1 + \sin^2 e^x}$ 1(c) $\sin^{-1}(\sin e^x) = e^x$ [**5**.'08] $\frac{d}{dx}\left\{\sin^{-1}(\sin e^x)\right\} = \frac{d}{dx}(e^x) = e^x$ 1(d) $\frac{d}{dx}(\sin^{-1}\sqrt{xe^x})$ $= \frac{1}{\sqrt{1 - (\sqrt{xe^x})^2}} \frac{d}{dx}(\sqrt{xe^x})$ $=\frac{1}{\sqrt{1-xe^x}}\frac{1}{2\sqrt{xe^x}}\frac{d}{dx}(xe^x)$ $=\frac{1}{2\sqrt{xe^{x}(1-xe^{x})}}(xe^{x}+e^{x})$ $=\frac{e^{x}(1+x)}{2\sqrt{xe^{x}(1-xe^{x})}}$ (Ans.) $1(e) \sin^{-1}(\tan^{-1}x)$ [সি.'০১] $\frac{d}{dr} \{ \sin^{-1}(\tan^{-1}x) \}$ $= \frac{1}{\sqrt{1 - (\tan^{-1} x)^2}} \frac{d}{dx} (\tan^{-1} x)$ $=\frac{1}{\sqrt{1-(\tan^{-1}x)^2}}\frac{1}{1+x^2}$ $=\frac{1}{(1+r^2)\sqrt{1-(tan^{-1}r)^2}}$ 1(f) $\frac{d}{dx} \{ \tan^{-1}(\sqrt{\frac{a-b}{a+b}} \tan \frac{x}{2}) \}$ $= \frac{1}{1 + \frac{a-b}{a+b}\tan^2\frac{x}{2}}\sqrt{\frac{a-b}{a+b}}\frac{d}{dx}(\tan\frac{x}{2})$

$$= \frac{1}{1 + \frac{(a-b)\sin^{2}(x/2)}{(a+b)\cos^{2}(x/2)}} \sqrt{\frac{a-b}{a+b}} \sec^{2}\frac{x}{2} \cdot \frac{1}{2}$$

$$= \frac{(a+b)\cos^{2}(x/2)}{a(\cos^{2}\frac{x}{2} + \sin^{2}\frac{x}{2}) + b(\cos^{2}\frac{x}{2} - \sin^{2}\frac{x}{2})}$$

$$= \frac{(a+b)\cos^{2}(x/2)}{2(a+b\cos x)} = \frac{1}{2\sqrt{a+b}} \frac{1}{\cos^{2}(x/2)}$$

$$= \frac{\sqrt{(a-b)(a+b)}}{2(a+b\cos x)} = \frac{\sqrt{a^{2}-b^{2}}}{2(a+b\cos x)}$$
1.(g) $\frac{d}{dx} \{ \sin^{-1}(\frac{a+b\cos x}{b+a\cos x}) \}$

$$= \frac{1}{\sqrt{1 - (\frac{a+b\cos x}{b+a\cos x})^{2}}}$$

$$\frac{(b+a\cos x)(-b\sin x) - (a+b\cos x)(-a\sin x)}{(b+a\cos x)^{2}}$$

$$= \frac{b+a\cos x}{\sqrt{(b+a\cos x)^{2} - (a+b\cos x)^{2}}}$$

$$= \frac{(a^{2}-b^{2})\sin x}{(b+a\cos x)\sqrt{b^{2} + a^{2}\cos^{2}x - a^{2} - b^{2}\cos^{2}x}}$$

$$= \frac{-(b^{2}-a^{2})\sin x}{(b+a\cos x)\sqrt{(b^{2}-a^{2})(1-\cos^{2}x)}}$$

$$= \frac{-(b^{2}-a^{2})\sin x}{(b+a\cos x)\sqrt{(b^{2}-a^{2})\sin^{2}x}}$$

$$= \frac{-\sqrt{b^{2}-a^{2}}}{b+a\cos x}$$
1(h) $4\pi, y = \sec^{-1}(\frac{x^{2}+1}{x^{2}-1}) = -\sec^{-1}\frac{1+x^{2}}{1-x^{2}}$

উচ্চতর গণিত: ১ম পত্র সমাধান বইঘর.কম

 $= -\cos^{-1}\frac{1-x^2}{1+x^2} = -2\tan^{-1}x$ $\frac{dy}{dx} = -2\frac{d}{dx}(\tan^{-1}x) = \frac{-2}{1+x^2}$ 2. (a) $x \sin^{-1}x$ [সি.'০১] $\frac{d}{dx}(x\sin^{-1}x) = x\frac{d}{dx}(\sin^{-1}x) + \sin^{-1}x\frac{d}{dx}(x)$ $=x \frac{1}{\sqrt{1-x^2}} + \sin^{-1} x.1$ $=\frac{x}{\sqrt{1-x^2}}+\sin^{-1}x$ 2(b) x² sin⁻¹(1-x) [त्रा.'०७; त.'०৮; ज.')8] $\frac{d}{dx} \{x^2 \sin^{-1}(1-x)\}$ $= x^{2} \frac{d}{dx} \{ \sin^{-1}(1-x) \} + \sin^{-1}(1-x) \frac{d}{dx} (x^{2})$ $= x^{2} \frac{1}{\sqrt{1 - (1 - x)^{2}}} (-1) + \sin^{-1}(1 - x) . 2x$ $= -\frac{x^2}{\sqrt{1-1+2x-x^2}} + 2x\sin^{-1}(1-x)$ $=2x\sin^{-1}(1-x) - \frac{x^2}{\sqrt{2x-x^2}}$ 2(c) $\frac{d}{dx} \{e^x \sin^{-1}x\}$ যি.'০৪] $= e^{x} \frac{d}{dx} (\sin^{-1}x) + \sin^{-1}x \frac{d}{dx} (e^{x})$ $= e^{x} \frac{1}{\sqrt{1-x^{2}}} + \sin^{-1}x \cdot e^{x}$ $= e^{x} \left(\frac{1}{\sqrt{1-x^{2}}} + \sin^{-1}x \right)$ 2.(d) $\tan^{-1}(\frac{x^2}{a^x}) + \tan^{-1}(\frac{e^x}{r^2})$ $= \tan^{-1} \frac{\frac{x^2}{e^x} + \frac{e^x}{x^2}}{1 - \frac{x^2}{r} \cdot \frac{e^x}{x^2}} = \tan^{-1} \frac{\frac{x^2}{e^x} + \frac{e^x}{x^2}}{1 - 1}$

$$= \cot^{-1} \frac{1-1}{\frac{x^2}{e^x} + \frac{e^x}{x^2}} = \cot^{-1} 0 = \frac{\pi}{2}$$

$$\therefore \frac{d}{dx} \{ \tan^{-1} (\frac{x^2}{e^x}) + \tan^{-1} (\frac{e^x}{x^2}) \} = \frac{d}{dx} (\frac{\pi}{2}) = 0$$

2(e) $\frac{d}{dx} (\tan x \sin^{-1} x)$ [51.'od]

$$= \tan x \frac{d}{dx} (\sin^{-1} x) + \sin^{-1} x \frac{d}{dx} (\tan x)$$

$$= \tan x \frac{1}{\sqrt{1-x^2}} + \sin^{-1} x \cdot (\sec^2 x)$$

$$= \frac{\tan x}{\sqrt{1-x^2}} + \sec^2 x \sin^{-1} x.$$

2(f) $(x^2 + 1) \tan^{-1} x - x$ [51., 31.'55; 32., 57.'52]
Area $\Rightarrow fa, y = (x^2 + 1) \tan^{-1} x - x$
 $\frac{dy}{dx} = (x^2 + 1) \frac{d}{dx} (\tan^{-1} x) + \tan^{-1} x \frac{d}{dx} (x^2 + 1) - \frac{d}{dx} (x)$

$$= (x^2 + 1) \frac{1}{1+x^2} + \tan^{-1} x \times (2x) - 1$$

$$= 1 + 2x \tan^{-1} x - 1$$

 $\frac{d}{dx} \{ (x^2 + 1) \tan^{-1} x - x \} = 2x \tan^{-1} x$
3.(a) $\tan^{-1} \frac{1-x}{1+x}$ [52.'53]

$$= \tan^{-1} \frac{1-x}{1+1+x} = \tan^{-1} (1) - \tan^{-1} x$$

$$= \frac{\pi}{4} - \tan^{-1} x$$

 $\frac{d}{dx} (\tan^{-1} \frac{1-x}{1+x}) = \frac{d}{dx} (\frac{\pi}{4} - \tan^{-1} x)$

$$= 0 - \frac{1}{1+x^2} = -\frac{1}{1+x^2} (Ans.)$$

3(b) $\cot^{-1} \frac{1-x}{1+x}$ [5.'53,'50; 31.'50]

 $= \tan^{-1} \frac{1+x}{1-x} = \tan^{-1} \frac{1+x}{1-1-x}$ $= \tan^{-1}(1) + \tan^{-1} x = \frac{\pi}{4} + \tan^{-1} x$:. $\frac{d}{dx} \{ \cot^{-1} \frac{1-x}{1+x} \} = \frac{d}{dx} (\frac{\pi}{4} + \tan^{-1} x)$ $=0+\frac{1}{1+x^2}=\frac{1}{1+x^2}$ 3(c) $\tan^{-1} \frac{1 - \sqrt{x}}{1 + \sqrt{x}}$ [क्.'००] $= \tan^{-1} \frac{1 - \sqrt{x}}{1 + 1 \sqrt{x}} = \tan^{-1}(1) - \tan^{-1} \sqrt{x}$ $=\frac{\pi}{4}-\tan^{-1}\sqrt{x}$ $\frac{d}{dx}$ { tan⁻¹ $\frac{1-\sqrt{x}}{1+\sqrt{x}}$ }= $\frac{d}{dx}(\frac{\pi}{4}-\tan^{-1}\sqrt{x})$ $=0-\frac{1}{1+(\sqrt{x})^2}\frac{d}{dx}(\sqrt{x})$ $=-\frac{1}{1+r}\cdot\frac{1}{2\sqrt{r}}=-\frac{1}{2\sqrt{r}(1+r)}$ $3(d) \tan^{-1} \frac{a+bx}{a-bx}$ [4.'02,'55; 51.'03,'55; 4.'03; চ. '১২; কু. '১৩ প্র.ড.প. '০৬] $= \tan^{-1} \frac{a(1+\frac{b}{a}x)}{a(1-\frac{b}{a}x)} = \tan^{-1} \frac{1+\frac{b}{a}x}{1-1.\frac{b}{a}x}$ $= \tan^{-1}(1) - \tan^{-1}(\frac{b}{a}x) = \frac{\pi}{4} - \tan^{-1}(\frac{b}{a}x)$ $\therefore \frac{d}{dx} \{ \tan^{-1} \frac{a+bx}{a-bx} \} = \frac{d}{dx} \{ \frac{\pi}{4} - \tan^{-1} (\frac{b}{a}x) \}$ $=0-\frac{1}{1+(\frac{b}{a}x)^2}\frac{d}{dx}(\frac{b}{a}x)$ $=\frac{a^2}{a^2+b^2x^2}, \frac{b}{a}=\frac{ab}{a^2+b^2x^2}$ 3(e) $\tan^{-1} \frac{a \cos x - b \sin x}{b \cos x + a \sin x}$ [প্র.ভ.প. '১৬]

$$= \tan^{-1} \frac{a \cos x}{b \cos x} - \frac{b \sin x}{b \cos x} = \tan^{-1} \frac{a}{b} - \tan x = \tan^{-1} \frac{a}{b} - \tan x$$

$$= \tan^{-1} \frac{a}{b} - \tan^{-1} \tan x = \tan^{-1} \frac{a}{b} - x$$

$$= \tan^{-1} \frac{a}{b} - \tan^{-1} \tan x = \tan^{-1} \frac{a}{b} - x$$

$$= \tan^{-1} \frac{a}{b} - \tan^{-1} \tan x = \tan^{-1} \frac{a}{b} - x$$

$$= \tan^{-1} \frac{1 - x}{1 - x} \quad [\overline{v}. 'ov; \overline{N}. 'os; \overline{a}t. \overline{v}. ov]$$

$$= \tan^{-1} \frac{1 - x}{1 + x} = \tan^{-1} \frac{1 - x}{1 + 1 x}$$

$$= \tan^{-1} (1) - \tan^{-1} x = \frac{\pi}{4} - \tan^{-1} x$$

$$= \tan^{-1} (1) - \tan^{-1} x = \frac{\pi}{4} - \tan^{-1} x$$

$$= 0 - \frac{1}{1 + x^{2}} = -\frac{1}{1 + x^{2}} \quad (Ans.)$$

$$3(g) \sqrt[4]{a}, y = \cos^{-1} (\frac{1 + x}{2})^{1/2} \quad [\overline{v}.'ov]$$

$$= \cos^{-1} \sqrt{\frac{1}{2}} (1 + \cos \theta)^{1/2} = \cos^{-1} x \, d^{-1} x$$

$$= \cos^{-1} \cos \frac{\theta}{2} = \frac{\theta}{2} = \frac{1}{2} \cos^{-1} x$$

$$= \frac{1}{-2\sqrt{1 - x^{2}}}$$

$$3(h) \tan^{-1} \frac{a + bx}{b - ax} \quad [\overline{a}.'ov] \sqrt[4]{a} + \tan^{-1}(x)$$

$$= \frac{d}{dx} \left\{ \tan^{-1} \frac{a + bx}{b - ax} \right\} = \frac{d}{dx} \left\{ \tan^{-1} \frac{a}{b} \right\} + \frac{d}{dx} \left\{ \tan^{-1} (x) \right\}$$

উচ্চতর গণিত: ১ম পত্র সমাধান

 $=0+\frac{1}{1+r^2}=\frac{1}{1+r^2}$ 4.(a) ধরি, $y = \sin^{-1} \frac{1 - x^2}{1 + x^2}$ [য.'০২,'১২,'১৪] এবং $x = \tan \Theta$. তাহলে, $\theta = \tan^{-1} x$ এবং $y = \sin^{-1} \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \sin^{-1} \cos 2\theta$ $=\sin^{-1}\sin(\frac{\pi}{2}-2\theta)=\frac{\pi}{2}-2\theta$ $=\frac{\pi}{2}-2\tan^{-1}x$ $\frac{dy}{dx} = \frac{d}{dx}(\frac{\pi}{2} - 2\tan^{-1}x) = 0 - 2\frac{1}{1 + x^2}$ $\frac{d}{dx}(\sin^{-1}\frac{1-x^2}{1+x^2}) = \frac{-2}{1+x^2}$ 4(b) $\cos^{-1}\frac{1-x^2}{1+x^2} = 2\tan^{-1}x$ [4.'04; 5.'09] $\frac{d}{dx}(\cos^{-1}\frac{1-x^2}{1+x^2}) = \frac{d}{dx}(2\tan^{-1}x)$ $=2\frac{1}{1+r^2}=\frac{2}{1+r^2}$ (Ans.) 4(c) $\sec^{-1} \frac{1+x^2}{1-x^2}$ [4.'05; \overline{q} . 05; \overline{A} .'50] $= \cos^{-1} \frac{1-x^2}{1+x^2} = 2 \tan^{-1} x$ $\frac{d}{dx}(\sec^{-1}\frac{1+x^2}{1-x^2}) = \frac{d}{dx}(2\tan^{-1}x)$ $=2\frac{1}{1+r^2}=\frac{2}{1+r^2}$ (Ans.) 4(d) $\tan^{-1} \frac{4x}{1-4x^2}$ [ব. '08] $= \tan^{-1} \frac{2.2x}{1 - (2x)^2} = 2 \tan^{-1}(2x)$ $\begin{bmatrix} \tan^{-1} \frac{2x}{1-x^2} = 2\tan^{-1}x \end{bmatrix}$

 $\frac{d}{dr}(\tan^{-1}\frac{4x}{1-4x^2}) = \frac{d}{dr}\{2\tan^{-1}(2x)\}$

$$= 2 \frac{1}{1 + (2x)^2} \cdot 2 = \frac{4}{1 + 4x^2} \text{ (Ans.)}$$

$$4(e) \tan^{-1} \frac{4\sqrt{x}}{1 - 4x}$$

$$[5 \cdot 0_3; \overline{a}_1 \cdot 0_3; \overline{p}_1 \cdot 0_3, '3 \cdot 3 \cdot 3 \cdot 5 \cdot \overline{p}_1 \cdot 3 \cdot 9]$$

$$= \tan^{-1} \frac{2.2\sqrt{x}}{1 - (2\sqrt{x})^2} = 2 \tan^{-1} (2\sqrt{x})$$

$$[\because \tan^{-1} \frac{2x}{1 - x^2} = 2 \tan^{-1} x]$$

$$\frac{d}{dx} (\tan^{-1} \frac{4\sqrt{x}}{1 - 4x}) = \frac{d}{dx} \{2 \tan^{-1} (2\sqrt{x})\}$$

$$= 2 \frac{1}{1 + (2\sqrt{x})^2} \frac{d}{dx} (2\sqrt{x})$$

$$= \frac{2}{1 + 4x} \cdot 2 \cdot \frac{1}{2\sqrt{x}} = \frac{2}{\sqrt{x}(1 + 4x)} \text{ (Ans.)}$$

$$4(f) \sin^{-1} \frac{4x}{1 + 4x^2} \qquad [\overline{p}_1 \cdot 0 \cdot 3]$$

$$= 2 \frac{1}{1 + (2x)^2} \frac{d}{dx} (2x) = \frac{4}{1 + 4x^2} \text{ (Ans.)}$$

$$4(g) \sin^{-1} \frac{2x}{1 + x^2} = 2 \tan^{-1} x$$

$$\frac{d}{dx} (\sin^{-1} \frac{2x}{1 + x^2}) = \frac{d}{dx} \{2 \tan^{-1} (2x)\}$$

$$= 2 \frac{1}{1 + (2x)^2} \frac{d}{dx} (2x) = \frac{4}{1 + 4x^2} \text{ (Ans.)}$$

$$4(g) \sin^{-1} \frac{2x}{1 + x^2} = 2 \tan^{-1} x$$

$$\frac{d}{dx} (\sin^{-1} \frac{2x}{1 + x^2}) = \frac{d}{dx} (2 \tan^{-1} x)$$

$$= \frac{2}{1 + x^2} \text{ (Ans.)}$$

$$4(h) \sin^{-1} \frac{6x}{1 + 9x^2} \qquad [\overline{p}_1 \cdot 0 \cdot]$$

$$= \sin^{-1} \frac{2 \cdot 3x}{1 + (3x)^2} = 2 \tan^{-1} (3x)$$

$$[\because \sin^{-1} \frac{2x}{1 + x^2}] = 2 \tan^{-1} (3x)$$

$$\frac{d}{dx} (\sin^{-1} \frac{6x}{1+9x^2}) = \frac{d}{dx} \{2 \tan^{-1}(3x)\}$$

$$= 2 \frac{1}{1+(3x)^2} \frac{d}{dx} (3x) = \frac{2}{1+9x^2} \cdot 3$$

$$= \frac{9}{1+9x^2} \quad (Ans.)$$
4.(i) $\tan^{-1} \frac{2\sqrt{x}}{1-x} \quad [F'ob, '55; Fl.'oh; fh.'55]$

$$= \tan^{-1} \frac{2\sqrt{x}}{1-(\sqrt{x})^2} = 2\tan^{-1} \sqrt{x}$$

$$\frac{d}{dx} (\tan^{-1} \frac{2\sqrt{x}}{1-x}) = \frac{d}{dx} \{2 \tan^{-1}(\sqrt{x})\}$$

$$= 2\frac{1}{1+(\sqrt{x})^2} \frac{d}{dx} (\sqrt{x}) = \frac{2}{1+x} \frac{1}{2\sqrt{x}}$$

$$= \frac{1}{(1+x)\sqrt{x}} \quad (Ans.)$$
5.(a) $\sqrt[4]{R}, y = \cos^{-1}(2x\sqrt{1-x^2})$

$$= \cos^{-1}(2\cos\theta\sin\theta) = \cos^{-1}\sin2\theta$$

$$= \cos^{-1}(2\cos\theta\sin\theta) = \cos^{-1}\sin2\theta$$

$$= \cos^{-1}\cos(\frac{\pi}{2} - 2\theta) = \frac{\pi}{2} - 2\theta$$

$$= \frac{\pi}{2} - 2\sin^{-1}x$$

$$\frac{dy}{dx} = \frac{d}{dx} (\frac{\pi}{2} - 2\sin^{-1}x)$$

$$= 0 - 2\frac{1}{\sqrt{1-x^2}} = \frac{-2}{\sqrt{1-x^2}} \quad (Ans.)$$
5.(b) $\sqrt[4]{R}, y = \sin^{-1}(2ax\sqrt{1-a^2x^2}) [ff.'5e]$

$$\frac{4}{R}, ax = \sin\theta. \quad \text{excert}, \theta = \sin^{-1}(ax) \quad \text{excert}, \theta = 2\theta = 2\sin^{-1}(ax)$$

$$\frac{dy}{dx} = 2 \frac{1}{\sqrt{1 - (ax)^2}} \frac{d}{dx}(ax)$$

$$= \frac{2a}{\sqrt{1 - a^2x^2}}$$
5(c)) $4\sqrt{3}, y = \tan^{-1} \frac{4x}{\sqrt{1 - 4x^2}}$ [Al. 'o\]
 $d\sqrt{3} = 2x = \sin \theta$.
 $y = \tan^{-1} \frac{2\sin\theta}{\sqrt{1 - \sin^2\theta}} = \tan^{-1} \frac{2\sin\theta}{\cos\theta}$
 $= \tan^{-1}(2\tan\theta)$
 $\frac{dy}{dx} = \frac{1}{1 + (2\tan\theta)^2} \frac{d}{dx}(2\tan\theta)$
 $= \frac{2\sec^2\theta}{1 + 4\tan^2\theta} = \frac{2/\cos^2\theta}{1 + \frac{4\sin^2\theta}{\cos^2\theta}}$
 $= \frac{2}{\cos^2\theta + 4\sin^2\theta} = \frac{2}{1 + 3\sin^2\theta}$
 $= \frac{2}{1 + 3(2x)^2} = \frac{2}{1 + 12x^2}$
5(d) $4\sqrt{3}, y = \sin^{-1} \frac{x + \sqrt{1 - x^2}}{\sqrt{2}}$ $d\sqrt{3}$
 $x = \sin\theta$. $\sqrt{3}\sqrt{3}$, $\theta = \sin^{-1}x$ $d\sqrt{3}$
 $y = \sin^{-1} \frac{\sin\theta + \sqrt{1 - \sin^2\theta}}{\sqrt{2}}$
 $= \sin^{-1}(\sin\theta \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\cos\theta)$
 $= \sin^{-1}(\sin\theta \cdot \cos\frac{\pi}{4} + \sin\frac{\pi}{4}\cos\theta)$
 $= \sin^{-1}\sin(\theta + \frac{\pi}{4}) = \theta + \frac{\pi}{4} = \sin^{-1}x + \frac{\pi}{4}$
 $\frac{dy}{dx} = \frac{d}{dx}(\sin^{-1}x + \frac{\pi}{4}) = \frac{1}{\sqrt{1 - x^2}}$ (Ans.)
6.(a) $4\sqrt{3}, y = \tan^{-1}\frac{1}{\sqrt{x^2 - 1}}$ [Al. 'ov]

 $y = \tan^{-1} \frac{1}{\sqrt{\sec^2 \theta - 1}} = \tan^{-1} \frac{1}{\sqrt{\tan^2 \theta}}$ $= \tan^{-1} \frac{1}{\tan \theta} = \tan^{-1} \cot \theta = \tan^{-1} \tan(\frac{\pi}{2} - \theta) =$ $\frac{\pi}{2} - \theta = \frac{\pi}{2} - \sec^{-1} x$ $\frac{dy}{dx} = \frac{d}{dx} \left(\frac{\pi}{2} - \sec^{-1} x \right) = 0 - \frac{1}{x \sqrt{x^2 - 1}}$ with $\frac{d}{dx}(\tan^{-1}\frac{1}{\sqrt{x^2-1}}) = -\frac{1}{x\sqrt{x^2-1}}$ $6.(b) \tan^{-1} \sqrt{\frac{1-x}{1-x}}$ [সি.'০৫,'০৭; প্র.ড.প.'১০] ধরি, y = tan⁻¹ $\sqrt{\frac{1-x}{1+x}}$ এবং $x = \cos \theta$. তাহলে, $\theta = \cos^{-1} x$ এবং $y = \tan^{-1} \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} = \tan^{-1} \sqrt{\frac{2 \sin^2(\theta/2)}{2 \cos^2(\theta/2)}}$ $= \tan^{-1} \sqrt{\tan^2 \frac{\theta}{2}} = \tan^{-1} \tan \frac{\theta}{2}$ $= \frac{\theta}{2} = \frac{1}{2}\cos^{-1}x$ $\frac{dy}{dx} = \frac{1}{2} \frac{d}{dx} (\cos^{-1} x) = \frac{1}{2} \frac{-1}{\sqrt{1 - x^2}}$ \overline{q} $\frac{d}{dx}(\tan^{-1}\sqrt{\frac{1-x}{1+x}}) = \frac{-1}{2\sqrt{1-x^2}}$ **6(e)** $\sin^4 \left(\cot^{-1} \sqrt{\frac{1+x}{1-x}} \right)$ [বুয়েট,'০১] ধরি, $y = \sin^4 \left(\cot^{-1} \sqrt{\frac{1+x}{1-x}} \right)$ এবং $x = \cos \Theta$ $y = \sin^4 \left(\cot^{-1} \sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}} \right)$ $=\sin^4\left(\cot^{-1}\sqrt{\frac{2\cos^2(\theta/2)}{2\sin^2(\theta/2)}}\right)$ $=\sin^4(\cot^{-1}\cot\frac{\theta}{2})=\sin^4\frac{\theta}{2}=\{\frac{1}{2}(2\sin^2\frac{\theta}{2})\}^2$

$$= \left\{ \frac{1}{2} (1 - \cos \theta) \right\}^{2} = \frac{1}{4} (1 - x)^{2}$$

$$\frac{dy}{dx} = \frac{1}{4} \times 2(1 - x) \times (-1) = -\frac{1}{2} (1 - x)$$
6(f) $\tan(\sin^{-1} x)$ [5.'o\$,'o\$; \mathfrak{F} .'ob','>\$; \mathfrak{A} .'ob','

 $= \tan^{-1}(1) + \tan^{-1}\tan(\frac{x}{2}) = \frac{\pi}{4} + \frac{x}{2}$

$$\begin{aligned} \therefore \frac{d}{dx} \{ \tan^{-1}(\sec x + \tan x) \} &= \frac{d}{dx} (\frac{\pi}{4} + \frac{x}{2}) \\ &= \frac{1}{2} (Ans.) \\ = \frac{1}{2} (Ans.) \\ \hline (b) \tan^{-1} \frac{\cos x}{1 + \sin x} \qquad [\texttt{pl.'oc}, \texttt{'yol}] \\ &= \tan^{-1} \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2\sin \frac{x}{2} \cos \frac{x}{2}} \\ &= \tan^{-1} \frac{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2\sin \frac{x}{2} \cos \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2\sin \frac{x}{2} \cos \frac{x}{2}} \\ &= \tan^{-1} \frac{\cos \frac{x}{2} (1 - \tan \frac{x}{2})}{\cos \frac{x}{2} + \sin \frac{x}{2} (2 - \sin \frac{x}{2})} \\ &= \tan^{-1} \frac{\cos \frac{x}{2} (1 - \tan \frac{x}{2})}{\cos \frac{x}{2} (1 + \tan \frac{x}{2})} = \tan^{-1} \frac{1 - \tan \frac{x}{2}}{1 + \tan \frac{x}{2}} \\ &= \tan^{-1} (1) - \tan^{-1} \tan(\frac{x}{2}) = \frac{\pi}{4} - \frac{x}{2} \\ &\frac{d}{dx} (\tan^{-1} \frac{\cos x}{1 + \sin x}) = \frac{d}{dx} (\frac{\pi}{4} - \frac{x}{2}) \\ &= 0 - \frac{1}{2} = -\frac{1}{2} \\ &= 0 - \frac{1}{2} = -\frac{1}{2} \\ &= 1 - (-\frac{1}{2}t^{-\frac{1}{2}-1} = 1 + \frac{1}{2\sqrt{t}}) \\ &= \tan^{-1} \sqrt{\frac{2\sin^2(x/2)}{2\cos^2(x/2)}} = \tan^{-1} \sqrt{\tan^2 \frac{x}{2}} \\ &= \tan^{-1} \sqrt{\frac{2\sin^2(x/2)}{2\cos^2(x/2)}} = \tan^{-1} \sqrt{\tan^2 \frac{x}{2}} \\ &= \tan^{-1} \tan \frac{x}{2} = \frac{x}{2} \\ &\frac{d}{dx} (\tan^{-1} \sqrt{\frac{1 - \cos x}{1 + \cos x}}) = \frac{d}{dx} (\frac{x}{2}) = \frac{1}{2} \\ &= 1 - (-\frac{1}{2}t^{-\frac{1}{2}-1} = 1 + \frac{1}{2\sqrt{t}}) \\ &= 1 - (-\frac{1}{2}t^{-\frac{1}{2}-1} = 1 + \frac{1}{2\sqrt{t}}) \\ &= \frac{1}{2\sqrt{t}} (2\sqrt{t} + \frac{1}{t}) \\ &= \frac{1}{2\sqrt{t}} (2\sqrt{t} + \frac{1}{t}) \\ &= 2\sqrt{t} + \frac{1}{t} \\ &(b) x = \frac{3at}{2} - \frac{1}{2} \\ &(c) x = 1 - \frac{1}{\sqrt{1 + x}} \\ &(c) x = \frac{3at}{1 + t^3} \cdots (1), y = \frac{3at^2}{1 + t^3} \cdots (2) \\ &(2) + (1) \Rightarrow \frac{y}{x} = t \end{aligned}$$

উচ্চতর গণিত: ১ম পত্র সমাধান বইঘর কম

(1) হতে পাই, $x = \frac{3a\frac{y}{x}}{1 + (\frac{y}{x})^3} = \frac{3ay}{x} \times \frac{x^3}{x^3 + y^3}$ $\Rightarrow x = \frac{3ax^2y}{x^3 + y^3} \Rightarrow x^3 + y^3 = 3axy$ ইহাকে x এর সাপেক্ষে অন্তরীকরণ করে পাই. $3x^2 + 3y^2 \frac{dy}{dx} = 3a(x\frac{dy}{dx} + y)$ $\Rightarrow (y^2 - ax)\frac{dy}{dx} = ay - x^2 \therefore \frac{dy}{dx} = \frac{ay - x^2}{y^2 - ax}$ 1(c) $x = a(\cos\phi + \phi \sin\phi), y = a(\sin\phi - \phi \cos\phi)$ $\frac{dx}{d\phi} = \frac{d}{d\phi} \left\{ a(\cos\phi + \phi\sin\phi) \right\}$ $= a(-\sin\phi + \phi\cos\phi + \sin\phi) = a\phi\cos\phi$ $\frac{dy}{d\phi} = \frac{d}{d\phi} \left\{ a(\sin\phi - \phi\cos\phi) \right\}$ $= a(\cos\phi + \phi\sin\phi - \cos\phi) = a\phi\sin\phi$ $\frac{dy}{dx} = \frac{\frac{dy}{d\phi}}{\frac{dx}{dx}} = \frac{a\phi\sin\phi}{a\phi\cos\phi} = \tan\phi$ 1(d) $x = \sqrt{a^{\sin^{-1}t}}$, $y = \sqrt{a^{\cos^{-1}t}}$ $=\frac{1}{2\sqrt{a^{\sin^{-1}t}}}a^{\sin^{-1}t}\ln a\frac{1}{\sqrt{1-a^2}}$ $=\frac{\ln a \sqrt{a^{\sin^{-1}t}}}{2 \sqrt{1-a^2}}=\frac{x \ln a}{2 \sqrt{1-a^2}}$ $\frac{dy}{dt} = \frac{d}{dt} \left(\sqrt{a^{\cos^{-1} t}} \right)$ $=\frac{1}{2\sqrt{a^{\cos^{-1}t}}}a^{\cos^{-1}t}\ln a\frac{1}{-\sqrt{1-t^2}}$ $= -\frac{\ln a \sqrt{a^{\cos^{-1}t}}}{2\sqrt{1-a^2}} = -\frac{y \ln a}{2\sqrt{1-a^2}}$

$$\begin{aligned} \therefore \frac{dy}{dx} &= \frac{dy}{dt} \times \frac{dt}{dx} = -\frac{y \ln a}{2\sqrt{1-t^2}} \times \frac{2\sqrt{1-t^2}}{x \ln a} \\ &= -\frac{y}{x} \\ \mathbf{2.} (\mathbf{a}) x^{\frac{1}{x}} \quad [\mathbf{\overline{a}} \cdot \mathbf{o} \mathbf{s}, \mathbf{\overline{b}} \cdot \mathbf{\cdot} \mathbf{o} \mathbf{s}, \mathbf{\overline{b}} \mathbf{s}, \mathbf{\overline{a}} \cdot \mathbf{o} \mathbf{s} \mathbf{t}] \\ &= x^{\frac{1}{x}} \left[\frac{1}{x} \frac{d}{x} (\ln x) + \ln x \frac{d}{dx} (\frac{1}{x}) \right] \\ &= x^{\frac{1}{x}} \left[\frac{1}{x} \frac{1}{x} + \ln x \frac{d}{dx} (x^{-1}) \right] \\ &= x^{\frac{1}{x}} \left[\frac{1}{x} \frac{1}{x} + \ln x \frac{d}{dx} (x^{-1}) \right] \\ &= x^{\frac{1}{x}} \left[\frac{1}{x^2} + \ln x \cdot (-x^{-2}) \right] = x^{\frac{1}{x}} \left(\frac{1}{x^2} - \frac{\ln x}{x^2} \right) \\ &= x^{\frac{1}{x}} \left[\frac{1}{x^2} + \ln x \cdot (-x^{-2}) \right] = x^{\frac{1}{x}} \left(\frac{1}{x^2} - \frac{\ln x}{x^2} \right) \\ &= x^{\frac{1}{x}} \left[\frac{1}{x^2} + \ln x \cdot (-x^{-2}) \right] = x^{\frac{1}{x}} \left(\frac{1}{x^2} - \frac{\ln x}{x^2} \right) \\ &= x^{\frac{1}{x}} \left[\frac{1}{x^2} + \ln x \cdot (-x^{-2}) \right] = x^{\frac{1}{x}} \left(\frac{1}{x^2} - \frac{\ln x}{x^2} \right) \\ &= x^{\frac{1}{x}} \left[\frac{1}{x^2} + \ln x \cdot (-x^{-2}) \right] = x^{\frac{1}{x}} \left(\frac{1}{x^2} - \frac{\ln x}{x^2} \right) \\ &= x^{\frac{1}{x}} \left[\frac{1}{x^2} + \ln x \cdot (-x^{-2}) \right] = x^{\frac{1}{x}} \left(\frac{1}{x^2} - \frac{\ln x}{x^2} \right) \\ &= x^{\frac{1}{x}} \left[\frac{1}{x^2} + \ln x \cdot (-x^{-2}) \right] = x^{\frac{1}{x}} \left(\frac{1}{x^2} - \frac{\ln x}{x^2} \right) \\ &= x^{\frac{1}{x}} \left[\frac{1}{x^2} + \ln x \cdot (-x^{-2}) \right] = x^{\frac{1}{x}} \left(\frac{1}{x^2} - \frac{\ln x}{x^2} \right) \\ &= x^{\frac{1}{x}} \left[\frac{1}{x^2} + \ln x \cdot (-x^{-2}) \right] \\ &= x^{\frac{1}{x}} \left[\frac{1}{x} \left(\ln x \right) + \ln x \right] \\ &= (1 + x)^x \left[x \frac{d}{dx} \left\{ \ln(1 + x) \right\} + \ln(1 + x) \right] \\ &= (1 + x)^x \left[x \frac{1}{1 + x} + \ln(1 + x) \right] \\ &= (1 + x^2)^{2x} \left[x \frac{1}{1 + x^2} \left(2x \right) + \ln(1 + x^2) \frac{d}{dx} (2x) \right] \\ &= (1 + x^2)^{2x} \left[\frac{2x}{1 + x^2} (2x) + \ln(1 + x^2) \right] \\ &= 2(1 + x^2)^{2x} \left[\frac{2x^2}{1 + x^2} + \ln(1 + x^2) \right] \\ &= 2(1 + x^2)^{2x} \left[\frac{2x^2}{1 + x^2} + \ln(1 + x^2) \right] \\ &= 2(1 + x^2)^{2x} \left[\frac{2x^2}{1 + x^2} + \ln(1 + x^2) \right] \\ &= 2(1 + x^2)^{x^2} = (1 + x^2)^{x^2} \end{aligned}$$

$$[x^{2} \frac{d}{dx} \{\ln(1+x^{2})\} + \ln(1+x^{2}) \frac{d}{dx}(x^{2})]$$

$$= (1+x^{2})^{x^{2}} [\frac{x^{2}}{1+x^{2}}(2x) + \ln(1+x^{2}).(2x)]$$

$$= 2x (1+x^{2})^{x^{2}} [\frac{x^{2}}{1+x^{2}} + \ln(1+x^{2})]$$

$$2(e) (\sqrt{x})^{\sqrt{x}} [\sqrt{x} \frac{1}{1+x^{2}} + \ln(1+x^{2})]$$

$$2(e) (\sqrt{x})^{\sqrt{x}} [\sqrt{x} \frac{1}{3}.(\sqrt{x}) + \ln \sqrt{x} \frac{d}{dx}(\sqrt{x})]$$

$$= (\sqrt{x})^{\sqrt{x}} [\sqrt{x} \frac{d}{dx}(\ln \sqrt{x}) + \ln \sqrt{x} \frac{d}{dx}(\sqrt{x})]$$

$$= (\sqrt{x})^{\sqrt{x}} [\sqrt{x} \frac{1}{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} + \ln \sqrt{x} \cdot \frac{1}{2\sqrt{x}}]$$

$$= (\sqrt{x})^{\sqrt{x}} [\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{x}} \ln \sqrt{x}]$$

$$= (\sqrt{x})^{\sqrt{x}} [\frac{1+\ln \sqrt{x}}{2\sqrt{x}}] (Ans.)$$

$$2(f) \sqrt{x} [\frac{1+\ln \sqrt{x}}{2\sqrt{x}}] (Ans.)$$

$$\frac{dy}{dx} = x^{\ln x} [\ln x \frac{d}{dx}(\ln x) + \ln x \frac{d}{dx}(\ln x)]$$

$$[\frac{d}{dx}(u^{v}) = u^{v} [v \frac{d}{dx}(\ln u) + \ln u \frac{dv}{dx}]$$

$$= x^{\ln x} [2 \ln x \cdot \frac{1}{x}] = \frac{2 \ln x}{x} x^{\ln x}$$

$$\sqrt{x} [\frac{d}{dx} (x^{\ln x}) = \frac{2 \ln x}{x} x^{\ln x}$$

$$2(g) \frac{d}{dx} (\sin^{-1} x)^{x} = (\sin^{-1} x)^{x}$$

$$[x \frac{d}{dx} {\ln(\sin^{-1} x)} + \ln(\sin^{-1} x) \frac{d}{dx}(x)]$$

$$= (\sin^{-1} x)^{x} [\frac{x}{\sqrt{1-x^{2}}} \sin^{-1} x} + \ln(\sin^{-1} x)]$$

$$2(h) \frac{d}{dx} (\sin x)^{x} [\sqrt{1-x^{2}} \sin^{-1} x]$$

 $= x^{-1/x} \times \frac{1}{x^2} (\ln x - 1) = \frac{1}{x^{2+1/x}} (\ln x - 1)$ $\mathbf{3(a)} \ \frac{d}{dx}(e^{x^{x}}) = e^{x^{x}} \frac{d}{dx}(x^{x})$ $= e^{x^{x}} x^{x} [x \frac{d}{dx} (\ln x) + \ln x \frac{d}{dx} (x)]$ $= e^{x^{x}} \cdot x^{x} \{ x \cdot \frac{1}{x} + \ln x \cdot 1 \}$ $= e^{x^{x}} \cdot x^{x} (1 + \ln x)$ $\mathbf{3(b)} \; \frac{d}{dx}(x e^{x})$ $= x e^{x} \left[e^{x} \frac{d}{dx} (\ln x) + \ln x \frac{d}{dx} (e^{x}) \right]$ $= x e^{x} [e^{x} \frac{1}{x} + \ln x e^{x}]$ $= x e^{x} e^{x} (\frac{1}{x} + \ln x)$ (c) $\frac{d}{dx}(a^{a^{x}})$ [দি.'১২] $= a^{a^{x}}.lna.\frac{d}{dx}(a^{x})$ $= a^{a^{x}} lna. a^{x}. lna = a^{a^{x}} a^{x} (lna)^{2}$ [চ.'০৫; ব., দি.'০৯; য.'১২] $3(d) (\cot x)^{\tan x}$ $\frac{d}{dx} (\cot x)^{\tan x} = (\cot x)^{\tan x}$ $[\tan x \frac{d}{dx} \{\ln(\cot x)\} + \ln(\cot x) \frac{d}{dx} (\tan x)]$ $= (\cot x)^{\tan x} \left[\frac{\tan x}{\cot x} (-\cos ec^2 x) + \right]$ $\ln(\cot x) \cdot (\sec^2 x)$ = $(\cot x)^{\tan x} \left[-\frac{\sin^2 x}{\cos^2 x} \cdot \frac{1}{\sin^2 x} + \right]$ $\ln(\cot x) \cdot (\sec^2 x)$ $=(\cot x)^{\tan x} [-\sec^2 x + \ln(\cot x).(\sec^2 x)]$ $= (\cot x)^{\tan x} \cdot \sec^2 x [\ln(\cot x) - 1]$ 4. (a) $x^{x^{x}}$ [রা. '০৬. '০৮: য. '১১: প্র.ড.প. '০৫]

$$\frac{d}{dx}(x^{x}) = x^{x} [x^{x} \frac{d}{dx}(\ln x) + \ln x \frac{d}{dx}(x^{x})]$$

$$= x^{x} [x^{x} \cdot \frac{1}{x} + \ln x \cdot x^{x} \{x \frac{d}{dx}(\ln x) + \ln x \frac{d}{dx}(x)\}]$$

$$= x^{x} x^{x} [x^{x} \cdot \frac{1}{x} + \ln x \cdot \{x \cdot \frac{1}{x} + \ln x \cdot 1\}]$$

$$= x^{x} x^{x} x^{x} [\frac{1}{x} + \ln x \cdot (1 + \ln x)]$$

$$4(\mathbf{b})(x^{x})^{x} [\mathbf{v}, \mathbf{v}] \cdot \mathbf{v}, \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v}, \mathbf{v}, \mathbf{v} \cdot \mathbf{v} \cdot$$

 $= x^{-1/x} \times \frac{1}{x^2} (\ln x - 1) = \frac{1}{x^{2+1/x}} (\ln x - 1)$ $3(\mathbf{a}) \frac{d}{dx} (e^{\mathbf{x} \mathbf{x}}) = e^{\mathbf{x} \mathbf{x}} \frac{d}{dx} (\mathbf{x}^{\mathbf{x}})$ $= e^{x^{x}} x^{x} [x \frac{d}{dx} (\ln x) + \ln x \frac{d}{dx} (x)]$ $= e^{x^{x}} \cdot x^{x} \{x \cdot \frac{1}{x} + \ln x \cdot 1\}$ $= e^{x^{x}}, x^{x}(1 + \ln x)$ 3(b) $\frac{d}{dx}(\chi^{e^{x}})$ $= x^{e^{x}} \left[e^{x} \frac{d}{dx} (\ln x) + \ln x \frac{d}{dx} (e^{x}) \right]$ $= x e^{x} [e^{x} \frac{1}{x} + \ln x e^{x}]$ $= x e^{x} e^{x} (\frac{1}{x} + \ln x)$ (c) $\frac{d}{dx}(a^{a^{x}})$ [দি.'১২] $= a^{a^{x}} lna. \frac{d}{dx}(a^{x})$ $= a^{a^{x}} lna, a^{x}, lna = a^{a^{x}} a^{x} (lna)^{2}$ $3(d) (\cot x)^{\tan x}$ [চ.'০৫; ব., দি.'০৯; য.'১২] $\frac{d}{dx}(\cot x)^{\tan x} = (\cot x)^{\tan x}$ $[\tan x \frac{d}{dx} \{\ln(\cot x)\} + \ln(\cot x) \frac{d}{dx} (\tan x)]$ $= (\cot x)^{\tan x} \left[\frac{\tan x}{\cot x} (-\cos ec^2 x) + \right]$ $\ln(\cot x).(\sec^2 x)$] $= (\cot x)^{\tan x} \left[-\frac{\sin^2 x}{\cos^2 x} \cdot \frac{1}{\sin^2 x} + \right]$ $\ln(\cot x) \cdot (\sec^2 x)$ $=(\cot x)^{\tan x} [-\sec^2 x + \ln(\cot x).(\sec^2 x)]$ $= (\cot x)^{\tan x} \cdot \sec^2 x [\ln(\cot x) - 1]$ 4. (a) $x^{x^{x}}$ [রা. '০৬. '০৮; য. '১১; প্র.ভ.প. '০৫]

$$\frac{d}{dx}(x^{x}) = x^{x} [x^{x} \frac{d}{dx}(\ln x) + \ln x \frac{d}{dx}(x^{x})]$$

$$= x^{x} [x^{x} \frac{1}{x} + \ln x x^{x} \{x \frac{d}{dx}(\ln x) + \ln x \frac{d}{dx}(x)\}]$$

$$= x^{x} x^{x} [x^{x} \frac{1}{x} + \ln x x [x \frac{1}{x} + \ln x x]]$$

$$= x^{x} x^{x} x^{x} [\frac{1}{x} + \ln x (1 + \ln x)]$$

$$4(\mathbf{b})(x^{x})^{x} [\mathbf{a}, \mathbf{a}, \mathbf{a}, \mathbf{o}_{\mathbf{b}}; \mathbf{a}, \mathbf{c}_{\mathbf{b}}; \mathbf{b}, \mathbf{c}_{\mathbf{c}}; \mathbf{a}, \mathbf{a},$$

5(b)
$$\frac{d}{dx} (ax)^{bx}$$

= $(ax)^{bx} [bx \frac{d}{dx} \{\ln(ax)\} + \ln(ax) \frac{d}{dx}(bx)]$
= $(ax)^{bx} [bx \frac{1}{ax} \cdot a + \ln(ax)b]$
= $(ax)^{bx} \cdot b [1 + ln (ax)]$
5(c) $\forall \hat{n}, y = (xe^x)^{\sin x} = \sin x (\ln x + \ln e^x)$
= $\sin x (\ln x + x)$
 $\boxed{\forall} \hat{n} x = \sin x (\ln x + \ln e^x)$
= $\sin x (\ln x + x)$
 $\boxed{\forall} \hat{n} x = \sin x (\frac{1}{x} + 1) + (\ln x + x) \cos x$
 $\Rightarrow \frac{dy}{dx} = y[(\frac{1}{x} + 1) \sin x + (\ln x + x) \cos x]$
= $(xe^x)^{\sin x} [\sin x \cdot (\frac{1}{x} + 1) + (\ln x + x) \cos x]$
= $(xe^x)^{\sin x} [\sin x \cdot (\frac{1}{x} + 1) + (\ln x + x) \cos x]$
 $= (xe^x)^{\sin x} [\sin x \cdot (\frac{1}{x} + 1) + (\ln x + x) \cos x]$
[$\overrightarrow{b}, \dot{o} a, \dot{o} a$

+
$$x^{\tan x} [\tan x. \frac{1}{x} + \ln x. \sec^2 x]$$

= $(\tan x)^x [x \frac{\cos x}{\sin x} \cdot \frac{1}{\cos^2 x} + \ln(\tan x)]$
+ $x^{\tan x} [\frac{1}{x} \tan x + \sec^2 x \ln x]$
= $(\tan x)^x [2x \cos ec 2x + \ln(\tan x)]$
+ $x^{\tan x} [\frac{1}{x} \tan x + \sec^2 x \ln x]$
5.(f) $\frac{d}{dx} (x^{\ln x} + x^{\log x})$
= $\frac{d}{dx} (x^{\ln x}) + \frac{d}{dx} (x^{\ln x})$
= $x^{\ln x} [\ln x \frac{d}{dx} (\ln x) + \ln x \frac{d}{dx} (\ln x)]$
+ $x^{\log x} [\log x \frac{d}{dx} (\ln x) + \ln x \frac{d}{dx} (\log x)]$
= $x^{\ln x} 2 \ln x. \frac{1}{x} + x^{\log x} [\log x. \frac{1}{x} + \ln x. \frac{1}{x \ln 10}]$
= $\frac{2 \ln x}{x} \cdot x^{\ln x} + x^{\log x} [\log x. \frac{1}{x} + \ln x. \frac{1}{x \ln 10}]$
5(g) $\frac{d}{dx} \{ (\ln x)^x + (\log x)^x \}$
= $\frac{d}{dx} (\ln x)^x + \frac{d}{dx} (\log x)^x$
= $(\ln x)^x [x \frac{d}{dx} {\ln(\ln x)} + \ln(\ln x) \frac{d}{dx} (x)] + (\log x)^x [x \frac{d}{dx} {\ln(\log x)} + \ln(\log x) \frac{d}{dx} (x)]$
= $(\ln x)^x [x \frac{1}{\ln x} \cdot \frac{1}{x} + \ln(\ln x).1] + (\log x)^x [x \frac{1}{\ln x} + \ln(\ln x)] + (\log x)^x [\frac{1}{\ln x} + \log x)]$

$$= \frac{d}{dx} (\tan x)^{\cot x} + \frac{d}{dx} (\cot x)^{\tan x}$$

$$= (\tan x)^{\cot x} [\cot x \frac{d}{dx} \{\ln(\tan x)\} + \ln(\tan x)]$$

$$= (\tan x)^{\cot x} [\cot x)^{\tan x} [\tan x \frac{d}{dx} \{\ln(\cot x)\}]$$

$$+ \ln(\cot x) \frac{d}{dx} (\tan x)]$$

$$= (\tan x)^{\cot x} [\frac{\cot x}{\tan x} \sec^2 x + \ln(\tan x).$$

$$(-\cos ec^2 x)] + (\cot x)^{\tan x} [\frac{\tan x}{\cot x}]$$

$$(-\cos ec^2 x) + \ln(\cot x) \cdot (\sec^2 x)]$$

$$= (\tan x)^{\cot x} [\frac{\cos^2 x}{\sin^2 x} \frac{1}{\cos^2 x} - \ln(\tan x).$$

$$\cos ec^2 x] + (\cot x)^{\tan x} [-\frac{\sin^2 x}{\cos^2 x} \frac{1}{\sin^2 x}]$$

$$+ \ln(\cot x) \cdot (\sec^2 x)]$$

$$= (\tan x)^{\cot x} \cdot \csc ec^2 x [1 - \ln(\tan x)]$$

$$+ (\cot x)^{\tan x} \cdot \sec^2 x [\ln(\cot x) - 1]$$

$$5(i) \frac{d}{dx} (x^x \log x)$$

$$= x^x \frac{d}{dx} (\log x) + \log x \frac{d}{dx} (x^x)$$

$$= x^x \frac{1}{x \ln 10} + \log x [x^x \{x \frac{d}{dx} (\ln x) + \ln x \frac{d}{dx} (x)\}]$$

$$= \frac{x^x}{x \ln 10} + x^x \log x \{x \frac{1}{x} + \ln x\}$$

$$= \frac{x^x}{x \ln 10} + x^x \log x \{1 + \ln x\}$$

প্রশ্নমালা IX H

1. $\frac{dy}{dx}$ নির্ণয় কর ঃ

$$\frac{dy}{dx} = \frac{(x+y)(x+y)(x+y)^2}{1-2(x+y)\cos(x+y)^2}$$

$$1(c) x + y = \sin^{-1}(y/x)$$

$$\Rightarrow \sin (x+y) = \frac{y}{x} \Rightarrow y = x \sin (x+y)$$

$$(box) 9 = x \cos (x+y) = \frac{y}{x} \Rightarrow y = x \sin (x+y)$$

$$\frac{dy}{dx} = x \cos (x+y) (1 + \frac{dy}{dx}) + \sin (x+y)$$

$$\Rightarrow \{1 - x \cos(x+y)\} \frac{dy}{dx} = x \cos (x+y) + \frac{\sin (x+y)}{\sin (x+y)}$$

$$\frac{dy}{dx} = \frac{x \cos(x+y) + \sin(x+y)}{1 - x \cos(x+y)}$$

1. (d)
$$x^2 = 5y^2 + \sin y$$
 [4.5.9.'ob]
 \overline{Vost} अक्षरक x এর সাপেক্ষে অশতরীকরণ করে পাই,
 $2x = 10y \frac{dy}{dx} + \cos y \frac{dy}{dx}$
 $\frac{dy}{dx} = \frac{2x}{10y + \cos y}$ (Ans.)
1(e) $(\cos x)^y = (\sin y)^x$ [4.5.9.'ob]
 \overline{Vost} अक्षरक x এর সাপেক্ষে অশতরীকরণ করে পাই,
 $(\cos x)^y [y \frac{d}{dx} \{\ln(\cos x)\} + \ln(\cos x) \frac{dy}{dx}]$
 $= (\sin y)^x [x \frac{d}{dx} \{\ln(\sin y)\} + \ln(\sin y) \frac{d}{dx}(x)]$
 $\Rightarrow \frac{y}{\cos x} (-\sin x) + \ln(\cos x) \frac{dy}{dx}$
 $= \frac{x}{\sin y} (\cos y) \frac{dy}{dx} + \ln(\sin y).1$
 $[\because (\cos x)^y = (\sin y)^x]$
 $\Rightarrow \{\ln(\cos x) - x \cot y\} \frac{dy}{dx} = \ln(\sin y) + y \tan x$
 $\frac{dy}{dx} = \frac{\ln(\sin y) + y \tan x}{\ln(\cos x) - x \cot y}$
1(f) $\sqrt{x/y} + \sqrt{y/x} = 1$
 $\Rightarrow \frac{\sqrt{x}}{\sqrt{y}} + \frac{\sqrt{y}}{\sqrt{x}} = 1 \Rightarrow x + y = \sqrt{xy}$
 \overline{Vost} अक्षरक x এর সাপেক্ষে অশতরীকরণ করে পাই,
 $1 + \frac{dy}{dx} = \frac{1}{2\sqrt{xy}} (x \frac{dy}{dx} + y.1)$
 $\Rightarrow (1 - \frac{\sqrt{x}}{2\sqrt{y}}) \frac{dy}{dx} = \frac{\sqrt{y} - 2\sqrt{x}}{2\sqrt{x}}$
 $\frac{dy}{dx} = \frac{\sqrt{y}(\sqrt{y} - 2\sqrt{x})}{\sqrt{x}(2\sqrt{y} - \sqrt{x})}$ (Ans.)
2. $\frac{dy}{dx}$ faffa কর s

2(a)
$$x^{y} = e^{x-y}$$
 [U.CAL.'od]
We way have a substrained and a set of the set of t

উচ্চতর গণিত্যিক্সমপত্র সমাধান

$$\Rightarrow \left(\frac{q}{y} - \frac{p+q}{x+y}\right) \frac{dy}{dx} = \frac{p+q}{x+y} - \frac{p}{x}.$$

$$\Rightarrow \frac{qx+qy-py-qy}{y(x+y)} \frac{dy}{dx} = \frac{px+qx-px-py}{(x+y)x}$$

$$\Rightarrow \frac{qx-py}{y(x+y)} \frac{dy}{dx} = \frac{qx-py}{(x+y)x}$$

$$\frac{dy}{dx} = \frac{y}{x} \text{ (Ans.)}$$
2(e) $y = xy^x \therefore \ln y = y^x \ln x \cdots (1)$
Used a structure warealises of each of each of a structure warealises of each of each of a structure warealises of each of ea

$$\frac{dy}{dx} = \frac{y(x-1)}{x(1-y)} (Ans.)$$

$$2(h) \log (x^n y^n) = x^n + y^n \quad [\overline{q}(\overline{x}\overline{b} \circ 9 - ob]]$$

$$\Rightarrow n \log x + n \log y = x^n + y^n \quad [\overline{q}(\overline{x}\overline{b} \circ 9 - ob]]$$

$$\Rightarrow n \log x + n \log y = x^n + y^n \quad [\overline{q}(\overline{x}\overline{b} \circ 9 - ob]]$$

$$\Rightarrow n \log x + n \log y = x^n + y^n \quad [\overline{q}(\overline{x}\overline{b} \circ 9 - ob]]$$

$$\Rightarrow n \log_{10} e \times \log_e x + n \log_{10} e \times \log_e y \\ = x^n + y^n \quad [\overline{5}(\overline{x}\overline{b} \circ 9 - \overline{5}(\overline{x})]]$$

$$= \frac{\log_{10} e}{x} + n \frac{\log_{10} e}{y} \frac{dy}{dx} = nx^{n-1} + ny^{n-1} \frac{dy}{dx} \quad [\overline{3}(\overline{x})]$$

$$\Rightarrow \frac{\log_{10} e - y^n}{y} \frac{dy}{dx} = \frac{x^n - \log_{10} e}{x} \quad [\overline{3}(\overline{b}, 9 - \overline{5}(\overline{x})]]$$

$$\Rightarrow \frac{\log_{10} e - y^n}{y} \frac{dy}{dx} = \frac{x^n - \log_{10} e}{x} \quad [\overline{3}(\overline{b}, 9 - \overline{5}(\overline{x})]]$$

$$\Rightarrow \frac{\log_{10} e - y^n}{y} \frac{dy}{dx} = \frac{x^n - \log_{10} e}{x} \quad [\overline{3}(\overline{b}, 9 - \overline{5}(\overline{b})]]$$

$$3. (a) \tan y = \sin x \quad \overline{5}(\overline{a}), \quad (\overline{5}(\overline{a})] \quad [\overline{5}(\overline{a})]$$

$$\Rightarrow y = \tan^{-1} \sin x \quad \overline{5}(\overline{a}), \quad (\overline{5}(\overline{a})] \quad [\overline{5}(\overline{a})]$$

$$\Rightarrow y = \tan^{-1} \tan \frac{x}{\sqrt{1-x^2}} \quad [\overline{5}(\overline{a})] \quad [\overline{5}(\overline{$$

৩৬৪

 $3(b) x \sqrt{1+v} + v \sqrt{1+x} = 0$ হল. দেখাও যে. $\frac{dy}{dx} = -\frac{1}{(1+x)^2}$ [প્ર.**⋓.**প. '૦૨, '০8] প্রমাণ : $x\sqrt{1+y} + y\sqrt{1+x} = 0$ $\Rightarrow x\sqrt{1+y} = -y\sqrt{1+x}$ $\Rightarrow x^2(1+y) = y^2(1+x)$ বিগ করে।] $\Rightarrow x^{2} + x^{2}y = y^{2} + xy^{2}$ $\Rightarrow x^{2} - y^{2} + xy (x - y) = 0$ \Rightarrow (x - y)(x + y + xy) = 0 x + v + xv = 0 হলে, (1 + x) y = - x $\Rightarrow y = \frac{-x}{1+x}$ $\frac{dy}{dx} = \frac{(1+x)(-1) + x(1)}{(1+x)^2}$ $\Rightarrow \frac{dy}{dx} = \frac{-1 - x + x}{(1 + x)^2} = -\frac{1}{(1 + x)^2}$ $3.(c) x = a (t - \sin t)$ এবং $y = a (1 + \cos t)$ হল, দেখাও যে, $t = \frac{5\pi}{3}$ যখন $\frac{dy}{dr} = \sqrt{3}$. থি.ড.প. '৮৫] প্রমাণ : $\frac{dx}{dt} = a(1 - \cos t), \ \frac{dy}{dt} = a(0 - \sin t)$ $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{-a\sin t}{a(1-\cos t)}$ $= \frac{-2\sin\frac{t}{2}\cos\frac{t}{2}}{2\sin^{2}\frac{t}{2}} = -\cot\frac{t}{2}$ ্ৰখন, $\frac{dy}{dr} = \sqrt{3}$ হলে, $\cot \frac{t}{2} = -\sqrt{3}$ $\Rightarrow \tan \frac{t}{2} = -\frac{1}{\sqrt{2}} = -\tan \frac{\pi}{6} = \tan(\pi - \frac{\pi}{6})$ $\Rightarrow \tan \frac{t}{2} = \tan \frac{5\pi}{6}$ $\frac{t}{2} = \frac{5\pi}{6} \Rightarrow t = \frac{5\pi}{3}$ $\beta(\mathbf{d}) \mathbf{f}(\mathbf{x}) = \left(\frac{a+x}{b+x}\right)^{a+b+2x}$ হলে, প্রমাণ কর যে, $f'(0) = (2\ln\frac{a}{h} + \frac{b^2 - a^2}{a^h})(\frac{a}{h})^{a+b}$

$$\begin{aligned} & \exists \mathsf{N}\mathsf{P}: \mathbf{f} (x) = \left(\frac{a+x}{b+x}\right)^{a+b+2x} \quad f(0) = \left(\frac{a}{b}\right)^{a+b} \\ & \exists \mathsf{Q} \mathsf{R} \ln\{f(x)\} = \\ & (a+b+2x)\{\ln(a+x) - \ln(b+x)\} \\ & \forall \mathsf{S} \forall \mathsf{S} \forall \mathsf{S} \forall \mathsf{S} \land \mathsf{A} \exists \exists \forall \mathsf{R} \land \mathsf{S} \forall \mathsf{S} \forall \mathsf{S} \land \mathsf{S} \exists \forall \mathsf{R} \land \mathsf{A} \exists \exists \forall \mathsf{R} \land \mathsf{S} \forall \mathsf{S} \land \mathsf{S} \exists \forall \mathsf{S} \land \mathsf{S} \exists \forall \mathsf{S} \land \mathsf{S} \land$$

উচ্চতর গণি<u>ত্বধ</u>ু মুমুপত্র সমাধান

$$\Rightarrow (nx \ln x.y^{n} - x^{n+1}) \frac{dy}{dx} = y \ln y.nx^{n} - y^{n+1}$$

$$\Rightarrow \frac{dy}{dx} = \frac{nyx^{n} \ln y - y^{n+1}}{nxy^{n} \ln x - x^{n+1}}$$

$$= \frac{ny.y^{n} \ln x - y^{n+1}}{nx.x^{n} \ln y - x^{n+1}} [(1) \text{ visil }]$$

$$= \frac{y^{n+1}(n \ln x - 1)}{x^{n+1}(n \ln y - 1)}$$

অতিরিক্ত প্রশ্ন (সমাধানসহ)

x এর সাপেক্ষে নিয়ের ফাংশনগুলির অন্তরক সহগ নির্ণয় কর ঃ

1.
$$\frac{d}{dx}(5x^3 + 3x^2 - 4x - 9)$$

= $5\frac{d}{dx}(x^3) + 3\frac{d}{dx}(x^2) - 4\frac{d}{dx}(x) - \frac{d}{dx}(9)$
= $5(3x^2) + 3(2x) - 4 - 0$
= $15x^2 + 6x - 4$ (Ans.)
2. $\frac{d}{dx}(2x^3 - 4x^{\frac{5}{2}} + \frac{7}{2}x^{-\frac{2}{3}} + 7)$
= $2(3x^2) - 4(\frac{5}{2}x^{\frac{5}{2}-1}) + \frac{7}{2}(-\frac{2}{3}x^{-\frac{2}{3}-1}) + 0$
= $6x^2 - 10x^{\frac{3}{2}} - \frac{7}{3}x^{-\frac{5}{3}}$ (Ans.)

 $\mathbf{3}(\mathbf{a})$ মূল নিয়মে x=2 -তে $\sqrt[3]{x}$ এর অন্তরক সহগ নির্ণয়।

মনে করি, f (x) =
$$\sqrt[3]{x} = x^{1/3}$$

∴ f'(2) = $\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{x^{1/3} - 2^{1/3}}{x - 2}$
= $\frac{1}{3} \times 2^{\frac{1}{3} - 1}$ [$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$]
= $\frac{1}{3} \times 2^{-\frac{2}{3}} = \frac{1}{3} \times 4^{-\frac{1}{3}} = \frac{1}{3\sqrt[3]{4}}$

 $\mathbf{3}(\mathbf{b})$ মূল নিয়মে x=a -তে $\cos^2 x$ এর জন্মতরক সহগ নির্ণয়।

মনে করি, $f(x) = \cos^2 x$. $f(a) = \cos^2 a$

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

$$= \lim_{x \to a} \frac{\cos^2 x - \cos^2 a}{x - a}$$

$$= \lim_{x \to a} \frac{\sin(x + a)\sin(a - x)}{x - a}$$

$$[\because \cos^2 B - \cos^2 A = \sin(A + B)\sin(A - B)]$$

$$= -\lim_{x - a \to 0} \frac{\sin(x - a)}{x - a} \cdot \lim_{x \to a} \sin(x + a)$$

$$= -1 \cdot \sin(a + a) = -\sin 2a \text{ (Ans.)}$$
4. (2x)ⁿ - bⁿ [5.'o8]
(2x)ⁿ - bⁿ = 2ⁿ xⁿ - bⁿ
$$\therefore \frac{d}{dx} \{ (2x)^n - b^n \} = 2^n \frac{d}{dx} (x^n) - \frac{d}{dx} (b^n)$$

$$= 2^n n x^{n-1} - 0 = 2^n n x^{n-1}$$
5(a) $x^2 \log_a x + 7e^x \cos x$ [51.'o8]
 $\frac{d}{dx} (x^2 \log_a x + 7e^x \cos x) = x^2 \frac{d}{dx} (\log_a x)$
 $+ \log_a x \frac{d}{dx} (x^2) + 7\{ e^x \frac{d}{dx} (\cos x) + \cos x \frac{d}{dx} (e^x) \}$
$$= x^2 \frac{1}{x \ln a} + \log_a x (2x) + 7\{ e^x (\cos x - \sin x) + 7\{ e^x (-\sin x) + \cos x \cdot e^x \}$$

$$= x(\frac{1}{\ln a} + 2 \log_a x) + 7e^x (\cos x - \sin x)$$
5(b) $\sin^2 2x + e^{2\ln(\cos 2x)} = \sin^2 2x + e^{\ln(\cos 2x)^2}$
 $= \sin^2 2x + (\cos 2x)^2$
 $= \sin^2 2x + (\cos 2x)^2$
 $= \sin^2 2x + (\cos 2x)^2$
 $= \sin^2 2x + e^{2\ln(\cos 2x)} \} = \frac{d}{dx} (1) = 0$
5(c) $5e^x \ln x$ [7.'o8]

বইঘর কম **প্রশ্নমালা IX H**

$$\frac{dy}{dx} = 5\{ e^x \frac{d}{dx} (\ln x) + \ln x \frac{d}{dx} (e^x) \}$$
$$= 5\{ e^x \cdot \frac{1}{x} + \ln x (e^x) \}$$
$$\frac{d}{dx} (5e^x \ln x) = 5e^x (\frac{1}{x} + \ln x)$$

$$6.(a) \quad \frac{d}{dx} \left(\frac{x^{n} + \tan x}{e^{x} - \cot x} \right) = \frac{(e^{x} - \cot x) \frac{d}{dx} (x^{n} + \tan x) - (x^{n} + \tan x) \frac{d}{dx} (e^{x} - \cot x)}{(e^{x} - \cot x)^{2}} = \frac{(e^{x} - \cot x)(ux^{n-1} + \sec^{2} x) - (x^{n} + \tan x) \frac{d}{dx} (e^{x} + \cos ec^{2} x)}{(e^{x} - \cot x)^{2}}$$

$$6(b) \frac{d}{dx} \left(\frac{1-\cos x}{1+\cos x}\right)$$

$$= \frac{(1+\cos x)\frac{d}{dx}(1-\cos x)-(1-\cos x)\frac{d}{dx}(1+\cos x)}{(1+\cos x)^{2}}$$

$$= \frac{(1+\cos x)(\sin x)-(1-\cos x)(-\sin x)}{(1+\cos x)^{2}}$$

$$= \frac{\sin x(1+\cos x+1-\cos x)}{(1+\cos x)^{2}}$$

$$= \frac{2\sin x}{(1+\cos x)^{2}}$$

$$x\sin x$$

$$6(c) \frac{x \sin x}{x + \cos x} \qquad [\ \overline{at. 'oo}]$$

$$\frac{d}{dx} \left(\frac{x \sin x}{x + \cos x} \right) = \frac{1}{(x + \cos x)^2} \left[(x + \cos x) \right]$$

$$\frac{d}{dx} (x \sin x) - x \sin x \frac{d}{dx} (x + \cos x) \right]$$

$$= \frac{1}{(x + \cos x)^2} \left[(x + \cos x) (x \cos x + \sin x.1) - x \sin x (1 - \sin x) \right]$$

$$= \frac{1}{(x + \cos x)^2} \left[(x^2 \cos x + x \sin x + x \cos^2 x + \cos x \sin x - x \sin x + x \sin^2 x) \right]$$

$$= \frac{x(\sin^2 x + \cos^2 x) + x^2 \cos x + \cos x \sin x}{(x + \cos x)^2}$$

$$= \frac{x + (x^2 + \sin x) \cos x}{(x + \cos x)^2} \text{ (Ans.)}$$
6.(d) $\frac{\sin^2 x}{1 + \cos x}$ [fil.'os]
 $\frac{\sin^2 x}{1 + \cos x} = \frac{1 - \cos^2 x}{1 + \cos x} = \frac{(1 - \cos x)(1 + \cos x)}{1 + \cos x}$
 $= 1 - \cos x$ $\frac{d}{dx} (\frac{\sin^2 x}{1 + \cos x}) = \sin x$
6(e) $\frac{\cos x}{1 + \sin^2 x}$ [4.'os]
 $\frac{d}{dx} (\frac{\cos x}{1 + \sin^2 x}) =$
 $\frac{(1 + \sin^2 x)\frac{d}{dx}(\cos x) - \cos x\frac{d}{dx}(1 + \sin^2 x)}{(1 + \sin^2 x)^2}$
 $= \frac{(1 + \sin^2 x)(-\sin x) - \cos x(2\sin x \cos x)}{(1 + \sin^2 x)^2}$
 $= \frac{-\sin x(1 + \sin^2 x + 2\cos^2 x)}{(1 + \sin^2 x)^2}$
 $= \frac{-\sin x(2 + \cos^2 x)}{(1 + \sin^2 x)^2}$
7(a) $4 \pi x = n(x + \sqrt{1 + x^2})^{n-1} \frac{d}{dx}(x + \sqrt{1 + x^2})$
 $= n(x + \sqrt{1 + x^2})^{n-1} \frac{\sqrt{1 + x^2} + x}{\sqrt{1 + x^2}}$
 $= n(x + \sqrt{1 + x^2})^n = \frac{n(x + \sqrt{1 + x^2})^n}{\sqrt{1 + x^2}}$

$$7(\mathbf{b}) \frac{d}{dx} \{ \csc(e^{x^2}) \}$$

$$= \frac{d\{ \cos ec(e^{x^2}) \}}{d(e^{x^2})} \frac{d(e^{x^2})}{d(x^2)} \frac{d(x^2)}{dx}$$

$$= -\csc(e^{x^2}) \cot(e^{x^2}) \cdot (e^{x^2}) \cdot 2x$$

$$= -2x \ e^{x^2} \ \csc(e^{x^2}) \cot(e^{x^2}) \cdot (Ans.)$$

$$8(\mathbf{a}) \ \log_x 5 \qquad [\mathbf{a} \cdot \mathbf{e} \cdot \mathbf{a}] \cdot \mathbf{e}^{x^2}]$$

$$\log_x - 5 = \log_x \ e \times \log_e 5 = \ln 5 \frac{1}{\log_e x}$$

$$= \ln 5 \frac{1}{\ln x} = \ln 5 \ (\ln x)^{-1}$$

$$\therefore \frac{d}{dx} (\log_x a) = \ln 5 \ \{-1(\ln x)^{-2} \frac{d}{dx} (\ln x)\}$$

$$= -\ln 5 \frac{1}{(\ln x)^2} \cdot \frac{1}{x} = -\frac{\ln 5}{x(\ln x)^2}$$

$$8(\mathbf{b}) \ \mathbf{ln}(\sin e^{x^2})$$

$$= \frac{1}{\sin(e^{x^2})} \{\cos(e^{x^2}) \} \ e^{x^2} \cdot 2x$$

$$= 2x \ e^{x^2} \cot(e^{x^2})$$

$$8(\mathbf{c}) \ \frac{d}{dx} \{\ln(\tan \frac{x}{2})\}$$

$$= \frac{d\{\ln(\tan \frac{x}{2})\}}{d(\tan \frac{x}{2})} \frac{d(\tan \frac{x}{2})}{d(\frac{x}{2})} \frac{d(\frac{x}{2})}{dx}$$

$$= \frac{1}{\tan \frac{x}{2}} \sec^2 \frac{x}{2} \cdot \frac{1}{2} = \frac{1}{2} \frac{\cos(x/2)}{\sin(x/2)} \frac{1}{\cos^2(x/2)}$$

$$= \frac{1}{2\sin(x/2)\cos(x/2)} = \frac{1}{\sin x} = \cos ex$$

$$9. (\mathbf{a}) \ \frac{d}{dx} \{\ln(ax^2 + bx + c)\}$$

$$= \frac{1}{ax^{2} + bx + c} \frac{d}{dx} (ax^{2} + bx + c)$$

$$= \frac{2ax + b}{ax^{2} + bx + c} (Ans.)$$
9(b) $\frac{d}{dx} \{ ln (x + \sqrt{x^{2} \pm a^{2}}) \}$

$$= \frac{1}{x + \sqrt{x^{2} \pm a^{2}}} \frac{d}{dx} (x + \sqrt{x^{2} \pm a^{2}})$$

$$= \frac{1}{x + \sqrt{x^{2} \pm a^{2}}} \{ 1 + \frac{1}{2\sqrt{x^{2} \pm a^{2}}} (2x) \}$$

$$= \frac{1}{x + \sqrt{x^{2} \pm a^{2}}} \{ \frac{\sqrt{x^{2} \pm a^{2}} + x}{\sqrt{x^{2} \pm a^{2}}} \}$$

$$= \frac{1}{\sqrt{x^{2} \pm a^{2}}} (Ans.)$$
9.(c) $ln \frac{\sqrt{x + 1} - 1}{\sqrt{x + 1} + 1}$

$$= ln (\sqrt{x + 1} - 1) - ln (\sqrt{x + 1} + 1)$$
 $\frac{d}{dx} \{ ln \frac{\sqrt{x + 1} - 1}{\sqrt{x + 1} + 1} \}$

$$= \frac{1}{\sqrt{x + 1} - 1} \frac{1}{2\sqrt{x + 1}} - \frac{1}{\sqrt{x + 1} + 1} \frac{1}{2\sqrt{x + 1}}$$
10(a) $\left(\frac{\sin 2x}{1 + \cos 2x} \right)^{2} = \left(\frac{2 \sin x \cos x}{2 \cos^{2} x} \right)^{2}$

$$= \left(\frac{\sin x}{dx} (\frac{\sin 2x}{1 + \cos 2x} \right)^{2} = 2 \tan \frac{d}{dx} (\tan x)$$

$$= 2 \tan x \cdot \sec^{2} x$$

$$= \frac{2}{2\sqrt{x + 1}(x + 1 - 1)} = \frac{1}{x\sqrt{x + 1}} (Ans.)$$

10(b) $\left[\frac{x}{\sqrt{1-x^2}}\right]^n$ [2.9.9.'00] $\frac{d}{dx} \left[\frac{x}{\sqrt{1-x^2}} \right]^n = n \left[\frac{x}{\sqrt{1-x^2}} \right]^{n-1}$ $\frac{\sqrt{1-x^2} \cdot 1 - x \frac{1}{2\sqrt{1-x^2}} (-2x)}{(\sqrt{1-x^2})^2}$ $= n \left[\frac{x}{\sqrt{1 - x^2}} \right]^{n-1} \frac{1 - x^2 + x^2}{(1 - x^2)\sqrt{1 - x^2}}$ $= n \left[\frac{x}{\sqrt{1 - x^2}} \right]^{n-1} \frac{1}{(1 - x^2)^{3/2}}$ 10(c) $\frac{d}{dx}$ { x lnx ln(lnx) } $= x \ln x \frac{d}{dx} \{\ln(\ln x)\} + x \ln(\ln x) \frac{d}{dx} (\ln x)$ $+ \ln x \ln(\ln x) \frac{d}{dx}(x)$ $= x \ln x \frac{1}{\ln x} \frac{1}{x} + x \ln(\ln x) \frac{1}{x} +$ lnx ln(lnx).1 = 1 + ln(lnx)(1 + lnx)10(d) $\frac{d}{dx}(\sin x \sin 2x \sin 3x)$ $= \sin x \quad \sin 2x \frac{d}{dx}(\sin 3x) + \sin x \sin 3x$ $\frac{d}{dx}(\sin 2x) + \sin 2x \sin 3x \frac{d}{dx}(\sin x)$ $\sin x \sin 2x (\cos 3x) \cdot 3 + \sin x \sin 3x (\cos 3x)$ = 2x).2 + sin2x sin3x (cos x). 1 = $3\sin x \sin 2x \cos 3x + 2\sin x \sin 3x \cos 2x +$ $\sin 2x \ \sin 3x \cos x$ 11(a) $\frac{d}{dx}(e^{\sqrt{x}}+e^{-\sqrt{x}})$ $= e^{\sqrt{x}} \frac{d}{dx}(\sqrt{x}) + e^{-\sqrt{x}} \frac{d}{dx}(-\sqrt{x})$

 $=e^{\sqrt{x}}\frac{1}{2\sqrt{x}}-e^{-\sqrt{x}}\frac{1}{2\sqrt{x}}=\frac{e^{\sqrt{x}}-e^{-\sqrt{x}}}{2\sqrt{x}}$

11(a)
$$\frac{d}{dx}(e^{-x} + e^{\frac{1}{x}})$$

= $e^{-x}\frac{d}{dx}(-x) + e^{\frac{1}{x}}\frac{d}{dx}(\frac{1}{x})$
= $-e^{-x}.1 + e^{\frac{1}{x}}(-\frac{1}{x^2}) = -(e^{-x} + \frac{1}{x^2}e^{\frac{1}{x}})$
12(a) 4π , $y = ln\sqrt{\frac{1+\sin x}{1-\sin x}} = \frac{1}{2}ln\frac{1+\sin x}{1-\sin x}$
= $\frac{1}{2}\{ln(1+\sin x) - ln(1-\sin x)\}$
 $\frac{dy}{dx} = \frac{1}{2}\{\frac{\cos x}{1+\sin x} - \frac{(-\cos x)}{1-\sin x}\}$
= $\frac{1}{2}\frac{\cos x(1-\sin x+1+\sin x)}{(1+\sin x)(1-\sin x)}$
= $\frac{1}{2}\frac{2\cos x}{1-\sin^2 x} = \frac{\cos x}{\cos^2 x} = \sec x$
12(b) 4π , $y = \cos\frac{x^{-1}-x}{x^{-1}+x}$ [4.5.4.75]
 $\frac{dy}{dx} = -\sin\frac{x^{-1}-x}{x^{-1}+x}\frac{d}{dx}(\frac{x^{-1}-x}{x^{-1}+x})$
= $-\sin\frac{x^{-1}-x}{x^{-1}+x}\frac{d}{dx}(\frac{1-x^2}{1+x^2})$
= $-\sin\frac{x^{-1}-x}{x^{-1}+x}\frac{2x(-1-x^2-1+x^2)}{(1+x^2)^2}$
= $-\frac{4x}{(1+x^2)^2}\sin\frac{x^{-1}-x}{x^{-1}+x}$
12(c) $e^{3x}\cos x^{\circ} = e^{3x}\cos\frac{\pi x}{180}$
 $\frac{d}{dx}(e^{-3x}-\cos x^{\circ}) = e^{-3x}(-\sin\frac{\pi x}{180})$
 $\frac{d}{dx}(\frac{\pi x}{180}) + \cos\frac{\pi x}{180} \cdot e^{-3x}\frac{d}{dx}(3x)$
= $-e^{-3x}.\sin x^{\circ}(\frac{\pi}{180}) + \cos x^{\circ}.e^{-3x}.3$

2

 $e^{3x}(3\cos x^{\circ} - \frac{\pi}{180}\sin x^{\circ})$ = 13(a) $\frac{d}{dx} \{ \sin^{-1}(e^{\tan^{-1}x}) \}$ $= \frac{1}{\sqrt{1 - (e^{\tan^{-1}x})^2}} \frac{d}{dx} (e^{\tan^{-1}x})$ $= \frac{1}{\sqrt{1 - e^{2\tan^{-1}x}}} e^{\tan^{-1}x} \frac{1}{1 + x^2}$ $= \frac{e^{\tan^{-1}x}}{(1+x^2)\sqrt{1-e^{2\tan^{-1}x}}}$ 13(b) $\frac{d}{dx} \{ \cos^{-1}(\frac{a+b\cos x}{b+a\cos x}) \}$ $= -\frac{1}{\sqrt{1 - \left(\frac{a + b\cos x}{a}\right)^2}}$ $\frac{(b+a\cos x)(-b\sin x) - (a+b\cos x)(-a\sin x)}{(b+a\cos x)^2}$ $=-\frac{b+a\cos x}{\sqrt{(b+a\cos x)^2-(a+b\cos x)^2}}$ $\frac{(-b^2 + a^2)\sin x}{(b + a\cos x)^2}$ $= \frac{-(a^2 - b^2)\sin x}{(b + a\cos x)\sqrt{b^2 + a^2\cos^2 x - a^2 - b^2\cos^2 x}}$ $=\frac{(b^2-a^2)\sin x}{(b+a\cos x)\sqrt{(b^2-a^2)(1-\cos^2 x)}}$ $= \frac{(b^2 - a^2)\sin x}{(b + a\cos x)\sqrt{(b^2 - a^2)\sin^2 x}}$ $=\frac{\sqrt{b^2-a^2}}{b+acc}$ 13(c) $\sin^{-1}(\frac{2x^{-1}}{x+x^{-1}}) = \sin^{-1}(\frac{2/x}{x+1/x})$

$$= \sin^{-1}(\frac{2}{x^{2}+1})$$

$$\therefore \frac{d}{dx} \{ \sin^{-1}(\frac{2x^{-1}}{x+x^{-1}}) \}$$

$$= \frac{1}{\sqrt{1-\frac{4}{(x^{2}+1)^{2}}}} 2\frac{d}{dx} (x^{2}+1)^{-1}$$

$$= \frac{x^{2}+1}{\sqrt{x^{4}+2x^{2}+1-4}} 2(-1)(x^{2}+1)^{-2} . 2x$$

$$= \frac{-4x(x^{2}+1)^{-1}}{\sqrt{x^{4}+2x^{2}-3}} = \frac{-4x}{(x^{2}+1)\sqrt{x^{4}+2x^{2}-3}}$$

13(d) $\frac{d}{dx} \{ \cos^{-1}x \ln(\sin^{-1}x) \}$ [4.5.9.'08]

$$= \cos^{-1}x \frac{d}{dx} \{ \ln(\sin^{-1}x) \} + \ln(\sin^{-1}x) \}$$

$$= \cos^{-1}x \frac{1}{\sin^{-1}x} \frac{1}{\sqrt{1-x^{2}}} + \frac{\ln(\sin^{-1}x)}{-\sqrt{1-x^{2}}}$$

$$= \frac{1}{\sqrt{1-x^{2}}} \{ \frac{\cos^{-1}x}{\sin^{-1}x} - \ln(\sin^{-1}x) \}$$

13(e) $\cot^{-1}(\frac{x^{2}}{e^{x}}) + \cot^{-1}(\frac{e^{x}}{x^{2}})$

$$= \tan^{-1}(\frac{e^{x}}{x^{2}} + \frac{x^{2}}{e^{x}}) = \tan^{-1}\frac{\frac{e^{x}}{x^{2}} + \frac{x^{2}}{e^{x}}}{1-1} + \frac{1}{x^{2}} = -1 + \frac{1}{2} + \frac{1}$$

.

13(f)
$$\tan^{-1} \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{ax}}$$
 [4.0.9. '36]
= $\tan^{-1} \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{x}\sqrt{a}} = \tan^{-1} \sqrt{x} + \tan^{-1} \sqrt{a}$
 $\therefore \frac{d}{dx} \{ \tan^{-1} \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{ax}} \}$
= $\frac{d}{dx} (\tan^{-1} \sqrt{x}) + \frac{d}{dx} (\tan^{-1} \sqrt{a})$
= $\frac{1}{1 + (\sqrt{x})^2} \frac{d}{dx} (\sqrt{x}) + 0$
= $\frac{1}{1 + x} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{x}(1 + x)}$
14(a) $\sqrt[4]{R}, y = \tan^{-1} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}}$ and
 $y = \tan^{-1} \frac{\sqrt{1 + \cos \theta} - \sqrt{1 - \cos \theta}}{\sqrt{1 + \cos \theta} + \sqrt{1 - \cos \theta}}$
= $\tan^{-1} \frac{\sqrt{2}(\cos(\theta/2) - \sqrt{2}\sin^2(\theta/2)}}{\sqrt{2}(\cos^2(\theta/2) + \sqrt{2}\sin^2(\theta/2))}$
= $\tan^{-1} \frac{\sqrt{2}\{\cos(\theta/2) + \sin(\theta/2)\}}{\sqrt{2}\{\cos(\theta/2) + \sin(\theta/2)\}}$
= $\tan^{-1} \frac{1 - \tan(\theta/2)}{\sqrt{2}\{\cos(\theta/2) + \sin(\theta/2)\}}$
= $\tan^{-1} \frac{1 - \tan(\theta/2)}{1 + \tan(\theta/2)}$ = $\tan^{-1}(1) - \tan^{-1} \tan \frac{\theta}{2}$
= $\frac{\pi}{4} - \frac{\theta}{2} = \frac{\pi}{4} - \frac{1}{2}\tan^{-1}x^2$
 $\frac{dy}{dx} = 0 - \frac{1}{2}\{-\frac{1}{1 + (x^2)^2}\} (2x) = \frac{x}{\sqrt{1 - x^4}}$
14(b) $\sqrt[4]{R}, y = \sec^{-1} \frac{1}{2x^2 - 1}$ and $x = \cos \theta$
 $\sqrt[6]{R}(\theta), \theta = \cos^{-1} x$ and y
 $y = \sec^{-1} \sec 2\theta = 2\theta = 2\cos^{-1} x$

$$\frac{dy}{dx} = \frac{d}{dx}(2\cos^{-1}x) = \frac{-2}{\sqrt{1-x^2}} \text{ (Ans.)}$$

$$14(c) \frac{d}{dx} \{\sin^{-1}(\tan^{-1}x)\} \quad [ft.'os]$$

$$= \frac{1}{\sqrt{1-(\tan^{-1}x)^2}} \frac{d}{dx}(\tan^{-1}x)$$

$$= \frac{1}{\sqrt{1-(\tan^{-1}x)^2}} \frac{1}{1+x^2}$$

$$= \frac{1}{(1+x^2)\sqrt{1-(\tan^{-1}x)^2}} \text{ (Ans.)}$$

$$14(d) \tan^{-1}\frac{\cos x - \sin x}{\cos x + \sin x} \quad [a. e. 4, 'od]$$

$$= \tan^{-1}\frac{\cos x(1-\tan x)}{\cos x(1+\tan x)} = \tan^{-1}\frac{1-\tan x}{1+1\tan x}$$

$$= \tan^{-1}1 - \tan^{-1}(\tan x) = \frac{\pi}{4} - x$$

$$\therefore \frac{d}{dx} \{\tan^{-1}\frac{\cos x - \sin x}{\cos x + \sin x}\} = \frac{d}{dx}(\frac{\pi}{4} - x)$$

$$= 0 - 1 = -1 \text{ ((Ans.))}$$

$$\frac{dy}{dx} \quad [a. e. 4(\theta - \sin \theta), y = a (1 + \cos \theta) \\ \quad [a. e. 4, 'oe]$$

$$\frac{dx}{d\theta} = \frac{d}{d\theta} \{a(\theta - \sin \theta)\} = a(1 - \cos \theta)$$

$$\frac{dy}{d\theta} = \frac{d}{d\theta} \{a(1 + \cos \theta)\} = a(0 - \sin \theta)$$

$$\frac{dy}{d\theta} = \frac{dy}{d\theta} \times \frac{d\theta}{dx} = \frac{-a\sin \theta}{a(1 - \cos \theta)}$$

$$\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx} = \frac{-a\sin \theta}{a(1 - \cos \theta)}$$

$$\frac{dy}{2\sin^2 \frac{\theta}{2}} = -\cot \frac{\theta}{2}$$

$$15(b) \frac{d}{dx} (\sin x)^{\ln x} = (\sin x)^{\ln x}$$

_

$$\begin{bmatrix} \ln x \frac{d}{dx} \{\ln(\sin x)\} + \ln(\sin x) \frac{d}{dx} (\ln x) \} \\ = (\ln x)^{\ln x^{-1} x} [\tan^{-1} x \frac{1}{\ln x} \frac{1}{x} \frac{1}{x} + \frac{\ln(\ln x)}{1 + x^{2}}] \\ = (\ln x)^{\ln x^{-1} x} [\ln x \frac{1}{\ln x} \frac{1}{x} (\ln x)] \\ = (\ln x)^{\ln x^{-1} x} [\ln x \frac{1}{\ln x} \frac{1}{x} (\ln x)] \\ = (\ln x)^{\ln x^{-1} x} [\ln x \frac{1}{\ln x} \frac{1}{x} (\ln x)] \\ = (\ln x)^{\ln x^{-1} x} [\frac{\ln^{-1} x}{\ln x} \frac{1}{\ln x} \frac{1}{x} + \frac{\ln(\ln x)}{1 + x^{2}}] \\ = (\ln x)^{\ln x^{-1} x} [\ln x \frac{1}{\ln x} \frac{1}{x} (\ln x)] \\ = (\ln x)^{\ln x^{-1} x} [\frac{\ln^{-1} x}{\ln x} \frac{1}{\ln x} \frac{1}{x} (\ln x)] \\ = (\ln x)^{\ln x^{-1} x} [\frac{\ln x}{\ln x} \frac{1}{\ln x} \frac{1}{x} (\ln x)] \\ = (\ln x)^{\ln x} [\ln x \frac{1}{\cos x} \frac{\cos x}{\sin x} + \ln(\sin x) \frac{d}{dx} (\ln x)] \\ = (\ln x)^{\ln x} [\ln x \frac{1}{\cos x} \frac{\cos x}{\sin x} + \ln(\sin x) \frac{d}{dx} (\ln x)] \\ = (\ln x)^{\ln x} [\ln x \frac{1}{\tan x} \sec^{2} x + \ln(\tan x) \frac{1}{x}] \\ = (\tan x)^{\ln x} [\ln x \frac{1}{\tan x} \sec^{2} x + \ln(\tan x) \frac{1}{x}] \\ = (\tan x)^{\ln x} [\ln x \frac{1}{\sin x} \frac{\cos x}{\sin x} \frac{1}{\cos^{2} x} + \frac{\ln(\tan x)}{x}] \\ = (\tan x)^{\ln x} [\ln x \frac{1}{\sin x} \frac{\cos x}{\sin x} \frac{1}{\cos^{2} x} + \frac{\ln(\tan x)}{x}] \\ = (\tan x)^{\ln x} [\ln x \frac{2}{\sin x \cos x} + \frac{\ln(\tan x)}{x}] \\ = (\tan x)^{\ln x} [\ln x \frac{2}{\sin x \cos x} + \frac{\ln(\tan x)}{x}] \\ = (\tan x)^{\ln x} [\ln x \frac{1}{\tan x} \sec^{2} x + \ln(\tan x)] \frac{1}{x}] \\ = (\ln x)^{\ln x} [\ln x \frac{1}{\tan x} \frac{1}{x} + \ln(\ln x) \frac{1}{x}] \\ = (\ln x)^{\ln x} [\ln x \frac{1}{\sin x} \frac{1}{\sin x} \frac{1}{\cos^{2} x} + \frac{\ln(\tan x)}{x}] \\ = (\ln x)^{\ln x} [\ln x \frac{1}{\sin x} \frac{1}{\cos^{2} x} + \frac{\ln(\tan x)}{x}] \\ = (\ln x)^{\ln x} [\ln x \frac{1}{\ln x} \frac{1$$

$$-\frac{1}{1+y^2} \frac{dy}{dx} = 1 + \frac{dy}{dx}$$

$$\Rightarrow \left(-\frac{1}{1+y^2} - 1\right) \frac{dy}{dx} = 1$$

$$\Rightarrow -\frac{1+1+y^2}{1+y^2} \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = -\frac{1+y^2}{2+y^2} \quad (Ans.)$$
17(c) $y = \tan(x+y)$ [প্র.ভ.প. '৮৯]
$$\Rightarrow \tan^{-1} y = x + y$$
উতম পক্ষকে x এর সাপেক্ষে অশতরীকরণ করে পাই,

$$\frac{1}{1+y^2} \frac{dy}{dx} = 1 + \frac{dy}{dx}$$

$$\Rightarrow \left(\frac{1}{1+y^2} - 1\right) \frac{dy}{dx} = 1$$

$$\Rightarrow \frac{1-1-y^2}{1+y^2} \frac{dy}{dx} = 1 \therefore \frac{dy}{dx} = -\frac{1+y^2}{y^2}$$

$$17(d) x^2 + y^2 = \sin(xy)$$

$$\boxed{\text{Usen wave}} x \text{ as microtre waves} \text{ and examples and examples,}$$

$$2x + 2y \frac{dy}{dx} = \cos(xy) \left(x \frac{dy}{dx} + y\right)$$

$$\Rightarrow \{2y - x\cos(xy)\} \frac{dy}{dx} = y\cos(xy) - 2x$$

$$\frac{dy}{dx} = \frac{y\cos(xy) - 2x}{2y - x\cos(xy)}$$

$$(e) \cos y = x \cos(a + y) \Rightarrow x = \frac{\cos y}{\cos(a + y)}$$

$$\boxed{\text{Usen wave}} x \text{ as microtre waves} \text{ and example,}$$

$$1 = \frac{\cos(a + y)(-\sin y) \frac{dy}{dx} - \cos y\{-\sin(a + y)\} \frac{dy}{dx}}{\cos^2(a + y)}$$

$$1 = \frac{\left\{\sin(a + y)\cos y - \cos(a + y)\sin y\right\} \frac{dy}{dx}}{\cos^2(a + y)}$$

$$1 = \frac{\left\{\sin(a + y)\cos y - \cos(a + y)\sin y\right\} \frac{dy}{dx}}{\cos^2(a + y)}$$

$$\cos^2(a + y) = \sin(a + y - y) \frac{dy}{dx}$$

$$\frac{dy}{dx} = \frac{\cos^2(a + y)}{\sin a} \quad (\text{Ans.})$$

$$17(f) e^{2x} + 5y^3 = 3\cos(xy) \quad [\text{Hence, for example,} \text{ and microtre,} \text{ and,} \text{ and microtre,} \text{ and,} \text{ and m$$

৩৭৩

$$\frac{dy}{dx} = \frac{2e^{2x} + 3y\sin(xy)}{15y^2 + 3x\sin(xy)}$$
18(a) $y = x^y$
Solut a prove x and a microtre area called and and a set of the set of th

সমাধান: ধরি,
$$f(x) = y = \frac{x^2}{3} + 1$$

 $\frac{dy}{dx} = \frac{2}{3}x \Rightarrow dy = \frac{2}{3}x dx$
 $\Rightarrow dy = \frac{2}{3} \times 3 \times 3$, [:: x = 3, dx =3]
 $dy = 6$
আবার, $\delta y = f(x + \delta x) - f(x)$
 $= f(3 + 3) - f(3) = f(6) - f(3)$
 $= (\frac{6^2}{3} + 1) - (\frac{3^2}{3} + 1)$
 $= 12 - 3 = 9$
ভর্তি পরীক্ষার MCQ :
1. $y = x^{-\frac{1}{x}}$ হবেল $\frac{dy}{dx}$ এর মান- [BUET 07-08]
Solⁿ: $\frac{dy}{dx} = x^{-\frac{1}{x}}[-\frac{1}{x}, \frac{1}{x} + \ln x(+\frac{1}{x^2})]$
 $= x^{-\frac{1}{x}} \cdot \frac{1}{x^2}(\ln x - 1) = \frac{1}{x^{2+\frac{1}{x}}}(\ln x - 1)$
SHIFT d/dx ALPHA X
 (dx) (D) (dx) ALPHA X
 (dx) (D) (dx) (D

4.
$$\mathbf{y} = \sqrt{\sec x} \ \overline{\alpha}, \frac{dy}{dx} = ?$$
 [DU 00-01]
Solⁿ: $\frac{dy}{dx} = \frac{1}{2\sqrt{\sec x}} .\sec x \tan x$
 $= \frac{\sqrt{\sec x} \tan x}{2} = \frac{y}{2} \tan x$
5. $\mathbf{y} = \cos \sqrt{x} \ \overline{\alpha}, \frac{dy}{dx} = ?$ [DU 03-04]
Solⁿ: $\frac{dy}{dx} = -\sin \sqrt{x} . \frac{1}{2\sqrt{x}} = -\frac{\sin \sqrt{x}}{2\sqrt{x}}$
6. $f(x) = \sqrt{1 - \sqrt{x}} \ \overline{\alpha}, \frac{df}{dx} = ?$ [DU 01-02]
Solⁿ: $\frac{df}{dx} = \frac{1}{2\sqrt{1 - \sqrt{x}}} \ \overline{\alpha}, \frac{dy}{dx} = ?$ [DU 98-99]
Solⁿ: $\frac{dy}{dx} = \frac{1}{3} \frac{d}{dx} \{\log_e(2x)\} = \frac{1}{3.2x}(2) = \frac{1}{3x}$
8. $\mathbf{y} = \sin^{-1} \sin(x + 1) \ \overline{\alpha}, \frac{dy}{dx} = ?$
[DU 97-98; SU 06-07]
Solⁿ: $y = \sin^{-1} \sin(x + 1) = x + 1 \therefore \frac{dy}{dx} = 1$
9. $\mathbf{y} = \frac{x}{\sqrt{x^2 + 1}} \ \overline{\alpha}, \frac{dy}{dx} = ?$ [NU 07-08]
Solⁿ: $\frac{dy}{dx} = \frac{\sqrt{x^2 + 1} \cdot 1 - x - \frac{1}{(\sqrt{x^2 + 1})^2}}{(\sqrt{x^2 + 1})^2}$
 $= \frac{x^2 + 1 - x^2}{(x^2 + 1)\sqrt{x^2 + 1}} = \frac{1}{(x^2 + 1)^{3/2}}$
10. $\frac{d}{dx}(a^x) = ?$ [KU,RU07-08;IU 02-03]
Solⁿ: $\frac{d}{dx}(\log_a m^2) = ?$
Solⁿ: $\frac{d}{dx}(\log_a m^2) = \theta$

12.
$$x = \frac{1}{2} \[vertext{corr}, \frac{d}{dx} (x^2 e^{2x} \log_e 2x) = ? \] [RU 07-08]^{\circ} \] Sol^n : \frac{d}{dx} (x^2 e^{2x} \log_e 2x) \]$$

 $= x^2 e^{2x} \cdot \frac{1}{2x} (2) + x^2 (e^{2x} \cdot 2) \log_e 2x + (2x) e^{2x} \log_e 2x \]$
 $= \frac{1}{2} \] vertext{corr}, \frac{d}{dx} (x^2 e^{2x} \log_e 2x) \]$
 $= \frac{1}{4} e.2 + 0 + 0 = \frac{1}{2} e \]$
13. $y = \sqrt{x + \sqrt{x + \sqrt{x + \dots \infty}}} \] vertext{corr}, \frac{dy}{dx} = ? \]$
[SU 06-07, 05-06; RU 03-04; IU 06-07]
Sol^n : $y = \sqrt{x + y} \Rightarrow y^2 = x + y \]$
 $2y \] \frac{dy}{dx} = 1 + \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{1}{2y - 1} \]$
14. $y = \cos^{-1} \frac{x - x^{-1}}{x + x^{-1}} \] vertext{corr}, \frac{dy}{dx} = ? \]$
[RU 06-07]
Sol^n : $y = \cos^{-1} \frac{x^2 - 1}{x^2 + 1} = -2 \tan^{-1} x \]$
 $\frac{dy}{dx} = -\frac{2}{1 + x^2} \]$
15. $y = (\log_a x)(\log x) \] vertext{corr}, \frac{dy}{dx} = ? \]$ [RU 05-06]
Sol^n : $\frac{dy}{dx} = (\log_a x) \frac{\log_a e}{x} + \frac{\log_{10} a}{x} (\log x) \]$
ie. $\frac{dy}{dx} = (\log_a x) \frac{\log_a e}{x} + \frac{\log_{10} a}{x} (\log x) \]$
16. $y = \tan^{-1} \frac{1 + x}{1 - x} \] vertext{corr}, \frac{dy}{dx} = ? \]$ [IU 05-06;
CU 02-03]
Sol^n : $y = \tan^{-1} \frac{1 + x}{1 - x} \]$

17.
$$\tan y = \frac{2t}{1-t^2}$$
, $\sin x = \frac{2t}{1+t^2}$ [SU 94-05; JU 96-07]
Solⁿ: $y = \tan^{-1} \frac{2t}{1-t^2} = 2\tan^{-1} t$,
 $x = \sin^{-1} \frac{2t}{1+t^2} = 2\tan^{-1} t$, $y = x \Rightarrow \frac{dy}{dx} = 1$
18. $x^y = e^{x-y}$ [SU 94-05; JU 96-07]
Solⁿ: $y = \tan^{-1} \frac{2t}{1+t^2} = 2\tan^{-1} t$, $y = x \Rightarrow \frac{dy}{dx} = 1$
18. $x^y = e^{x-y}$ [SU 96-07]
Solⁿ: $y \ln x = x - y \Rightarrow y = \frac{x}{1+\ln x}$
 $\frac{dy}{dx} = \frac{(1+\ln x).1-x.\frac{1}{x}}{(1+\ln x)^2} = \frac{\ln x}{(1+\ln x)^2}$
19. $y = f(x)$ [SOF], $\frac{d}{dx}(e^y) = r$ [CU 07-08]
Solⁿ: $\frac{d}{dx}(e^y) = e^y \frac{dy}{dx}$
20. $x^2 + 3xy + 5y^2 = 1$ [SU 96-07]
Solⁿ: $2x + 3(x\frac{dy}{dx} + y.1) + 10y\frac{dy}{dx} = 0$
 $\Rightarrow (3x + 10y)\frac{dy}{dx} = -(2x + 3y)$
 $\frac{dy}{dx} = -\frac{2x + 3y}{3x + 10y}$
21. $y = x^{\frac{1}{3}} + x^{-\frac{1}{3}}$ [DU 94-05]
Solⁿ: $y^3 = x + x^{-1} + 3.x^{\frac{1}{3}}x^{-\frac{1}{3}}(x^{\frac{1}{3}} + x^{-\frac{1}{3}})$
 $\Rightarrow y^3 = x^2 + \frac{1}{x} + 3y$
 $3y^2\frac{dy}{dx} = 1 - \frac{1}{x^2} + 3\frac{dy}{dx}$
 $\Rightarrow 3(y^2 - 1)\frac{dy}{dx} = 1 - \frac{1}{x^2}$ (Ans.)

এক নন্ধরে প্রয়োজনীয় সূত্রাবলী : 1. $D^{n}(x^{n}) = n!$ 2. $D^{n}(e^{ax}) = a^{n} e^{ax}$ **3.** $\mathbf{D}^{n} \left(\frac{1}{ax+b}\right) = \frac{(-1)^{n} n! a^{n}}{(ax+b)^{n+1}}$ 4. Dⁿ { ln (ax + b) } = $\frac{(-1)^{n-1} \cdot (n-1)! \cdot a^n}{(n-1)! \cdot a^n}$ 5.Dⁿ {sin (ax + b)} = aⁿ sin ($\frac{n\pi}{2}$ +ax +b) 6. Dⁿ (cos ax) = $a^n \cos(\frac{n\pi}{2} + ax)$ 7. D ⁿ $[e^{ax} \cos (bx + c)] = (a^2 + b^2)^{n/2}$ $e^{ax}\cos(bx+c+ntan^{-1}\frac{b}{-})$ $v = 4r^{\frac{3}{2}} - 3 + 2r^{\frac{1}{2}}$ হলে, y_2 নির্ণয় কর 1 এবং x = 4 হলে, y_2 এর মান নির্ণয় কর। সমাধান: এখানে, $y = 4x^{\frac{3}{2}} - 3 + 2x^{\frac{1}{2}}$ x-এর সাপেক্ষে পর্যায়ক্রমে অন্তরীকরণ করে পাই $y_1 = 4 \times \frac{3}{2} x^{\frac{3}{2}-1} - 0 + 2 \times \frac{1}{2} x^{\frac{1}{2}-1} = 6x^{\frac{1}{2}} + x^{-\frac{1}{2}}$ $y_2 = 6 \times \frac{1}{2} x^{\frac{1}{2}-1} + (-\frac{1}{2}) x^{-\frac{1}{2}-1} = 3x^{-\frac{1}{2}} - \frac{1}{2} x^{-\frac{3}{2}}$ x = 4 হলে, $y_2 = 3.4^{-\frac{1}{2}} - \frac{1}{2} \cdot 4^{-\frac{3}{2}}$ $=\frac{3}{2}-\frac{1}{2}\cdot\frac{1}{8}=\frac{24-1}{16}=\frac{23}{16}$ $y = \sin x$ হলে, দেখাও যে, $y_4 - y = 0$ 2. [রা. '08; ব. '08] প্রমাণ ঃ এখানে, y = sin x x-এর সাপেক্ষে পর্যায়ক্রমে অন্তরীকরণ করে পাই. $y_1 = \cos x$, $y_2 = -\sin x$, $y_3 = -\cos x$, $y_A = \sin x = y$ $y_4 - y = 0$ (Showed)

3.(a) $y = \sqrt{x} + \frac{1}{\sqrt{x}}$ হলে, দেখাও যে, $2x \frac{dy}{dx} + \frac{1}{\sqrt{x}}$ $y = 2\sqrt{x}$ [ज.'o9; य.'o9; क्.'ob; थ.ज.9.'o8] প্রমাণ ঃ এখানে, $y = \sqrt{x} + \frac{1}{\sqrt{x}} \Longrightarrow \sqrt{x}y = x + 1$ উভয় পক্ষকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই $\sqrt{x}\frac{dy}{dx} + y\frac{d}{dx}(\sqrt{x}) = \frac{d}{dx}(x+1)$ $\Rightarrow \sqrt{x} \frac{dy}{dx} + y \cdot \frac{1}{2\sqrt{x}} = 1$ উভয় পক্ষকে $2\sqrt{x}$ দ্বারা গণ করে পাই. $2x\frac{dy}{dx} + y = 2\sqrt{x}$ (Showed) $3(b) \ y = \sqrt{(1-x)(1+x)}$ scen. দেখাও যে. $(1-x^2)\frac{dy}{dx} + xy = 0$ [য. '08] প্রমাণ ঃ এখানে, $y = \sqrt{(1-x)(1+x)} = \sqrt{1-x^2}$ উভয় পক্ষকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $\frac{dy}{dx} = \frac{1}{2\sqrt{1-x^2}}(-2x) = \frac{-x\sqrt{1-x^2}}{1-x^2}$ $\Rightarrow (1-x^2)\frac{dy}{dx} = -x\sqrt{1-x^2} = -xy$ $(1-x^2)\frac{dy}{dx} + xy = 0$ (Showed) 3(c) $y = px + \frac{q}{r}$ হলে, দেখাও যে, $x \frac{d^2 y}{dr^2} +$ $2\frac{dy}{dx} = 2p$ [কু. '০২; চ. '০৫; য., ঢা.'০১] প্রমাণ ঃ এখানে, $y = px + \frac{q}{x} \Rightarrow xy = px^2 + q$ উভয় পক্ষকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই, $x\frac{dy}{dx} + y \cdot 1 = p(2x) + 0 \Longrightarrow x\frac{dy}{dx} + y = 2px$ পনরায় x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

প্রশ্রমালা IX I

 $x\frac{d^2y}{dx^2} + \frac{dy}{dx} \cdot 1 + \frac{dy}{dx} = 2p$ $x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 2p$ (Showed) 4.(a) $y = ax^2 + \frac{b}{\sqrt{x}}$ হলে, দেখাও যে, $2x^2y_2$ $-xy_1 - 2y = 0$ [ব. '০২; ঢা. '০৬; কৃ. '০৯; সি.'১৩; য.,দি.'১৪] প্রমাণ ঃ এখানে, $y = ax^2 + \frac{b}{\sqrt{x}} = ax^2 + bx^{-\frac{1}{2}}$ x-এর সাপেক্ষে অন্তরীকরণ করে পাই, $y_1 = 2ax - \frac{1}{2}bx^{-\frac{1}{2}-1} = 2ax - \frac{1}{2}bx^{-\frac{3}{2}}$ $y_2 = 2a + \frac{3}{4}bx^{-\frac{3}{2}-1} = 2a + \frac{3}{4}bx^{-\frac{3}{2}}$ এখন, $2x^2y_2 - xy_1 - 2y = 4ax^2 + \frac{3}{2}bx^{-\frac{1}{2}}$ $-(2ax^2-\frac{1}{2}bx^{-\frac{1}{2}})-(2ax^2+2bx^{-\frac{1}{2}})$ $= 4ax^{2} + \frac{3}{2}bx^{-\frac{1}{2}} - 2ax^{2} + \frac{1}{2}bx^{-\frac{1}{2}}$ $-2ax^2-2bx^{-\frac{1}{2}}$ $= 4ax^2 - 4ax^2 + 2bx^{-\frac{1}{2}} - 2bx^{-\frac{1}{2}} = 0$ $2x^2y_2 - xy_1 - 2y = 0$ (Showed) 4(b) $y = px^2 + qx^{-\frac{1}{2}}$ হল. যে. $2x^{2} \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} = 2y$ [রা.'ou; य.'>২; क्. 'ou; সি. '০৮, '১০; মা.'০৯; চ.'১১,'১৩; দি.'১১; ঢা.'১৩] প্রমাণ ঃ এখানে, $v = px^2 + qx^{-\frac{1}{2}}$ $\therefore \frac{dy}{dx} = 2px - \frac{1}{2}qx^{-\frac{3}{2}}, \frac{d^2y}{dx^2} = 2p + \frac{3}{4}qx^{-\frac{3}{2}}$ এখন, $2x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 4px^2 + \frac{3}{2}qx^{-\frac{1}{2}}$

 $-(2px^2-\frac{1}{2}qx^{-\frac{1}{2}})$ $= 4px^{2} + \frac{3}{2}qx^{-\frac{1}{2}} - 2px^{2} + \frac{1}{2}qx^{-\frac{1}{2}}$ $=2px^{2}+2qx^{\frac{1}{2}}=2(px^{2}+qx^{\frac{1}{2}})=2y$ $2x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 2y \quad \text{(Showed)}$ 5.(a) $y = \frac{1}{2}(e^x + e^{-x})$ राज, (मथाও य, $\left(\frac{dy}{dr}\right)^2 + 1 = y^2$ 5.'00 প্রমাণঃ $y = \frac{1}{2}(e^x + e^{-x}) \Longrightarrow 2y = e^x + e^{-x} \cdots (1)$ $2\frac{dy}{dx} = e^x - e^{-x}$ $\Rightarrow 4\left(\frac{dy}{dx}\right)^2 = (e^x - e^{-x})^2$ [কাঁ করে।] $=(e^{x}+e^{-x})^{2}-4e^{x}e^{-x}$ $= (2\nu)^2 - 4$ $[::e^x + e^{-x} = 2y]$ $\left(\frac{dy}{dx}\right)^2 + 1 = y^2$ (Showed) 5(b) $y = Ae^{mx} + Be^{-mx}$ হলে, দেখাও যে. y₂ - m²y = 0 [य.'०٩; व.'०৮,'১৩; मि.'১०; मि.'১১] প্রমাণ ঃ এখানে, $y = Ae^{mx} + Be^{-mx}$ $y_1 = \frac{d}{dt}(Ae^{mx} + Be^{-mx}) = Ame^{mx} - Bme^{-mx}$ $y_2 = Am^2 e^{mx} + Bm^2 e^{-mx}$ $= m^2 (Ae^{mx} + Be^{-mx})$ $= m^2 y$ [:: $y = Ae^{mx} + Be^{-mx}$] $y_2 - m^2 y = 0$ (Showed) $6(a) y = \sec x$ হলে, দেখাও যে, $y_2 = y(2y^2 - 1)$

6(a) y = sec x হলে, দেখাও যে, y₂ = y(2y² - 1) [রা. '০৭; চ. '০৬, ০৮,'১৪; সি. '০৭; ব. '০৬; য. '০৮, '১১; কু.'১০; ম.ি'১২,'১৪] প্রমাণ ঃ এখানে, y = sec x

 $y_1 = \frac{d}{dx}(\sec x) = \sec x \tan x$ $y_2 = \sec x \cdot \sec^2 x + \tan x \cdot \sec x \tan x$ $= \sec x(\sec^2 x + \tan^2 x)$ $= \sec x(\sec^2 x + \sec^2 x - 1)$ $y_2 = y(2v^2 - 1)$ [\therefore y = sec x] $6(b) y = \tan x + \sec x$ হলে, প্রমাণ কর $\frac{d^2 y}{dr^2} = \frac{\cos x}{\left(1 - \sin r\right)^2}$ [রা. '১০.'১৪; ক. '০৩; সি.'১৩; ব..ঢা.'১৪] প্রমাণ ঃ এখানে, $y = \tan x + \sec x \cdots (1)$ (1) -এর উভয় পক্ষকে x -এর সাপেক্ষে অন্তরীকরণ করে পাই, $\frac{dy}{dx} = \sec^2 x + \sec x \tan x$ $\Rightarrow \frac{dy}{dx} = \frac{1}{\cos^2 x} + \frac{\sin x}{\cos^2 x} = \frac{1 + \sin x}{\cos^2 x}$ $=\frac{1+\sin x}{(1+\sin x)(1-\sin x)}=\frac{1}{1-\sin x}\cdots(2)$ (2) -এর উভয় পক্ষকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই, $\frac{d^2 y}{dr^2} = -\frac{1}{(1-\sin x)^2} \frac{d}{dr} (1-\sin x)$ $\frac{d^2 y}{dr^2} = \frac{\cos x (\cos^2 x + 2\sin x + 2\sin^2 x)}{\cos^4 x}$ $\frac{d^2 y}{dx^2} = \frac{\cos x}{\left(1 - \sin x\right)^2}$ (Showed) 6(c) y = sin(sin x) হলে, প্রমাণ কর যে, $y_2 +$ $y_1 \tan x + y \cos^2 x = 0$ [য. '০৫: সি. '০৬, '১১; কু. '০৭; ব. '০১] প্রমাণ & এখানে, $y = \sin(\sin x) \cdots \cdots (1)$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $y_1 = \cos(\sin x) \cdot \cos x \cdots (2)$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই, $y_2 = \cos(\sin x) \cdot (-\sin x) +$ $\cos x. \{-\sin(\sin x)\}.\cos x$ $= -\sin x \cos(\sin x) - \cos^2 x \sin(\sin x)$

$$= -\sin x. \frac{y_1}{\cos x} - \cos^2 x.y \quad [(1) \ (2) \ (2) \ (3) \ (2) \ (3) \ ($$

উচ্চতর গণিত: ১ম পত্র সমাধান

= -4y[(1) দ্বারা।] (Showed) $y_{4} + 4y = 0$ 7(c) $y = e^x \cos x$ হলে. দেখাও যে. $y_2 - 2y_1 + 2y = 0$ [मि.'১০; ह.') २; त.') ७; मा.') 8] প্রমাণ ঃ এখানে, $v = e^x \cos x$...(1) ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $y_1 = e^x \cos x + e^x (-\sin x)$ $\Rightarrow y_1 = y - e^x \sin x$ [(1) **षातां**।] $\Rightarrow y_1 - y = -e^x \sin x \cdots (2)$ ইহাকে x-এর সাপেক্ষে অনতরীকরণ করে পাই $y_2 - y_1 = -e^x \sin x - e^x \cos x$ = y₁ - y - y [(1) ও (2) দারা।] $y_2 - 2y_1 + 2y = 0$ (Showed) $7(d) y = e^{ax} \sin bx$ হলে, দেখাও যে, $y_2 - 2ay_1 + (a^2 + b^2)y = 0$ [সি. '০২] প্রমাণ ঃ এখানে, $y = e^{ax} \sin bx \cdots \cdots (1)$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $y_1 = e^{ax} \cdot \cos bx \cdot b + \sin bx \cdot e^{ax} \cdot a$ $= b e^{ax} \cos bx + ay$ [(1) দ্বারা।] $\Rightarrow y_1 - ay = b e^{ax} \cos bx \cdots \cdots (2)$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই $y_2 - a y_1 = b\{ae^{ax}\cos bx - be^{ax}\sin bx\}$ $\Rightarrow y_2 - a y_1 = a(be^{ax} \cos bx) - b^2 e^{ax} \sin bx$ $= a(y_1 - ay) - b^2 y$ [(1) ७ (2) षाता |] $v_2 - 2av_1 + (a^2 + b^2)v = 0$ 8.(a) $y = a \cos(\ln x) + b \sin(\ln x)$ হল, দেখাও $(\overline{x}), x^2 y_2 + x y_1 + y = 0$ [চ.'০৭'; ঢা.'০৯; রা.'১৩;সি.'১৪] প্রমাণ : $y = a \cos(\ln x) + b \sin(\ln x) \cdots (1)$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $y_1 = a\{-\sin(\ln x), \frac{1}{x}\} + b\cos(\ln x), \frac{1}{x}\}$ $\Rightarrow xy_1 = -a\sin(\ln x) + b\cos(\ln x)$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই.

 $xy_2 + y_1 \cdot 1 = -a\cos(\ln x) \cdot \frac{1}{2} - b\sin(\ln x) \cdot \frac{1}{2}$ $\Rightarrow x^2 y_2 + x y_1 = -\{a\cos(\ln x) + b\sin(\ln x)\}\$ $\Rightarrow x^2 y_2 + x y_1 = -y$ [(1) **দ্বারা**।] $x^2 y_2 + x y_1 + y = 0$ (Showed) $8(b) y = x^2 ln(x)$ হলে, দেখাও যে, $y_3 x = 2$ প্রি.ড.প. '০৬] প্রমাণ ঃ এখানে, $y = x^2 \ln(x)$ $y_1 = x^2 \frac{1}{x} + \ln(x) \cdot 2x = x + 2x \ln(x)$ $y_2 = 1 + 2\{x\frac{1}{x} + \ln(x), 1\} = 1 + 2 + 2\ln(x)$ $y_3 = 0 + 2 \cdot \frac{1}{x}$ $y_3 x = 2$ (Showed) $8(c) y = \ln(\sin x)$ হলে, দেখাও যে, $\frac{d^3 y}{dx^3} = \frac{2\cos x}{\sin^3 x}$ প্রমাণ ঃ এখানে, $y = \ln(\sin x)$ $\frac{dy}{dx} = \frac{d}{dx} \{\ln(\sin x)\} = \frac{1}{\sin x} (\cos x)$ $=\frac{\cos x}{\sin x}=\cot x$ $\frac{d^2 y}{dx^2} = \frac{d}{dx}(\cot x) = -\csc^2 x$ $\frac{d^3 y}{dx^3} = \frac{d}{dx}(-\csc^2 x)$ $= -2\cos ecx(-\cos ecx\cot x)$ $= 2\cos ec^2 x \cot x = 2\frac{1}{\sin^2 r} \cdot \frac{\cos x}{\sin r}$ $\frac{d^3y}{dr^3} = \frac{2\cos x}{\sin^3 r}$ (Showed) 9.(a) $y = (x + \sqrt{1 + x^2})^m$ হলে, প্রমাণ কর যে. $(1+x^2)y_2 + xy_1 - m^2 y = 0$ যি.'১০;ব.'১০.'১৪;সি.'১২] প্রমাণ ঃ এখানে, $y = (x + \sqrt{1 + x^2})^m \cdots (1)$

৩৮০

ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

.

.

 $(1-x^2)y_2 - xy_1 = 16y$ (Showed) $10(c) y = e^{\tan^{-1} x}$ হলে, প্রমাণ কর যে, $(1 + x^2) y_2$ $+(2x-1)y_1 = 0$ [य.'08; \mathbf{q} .'0७; \mathbf{q} .'09; \mathbf{h} .'05] প্রমাণ ঃ এখানে, $y = e^{\tan^{-1} x}$...(1) ইহাকে 🗶 -এর সাপেক্ষে অন্তরীকরণ করে পাই. $y_1 = e^{\tan^{-1} x} \cdot \frac{1}{1 + x^2} = y \cdot \frac{1}{1 + x^2}$ [(1) দ্বারা।] \Rightarrow (1+x²) y₁ = y ইহাকে x-এর সাপেক্ষেঁ অনতরীকরণ করে পাই $(1+x^2) y_2 + y_1 (0+2x) = y_1$ $(1+x^2)y_2 + (2x-1)y_1 = 0$ (Showed) $10.(d) y = \tan^{-1} x$ হল. প্রমাণ কর যে. $(1+x_2)y_2 + 2xy_1 = 0$ [जा.'o2; $\overline{9}$.'oe] প্রমাণ ঃ এখানে, $y = \tan^{-1} x$...(1) ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $y_1 = \frac{1}{1+x^2} \Rightarrow (1+x^2) y_1 = 1$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $(1+x^2)y_2 + y_1(0+2x) = 0$ $(1 + x_2)y_2 + 2xy_1 = 0$ (Showed) 10(e) $ln y = a \sin^{-1} x$ হলে, দেখাও যে, $(1-x^2)$ $y_2 - x y_1 - a^2 y = 0$ [ঢা.'০৭] প্রমাণ ঃ এখানে, $\ln y = a \sin^{-1} x$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $\frac{1}{y}y_1 = a\frac{1}{\sqrt{1-x^2}} \Rightarrow \sqrt{1-x^2} y_1 = ax$ ⇒ $(1 - x^2) y_1^2 = a^2 y^2$ [উভয় পক্ষকে বর্গ করে।] ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $(1-x^2) 2y_1y_2 + y_1^2(-2x) = a^2 \cdot 2yy_1$ উভয় পক্ষকে 2y, দ্বারা ভাগ করে পাই, $(1-x^2) y_2 - xy_1 = a^2 y$ $(1-x^2) y_2 - x y_1 - a^2 y = 0$ $10(f) \ln(y) = \tan^{-1} x$ হলে. $a_{1}(1+x^{2})y_{2} + (2x-1)y_{1} = 0$

[রা.'০৫,'০৮,'১০;য.'১০;কু.'১১: ঢা..ব.'১২] প্রমাণ ঃ এখানে, $\ln(y) = \tan^{-1} x$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $\frac{1}{y_1}y_1 = \frac{1}{1+x^2} \implies (1+x^2)y_1 = y$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $(1+x^2)y_2 + y_1(0+2x) = y_1$ $(1+x^{2})y_{2} + (2x-1)y_{1} = 0$ $10(g) y = \sin^{-1} x$ হলে. প্রমাণ কর $(\overline{x}),(1-x^2)y, -xy_1 = 0$ [সি.'০১,'০৫] প্রমাণ ঃ এখানে, $y = \sin^{-1} x$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $y_1 = \frac{1}{\sqrt{1-x^2}} \Rightarrow y_1 \sqrt{1-x^2} = 1$ $\Rightarrow (1-x^2) y_1^2 = 1$ [উভয় পক্ষকে বর্গ করে।] ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $(1-x^2) 2y_1y_2 + y_1(-2x) = 0$ উভয় পক্ষকে 2y, দ্বারা ভাগ করে পাই, $(1-x^2)y_2 - xy_1 = 0$ (Showed) 11.(a) $y = \tan(m \tan^{-1} x)$ হলে, দেখাও যে. $(1+x^2)y_1 = m(1+y^2)$ [বৃ. '১২; য. '১১; চ. '১২; ঢা. '১৩] প্রমাণ ঃ এখানে, $y = \tan(m \tan^{-1} x) \cdots (1)$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $y_1 = \sec^2(m\tan^{-1}x).\frac{m}{1+x^2}$ $\Rightarrow (1+x^2) y_1 = m\{1 + \tan^2(m \tan^{-1} x)\}$ \Rightarrow (1+x²) y₁ = m(1+y²) [(1) षाता।] 11(b) $y = \tan(m \tan^{-1} x)$ হলে, দেখাও যে, $(1 + x^2)y_2 - 2(my - x)y_1 = 0$ [সি.'০৬] প্রমাণ : এখানে, $y = \tan(m \tan^{-1} x) \cdots (1)$ ইহাকে x-এর সাপেক্ষে অম্তরীকরণ করে পাই, $y_1 = \sec^2(m\tan^{-1}x).\frac{m}{1+x^2}$

 $\Rightarrow (1+x^2) y_1 = m\{1 + \tan^2(m \tan^{-1} x)\}$ \Rightarrow (1+x²) y₁ = m(1 + y²) [(1) षाता।] ইহাকে x-এর সাপেক্ষে অনতরীকরণ করে পাই $(1+x^2)y_1 + y_1(2x) = m.2yy_1$ $(1 + x^2)y_2 - 2(my - x)y_1 = 0$ $11(c) y = \sin(m \sin^{-1} x)$ হলে. দেখাও যে. $(1-x^2)y_2 - xy_1 + m^2 y = 0$ [व.'১১; ण.' ১০; রা.' ০৯; क.' ১৩; দি.' ১৪] প্রমাণ ঃ এখানে, $y = \sin(m \sin^{-1} x) \cdots (1)$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $y_1 = \cos(m\sin^{-1} x) \cdot \frac{m}{\sqrt{1 - x^2}}$ $v_1 \sqrt{1-x^2} = m \cos(m \sin^{-1} x)$ $\Rightarrow y_1^2 (1-x^2) = m^2 \cos^2(m \sin^{-1} x)$ $\implies v_1^2 (1-x^2) = m^2 \{1-\sin^2(m\sin^{-1}x)\}$ $\Rightarrow (1-x^2) y_1^2 = m^2(1-y^2)$ [(1) षांडा।] ইহাকে x-এর সাপেক্ষে অনতরীকরণ করে পাই $(1-x^2) 2y_1y_2 + y_1 (-2x) = m^2(-2y_1y_1)$ উভয় পক্ষকে 2 v. দারা ভাগ করে পাই. $(1 - 1) v_{1} - x y_{1} = -m^{2} v_{1}$ $(1-x^2)y_2 - xy_1 + m^2y = 0$ (Showed) 11(d) $v = \cos(2\sin^{-1}x)$ হলে, দেখাও যে, $(1-x^2)y_2 - xy_1 + 4y = 0$ থি.ড.প. '০৬] প্রমাণ : এখানে, $y = \cos(2\sin^{-1} x) \cdots (1)^{-1}$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $y_1 = -\sin(2\sin^{-1}x) \cdot \frac{2}{\sqrt{1-x^2}}$ $\Rightarrow y_1 \sqrt{1-x^2} = -2\sin(2\sin^{-1}x)$ $\Rightarrow y_1^2(1-x^2) = 4\sin^2(2\sin^{-1}x)$ $\Rightarrow y_1^2(1-x^2) = 4\{1-\cos^2(2\sin^{-1}x)\}$ $(1-x^2)y_1^2 = 4(1-y^2)$ [(1) দ্বারা।] ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $(1-x^2).2y_1y_2 + y_1^2(-2x) = 4(-2yy_1)$

ডভয় পক্ষকে 2y, দ্বারা তাগ করে পাই, $(1-x^2)y_2 - xy_1 = -4y$ $(1-x^2)y_2 - xy_1 + 4y = 0$ (Showed) 11(e) $y = (\sin^{-1} x)^2$ হলে. প্রমাণ কর $(\overline{\mathbf{v}}, (1-x^2)y_1 - xy_1 - 2 = 0 \quad [\overline{\mathbf{v}}, \mathbf{ob}; \overline{\mathbf{x}}]$ প্রমাণ ঃ এখানে, $v = (\sin^{-1} x)^2$ (1)ইহাকে x-এর সাঁপেক্ষে অন্তরীকরণ করে পাই, $y_1 = 2(\sin x) \cdot \frac{1}{\sqrt{1-x^2}}$ $\Rightarrow \sqrt{1-x^2} y_1 = 2(\sin^{-1} x)$ $\Rightarrow (1-x^2) y_1^2 = 4(\sin^{-1} x)^2 = 4y$ ইহাকে x-এর সাপেক্ষে অনতরীকরণ করে পাই $(1 - x^2) \cdot 2y \cdot y + y \cdot (-2x) = 4y$ উভয় পক্ষকে 2 v. হারা ভাগ করে পাই. $(1-x^2)y_2 - xy_1 = 2$ $(1-x^2)y_2 - xy_1 - 2 = 0$ (Showed) 11(f) $y = \frac{1}{2} (\sin^{-1} x)^2$ হলে, প্রমাণ কর যে, $(1-x^2)y_2 - xy_1 - 1 = 0$ [a.v.9.'oe] প্রমাণ : এখানে, $2y = (\sin^{-1} x)^{-1} \cdots (1)$ ইহাকে ্র-এর সাপেক্ষে অনতরীকরণ করে পাই. $2 y_1 = 2(\sin^{-1} x) \cdot \frac{1}{\sqrt{1 - x^2}}$ $\Rightarrow \sqrt{1-x^2} y_1 = (\sin^{-1} x)$ $\Rightarrow (1-x^2) y_1^2 = (\sin^{-1} x)^2 = 2y$ ইহাকে x-এর সাপেক্ষে অনতরীকরণ করে পাই. $(1-x^2).2y_1y_2 + y_1^2(-2x) = 2y_1$ উভয় পক্ষকে 2 γ, দ্বারা তাগ করে পাই. $(1-x^2)y_2 - xy_1 = 1$ $(1-x^2)y_2 - xy_1 - 1 = 0$ (Showed) * 12(a) $\cos \sqrt{y} = x$ হলে, দেখাও যে, $(1 - x^2)v$, - xy1 - 2 = 0 [য. '০৬, '০৮, '১২; চ. '০৬; রা. '০৭, '০৯; সি. '১০; ব. '১০; ঢা. '১১]

প্রমাণ ঃ এখানে, $\cos \sqrt{y} = x \cdots \cdots (1)$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $-\sin\sqrt{y}$. $\frac{1}{2\sqrt{y}}$ $y_1 = 1$ $\Rightarrow 2\sqrt{y} = -y \sin \frac{1}{y}$ উভয় পক্ষকে বর্গ করে পাই $4y = y_1^2 \sin^2 \sqrt{y} = y_1^2 (1 - \cos^2 \sqrt{y})$ $\Rightarrow 4y = y_1^2 (1 - x^2)$ [(1) **षा**ता।] ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $4 y_1 = 2 y_1 y_2 (1 - x^2) + y_1^2 (-2x)$ উভয় পক্ষকে 2 v, দ্বারা ভাগ করে পাই. $2 = v_2(1 - x^2) - x v_1$ $(1-x^2)y_2 - xy_1 - 2 = 0$ (Showed) 12(b) $x = \sin \sqrt{y}$ হলে, দেখাও যে, $(1 - x^2)v_{1}$ $-xy_1 - 2 = 0$ [$\overline{4}$.'52; $\overline{1}$.'55; $\overline{4}$.'55; $\overline{5}$.'53] প্রমাণ ঃ এখানে, $x = \sin \sqrt{y} \cdots \cdots (1)$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $\cos\sqrt{y} \cdot \frac{1}{2\sqrt{y}} y_1 = 1$ $\Rightarrow 2\sqrt{y} = y_1 \cos \sqrt{y}$ উভয় পক্ষকে বর্গ করে পাই $4y = y_1^2 \cos^2 \sqrt{y} = y_1^2 (1 - \sin^2 \sqrt{y})$ $\Rightarrow 4y = y^2(1-x^2)$ [(1) षाता।] ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $4 y_1 = 2 y_1 y_2 (1 - x^2) + y_1^2 (-2x)$ উভয় পক্ষকে 2 v, দ্বারা ভাগ করে পাই $2 = v_{2}(1 - x^{2}) - x v_{1}$ $(1-x^2)y_2 - xy_1 - 2 = 0$ (Showed) 12(c) $y = \frac{\sin x}{\sqrt{x}}$ হলে, দেখাও যে, $x^2 y_2 + x y_1$ $+(x^{2}-\frac{1}{4})y=0$ [প্র.ভ.প. '০৪]

প্রমাণ ঃ $y = \frac{\sin x}{\sqrt{x}} \Rightarrow \sin x = \sqrt{x}y \cdots (1)$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $\cos x = \sqrt{x} y_1 + y_2 \frac{1}{2\sqrt{x}}$ $\Rightarrow 2\cos x = \frac{2xy_1 + y}{\sqrt{1-x_1}}$ $-2\sin x = \frac{\sqrt{x}(2xy_2 + 2y_1 + y_1) - (2xy_1 + y)}{2\sqrt{x}}$ $\Rightarrow -2\sqrt{x}y = \frac{1}{2x\sqrt{x}} \left[2x(2xy_2 + 2y_1 + y_1) \right]$ $-2xy_{1} - y_{1}$ $\Rightarrow -4x^2 y = 4x^2 y_1 + 6x y_1 - 2xy_1 - y_2$ $\Rightarrow -4x^2 y = 4x^2 y_2 + 4x y_1 - y_2$ $\Rightarrow 4(x^2 y_2 + x y_1 + x^2 y) = y$ $\Rightarrow x^2 y_2 + x y_1 + x^2 y = \frac{y}{4}$ $x^{2}y_{2} + xy_{1} + (x^{2} - \frac{1}{4})y = 0$ 13.(a) $x = a(\theta + \sin \theta) \otimes y = a (1 - \cos \theta)$ হলে, $\frac{\theta}{2}$ এর মাধ্যমে $\frac{dy}{dx}$ ও $\frac{d^2y}{dx^2}$ নির্ণয় কর। সমাধান : $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ $\frac{dx}{d\theta} = a(1 + \cos\theta), \ \frac{dy}{d\theta} = a\sin\theta$ $\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx} = \frac{a\sin\theta}{a(1+\cos\theta)}$ $\Rightarrow \frac{dy}{dx} = \frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2}} = \tan\frac{\theta}{2}$ $\frac{d^2 y}{dx^2} = \frac{d}{dx} (\tan \frac{\theta}{2}) = \frac{d}{d\theta} (\tan \frac{\theta}{2}) \cdot \frac{d\theta}{dx}$ $= \sec^2 \frac{\theta}{2} \cdot \frac{1}{2} \cdot \frac{1}{a(1+\cos\theta)}$

 $=\frac{1}{2}\sec^2\frac{\theta}{2}\cdot\frac{1}{a\cdot2\cos^2\frac{\theta}{2}}$ $= \frac{1}{2}\sec^2\frac{\theta}{2} \cdot \frac{1}{2a}\sec^2\frac{\theta}{2} = \frac{1}{4a}\sec^4\frac{\theta}{2}$ 13(b) $2x = t + t^{-1}$ and $2y = t - t^{-1}$ even, $(7419 \ \text{CT}, \frac{dy}{dx} = \frac{t^2 + 1}{t^2 - 1} \ \text{creation} \frac{d^2 y}{dx^2} = -\frac{8t^3}{(t^2 - 1)^3}$ প্রমাণ ঃ এখানে, $2x = t + t^{-1} = t + \frac{1}{t} = \frac{t^2 + 1}{t}$ $2\frac{dx}{dt} = \frac{t(2t+0) - (t^2+1) \cdot 1}{t^2} = \frac{t^2 - 1}{t^2}$ and $2y = t - t^{-1} = t - \frac{1}{t} = \frac{t^2 - 1}{t} = \frac{t^2 - 1}{t}$ $2\frac{dy}{dt} = \frac{t(2t-0) - (t^2 - 1) \cdot 1}{t^2}$ $\therefore \frac{dy}{dt} = \frac{dy}{dt} \times \frac{dt}{dt} = \frac{t^2 + 1}{t^2} \times \frac{t^2}{t^2 - 1} = \frac{t^2 + 1}{t^2 - 1}$ $a \forall \overline{n}, \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{t^2 + 1}{t^2 - 1} \right) = \frac{d}{dt} \left(\frac{t^2 + 1}{t^2 - 1} \right) \cdot \frac{dt}{dx}$ $=\frac{(t^2-1).2t-(t^2+1).2t}{(t^2-1)^2}\times\frac{2t^2}{t^2-1}$ $=\frac{2t(t^2-1-t^2-1)}{(t^2-1)^2}\times\frac{2t^2}{t^2-1}$ $\frac{d^2 y}{dx^2} = -\frac{8t^2}{(t^2 - 1)^3}$ 14. নিচের ফাংশনগুলোর nতম অন্তরক সহগ নির্ণয় কর।

(a) মনে করি, $y = \ln x$ $y_1 = \frac{1}{x} = x^{-1} = (-1)^{1-1} x^{-1}$ $y_2 = (-1)x^{-2} = (-1)^{2-1} x^{-2}$ $y_3 = (-1)(-2)x^{-3} = (-1)^2 (1.2)x^{-3}$ $= (-1)^{3-1}\{1.(3-1)\}x^{-3}$ $y_4 = (-1)(-2)(-3)x^{-2} = (-1)^3 (1.2.3)x^{-4}$

$$= (-1)^{3} \{1.2.(4-1)\} x^{-4}$$

wqg yold,
 $y_{n} = (-1)^{n-1} \{1.2.3...(n-1)\} x^{-n}$
 $\therefore \ln x$ da now groat for $(n-1)! x^{n}$
14(b) NGR of a, $y = \frac{1}{a-x} = (a-x)^{-1}$
 $y_{1} = (-1)(a-x)^{-2}(-1) = 1.(a-x)^{-1-1}$
 $y_{2} = (-2)(a-x)^{-3}(-1) = (1.2)(a-x)^{-2-1}$
 $y_{3} = (1.2)(-3)(x-a)^{-4}(-1)$
 $= (1.2.3)(a-x)^{-3-1}$
wqg yold, $y_{n} = (1.2.3...(n)(x-a)^{-n-1})$
 $\frac{1}{a-x}$ da now groat for $\frac{n!}{(a-x)^{n+1}}$
14 (c) $\cos^{3} x = \frac{1}{4}(3\cos x + \cos 3x)$
 $\frac{d^{n}}{dx^{n}}(\cos^{3} x) = \frac{1}{4}\{\frac{d^{n}}{dx^{n}}(3\cos x) + \frac{d^{n}}{dx^{n}}(\cos 3x)\}$
 $= \frac{1}{4}\{3\cos(\frac{n\pi}{2} + x) + 3^{n}\cos(\frac{n\pi}{2} + 3x)\}$
14(d) $e^{3x} \sin^{2} x$ [a.w.f 'os]
 $= e^{3x} \frac{1}{2}(1 - \cos 2x)$
 $= \frac{1}{2}\{e^{3x} - e^{3x}\cos 2x\}$
 $\frac{d^{n}}{dx^{n}}(e^{3x}\sin^{2} x) = \frac{1}{2}\{\frac{d^{n}}{dx^{n}}(e^{3x}) - \frac{d^{n}}{dx^{n}}(e^{3x}\cos 2x)\}$
 $= \frac{1}{2}\{3^{n} e^{3x} - (3^{2} + 2^{2})^{\frac{n}{2}}e^{3x} \cos(2x + n \tan^{-1}\frac{2}{3})\}$

$$=\frac{e^{3x}}{2}\left\{3^{n}-(\sqrt{13})^{n}\cos(2x+n\tan^{-1}\frac{2}{3})\right\}$$

অতিরিক্ত প্রশ্ন (সমাধানসহ) $y = x^2 - 2 + \frac{1}{\pi^2}$ इंटन, $\frac{d^2 y}{d\pi^2}$ अर $\frac{d^3 y}{d\pi^3}$ 1 নির্ণয় কর। সমাধানঃ $y = x^2 - 2 + \frac{1}{x^2} = x^2 - 2 + x^{-2}$ x-এর সাপেক্ষে পর্যায়ব্রুমে অন্তরীকরণ করে পাই. $\frac{dy}{dx} = 2x - 0 + (-2)x^{-3}$ $\frac{d^2 y}{dr^2} = 2 + (-2)(-3)x^{-4} = 2 + \frac{6}{r^4}$ $\frac{d^3y}{dx^3} = (-2)(-3)(-4)x^{-5} = -\frac{24}{x^5}$ 2. $y = a \cos x + b \sin x$ $\exists e^{2}$. দেখাও যে. $y_a - y = 0$ প্রমাণ ঃ এখানে, $y = a\cos x + b\sin x$ x-এর সাপেক্ষে পর্যায়ক্রমে অন্তরীকরণ করে পাই $y_1 = a(-\sin x) + b\cos x$ $y_2 = a(-\cos x) + b(-\sin x)$ $y_2 = a \sin x + b(-\cos x)$ $y_{4} = a\cos x + b\sin x = y$ $y_4 - y = 0$ (Showed) 3. $y = \frac{x}{1-y}$ হলে, দেখাও যে, $x y_1 = y(1-y)$ প্রমাণ ঃ এখানে, $y = \frac{x}{x+2} \Longrightarrow x+2 = \frac{x}{y}$ উভয় পক্ষকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $1 = \frac{y_1 - xy_1}{y^2} \Longrightarrow y^2 = y - xy_1$ $\Rightarrow xy_1 = y - y^2$ $\therefore xy_1 = y(1 - y)$ (Showed) 4.(a) $y = a x^{n+1} + b x^{-n}$ হলে. দেখাও যে. $x^2 y_2 = n(n+1)\dot{y}$ প্রমাণ ঃ এখানে, $y = a x^{n+1} + bx^{-n}$

x -এর সাপেক্ষে অন্তরীকরণ করে পাই.

 $y_1 = a (n+1)x^n + b(-n)x^{-n-1}$ $y_2 = a(n+1)nx^{n-1} + b(-n)(-n-1)x$ এখন, $x^2 y_2 = n(n+1)ax^{n+1} + n(n+1)bx^{-n}$ $\Rightarrow x^2 y_2 = n(n+1)(ax^{n+1} + bx^{-n})$ $x^2 y_2 = n(n+1)y$ (Showed) 4(h) $v = \sqrt{ax^2 + bx + c}$ eq. (reference) (a. $4v^{3}v_{2} = 4ac - b^{2}$ প্রমাণ ঃ এখানে, $y = \sqrt{ax^2 + bx + c}$ x-এর সাপেক্ষে পর্যায়ক্রমে অনতরীকরণ করে পাই. $y_1 = \frac{1}{2\sqrt{ar^2 + br + c}} (2ar + b)$ $y_{2} = \frac{\sqrt{ax^{2} + bx + c}.(2a) - \frac{(2ax + b)^{2}}{2\sqrt{ax^{2} + bx + c}}}{(2\sqrt{ax^{2} + bx + c})^{2}}$ $\Rightarrow y_2 = \frac{4a(ax^2 + bx + c) - 4ax^2 - 4abx - b^2}{4(\sqrt{ax^2 + bx + c})^3}$ $\implies y_2 = \frac{4a^2x^2 + 4abx + 4ac - 4ax^2 - 4abx - b^2}{4x^3}$ $4y^3y_2 = 4ac - b^2 \quad \text{(Showed)}$ $5(a) \quad y = \sqrt{\cos 2x}$ হলে. দেখাও যে. $(y y_1)^2 = 1 - v^4$ প্রমাণ ঃ এখানে, $y = \sqrt{\cos 2x} \implies y^2 = \cos 2x$ উভয় পক্ষকে x - এর সাপেক্ষে অনতরীকরণ করে পাই $2yy_1 = -\sin 2x \cdot 2 \Rightarrow yy_1 = -\sin 2x$ $\Rightarrow (yy_1)^2 = \sin^2 2x$ [উভয় পক্ষকে বর্গ করে।] $\Rightarrow (yy_1)^2 = 1 - \cos^2 2x$ $= 1 - (y^2)^2$ [$y^2 = \cos 2x$] $(y y_1)^2 = 1 - y^4$ (Showed) $5(b) y = \tan \sqrt{1-x} \quad \text{zer.}$ দেখাও যে. $2 y_1 \sqrt{1-x^2} + (1+y^2) = 0$ প্রমাণ ঃ এখানে, $v = \tan \sqrt{1-x}$...(1) উভয় পক্ষকে x-এর সাপেক্ষে অনতরীকরণ করে পাই.

 $y_1 = \sec^2 \sqrt{1 - x} \cdot \frac{1}{2\sqrt{1 - x}} (-1)_{x}$ $\Rightarrow 2 y_1 \sqrt{1-x} = -(1 + \tan^2 \sqrt{1-x})$ $\Rightarrow 2 y_{1} \sqrt{1-x} = -(1+y^2)$ [(1) **দারা**] $2y_{1}\sqrt{1-x} + (1+y^{2}) = 0$ (Showed) $5(c) y = \frac{4}{\sqrt{coax}}$ হলে, লেখাও যে, $2\cot x \frac{dy}{dx} + y = 0$ প্রমাণ ঃ এখানে, $y = \frac{4}{\sqrt{\sec x}} \Rightarrow y^2 \sec x = 16$ উভয় পক্ষকে x-এর সাপেক্ষে অনতরীকরণ করে পাই. $y^2 \sec x \tan x + \sec x \cdot 2y \frac{dy}{dx} = 0$ উভয় পক্ষকে y sec x দ্বারা ভাগ করে পাই, $y \tan x + 2 \frac{dy}{dx} = 0 \implies \frac{y}{\cot x} + 2 \frac{dy}{dx} = 0$ $2\cot x\frac{dy}{dx} + y = 0$ (Showed) 6. $y = (a + bx)e^{2x}$ হলে, প্রমাণ কর যে, $y_2 - 2y_1 - 2be^{2x} = 0$ প্রমাণ ঃ এখানে, $y = (a + bx)e^{2x} \cdots \cdots (1)$ ইহাকে 🗴 - এর সাপেক্ষে অন্তরীকরণ করে পাই. $y_1 = (a + bx).e^{2x}(2) + e^{2x}(0 + b)$ $\Rightarrow y_1 = 2y + be^{2x}$ [(1) **षा**ता।] (2)ইহাকে x-এর সাপেক্ষে অনতরীকরণ করে পাই $y_2 = -2 y_1 + be^{2x}.2$ $y_2 - 2y_1 - 2be^{2x} = 0$ (Showed) $7(a) y = x^n \ln x$ হলে, দেখাও যে, $x y_1 = ny + x^n$ প্রমাণ ঃ এখানে, $y = x^n \ln x \cdots \cdots (1)$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $= x^{n} \frac{1}{n} + \ln x \cdot n x^{n-1}$ উভয় পক্ষকে x ঘারা গুণ করে পাই, $y_1 = x^n + nx^n \ln x = x^n + ny$ ((1) দ্বারা] $x y_1 = n y + x^n$ (Showed) 7(b) $y = \sqrt{1 + x^2} \ln (x + \sqrt{1 + x^2})$ scen. দেখাও যে, $(1+x^2)(y_1-1) = x y_1$

প্রমাণ :
$$y = \sqrt{1 + x^2} \ln (x + \sqrt{1 + x^2}) \cdots (1)$$

ইহাকে x-এর সাপেকে অশতরীকরণ করে পাই,
 $y_1 = \sqrt{1 + x^2} \frac{1}{x + \sqrt{1 + x^2}} \{1 + \frac{2x}{2\sqrt{1 + x^2}}\} + \ln (x + \sqrt{1 + x^2}) \cdot \frac{1}{2\sqrt{1 + x^2}} (2x)$
 $= \frac{\sqrt{1 + x^2}}{x + \sqrt{1 + x^2}} \frac{\sqrt{1 + x^2} + x}{\sqrt{1 + x^2}} + \frac{\sqrt{1 + x^2}}{\sqrt{1 + x^2}} [(1) \sqrt{1 + x^2}]$
 $\Rightarrow y_1 = 1 + y \cdot \frac{x}{1 + x^2}$ [(1) $\sqrt{1 + x^2}$]
 $\Rightarrow (1 + x^2) y_1 = (1 + x^2) + xy$
 $(1 + x^2) (y_1 - 1) = x y$ (Showed)
8. $y = \sqrt{1 - x^2} \sin^{-1} x - x \sqrt{1 + x^2} \sin^{-1} x - x \cdots (1)$
 $2 \sqrt{1 + x^2} + \frac{\sin^{-1} x}{2\sqrt{1 - x^2}} (-2x) - 1$
 $\Rightarrow y_1 = 1 - \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} - 1 = -\frac{x\sqrt{1 - x^2} \sin^{-1} x}{1 - x^2}$
 $\Rightarrow (1 - x^2) y_1 = -x(y + x)$ [(1) $\sqrt{1 + x^2}$]
 $\Rightarrow (1 - x^2) y_1 = -x(y + x)$ [(1) $\sqrt{1 + x^2} + x^2 = 0$
 $2 \sqrt{1 - x^2} + y_1(-2x) + xy_1 + y + 2x = 0$
 $2 \sqrt{1 - x^2} + y_1(-2x) + xy_1 + y + 2x = 0$
 $\Rightarrow (1 - x^2) y_2 - x(y_1 - 2) + y = 0$
 $3 \sqrt{1 - x^2} + y_1(-2x) + xy_1 + y + 2x = 0$
 $\Rightarrow (1 - x^2) y_2 - xy_1 + y + 2x = 0$
 $\Rightarrow (1 - x^2) y_2 - xy_1 + y + 2x = 0$
 $\Rightarrow (1 - x^2) y_2 - xy_1 + y + 2x = 0$
 $\Rightarrow (1 - x^2) y_2 - x(y_1 - 2) + y = 0$
9(a) $y = \sin \sqrt{x} \sqrt{x} \sqrt{x}$
 $\sqrt{x} \sqrt{x} \sqrt{x} \sqrt{x}$, $\sqrt{x} \sqrt{x}$
 $\sqrt{x} \sqrt{x} \sqrt{x} \sqrt{x}$

 $y_1 = \cos \sqrt{x} \cdot \frac{1}{2\sqrt{x}}$ $\Rightarrow 2\sqrt{x} y_1 = \cos \sqrt{x}$ উভয় পক্ষকে বর্গ কবে পাই $4x v^2 = \cos^2 \sqrt{x} = 1 - \sin^2 \sqrt{x} = 1 - v^2$ $4x v^{2} + v^{2} = 1$ (Showed) 9(b) $y = \cos \sqrt{x}$ হলে, দেখাও যে, $4x(y_1)^2 + y^2 = 1$ প্রমাণ ঃ এখানে, $y = \cos \sqrt{x}$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $y_1 = -\sin\sqrt{x} \cdot \frac{1}{2\sqrt{x}}$ $\Rightarrow 2\sqrt{x} v_1 = -\sin\sqrt{x}$ উভয় পক্ষকে বর্গ করে পাই $4x v_1^2 = \sin^2 \sqrt{x} = 1 - \cos^2 \sqrt{x} = 1 - v^2$ $4x v_1^2 + v_2^2 = 1$ (Showed) 10. $y = (1-x^2)^n$ হলে, দেখাও যে, $(1-x^2) y_1 +$ $2\mathbf{n}\mathbf{x}\mathbf{v}=\mathbf{0}$ প্রমাণ : এখানে, $y = (1 - x^2)^n$ উভয় পক্ষকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $y_1 = n(1-x^2)^{n-1}(-2x)$ উভয় পক্ষকে $(1-x^2)$ দ্বারা গুণ করে পাই, $y_1(1-x^2) = -2nx(1-x^2)^n = -2nxy$ $(1-x^{2})y_{1} + 2nxy = 0$ (Showed) 11. $y = \tan x$ হলে, দেখাও যে, $y_2 = 2y(1 + y^2)$ প্রমাণ ঃ এখানে, y = tan x $y_1 = \frac{d}{dx}(\tan x) = \sec^2 x$ $y_2 = \frac{d}{dx}(\sec^2 x) = 2 \sec x \sec x \tan x$ $= 2 \tan x \sec^2 x = 2 \tan x (1 + \tan^2 x)$ $v_2 = 2v(1 + v^2)$ (Showed) যে, 12. $v = ax \sin x$ হলে. দেখাও $x^{2}y_{2} - 2xy_{1} + (x^{2} + 2)y = 0$

প্রমাণ ঃ $y = ax \sin x \implies \frac{y}{2} = a \sin x \cdots (1)$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $\frac{xy_1 - y.1}{x^2} = a\cos x$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $\frac{x^2(xy_2 + y_1.1 - y_1) - (xy_1 - y).2x}{4} = -a\sin x$ $\Rightarrow \frac{x(x^2y_2 - 2xy_1 + 2y)}{x^4} = -\frac{y}{x} \qquad [(1) \text{ trial}]$ $\Rightarrow x^2 y_2 - 2xy_1 + 2y = -x^2 y_2$ $x^{2}y_{2} - 2xy_{1} + (x^{2} + 2)y = 0$ (Showed) 13. x = sint are y = sin pt even, really a, $(1-x^2)y_2 - x y_1 + p^2 y = 0.$ প্রমাণ : এখানে, x = sint এবং y = sin pt $t = \sin^{-1} x$ and $pt = \sin^{-1} y$ $p \sin^{-1} x = \sin^{-1} y$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $p \frac{1}{\sqrt{1-y^2}} = \frac{1}{\sqrt{1-y^2}} y_1$ $\Rightarrow p^{2}(1-y^{2}) = (1-x^{2})y^{2}$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই.. $p^{2}(-2yy_{1}) = (1-x^{2})2y_{1}y_{2} + (-2x)y_{1}^{2}$ উভয় পক্ষুকে 2₁, দ্বারা ভাগ করে পাই, $-p^{2}y = (1-x^{2})y_{2} - xy_{1}$ $(1-x^{2}) y_{2} - x y_{1} + p^{2} y = 0.$ 14. নিচের ফাংশনগুলির \mathbf{n} তম অস্ত্ররজ (y_n) নির্ণয় কর। (a) $\frac{1}{x}$ [5.'o2] (b) $\frac{x^2+1}{(x-1)(x-2)(x-3)}$ (c) $\sin x \sin 3x$ (a) মনে করি, $y = \frac{1}{x} = x^{-1}$ $y_1 = (-1)x^{-2} = (-1) \qquad x^{-(1-1)}$ $y_2 = (-1)(-2)x^{-3} = (-1)^2(1.2)x^{-2-1}$

ধশুমালা IX I

 $y_{2} = (-1)(-2)(-3)x^{-4} = (-1)^{3}(1.2.3)x^{-3-1}$ অনুরূপভাবে, $y_n = (-1)^n (1.2.3.\dots n) x^{-n-1}$ $\frac{1}{r}$ এর nতম জন্তরক সহগ = $\frac{(-1)^n n!}{r^{n+1}}$ (Ans.) 14(b) ধরি, $y = \frac{x^2 + 1}{(x-1)(x-2)(x-3)}$ $=\frac{1^2+1}{(x-1)(1-2)(1-3)}+\frac{2^2+1}{(2-1)(x-2)(2-3)}$ $+\frac{3^2+1}{(3-1)(3-2)(x-3)}$ $=\frac{2}{(x-1)(-1)(-2)}+\frac{5}{(1)(x-2)(-1)}+\frac{10}{(2)(1)(x-3)}$ $=\frac{1}{r-1}-\frac{5}{r-2}+\frac{5}{r-3}$ $y_n = \frac{d^n}{dx^n} (\frac{1}{x-1}) - 5 \frac{d^n}{dx^n} (\frac{1}{x-2}) +$ $5\frac{d^n}{dx^n}(\frac{1}{x-2})$ $=\frac{(-1)^n n!}{(r-1)^{n+1}}$ $\frac{5(-1)^n n!}{(x-2)^{n+1}} + \frac{5(-1)^n n!}{(x-3)^{n+1}}$ (c) $\sin x \sin 3x = \frac{1}{2}(\cos 2x - \cos 4x)$ $\frac{d^n}{dx^n}(\sin x \sin 3x) = \frac{1}{2} \left\{ \frac{d^n}{dx^n}(\cos 2x) \right\}$ $-\frac{d^{n}}{dx^{n}}(\cos 4x)\}$ $=\frac{1}{2}\left\{2^{n}\cos(\frac{n\pi}{2}+2x)-4^{n}\cos(\frac{n\pi}{2}+3x)\right\}^{-1}$ প্রশ্নমালা IX J 1. $v = x^{3} - 2x^{2} + 2$ ব্যৱধার (2, 2) বিন্দুতে

স্পর্শকের সমীকরণ নির্ণয় কর।

[চ. '০১; ঢা. '০৭]

সমাধান 8 $y = x^3 - 2x^2 + 2$ $\frac{dy}{dx} = 3x^2 - 4x$ (2, 2) বিশ্বতে $\frac{dy}{dx} = 3.2^2 - 4(2) = 12 - 8 = 4$ প্রদত্ত বক্ররেখার (2, 2) বিন্দুতে স্পর্শকের সমীকরণ $y-2=4(x-2) \implies 4x-y-6=0$ 2. $\dot{x}^2 - y^2 = 7$ বরুরেখার (4.-3) বিন্দুতে স্পর্শক ও অভিলম্বের সমীকরণ নির্ণয় কর। [ঢা.'১২; সি.'১৩] সমাধান 8 $x^2 - v^2 = 7$ ইহাকে x -এর সাপেক্ষে অন্তরীকরণ করে পাই. $2x - 2y \frac{dy}{dx} = 0 \implies \frac{dy}{dx} = \frac{x}{y}$ (4, -3) forges $\frac{dy}{dx} = \frac{4}{-3}$ প্রদন্ত বব্রুরেখার (4 – 3) ক্মিদুতে স্পর্শকের সমীকরণ $y + 3 = \frac{4}{2}(x - 4)$ $\Rightarrow 4x - 16 = -3y - 9 \therefore 4x + 3y - 7 = 0$ এবং অভিলম্বের সমীকরণ, $y + 3 = \frac{3}{4} (x - 4)$ $\Rightarrow 4y + 12 = 3x - 12 : 3x - 4y - 24 = 0$ 3(a) v(x-2)(x-3) - x + 7 = 0 বব্রুরেখাটি যে সমস্ত কিন্দুতে x-অক্ষকে ছেদ করে . ঐ কিন্দুগুলোতে স্পর্শক ও অভিলম্বের সমীকরণ নির্ণয় কর। [ण. '05; य. '50; ए. '50; मि. '55; र्. '58] সমাধান ঃ y(x-2)(x-3) - x + 7 = 0 \Rightarrow y(x²-5x+6) - x + 7 = 0 ...(1) বরুরেখাটি x-অক্ষকে যে বিন্দুতে ছেদ করে তার কোটি y = 0 . (1) এ y = 0 বসিয়ে পাই x = 7 বক্ররেখাটি x-অক্ষকে (7,0) কিন্দুতে ছেদ করে। (1) বর্ত্ররেখাকে x - এর সাপেক্ষে অন্তরীকরণ করে शाह, $(x^2 - 5x + 6)\frac{dy}{dx} + y(2x - 5) - 1 = 0$ $\Rightarrow \frac{dy}{dx} = \frac{1 - y(2x - 5)}{x^2 - 5x + 6}$ (7, 0) বিন্দুতে $\frac{dy}{dr} = \frac{1}{49-35+6} = \frac{1}{20}$

নির্গেয় স্পর্শকের সমীকরণ,
$$y = \frac{1}{20}(x - 7)$$

3(b) দেখাও যে, $\sqrt{x} + \sqrt{y} = \sqrt{a}$ বরুরেখার যেকোন স্পর্শক হারা স্থানাজ্ঞের অক্ষ দুইটি থেকে কর্তিত অংশের যোগফল একটি ধ্রবক। [ব. '০২; কু.'০৯; রা.'১৪] সমাধান ঃ $\sqrt{x} + \sqrt{y} = \sqrt{a}$ (1)

(1) কে x - এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}}\frac{dy}{dx} = 0 \qquad \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}$$

বক্ররেখার উপর (x_i, y_i) যেকোন ক্মিনুতে

$$\sqrt{x_1} + \sqrt{y_1} = \sqrt{a}$$
 (2) এবং $\frac{dy}{dx} = -\frac{\sqrt{y_1}}{\sqrt{x_1}}$

(x1, y1) কিন্দুতে স্পর্শকের সমীকরণ,

$$y - y_1 = -\frac{\sqrt{y_1}}{\sqrt{x_1}} (x - x_1)$$

$$\Rightarrow \quad y\sqrt{x_1} - \sqrt{x_1} y_1 = -x\sqrt{y_1} + x_1\sqrt{y_1}$$

$$\Rightarrow \quad x\sqrt{y_1} + y\sqrt{x_1} = \sqrt{x_1} y_1 + x_1\sqrt{y_1}$$

$$\Rightarrow \quad x\sqrt{y_1} + y\sqrt{x_1} = \sqrt{x_1y_1} (\sqrt{y_1} + \sqrt{x_1})$$

$$\Rightarrow \quad x\sqrt{y_1} + y\sqrt{x_1} = \sqrt{x_1y_1}\sqrt{a} \qquad [(2) \text{ test }]$$

 $\Rightarrow \frac{x}{\sqrt{a}\sqrt{x_1}} + \frac{y}{\sqrt{a}\sqrt{y_1}} = 1$ जক্ষ দুইটি থেকে কাৰ্তিত অংশের যোগফল $= \sqrt{a}\sqrt{x_1} + \sqrt{a}\sqrt{y_1} = \sqrt{a}(\sqrt{x_1} + \sqrt{y_1})$ $= \sqrt{a}\sqrt{a} = a$ যেকোন স্পর্শকের ক্ষেত্রে কর্তিত অংশের যোগফল = a, যা একটি ধ্র্বক ।

4. $y = x^3 - 3x^2 + 2$ বক্ররেখার যে সকল কিণ্দুতে স্পর্শক x- অক্ষের সমান্তরাল তাদের স্থানাজ্ঞ নির্ণয় কর। [ঢা.'০২; রা.'০৫,'১০; য.'০৯; দি.'১২] সমাধান ঃ $y = x^3 - 3x^2 + 2$

$$\frac{dy}{dx} = 3x^2 \quad 6x$$
স্পর্শিক x- অক্ষের সমান্ট্রাল হলে, $\frac{dy}{dx} = 0$

$$3x \quad -6x = 0 \Rightarrow x(x - 2) = 0$$

$$\Rightarrow x = 0, 2$$

$$x = 0$$

$$z = 2$$

$$x = 2$$

$$x = 2$$

$$x = 12 + 2 = -2$$
নির্শেষ কিন্দু $(0, 2), (2, -2)$

5.(a) $x^2 + 2ax + y^2 = 0$ বরুরেখার যে সকল কিন্দুতে. স্পর্শক x- অক্ষের উপর লম্ব তাদের স্থানাজ্ঞ নির্ণয় কর ৷

[ব.'08, '0৭; য.'0৮; চ. '০৬; কু. '০৬; চা.'১৩] সমাধান ঃ x² + 2ax + y² = 0 ··· (1) ইহাকে x -এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$2x + 2a + 2y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{x+a}{y}$$
স্পর্শক x- অক্ষের উপর লম্ব হলে, $\frac{dx}{dy} = 0$

$$-\frac{y}{dy} = 0 \Rightarrow y = 0$$

5(b) $x^2 + 4y^2 = 8$ উপবৃত্তের যে সকল কিন্দুতে স্পর্শক x- অক্ষের উপর লস্ঘ তাদের স্থানাঙ্ক নির্ণিয় কর। [কু., রা., চ.'a8; ব. 'o৫; য.'o৬; সি.'o৭; দি.'o৯;কু.'১১] সমাধান ঃ $x^2 + 4y^2 = 8$... (1) ইহাকে x-এর সাপেক্ষে অলতরীকরণ করে পাই.

$$2x + 8y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{2x}{8y} = -\frac{x}{4y}$$
স্পর্শক x- অক্ষের উপর লম্ব হলে, $\frac{dx}{dy} = 0$

$$-\frac{4y}{x} = 0 \Rightarrow y = 0$$
(1) $4y = 0$ বসিয়ে পাই, $x^2 = 8$ $x = \pm 2\sqrt{2}$
নির্শেষ বিন্দু $(2\sqrt{2}, 0), (-2\sqrt{2}, 0)$

 $5(c) y = x^{2} + \sqrt{1 - x^{2}}$ বরুরেখার যে সকল বিন্দৃতে ম্পর্শক x- অক্ষের উপর লম্ব তাদের স্থানাজ্ঞ নির্ণয় কর। [ण. '०७, '১০; চ. '०१, '১১; र. '०৯, '১৪; मि. '०৯, '১২; রা. '১৩; য. '১৩] সমাধান ঃ $y = x^2 + \sqrt{1 - x^2}$... (1) $\frac{dy}{dx} = 2x + \frac{1}{2\sqrt{1-x^2}}(-2x)$ $=\frac{x(2\sqrt{1-x^2}-1)}{\sqrt{1-x^2}}$ ম্পর্শক x- অক্ষের উপর লম্ব হলে, $\frac{dx}{dy} = 0$ $\frac{\sqrt{1-x^2}}{x(2\sqrt{1-x^2}-1)} = 0 \Rightarrow \sqrt{1-x^2} = 0$ $\Rightarrow x^2 = 1 \Rightarrow x = +1$ x = 1 হল, $v = 1^2 + \sqrt{1-1} = 1$ x = -1 even $v = (-1)^2 + \sqrt{1-1} = 1$ নির্ণেয় কিন্দু (1, 1), (-1, 1) (d) $x^{2} + 4x + v^{2} = 0$ বরুরেখার যে সকল বিন্দুতে স্পর্শক ৫- অক্ষের উপর লম্ব তাদের স্থানাচ্চ্ব নির্ণয় কর। [ৰু.'০৩] সমাধান $x^{2} + 4x + y^{2} = 0$... (1) ইহাকে x - এর সাপেক্ষে অনতরীকরণ করে পাই $2x + 4 + 2y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{x+2}{y}$

 $2x + 4 + 2y \frac{dx}{dx} = 0 \implies \frac{dx}{dx} = -\frac{y}{y}$ পশাঁক x- অক্ষের উপর লম্ব হলে, $\frac{dx}{dy} = 0$ $-\frac{y}{x+2} = 0 \implies y = 0$ (1) 4y = 0 বসিয়ে পাই, $x^2 + 4x = 0$ $\Rightarrow x(x+4) = 0 \implies x = 0, -4$ নির্ধোয় বিন্দু (0, 0), (-4, 0)

5(e) $y = x^3 - 3x^2 - 2x + 1$ বরুরেখ্রার যে সমস্ত কিন্দুতে স্পর্শকগুলো জক্ষ দুইটির সাথে সমান সমান কোণ উৎপন্ন করে তাদের ভুচ্চ নির্ণয় কর। [সি.'০৮; কৃ.'০৭, '১৩; রা.'০৮,'১২; দি.'১০; ঢা.'১১; চ.'১৩; য.'১২]

সমাধান ঃ
$$y = x^3 - 3x^2 - 2x + 1 \cdots$$
 (1)

$$\frac{dy}{dx} = 3x^2 - 6x - 2$$
স্পর্শক অক্ষ দুইটির সাথে সমান সমান কোণ উৎপন্ন
করলে, $\frac{dy}{dx} = \pm 1$ $3x^2 - 6x - 2 = \pm 1$
'+' নিয়ে, $3x^2 - 6x - 2 = 1$
 $\Rightarrow 3x^2 - 6x - 3 = 0 \Rightarrow x^2 - 2x - 1 = 0$
 $x = \frac{2 \pm \sqrt{4 + 4}}{2} = \frac{2 \pm 2\sqrt{2}}{2} = 1 \pm 2\sqrt{2}$
'-' নিয়ে, $3x^2 - 6x - 2 = -1$
 $\Rightarrow 3x^2 - 6x - 1 = 0$
 $x = \frac{6 \pm \sqrt{36 - 4.3.(-1)}}{2.3} = \frac{6 \pm \sqrt{48}}{6}$
 $= \frac{3 \pm 2\sqrt{3}}{3}$
কিপুর জ্জ $1 \pm \sqrt{2}$, $\frac{3 \pm 2\sqrt{3}}{3}$

6. y = (x+1)(x-1)(x-3) বরুরেখার যে সব বিন্দুতে স্পর্শক x- অক্ষকে ছেদ করে ঐ বিন্দুগুলোভে স্পর্শকের ঢাল নির্ণয় কর। [ক্., ঢা.'১০; সি.'১১; দি.'১৩] সমাধান : $y = (x+1)(x-1)(x-3)\cdots(1)$ $\frac{dy}{dx} = (x + 1)(x - 1)\frac{d}{dx}(x - 3) + (x + 1)$, $(x-3)\frac{d}{dx}(x - 1) + (x - 1)(x + 3)\frac{d}{dx}(x + 1)$ = (x + 1)(x - 1) + (x + 1)(x - 3) + (x - 1)(x - 3)(য সব বিন্দুতে স্পর্শক x- অক্ষকে ছেদ করে ঐ সব বিন্দুর y -স্থানান্ডক = 0 (1) এ y = 0 বসিয়ে পাই, x = -1, 1, 3বিন্দুগুলো (-1,0), (1,0), (3,0)(-1, 0) বিন্দুতে স্পর্শকের ঢাল = (-2)(-4) = 8

(1, 0) কিন্দুতে স্পর্শকের ঢাল = (2)(-2)= - 4

(3, 0) কিন্দুতে স্পর্শকের ঢাল = (4)(2)= 8

7.(a) a-এর মান কত হলে, y = ax(1-x) বরুরেখার মূলকিদুতে স্পর্শকটি x-অক্ষের সাথে 60^{0} কোণ উৎপন্ন করে। [সি.'০৬,'১০,'১৪; ব.'০৪,'০৮,'১২; চ.'০৬;

ম.'08,'05; রা.'08,'09,'05; চা.'05; কু.')২,'>8]
সমাধান :
$$y = ax(1-x) = a(x - x^2)$$

 $\frac{dy}{dx} = c(1 - 2x)$
মূলবিন্দুতে $\frac{dy}{dx} = a(1 + 0) = a$
কিম্জু মূলবিন্দুতে ঢাল , $\frac{dy}{dx} = tan(\pm 60^{0})$
 $a = tan(\pm 60^{0}) = \pm \sqrt{3}$

(b) c-এর মান কত হলে, y = cx(1+x) বরুরেখার মূলকিন্দুতে স্পর্শকটি x-অক্ষের সাথে 30⁰ কোণ উৎপন্ন করে। [ক্.'০৬; ব.'০৬; ব.'০৭; চ.'১২; চা.'১৪]

সমাধান :
$$y = cx(1 + x) = c(x + x^2)$$

 $\frac{dy}{dx} = c(1 + 2x)$
মূলবিন্দুতে $\frac{dy}{dx} = c(1 + 0) = c$
কিম্তু মূলবিন্দুতে ঢাল , $\frac{dy}{dx} = tan(\pm 30^{\circ})$
 $c = tan(\pm 30^{\circ}) = \pm \frac{1}{\sqrt{3}}$

8(a) কোন সরলরেখায় একটি গতিনীল কণা t সময়ে $s = at^2 + bt + c$ দুরত্ব অতিক্রম করে। a, b, c ধ্রক এবং t সময় পরে কণাটির বেগ v হলে, দেখাও যে, $4a(s-c) = v^2 - b^2$ [য., চ.'oc; দি.'ob; ক্.'8] সমাধান s এখানে $s = at^2 + bt + c$ (1) ইহাকে t এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$\frac{ds}{dt} = 2at + b$$

t সেকেন্ডে পর কণাটির কো $v = 2at + b$

$$\Rightarrow v^2 = 4a^2t^2 + 4abt + b^2 \qquad [বর্গ করে]$$

$$\Rightarrow v^2 - b^2 = 4a(at^2 + bt)$$

$$\Rightarrow v^2 - b^2 = 4a(s - c) \qquad [(1) ঘারা]$$

$$4a(s - c) = v^2 - b^2$$

8(b) যদি কোন বৃত্তের ব্যাসার্ধ সমহারে বৃদ্ধি পায় , তবে দেখাও যে, তার কেত্রফলের বৃদ্দিহার তার ব্যাসার্ধের সাথে সমানুপাতিক হবে। [ব. '০৬; চ.'০৮;দি.'১১; রা.'১৪] প্রমাণ মনে করি, t'সময়ে প্রদন্ত বৃত্তের ব্যাসার্ধ r এবং ক্ষেত্ৰফল A . তাহলে , A = πr^2 ইহাকে t এর সাপেক্ষে অন্দতরীকরণ করে পাই, $\frac{dA}{dt} = \frac{d}{dt}(\pi r^2) = 2r\pi \frac{dr}{dt}$ প্রশ্নমতে, $\frac{dr}{dt} = 4$ ্রবক [ব্যাসার্ধ সমহারে বৃদ্ধি পায়।] $\frac{dA}{dt} = \underbrace{4}_{q} 4 + r \qquad [:: 2\pi \frac{dr}{dt} \cdot 4 + r]$ $\Rightarrow \frac{dA}{dt} \propto r$ ক্ষেত্রফলের বৃদ্ধিহার তার ব্যাসার্ধের সমানুপাতিক। 9(c) যদি একটি সমবাহু ত্রিভুচ্জের বাহুগুলো প্রতি সেকেন্ডে $\sqrt{3}$ সে.মি. এবং এর ক্ষেত্রফল প্রতি সেকেন্ডে 12 কা সে.মি. পরিমাণ বৃদ্ধি পায়, তাহলে সমবাহু ত্রিভুজের বাহুর দৈর্ঘ্য নির্ণয় কর। [বুয়েট. '০৮] সমাধান ঃ ধরি, সমবাহু ত্রিভুজটির বাহুর দৈর্ঘ্য x সে.মি. এবং এর ক্ষেত্রফল A বর্গ সে.মি.। তাহলে, $A = \frac{\sqrt{3}}{4} x^2 \Rightarrow \frac{dA}{dt} = \frac{\sqrt{3}}{4} \times 2x \frac{dx}{dt} \qquad \cdots (i)$ প্রশ্নমতে, $\frac{dx}{dt} = \sqrt{3}$ এবং $\frac{dA}{dt} = 12$ (i) হতে পাই, $12 = \frac{\sqrt{3}}{4} \times 2x \times \sqrt{3}$ $\Rightarrow 3x = 24 \Rightarrow x = 8$ বাহুর দৈর্ঘ্য ৪ সে.মি.। অতিব্লিক্ত প্রশ্ন (সমাধানসহ) $1(a) y = x^{3} - 2x^{2} + 4x$ descalation (2, 5) কিন্দুতে স্পর্শকের সমীকরণ নির্ণয় কর। বি.'০৩] সমাধান ៖ $y = x^3 - 2x^2 + 4x$ $\frac{1}{dx} = 3x^2 - 4x + 4$ (2, 5) বিন্দুতে $\frac{dy}{dr} = 3.2^2 - 4(2) + 4$

প্রশ্নমালা IX J বইঘর কম

=12-8+4=8প্রদন্ত বব্রুরেখার (2,5) বিন্দুতে স্পর্শকের সমীকরণ $y-5=8(x-2) \implies 8x-y-11=0$ (b) $x^2 - 5x v + v^2 - 5x + 6v + 9 = 0$ বৰুৱেখার (2.1) কিন্দুতে অভিলন্দের সমীকরণ নির্ণায় কর। [সি. '০২] गमांधान 8 $x^2 - 5xy + y^2 - 5x + 6y + 9 = 0$ হিহাকে x - এর সাপেক্ষে অন্তরীকরণ করে পাই. $2x - 5x\frac{dy}{dx} - 5y + 2y\frac{dy}{dx} - 5 + 6\frac{dy}{dx} = 0$ $\Rightarrow -(5x-2y-6)\frac{dy}{dx} = -(2x-5y-5)$ $\Rightarrow \frac{dy}{dx} = \frac{2x-5y-5}{5x-2y-6}$ (2, 1) Aryco $\frac{dy}{dx} = \frac{4-5-5}{10-2-6} = \frac{-6}{2} = -3$ প্রদন্ত বক্ররেখার (2,1) কিন্দুতে অভিলন্দ্বের সমীকরণ $y-1 = -\frac{1}{2}(x-2)$ $\Rightarrow 3y-3 = x-2$ x - 3v + 1 = 01(c) $x^3 - 3xy + y^3 = 3$ অধিবৃত্তের (1,-1) কিপুতে স্পর্শকের সমীকরণ নির্ণয় কর। রো. '০৩] সমাধান : $x^3 - 3xv + v^3 = 3$ ইহাকে x -এর সাপেক্ষে অন্তরীকরণ করে পাই $3x^2 - 3x\frac{dy}{dx} - 3y + 3y^2\frac{dy}{dx} = 0$ $\Rightarrow 3(y^2 - x)\frac{dy}{dx} = 3(y - x^2)$ $\Rightarrow \frac{dy}{dx} = \frac{y - x^2}{y^2 - x}$ (1, -1) বিন্দুতে $\frac{dy}{dx} = \frac{-1 - 1}{1 - 1}$ $\operatorname{velte}\left(\frac{dx}{dy}\right) = \frac{0}{-2} = 0$

প্রদন্ত বব্রুরেখার (1,-1) কিন্দুতে স্পর্শকের সমীকরণ $\left(\frac{dx}{dy}\right)_{a=0}$ (y+1) = x-1 $\Rightarrow 0.(y+1) = x-1 \therefore x-1 = 0$ 1(d) $x^3 - 3ax y + y^3 = 0$ বৰুরেখার (x_1, y_1) কিন্দতে অভিলন্দের সমীকরণ নির্ণয় কর। [5.'00] সমাধান $x^3 - 3axy + y^3 = 0$ ইহাকে x - এর সাপেক্ষে অন্তরীকরণ করে পাই. $3x^2 - 3ax\frac{dy}{dx} - 3ay + 3y^2\frac{dy}{dx} = 0$ $\Rightarrow 3(y^2 - ax)\frac{dy}{dx} = 3(ay - x^2)$ $\Rightarrow \frac{dy}{dx} = \frac{ay - x^2}{y^2 - ax}$ (x_1, y_1) argos $\frac{dy}{dx} = \frac{ay_1 - x_1^2}{y_1^2 - ax_1}$ প্রদন্ত বরুরেখার (x_1, y_1) কিন্দুতে অভিলন্দের সমীকরণ $y - y_1 = -\frac{y_1^2 - ax_1}{ay_1 - x_1^2}(x - x_1)$ $\Rightarrow (y-y_1)(ay_1 - x_1^2) + (x-x_1)(y_1^2 - ax_1)$ 1(e) দেখাও যে, $y^2 = 4ax$ পরাবৃত্তের (x_1, y_1) বিন্দুতে স্পর্শকের সমীকরণ $yy_1 = 2a(x + x_1)$ [ব.'০১] প্রমাণ 8 $v^2 = 4ax$ ইহাকে x - এর সাপেক্ষে অন্তরীকরণ করে পাই. $2y\frac{dy}{dx} = 4a \implies \frac{dy}{dx} = \frac{2a}{y}$ (x_1, y_1) विभूटङ $\frac{dy}{dx} = \frac{2a}{y}$ প্রদন্ত পরাবৃত্তের (x_1, y_1) কিন্দুতে স্পর্শকের সমীকরণ $y - y_1 = \frac{2a}{y_1}(x - x_1)$ $\Rightarrow yy_1 - y_1^2 = 2a(x - x_1)$ $\Rightarrow yy_1 - 4ax_1 = 2a(x - x_1)$ েযে (x_1, y_1) বিন্দু $y^2 = 4ax$ পরাবৃত্তের উপর অবস্থিত। যেহেত্ব

 $yy_1 = 2a(x + x_1)$ (Showed) 1(f) $x^{2/3} + y^{2/3} = a^{2/3}$ as a second statement of the second statem (x_1, y_1) কিন্দুতে স্পর্শকের সমীকরণ নির্ণয় কর। সমাধান ঃ $x^{2/3} + y^{2/3} = a^{2/3} \cdots \cdots (1)$ ইহাকে x -এর সাপেক্ষে অন্তরীকরণ করে পাই. $\frac{2}{2}x^{\frac{2}{3}-1} + \frac{2}{2}y^{\frac{2}{3}-1}\frac{dy}{dy} = 0$ $\Rightarrow x^{-\frac{1}{3}} + y^{-\frac{1}{3}}\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{x^{-\frac{1}{3}}}{x^{-\frac{1}{3}}}$ (x_1, y_1) किंगूरछ $\frac{dy}{dx} = -\frac{x_1^{-\frac{1}{3}}}{x_1^{-\frac{1}{3}}}$ প্রদন্ত বরুরেখার (x_1, y_1) কিন্দুতে স্পর্শকের সমীকরণ $y - y_1 = -\frac{x_1^{-\frac{1}{3}}}{-\frac{1}{2}} (x - x_1)$ $\Rightarrow yy_1 \frac{1}{3} - y_1 \frac{2}{3} = -xx_1 \frac{1}{3} + x_1 \frac{2}{3}$ $\Rightarrow xx_1^{-\frac{1}{3}} + yy_1^{-\frac{1}{3}} = x_1^{\frac{2}{3}} + y_1^{\frac{2}{3}} = a^{\frac{\pi}{3}}$ যেহেত (x₁, y₁) কিন্দু (1) বর্ত্ররোখার উপর অবস্থিত। $xx_1 \frac{1}{3} + yy_1 \frac{1}{3} = a^{\frac{2}{3}}$ (Ans.) $2(a) y^2 - 4x - 6y + 20 = 0$ বব্রুরোখার (3,2) কিন্দুতে স্পর্শক ও অভিসম্বের সমীকরণ নির্ণয় কর। [চ. १०২] সমাধান ៖ $y^2 - 4x - 6y + 20 = 0$ ইহাকে x -এর সাপেক্ষে অন্তরীকরণ করে পাই. $2y\frac{dy}{dx} - 4 - 6\frac{dy}{dx} = 0$ $\Rightarrow 2(y-3)\frac{dy}{dx} = 4$: $\frac{dy}{dx} = \frac{2}{y-3}$ (3, 2) $\frac{dy}{dx} = \frac{2}{2-3} = -2$ প্রদন্ত বক্ররেখার (3, 2) কিন্দুতে স্পর্শকের সমীকরণ $y-2 = -2 (x-3) \Longrightarrow 2x + y = 8$

এবং অভিলুন্দ্বের সমীকরণ, $y-2 = \frac{1}{2} (x-3)$ $\Rightarrow 2y-4 = x-3$ $\therefore x-2y+1=0$ 2(b) $y = x^3 - 2x^2 + 4$ বৰুরেখার (2, 4) বিপুতে স্পর্শক ও অভিলন্দ্বের সমীকরণ নির্ণয় কর। [চ. '০৮. '১১] সমাধান ঃ $y = x^3 - 2x^2 + 4$ $\frac{dy}{dx} = 3x^2 - 4x$ (2, 4) বিশ্বতে $\frac{dy}{dx} = 3 \times 4 - 8 = 4$ প্রদন্ত বক্ররেখার (2, 4) বিন্দুতে স্পর্শকের সমীকরণ y - 4 = 4 (x - 2) \Rightarrow y-4=4x-8 \therefore 4x-y-4=0 এবং অভিলম্বের সমীকরণ, $y - 4 = -\frac{1}{4} (x - 2)$ $\Rightarrow 4y - 16 = -x + 2 \therefore x + 4y - 18 = 0$ $2(c) x^{2} + y^{2} - 6x - 10y + 21 = 0$ great (1, 2) বিন্দুতে স্পর্শক ও অভিনন্দের সমীকরণ নির্ণয় কর। [য. '০৩; রা. '১১] সমাধান 8 $x^2 + y^2 - 6x - 10y + 21 = 0$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই. $2x + 2y\frac{dy}{dy} - 6 - 10\frac{dy}{dy} = 0$ $\Rightarrow 2(y-5) \frac{dy}{dx} = -2(x-3)$ $\Rightarrow \frac{dy}{dx} = \frac{x-3}{x-5}$ (1, 2) fryco $\frac{dy}{dx} = -\frac{1-3}{2} = -\frac{2}{3}$ প্রদন্ত বক্ররেখার (1, 2) বিন্দুতে স্পর্শকের সমীকরণ $y-2=-\frac{2}{2}(x-1)$ \Rightarrow 3y - 6 = -2x + 2 \therefore 2x + 3y - 8 = 0 এবং অভিলম্বের সমীকরণ, $\dot{y} - 2 = \frac{3}{2} (x - 1)$ \Rightarrow 2y-4 = 3x - 3 \therefore 3x - 2y + 1 = 0

2(d) $y = x^3 - 3x + 2$ বরুরেখার (2, - 2) বিন্দুতে স্পর্শক ও অভিসন্দের সমীকরণ নির্ণয় কর। ঢা. '০৭] $\frac{dy}{dx} = 3x^2 - 3$ সমাধান s $y = x^3 - 3x + 2$ (2, -2) Aryco $\frac{dy}{dx} = 3 \times 4 - 3 = 9$ প্রদন্ত বক্ররেখার (2 , –2) বিন্দুতে স্পর্শকের সমীকরণ v + 2 = 9(x - 2) \Rightarrow y + 2 = 9x - 18 \therefore 9x - y - 20 = 0 এবং অভিলম্বের সমীকরণ, $y + 2 = -\frac{1}{2}(x-2)$ \Rightarrow 9y + 18 = -x + 2 \therefore x - 9y - 16 = 0 $3(a) \quad y(x-2)(x-3) - x + 3 = 0$ বৰুরেখাটি যে সমস্ত কিন্দুতে x-অক্ষকে ছেদ করে , ঐ কিন্দুগুলোতে স্পর্শকের সমীকরণ নির্ণয় কর। [b.'o@] সমাধান ঃ y(x-1)(x-2) - x + 3 = 0 $\Rightarrow y(x^2 - 3x + 2) - x + 3 = 0 \cdots (1)$ বরুরেখাটি x-অক্ষকে যে ক্ষিদ্রতে ছেদ করে তার কোটি y = 0. (1) এ y = 0 বসিয়ে পাই x = 3. বরুরেখাটি x-অক্ষকে (3.0) কিন্দুতে ছেদ করে। বক্ররেখাকে x - এর সাপেক্ষে অন্তরীকরণ করে পाই, $(x^2 - 3x + 2)\frac{dy}{dx} + y(2x - 3) - 1 = 0$ $\Rightarrow \frac{dy}{dx} = \frac{1 - y(2x - 3)}{x^2 - 3x + 2}$ (3,0) argos $\frac{dy}{dx} = \frac{1}{9-9+2} = \frac{1}{2}$ নির্ণেয় স্পর্শকের সমীকরণ, $y = \frac{1}{2}(x - 3)$ $\Rightarrow x - 2y - 3 = 0$ 3(b) প্রমাণ কর যে, $3x^2 + 4xy + 5y^2 - 4 = 0$ বৰুৱেখাটি যে সমস্ত বিন্দুতে 3x + 2y = 02x + 5y = 0 রেখাকে ছেদ করে , ঐ বিদ্যগুলোতে অন্তিকত স্পর্শক স্থানান্ডেকর অক্ষদ্বয়ের সমান্তরাল। প্রমাণ : $3x^2 + 4xy + 5y^2 - 4 = 0 \cdots (1)$

 $3x + 2y = 0 \Longrightarrow y = -\frac{3}{2}x$ হতে y-এর মান (1) এ বসিয়ে পাই, $3x^2 + 4x(\frac{-3}{2}x) + 5(\frac{-3}{2}x)^2 - 4 = 0$ $\Rightarrow 3x^2 - 6x^2 + \frac{45x^2}{4} - 4 = 0$ $\Rightarrow -12x^{2} + 45x^{2} = 16$ $x = \pm \frac{4}{\sqrt{22}}$ www.boighar.com $x = \frac{4}{\sqrt{33}} \overline{2(7)}, y = -\frac{3}{2} \times (\frac{4}{\sqrt{33}}) = -\frac{6}{\sqrt{33}}$ $x = -\frac{4}{\sqrt{22}}$ even, $y = -\frac{3}{2} \times (-\frac{4}{\sqrt{22}}) = \frac{6}{\sqrt{22}}$ বক্ররেখাটি 3x + 2y = 0 রেখাকে (1) $\left(\frac{4}{\sqrt{33}}, -\frac{6}{\sqrt{33}}\right)$ $\otimes \left(-\frac{4}{\sqrt{23}}, \frac{6}{\sqrt{23}}\right)$ forget even করে। ক x - এর সাপেক্ষে অন্তরীকরণ করে পাই. $3x^{2} + 4xy + 5y^{2} - 4 = 0$ $6x + 4x\frac{dy}{dx} + 4y + 10y\frac{dy}{dx} = 0$ $\Rightarrow 2(2x+5y)\frac{dy}{dx} = -2(3x+2y)$ $\Rightarrow \frac{dy}{dx} = -\frac{3x+2y}{2x+5y}$ $\left(\frac{4}{\sqrt{22}}, -\frac{6}{\sqrt{23}}\right)$ ও $\left(-\frac{4}{\sqrt{23}}, \frac{6}{\sqrt{23}}\right)$ উত্য কিপুতে 3x + 2y = 0 অর্থাৎ $\frac{dy}{dx} = -\frac{3x + 2y}{2x + 5y} = 0$ ∴ এ কিন্দু দুইটিতে অঙ্জিত স্পর্শক x-অক্ষের সমান্তরাল। জাবার, $2x + 5y = 0 \implies y = -\frac{2}{5}x$ হতে y- এর মান (1) সমীকরণে বসিয়ে পাই. $3x^{2} + 4xy + 5y^{2} - 4 = 0$ $3x^{2} + 4x(-\frac{2}{5}x) + 5(-\frac{2}{5}x)^{2} - 4 = 0$ $\Rightarrow 15x^2 - 8x^2 + 4x^2 - 20 = 0$ $\Rightarrow 11x^2 = 20 \Rightarrow x = \pm \frac{2\sqrt{5}}{\sqrt{5}}$

উচ্চতর গণিত: ১ম পত্র সমাধান বইঘব কম

 $x = \frac{2\sqrt{5}}{\sqrt{11}} \overline{z} \overline{c} \overline{n}, y = -\frac{2}{5} \times \frac{2\sqrt{5}}{\sqrt{11}} = -\frac{4}{\sqrt{55}}$ $x = -\frac{2\sqrt{5}}{\sqrt{11}} \overline{z} \overline{c} \overline{n}, y = -\frac{2}{5} \times (-\frac{2\sqrt{5}}{\sqrt{11}}) = \frac{4}{\sqrt{55}}$ (1) বক্তরেখাটি 2x + 5y = 0 রেখাকে $(\frac{2\sqrt{5}}{\sqrt{11}}, -\frac{4}{\sqrt{55}})$ ও $(-\frac{2\sqrt{5}}{\sqrt{11}}, \frac{4}{\sqrt{55}})$ কিপুতে ছেদ করে। $(\frac{2\sqrt{5}}{\sqrt{11}}, -\frac{4}{\sqrt{55}})$ ও $(-\frac{2\sqrt{5}}{\sqrt{11}}, \frac{4}{\sqrt{55}})$ উভয় কিপুতে 2x + 5y = 0 অর্থাৎ $\frac{dx}{dy} = -\frac{2x + 5y}{3x + 2y} = 0$ এ কিপ দইটিতে অভিচত স্পর্শক x-অক্ষের সম্ব অর্থাৎ

এ। বিশু গুহাচতে আঙ্কত স্লাক X-অক্ষের গন্ব অথা y-অক্ষের সমানতরাল।

4(a) $y = 4x^3 + 3x^2 - 6x + 1$ বরুরেখার যে সকল কিপুতে স্পর্শিক x- আকের সমান্তরাল তাদের স্থানাজ্জ নির্ণয় কর। [চা.'oo] সমাধান * $y = 4x^3 + 3x^2 - 6x + 1$ $\frac{dy}{dx} = 12x^2 + 6x - 6$ স্পর্শক x- অক্ষের সমান্তরাল হলে, $\frac{dy}{dx} = 0$ $12x^2 + 6x - 6 = 0 \Rightarrow 2x^2 + x - 1 = 0$ $\Rightarrow 2x^2 + 2x - x - 1 = 0$ $\Rightarrow 2x (x + 1) - 1(x + 1) = 0$ $\Rightarrow (x + 1)(2x - 1) = 0 \therefore x = -1, \frac{1}{2}$ x = -1 হলে, y = -4 + 3 + 6 + 1 = 6 $x = \frac{1}{2}$ হলে, $y = 4.\frac{1}{8} + 3.\frac{1}{4} - 6.\frac{1}{2} + 1$ $= \frac{2 + 3 - 8}{4} = -\frac{3}{4}$ কিপু দুইটি $(-1, 6), (\frac{1}{2}, -\frac{3}{4})$

 $4(b) x^2 + y^2 - 2x - 3 = 0$ বরুরেখার যে সকল কিন্দুতে স্পর্শক x- অক্ষের সমান্ডরাল তাদের স্থানাজ্ঞ নির্ণায় কর। [মা.বো.'০৯; ব.'১৩]

সমাধান : $x^2 + y^2 - 2x - 3 = 0 \cdots \cdots (1)$ ইহাকে 🗴 এর সাপেক্ষে অন্তরীকরণ করে পাই $2x + 2y \frac{dy}{dx} - 2 = 0 \Rightarrow \frac{dy}{dx} = \frac{1 - x}{y}$ স্পর্শক x- অক্ষের সমান্তরাল হলে, $\frac{dy}{dx} = 0$ $\frac{1-x}{y} = 0 \Rightarrow x = 1$ (1) এ x = 1 বসিয়ে পাই. $1 + v^2 - 2.1 - 3 = 0$ \Rightarrow $v^2 = 4 \Rightarrow v = \pm 2$ নির্ণেয় কিন্দু (1, 2), (1, -2) 4(c) $y = (x-3)^2(x-2)$ বক্তরেখার যে সকল বিন্দুতে স্পর্শক x- অক্ষের সমান্তরাল তাদের স্থানাজ্ঞ নির্ণয় কর। ঢা.'০৫] সমাধান ঃ $y = (x-3)^2(x-2)$ $\frac{dy}{dx} = (x-3)^2 \cdot 1 + 2(x-3)(x-2)$ = (x-3)(x-3+2x-4)= (x - 3)(3x - 7)স্পর্শক x- অক্ষের সমান্তরাল হলে, $\frac{dy}{dx} = 0$ $(x-3)(3x-7) = 0 \implies x = 3, \frac{7}{2}$ x = 3 হল, $y = (3-3)^2(3-2) = 0$ $x = \frac{7}{2}$ even, $y = (\frac{7}{2} - 3)^2 (\frac{7}{2} - 2)$ $=\frac{4}{2}\times\frac{1}{2}=\frac{4}{27}$ নির্ণেয় কিন্দু (3, 0), $(\frac{7}{2}, \frac{4}{27})$

4(d) $y^3 = x^2(2a - x)$ বরুরেখার যে সকল বিন্দুতে স্পর্শক x- অক্ষের সুমান্ডরাল তাদের স্থানাজ্ঞ নির্ণয় কর। [চ.'০৯]

সমাধান :
$$y^3 = x^2(2a - x)$$

 $3y^2 \frac{dy}{dx} = x^2(-1) + 2x (2a - x)$
 $\Rightarrow \frac{dy}{dx} = \frac{x(-x + 4a - 2x)}{3y^2} = \frac{x(4a - 3x)}{2y}$

স্পর্শক x- অক্ষের সমান্তরাল হলে, $\frac{dy}{dx} = 0$ $\frac{x(4a-3x)}{2y} = 0 \Rightarrow x = 0, \frac{4a}{3}$ x = 0 হল, $y^3 = 0 \Rightarrow y = 0$ $x = \frac{4a}{3}$ even, $y^3 = \frac{16a^2}{2}(2a - \frac{4a}{2})$ \Rightarrow y³ = $\frac{16a^2}{2} \times \frac{2a}{2}$: y = $\frac{2a\sqrt[3]}{4}$ নির্ণেয় কিন্দু (0, 0), $(\frac{4}{2}a, \frac{2\sqrt[3]{4}}{2}a)$ $5(a) y = 3x^2 + 2x - 1$ বরুরেখার (1, 0) বিন্দুতে স্পর্শকের ঢাল নির্ণয় কর। [রা. '০১] $\frac{dy}{dx} = 6x + 2$ সমাধান * $y = 3x^2 + 2x - 1$ (1, 0) frages $\frac{dy}{dx} = 6 \times 1 + 2 = 8$ প্রদন্ত বক্ররেখার (1, 0) বিন্দুতে স্পর্শকের ঢাল 8 5(b) $x^2 + xy + y^2 = 4$ বৰুৱেখার (2, -2) কিন্দুতে স্পর্শকের ঢাল নির্ণয় কর। [সি. '০৩] সমাধান $x^{2} + x\dot{v} + v^{2} = 4$ ইহাকে x - এর সাপেক্ষে অন্তরীকরণ করে পাই. $2x + x\frac{dy}{dx} + y + 2y\frac{dy}{dx} = 0$ \Rightarrow (x + 2y) $\frac{dy}{dx} = -(2x + y)$ $\Rightarrow \frac{dy}{dx} = -\frac{2x+y}{x+2y}$ (2, -2) fryco $\frac{dy}{dx} = -\frac{4-2}{2-4} = 1$ প্রদন্ত বক্ররেখার (2,-2) কিন্দুতে স্পর্শকের ঢাল 1. $5(c) x^3 - 3xy + y^3 = 3$ বরুরেখাটি (2, 1) দিয়ে অতিক্রম করে। এ বিন্দুতে স্পর্শকের ঢাল নির্ণয় কর। [চ. '০৩] সমাধান 8 $x^3 - 3xy + y^3 = 3$ ইহাকে x - এর সাপেক্ষে অন্তরীকরণ করে পাই.

$$3x^2 - 3x \frac{dy}{dx} - 3y.1 + 3y^2 \frac{dy}{dx} = 0$$

 $\Rightarrow -3(x - y^2) \frac{dy}{dx} = -3(x^2 - y)$
 $\Rightarrow \frac{dy}{dx} = \frac{x^2 - y}{x - y^2}$
(2, 1) কিন্দুতে $\frac{dy}{dx} = \frac{4 - 1}{2 - 1} = 3$
স্পর্শকের ঢাল 3
6(a) *a*-এর মান কত হলে, $y = ax(1 - x)$ বরুরেখার
মূলকিন্দুতে স্পর্শকটি *x*-অক্ষের সাথে 30⁰ কোণ উৎপন্ন
করে। [ঢা.'o8]
সমাধান ঃ $y = ax(1 - x) = a(x - x^2)$
 $\frac{dy}{dx} = c(1 - 2x)$

মূলবিন্দুতে
$$\frac{dy}{dx} = a (1 + 0) = a$$

কিন্দু মূলবিন্দুতে ঢাল , $\frac{dy}{dx} = \tan(\pm 30^{\circ})$
 $a = \tan(\pm 30^{\circ}) = \pm \frac{1}{\sqrt{3}}$

6(b) $y = ax^{2} + bx + c$ বক্ররেখাটি মূলকিন্দু এবং (1, 1) কিন্দু দিয়ে যায়। যদি মূলকিন্দুতে বক্ররেখাটির ঢাল 2 হয়, তবে a, b, c এর মান নির্ণয়। [ঢা.'০১] সমাধান $y = ax^{2} + bx + c$ $\frac{dy}{dx} = 2ax + b$: মূলকিন্দুতে $\frac{dy}{dx} = b$ কিন্দু মূলকিন্দুতে ঢাল, $\frac{dy}{dx} = 2$ b = 2বরুরেখাটি মূলকিন্দু এবং (1, 1) কিন্দু দিয়ে যায়। $0 = a.0 + b.0 + c = 0 \Rightarrow c = 0$ এবং $1 = a + b + c \Rightarrow 1 = a + 2 + 0 \Rightarrow a = -1$ a = -1, b = 2, c = 07 (a) একটি গতিশীল কণার কোন সরলরেখায় t সময়ে ঘতিরুন্ড দ্বত s = 63t - 6t^{2} - t^{3} দ্বারা প্রকাশিত

অতিক্রান্ত দূরত্ব s = 63t – 6t² – t³ দ্বারা প্রকাশিত হয়। 2 সেকেন্ড শেষে তার কো এবং থামার পূর্বে অতিক্রান্ত দূরত্ব নির্ণয় কর। [ঢ.'০২; সি.'০৪] সমাধান **ঃ** এখানে $s = 63t - 6t^2 - t^3$ ইহাকে t এর সাপেক্ষে অন্তরীকরণ করে পাই. $\frac{ds}{dt} = 63 - 12t - 3t^2$ t সময় পর কণাটির বেগ = $63 - 12t - 3t^2$ 2 সেকেন্ড শেষে কণাটির বেগ = (63 -24 -12) একক/সেকেন্ড = 27 একক/সেকেন্ড (Ans.) আবার কণাটির থেমে যাবে যখন বেগ $\frac{ds}{dt} = 0$ $63 - 12t - 3t^{2} = 0 \implies t^{2} + 4t - 21 = 0$ $\Rightarrow (t-3)(t+7) = 0 \therefore t = 3 \quad [\because t \neq -7]$ থামার পূর্বে কণাটি 3 সেকেন্ড চলেছিল এবং 3 সেকেন্ডে অতিক্রান্ত দূরত্ব s = (189 - 54 - 27) = 108 একক। 7(b) একটি কণা সরলরেখায় এমনভাবে চলে যেন $s = \sqrt{t}$ হয়। দেখাও যে কণাটির ত্বরণ ঋণাত্মক এবং বেগের ঘনফলের সাথে সমানুপাতিক। [সি. '০২] $\operatorname{dag} \frac{d^2 s}{dt^2} = \frac{1}{2} \left(-\frac{1}{2} \right) t^{-\frac{1}{2}-1} = -\frac{1}{4} t^{-\frac{3}{2}}$:. কণাটির বেগ = $\frac{1}{2}t^{-\frac{1}{2}}$ এবং ত্বরণ = $-\frac{1}{4}t^{-\frac{3}{2}} = -2(\frac{1}{2}t^{-\frac{1}{2}})^3 = -2\times(c^{3})^3$ ত্ত্বরণ ঋণাত্মক এবং তা বেগের ঘনফলের সমানুপাতিক। 7(c) একটি বস্তুর গতির সমীকরণ $s = t^3 + \frac{1}{t^3}$ হলে দেখাও যে, এর ত্বরণ সর্বদাই ধনাত্মক এবং t = 10 হলে এর গতিবেগ নির্ণয় কর। [Jo.'02] প্রমাণ : গতির সমীকরণ s = $t^3 + \frac{1}{t^3}$ t সময়ে গতিবেগ, $\frac{ds}{dt} = 3t^2 - \frac{3}{t^4}$ যখন t = 10, গতিবেগ = 300 - 3 = 299.99 একক (প্রায়)

t = 10 হলে, আবার t সময়ে ত্বরণ, $\frac{d^2s}{dt^2} = 6t + \frac{12}{t^5} > 0$ [$\because t > 0$] ত্বরণের মান সব সময় ধনাত্মক।

7(d) একটি কণা সরক্পথে এমনভাবে চলে যেন t সময়ে তার অতিক্রান্ত দূরত্ব s = $\sqrt{2t}$ হয়। দেখাও যে, কণাটির ত্বরণ বেগের ঘনফলের সাথে সমানুপাতিক। [ঢা.'০১] প্রমাণ : এখানে s = $\sqrt{2t} = \sqrt{2} t^{\frac{1}{2}}$ কণাটির বেগ = $\frac{ds}{dt} = \sqrt{2} \cdot \frac{1}{2} t^{\frac{1}{2}-1} = \frac{1}{\sqrt{2}} t^{-\frac{1}{2}}$ ত্বরণ = $\frac{d^2s}{dt^2} = -\frac{1}{2\sqrt{2}} t^{-\frac{3}{2}} = -(\frac{1}{\sqrt{2}} t^{-\frac{1}{2}})^3$ = - (বেগ)³ কণাটির ত্বরণ বেগের ঘনফলের সাথে সমানুপাতিক।

7(e) একটি পুকুরের একটি বৃত্তাকার ঢেউ এর পরিধির বুন্দির হার 'a' ফুট/সেকেন্ড । দেখাও যে, এর ব্যাসার্ধের বৃদ্ধির হার $a/2\pi$ ফুট / সেকেন্ড। [ଝ.ଞ.୩.'১৭] প্রমাণ মনে করি, t সেকেন্ডে প্রদন্ত বৃত্তাকার ঢেউ এর ব্যাসার্ধ r ফুট এবং পরিধির S ফুট তাহলে. S = $2\pi r$ ইহাকে t এর সাপেক্ষে অন্তরীকরণ করে পাই, $\frac{dS}{dt} = \frac{d}{dt}(2\pi r) = 2\pi \frac{dr}{dt}$ প্রশ্নমতে, $\frac{dS}{ds} = a$ [∵ পরিধির বৃদ্ধির হার 'a'] $a = 2\pi \frac{dr}{dt} \Rightarrow \frac{dr}{dt} = \frac{a}{2\pi}$ ক্ষেত্রফলের বৃদ্ধিহার $\frac{a}{2\pi}$ ফুট/সেকেন্ড। 7(f) একটি গতিশীল কণার t সময়ে অতিক্রান্ড দূরত্ব $s = ut + \frac{1}{2} ft^2$ সমীকরণ দ্বারা প্রকাশ করা হয় যেখানে u এবং f ধ্রুবক। দেখাও যে, t সময়ে তার কো u + ft এবং ত্বরণ f.

প্রমাণ : এখানে $s = ut + \frac{1}{2} ft^2$ t সময়ে কণাটির বেগ, $\frac{ds}{dt} = u + ft$ এবং t সময়ে কণাটির ত্বরণ, $\frac{d^2s}{dr^2} = f$ 7. (g) একটি গতিশীল কণার কোন সরলরেখায় t সেকেন্ডে অতিক্রান্ড দূরত্ব s= $\frac{1}{2}t^3 + t^2 + 4t$ মিটার। 5 সেকেন্ড [সি. '০৫] শেষে ব্রুণাটির কো ও তুরণ নির্ণয় কর। সমাধান 8 এখানে s = $\frac{1}{2}t^3 + t^2 + 4t$ । সেকেন্ডে কণাটির বেগ, $\frac{ds}{dt} = \frac{3}{2}t^2 + 2t + 4$ এবং t সময়ে কণাটির ত্বরণ, $\frac{d^2s}{dt^2} = 3t + 2$:. 5 সেকেন্ড শেষে কণাটির বেগ = $\frac{3}{2}$.25 + 10 + 4 $= 51.5 \text{ ms}^{-1}$ এবং ত্রণ = $(3 \times 5 + 2)$ ms⁻² = 17 ms⁻² প্রশ্রমালা IX K 1. (a) Solⁿ : $\lim_{x\to 0} \frac{\cos x - 1}{x^2} = \lim_{x\to 0} \frac{-\sin x}{2x}$ $= \lim_{x \to 0} \frac{-\cos x}{21} = \frac{-\cos 0}{2} = \frac{-1}{2}$ (b) Solⁿ : উপরের সবগুলি তথ্য সত্য । ∴ Ans. D (c) Solⁿ: $y - y_1 = f'(x_1)(x - x_1)$: Ans. A (d) Solⁿ : বক্ররেখাটি পরাবৃত্ত নির্দেশ করে। (e) Solⁿ: $f(x) = y = \frac{1}{2}x^2 \implies f'(x) = x$ $f(x) \approx f(1) + f'(1)(x-1) = \frac{1}{2} + 1(x-1)$ $= x - \frac{1}{2} = x - 0.5$: Ans. D (f) Solⁿ: $\delta y = f(x + \delta x) - f(\tilde{x})$ = f(2+1) - f(2)

 $= \frac{1}{2}(3^2 - 2^2) = \frac{1}{2}(9 - 4) = \frac{5}{2} = 2.5$ (g) Solⁿ: $dx = \delta x = 1$ f'(x) = x : f'(1) = 1 $dy = f'(1) dx = 1 \times 1 = 1$: Ans. A (h) Solⁿ : $f(x) = 3x^2 - 6x + 4$ চরমবিন্দুর জন্য, $f'(x) = 6x - 6 = 0 \Longrightarrow x = 1$ এখন, f(1) = 3 - 6 + 4 = 1 :. চরমবিন্দ (1.1) (i) Solⁿ : $\lim_{x \to 0} \frac{\sin(2x)^2}{x} = \lim_{x \to 0} \frac{\sin(4x^2)}{x}$ $= \lim_{x \to 0} \frac{\cos(4x^2) \times 8x}{1} = \cos 0 \times 8 \times 0 = 0$ Ans. B (j) Solⁿ: $\frac{d}{dx}(x^x) = x^x [x \frac{d}{dx}(\ln x) +$ $\ln x \frac{d}{du}(x)$] $= x^{x} [x \times \frac{1}{x} + \ln x.1] = x^{x} (1 + \ln x)$ Ans. D. (k) Solⁿ: $f(x) = x + x^{-1} \therefore f'(x) = 1 - x^{-2}$, $f''(x) = 2x^{-3}$ $f'(x) = 0 \Rightarrow 1 - \frac{1}{x^2} = 0 \Rightarrow x = \pm 1$ x = -1 এর জন্য f''(x) < 0 এবং f(x) = -2Ans. A. (1) Solⁿ : $y = x^3 - 5x \text{ even} \frac{d^3 y}{dx^3} = 3! = 6.$ (m) Solⁿ: $y = x + x^{-1} \Rightarrow \frac{dy}{dx} = 1 - \frac{1}{x^2}$ রেখাটির ঢাল শূন্য হলে, $\frac{dy}{dx} = 1 - \frac{1}{x^2} = 0$ \Rightarrow x = ±1 : Ans. **B** 2. (a) দেখাও যে, $f(x) = x^3 - 3x^2 + 18x + 15$ একটি ক্রমবর্ধমান ফাংশন। প্রমাণ : দেওয়া আছে , $f(x) = x^3 - 3x^2 + 18x + 15$

৩৯৯

 $f'(x) = 3x^2 - 6x + 18$ $=3(x^{2}-2x+1)+15$ $= 3(x - 1)^{2} + 15 > 0$, जकल $x \in \mathbb{R}$ এর জন্য। প্রদত্ত ফাংশনটি একটি ক্রমবর্ধমান ফাংশন। (b) দেখাও যে, x = 1 किपूछ $f(x) = x^3 - 3x^2 + x$ ফাংশনটি হ্রাস পায়। প্রমাণ : দেওয়া আছে, $f(x) = x^3 - 3x^2 + x$ $f'(x) = 3x^2 - 6x + 1$:. $f'(1) = 3 \times 1^2 - 6 \times 1 + 1 = 3 - 6 + 1$ = -2 < 0x = 2 বিন্দুতে প্রদত্ত ফাংশনটি হ্রাস পায়। 3. নিম্নের ফাংশনগুলি কোন ব্যবধিতে হ্রাস পায় ও কোন ব্যবধিতে বুন্দি পায় নির্ণয় কর। (a) $f(x) = 3x^2 - 6x + 4, -1 \le x \le 2$ সমাধান : দেওয়া আছে: $f(x) = 3x^2 - 6x + 4$ f'(x) = 6x - 6 = 6(x - 1) $f'(x) = 0 \Longrightarrow 6(x - 1) = 0$ $\Rightarrow x = 1$ এখানে, x = 1 বিন্দুতে f'(x) = 0 এবং বিন্দুটি $-1 \le x \le 2$ वावधिक $-1 \le x < 1$ and $1 < x \le 2$ বাবধিতে বিভক্ত করে। এর্খন, $-1 \le x < 1$ এর জন্য 6(x - 1) < 0, কাজেই f'(x) < 0. $-1 \le x < 1$ ব্যবধিতে f(x) ফাংশন হ্রাস পায়। আবার, $1 < x \le 2$ এর জন্য 6(x - 1) > 0, কাজেই f'(x) > 0. $1 < x \le 2$ ব্যবধিতে f(x) ফাংশন বৃদ্ধি পায়। **(b)** $f(x) = (x-2)^3 (x+1)^2, -1 \le x \le 3$ সমাধান : দেওয়া আছে, $f(x) = (x - 2)^3 (x + 1)^2$ $f'(x) = (x-2)^3 \times 2(x+1)$ $+(x+1)^{2} \times 3(x-2)^{2}$ $= (x-2)^{2} (x + 1) \{2(x-3) + 3(x + 1)\}$ $= (x-2)^{2} (x + 1)(2x - 6 + 3x + 3)$ $= (x-2)^{2}(x+1)(5x-3)$

 $f'(x) = 0 \Rightarrow x = -1, 3/5, 2$ x = -1, 3/5, 2 বিন্দুগুলি $-1 \le x \le 3$ ব্যবধিকে -1 < x < 3/5, 3/5 < x < 2 এবং 2 < x < 3ব্যবধিতে বিভক্ত করে। এখন, -1 < x < 3/5 এর জন্য f'(x) < 0. -1 < x < 3/5 ব্যবধিতে f(x) ফাংশন হ্রাস পায়। 3/5 < x < 2 এর জন্য f'(x) > 0. 3/5 < x < 2 ব্যবধিতে f(x) ফাংশন বৃদ্ধি পায়। 2 < x < 3 এর জন্য f'(x) > 0.3/5 < x < 2 ব্যবধিতে f(x) ফাংশন বৃদ্ধি পায়।

 (a) x এর কোন মানের জন্য নিচের ফাংশনগুলো পুরুমান অথবা লখুমান পাওয়া যায়?

(i) थति,
$$f(x) = \frac{x^2 - 7x + 6}{x - 10}$$
 [घ.'०٩]
 $\therefore f'(x) = \frac{(x - 10)(2x - 7) - (x^2 - 7x + 6).1}{(x - 10)^2}$
Бяম মানের জন্য, $f'(x) = 0$
 $\frac{(x - 10)(2x - 7) - (x^2 - 7x + 6).1}{(x - 10)^2} = 0$
 $\Rightarrow 2x^2 - 27x + 70 - x^2 + 7x - 6 = 0$
 $\Rightarrow x^2 - 20x + 64 = 0$
 $\Rightarrow (x - 4)(x - 16) = 0 \Rightarrow x = 4, 16$
 $x = 4 e 16$ এর জন্য প্রদন্ত ফাংশনের গুরুমান অথবা
লঘুমান থাকবে।

(ii)
$$x^4 - 8x^3 + 22x^2 - 24x + 5$$
 [4. $(x^4) = x^4 - 8x^3 + 22x^2 - 24x + 5$
 $\Rightarrow f'(x) = 4x^3 - 24x^2 + 44x - 24$
 $\Rightarrow x^3 - 24x^2 + 44x - 24 = 0$
 $\Rightarrow x^3 - 6x^2 + 11x - 6 = 0$
 $\Rightarrow x^2 (x - 1) - 5x(x - 1) + 6(x - 1) = 0$
 $\Rightarrow (x - 1) (x^2 - 5x + 6) = 0$
 $\Rightarrow (x - 1)(x - 2) (x - 3) = 0$
 $x = 1, 2, 3$

x = 1, 2 ও 3 এর জন্য প্রদন্ত ফাংশনের গুরুমান অথবা লঘুমান থাকবে। $4(b) f(x) = x - x^2 - x^3$ এর সম্ধিবিন্দু নির্ণয় কর। সমাধান ঃ $f(x) = x - x^2 - x^3$ $f'(x) = 1 - 2x - 3x^2$ সন্ধিবিন্দুতে , f'(x) = 0 $1-2x-3x^{2}=0 \implies 3x^{2}+2x-1=0$ $\Rightarrow 3x^2 + 3x - x - 1 = 0$ \Rightarrow 3x(x+1) - 1(x+1) = 0 \Rightarrow (x + 1)(3x - 1) = 0 $x = -1, \frac{1}{2}$ x = -1 erements, f(x) = -1 - 1 + 1 = -1 $x = \frac{1}{3}$ even, $f(x) = \frac{1}{3} - \frac{1}{0} - \frac{1}{27}$ $=\frac{9-3-1}{27}=\frac{5}{27}$ নির্ণেয় সম্ধিবিন্দু $(-1, -1), (\frac{1}{3}, \frac{5}{27})$ 5. নিচের ফাংশনগুলো গুরুমান ও লঘুমান নির্ণয় কর ঃ (a) $f(x) = 2x^3 - 9x^2 + 12x + 5$ [5.'08; **al.'**) সমাধান ঃ $f(x) = 2x^3 - 9x^2 + 12x + 5$ $f'(x) = 6x^2 - 18x + 12$ are f''(x) = 12x - 18চরম মানের জন্য, f'(x) = 0 $\Rightarrow 6x^2 - 18x + 12 = 0 \Rightarrow x^2 - 3x + 2 = 0$ \Rightarrow (x-1)(x-2) = 0 \therefore x = 1, 2 এখন, $f''(1) = 12 \times 1 - 18 = -6 < 0$ f(x) গুরুমান হবে যখন x = 1 এবং এর মান = f(1) = 2 - 9 + 12 + 5 = 19 - 9 = 10আবার, $f''(2)=12 \times 2 - 18 = 24 - 18 = 6 > 0$. f(x) লঘুমান হবে যখন x = 2 এবং এর মান = $f(2) = 2 \times 2^3 - 9 \times 2^2 + 12 \times 2 + 5$ = 16 - 36 + 24 + 5 = 45 - 36 = 95(b) $f(x) = x^3 - 3x^2 - 45x + 13$ রা. '০৫, '১০; ব. '০৮; সি. '০৮: চ. '০১. '১১] সমাধান ঃ $f(x) = x^3 - 3x^2 - 45x + 13$

 $f'(x) = 3x^2 - 6x - 45$ as f''(x) = 6x - 6চরম মানের জন্য, f'(x) = 0 $\Rightarrow 3x^2 - 6x - 45 = 0 \Rightarrow x^2 - 2x - 15 = 0$ \Rightarrow (x-5)(x+3) = 0 : x = 5.-3 এখন, f''(-3) = 6×-3-6 = -24<0 f(x) গুরুমান হবে যখন x = -3 এবং এর মান = f (-3) = -27-27 + 135 + 13 =148 - 54 = 94জালার, /" (5) = 6×5-6 = 24>0 f(x) লখুমান হবে যখন x = 5 এবং এর মান = f(5) = 125-75-225+13 = 138 - 300 = -162 $5(c) x(12-2x)^2$ [J. 'ot] সমাধান ঃ গরি, $f(x) = x(12-2x)^2$ $= 4x(6-x)^{2}$ $f(x) = 4x.2(6-x)(-1) + 4(6-x)^2.1$ = 4(6-x)(-2x+6-x)=4(6-x)(6-3x)=12(6-x)(2-x) $\operatorname{ads} f''(x) = 12\{(6-x)(-1) + (2-x)(-1)\}$ 12(-6+x-2+x) = 24(x-4)চর ানের জন্য, f'(x) = 0 $\Rightarrow 12(6-x)(2-x)=0$: x=2.6a = f''(2) = 24(2-4) = -48 < 0f (x) গুৱমান হবে যখন x = 2 এবং এর মান = f (2) = 8(6-2)² = 128 আ आ (6) = 24(6-4) > 0াধুমান হবে যখন x = 6 এবং t. এর মান = $1(6) = 8(6-6)^2 = 0$ 5(d) 1+2sin x + 3cos² x, $0 \le x \le \frac{\pi}{2}$ ব.'০১: ঢা.'০৮] সমাধান **१ ধরি**, $y = 1 + 2\sin x + 3\cos^2 x$ $2\cos x + 6\cos x(-\sin x)$ dX $= 2\cos x(1 - 3\sin x)$ धवर

 $\frac{d^2 y}{dx^2} = 2\cos x(-3\cos x) + 2(1 - 3\sin x)(-\sin x)$ $= -6\cos^2 x - 2\sin x + 6\sin^2 x$ চরম মানের জন্য, $\frac{dy}{dy} = 0$ $\Rightarrow 2\cos x(1-3\sin x) = 0$ $\cos x = 0$, $\sin x = \frac{1}{2}$ $\cos x = 0$ হলে $\sin x = 1$ এবং $\frac{d^2 y}{dx^2} = -2 + 6 > 0$ প্রদন্ত ফাংশন লঘুমান হবে যখন cos x = () এবং এর মান = $1 + 2(1) + 3(0)^2 = 3$ জাবার, $\sin x = \frac{1}{2}$ হলে $\cos^2 x = 1 - \frac{1}{2} = \frac{8}{2}$ $\frac{d^2 y}{dy^2} = -6 \cdot \frac{8}{9} - 2 \cdot \frac{1}{3} + 6 \cdot \frac{1}{9} < 0$ প্রদন্ত ফাংশন পুরুমান হবে যখন sin x = $\frac{1}{2}$ এবং এর মান = $1+2.\frac{1}{2}+3.\frac{8}{9}=\frac{3+2+8}{2}=\frac{13}{2}$ 5(e) $u = \frac{4}{r} + \frac{36}{v}$, स्थन x + y = 2সমাধান ঃ $u = \frac{4}{x} + \frac{36}{2 - x}$ [x + y = 2] $\therefore \frac{du}{dx} = -\frac{4}{x^2} - \frac{36}{(2-x)^2}(-1)$ $=-\frac{4}{r^2}+\frac{36}{(2-r)^2}$ $\operatorname{urr} \frac{d^2 u}{dr^2} = \frac{8}{r^3} + \frac{72}{(2-r)^3}$ চরম মানের জন্য, $\frac{du}{dx} = 0$ $\Rightarrow -\frac{4}{r^2} + \frac{36}{(2-r)^2} = 0$ $\Rightarrow -4(4-4x+x^2)+36x^2=0$ $\Rightarrow -16 + 16x - 4x^{2} + 36x^{2} = 0$

 $\Rightarrow 32x^2 + 16x - 16 = 0$ $\Rightarrow 2x^2 + x - 1 = 0$ $\Rightarrow (2x+1)(x-1) = 0 : x = 1, -\frac{1}{2}$ x = 1 धा जनग, $\frac{d^2 u}{dx^2} = 8 + 72 > 0$ x = 1 এর জন্য, u এর লঘুমান আছে। लघ्याल = $\frac{4}{r} + \frac{36}{2-r} = \frac{4}{1} + \frac{36}{2-1} = 40$ আবার $x = -\frac{1}{2}$ এর জন্য, $\frac{d^2 u}{dx^2} = -64 + \frac{72}{(2 + \frac{1}{2})^3} = -64 + \frac{72 \times 8}{125} < 0$ $x = -\frac{1}{2}$ এর জন্য, u এর পুর্মান আছে। $\Im\Im = \frac{4}{-\frac{1}{2}} + \frac{36}{2+\frac{1}{2}} = -8 + \frac{72}{5} = \frac{32}{5}$ 6.(a) দেখাও যে, $x + \frac{1}{r}$ এর পুরুমান তার লঘুমান অপেশ্যা স্ফুতর। রা.'০৬; ব.'০৮; তা.'০৫,'১১; ব. '০৯; ব. চ. সি. '১০, '১৪] ধ্রণাণ ,মনে করি, $f(x) = x + \frac{1}{x}$ $f'(x) = 1 - \frac{1}{x^2}$ and $f''(x) = \frac{2}{x^3}$ চরম মানের জন্য, f'(x) = 0 $1 - \frac{1}{x^2} = 0 \Longrightarrow x - 1 = 0 \Longrightarrow x = -1, 1$ - এখন, ্ / (-1) = $\frac{2}{(-1)^3} < 0$ x = -1 এর জন্য f(x) এর পুরুমান আছে। গুরুমান = $f(-1) = -1 + \frac{1}{1} = -2$ आखाझ, $f''(1) = \frac{2}{1^3} > 0$ 1 এর জন্য f(x) এর পথুমান আছে।

প্রশ্নমালা IX K

লঘুমান = $f(1) = 1 + \frac{1}{1} = 2$ $x + \frac{1}{2}$ এর গুরুমান তার লঘুমান অপেক্ষা ক্ষ্দ্রতর। 6(b) দেখাও যে, $4e^x + 9e^{-x}$ এর লঘুমান 12. [রা, 'ou, 'ob; र. 'oe, 'so; रू. 'so; रु., मि. 's8] প্রমাণ : মনে করি, $y = 4e^{x} + 9e^{-x}$ $\therefore \frac{dy}{dx} = 4e^x - 9e^{-x} \text{ and } \frac{d^2y}{dx^2} = 4e^x + 9e^{-x}$ চরম মানের জন্য, $\frac{dy}{dx} = 0$: $4e^x - 9e^{-x} = 0$ $\Rightarrow 4e^{x} = \frac{9}{e^{x}} \Rightarrow (e^{x})^{2} = \frac{9}{4} \qquad e^{x} = \pm \frac{3}{2}$ $e^{x} = \frac{3}{2}$ even, $\frac{d^{2}y}{dx^{2}} = 4 \cdot \frac{3}{2} + 9 \times \frac{2}{3} > 0$ $\therefore e^x = \frac{3}{2}$ এর জন্য $4e^x + 9e^{-x}$ এর লঘুমান আছে। **लघू**मान = $4 \cdot \frac{3}{2} + 9 \times \frac{2}{3} = 6 + 6 = 12$ 6(c) দেখাও যে, $\frac{x}{\ln(x)}$ এর লঘুমান e. [ঢা. '০৭; ক্. '০১] প্রমাণ : মনে করি, $f(x) = \frac{x}{\ln(x)}$ $f'(x) = \frac{\ln(x) \cdot 1 - x \frac{1}{x}}{(\ln(x))^2} = \frac{\ln(x) - 1}{(\ln(x))^2} \quad \text{arg}$ $f''(x) = \frac{\{\ln(x)\}^2 \cdot \frac{1}{x} - \{\ln(x) - 1\} 2 \ln(x) \cdot \frac{1}{x}}{\{\ln(x)\}^4}$ $= \frac{\ln(x)\{\ln(x) - 2\ln(x) + 2\}}{x\{\ln(x)\}^4} = \frac{-\ln(x) + 2}{x\{\ln(x)\}^3}$ চরম মানের জন্য, f'(x) = 0 $\frac{\ln(x) - 1}{\left\{\ln(x)\right\}^2} = 0 \implies \ln(x) = 1 \therefore x = e$ এখন, $f'(e) = \frac{-1+2}{e(1)^3} = \frac{1}{e} > 0$

x = e এর জন্য f (x) এর লঘুমান আছে। $\frac{x}{\ln(x)}$ এর লঘুমান = $f(e) = \frac{e}{1} = e$ 6(d) (एथा७ (य, $\frac{\ln x}{r}$ এর লঘুমান $\frac{1}{r}$. প্রমাণ মনে করি, $f(x) = \frac{\ln x}{x}$ $f'(x) = \frac{x - \ln x \cdot 1}{x^2} = \frac{1 - \ln x}{x^2}$ are $f''(x) = \frac{x^2(-\frac{1}{x}) - (1 - \ln x).2x}{x^4}$ $=\frac{-x-2x+2x\ln x}{x^4}=\frac{-3+2\ln x}{x^3}$ চরম মানের জন্য, f'(x) = 0 $\frac{1 - \ln x}{x^2} = 0 \implies \ln x = 1 \quad \therefore x = e$ $a = \frac{-3+2.1}{a^3} = \frac{-1}{a^3} < 0$ x = e এর জন্য f(x) এর গুরুমান আছে। $\frac{x}{\ln(x)}$ अब श्रुमाः = $f(e) = \frac{1}{e}$ 6. (e) দেখাও যে, $(x)^{\frac{1}{x}}$ এর গুরুমান $(e)^{\frac{1}{e}}$. প্রমাণ ধরি, $f(x) = (x)^{\overline{x}}$ $f'(x) = (x)^{\frac{1}{x}} \left[\frac{1}{x} \frac{d}{dx} (\ln x) + \ln x \frac{d}{dx} (\frac{1}{x}) \right]$ $= (x)^{\frac{1}{x}} \left[\frac{1}{r} \cdot \frac{1}{r} + \ln x(-\frac{1}{r^2}) \right]$ $= (x)^{\frac{1}{x}} \left[\frac{1}{x^2} - \frac{1}{x^2} \ln x \right] = (x)^{\frac{1}{x}} \left(\frac{1 - \ln x}{x^2} \right)$ $\operatorname{deg} f''(x) = (x)^{\frac{1}{x}} \frac{d}{dx} (\frac{1 - \ln x}{x^2})$

উচ্চতর গণিত: ১ম পত্র সমাধান বইঘর.কম

 $= (x)^{\frac{1}{x}} \frac{x^{2}(-\frac{1}{x}) - (1 - \ln x) \cdot 2x}{x^{4}}$ $+ (\frac{1 - \ln x}{x^{2}}) (x)^{\frac{1}{x}} (\frac{1 - \ln x}{x^{2}})$ $= (x)^{\frac{1}{x}} \frac{-x(1 + 2 - 2\ln x)}{x^{4}} + (x)^{\frac{1}{x}} \frac{(1 - \ln x)^{2}}{x^{4}}$ $= (x)^{\frac{1}{x}} \frac{-3 + 2\ln x}{x^{3}} + (x)^{\frac{1}{x}} \frac{(1 - \ln x)^{2}}{x^{4}}$ $= (x)^{\frac{1}{x}} \frac{-3 + 2\ln x}{x^{3}} + (x)^{\frac{1}{x}} \frac{(1 - \ln x)^{2}}{x^{4}}$ = 5 for an increasing of f'(x) = 0 $(x)^{\frac{1}{x}} (\frac{1 - \ln x}{x^{2}}) = 0 \implies \ln x = 1 \therefore x = e$ $(x)^{\frac{1}{x}} (\frac{1 - \ln x}{x^{2}}) = 0 \implies \ln x = 1 \therefore x = e$ $(x)^{\frac{1}{x}} (e) = (e)^{\frac{1}{e}} \frac{-3 + 2 \cdot 1}{e^{3}} + 0 = (e)^{\frac{1}{e}} \frac{-1}{e^{3}} < 0$ x = e (as were the form of the term of the term of the term of the term of term

7. দেখাও যে, $\sin x(1 + \cos x)$ গরিষ্ঠ হবে যখন $x = \frac{\pi}{3}$.

 $\sin x(1 + \cos x)$ গরিষ্ঠ হবে যখন $x = \frac{\pi}{3}$

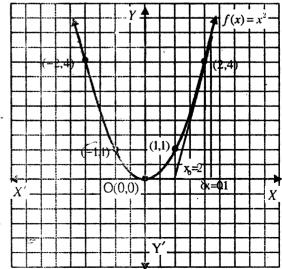
8.(a) দেখাও যে, $f(x) = x^3 - 6x^2 + 24x + 4$ এর কোন গুরুমান অথবা লঘুমান নেই। [য.'০১,'১১] শ্রমাণ ঃ এখানে $f(x) = x^3 - 6x^2 + 24x + 4$ $\therefore f'(x) = 3x^2 - 12x + 24 = 3(x^2 - 4x + 8) =$ $3 \{(x-2)^2 + 4\}$, যা x এর কোন বাস্তব মানের জন্য শূন্য হতে পারে না।

প্রদত্ত ফাংশনের কোন পুরুমান অথবা লঘুমান নেই।

8(b) দেবগৈ যে, $f(x) = \frac{\sin(x+a)}{\sin(x+b)}$ এর কোন পুরুমান জথবা লঘুমান নেই। প্রমাণ ৪ এখানে $f(x) = \frac{\sin(x+a)}{\sin(x+b)}$ $\therefore f'(x) = \frac{1}{\sin^2(x+b)} [\sin(x+b).\cos(x+a) - \sin(x+a)\cos(x+b)]$ $= \frac{\sin(x+b-x-a)}{\sin^2(x+b)} = \frac{\cos(b-a)}{\sin^2(x+b)}$, যা x এয় কোন বাস্তব মানের জন্য শূন্য হতে পারে না।

প্রদন্ত ফাংশনের কোন গুরুমান অথবা লঘুমান নেই। 9. (a) $f(x) = x^2$ এর লেখচিত্র ব্যবহার করে $(2 \cdot 1)^2$ এর ত্যাসন্নমান নির্ণন্ন কর।

সমাধানঃ



মনে করি,
$$x_0 = 2$$
 এবং $x_0 + \delta x = 2 \cdot 1$
 $\delta x = 0 \cdot 1$
এখন, $f(x) = x^2 \Rightarrow f'(x) = 2x$
 $f'(2) = 2 \times 2 = 4$.
 $f(x_0 + \delta x) \approx f(x_0) + f'(x_0) \delta x$
 $\Rightarrow f(2 \cdot 1) \approx f(2) + f'(2) \times 0 \cdot 1$
 $\Rightarrow (2 \cdot 1)^2 \approx 2^2 + 4 \times 0 \cdot 1$
 $\Rightarrow (2 \cdot 1)^2 \approx 4 + 0 \cdot 4$
 $(2 \cdot 1)^2 \approx 4 \cdot 4$ (Ans.)

(b) x = 0 বিম্পুর সন্নিকটে $f(x) = \sqrt{1 + x}$ ফাংশনের লেখকে অসনভাবে ঐ বিন্দুতে স্পর্শকের লেখ দ্বারা ছানীয়ভাবে প্রতিছাপন করে $\sqrt{0.9}$ এবং $\sqrt{1.1}$ এর আসন্ন মান নির্ণয় কর।

সমাধান:
$$f(x) = \sqrt{1+x} \implies f'(x) = \frac{1}{2\sqrt{1+x}}$$

 $f(0) = \sqrt{1+0} = 1$ এবং $f(0) = \frac{1}{2}$

x = 0 বিন্দুর সন্নিকটে $f(x) = \sqrt{1+x}$ ফাংশনের লেখকে অসন্ভাবে ঐ বিন্দুতে স্পর্শকের লেখ দ্বারা স্থানীয়ভাবে প্রতিস্থাপন কণ্ডে পাই,

$$\begin{split} f(x) &\approx f(0) + f'(0) (x - 0) \\ [f(x) &\approx f(x_0) + f'(x_0) (x - x_0)$$
সূত্র জারা]

$$\Rightarrow \sqrt{1 + x} &\approx 1 + \frac{1}{2} x \cdots \cdots (1) \\ (1) \ @x &= -1 \ a \ bar{result} x \ end{tabular}$$

$$\sqrt{1 - 0 \cdot 1} &\approx 1 + \frac{1}{2} (-0 \cdot 1) \\ \Rightarrow \sqrt{0 \cdot 9} &\approx 1 - 0 \cdot 05 \Rightarrow \sqrt{0 \cdot 9} \approx 0 \cdot 95 \\ \hline{matrix} x \ (1) \ @x &= 1 \ a \ bar{result} x \ end{tabular}$$

$$\sqrt{1+0\cdot 1} \approx 1 + \frac{1}{2}(0\cdot 1)$$

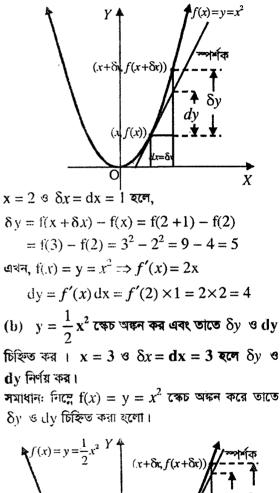
$$\Rightarrow \sqrt{1\cdot 1} \approx 1 + 0\cdot 05 \Rightarrow \sqrt{1\cdot 1} \approx 1\cdot 05$$

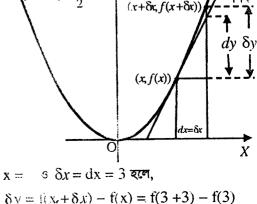
$$= \sqrt{0\cdot 9} \quad \text{(org. $\sqrt{1\cdot 1}$) or $100 \text{ with } $100 \text{ with }$$

 $\sqrt{0.9}$ এবং $\sqrt{1.1}$ এর আসন মান যথাক্রমে 0.95 এবং 1.05.

10. (a) $y = x^2$ স্কেচ অঞ্চল কর এবং তাতে δy ও dy চিহিন্ত কর । x = 2 ও $\delta x = dx = 1$ হলে δy ও dy নির্ণন্ন কর ।

সমাধান: নিম্নে $f(x) = y = x^2$ ক্ষেচ অন্ধন করে তাতে δy 3 dy চিহ্নিত করা হলো ।





উচ্চতর গণিত: ১ম পত্র সমাধান বইঘর কম

$$= f(6) - f(3) = \frac{1}{2} (6^{2} - 3^{2}) = \frac{1}{2} (36 - 9)$$

$$= 13 \cdot 5$$
এখন, $f(x) = y = \frac{1}{2} x^{2} \Longrightarrow f'(x) = x$

$$dy = f'(x) dx = f'(3) \times 3 = 3 \times 3 = 9$$
11. দেওয়া আছে, $f(x) = x + \frac{1}{x}$.

(a) $x^{\cos^{1}x}$ এর অস্তরজ নির্ণয় কর। [কু.'১৩; য. '১০,'১৪; সি.'০৮; চা.'১৩; রা.'১০,'১৪; ব.'১০;চ.'১৪] (b) দেখাও যে, f(x) এর গুরুমান তার লঘুমান অপেক্ষা ক্ষুদ্রতর। [কু.'০৮; ব.'০৯;য. '১০,'১২; চ. '১০;সি.'১০,'১৪] (c) x = 1 বিন্দুর সন্নিকটে f(x) এর যোগাশ্ররী অসন্নমান নির্ণয় কর। x = 1 ও $\delta x = dx = 1$ হলে δy ও dy নির্ণয় কর।

সমাধান: (c) দেওয়া আছে,
$$f(x) = x + \frac{1}{x}$$

 $\Rightarrow f'(x) = 1 - \frac{1}{x^2}$ f(1) = 1 + 1 = 2, f'(1) = 1 - 1 = 0 x = 1 বিন্দুর সন্নিকটে f(x) এর যোগাশ্রায়ী অসন্নমান, f(x) ≈ 2 + f'(1) (x - 1) [f(x) ≈ f(x_0) + f'(x_0) (x - x_0) সূত্র দ্বারা] \Rightarrow f(x) ≈ 2 (Ans.) এখন, x = 1 ও δx = dx = 1 হলে, δy = f(x + δx) - f(x) = f(1 + 1) - f(1) = f(2) - f(1) = 2 + $\frac{1}{2}$ - (1 + $\frac{1}{1}$) = 2 + $\frac{1}{2}$ - 2 = $\frac{1}{2}$ (Ans.) এবং dy = f'(x) dx = f'(1) × 1 = 0 × 1 = 0 12 y(x - 2)(x - 3) - x + 7 = 0 একটি বক্ররেখার

সমীকরণ। (৯) সংগ্রহী হার উপর্যান ও সংগ্রহণ বাবের উপর্যান

 (a) মধ্যবর্তী মান উপপাদ্য ও ল্যাগ্রাঞ্জের গড়মান উপপাদ্য বর্ণনা কর। (b) $y = \sqrt{(4+3\sin x)}$ হলে, দেখাও যে, $2y\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 + y^2 = 4$ [য.'১৩;কু.'১১,'১৪; চ.'১০; ঢা. '০৮; রা.'১২; সি.'১২; দি.'১১] (c) প্রদন্ত বক্ররেখার যে সমন্ত বিন্দুতে *x*-অক্ষকে ছেদ করে, এ বিন্দুগুলোডে 'স্পর্শক ও অভিলম্বের সমীকরণ নির্দায় কর। [ঢা.'০৯; য.'১০; চ.'১০; দি.'১১; কু.'১৪] সমাধান: (a) মধ্যবর্তী মান উপপাদ্য (Intermediate Value Theorem): যদি f(x) ফাংশন [*a*, *b*] বন্ধ ব্যবধিতে অবিচ্ছিন্ন এবং $d \in [f(a), f(b)]$ হয়, তবে অন্ততঃপক্ষে একটি বিন্দু $x = c \in [a, b]$ এর জন্য f(c) = d হবে।

শ্যাম্রাজের গড়মান উপপাদ্য (Lagrange's Mean Value Theorem) : যদি f(x) ফাংশন [a, b] বদ্ধ ব্যব্ধিতে অবিচ্ছিন্ন হয় এবং]a, b[খোলা ব্যব্ধিতে অন্ত রীকরণযোগ্য হয়, তবে অন্ততঃপক্ষে একটি বিন্দু $c \in]a$, b[এর জন্য f(b) - f(a) = (b - a) f'(c)

- (b) প্রশ্নমালা IX I এর 9(b) দ্রষ্টব্য।
- (c) প্রশ্নমালা IX J এর 3 দ্রষ্টব্য।

13. স্যাভউইচ উপপাদ্য (Sandwich or Princing Theorem) : যদি f(x), g(x) এবং h(x) ফাংশনত্রায় $g(x) \le f(x) \le h(x)$ সিদ্ধ করে এবং $\lim_{x \to a} g(x) =$ $l = \lim_{x \to t} h(x)$ হয়, তবে $\lim_{x \to a} f(x) = l$. (a) $v^2 \sin^{-1}(1-x)$ এর অন্তরজ নির্ণয় কর। [ব.'o৮;দি.'১২; ঢা.'১৪] (b) $\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}$ এর মান নির্ণয় কর। [রা.'o৯; ব.'১১,'১৪; কু.'১০; সি.'o৯; মা.'১৩] (c) স্যান্ডউইচ উপপাদ্যের সাহায্যে মান নির্ণয় কর: $\lim_{x \to \infty} \frac{x^2(2 + \sin^2 x)}{x + 100}$ সমাধান: (a) প্রশ্নমালা IX F এর 2(b) দ্রষ্টব্য।

b) ধ্রশ্নমালা IX A এর উদাহরণ দ্রষ্টব্য।

প্রশ্নমালা IX K

(c) প্রদানা IX A এর 15(g) দ্রষ্টব্য। 14. $f(x) = 17 - 15x + 9x^2 - x^3$ একটি ফাংশন । (a) ইহার চরমবিন্দু নির্ণয় কর। (b) ইহা কোন ব্যবধিতে হ্রাস পায় এবং কোন ব্যবধিতে বন্দি পায় নির্ণয় কর। (c) ইহার সর্বোচ্চ ও সর্বোনিস্লু মান নির্ণয় কর। সমাধান: প্রশ্নমালা IX K এর উদাহরণ -3 দুয়্টব্য। অতিরিক্ত প্রশ্ন (সমাধানসহ) 1. x এর কোন মানের জন্য, x $(12 - 2x)^2$ এর পুরুমান অথবা লঘুমান পাওয়া যায় ? মনে করি, $f(x) = x (12 - 2x)^2$ $f'(x) = x \cdot 2(12 - 2x)(-2) +$ $(12-2x)^2$.1 = (12 - 2x)(-4x + 12 - 2x)= 12(6-x)(2-x)চরম মানের জন্য, f'(x) = 0 $12(6-x)(2-x) = 0 \implies x = 2, 6$ x = 2 ও 6 এর জন্য প্রদন্ত ফাংশনের গুরুমান অথবা লঘুমান থাকবে। 2. নিচের ফাংশনগুলির গুরুমান ও লঘুমান নির্ণয় কর 8 (a) $\frac{1}{3}x^3 + \frac{1}{2}x^2 - 6x + 8$ [ব.'০৩] সমাধান ঃ ধরি, $f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 6x + 8$ $f'(x) = x^2 + x - 6$ and f''(x) = 2x + 1চরম মানের জন্য, f'(x) = 0 $\Rightarrow x^2 + x - 6 = 0 \Rightarrow (x + 3)(x - 2) = 0$ x = -3, 2এখন, f''(-3) = -6 + 1 = -5 < 0f(x) গুরুমান হবে যখন x = -3 এবং এর মান = f (-3) = $-9 + \frac{9}{2} + 18 + 8 = \frac{43}{2}$ আবার, f''(2) = 4 + 1 = 5 > 0f(x) লঘুমান হবে যখন x = 2 এবং এর মান = f(2) = $\frac{8}{2}$ + 2 - 12 + 8 = $\frac{2}{2}$ 2. (b) $x^{5} - 5x^{4} + 5x^{3} - 1$ [क्. '०১] (b) x = 5x + 5x - 1 [9.05] সমাধান ঃ ধরি, $f(x) = x^5 - 5x^4 + 5x^3 - 1$

 $f'(x) = 5x^4 - 20x^3 + 15x^2$ $a = 20x^3 - 60x^2 + 30x$ চরম মানের জন্য, f'(x) = 0 $\Rightarrow 5x^4 - 20x^3 + 15x^2 = 0$ $\Rightarrow 5x^2(x^2-4x+3)=0$ $\Rightarrow x^{2}(x-1)(x-3) = 0 :: x = 0, 1, 3$ এখন, f''(0) = 0, f''(1) = 20-60 + 30<0 এবং ("(3) = 540 - 540 + 90>0 f (x) গুৱমান হবে যখন x = 1 এবং এর মান f(1) = 1 - 5 + 5 - 1 = 0আবার, f (x) লঘুমান হবে যখন x = 3 এবং এর মান = f(3) = 243 - 405 + 135 -1= - 28 3. দেখাও যে, $(1/x) \times u$ এর প্রমান $(e)^{\frac{1}{e}}$. প্রমাণ: ধরি, $f(x) = (\frac{1}{x})^x$ $f'(x) = (\frac{1}{x})^{x} \left[x \frac{d}{dx} (\ln \frac{1}{x}) + \ln \frac{1}{x} \frac{d}{dx} (x) \right]$ $= (\frac{1}{x})^{x} [x \frac{d}{dx}(-\ln x) - \ln x \frac{d}{dx}(x)]$ $= \left(\frac{1}{x}\right)^{x} \left[x(-\frac{1}{x}) - \ln x \cdot 1\right] = -\left(\frac{1}{x}\right)^{x} \left(1 + \ln x\right)$ $\operatorname{aq} f''(x) = -(\frac{1}{x})^x \frac{d}{dx}(1+\ln x) (1 + \ln x) \frac{d}{dr} \{ (\frac{1}{r})^x \}$ $= -(\frac{1}{x}) \frac{1}{x} - (1 + \ln x) \left\{ -(\frac{1}{x})^{x} (1 + \ln x) \right\}$ $= \left(\frac{1}{x}\right) \left\{ -\frac{1}{x} + (1 + \ln x)^2 \right\}$ চরন মানের জন্য, f'(x) = 0 $\left(\frac{1}{x}\right)^{x}\left(1+\ln x\right) = 0 \Longrightarrow \ln x = -1$ $x = e^{-1} = \frac{1}{2}$ $\int f''(\frac{1}{e}) = (e)^{\frac{1}{e}}(-e+0) = -e.(e)^{\frac{1}{e}} < 0$ $x = \frac{1}{a}$ এর জন্য f(x) এর পুরুমান আছে।

 $(1/x)^x$ এর গুরুমান = $f(\frac{1}{e}) = (e)^{\frac{1}{e}}$ 4. দেখাও যে, x^{x} পথিষ্ঠ হবে যখন $x = \frac{1}{2}$ প্রমাণ: ধরি, $f(x) = x^x$ $\therefore f'(x) = x^x \left[x \frac{d}{dx} (\ln x) + \ln x \frac{d}{dx} (x) \right]$ $= x^{x} \left[x \cdot \frac{1}{x} + \ln x \cdot 1 \right] = x^{x} (1 + \ln x)$ $aq f''(x) = x^{x} \frac{d}{dx} (1 + \ln x) (1+\ln x)\frac{d}{dx}(x^x)$ $= x^{x} \cdot \frac{1}{x} + (1 + \ln x) \{ x^{x} (1 + \ln x) \}$ $= x^{x} \left\{ \frac{1}{x} + (1 + \ln x)^{2} \right\}$ চরম মানের জন্য, f'(x) = 0 $x^{x}(1 + \ln x) = 0 \Longrightarrow \ln x = -1$ $\Rightarrow x = e^{-1} = \frac{1}{2}$ এখন, $f''(\frac{1}{a}) = (e)^{\frac{1}{e}}(e+0) = e \cdot (e)^{\frac{1}{e}} > 0$ x^x লঘিষ্ঠ হবে যখন $x = \frac{1}{x}$ দেখাও যে, $f(x) = x^3 - 6x^2 + 27x + 5$ এর 5. কোন গুরুমান অথবা লঘুমান নেই। প্রমাণ ঃ এখানে $f(x) = x^3 - 6x^2 + 27x + 5$ $\therefore f'(x) = 3x^2 - 12x + 27 = 3(x^2 - 4x + 9) =$ $3\{(x-2)^2+5\}$, x = x = x and x = x and x = x. শন্য হতে পারে না। প্রদন্ত ফাংশনের কোন গুরুমান অথবা লঘুমান নেই। দেখাও যে, $f(x) = \frac{ax+b}{ax+c}$ এর কোন গুরুমান 6. অথবা লঘুমান নেই। প্রমাণ ঃ এখানে $f(x) = \frac{ax+b}{ax+c}$

 $f'(x) = \frac{(ax+c).a - (ax+b).a}{(ax+c)^2}$ $= \frac{(ax + c - ax - b)a}{(ax + c)^{2}} = \frac{(c - b)a}{(ax + c)^{2}}, \text{ vi } x \text{ us}$ কোন বাস্তব মানের জন্য শূন্য হতে পারে না। প্রদন্ত ফাংশনের কোন গুরুমান <mark>অথবা লঘুমান নেই</mark>। 7. u বেগে উধর্বমুখী দিকে নিক্ষিশত কোনো কণা t সময়ে $\mathbf{h} = \mathbf{ut} - rac{1}{2} \mathbf{gt}^2$ উচ্চতায় অবস্থান করে। বৃহত্তম উচ্চতা এবং সেখানে পৌছার সময় নির্ণয় কর। সমাধান ঃ এখানে $h = ut - \frac{1}{2}gt^2$ $\frac{dh}{dt} = u - \frac{1}{2}g.2t = u - gt \quad \text{are}$ $\frac{d^2h}{d^2} = \mathbf{0} - g = -g$ চরম মান্দের জন্য, $\frac{dh}{dt} = 0$ $\Rightarrow u - gt = 0 \Rightarrow t = \frac{u}{a}$ এখন, $l = \frac{u}{a}$ এর জন্য, $\frac{d^2h}{dt^2} = -g < 0$ h = ut $-\frac{1}{2}$ gt² ज्ञ्छम হবে যখন $t = \frac{u}{a}$ যৃহতম উচ্চতা = u. $\frac{u}{a} - \frac{1}{2}g\left(\frac{u}{a}\right)^2$ $=\frac{u^2}{u}-\frac{1}{2}\frac{u^2}{v}=\frac{u^2}{2v}$ এবং সেখানে পৌঁছার সময় = " 8. t সময়ে $usin\alpha.t - \frac{1}{2}gt^2$ উচ্চতায় অবস্থান করে। বৃহত্তম উচ্চতা এবং সেখানে পৌছার সময় নির্ণয় কর। স্মাধান ঃ ধরি, $h = u \sin \alpha . t - \frac{1}{2} g t^2$

 $\frac{dh}{dt} = u \sin \alpha - \frac{1}{2}g \cdot 2t = u \sin \alpha - gt$ $\frac{d^2h}{dx^2} = 0 - g = -g$ চরম মানের জন্য, $\frac{dh}{dt} = 0$ $\Rightarrow u \sin \alpha - gt = 0 \Rightarrow t = \frac{u \sin \alpha}{u \sin \alpha}$ এখন, $t = \frac{u \sin \alpha}{g}$ এর জন্য, $\frac{d^2 h}{dt^2} = -g < 0$ usin α .t $-\frac{1}{2}$ gt² ৰুংন্তম হবে যখন $t = \frac{u \sin \alpha}{2}$:. বৃহত্তম উচ্চতা = $u \sin \alpha$. $\frac{u \sin \alpha}{\alpha}$ – $\frac{1}{2}g\left(\frac{u\sin\alpha}{a}\right)^2$ $=\frac{u^2\sin^2\alpha}{\rho}-\frac{1}{2}\frac{u^2\sin^2\alpha}{\rho}=\frac{u^2\sin^2\alpha}{2\rho}$ এবং সেখানে পৌছার সময় = $\frac{u \sin \alpha}{d t}$ $\mathbf{y} = \mathbf{x}^2 + 2$ বরুরেখা হতে $(\mathbf{3}, \mathbf{2})$ বিন্দুর ক্ষুদ্রতম 9. দূরত্ম নির্ণয় কর। সমাধান : $y = x^2 + 2$ বরুরেখার (x,y) কিন্দু হতে (3, 2) किंग्नूज़ मृज़ज्ज़, $s = \sqrt{(x-3)^2 + (y-2)^2}$ \Rightarrow s = $\sqrt{(x-3)^2 + x^4}$, [:: y-2 = x²] $\frac{ds}{dx} = \frac{1}{2} \sqrt{(x-3)^2 + x^4} \{2(x-3) + 4x^3\}$ $= (2x^{3} + x - 3)\sqrt{(x - 3)^{2} + x^{4}}$ are $\frac{d^2s}{dx^2} = (2x^3 + x - 3)^2 \sqrt{(x - 3)^2 + x^4} + \frac{d^2s}{dx^2} = (2x^3 + x - 3)^2 \sqrt{(x - 3)^2 + x^4} = (2x^3 + x - 3)^2 = (2x^3 + x - 3)^2$ $(6x+1)\sqrt{(x-3)^2+x^4}$ x = 1 এর জন্য, $\frac{ds}{dx} = 0$ এবং $\frac{d^2s}{dx^2} = 7\sqrt{5} > 0$ নির্ধেয় ক্ষুদ্রতম দূরত্ব = $\sqrt{(1-3)^2 + 1^4} = \sqrt{5}$ একক

অন্তর্বাকরণ 802 বইঘর কম বিকল্প পদ্ধতি $y = x^2 + 2$ বরুরেখার (x, y) বিন্দুতে স্পর্শকের ঢাল, $\frac{dy}{dx} = 2x$ এবং (x, y) ও (3, 2)' কিন্দুগামী রেখার ঢাল = $\frac{y-2}{y-2}$. (3.2) কিন্দু হতে $y = x^2 + 2$ বরুরেখার (x, y) বিন্দটি ক্ষুদ্রতম দুরত্বে অবস্থিত হলে. $2\mathbf{x} \times \frac{\mathbf{y} - 2}{\mathbf{x} - 2} = -1 \Longrightarrow 2\mathbf{x} \cdot \mathbf{x}^2 = -(\mathbf{x} - 3)$ $\Rightarrow 2x^3 + x - 3 = 0$ x = 1 \Im $y = 1^{2} + 2 = 3$ নির্ণেয় ক্ষুদ্রতম দূরত্ব = (1, 3) ও (3, 2) কিন্দুদ্বয়ের মধ্যবর্তী দূরত্ব = $\sqrt{(1-3)^2 + (3-2)^2} = \sqrt{5}$ একক। 10. জনৈক কৃষক 800 ফুট দীর্ঘ্য তারের বেড়ার সাহায্যে বহুত্তম ক্ষেত্ৰফল বিশিষ্ট **একটি আয়তক্ষেত্ৰ ঘিরে ফে**লতে পারে। ক্ষেত্রটির দৈর্ঘ্য ও প্রস্থ কত হওয়া দরকার। সমাধান ঃ মনে করি, ক্ষেত্রটির দৈর্ঘ্য x ফুট ও প্রস্থ y ফট তাহলে, $2(x + y) = 800 \implies x + y = 400$ \Rightarrow y = 400 - x এখন, আয়তক্ষেত্রের ক্ষেত্রফল A = xy = x(400 - x) $= 400x - x^{2}$ $\frac{dA}{dx} = 400 - 2x$ अवर $\frac{d^2A}{dx^2} = -2$ বৃহত্তম ফেত্রফলের জন্য, $\frac{dA}{dx} = 0 \Longrightarrow 400 - 2x = 0$ $\Rightarrow x = 200$ बरकहर्द, $\frac{d^2 y}{dx^2} < 0, y = 400 - 200 = 200$ x = 200, y = 200 এর জন্য A এর মান বৃহত্তম হয় ৷ কৃষক তারের বেড়া দ্বারা যে বৃহত্তম ক্ষেত্রফল বিশিষ্ট আয়তক্ষেত্র ঘিরে ফেলে তার দৈর্ঘ্য 200 ফুট এবং প্রস্থ 200 ফট

> 11. একটি সমবৃস্তভূমিক কোপের মধ্যে একটি খাড়া বৃত্তাকার সিলিন্ডার স্থাপর করা আছে। সিলিন্ডারের বক্রতল বৃহত্তম হলে দেখাও যে, সিলিন্ডারের ব্যাসার্ধ কোণের ব্যাসার্ধের অর্ধেক।

١.

সমাধান ঃ মনে করি কোণের উচ্চতা OA = h, ভূমির ব্যাসার্ধ OC = r এ কোণের মধ্যে একটি Q সিলিন্ডার স্থাপন করা আছে যার ভূমির ব্যাসার্ধ R OP = x. এখন, ΔPQC ও ΔAOC সদৃশকোণী ত্রিড্জদ্বয় হতে $\mathfrak{PQ} = \frac{PQ}{OA} = \frac{PQ}{OC} \Longrightarrow \frac{PQ}{OA} = \frac{OC - OP}{OC}$ $\Rightarrow \frac{PQ}{h} = \frac{r-x}{r} \Rightarrow PQ = \frac{h(r-x)}{r}$ সিলিন্ডারের বক্রতল S হলে, S = $2\pi x \times PO$ \Rightarrow S = $2\pi x \frac{h(r-x)}{r} = \frac{2\pi h}{r}(rx-x^2)$ $\frac{dS}{dr} = \frac{2\pi h}{r} (r - 2x), \frac{d^2S}{dr^2} = \frac{2\pi h}{r} (0 - 2)$ এখন গরিষ্ঠ ও লঘিষ্ঠ মানের জন্য, $\frac{dS}{dr} = 0$ $\Rightarrow \frac{2\pi h}{r}(r-2x) = 0 \Rightarrow x = \frac{r}{2}$ অর্থাৎ সিলিন্ডারের ব্যাসার্ধ = $rac{1}{2}$ (কোণের ভূমির ব্যাসার্ধ) अरक्ता, $\frac{d^2S}{dr^2} = -\frac{4\pi h}{r} < 0$ সিলিন্ডারের বরুতল বৃহত্তম হলে, সিলিন্ডারের ব্যাসার্ধ কোণের ব্যাসার্ধের অর্ধেক। 12. একটি আম বাগানে প্রতি একরে 30টি গাছ আছে এবং প্রতি গাছে গড়ে 400টি আম ধরে। প্রতি একরে অতিরিক্ত একটি গাছের জন্য মোটামোটি 10টি আমের ফলন কমে। আমের সর্বোচ্চ ফলন পাওয়ার জন্য প্রতি একরে কতটি গাছ থাকা উচিত? সমাধান ঃ মনে করি, সর্বোচ্চ ফলনের জন্য প্রতি একরে গাছের সংখ্যা (30 + x) থাকা প্রয়োজন। তাহলে, প্রতি গাছে আমের সংখ্যা = (400 - 10x). আমের ফলন y হলে, y = (30 + x) (400 - 10x) \Rightarrow y = 1200 + 100x - 10x²

 $\frac{dy}{dx} = 100 - 20x$ are $\frac{d^2y}{dx^2} = -20$ সর্বোচ্চ ফলনের জন্য, $\frac{dy}{dx} = 0 \Longrightarrow 100 - 20x = 0$ $\Rightarrow x = 5$ এক্ষেত্রে, $\frac{d^2 y}{dv^2} < 0.$ x = 5 হলে ফলন সর্বোচ্চ হবে। অর্থাৎ আমের সর্বোচ্চ ফলন পাওয়ার জন্য প্রতি একরে (30 + 5) = 35 টি গাছ থাকা উচিত। ভর্তি পরীক্ষার MCO 1. $y = \cos x + \sin x = \frac{d^2 y}{dx^2} = ?$ [CU 07-08] **Sol**". $\frac{dy}{dx} = -\sin x + \cos x$ $\Rightarrow \frac{d^2 y}{dx^2} = -\cos x - \sin x$ 2. At most $\frac{d^n}{dx^n}(ax+b)^m = 0$ [SU 08-09: CU 03-04] Sol" n > m y = x" ফাংশনের (n + 1) তম অশতরক সংগ [CU 07-08] কত ? **Sol**" $v_n = n!$ $y_{n+1} = 0$ 4. y = e^{ax} ফাংশনের y, কত হবে? [CU 06-07] **Sol**" $y_n = a^n e^{ax}$ 5. $y = (2x-5)^3$ হলে $\frac{d^3y}{dx^3}$ কত? [IU 02-03] **Sol**^{*a*} $\frac{d^3y}{dx^3} = {}^3P_3 \cdot 2^3 (2x-5)^{3-3} = 6.8 = 48$ 6. $x^2 + y^2 = 25$ হলে (3, -4) বিন্দুতে $\frac{dy}{dr}$ [DU 01-02; NU 06-07] কৃত্ত? **Sol**". $2x + 2y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{x}{y}$

(3, -4) বিন্দুতে $\frac{dy}{dx} = \frac{3}{4}$ 7. $y = 2x^3 + 3x^2 - 12x + 7$ বরুরেখার মুলব্দিদুতে নতির পরিমাণ কত ৷ [DU 00-01] $Sol^{*} \cdot \frac{dy}{dx} = 6x^{2} + 6x - 12 = -12$ (भूवकिपूरङ) 8. $3x^2 - 7y^2 + 4xy - 8x = 0$ বরুরেখাটির (-1, 1) বিন্দৃতে অভিকত স্পাধিকর তাল কত? [DU 02-03] Sol*. $6x - 14y \frac{dy}{dx} + 4x \frac{dy}{dx} + 4y - 8 = 0$ $\Rightarrow -6 - 14 \frac{dy}{dx} - 4 \frac{dy}{dx} + 4 - 8 = 0^{-1}$ $\Rightarrow \frac{dy}{dx} = \frac{10}{-18} = -\frac{5}{9}$ 9. $y = x^{\frac{2}{2}}$ বৰুৱেখার যেবিন্দুতে অভিনত স্পর্শন x-অক্ষের বোগবোধক দিকের সাথে 45° কোণ উৎপন্ন করে তা হল– [CU 07-08, 04-05] **Sol**^{*n*}. $\frac{dy}{dx} = \frac{1}{2\sqrt{x}}$ $\therefore \frac{1}{2\sqrt{x}} = \tan 45^{\circ} = 1$ $\Rightarrow x = \frac{1}{4} \text{ are } y = \sqrt{\frac{1}{4}} = \frac{1}{2} \therefore \text{ from } (\frac{1}{4}, \frac{1}{2})$ 10. $y = x^2 + 1$ হলে কোন বিন্দুতে y ও $\frac{dy}{dx}$ এর মান সমান? **[IU 07-08]** Solⁿ. $\frac{dy}{dx} = 2x$ $y = \frac{dy}{dx} \Rightarrow x^2 + 1 = 2x$ \Rightarrow $(x-1)^2 = 0 \Rightarrow x = 1, y = 1+1=2$ কিন্দুটি (1,2) 11. কোন গতিশীল বস্তু 1 সেকেন্ডে 5t + 2t² ফুট দুরত্ব অতিক্রম করলে 3 সেকেন্ড পর তার গতিকো কত হবে ? [KU 06- 08] **Sol**ⁿ. S = 5t + 2t² $\Rightarrow \frac{ds}{dt} = v = 5 + 4t$ 3 সেকেন্ড পর গতিবেগ = 5 + 12 = 17 ft/sec ব্যবহারিক অনুশীলনী

 x = 0 কিন্দুর সন্নিকটে f(x) = sinx ফাশেনের লেখকে অসনতাবে এ কিন্দুতে স্পর্শকের লেখ ঘারা স্থানীয়তাবে প্রতিস্থাপন কর।

পরীক্ষণের নাম । x = 0 কিন্দুর সন্নিকটে f(x) = sin x ফাংশনের লেখকে অসন্নভাবে ঐ কিন্দুতে স্পর্শকের লেখ দ্বারা স্থানীয়ভাবে প্রতিস্থাপন ।

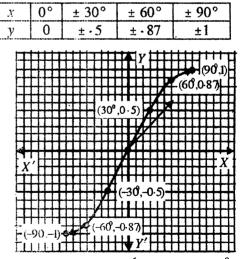
মূল্বৃতত্ত্ব ঃ $x = x_0$ কিন্দুর সন্নিকটে f(x) ফাংশনকে অসন্নভাবে ঐ কিন্দুতে স্পর্শক দ্বারা স্থানীয়ভাবে প্রতিস্থাপন করার সূত্র, $f(x) \approx f(x_0) + f'(x_0)(x - x_0)$

প্রয়োজনীয় উপকরণ ঃ (i) পেন্সিল (ii) ফেক্ষ্প (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) সায়েন্টিফিক ক্যালফুলেটর।

কার্যপন্ধতি ঃ

একটি ডক কাগজে স্থানান্ডেকর অক্ষ রেখা X'OX
 YCY' আঁকি ।

2. নিচের তালিকায় x এর তিন্ন তিন্ন মানের জন্য $f(x) = \sin x$ এর প্রতিরূপী মান নির্ণয় করি ঃ



3. x অফ বরাবর ক্ষুদ্রতম বগের 1 বাহু = 10^{0} ও y - অক্ষ বরাবর ক্ষুদ্রতম বগের 1 বাহু = 1 একক ধরে তালিকান্ডুক্ত কিন্দুগুলি ছক কাগজে স্থাপন করি এবং সরু পেন্সিলের সাহায্যে স্থাপিত কিন্দুগুলি মুক্ত হস্তে বক্রাকারে যোগ করে $y = f(x) = \sin x$ এর লেখ জন্ডকন করি।

= () বিন্দুতে স্পর্শক অঙ্জন করি।

হিসাৰ : $f(x) = \sin x \implies f'(x) = \cos x$ $f(0) = \sin 0 = 0, f'(0) = \cos 0 = 1$ $f(x) \approx f(x_0) + f'(x_0)(x - x_0)$ হতে পাই, $\sin x \approx 0 + 1(x - 0) = x$ ফলাফল x = 0 কিন্দুর সন্নিকটে $v = f(x) = \sin x$ ফাংশনের লেখকে অসনুভাবে ঐ কিন্দুতে স্পর্শক v = xএর লেখ দ্বারা স্থানীয়ভাবে প্রতিস্থাপন করা হল। অন্যভাবে বলা যায়, x এর মান () এর সন্নিকটে হলে sin x এর পরিমাণ x এর কাছাকাছি হবে। 2. $x = 2 \cos y = x^2$ ফাংশনের লেখ অঞ্চন করে dy ৩ Sy নির্ণয় করে লেখচিতে প্রদর্শন কর. যেখানে $dx = \delta x = 1$. পরীক্ষণের নাম $y = x^2$ ফাংশনের জন্য, x = 2কিন্দুতে dy ও δv নির্ণয় , যেখানে $dx = \delta x = 1$ এবং লেখচিতে dy ও Sy প্রদর্শন। মূলতন্ত্র ঃ স্বাধীন চলক ও অধীন চলকের অন্তরকের মধ্যকার সম্পর্ক dy = f'(x)dx এবং স্বাধীন চলকের অতি ক্ষুদ্র পরিবর্তন δ χ এর জন্য অধীন চলকের অতি **ফ্**দ্র পরিবর্তন $\delta y = f(x + \delta x) - f(x)$ প্রয়োজনীয় উপকরণ 🖇 (i) পেন্সিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) চাঁদা (vii) পেন্সিল কম্পাস (viii) সায়েন্টিফিক ক্যালকুলেটর। কাৰ্যপদ্ধতি ঃ 1. একটি ছক কাগজে স্থানাজ্জের অক্ষ রেখা X'OX ও YOY' जाँकि । 2. নিচের তালিকায় x এর ভিন্ন ভিন্ন মানের জন্য $f(x) = x^2$ এর প্রতিরপী মান নির্ণয় করি ঃ ±1 ± 2 ±3 r $\mathbf{f}(\mathbf{x}) = \mathbf{x}^2$ 0 1 4 9 3. x - অক ও y - অক্ষ বরাবর ক্ষুদ্রতম বর্গের 2 বাহ = 1 একক ধরে তালিকান্ডব্রু কিন্দুগুলি ছক কাগজে করি এবং সরু পেন্সিলের সাহায্যে স্থাপিত স্বাপন

কিন্দুগুলি মুক্ত হস্তে বক্রাকারে যোগ করে y = f(x)

 $= x^2$ এর লেখ অজ্ঞকন করি।

(-3,9)

4. A(2, 4) বিন্দুতে স্পর্শক অজ্ঞন করি। x = 3 সরলরেখাকে স্পর্শকটি ও ফাংশনটি যথাক্রমে P ও Q বিন্দুতে ছেদ করে।

হিসাব $\circ y = x^2$ হতে গাই , $\frac{dy}{dx} = 2x$. সুতরাং $dy = 2x dx = 2 \times 2 \times 1 = 4$ এবং $\delta y = f(x + \delta x) - f(x)$ $= (x + \delta x)^2 - (x)^2 = (2 + 1)^2 - 2^2$ = 9 - 4 = 5চিত্রা হতে গাই, AN = $dx = \delta x = 1$, PN = dy ও QN = δy ফলাফল ঃ PN = dy = 4 ও QN = $\delta y = 5$ লেখচিত্রে প্রদর্শন করা হলো।

$$\begin{aligned} \frac{2\pi \sqrt{3}}{\pi} \frac{1}{\sqrt{3}} \frac{1}$$

উচ্চতর গণিত: ১ম পত্র সমাধান বইঘর.কম

$$= \int (\sec^{2} x + \sec x \tan x) dx$$

$$= \tan x + \sec x + c$$

$$3(b) \int \frac{dx}{1 + \sin x} [\mathbf{\overline{x}} \cdot \mathbf{0} \mathbf{3}, \mathbf{\overline{5}}, \mathbf{\overline{5}}, \mathbf{5} \circ \mathbf{3}, \mathbf{\overline{5}}, \mathbf{\overline{5}$$

$$= \int (\sec^2 x - \sec x \tan x) dx$$

$$= \tan x - \sec x + c$$

4.(a) $\int \sqrt{1 - \sin 2x} dx$

$$= \int \sqrt{\sin^2 x + \cos^2 x - 2 \sin x \cos x} dx$$

$$= \int \sqrt{(\sin x - \cos x)^2} dx$$

$$= \int (\sin x - \cos x) dx = \int (\cos x - \sin x) dx$$

$$= -\cos x - \sin x + c = \pi \sin x + \cos x + c$$

4.(b) $\int \frac{-\cos 2x}{\sqrt{1 - \sin 2x}} dx$

$$= \int \frac{\cos^2 x - \sin^2 x}{\sqrt{(\sin x - \cos x)^2}} dx$$

$$= \int \frac{\cos^2 x - \sin^2 x}{\sqrt{(\sin x - \cos x)^2}} dx$$

$$= \int \frac{(\cos x - \sin x)(\cos x + \sin x)}{\cos x - \sin x} dx$$

$$= \int (\cos x - \sin x)(\cos x + \sin x) dx$$

$$= \int (\cos x + \sin x)dx = 1, -\int (\cos x + \sin x)dx$$

$$= \int (\cos x + \sin x)dx = \pi, -\int (\cos x + \sin x)dx$$

$$= \sin x - \cos x = \pi, -(\sin x - \cos x)$$

4(c) $\int (\sin x + \cos x)^2 dx$

$$= \int (\sin^2 x + \cos^2 x + 2\sin x \cos x)dx$$

$$= \int (1 + \sin 2x)dx = x - \frac{1}{2}\cos 2x + c$$

5(a) $\int \sin 5x \sin 3x dx = \pi - \frac{1}{2}\cos 2x + c$

$$= \int \frac{1}{2} \{\cos(5x - 3x) - \cos(5x + 3x)\} dx$$

$$= \frac{1}{2} \int (\cos 2x - \cos 8x) dx$$

$$= \frac{1}{2} \int (\cos 2x - \cos 8x) dx$$

$$= \frac{1}{2} \int (\cos 2x - \cos 8x) dx$$

$$= \frac{1}{2} \int (\cos 2x - \cos 8x) dx$$

$$= \frac{1}{2} \int (\cos 2x - \cos 8x) dx$$

$$= \frac{1}{4} \sin 2x - \frac{1}{16} \sin 8x + c$$

6(d) $\int \sin^3 2x \, dx$ [ঢা. '০১] $=\int \frac{1}{4} (3\sin 2x - \sin 6x) dx$ $= \frac{1}{4} \{3.(-\frac{1}{2}\cos 2x) + \frac{1}{6}\cos 6x\} + c$ $=\frac{1}{9}(-3\cos 2x+\frac{1}{2}\cos 6x)+c$ 6.(e) $\int \sin^4 x \, dx$ **[4.'05]** $\sin^4 x \, dx = (\sin^2 x)^2 = \{\frac{1}{2}(1 - \cos 2x)\}^2$ $= \frac{1}{4} \{1 - 2\cos x + \cos^2 2x\}$ $=\frac{1}{4}\{1-2\cos 2x+\frac{1}{2}(1+\cos 4x)\}$ $= \frac{1}{4} [1 - 2\cos 2x + \frac{1}{2} + \frac{1}{2}\cos 4x]$ $=\frac{1}{4}\left[\frac{3}{2}-2\cos 2x+\frac{1}{2}\cos 4x\right]$ $\int \sin^4 x \, dx$ $=\frac{1}{4}(\frac{3}{2}x-2.\frac{1}{2}\sin 2x+\frac{1}{2}.\frac{1}{4}\sin 4x)+c$ $=\frac{1}{4}(\frac{3}{2}x-\sin 2x+\frac{1}{8}\sin 4x)+c$ 6(f) $\cos^4 x \, dx$ [রা.'০৭,'১৪; সি.'০৮; দি.'১ঁও; চা.'১৪] $\cos^4 x \, dx = (\cos^2 x)^2 = \{\frac{1}{2}(1 + \cos 2x)\}^2$ $=\frac{1}{4}\{1+2\cos 2x+\cos^2 2x\}$ $= \frac{1}{4} \{1 + 2\cos 2x + \frac{1}{2}(1 + \cos 4x)\}$ $= \frac{1}{4} [1 + 2\cos 2x + \frac{1}{2} + \frac{1}{2}\cos 4x]$ $=\frac{1}{4}\left[\frac{3}{2}+2\cos 2x+\frac{1}{2}\cos 4x\right]$ $\int \cos^4 x \, dx$

 $= \int \frac{1}{4} \left(\frac{3}{2} + 2\cos 2x + \frac{1}{2}\cos 4x \right) dx$ $=\frac{1}{4}\left(\frac{3}{2}x+2,\frac{1}{2}\sin 2x+\frac{1}{2},\frac{1}{4}\sin 4x\right)+c$ $= \frac{1}{4}(\frac{3}{2}x + \sin 2x + \frac{1}{8}\sin 4x) + c \text{ (Ans.)}$ অতিরিজ্ঞ প্রশ্ন (সমাধানসহ) নিচের যোগজনুলি মান নির্ণায় কর ৪ 1(a) $\int \frac{4(\sqrt[3]{x^2}+4)^2}{x^{3/x}} dx = \frac{4}{3} \int \frac{(x^{\frac{1}{3}}+4)^2}{\frac{1}{3}} dx$ $=\frac{4}{3}\int \frac{x^{\frac{4}{3}}+8x^{\frac{2}{3}}+16}{\frac{1}{2}}dx$ $=\frac{4}{3}\int (x^{\frac{4}{3}\frac{1}{3}}+8x^{\frac{2}{3}\frac{1}{3}}+16x^{\frac{1}{3}})dx$ $=\frac{4}{3}\int (x+8x^{\frac{1}{3}}+16x^{-\frac{1}{3}})dx$ $=\frac{4}{3}\left(\frac{x^2}{2}+8\frac{x^{\frac{1}{3}+1}}{\frac{1}{2}+1}+16\frac{x^{\frac{1}{3}+1}}{-\frac{1}{3}+1}\right)+c$ $=\frac{4}{3}(\frac{x^2}{2}+8\frac{x^{\frac{3}{3}}}{\underline{4}}+16\frac{x^{\frac{2}{3}}}{\underline{2}})+c$ $=\frac{2}{2}(x^2+12x^{4/3}+48x^{2/3})+c$ $1(b) \quad \int \frac{a \cot x + b \tan^2 x - c \sin^2 x}{\sin x} dx$ $= \int (a \frac{\cot x}{\sin x} + b \frac{\sin^2 x}{\cos^2 x \sin x} - c \sin x) dx$ = $\int (a \cot x \cos e cx + b \tan x \sec x)$ $-c\sin x$)dx $= -a\cos ecx + b\sec x + c\cos x + c_1$

836

$$2(a) \int \frac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta} dx$$

$$= \int \frac{2\cos^2 x - 1 - (2\cos^2 \theta - 1)}{\cos x - \cos \theta} dx$$

$$= 2\int \frac{\cos^2 x - \cos^2 \theta}{\cos x - \cos \theta} dx$$

$$= 2\int \frac{(\cos x + \cos \theta)(\cos x - \cos \theta)}{\cos x - \cos \theta} dx$$

$$= 2\int (\cos x + \cos \theta) dx$$

$$= 2(\int \cos x dx + \cos \theta) dx$$

$$= 2(\sin x + \cos \theta + c)$$

$$2(b) \int (\sec x + \tan x)^2 dx$$

$$= \int (\sec^2 x + \tan^2 x + 2\sec x \tan x) dx$$

$$= \int (\sec^2 x + \sec^2 x - 1 + 2\sec x \tan x) dx$$

$$= \int (2\sec^2 x - 1 + 2\sec x \tan x) dx$$

$$= \int (2\sec^2 x - 1 + 2\sec x \tan x) dx$$

$$= \int \sqrt{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} \pm 2\sin \frac{x}{2} \cos \frac{x}{2}} dx$$

$$= \int \sqrt{(\sin \frac{x}{2} \pm \cos \frac{x}{2})^2} dx$$

$$= \int \sqrt{(\sin \frac{x}{2} \pm \cos \frac{x}{2})} dx \exp \int (\cos \frac{x}{2} \pm \sin \frac{x}{2}) dx$$

$$= 2(-\cos \frac{x}{2} \pm \sin \frac{x}{2}) + c$$

$$\exists (b) \int \frac{\sin x + \cos x}{\sqrt{\sin^2 x + \cos^2 x}} dx$$

$$= \int \frac{\sin x + \cos x}{\sqrt{(\sin x + \cos x)^2}} dx$$

$$\begin{aligned} dx = \frac{1}{\sqrt{2}} \frac{\sin x + \cos x}{\sin x + \cos x} dx = \int dx = x + c \\ = \int \frac{\sin x + \cos x}{\cos x - \sin x} (1 - \sin 2x) dx \\ = \int \frac{\cos x + \sin x}{\cos x - \sin x} (\cos x - \sin x)^2 dx \\ = \int (\cos x + \sin x)(\cos x - \sin x) dx \\ = \int (\cos^2 x - \sin^2 x) dx = \int \cos 2x dx \\ = \frac{1}{2} \sin 2x + c \\ 3(d) \int (\sin \frac{x}{2} + \cos^2 \frac{x}{2} + 2\sin \frac{x}{2} \cos \frac{x}{2}) dx \\ = \int (1 + \sin x) dx = x - \cos x + c \\ 4 \int \cos^3 x \, dx = \int \frac{1}{4} (3\cos x + \cos 3x) \, dx \\ = \frac{1}{4} (3\sin x + \frac{1}{3}\sin 3x) + c \\ \frac{21}{3} \frac{1}{\sqrt{1 - 4x}} dx = \int \frac{1}{(1 - 4x)^{1/3}} dx \\ = \int (1 - 4x)^{\frac{1}{3}} dx = \frac{(1 - 4x)^{\frac{1}{3} + 1}}{(-\frac{1}{3} + 1)(-4)} + c \\ \frac{1}{2} \frac{(1 - 4x)^{\frac{2}{3}}}{(-\frac{1}{3})^{\frac{2}{3}}} + c = -\frac{3}{8} (1 - 4x)^{\frac{2}{3}} + c \\ 1(b) \int \frac{e^{5x} + e^{3x}}{e^x + e^{-x}} dx = \int e^{4x} dx = \frac{e^{4x}}{4} + c \\ 1(c) \sqrt{13} \, x = \int \sin x^0 dx \quad [5.5e] \end{aligned}$$

এবং $x^\circ = \frac{\pi x}{180} = z$ তাহলে $\frac{\pi}{100} dx = dz \implies dx = \frac{180}{\pi} dz$ এবং $I = \frac{180}{\pi} \int \sin z \, dz = \frac{180}{\pi} (-\cos z) + c$ $\int \sin x^\circ dx = -\frac{180}{2} \cos x^\circ + c$ 2(a) ধরি, I = $\int \sin 5x \, dx$ [সি.'০৫] এবং 5x = z তাহলে $5dx = dz \Longrightarrow dx = \frac{1}{5}dz$ $a \approx 1 = \frac{1}{5} \int \sin z \, dz = -\frac{1}{5} \cos z + c$ $\therefore \int \sin 5x \, dx = -\frac{1}{5} \cos 5x + c$ 2(b) ধরি , I = $\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx$ [बू. '00] এবং $\sqrt{x} = z$. তাহলে $\frac{dx}{2\sqrt{x}} = dz \Longrightarrow \frac{dx}{\sqrt{x}} = 2dz$ এবং $I = 2 \int \cos z \, dz = 2 \sin z + c$ $\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx = 2\sin\sqrt{x} + c$ 2(c) $\int \frac{1}{x^2} \sin \frac{1}{x} dx$ [ঢা. '০৪; য. '০৭] $4 f \overline{a}, \ \frac{1}{r} = z \qquad -x^{-2} dx = dz \Longrightarrow \frac{1}{r^2} dx = -dz$ $\therefore \int \frac{1}{x^2} \sin \frac{1}{x} dx = \int \frac{\sin(1/x)}{x^2} dx$ $= -\int \sin z \, dz = -(-\cos z) + c = \cos \frac{1}{z} + c$ 3. (a) $\forall \hat{a}, I = \int x e^{x^2} dx$ ব. '০৩] এবং $x^2 = z$. তাহলে, $2xdx = dz \Longrightarrow xdx = \frac{dz}{2}$ and I = $\frac{1}{2}\int e^{z}dz = \frac{1}{2}e^{z} + c = e^{x^{2}} + c$

3(b)
$$4 \operatorname{fa}, I = \int x^2 a^{x^3} dx$$
 [All 'ob]
under $x^3 = z$. Sinter, $3x dx = dz \Rightarrow x dx = \frac{dz}{3}$
under $I = \frac{1}{3} \int a^z dz = \frac{a^z}{3\ln a} + c = \frac{a^{x^3}}{3\ln a} + c$
3.(c) $\int e^x \tan e^x \sec e^x dx$
 $= \int \sec e^x \tan e^x d(e^x)$ [$d(e^x) = e^x dx$]
 $= \sec e^x + c$
3(d) $4 \operatorname{fa}, I = \int e^{2x} \tan e^{2x} \sec e^{2x} dx$ [5.'09]
under $e^{2x} = z$. Sinter, $2e^{2x} dx = dz$ under
 $I = \frac{1}{2} \int \sec z \tan z dz = \frac{1}{2} \sec z + c$
 $\therefore \int e^{2x} \tan e^{2x} \sec e^{2x} dx = \frac{1}{2} \sec e^{2x} + c$
4. (a) $4 \operatorname{fa}, I = \int \sin^2 x \cos x dx$ [FI.'08]
under $\sin x = z$. Sinter, $\cos x dx = dz$ under
 $I = \int z^2 dz = \frac{1}{3} z^3 + c = \frac{1}{3} \sin^3 x + c$
4(b) $4 \operatorname{fa}, I = \int (1 + \cos x)^3 \sin x dx$ [Ander $I = -\int z^3 dz = -\frac{z^4}{4} + c = -\frac{(1 + \cos x)^4}{4} + c$
4(c) $4 \operatorname{fa}, I = \int \sin^2 \frac{x}{2} \cos \frac{x}{2} dx$ [F.'09]
under $\sin \frac{x}{2} = z$. Sinter, $\frac{1}{2} \cos \frac{x}{2} dx = dz$ under
 $I = 2\int z^2 dz = \frac{1}{3} z^3 + c = \frac{2}{3} \sin^3 \frac{x}{2} + c$
4(d) $4 \operatorname{fa}, I = \int \sin^2 \frac{x}{2} \cos \frac{x}{2} dx$ [F.'09]
under $1 = 2\int z^2 dz = 2 \cdot \frac{1}{3} z^3 + c = \frac{2}{3} \sin^3 \frac{x}{2} + c$
4(d) $4 \operatorname{fa}, I = \int \sqrt{1 - \sin x} \cos x dx$ [Ander $I = 2\int z^2 dz = 2 \cdot \frac{1}{3} z^3 + c = \frac{2}{3} \sin^3 \frac{x}{2} + c$
4(d) $4 \operatorname{fa}, I = \int \sqrt{1 - \sin x} \cos x dx$ [Ander $I = 2 \int z^2 dz = 2 \cdot \frac{1}{3} z^3 + c = \frac{2}{3} \sin^3 \frac{x}{2} + c$
4(c) $4 \operatorname{fa}, I = \int \sqrt{1 - \sin x} \cos x dx$ [Ander $I = 2 \int z^2 dz = 2 \cdot \frac{1}{3} z^3 + c = \frac{2}{3} \sin^3 \frac{x}{2} + c$
4(c) $4 \operatorname{fa}, I = \int \sqrt{1 - \sin x} \cos x dx$ [Ander $I = 2 \int z^2 dz = 2 \cdot \frac{1}{3} z^3 + c = \frac{2}{3} \sin^3 \frac{x}{2} + c$
4(d) $4 \operatorname{fa}, I = \int \sqrt{1 - \sin x} \cos x dx$ [Ander $I = 2 \int x^2 dx = 2 \cdot \sqrt{1 - \sin x} \cos x dx$ [Ander $I = 2 \int x^2 dx = 2 \cdot \sqrt{1 - \sin x} \cos x dx$ [Ander $I = 2 \int x^2 dx = 2 \cdot \sqrt{1 - \sin x} \cos x dx$ [Ander $I = 2 \int x^2 dx = 2 \cdot \sqrt{1 - \sin x} \cos x dx$ [Ander $I = 2 \int \sqrt{1 - \sin x} \cos x dx$ [Ander $I = 2 \int \sqrt{1 - \sin x} \cos x dx$ [Ander $I = 2 \int \sqrt{1 - \sin x} \cos x dx$ [Ander $I = 2 \int \sqrt{1 - \sin x} \cos x dx$ [Ander $I = 2 \int \sqrt{1 - \sin x} \cos x dx$ [Ander $I = 2 \int \sqrt{1 - \sin x} \cos x dx$ [Ander $I = 2 \int \sqrt{1 - \sin x} \cos x dx$ [Ander $I = 2 \int \sqrt{1 - \sin x} \cos x dx$ [Ander $I = 2 \int \sqrt{1 - \sin x} \cos x dx$

$$I = -\int z^{\frac{1}{2}} dz = -\frac{z^{\frac{1}{2}+1}}{\frac{1}{2}+1} + c = -\frac{2}{3} z^{\frac{3}{2}} + c$$

$$I = \ln 10\int z^{2} dz$$

$$i = \int \sqrt{\sqrt{1-\sin x}} \cos x \, dx = -\frac{2}{3} (1-\sin x)^{\frac{3}{2}} + c$$

$$I = \ln 10\int z^{2} dz$$

$$i = \ln 10$$

$$\begin{aligned} & \operatorname{leg}_{10} x = z \cdot \operatorname{Setem}, \frac{1}{x \ln 10} dx = dz \operatorname{Setem}, \frac{1}{x \ln 10} dx = dz \operatorname{Setem}, \frac{1}{x \ln 10} dx = dz \operatorname{Setem}, \\ &= \ln 10 \int z^2 dz = \ln 10 \cdot \frac{1}{3} z^3 + c \\ &\cdot \int \frac{(\log_{10} x)^2}{x} dx = \frac{\ln 10}{3} (\log_{10} x)^3 \\ & \operatorname{Setem}, \operatorname{Se$$

7(a)
$$4 \sin x, I = \int \frac{\sin x}{3 + 4\cos x} dx$$
 [\overline{p} L'o 9, \overline{q} .'So]
and 3 + 4cos $x = z$. $\overline{p} = x$, $-4\sin x dx = dz$
and $I = -\frac{1}{4} \int \frac{dz}{z} = -\frac{1}{4} \ln | 3 + 4\cos x | + c$
7(b) $4 \sin x, I = \int \frac{\sin x}{1 + 2\cos x} dx$ [$\overline{3}$ L'o 9]
and 1 + 2 cos $x = z$. $\overline{p} = x + c$
7(c) $\int \frac{\sec^2 x}{3 - 4\tan x} dx = -\frac{1}{4} \int \frac{-4\sec^2 x dx}{3 - 4\tan x}$
 $= -\frac{1}{4} \ln | 3 - 4\tan x | + c$
7(d) $4 \sin x, I = \int \frac{dx}{(1 + x^2) \tan^{-1} x}$
[$\overline{4}$.'o 8; \overline{p} L'So; \overline{p} L'So; \overline{p} L'So; \overline{p} .'So]
and $\tan^{-1} x = z$. $\overline{p} = \overline{x} + c$
8 $\int \frac{1}{x(1 + \ln x)} dx$ [$\overline{4} + c = \ln | \tan^{-1} x | + c$
8 $\int \frac{1}{x(1 + \ln x)} dx$ [$\overline{4} + c = \ln | \tan^{-1} x | + c$
9.(a) $\int \frac{e^{3x}}{e^{3x}} -1 | + c$
9(b) $\int \frac{e^{x}}{e^{x}} + e^{-x}} dx = \int \frac{d(e^{x} - e^{-x})}{e^{x}} [\overline{p}$ L'So]

9(c)
$$\int \frac{1}{e^x + 1} dx = \int \frac{e^{-x}}{e^{-x}(e^x + 1)} dx$$
 [4.50]
= $\int \frac{e^{-x}}{1 + e^{-x}} dx = -\int \frac{(0 - e^{-x})dx}{1 + e^{-x}}$
= $-\ln |1 + e^{-x}| + c$
10. (a) $4\pi, I = \int \frac{1}{\sqrt[3]{1-6x}} dx$ [4.5.4.50]
 $4\pi (1 - 6x = z)$. $5\pi(0), -6dx = dz$
 $I = -\frac{1}{6} \int \frac{1}{\sqrt[3]{z}} dz = -\frac{1}{6} \int \frac{dz}{z^{1/3}} = -\frac{1}{6} \int z^{-\frac{1}{3}} dz$
 $= -\frac{1}{6} \int \frac{1}{\sqrt[3]{z}} dz = -\frac{1}{6} \int \frac{z^{2/3}}{2} + c$
 $I = -\frac{1}{6} \int \frac{1}{\sqrt[3]{z}} dz = -\frac{1}{6} \int \frac{z^{2/3}}{2} + c$
 $I = -\frac{1}{4} (1 - 6x)^{2/3} + c$
10(b) $4\pi, I = \int \frac{x^3 dx}{\sqrt{(1 - 2x^4)}}$ [5.53]
 $4\pi (1 - 2x^4) = z$. $5\pi (\pi), -8x^3 dx = dz$ 4π
 $I = -\frac{1}{8} \int \frac{dz}{\sqrt{z}} = -\frac{1}{8} \cdot 2\sqrt{z} + c = -\frac{1}{4} \sqrt{z} + c$
 $\therefore \int \frac{x^3 dx}{\sqrt{(1 - 2x^4)}} = -\frac{1}{4} \sqrt{1 - 2x^4} + c$
10(c) $\int \frac{dx}{\cos^2 x \sqrt{\tan x - 1}}$ [71.54]
 $= \int \frac{\sec^2 x dx}{\sqrt{\tan x - 1}} = \int \frac{(\sec^2 x - 0) dx}{\sqrt{\tan x - 1}}$
 $= 2\sqrt{\tan x - 1} + c$ [$\because \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x}$]
10 (d) $4\pi\pi, I = \int \frac{\cos x}{\sqrt{\sin x}} dx$ [72.56; π 1.50]
 $4\pi^2 \sin x = z$. $5\pi (\pi), \cos x dx = dz$ $4\pi^2$
 $I = \int \frac{dz}{\sqrt{z}} = 2\sqrt{z} + c = 2\sqrt{\sin x} + c$

$$10(e) \ 4fa, I = \int \frac{dx}{x\sqrt{1+\ln x}} \qquad [4, 'ov]$$

$$dat 1 + \ln x = z \cdot \operatorname{Sizter}, \frac{1}{x} dx \ dat \\I = \int \frac{dz}{\sqrt{z}} = 2\sqrt{z} + c = 2\sqrt{1+\ln x} + c$$

$$11(a) \int \frac{dx}{4x^2 + 9} = \frac{1}{2} \int \frac{2xdx}{(2x)^2 + 3^2}$$

$$= \frac{1}{2} \frac{1}{3} \tan^{-1} \frac{2x}{3} + c = \frac{1}{6} \tan^{-1} \frac{2x}{3} + c$$

$$11(b) \int \frac{xdx}{x^4 + 1} dx \qquad [at.'ov; 4.'s]$$

$$= \frac{1}{2} \int \frac{2xdx}{1 + (x^2)^2} = \frac{1}{2} \cdot \tan^{-1}(x^2) + c$$

$$11(b) \int \frac{xdx}{x^4 + 1} dx \qquad [at.'os, 5.'ov]$$

$$after x^3 = z \cdot \operatorname{Sizter}, 3x^2 dx = dz \ after$$

$$I = \int \frac{dz}{1 + z^2} = \tan^{-1} z + c$$

$$\int \frac{3x^2}{1 + x^6} dx = \tan^{-1}(x^3) + c$$

$$11(d) \ 4fa, I = \int \frac{e^x}{1 + e^{2x}} dx \qquad [fa.'os]$$

$$after e^x = z \cdot \operatorname{Sizter}, e^x dx = dz \ after$$

$$I = \int \frac{dz}{1 + z^2} = \tan^{-1} z + c = \tan^{-1}(e^x) + c.$$

$$11(e) \ \int \frac{5e^{2x}}{1 + e^{4x}} dx = \frac{5}{2} \int \frac{2e^{2x} dx}{1 + (e^{2x})^2} [fb.'os,'ss]$$

$$= \frac{5}{2} \tan^{-1}(e^{2x}) + c$$

$$11(f) \ \int \frac{1}{e^x + e^{-x}} dx \quad [fb.'os; 4.'oe,'sz; 5t.'os], 5t.'ss]$$

$$= \int \frac{e^x}{e^x(e^x + e^{-x})} dx = \int \frac{e^x}{(e^x)^2 + 1} dx$$

$$4fa, e^x = z \cdot \operatorname{Sizter}, e^x dx = dz \ after$$

$$= \int \frac{e^x}{e^x + e^{-x}} dx \quad [fb.'os; 5t.'ss], 5t.'ss]$$

$$\begin{aligned} \text{explanent X B} \\ \text{representation X B} \\ \text{representation Set for the set of the s$$

$$= \frac{x}{a^2 \sqrt{x^2 + a^2}} + c$$
[$\boxed{\operatorname{Bed} \operatorname{RCS} \tan \theta} = \frac{x}{a} \operatorname{Are} \sin \theta = \frac{x}{\sqrt{x^2 + a^2}}$]

12(d) $\int x^2 \sqrt{1 - x^2} dx$

Area $\operatorname{Rin} x = \sin \theta$. Set of $dx = \cos \theta d\theta$

 $\int x^2 \sqrt{1 - x^2} dx$

 $= \int \sin^2 \theta \cos^2 \theta d\theta = \int \frac{1}{4} (2\sin \theta \cos \theta)^2 d\theta$

 $= \int \frac{1}{4} \sin^2 2\theta d\theta = \int \frac{1}{8} (1 - \cos 4\theta) d\theta$

 $= \frac{1}{8} (\theta - \frac{\sin 4\theta}{4}) + c = \frac{1}{8} (\theta - \frac{2\sin 2\theta \cos 2\theta}{4}) + c$

 $= \frac{1}{8} (\theta - \frac{2\sin \theta \cos \theta \cos 2\theta}{2}) + c$

 $= \frac{1}{8} (\theta - \frac{2\sin \theta \sqrt{1 - \sin^2 \theta} (1 - 2\sin^2 \theta)}{2}) + c$

 $= \frac{1}{8} \{ \sin^{-1} x - x \sqrt{1 - x^2} (1 - 2x^2) \} + c$

13.(a) $\int \frac{dx}{1 - x^2} = \int \frac{dx}{1^2 - x^2}$ [A. 'ov]

 $= \frac{1}{2} \ln |\frac{1 + x}{1 - x}| + c$

13(b) $\int \frac{dx}{9 - 4x^2} = \int \frac{dx}{3^2 - (2x)^2}$ [Fr. 'ss]

 $= \frac{1}{2} \int \frac{2dx}{3^2 - (2x)^2} = \frac{1}{2} \cdot \frac{1}{2.3} \ln |\frac{3 + 2x}{3 - 2x}| + c$

13(c) $\operatorname{Ara} I = \int \frac{dx}{9x^2 - 16}$ [Fr. 'ss]

$$= \int \frac{dx}{(3x)^2 - 4^2} \, d\mathfrak{R} \, 3x = z \, . \mathfrak{S} \mathfrak{R} \mathfrak{C} \mathfrak{R}, 3dx' = dz \, d\mathfrak{R} \mathfrak{R}$$

$$I = \frac{1}{3} \int \frac{dz}{z^2 - 4^2} = \frac{1}{3} \cdot \frac{1}{24} \ln |\frac{z - 4}{z + 4}| + c$$

$$\therefore \int \frac{dx}{9x^2 - 16} = \frac{1}{24} \ln |\frac{3x - 4}{3x + 4}| + c$$

$$I3(\mathbf{d}) \int \frac{dx}{16 - 4x^2} \qquad [\mathfrak{R}.' \mathfrak{oo}; \mathfrak{R}.' \mathfrak{o} \mathsf{S}]$$

$$= \frac{1}{4} \int \frac{dx}{4 - x^2} = \frac{1}{4} \int \frac{dx}{2^2 - x^2}$$

$$= \frac{1}{4} \cdot \frac{1}{2.2} \ln |\frac{2 + x}{2 - x}| + c = \frac{1}{16} \ln |\frac{2 + x}{2 - x}| + c$$

$$I3(\mathbf{e}) \int \frac{\cos x \, dx}{3 + \cos^2 x} \qquad [\mathfrak{A} \mathfrak{S}.\mathfrak{R}.' \mathfrak{o} \mathfrak{C}]$$

$$= \int \frac{\cos x \, dx}{3 + 1 - \sin^2 x} = \int \frac{d(\sin x)}{2^2 - (\sin x)^2}$$

$$= \frac{1}{2.2} \ln |\frac{2 + \sin x}{2 - \sin x}| + c = \frac{1}{4} \ln |\frac{2 + \sin x}{2 - \sin x}| + c$$

$$I3.(\mathbf{f}) \int \frac{1}{e^x - e^{-x}} \, dx \qquad [\mathfrak{A} \mathfrak{I}.' \mathfrak{o} \mathsf{S}; \mathfrak{R}.' \mathfrak{o} \mathsf{S}]$$

$$= \int \frac{e^x}{(e^x)^2 - 1} \, dx = \int \frac{e^x}{e^x(e^x - e^{-x})} \, dx$$

$$= \int \frac{e^x}{(e^x)^2 - 1} \, dx = \int \frac{d(e^x)}{(e^x)^2 - 1^2}$$

$$= \frac{1}{2.1} \ln \left| \frac{e^x - 1}{e^x + 1} \right| + c = \frac{1}{2} \ln \left| \frac{e^x - 1}{e^x + 1} \right| + c$$

$$I4.(\mathbf{a}) \int \frac{dx}{\sqrt{25 - x^2}} = \int \frac{dx}{\sqrt{5^2 - x^2}} \, [\mathfrak{M}.' \mathfrak{S} \mathfrak{o}; \mathfrak{F}.' \mathfrak{S} \mathfrak{o}]$$

$$= \sin^{-1} \frac{x}{5} + c$$

$$I4(\mathbf{b}) \int \frac{dx}{\sqrt{(\sqrt{2})^2 - (\sqrt{3}x)^2}} = \frac{1}{\sqrt{3}} \sin^{-1} \frac{\sqrt{3}x}{\sqrt{2}} + c$$

$$14(c) \int \frac{dx}{\sqrt{5-4x^2}} [\overline{\mathfrak{A}}.\mathsf{ob},\mathsf{iob}; \overline{\mathfrak{al}}.\mathsf{iob};\overline{\mathfrak{bl}}.\mathsf{iob}; \overline{\mathfrak{b}}.\overline{\mathfrak{A}}.\mathsf{ib})] = \int \frac{dx}{\sqrt{(\sqrt{5})^2 - (2x)^2}} [\overline{\mathfrak{A}}, 2x = z \cdot \overline{\mathfrak{olg}}\overline{\mathfrak{A}} 2dx = dz \int \frac{dx}{\sqrt{5-4x^2}} = \frac{1}{2} \int \frac{dz}{\sqrt{(\sqrt{5})^2 - z^2}} = \frac{1}{2} \sin^{-1} \frac{z}{\sqrt{5}} + c = \frac{1}{2} \sin^{-1} \frac{2x}{\sqrt{5}} + c$$

$$14(d) \int \frac{dx}{\sqrt{25-16x^2}} [\overline{\mathfrak{A}}.\mathsf{io8}] = \frac{1}{4} \int \frac{d(4x)}{\sqrt{5^2 - (4x)^2}} [\cdot d(4x) = 4dx] = \frac{1}{4} \sin^{-1} \frac{4x}{5} + c.$$

$$14(e) \int \frac{\sin x}{\sqrt{5-\cos^2 x}} dx [\overline{\mathfrak{A}}.\mathsf{io8}] = -\int \frac{-\sin x dx}{\sqrt{(\sqrt{5})^2 - (\cos x)^2}} = -\cos^{-1}(\frac{\cos x}{\sqrt{5}}) + c$$

$$14(f) \overline{\mathfrak{A}}, I = \int \frac{x^2}{\sqrt{1-x^6}} dx [\overline{\mathfrak{A}}.\mathsf{iob}; \overline{\mathfrak{A}}.\mathsf{iob}; \overline{\mathfrak{A}}.\mathsf{iob}; \overline{\mathfrak{A}}] = \frac{1}{3} \sin^{-1} z + c$$

$$= \frac{1}{3} \sin^{-1} x^3 + c$$

$$14.(g) \int \frac{dx}{\sqrt{2ax - x^2}} [\overline{\mathfrak{A}}.\mathsf{iob}] = \int \frac{dx}{\sqrt{a^2 - (x^2 - 2ax + a^2)}} = \sin^{-1}(\frac{x - a}{a}) + c$$

14(h)
$$4 \operatorname{fr} \, I = \int \sqrt{1 - 9x^2} \, dx$$
 [4.'os]
and $3x = z$ (s) RCP , $3dx = dz$ (and
 $I = \int \sqrt{1 - (3x)^2} \, dx = \frac{1}{3} \int \sqrt{1 - z^2} \, dz$
 $= \frac{1}{3} [\frac{z\sqrt{1 - z^2}}{2} + \frac{1}{2} \sin^{-1} z] + c$
 $= \frac{1}{3} [\frac{3x\sqrt{1 - (3x)^2}}{2} + \frac{1}{2} \sin^{-1} (3x)] + c$
 $= \frac{1}{6} [3x\sqrt{1 - 9x^2} + \sin^{-1} (3x)] + c$
15. $\int \frac{3x - 2}{\sqrt{3 + 2x - 4x^2}} \, dx$
 $= \int \frac{-\frac{3}{8} (-8x + 2) + \frac{3}{4} - 2}{\sqrt{3 + 2x - 4x^2}} \, dx$
 $= -\frac{3}{8} \int \frac{(-8x + 2) \, dx}{\sqrt{3 + 2x - 4x^2}} \, dx$
 $= -\frac{3}{8} \int \frac{d(3 + 2x - 4x^2)}{\sqrt{3 + 2x - 4x^2}} \, dx$
 $= -\frac{3}{8} \int \frac{d(3 + 2x - 4x^2)}{\sqrt{3 + 2x - 4x^2}} \, dx$
 $= -\frac{3}{8} \cdot 2\sqrt{3 + 2x - 4x^2} \, dx$
 $= -\frac{3}{8} \cdot 2\sqrt{3 + 2x - 4x^2} \, dx$
 $= -\frac{3}{8} \cdot 2\sqrt{3 + 2x - 4x^2} \, dx$
 $= -\frac{3}{8} \cdot 2\sqrt{3 + 2x - 4x^2} \, dx$
 $= -\frac{3}{4} \sqrt{3 + 2x - 4x^2} - \frac{5}{8} \sin^{-1} \frac{2x - \frac{1}{2}}{\sqrt{\frac{\sqrt{13}}{2}}} + c$

উচ্চতর গণি<u>তু: ১ম</u> পত্র সমাধান $= -\frac{3}{4}\sqrt{3+2x-4x^2} - \frac{5}{8}\sin^{-1}\frac{4x-1}{\sqrt{12}} + c$ 16.(a) $\int \frac{x+25}{x-25} dx$ [সি.'০৭] $= \int \frac{x - 25 + 50}{x - 25} dx = \int (\frac{x - 25}{x - 25} + \frac{50}{x - 25}) dx$ $= \int (1 + \frac{50}{x - 25}) dx = \int dx + 50 \int \frac{1}{x - 25} dx$ $= x + 50 \ln |x - 25| + c$ 16(b) $\int \frac{x^2 dx}{x^2 - 4}$ [त्रि.'or; व.'08; ज्ञा.'08,') $= \int \frac{x^2 - 4 + 4}{x^2 - 4} dx = \int (\frac{x^2 - 4}{x^2 - 4} + \frac{4}{x^2 - 4}) dx$ $=\int (1+\frac{4}{x^2-2^2})dx$ $= x + \frac{4}{22} \ln \left| \frac{x-2}{x+2} \right| + c = x + \ln \left| \frac{x-2}{x+2} \right| + c$ 16(c) $\int \frac{x^2 - 1}{x^2 - 1} dx$ ক. '05: সি.'0৫,'১২; য.'05; ঢা.'১১; ব.'১৩] $= \int \frac{x^2 - 4 + 3}{x^2 - 4} dx = \int (\frac{x^2 - 4}{x^2 - 4} + \frac{3}{x^2 - 4}) dx$ $= \int (1 + \frac{3}{x^2 - 2^2}) dx = x + \frac{3}{22} \ln \left| \frac{x - 2}{x + 2} \right| + c$ $= x + \frac{3}{4} \ln \left| \frac{x-2}{x+2} \right| + c$ 16(d) $\int \frac{xdx}{(1-x)^2} = -\int \frac{1-x-1}{(1-x)^2} dx$ $= -\int \{\frac{1-x}{(1-x)^2} - \frac{1}{(1-x)^2}\} dx$ $= -\int \frac{1}{1-x} dx + \int \frac{1}{(1-x)^2} dx$ $= -\int \frac{-d(1-x)}{1-x} - \int \frac{d(1-x)}{(1-x)^2}$ $= \ln |1 - x| - (-\frac{1}{1 - x}) + c$

$$= \ln |1 - x|| + \frac{1}{1 - x} + c$$

$$17(a) \int \sqrt{\frac{5 - x}{5 + x}} dx = \int \frac{5 - x}{\sqrt{5^2 - x^2}} dx$$

$$= \int \frac{5}{\sqrt{5^2 - x^2}} dx - \int \frac{x}{\sqrt{25 - x^2}} dx$$

$$= \int \frac{5}{\sqrt{5^2 - x^2}} dx + \frac{1}{2} \int \frac{d(25 - x^2)}{\sqrt{25 - x^2}} dx$$

$$= \int \frac{5}{\sqrt{5^2 - x^2}} dx + \frac{1}{2} \int \frac{d(25 - x^2)}{\sqrt{25 - x^2}} dx$$

$$= \int \frac{5}{\sqrt{5^2 - x^2}} dx + \frac{1}{2} \int \frac{d(25 - x^2)}{\sqrt{25 - x^2}} dx$$

$$= 5 \sin^{-1} \frac{x}{5} + \frac{1}{2} \cdot 2\sqrt{25 - x^2} + c$$

$$17(b) \int x \sqrt{\frac{1 - x}{1 + x}} dx = \int x \frac{\sqrt{1 - x} \times \sqrt{1 - x}}{\sqrt{1 + x} \times \sqrt{1 - x}} dx$$

$$= \int x \frac{1 - x}{\sqrt{1 - x^2}} dx = \int \frac{x - x^2}{\sqrt{1 - x^2}} dx$$

$$= \int \frac{(1 - x^2) - \frac{1}{2}(-2x) - 1}{\sqrt{1 - x^2}} dx$$

$$= \int \frac{1 - x^2}{\sqrt{1 - x^2}} dx - \frac{1}{2} \int \frac{(-2x)}{\sqrt{1 - x^2}} dx - \int \frac{1}{\sqrt{1 - x^2}} dx$$

$$= \int \sqrt{1 - x^2} dx - \frac{1}{2} \cdot 2\sqrt{1 - x^2} - \sin^{-1} x$$

$$= \frac{x\sqrt{1 - x^2}}{2} + \frac{1}{2} \sin^{-1} x - \sqrt{1 - x^2} - \sin^{-1} x + c$$

$$= \frac{x\sqrt{1 - x^2}}{2} - \frac{1}{2} \sin^{-1} x - \sqrt{1 - x^2} + c \quad (Ans.)$$
frank is $\int \frac{1}{g(x)\sqrt{\phi(x)}} dx$ mitrics errively, $\phi(x) = z^{-2}$
43(co equility) of $\phi(x)$ boost a devite eterm, $\phi(x) = z^{-2}$
43(co equility) of $\phi(x)$ boost a devite eterm, $\phi(x) = z^{-2}$
43(co equility) of $\phi(x)$ boost is $\phi(x)$ devite eterm.

धन्<u>मभूष</u>ा 🔏 B

(d) g(x) ও $\varphi(x)$ উভয়ে দ্বিযাত হলে, $x = \frac{1}{7}$ $19.(a) \int \frac{\sqrt{x}}{1+\sqrt{x}} dx = \int \frac{x^{1/2}}{1+x^{1/3}} dx$ [5.'00] ধরতে হয়। ধরি, $x = z^6$. তাহলে, $dx = 6z^5 dz$ (e) $\int \frac{x}{g(x)\sqrt{\varphi(x)}} dx$ and g(x) is $\varphi(x)$ $\therefore \quad \int \frac{\sqrt{x}}{1+\sqrt[3]{x}} dx = \int \frac{\sqrt{z^6} 6z^5 dz}{1+\sqrt[3]{x^6}}$ উভয়ে দ্বিঘাত হলে, $\phi(x) = \mathbf{z}^2$ ধরতে হয়। $=\int \frac{z^3 \cdot 6z^5 dz}{1+z^2} = 6\int \frac{z^8 dz}{1+z^2}$ 18.(a) ধরি, $I = \int \frac{dx}{(x-3)\sqrt{x+1}}$ এবং $= 6 \int \frac{1}{z^2 + 1} \{ z^6 (z^2 + 1) - z^4 (z^2 + 1) + z^4 (z^2 + 1) \}$ ঢো. '১০: ব. '১৩] $x+1=z^2$. তাহলে dx=2zdz এবং $z^{2}(z^{2}+1) - (z^{2}+1) + 1$ $= 6 \int (z^6 - z^4 + z^2 - 1 + \frac{1}{1 + z^2}) dz$ $I = \int \frac{2zdz}{(z^2 - 1 - 3)\sqrt{z^2}}$ $= 6(\frac{z^{7}}{7} - \frac{z^{3}}{5} + \frac{z^{3}}{2} - z + \tan^{-1} z) + c$ $\Rightarrow I = \int \frac{2zdz}{(z^2 - 4)z} = 2 \int \frac{dz}{z^2 - 2^2}$ $=\frac{6}{7}x^{\frac{7}{6}}-\frac{6}{5}x^{\frac{5}{6}}+\frac{6}{2}x^{\frac{3}{6}}-6x^{\frac{1}{6}}+\tan^{-1}x^{\frac{1}{6}}+c$ $=2.\frac{1}{2}\ln\left|\frac{z-2}{z+2}\right|+c=\ln\left|\frac{\sqrt{x+1-2}}{\sqrt{x+1+2}}\right|+c$ 19(b) ধরি, I = $\int \frac{dx}{x(4+5x^{20})}$ এবং $x^{20} = \frac{1}{7}$ 18(b) $\int \frac{dx}{(x-1)\sqrt{x^2-2x}} = \int \frac{a(x-1)}{(x-1)\sqrt{(x-1)^2-1}}$ তাহলে, $20x^{19}dx = -\frac{dz}{z^2} \implies x^{19}dx = -\frac{dz}{20z^2}$ www.boighar.com $= \sec^{-1}(x-1) + c$ $aa = \int \frac{x^{19} dx}{x^{20} (4+5x^{20})} = \int \frac{\frac{-az}{20z^2}}{\frac{1}{1}(4+5\frac{1}{2})}$ নিয়ম ঃ (a) যদি কোন যোগজ $\int \frac{a+bx'}{n+ar^m} dx$ আকারে থাকে, যেখানে l ও m উভয়ে জ্যাংশ এবং তাদের হরের ল.সা.গু \mathbf{n} হয়, তবে $\mathbf{x} = \mathbf{z}^n$ ধরতে হয় । $= -\frac{1}{20} \int \frac{dz}{4z+5} = -\frac{1}{20} \cdot \frac{1}{4} \int \frac{d(4z+5)}{4z+5}$ (b) $\int \frac{dx}{x(a+bx^n)}$ আকারের যোগজের জন্য, $x^n = \frac{1}{\pi}$ $= -\frac{1}{80} \ln |4z+5| + c = -\frac{1}{80} \ln |\frac{4}{r^{20}} + 5| + c$ ধরতে হয়। (c) $\int \frac{dx}{x\sqrt{a+bx^n}}$ আকারের যোগজের জন্য, $x^n = \frac{1}{7^2}$ 19. (c) धन्नि, I = $\int \frac{dx}{x\sqrt{x^4 - 1}}$ [क.'o\; ज्ञा.'\\] ধরতে হয়। $(d)\int \frac{dx}{x^m(a+bx)^n} \quad \text{with task}$ যোগজের জন্য, এবং $x^4 = \frac{1}{z^2}$. তাহলে, $4x^3 dx = -\frac{2dz}{z^3}$ এবং a + bx = 2x ধরতে হয়। (e) $\int \frac{dx}{(x-a)^m (x-b)^n}$ where $x = \int \frac{-\frac{dz}{2z^3}}{\frac{1}{2}\sqrt{\frac{1}{2}-1}}$ $z = \frac{x-b}{x-b}$ for x = 1 $z = \frac{x - b}{x - a}$ ধরতে হয় ।

$$= -\frac{1}{2} \int \frac{dz}{\sqrt{1-z^2}} = \frac{1}{2} \cos^{-1} z + c$$

$$= \frac{1}{2} \cos^{-1}(\frac{1}{x^2}) + c = \frac{1}{2} \sec^{-1}(x^2) + c$$
(d) $4 \operatorname{fr}_{x} \operatorname{I} = \int \frac{dx}{(x-1)^2(x-2)^3} \operatorname{dr}_{x} z = \frac{x-1}{x-2}$

$$\Rightarrow zx - 2z = x - 1 \Rightarrow x(1-z) = 1 - 2z$$

$$\Rightarrow x = \frac{1-2z}{1-z} \Rightarrow x - 2 = \frac{1-2z}{1-z} - 2$$

$$\Rightarrow x - 2 = \frac{1-2z-2+2z}{1-z} = -\frac{1}{1-z}$$

$$\Rightarrow dx = -\frac{dz}{(1-z)^2}$$

$$\therefore I = \int \frac{dx}{(\frac{x-1}{x-2})^2(x-2)^5} = \int \frac{-\frac{dz}{(1-z)^2}}{z^2 \cdot \frac{-1}{(1-z)^5}}$$

$$= \int \frac{(1-z)^3 dz}{z^2} = \int \frac{(1-3z+3z^2-z^3) dz}{z^2}$$

$$= \int (\frac{1}{z^2} - 3\frac{1}{z} + 3 - z) dz$$

$$= -\frac{1}{z} - 3\ln|z| + 3z - \frac{z^2}{2} + c$$

$$= -\frac{x-2}{x-1} - 3\ln|\frac{x-1}{x-2}| + 3(\frac{x-1}{x-2}) - \frac{1}{2}(\frac{x-1}{x-2})^2$$
20. (a) $\int \frac{x^2 + 1}{x^4 + 1} dx = \int \frac{x^2(1+\frac{1}{x^2})}{x^2(x^2+\frac{1}{x^2})} dx$

$$= \int \frac{1+\frac{1}{x^2}}{(x-\frac{1}{x})^2 + 2} dx = \int \frac{d(x-\frac{1}{x})}{(x-\frac{1}{x})^2 + (\sqrt{2})^2}$$

$$= \frac{1}{\sqrt{2}} \tan^{-1} \frac{x-\frac{1}{x}}{\sqrt{2}} + c = \frac{1}{\sqrt{2}} \tan^{-1} \frac{x^2-1}{\sqrt{2x}} + c$$

$$20(b) \int \frac{\bar{x}^2 - 1}{x^4 + 1} dx = \int \frac{x^2(1 - \frac{1}{x^2})}{x^2(x^2 + \frac{1}{x^2})} dx$$

$$= \int \frac{1 - \frac{1}{x^2}}{(x + \frac{1}{x})^2 - 2} dx = \int \frac{d(x + \frac{1}{x})}{(x + \frac{1}{x})^2 - (\sqrt{2})^2}$$

$$= \frac{1}{2\sqrt{2}} \ln \left| \frac{x + \frac{1}{x} - \sqrt{2}}{x + \frac{1}{x} + \sqrt{2}} \right| + c$$

$$= \frac{1}{2\sqrt{2}} \ln \left| \frac{x^2 + 1 - \sqrt{2}x}{x^2 + 1 + \sqrt{2}x} \right| + c$$

$$(c) \int \frac{x^2 dx}{x^4 + a^4} = \frac{1}{2} \int \frac{(x^2 + a^2) + (x^2 - a^2)}{x^4 + a^4} dx$$

$$= \frac{1}{2} \left[\int \frac{x^2(1 + \frac{a^2}{x^2})}{x^2(x^2 + \frac{a^4}{x^2})} + \int \frac{x^2(1 - \frac{a^2}{x^2})}{x^2(x^2 + \frac{a^4}{x^2})} \right]$$

$$= \frac{1}{2} \left[\int \frac{d(x - \frac{a^2}{x})}{(x - \frac{a^2}{x})^2 + (\sqrt{2}a)^2} + \int \frac{d(x + \frac{a^2}{x})}{(x + \frac{a^2}{x})^2 - (\sqrt{2}a)^2} \right]$$

$$= \frac{1}{2} \left[\frac{1}{\sqrt{2}a} \tan^{-1} \frac{x - \frac{a^2}{x}}{\sqrt{2}a} + \frac{1}{2\sqrt{2}a} \ln \left| \frac{x + \frac{a^2}{x} - \sqrt{2}a}{x + \sqrt{2}a} \right| + c \right]$$

পশুমালা <u>X</u> B

 $\frac{1}{2}\ln\left|\frac{x^2+a^2-\sqrt{2}\ ax}{x^2+a^2+\sqrt{2}\ ax}\right|+c$ 21(a) $\int \sin^2 x \cos^2 x dx$ [য. '০৮; রা.,ডা.'৩০] $=\int \frac{1}{4} (2\sin x \cos x) dx = \frac{1}{4} \int \sin^2 2x dx$ $= \frac{1}{8} \int (1 - \cos 4x) dx = \frac{1}{8} (x - \frac{1}{4} \sin 4x) + c$ 21(b) ধরি, I = $\int \sin^3 x \cos^3 x \, dx$ [য.'০৬] $= \int \sin^3 x (1 - \sin^2 x) \cos x \, dx \quad \text{are sinx} = z \; .$ তাহলে, $\cos x \, dx = dz$ এবং $I = \int z^{3}(1-z^{2}) dz = \int (z^{3}-z^{5}) dz$ $= \frac{1}{4}z^4 - \frac{1}{6}z^6 + c = \frac{1}{4}\sin^4 x - \frac{1}{6}\sin^6 x + c$ **21(c)** ধরি, I = $\int \sin^3 x \cos^4 x \, dx$ [রা. '০১] $= \int (1 - \cos^2 x) \cos^4 x \sin x \, dx \quad \text{uqe cosx} = z$ তাহলে, $-\sin x \, dx = dz$ এবং $I = -\int (1-z^2)z^4 dz = \int (z^6 - z^4) dz$ $= \frac{1}{7}z^{7} - \frac{1}{5}z^{5} + c = \frac{1}{7}\cos^{7} x - \frac{1}{5}\cos^{5} x + c$ 21(d) ধরি, I = $\int \sin^4 x \cos^4 x \, dx$ $\sin^4 x \cos^4 x = \frac{1}{16} (2 \sin x \cos x)^4$ $=\frac{1}{16}\sin^4 2x = \frac{1}{16} \cdot \left\{\frac{1}{2}(1-\cos 4x)\right\}^2$ $=\frac{1}{64}(1-2\cos 4x+\cos^2 4x)$ $=\frac{1}{64}\left\{1-2\cos 4x+\frac{1}{2}(1+\cos 8x)\right\}$ $=\frac{1}{128}(3-4\cos 4x+\cos 8x)$: $I = \int \frac{1}{128} (3 - 4\cos 4x + \cos 8x) dx$ $=\frac{1}{128}(3x-4,\frac{1}{4}\sin 4x+\frac{1}{8}\sin 8x)+c$

 $= \frac{1}{128}(3x - \sin 4x + \frac{1}{8}\sin 8x) + c$ $21(e) \int \sin^2 x \cos 2x \, dx$ [ह. '0'; रा. '0'; रू. '0'; जि. ')] $= \int \frac{1}{2} (1 - \cos 2x) \cos 2x \, dx$ $= \frac{1}{2} \int (\cos 2x - \cos^2 2x) dx$ $=\frac{1}{2}\int \{\cos 2x - \frac{1}{2}(1 + \cos 4x)\} dx$ $= \frac{1}{2} \{ \frac{1}{2} \sin 2x - \frac{1}{2} (x + \frac{1}{4} \sin 4x) \} + c$ $=\frac{1}{4}(\sin 2x - x - \frac{1}{4}\sin 4x) + c$ 21(f) $\int \sin^2 x \cos 2x dx$ [5.'0२; र.'oe', रू.') $= \int \frac{1}{2} (1 - \cos 2x) \cos 2x dx$ $=\frac{1}{2}\int (\cos 2x - \cos^2 2x)dx$ $= \frac{1}{2} \int \{\cos 2x - \frac{1}{2}(1 + \cos 4x)\} dx$ $=\frac{1}{2}\left\{\frac{1}{2}\sin 2x - \frac{1}{2}\left(x + \frac{1}{4}\sin 4x\right)\right\} + c$ $=\frac{1}{4}(\sin 2x - x - \frac{1}{4}\sin 4x) + c$ 22. (a) $\int \tan^2 x dx$ [ज. '०१, '०१] $= \int (\sec^2 x - 1) dx = \tan x - x + c$ 22(b) ধরি, I = $\int \frac{\tan^2(\ln x)}{x} dx$ [ব.'০২] এবং $\ln x = z$ তাহলে, $\frac{1}{z} dx = dz$ এবং $I = \int \tan^2 z dz = \int (\sec^2 z - 1) dz$ $= \tan z - z + c = \tan(\ln x) - \ln x + c$ 22(c) $\int \frac{dx}{\sin x \cos^3 x} = \int \frac{\sin^2 x + \cos^2 x}{\sin x \cos^3 x} dx$

$= \int (\tan x \sec^2 x + \frac{2}{2\sin x \cos x}) dx$
$= \int \tan x \sec^2 x dx + 2 \int \frac{dx}{\sin 2x}$
$= \int \tan x d(\tan x) + \int \sec 2x d(2x)$
$= \frac{1}{2} \tan^2 x + \ln \tan \frac{2x}{2} + c$
$= \frac{1}{2} \tan^2 x + \ln \tan x + c$
23. $\int \frac{1 - \tan x}{1 + \tan x} dx = \int \frac{\cos x - \sin x}{\cos x + \sin x} dx$
$=\int \frac{d(\sin x + \cos x)}{\sin x + \cos x} = \ln \sin x + \cos x + c$
24. (a) ধরি, I = $\int \frac{\sin 4x}{\sin^4 x + \cos^4 x} dx$ এবং
$z = \sin^4 x + \cos^4 x$ তাহলে,
$dz = (4\sin^3 x \cos x - 4\cos^3 x \sin x)dx$
$= 4\sin x \cos x (\sin^2 - \cos^2 x) \mathrm{d}x$
= -2 sin 2x cos 2x dx =- sin 4x dx এবং
$I = \int \frac{-dz}{z} = -\ln z + c$
$= -\ln \sin^4 x + \cos^4 x + c$
24(b) ধরি, I = $\int \frac{dx}{1 + \cos^2 x}$ [রা.'০৬]
$= \int \frac{\sec^2 x dx}{\sec^2 x (1 + \cos^2 x)} = \int \frac{\sec^2 x dx}{\sec^2 x + 1}$
$= \int \frac{\sec^2 x dx}{1 + \tan^2 x + 1} \mathfrak{aq} z = \tan x \Longrightarrow dz = \sec^2 x dx$
: $I = \int \frac{dz}{(\sqrt{2})^2 + z^2} = \frac{1}{\sqrt{2}} \tan^{-1}(\frac{z}{\sqrt{2}}) + c$
$=\frac{1}{\sqrt{2}}\tan^{-1}(\frac{\tan x}{\sqrt{2}})+c$
24(c) $\int \frac{1-\cos 2x}{1+\cos 2x} dx$ [4.'00]
$=\int \frac{2\sin^2 x}{2\cos^2 x} dx = \int \tan^2 x dx$

$$m = -\frac{\cos a \sin a}{\cos a} = -\sin a$$

$$\int \frac{\sin x \, dx}{\sin(x+a)} = \int \frac{\cos a \sin(x+a) \, dx}{\sin(x+a)} - \frac{\sin a (\cos x \cos a - \sin x \sin a)}{\sin x \cos a + \sin a \cos x} dx$$

$$= \cos a \int dx - \sin a \ln |\sin(x+a)|$$

$$= x \cos a - \sin a \ln |\sin(x+a)| + c$$

$$25(c) \int (\sqrt{\tan x} + \sqrt{\cot x}) dx$$

$$= \int (\frac{\sqrt{\sin x}}{\sqrt{\cos x}} + \frac{\sqrt{\cos x}}{\sqrt{\sin x}}) dx$$

$$= \int \frac{\sin x + \cos x}{\sqrt{\sin x \cos x}} dx = \sqrt{2} \int \frac{\sin x + \cos x}{\sqrt{2 \sin x \cos x}} dx$$

$$= \sqrt{2} \int \frac{\sin x + \cos x}{\sqrt{1 - (\sin x - \cos x)^2}} dx$$

$$= \sqrt{2} \int \frac{d(\sin x - \cos x)}{\sqrt{1 - (\sin x - \cos x)^2}} dx$$

অতিরিক্ত প্রশ্ন (সমাধানসহ) নিচের যোগজগুলি নির্ণয় কর:

$$1(a) \int (e^{\frac{x}{2}} + e^{-\frac{x}{2}}) dx = \frac{e^{\frac{x}{2}}}{\frac{1}{2}} + \frac{e^{\frac{x}{2}}}{-\frac{1}{2}} + c$$

= $2(e^{\frac{x}{2}} - e^{-\frac{x}{2}}) + c$
1(b) $\int a^{4x} dx = \frac{a^{4x}}{\ln a} \frac{1}{4} + c = \frac{a^{4x}}{4\ln a} + c$
2.(a) $4 \operatorname{RR}$, $I = \int (2x+3)\sqrt{x^2 + 3x} dx$ and x
 $x^2 + 3x = z$. Since $2x + 3 dx = dz$
 $\therefore I = \int z^{\frac{1}{2}} dz = \frac{z^{\frac{1}{2}+1}}{\frac{1}{2}+1} + c = \frac{2}{3} z^{3/2} + c$

$$= \frac{2}{3}(x^{2} + 3x)^{3/2} + c$$

$$2(\mathbf{b})\int x^{2}\cos x^{3}dx = \frac{1}{3}\int\cos(x^{3})(3x^{2}dx)$$

$$= \frac{1}{3}\sin x^{3} + c$$

$$2(\mathbf{c})\int \frac{(1 + \tan\frac{3x}{2})^{2}dx}{1 + \sin 3x} \qquad [\mathfrak{A}.\mathfrak{S}.\mathfrak{A}.\mathfrak{b}\mathfrak{S}]$$

$$= \int \frac{(1 + \tan\frac{3x}{2})^{2}dx}{1 + \frac{2}{1 + \tan^{2}(3x/2)}}$$

$$= \int \frac{(1 + \tan(3x/2))^{2}\{1 + \tan^{2}(3x/2)\}dx}{1 + \tan^{2}(3x/2) + 2} \tan(3x/2)$$

$$= \int \frac{\{1 + \tan(3x/2)\}^{2}\{1 + \tan^{2}(3x/2)\}dx}{\{1 + \tan(3x/2)\}^{2}}$$

$$= \int \{1 + \tan^{2}(3x/2)\}dx = \int \sec^{2}(3x/2)dx$$

$$= \frac{2}{3}\tan\frac{3x}{2} + c$$
3. $\int \frac{2x\sin^{-1}x^{2}}{\sqrt{1 - x^{4}}}dx$
At \mathfrak{A} , $\sin^{-1}x^{2} = z$

$$= \frac{1}{\sqrt{1 - (x^{2})^{2}}} \cdot 2x \, dx = dz$$

$$\int \frac{2x \sin^{-1}x^{2}}{\sqrt{1 - x^{4}}}dx = \int z \, dz$$

$$= \frac{2}{2} + c = \frac{1}{2}(\sin^{-1}x^{2})^{2} + c \quad (Ans.)$$
4. $\int \frac{1}{x(\ln x)^{2}}dx = \int (\ln x)^{-2}d(\ln x)$

$$= \frac{(\ln x)^{-2+1}}{-2 + 1} + c = -\frac{1}{\ln x} + c$$

$$\begin{aligned} 5(a) \int \frac{\sin^{-1} x}{\sqrt{1 - x^{2}}} dx &= \int \sin^{-1} x \, d(\sin^{-1} x) \\ &= \frac{(\sin^{-1} x)^{2}}{2} + c \\ 5(b) \int \frac{1 + \tan^{2} x}{(1 + \tan x)^{2}} dx &= 1 \\ \frac{1 + \tan^{2} x}{(1 + \tan x)^{2}} dx &= 1 \\ \frac{1 + \tan^{2} x}{(1 + \tan x)^{2}} dx &= 1 \\ \frac{1 + \tan^{2} x}{(1 + \tan x)^{2}} dx &= 1 \\ \frac{1 + \tan^{2} x}{(1 + \tan x)^{2}} dx &= 1 \\ \frac{1 + \tan^{2} x}{(1 + \tan x)^{2}} d(1 + \tan x) &= \frac{1}{(1 + \tan x)^{-2}} d(1 + \tan x) \\ \frac{1 + (1 + \tan x)^{-2} d(1 + \tan x)}{2 + 1} + c &= -\frac{1}{1 + \tan x} + c \\ \frac{1 + (1 + \tan x)^{-2} d}{(1 + \tan x)^{-2}} dx &= 1 \\ \frac{1 + (1 + \tan x)^{-2} d}{(1 + \tan x)^{-2}} dx &= 1 \\ \frac{1 + (1 + \tan x)^{-2} d}{(1 + \tan x)^{-2}} dx &= 1 \\ \frac{1 + (1 + \tan x)^{-2} d}{(1 + \tan x)^{-2}} dx &= 1 \\ \frac{1 + (1 + \tan x)^{-2} d}{(1 + \tan x)^{-2}} dx &= 1 \\ \frac{1 + (1 + \tan x)^{-2} d}{(1 + \tan x)^{-2}} dx &= 1 \\ \frac{1 + (1 + \tan x)^{-2} d}{(1 + \tan x)^{-2}} dx &= 1 \\ \frac{1 + (1 + \tan x)^{-2} d}{(1 + \tan x)^{-2}} dx &= 1 \\ \frac{1 + (1 + \tan x)^{-2} d}{(1 + \tan x)^{-2}} dx &= 1 \\ \frac{1}{2} \int \frac{dx}{2^{1/2}} = \frac{1}{2} \int z^{-\frac{3}{2}} dx &= 1 \\ \frac{1}{2} \int \frac{dx}{2^{1/2}} = \frac{1}{2} \int z^{-\frac{3}{2}} dx &= 1 \\ \frac{1}{2} \int \frac{1}{2^{-\frac{3}{2}} + 1} + c &= 1 \\ \frac{1}{2} \int \frac{1}{2^{-\frac{3}{2}} + 1} + c &= 1 \\ \frac{1}{2} \int \frac{1}{2^{-\frac{3}{2}} + 1} + c &= 1 \\ \frac{1}{2} \int \frac{1}{2^{-\frac{1}{2}}} + c &= -\frac{1}{\sqrt{z}} + c \\ \frac{1}{2} \int \frac{1}{2^{-\frac{3}{2}} + 1} + c &= 1 \\ \frac{1}{2} \int \frac{1}{2^{-\frac{1}{2}} + c} + c &= -\frac{1}{\sqrt{z}} + c \\ \frac{1}{2} \int \frac{1}{2^{-\frac{1}{2}} + c} + \frac{1}{2} \int \frac{1}{2^{-\frac{1}{2}} + c} + c \\ \frac{1}{2} \int \frac{1}{2^{-\frac{1}{2}} + c} + \frac{1}{2} \int \frac{1}{2^{-\frac{1}{2}} + c} + c \\ \frac{1}{2} \int \frac{1}{2^{-\frac{1}{2}} + c} + \frac{1}{2} \int \frac{1}{2^{-\frac{1}{2}} + c} + c \\ \frac{1}{2} \int \frac{1}{(x^{2} + 9)^{2}} + \frac{1}{(x^{2} + 1)^{2} + c} \\ \frac{1}{3} \tan^{-1}(e^{x^{2}}) + c \\ \frac{1}{3} \tan^{-1}(e^{x^{2}}) + c \\ \frac{1}{3} \ln \frac{1}{x^{-1}(e^{x^{2})} + \frac{1}{2} \int \frac{1}{(x^{2} + 9)^{2}} dx \\ \frac{1}{3} \int \frac{1}{(x^{$$

$$= \frac{1}{18} \left\{ \int \frac{dx}{x^2 + 3^2} - \int \frac{d(x + \frac{9}{x})}{(x + \frac{9}{x})^2} \right\}$$
$$= \frac{1}{18} \left\{ \frac{1}{3} \tan^{-1} \frac{x}{3} - \left(-\frac{1}{x + \frac{9}{x}}\right) \right\} + c$$
$$= \frac{1}{18} \left(\frac{1}{3} \tan^{-1} \frac{x}{3} + \frac{x}{x^2 + 9} \right) + c$$

 $\begin{aligned} \widehat{\mathbf{q}} \widehat{$

10.
$$\int \frac{dx}{x^2 - 3x + 2}$$
 [2.5.7.36]
=
$$\int \frac{dx}{(x - \frac{3}{2})^2 + 2 - \frac{9}{4}} = \int \frac{dx}{(x - \frac{3}{2})^2 - (\frac{1}{2})^2}$$

=
$$\frac{1}{2 \cdot \frac{1}{2}} \ln \left| \frac{x - \frac{3}{2} - \frac{1}{2}}{x - \frac{3}{2} + \frac{1}{2}} \right| + c = \ln \left| \frac{x - 2}{x - 1} \right| + c$$

11(a)
$$\int \frac{dx}{\sqrt{x + 4}\sqrt{x + 3}} = \int \frac{dx}{\sqrt{x^2 + 7x + 12}}$$

$$= \int \frac{dx}{\sqrt{(x + \frac{7}{2})^2 + 12 - \frac{49}{4}}} = \int \frac{dx}{\sqrt{(x + \frac{7}{2})^2 - (\frac{1}{2})^2}}$$

$$= \ln |\sqrt{x^2 + 7x + 12} + x + \frac{7}{2}| + c$$

$$= \ln |\sqrt{x^2 + 7x + 12} + x + \frac{7}{2}| + c$$

$$11(b) \int \sqrt{16 - 9x^2} \, dx = \frac{1}{3}\sqrt{(4)^2 - (3x)^2} \, d(3x)$$

$$= \frac{1}{3}[\frac{3x\sqrt{4^2 - (3x)^2}}{2} + \frac{4^2}{2}\sin^{-1}\frac{3x}{4}] + c$$

$$= \frac{x\sqrt{16 - 9x^2}}{2} + \frac{8}{3}\sin^{-1}\frac{3x}{4} + c \text{ (Ans.)}$$

$$12 (a) \int \frac{xdx}{\sqrt{4 + x}} = \int \frac{4 + x - 4}{\sqrt{4 + x}} \, dx$$

$$= \int (\frac{4 + x}{\sqrt{4 + x}} - \frac{4}{\sqrt{4 + x}}) \, dx$$

$$= \int (\frac{4 + x}{\sqrt{4 + x}} - \frac{4}{\sqrt{4 + x}}) \, dx$$

$$= \int \sqrt{4 + x} \, dx - 4 \int \frac{1}{\sqrt{4 + x}} \, dx$$

$$= \frac{(4 + x)^{\frac{1}{2}+1}}{2} - 4.2\sqrt{4 + x} + c$$

$$12(b) \int \frac{6x - 10}{(2x + 1)^2} \, dx = \int \frac{3(2x + 1) - 13}{(2x + 1)^2} \, dx$$

$$= \int \frac{3}{2x + 1} \, dx - \int \frac{13}{(2x + 1)^2} \, dx$$

$$= \frac{3}{2} \int \frac{d(2x + 1)}{2x + 1} - \frac{13}{2} \int (2x + 1)^{-2} \, d(2x + 1)$$

$$= \frac{3}{2} \ln |2x + 1| - \frac{13}{2(2x + 1)} + c \text{ (Ans.)}$$

$$12(c) \int \frac{x \, dx}{4 - x} = \int \frac{-(4 - x - 4)}{4 - x} \, dx \text{ [4.5.9]} \, dx$$

$$= -\int \frac{4-x}{4-x} dx + 4 \int \frac{dx}{4-x}$$

$$= -\int dx - 4 \int \frac{d(4-x)}{4-x} = -x - 4 \ln|4-x| + c$$

$$\mathbf{13(a)} \int \sqrt{\frac{a+x}{x}} dx = \int \frac{(\sqrt{a+x})^2}{\sqrt{x(a+x)}} dx$$

$$= \int \frac{(a+x)dx}{\sqrt{x^2+ax}} = \int \frac{\frac{1}{2}(2x+a) + \frac{a}{2}}{\sqrt{x^2+ax}} dx$$

$$= \frac{1}{2} \int \frac{(2x+a)}{\sqrt{x^2+ax}} dx + \frac{a}{2} \int \frac{dx}{\sqrt{(x+\frac{a}{2})^2 - (\frac{a}{2})^2}}$$

$$= \frac{1}{2} \cdot 2\sqrt{x^2+ax}$$

$$+ \frac{a}{2} \ln|\sqrt{(x+\frac{a}{2})^2 - (\frac{a}{2})^2} + x + \frac{a}{2}| + c$$

$$= \sqrt{x^2+ax} + \frac{a}{2} \ln|\sqrt{x^2+ax} + x + \frac{a}{2}| + c$$

$$\mathbf{13.(b)} \quad 4 \operatorname{fa}, \quad I = \int \frac{\sqrt{x+3}}{x+2} dx \quad 4 \operatorname{qex} x + 3 = z^2$$

$$\operatorname{Sig}(a), \quad dx = 2z dz \quad 4 \operatorname{qex} I = \int \frac{\sqrt{z^2} 2z dz}{z^2 - 3 + 2}$$

$$\Rightarrow I = \int \frac{2z^2 dz}{z^2 - 1} = 2 \int \frac{z^2 - 1 + 1}{z^2 - 1} dz$$

$$= 2 \int dz + 2 \int \frac{1}{z^2 - 1} dz$$

$$= 2 \int dz + 2 \int \frac{1}{z^2 - 1} dz$$

$$= 2\sqrt{x+3} + \ln |\sqrt{x+3-1}| + c$$

$$\mathbf{14(a)} \quad 4 \operatorname{fa}, \quad I = \int \frac{dx}{(1-x)\sqrt{1-x^2}} \quad 4 \operatorname{qex} 1 - x = \frac{1}{z}$$

$$\operatorname{Sig}(a) \quad z = \frac{1}{1-x} \quad \operatorname{eqe} - dx = -\frac{1}{z^2} dz$$

$$I = \int \frac{dz}{z^2 \cdot \frac{1}{z} \sqrt{1 - (1-\frac{1}{z})^2}}$$

$$= \int \frac{dz}{z\sqrt{1-1+2\frac{1}{z}-\frac{1}{z^2}}}$$

= $\int \frac{dz}{\sqrt{2z-1}} = \frac{1}{2} \int \frac{d(2z-1)}{\sqrt{2z-1}}$
= $\frac{1}{2} \cdot 2\sqrt{2z-1} + c$
= $\sqrt{2 \cdot \frac{1}{1-x}-1} + c = \sqrt{\frac{2-1+x}{1-x}} + c$
 $\therefore \int \frac{dx}{(1-x)\sqrt{1-x^2}} = \sqrt{\frac{1+x}{1-x}} + c$ (Ans.)
14 (b) $4fa, I = \int \frac{dx}{(2x+3)\sqrt{x^2+3x+2}}$ (Figure 2)
 $2x + 3 = \frac{1}{z}$ (D) $\xi eff z = \frac{1}{2x+3}$ (Figure 2)
 $2x + 3 = \frac{1}{z}$ (D) $\xi eff z = \frac{1}{2x+3}$ (Figure 2)
 $2dx = -\frac{1}{z^2} dz \Rightarrow dx = -\frac{dz}{2z^2}$
 $\therefore I = \int \frac{-dz/2z^2}{\frac{1}{z}\sqrt{(\frac{1-3z}{2z})^2+3 \cdot \frac{1-3z}{2z}+2}}$
 $= -\int \frac{dz}{2z\sqrt{\frac{1-6z+9z^2}{4z^2}+\frac{3-9z}{2z}+2}}$
 $= -\int \frac{dz}{2z\sqrt{\frac{1-6z+9z^2}{4z^2}+\frac{3-9z}{2z}+2}}$
 $= -\int \frac{dz}{2z\sqrt{\frac{1-6z+9z^2+6z-18z^2+8z^2}{4z^2}}}$
 $= -\int \frac{dz}{\sqrt{1-z^2}} = \cos^{-1}z + c$
 $= \cos^{-1}(\frac{1}{2x+3}) + c = \sec^{-1}(2x+3) + c$
For the prove of $\frac{dx}{(2x+3)\sqrt{x^2+3x+2}}$
 $= \int \frac{dx}{(2x+3)\sqrt{\frac{1}{4}}(4x^2+12x+8)}}$

 $= \int \frac{dx}{(2x+3)\frac{1}{2}\sqrt{(2x+3)^2 - 1}}$ $= \int \frac{d(2x+3)}{(2x+3)\sqrt{(2x+3)^2-1}}$ $= \sec^{-1}(2x+3) + c$ 15 (a) $\int \frac{x^{-3/4}}{1 + \sqrt{x}} dx$ ধরি. $x = z^4$. তাহলে, $dx = 4z^3 dz$ এবং $\int \frac{x^{-3/4}}{1+\sqrt{x}} dx = \int \frac{(z^4)^{-3/4}}{1+\sqrt{z^4}} 4z^3 dz$ $=\int \frac{z^{-3}}{1+z^2} 4z^3 dz = 4\int \frac{dz}{1+z^2}$ = $4 \tan^{-1} z + c = 4 \tan^{-1} (x^{1/4}) + c$ (Ans.) 15(b) ds , $I = \int \frac{1+x^{1/4}}{1+x^{1/2}} dx$ and $x = z^4$. তাহলে, $dx = 4z^3 dz$ এবং $I = \int \frac{(1+z)4z^3 dz}{1+z^2} = 4 \int \frac{z^4 + z^3}{1+z^2} dz$ $=4\int \frac{z^2(z^2+1)-(z^2+1)+z(z^2+1)-z-1}{1+z^2} dz$ $= 4\{\int (z^2 - 1 + z)dz - \int \frac{zdz}{z^2 + 1} - \int \frac{dz}{z^2 + 1}\}$ $=4\{\frac{z^{3}}{3}-z+\frac{z^{2}}{2}-\frac{1}{2}\ln(z^{2}+1)-\tan^{-1}z\}+c$ $=4\left\{\frac{x^{3/4}}{2}-x^{1/4}+\frac{x^{1/2}}{2}-\frac{1}{2}\ln(x^{1/2}+1)\right\}$ $-\tan^{-1}x^{1/4}$ + c 15(c) ধরি, I = $\int \frac{dx}{x(x^3+2)}$ এবং $x^3 = \frac{1}{7}$ তাহলে, $3x^2 dx = -\frac{1}{z^2} dz \implies x^2 dx = -\frac{dz}{2z^2}$

$$\begin{aligned} \operatorname{dqr} I &= \int \frac{x^2 dx}{x^3 (x^3 + 2)} = \int \frac{-\frac{dz}{3z^2}}{\frac{1}{z} (\frac{1}{z} + 2)} \\ &= -\frac{1}{3} \int \frac{dz}{1 + 2z} = -\frac{1}{3} \cdot \frac{1}{2} \int \frac{d(1 + 2z)}{1 + 2z} \\ &= -\frac{1}{6} \ln|1 + 2z| + c = -\frac{1}{6} \ln|1 + \frac{2}{x^3}| + c \\ \mathbf{15}(\mathbf{d}) \ \operatorname{dfa}, \ \mathbf{I} &= \int \frac{dx}{x\sqrt{2 + 3\sqrt{x}}} \ \operatorname{dqr} \sqrt{x} &= \frac{1}{z^2} \\ & \overline{\operatorname{olqr}}, \frac{1}{2\sqrt{x}} \ dx &= -\frac{2}{z^3} \ dz \implies \frac{z^2}{2} \ dx &= -\frac{2}{z^3} \ dz \\ & \Rightarrow \ dx &= -\frac{4dz}{z^5} \ \operatorname{dqr} \ \mathbf{I} &= \int \frac{-\frac{4dz}{z^5}}{\frac{1}{z^4} \sqrt{2 + \frac{3}{z^2}}} \\ &= -4\int \frac{dz}{\sqrt{2z^2 + 3}} \ dqr \ \mathbf{I} &= \int \frac{-\frac{4dz}{z^5}}{\sqrt{2\sqrt{z^2 + (\sqrt{3/2})^2}}} \\ &= -2\sqrt{2} \ln|z + \sqrt{z^2 + \frac{3}{2}}| + c \\ &= -2\sqrt{2} \ln||z + \sqrt{z^2 + \frac{3}{2}}| + c \\ &= -2\sqrt{2} \ln||\frac{1}{x^{1/4}} + \sqrt{\frac{1}{x^{1/2}} + \frac{3}{2}}| + c \\ &= 15(\mathbf{e}) \ \operatorname{dfa}, \ \mathbf{I} &= \int \frac{dx}{x + x^n}, n \neq 1 \ \operatorname{dqr} x^{n-1} &= \frac{1}{z} \\ & \overline{\operatorname{olrcq}}, \ (n-1)x^{n-2}dx &= -\frac{dz}{z^2} \\ &\implies x^{n-2}dx &= \frac{-dz}{(n-1)z^2} \\ & \overline{\operatorname{qqr}} \ \mathbf{I} &= \int \frac{dx}{x(1 + x^{n-1})} &= \int \frac{x^{n-2}dx}{x^{n-1}(1 + x^{n-1})} \\ &= \int \frac{-\frac{dz}{(n-1)z^2}}{\frac{1}{z}(1 + \frac{1}{z})} &= -\frac{1}{n-1}\int \frac{dz}{1 + z} \\ &= -\frac{1}{n-1}\ln|1 + z| + c \end{aligned}$$

উচ্চতর গণিত: ১ম পত্র সমাধান বইঘর কম

 $= -\frac{1}{n-1} \ln \left| 1 + \frac{1}{r^{n-1}} \right| + c$ 16(a) ধরি, I = $\int \frac{dx}{x\sqrt{x^3+4}}$ এবং $x^3 = \frac{1}{7^2}$. তাহলে, $3x^2 dx = -\frac{2dz}{z^3} \implies x^2 dx = -\frac{2dz}{z^3}$ এবং $I = \int \frac{x^2 dx}{x^3 \sqrt{x^3 + 4}} = \int \frac{-\frac{2dz}{3z^3}}{\frac{1}{2}\sqrt{\frac{1}{2} + 4}}$ $= -\frac{2}{3} \int \frac{dz}{\sqrt{1+4z^2}} = -\frac{2}{3} \cdot \frac{1}{2} \int \frac{dz}{\sqrt{(\frac{1}{2})^2 + z^2}}$ $= -\frac{1}{2} \ln |z + \sqrt{\frac{1}{4} + z^2}| + c$ $= -\frac{1}{3} \ln \left| \frac{1}{r^{3/2}} + \sqrt{\frac{1}{4} + \frac{1}{r^3}} \right| + c$ 16(b) $\int \frac{dx}{x^3(3+5x)^2}$ ধরি, $3+5x=zx \Rightarrow (z-5)x=3$ $\Rightarrow x = \frac{3}{7-5}. \text{ order, } dx = -\frac{3dz}{(7-5)^2} \text{ are}$ $\int \frac{dx}{x^3 (3+5x)^2} = \int \frac{\frac{-5az}{(z-5)^2}}{\frac{27}{(z-5)^3} (3+5\frac{3}{z-5})^2}$ $=\int \frac{-3(z-5)^3 dz}{27(3z-15+15)^2}$ $= -\frac{1}{21} \int \frac{z^3 - 15z^2 + 75z - 125)dz}{z^2} dz$ $= -\frac{1}{21}\int (z-15+\frac{75}{z}-125\frac{1}{z^2})dz$ $= -\frac{1}{2} \left\{ \frac{z^2}{2} - 15z + 75 \ln |z| - 125(-\frac{1}{z}) \right\} + c$ $= -\frac{1}{81} \left\{ \frac{1}{2} \left(\frac{3+5x}{x} \right)^2 - 15 \left(\frac{3+5x}{x} \right) + \right\}$

 $75\ln\left|\frac{3+5x}{x}\right| + 125(\frac{x}{3+5x}) + c$ 17(a) $\int \frac{a^2 + x^2}{(x^2 - a^2)^2} dx = \int \frac{x^2 (1 + \frac{a^2}{x^2})}{x^2 (x - \frac{a^2}{x^2})^2} dx$ $= \int \frac{d(x - \frac{a}{x})}{(x - \frac{a^2}{x})^2} = -\frac{1}{x - \frac{a^2}{x^2}} + c = -\frac{x}{x^2 - a^2} + c$ $17(b) \int \frac{(x^2 - 1)dx}{x^4 + 6x^3 + 7x^2 + 6x + 1}$ $= \int \frac{(1 - \frac{1}{x^2})dx}{x^2 + \frac{1}{x^2} + 6(x + \frac{1}{x}) + 7}$ $= \int \frac{(1 - \frac{1}{x^2})dx}{(x + \frac{1}{x})^2 + 6(x + \frac{1}{x}) + 5}$ $=\int \frac{(1-\frac{1}{x^2})dx}{(x+\frac{1}{x}+3)^2+5-9} = \int \frac{d(x+\frac{1}{x}+3)}{(x+\frac{1}{x}+3)^2-2^2}$ $= \frac{1}{2.2} \ln \left| \frac{x + \frac{1}{x} + 3 - 2}{x + \frac{1}{x} + 3 - 2} \right| + c$ $=\frac{1}{4}\ln\left|\frac{x^2+1+x}{x^2+1+5x}\right|+c$ **18(a)** $\int \cot^2 x dx = \int (\cos ec^2 x - 1) dx$ $= -\cot x - x + c$ **18(b)** $\int \tan^2 \frac{x}{2} dx = \int (\sec^2 \frac{x}{2} - 1) dx$ $= 2 \int \sec^2 \frac{x}{2} d(\frac{x}{2}) - \int dx = 2 \tan \frac{x}{2} - x + c$ 18 (c) $\int \frac{dx}{\sin x \cos^2 x} = \int \frac{\sin^2 x + \cos^2 x}{\sin x \cos^2 x} dx$

 $= \int \tan x \sec x dx + \int \cos e cx dx$ $= \sec x + \ln(\cos e cx - \cot x) + c$

19(a) $\int \frac{dx}{4-5\sin^2 x} = \int \frac{\sec^2 x dx}{\sec^2 x (4-5\sin^2 x)}$ $=\int \frac{\sec^2 dx}{4 \sec^2 x - 5 \tan^2 x}$ $= \int \frac{\sec^2 dx}{4(1 + \tan^2 x) - 5\tan^2 x} = \int \frac{\sec^2 dx}{4 - \tan^2 x}$ $= \int \frac{d(\tan x)}{2^2 - (\tan x)^2} = \frac{1}{22} \ln \left| \frac{2 + \tan x}{2 - \tan x} \right| + c$ $=\frac{1}{4}\ln |\frac{2+\tan x}{2-\tan x}|+c$ 19(b) $\int \frac{\sin 2x}{\sin x + \cos x} dx$ $=\int \frac{\sin^2 x + \cos^2 x + 2\sin x \cos x - 1}{\sin x + \cos x} dx$ $= \int \frac{(\sin x + \cos x)^2 - 1}{\sin x + \cos x} dx$ $= \int (\sin x + \cos x - \frac{1}{\sin x + \cos x}) dx$ $= \cos x - \sin x - \int \frac{dx}{\sqrt{2}(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4})}$ $= \cos x - \sin x - \frac{1}{\sqrt{2}} \int \frac{dx}{\sin(x + \frac{\pi}{2})}$ $= \cos x - \sin x - \frac{1}{\sqrt{2}} \int \cos ec(x + \frac{\pi}{4}) dx$ $= \cos x - \sin x - \frac{1}{\sqrt{2}} \ln |\tan \frac{1}{2}(x + \frac{\pi}{4})| + c$ $= \cos x - \sin x - \frac{1}{\sqrt{2}} \ln |\tan(\frac{x}{2} + \frac{\pi}{8})| + c$ 20 थत्रि, I = $\int \frac{dx}{\sqrt{x + \sqrt{1 - x}}}$ अवश

 $x = \sin^2 \theta$. তাহলে $dx = 2\sin \theta \cos \theta \, d\theta$, $\sin \theta = \sqrt{x} \Longrightarrow \theta = \sin^{-1} \sqrt{x}$ এবং

$$I = \int \frac{2\sin\theta\cos\theta \,d\theta}{\sqrt{\sin^2\theta} + \sqrt{1 - \sin^2\theta}}$$

= $\int \frac{2\sin\theta\cos\theta \,d\theta}{\sin\theta + \cos\theta}$
= $\int \frac{\sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta - 1}{\sin\theta + \cos\theta} d\theta$
= $\int \frac{(\sin\theta + \cos\theta)^2 - 1}{\sin\theta + \cos\theta} d\theta$
= $\int (\sin\theta + \cos\theta - \frac{1}{\sin x + \cos x}) d\theta$
= $\cos\theta - \sin\theta - \int \frac{d\theta}{\sqrt{2}(\sin\theta\cos\frac{\pi}{4} + \cos\theta\sin\frac{\pi}{4})}$
= $\cos\theta - \sin\theta - \frac{1}{\sqrt{2}} \int \frac{d\theta}{\sin(\theta + \frac{\pi}{4})}$
= $\cos\theta - \sin\theta - \frac{1}{\sqrt{2}} \int \cos ec(\theta + \frac{\pi}{4}) d\theta$
= $\sqrt{1 - \sin^2\theta} - \sin\theta - \frac{1}{\sqrt{2}} \ln |\tan\frac{1}{2}(\theta + \frac{\pi}{4})| + c$
= $\sqrt{1 - x} - \sqrt{x} - \frac{1}{\sqrt{2}} \ln |\tan(\frac{1}{2}\sin^{-1}\sqrt{x} + \frac{\pi}{8})| + c$

EXAMPLE X C
EXAMPLE X C
EXAMPLE 1 (MCQ (AR (AR)) +
$$\frac{1}{n^3} \frac{d^2}{dx^2} (x^m) - \frac{1}{n^4} \frac{d^3}{dx^3} (x^m) + \frac{1}{n^3} \frac{d^2}{dx^2} (x^m) - \frac{1}{n^4} \frac{d^3}{dx^3} (x^m) + \cdots + e^{nx}$$

1.(a) $\int xe^x dx$
 $= x \int e^x dx - \int \{\frac{d}{dx} (x) \int e^x dx\} dx$
 $= xe^x - \int 1 \cdot e^x dx = xe^x - e^x + c$
(b) $\int x^2 e^x dx$ [**A**.'08; [**A**.'05]
 $= x^2 \int e^x dx - \int \{\frac{d}{dx} (x^2) \int e^x dx\} dx$

 $= x^2 e^x - \int (2x) e^x dx$ $= x^2 e^x - 2[x \int e^x - \int \{\frac{d}{dx}(x) \int e^x dx\} dx]$ $= x^{2}e^{x} - 2[xe^{x} - \int 1.e^{x}dx]$ $= x^{2}e^{x} - 2xe^{x} + 2e^{x} + c$ $= (x^2 - 2x + 2)e^x + c$ (c) $\int x^2 e^{-3x} dx$ $= x^{2} \int e^{-3x} dx - \int \{\frac{d}{dx}(x^{2}) \int e^{-3x} dx\} dx$ $= x^{2}(-\frac{1}{2})e^{-3x} - \int (2x)(-\frac{1}{2})e^{-3x}dx$ $= -\frac{1}{2}x^{2}e^{-3x} + \frac{2}{2}\left[x\int e^{-3x} - \frac{1}{2}x\right]e^{-3x} - \frac{1}{2}x^{2}e^{-3x} - \frac{1}{2}x^{2}e^{-3x}$ $\int \left\{ \frac{d}{dx}(x) \int e^{-3x} dx \right\} dx$ $= -\frac{1}{3}x^2e^{-3x} + \frac{2}{3}\left[x(-\frac{e^{-3x}}{3}) - \int (-\frac{e^{-3x}}{3})dx\right]$ $= -\frac{1}{2}x^{2}e^{-3x} + \frac{2}{2}\left[\frac{xe^{-3x}}{2} + \frac{1}{2}\left(-\frac{e^{-3x}}{2}\right)\right] + c$ $= -\frac{1}{2}(x^2 + \frac{2}{3}x + \frac{2}{9})e^{-3x} + c$ (d) ধরি, $I = \int x^3 e^{x^2} dx$ এবং $x^2 = z$. তাহলে $2xdx = dz \implies xdx = \frac{1}{2}dz$ अवस $I = \int x^2 e^{x^2} (x dx) = \frac{1}{2} \int z e^z dz$ $= \frac{1}{2} \left[z \int e^z dz - \int \left\{ \frac{d}{dz} (z) \int e^z dz \right\} dz \right]$ $= \frac{1}{2} [ze^{z} - \int 1.e^{z} dz] = \frac{1}{2} (ze^{z} - e^{z}) + c$ $=\frac{1}{2}(x^2-1)e^{x^2}+c$ 2. সূত্র (MCQ এর জন্য)ঃ $\int x^n \sin x dx$ $= x^{n}(-\cos x) - (nx^{n-1})(-\sin x) + \cdots$

(a)
$$\int x \sin 3x dx$$

= $x \int \sin 3x dx - \int \{\frac{d}{dx}(x) \int \sin 3x \, dx\} \, dx$
= $x(-\frac{1}{3}\cos 3x) - \int 1.(-\frac{1}{3}\cos 3x) dx$
= $-\frac{1}{3}x\cos 3x + \frac{1}{3}(\frac{1}{3}\sin 3x) + c$
= $\frac{1}{9}\sin 3x - \frac{1}{3}x\cos 3x + c$
(b) $\int x^3 \sin x \, dx$
= $x^3 \int \sin x \, dx - \int \{\frac{d}{dx}(x^3) \int \sin x \, dx\} \, dx$
= $x^3 \int \sin x \, dx - \int \{\frac{d}{dx}(x^3) \int \sin x \, dx\} \, dx$
= $x^3 (-\cos x) - \int 3x^2(-\cos x) \, dx$
= $-x^3 \cos x + 3[x^2 \int \cos x - \int \{\frac{d}{dx}(x^2) \int \cos x \, dx\} \, dx]$
= $-x^3 \cos x + 3[x^2 \sin x - \int 2x \sin x \, dx]$
= $-x^3 \cos x + 3[x^2 \sin x - 2\{x(-\cos x) - \int 1(-\cos x) \, dx\}]$
= $-x^3 \cos x + 3[x^2 \sin x - 2(-x\cos x + \sin x)] + c$
= $-x^3 \cos x + 3x^2 \sin x + 6x\cos x - 6\sin x + c$
[MCQ 4AR CACA, $\int x^3 \sin x \, dx = x^3(-\cos x)$
 $-(3x^2)(-\sin x) + (6x)(\cos x) - 6\sin x$
= $-x^3 \cos x + 3x^2 \sin x + 6x\cos x - 6\sin x + c]$
(c) $4 fa$, $I = \int e^{2x} \cos e^x \, dx$ $4 fa$, $e^x = z$.
 $\forall i \in 0 e^x \, dx = dz$ $4 fa$
 $I = \int e^x \cos e^x (e^x \, dx) = \int z \cos z \, dz$
= $z \int \cos z \, dz - \int \{\frac{d}{dz}(z) \int \cos z \, dz\} \, dz$
= $z \sin z - (-\cos z) + c$

$$\begin{aligned} \sup_{\substack{n \in \mathbb{Z} \\ n \in \mathbb{Z} \\ n$$

804

$$\begin{aligned} \frac{1}{2372, 321} = \frac{1}{2} \cos exx \cot x - \int (\cos exx \cot x) (-\cot x) dx^2}{\sin exx (\cos ex^2 x - 1) dx} = (\ln x)^2 \int x^2 dx - \int (\frac{d}{dx} (\ln x)^2 \int x^2 dx) dx \\ = (\ln x)^2 \int x^2 dx - \int (\frac{d}{dx} (\ln x)^2 \int x^2 dx) dx \\ = (\ln x)^2 \int x^3 (\ln x)^2 \int x^2 dx - \int (\frac{d}{dx} (\ln x)^2 \int x^2 dx) dx \\ = (\ln x)^2 \int x^3 (\ln x)^2 - \frac{2}{3} \int x^2 \ln x dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} \int x^2 \ln x dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} \int x^2 dx - \int (\frac{d}{dx} (\ln x) \int x^2 dx) dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} + \frac{1}{x} \frac{x^3}{3} dx \\ = \frac{x^3}{3} (\ln x)^2 - \frac{2}{3} [\ln x \frac{x^3}{3} + \frac{1}{x} \frac{x^3}{3} + \frac{1}{x} \frac{x^3}{3} + \frac{1}{x} \frac{x^3}{3} \frac{1}{x} \frac{x^3}{3} + \frac{1}{x} \frac{x^3}{3} \frac{1}{x} \frac{x^3}{3} \frac{1}{x} \frac{x^3}{3} \frac{1}{x} \frac{x^3}{3} \frac{1}{x} \frac{x^3}{3} \frac{1}{x} \frac{x^3}{x$$

শ্নম্লা IV C $-\sin^{-1}x]+c$ $\Rightarrow I = \ln z \int dz - \int \{\frac{d}{dz} (\ln z) \int dz \} dz$ $=\frac{x^2}{2}\sin^{-1}x + \frac{1}{2}\left[\frac{x\sqrt{1-x^2}}{2} - \frac{1}{2}\right]$ $= \ln z \cdot z - \int \frac{1}{z} dz = z \ln z - \int dz$ (c) $\int \sin^{-1} x \, dx$ $= z \ln z - z + c = \ln x \{\ln(\ln x) - 1\} + c$ [সি. '০ (f) $\forall I \exists, I = \int \frac{\ln \sec^{-1} x}{\sqrt{2} + 1} dx$ [ঢা. '০৮; সি. '১৪] $= \sin^{-1} x \int dx - \int \{\frac{d}{dx} (\sin^{-1} x) \int dx - \int (\frac{d}{dx} (\sin^{-1} x) (\sin^{-1} x) \int dx - \int (\frac{d}{dx} (\sin^{-1} x) (\sin^{$ এবং $\sec^{-1} x = z \Longrightarrow \frac{dx}{r \sqrt{x^2 - 1}} = dz$ $= x \sin^{-1} x - \int \frac{x}{\sqrt{1 - x^2}} dx$ $= x \sin^{-1} x - (-\frac{1}{2}) \int \frac{(0-2x)dx}{\sqrt{1-x^2}}$ \therefore I = $\int \ln z \, dz$ $= \ln z \int dz - \int \{\frac{d}{dz} (\ln z) \int dz \} dz$ $= x \sin^{-1} x + \frac{1}{2} \cdot 2\sqrt{1 - x^2} + c$ $= \ln z. z - \int \frac{1}{z} dz = z \ln z - \int dz$ $= x \sin^{-1} x + \sqrt{1 - x^2} + c$ $= z \ln z - z + c$ (d) $\int \cos^{-1} x dx$ [বু. '০৫,'১৪, চ.'০৬, ম.'০৮, রা.'১০] $= \{\ln(\sec^{-1} x) - 1\} \sec^{-1} x + c$ $= \cos^{-1} x \int dx - \int \{\frac{d}{dx} (\cos^{-1} x) \int dx\} dx$ [কু. '০২; ঢা. '০৪; ব. '১০] 6.(a) $\int \tan^{-1} x dx$ $= x \cos^{-1} x + \int \frac{x}{\sqrt{1 - x^2}} dx$ $= \tan^{-1} x \int dx - \int \{\frac{d}{dx} (\tan^{-1} x) \int dx\} dx$ $= x \cos^{-1} x + (-\frac{1}{2}) \int \frac{(0-2x)dx}{\sqrt{1-x^2}}$ $= x \tan^{-1} x - \int \frac{x}{1 + x^2} dx$ $= x \tan^{-1} x - \frac{1}{2} \int \frac{(0+2x)dx}{1+x^2}$ $= x \cos^{-1} x - \frac{1}{2} \cdot 2\sqrt{1 - x^2} + c$ $= x \cos^{-1} x - \sqrt{1 - x^2} + c$ $= x \tan^{-1} x - \frac{1}{2} \ln(1 + x^2) + c$ (e) $\int x \sin^{-1} x^2 dx$ (**b**) $\int x \sin^{-1} x dx$ [b].'o9] [ঢা. '০৫; রা. '০৬; প্র.ড.প. '০৪, '০৬] $= \sin^{-1} x \int x dx - \int \{ \frac{d}{dx} (\sin^{-1} x) \int x dx \} dx$ $= \sin^{-1} x^2 \int x dx - \int \{ \frac{d}{dx} (\sin^{-1} x^2) \int x dx \} dx$ $= \sin^{-1} x \cdot \frac{x^2}{2} - \int \frac{1}{\sqrt{1 - x^2}} \cdot \frac{x^2}{2} dx$ $= \sin^{-1} x^2 \cdot \frac{x^2}{2} - \int \frac{2x}{\sqrt{1-x^4}} \cdot \frac{x^2}{2} dx$ $=\frac{x^2}{2}\sin^{-1}x+\frac{1}{2}\int\frac{1-x^2-1}{\sqrt{1-x^2}}dx$ $=\frac{x^2}{2}\sin^{-1}x^2 - \int \frac{x^3}{\sqrt{1-x^4}} dx$ $=\frac{x^2}{2}\sin^{-1}x + \frac{1}{2}\left[\int\sqrt{1-x^2}\,dx - \int\frac{1}{\sqrt{1-x^2}}\,dx\right]$ $= \frac{x^2}{2} \sin^{-1} x^2 - (-\frac{1}{4}) \int \frac{d(1-x^4)}{\sqrt{1-x^4}}$ $= \frac{x^2}{2} \sin^{-1} x + \frac{1}{2} \left[\frac{x\sqrt{1-x^2}}{2} + \frac{1}{2} \sin^{-1} x - \frac{1}{2} \sin^{-1} x \right]$

উচ্চতর গণিত: নইঘন $=\frac{x^2}{2}\sin^{-1}x^2+\frac{1}{4}\cdot 2\sqrt{1-x^4}+c$ $= \frac{x^2}{2} \sin^{-1} x^2 + \frac{1}{2} \sqrt{1 - x^4} + c$ **6.(f)** $\int x \tan^{-1} x dx$ [रा.'०७;मि. '08,'0+; ता.'0७ ; कू.'20 ; रा.'22] $= \tan^{-1} x \int x \, dx - \int \{ \frac{d}{dx} (\tan^{-1} x) \int x \, dx \} \, dx$ $=\tan^{-1}x.\frac{x^2}{2}-\int\frac{1}{1+x^2}.\frac{x^2}{x^2}dx$ $= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \frac{1 + x^2 - 1}{1 + x^2} dx$ $=\frac{x^2}{2}\tan^{-1}x - \frac{1}{2}\int (1 - \frac{1}{1 + x^2}) dx$ $=\frac{x^2}{2}\tan^{-1}x - \frac{1}{2}(x - \tan^{-1}x) + c$ $= \frac{1}{2}(x^2 + 1) \tan^{-1} x - \frac{1}{2}x + c \text{ (Ans.)}$ 7.(a) $\int e^x \cos x \, dx$ [ঢা. '০২;প্র.ড.প. '০৪ , '০৬] ধরি, I = $\int e^x \cos x \, dx$ $= e^{x} \int \cos x \, dx - \int \{\frac{d}{dx}(e^{x}) \int \cos x \, dx\} \, dx$ $= e^x \sin x - \int e^x \sin dx$ $= e^x \sin x - e^x \int \sin x \, dx + \int \{\frac{d}{dx} (e^x) \int \sin x \, dx\} \, dx$ $=e^{x}\sin x - e^{x}(-\cos x) + \int e^{x}(-\cos x) dx$ $= e^x \sin x + e^x \cos x - \int e^x \cos x \, dx$ $= e^x \sin x + e^x \cos x - \mathbf{I} + c_1$ $\Rightarrow 2I = e^x \sin x + e^x \cos x + c_1$ $\Rightarrow I = \frac{1}{2} e^{x} (\sin x + \cos x) + \frac{1}{2} c_{1}$ $\int e^x \cos x \, dx = \frac{1}{2} e^x (\sin x + \cos x) + c$ 7(b) $\int e^x \sin x dx$ [কু.'০৮,'১৩; মা.'০৯; রা.,দি.'১৪]

$$\begin{aligned} &= \frac{1}{2} \left[\frac{1}{2} e^{2x} + \frac{e^{2x}}{2^2 + 2^2} (2 \cos 2x + 2 \sin 2x) \right] + c \\ &= \frac{1}{2} \left[\frac{1}{2} e^{2x} + \frac{e^{2x}}{8} (2 \cos 2x + 2 \sin 2x) \right] + c \\ &= \frac{1}{2} \left[\frac{1}{2} e^{2x} + \frac{e^{2x}}{8} (2 \cos 2x + 2 \sin 2x) \right] + c \\ &= \frac{1}{8} (2 + \cos 2x + \sin 2x) e^{2x} + c \\ \mathbf{S.}(\mathbf{a}) \int e^x (\sin x + \cos x) dx \\ &= \left[\left[\mathbf{A}^* (\circ e^x) \right] (\mathbf{b}^* (\mathbf{c}^*) \mathbf{c}^* (\mathbf{c}^* \mathbf{c}^*) \mathbf{c}^* \mathbf{c}$$

$$\begin{aligned} & \left\{ \hat{\mathbf{x}}, \mathbf{I} = \int e^{x} \left\{ \tan x - \ln(\cos x) \right\} dx \quad \text{def} \\ & \left\{ f(x) = -\ln(\cos x) \right\} \\ & f(x) = -\ln(\cos x) \\ & \therefore f'(x) = -\frac{-\sin x}{\cos x} = \tan x \quad \text{def} \\ & \mathbf{I} = \int e^{x} \left\{ -\ln(\cos x) + \tan x \right\} dx \\ & = \int e^{x} \left\{ f(x) + f'(x) \right\} dx = e^{x} f(x) + c \\ & \therefore \int e^{x} \left\{ \tan x + \ln(\sec x) \right\} dx = -e^{x} \ln(\cos x) + c \end{aligned} \\ & \mathbf{9.(a)} \int \frac{e^{x}}{x} (1 + x \ln x) dx \quad \left[\mathbf{\overline{4.5}}, \mathbf{\overline{5.5}}, \mathbf{\overline{5.5}, \mathbf{\overline{5.5}}, \mathbf{$$

$$= \int \{\frac{1}{(x^{2}-1)(1+1)} + \frac{-1}{(-1-1)(x^{2}+1)}\}dx$$

$$= \frac{1}{2} \int \frac{1}{x^{2}-1^{2}} dx + \frac{1}{2} \int \frac{1}{1+x^{2}} dx$$

$$= \frac{1}{2} \cdot \frac{1}{2\cdot 1} \ln |\frac{x-1}{x+1}| + \frac{1}{2} \tan^{-1} x + c$$

$$= \frac{1}{4} \ln |\frac{x-1}{x+1}| + \frac{1}{2} \tan^{-1} x + c$$
10(e) $\forall \hat{a}, I = \int \frac{dx}{e^{2x} - 3e^{x}}$ [\$\vec{a} \vec{v}, \$\vec{a} \vec{a} \

(1)
$$\mathfrak{q} x = 1$$
 चतिरव भाँदे, $1 = C \Rightarrow C = 1$
(1) \mathfrak{q} व छिछव्रभाष थिदक $x^2 \mathfrak{q}$ व त्र त्रश गमोकुछ करव भाँदे,
 $0 = A + C \Rightarrow A = -C = -1$
 $\int \frac{1}{x^2(x-1)} dx = \int \{-\frac{1}{x} - \frac{1}{x^2} + \frac{1}{x-1}\} dz$
 $= -\ln |x| - (-\frac{1}{x}) + \ln |x-1| + c$
 $= \ln |\frac{x-1}{x}| + \frac{1}{x} + c$
12 \mathfrak{q} ति, $I = \int \frac{x+2}{(1-x)(x^2+4)} dx$ \mathfrak{q} त
 $\frac{x+2}{(1-x)(x^2+4)} = \frac{A}{1-x} + \frac{Bx+C}{x^2+4}$
 $\Rightarrow x+2 = A(x^2+4) + (Bx+C)(1-x) \cdots (1)$
(1) $\mathfrak{q} x = 1$ वगिरव भाँदे, $1+2 = 5A \Rightarrow A = \frac{3}{5}$
(1) \mathfrak{q} विखयभाष थिरक x^2 \mathfrak{q} त त्रश त्रामोकुछ करव भाँदे,
 $0 = A - B \Rightarrow B = A = \frac{3}{5}$
(1) \mathfrak{q} विखयभाष थिरक ध्रुशमा त्रमोकुछ करव भाँदे,
 $2 = 4A + C \Rightarrow C = 2 - \frac{12}{5} = -\frac{2}{5}$
 $\therefore I = \frac{3}{5} \int \frac{1}{1-x} dx + \int \frac{\frac{5}{5} \frac{x-2}{x^2+4}}{\frac{5}{x^2+4}} dx$
 $= -\frac{3}{5} \ln |1-x| + \frac{3}{10} \int \frac{2xdx}{x^2+4} - \frac{2}{5} \int \frac{dx}{x^2+2^2}$
 $= -\frac{3}{5} \ln |1-x| + \frac{3}{10} \ln(x^2+4) - \frac{2}{5.2} \tan^{-1}\frac{x}{2} + c$
 $= -\frac{3}{5} \ln |1-x| + \frac{3}{10} \ln(x^2+4) - \frac{1}{5} \tan^{-1}\frac{x}{2} + c$
13(a) $\int \frac{x^7}{(1-x^4)^2} dx = \int \frac{-x^3(1-x^4)+x^3}{(1-x^4)^2} dx$
 $= \int \{\frac{-x^3}{1-x^4} + \frac{x^3}{(1-x^4)^2}\} dx$

$$\begin{aligned} &= \frac{1}{4} \ln |1 - x^4| - \frac{1}{4} (-\frac{1}{1 - x^4}) + c \\ &= \frac{1}{4} (\ln |1 - x^4| + \frac{1}{1 - x^4}) + c \\ &\mathbf{13(b)} \, \mathfrak{k}_{\mathbf{R}}, \, \mathbf{I} = \int \frac{(x - 2)^2}{(x + 1)^2} \, dx = \int \frac{x^2 - 4x + 4}{x^2 + 2x + 2} \, dx \\ &= \int \frac{(x^2 + 2x + 2) - 6x + 2}{x^2 + 2x + 2} \, dx \\ &= \int \{1 - \frac{6x - 2}{(x + 1)^2}\} \, dx \, \mathfrak{k}_{\mathbf{R}} \\ &= \int \{1 - \frac{6x - 2}{(x + 1)^2}\} \, dx \, \mathfrak{k}_{\mathbf{R}} \\ &= \frac{6x - 2}{(x + 1)^2} = \frac{A}{x + 1} + \frac{B}{(x + 1)^2} \\ &\Rightarrow 6x - 2 = A(x + 1) + B \cdots (1) \\ &(1) \, \mathfrak{k} \, x = -1 \, \mathfrak{k}_{\mathbf{R}} \, \mathfrak{k}, \, \mathbf{B} = -6 - 2 = -8 \\ &(1) \, \mathfrak{k}_{\mathbf{R}} \, \mathfrak{k}_{\mathbf{R}} = -1 \, \mathfrak{k}_{\mathbf{R}} \, \mathfrak{k}_{\mathbf{R}} = -6 - 2 = -8 \\ &(1) \, \mathfrak{k}_{\mathbf{R}} \, \mathfrak{k}_{\mathbf{R}} \, \mathbf{k}_{\mathbf{R}} \, \mathbf{k}_{\mathbf{R}} = -6 - 2 = -8 \\ &(1) \, \mathfrak{k}_{\mathbf{R}} \, \mathfrak{k}_{\mathbf{R}} \, \mathfrak{k}_{\mathbf{R}} \, \mathbf{k}_{\mathbf{R}} \, \mathbf{k}_{\mathbf{R}} \\ &= x - 6 \, \mathrm{ln} \, |x + 1| + \frac{8}{(x + 1)^2} \, dx \\ &= x - 6 \, \mathrm{ln} \, |x + 1| - \frac{8}{x + 1} + c \\ \\ &\mathbf{13(c)} \, \mathfrak{k}_{\mathbf{R}} \, \mathbf{I} = \int \frac{\sin 2x \, dx}{3 + 5 \cos x} = \int \frac{2 \sin x \cos x \, dx}{3 + 5 \cos x} \\ &\mathfrak{k}_{\mathbf{R}} \, \mathrm{cos} \, x = z \, \cdot \, \mathfrak{k}_{\mathbf{R}} \, \mathfrak{k} = -\frac{2}{5} \int \frac{3 + 5z - 3}{3 + 5z} \, dz \\ &= -\frac{2}{5} \int (1 - \frac{3}{3 + 5z}) \, dz \\ &= -\frac{2}{5} (z - \frac{3}{5} \, \mathrm{ln} \, |3 + 5z|) + c \\ &= \frac{2}{25} (3 \, \mathrm{ln} \, |3 + 5z| - 5z) + c \\ &= \frac{2}{25} (3 \, \mathrm{ln} \, |3 + 5z| - 5z) + c \\ &= \frac{2}{25} (3 \, \mathrm{ln} \, |3 + 5z| - 5z) + c \\ &= \frac{2}{25} (3 \, \mathrm{ln} \, |3 + 5z| - 5z) + c \\ &= \frac{2}{25} (3 \, \mathrm{ln} \, |3 + 5z| - 5z) + c \\ &= \frac{2}{25} (3 \, \mathrm{ln} \, |3 + 5\cos x| - 5\cos x) + c \\ &\mathbf{k}_{\mathbf{R}} \, \mathbf{k}_{\mathbf{R}} \, \mathbf$$

$$= \int \frac{(\sqrt{x+a} - \sqrt{x+b})dx}{(\sqrt{x+a} + \sqrt{x+b})(\sqrt{x+a} - \sqrt{x+b})}$$

$$= \int \frac{(\sqrt{x+a} - \sqrt{x+b})dx}{(x+a) - (x+b)}$$

$$= \int \frac{(x+a)^{1/2} - (x+b)^{1/2}}{a-b} dx$$

$$= \frac{1}{a-b} [\frac{(x+a)^{\frac{1}{2}+1}}{\frac{1}{2}+1} - \frac{(x+b)^{\frac{1}{2}+1}}{\frac{1}{2}+1}] + c$$

$$= \frac{2}{3(a-b)} [(x+a)^{3/2} - (x+b)^{3/2}] + c$$

2. $\int 3\sin x \cos x dx$

$$= \int \frac{3}{2} (2\sin x \cos x) dx = \frac{3}{2} \int \sin 2x dx$$

$$= \frac{3}{2} (-\frac{1}{2}\cos 2x) + c = -\frac{3}{4}\cos 2x + c$$

3. (a) $\int 3\cos 3x \cos x dx$

$$= \int \frac{3}{2} (\cos(3x+x)) + \cos(3x-x)) dx$$

$$= \int \frac{3}{2} (\cos(4x+\cos 2x)) dx$$

$$= \frac{3}{2} (\frac{1}{4}\sin 4x + \frac{1}{2}\sin 2x) + c$$

$$= \frac{3}{8} (\sin 4x + 2\sin 2x) + c$$

3(b) $\int \cos^{2} \frac{x}{2} dx = \int \frac{1}{2} (1+\cos x) dx$

$$= \frac{1}{2} (x+\sin x) + c$$

4(a) $\int \cos x \cos(\sin x) dx$

$$= \int \cos(\sin x) d(\sin x) = \cos(\sin x) + c$$

4(b) $4 \sin x = \int (e^{x} + \frac{1}{x})(e^{x} + \ln x) dx$ $[\pi \cdot \infty]$

$$\begin{aligned} & \P \Re e^{x} + \ln x = z . \ \forall \exists \xi \forall \exists (e^{x} + \frac{1}{x}) dx = dz \ \forall \exists \Re \\ & I = \int z \, dz = \frac{1}{2} z^{2} + c = \frac{1}{2} (e^{x} + \ln x)^{2} + c \\ & \mathbf{5} \int e^{3\cos 2x} \sin 2x \, dx \\ &= -\frac{1}{6} \int e^{3\cos 2x} (-6\sin 3x dx) \\ &= -\frac{1}{6} e^{3\cos 2x} + c \\ & \mathbf{6}(\mathbf{a}) \ \forall \exists \Re, \ \mathbf{I} = \int \sin^{3} x \cos x dx \\ & \exists \forall \Re, \ \mathbf{I} = \int \sin^{3} x \cos x dx \\ & \exists \forall \Re, \ \mathbf{I} = \int \tan^{3} x \sec^{2} x dx \ \exists \forall \mathbf{R} + c \\ & \mathbf{6}(\mathbf{b}) \ \forall \exists \Re, \ \mathbf{I} = \int \tan^{3} x \sec^{2} x dx \ \exists \forall \mathbf{R} + c \\ & \mathbf{6}(\mathbf{b}) \ \forall \exists \Re, \ \mathbf{I} = \int \tan^{3} x \sec^{2} x dx \ \exists \forall \Re + c \\ & \mathbf{6}(\mathbf{b}) \ \forall \exists \Re, \ \mathbf{I} = \int \tan^{3} x \sec^{2} x dx \ \exists \forall \Re + c \\ & \mathbf{6}(\mathbf{c}) \ \int \sin^{2} (3x + 2) dx \\ &= \int \frac{1}{2} dz = \frac{z^{3+1}}{3+1} + c = \frac{1}{4} \tan^{4} x + c \\ & \mathbf{6}(\mathbf{c}) \ \int \sin^{2} (3x+2) dx \\ &= \int \frac{1}{2} \{\int dx - \int \cos(6x+4) dx\} \\ &= \frac{1}{2} \{\int dx - \int \cos(6x+4) dx\} \\ &= \frac{1}{2} x - \frac{1}{12} \sin(6x+4) + c \\ & \mathbf{7.}(\mathbf{a}) \ \int \frac{(\ln x)^{2}}{x} \, dx = \int (\ln x)^{2} d(\ln x) \\ &= \frac{(\ln x)^{2+1}}{2+1} + c = \frac{1}{3} (\ln x)^{3} + c \\ & \mathbf{7}(\mathbf{b}) \ \int \frac{\sqrt{1+\ln x}}{x} \, dx \\ &= \int (1+\ln x)^{\frac{1}{2}} d(1+\ln x) \end{aligned}$$

$$= \frac{(1+\ln x)^{\frac{1}{2}+1}}{\frac{1}{2}+1} + c = \frac{2}{3}(1+\ln x)^{3/2} + c$$

$$= \frac{1}{2}(1+\ln x)^{3/2} + c$$

$$= \frac{1}{\sin(a-b)} \ln \left| \frac{\sin(x-a)}{\sin(x-b)} \right| + c$$
11 (a) $\int \frac{\sec^2 x dx}{\sqrt{1+\tan x}} = \int \frac{d(1+\tan x)}{\sqrt{1+\tan x}}$

$$= 2\sqrt{1+\tan x} + c$$
11 (b) $\int \frac{dx}{\sqrt{(\sin^{-1} x)}\sqrt{1-x^2}} = \int \frac{d(\sin^{-1} x)}{\sqrt{(\sin^{-1} x)}}$
[$\cdot d(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}} dx$]
$$= 2\sqrt{\sin^{-1} x} + c$$
11 (c) $\forall f a, I = \int \frac{dx}{(1+x^2)\sqrt{\tan^{-1} x+3}}$
 $agg(\tan^{-1} x+3=z) \cdot \forall g c a, \frac{dx}{1+x^2} = dz \cdot agg(Ia x - 1 x + 3 = z) \cdot \forall g c a, \frac{dx}{1+x^2} = dz \cdot agg(Ia x - 1 x + 3 = z) \cdot \forall g c a, \frac{dx}{1+x^2} = dz \cdot agg(Ia x - 1 x + 3 = z) \cdot \forall g c a, \frac{dx}{1+x^2} = dz \cdot agg(Ia x - 1 x + 3 = z) \cdot \forall g c a, \frac{dx}{1+x^2} = dz \cdot agg(Ia x - 1 x + 3 = z) \cdot \forall g c a, \frac{dx}{1+x^2} = dz \cdot agg(Ia x - 1 x + 3 = z) \cdot \forall g c a, \frac{dx}{1+x^2} = dz \cdot agg(Ia x - 1 x + 3 = z) \cdot \forall g c a, \frac{dx}{1+x^2} = dz \cdot agg(Ia x - 1 x + 3 + z)$
11 (c) $\int \frac{dx}{\sqrt{1-x^2}} = 2\sqrt{z} + c$
11 (d) $\int \frac{\tan(\ln |x|)}{x} dx = \int \tan(\ln |x|) d(\ln |x|)$

$$= \ln \{\sec(\ln |x|)\} + c$$
12 (a) $\int \frac{\sec^2 x dx}{\sqrt{1-\tan^2 x}} = \int \frac{d(\tan x)}{\sqrt{1-\tan^2 x}}$

$$= \sin^{-1}(\tan x) + c$$
12 (b) $\int \frac{dx}{\sqrt{15-4x-4x^2}}$

$$= \int \frac{dx}{\sqrt{16-(2x)^2+2.2x.1+1^2}}$$

$$= \frac{1}{2} \int \frac{d(2x+1)}{\sqrt{4^2-(2x+1)^2}} = \frac{1}{2} \sin^{-1}(\frac{2x+1}{4}) + c$$

$$12(c) \int \frac{dx}{\sqrt{x(4-x)}} = \int \frac{dx}{\sqrt{4x-x^2}}$$

$$= \int \frac{dx}{\sqrt{2^2 - (x^2 - 4x + 2^2)}}$$

$$= \int \frac{d(x-2)}{\sqrt{2^2 - (x-2)^2}} = \sin^{-1}(\frac{x-2}{2}) + c$$

$$12(d) \int \frac{dx}{\sqrt{a^2 - b^2(1-x)^2}}$$

$$= -\frac{1}{b} \int \frac{d(b-bx)}{\sqrt{a^2 - (b-bx)^2}}$$

$$= -\frac{1}{b} \sin^{-1}(\frac{b-bx}{a}) + c$$

$$12(e) \ \text{tf}\overline{a}, I = \int \sqrt{\tan x} dx \ \text{eqt tan } x = z^2$$

$$\Rightarrow \ dx = \frac{2zdz}{1+\tan^2 x} = \frac{2z}{1+z^4} \ \text{eqt}$$

$$I = \int \frac{2z^2 dz}{1+z^4} = \int \frac{(z^2 + 1) - (z^2 - 1)}{1+z^4} dz$$

$$= \int [\frac{z^2 + 1}{z^2 + \frac{1}{z^2}} + \frac{1 - \frac{1}{z^2}}{1+z^4}] dz$$

$$= \int [\frac{1 + \frac{1}{z^2}}{(z - \frac{1}{z})^2 + 2} + \frac{1 - \frac{1}{z^2}}{(z + \frac{1}{z})^2 - 2}] dz$$

$$= \int \frac{d(z - \frac{1}{z})}{(z - \frac{1}{z})^2 + (\sqrt{2})^2} + \int \frac{d(z + \frac{1}{z})}{(z + \frac{1}{z})^2 - (\sqrt{2})^2}$$

$$= \frac{1}{\sqrt{2}} \tan^{-1} \frac{z - \frac{1}{z}}{\sqrt{2}} + \frac{1}{2\sqrt{2}} \ln |\frac{z - \frac{1}{z} - \sqrt{2}}{z - \frac{1}{z} + \sqrt{2}}| + c$$

$$= \frac{1}{\sqrt{2}} \tan^{-1} \frac{z^2 - 1}{\sqrt{2}z} + \frac{1}{2\sqrt{2}} \ln \left| \frac{z^2 - 1 - \sqrt{2}z}{z^2 - 1 + \sqrt{2}z} \right| + c$$

$$= \frac{1}{\sqrt{2}} \tan^{-1} \frac{\tan x - 1}{\sqrt{2 \tan x}} + \frac{1}{2\sqrt{2}} \ln \left| \frac{\tan x - \sqrt{2 \tan x} - 1}{\tan x + \sqrt{2 \tan x} - 1} \right| + c$$

13. $4\pi n = \int 3\cos^3 x \cos 2x \, dx$
 $\cos^3 x \cos 2x = \frac{1}{4} (3\cos x + \cos 3x) \cos 2x$
 $= \frac{1}{4} [3\cos x \cos 2x + \cos 3x \cos 2x]$
 $= \frac{1}{4} [3 \cdot \frac{1}{2} (\cos 3x + \cos x) + \frac{1}{2} (\cos 5x + \cos x)] = \frac{1}{8} (3\cos 3x + 4\cos x + \cos 5x) \, dx$
 $= \frac{3}{8} (3 \cdot \frac{1}{3} \sin 3x + 4\sin x + \frac{1}{5} \sin 5x) + c$
14(a) $4\pi n = \int e^{2x} \cos x \, dx$
 $= e^{2x} \int \cos x \, dx - \int \{\frac{d}{dx} (e^{2x}) \int \cos x \, dx\} \, dx$
 $= e^{2x} \sin x - \int 2e^{2x} \int \sin x \, dx + \frac{2}{2} \int \{\frac{d}{dx} (e^{2x}) \int \sin x \, dx\} \, dx$
 $= e^{2x} \sin x - 2e^{2x} (-\cos x) + 2\int 2e^{2x} (-\cos x) \, dx$
 $= e^{2x} \sin x + 2e^{2x} \cos x - 4\int e^{2x} \cos x \, dx$
 $= e^{2x} (\sin x + 2\cos x) - 4I + c_1$
 $\Rightarrow 5I = e^{2x} (\sin x + 2\cos x) + \frac{1}{5}c_1$
 $\therefore I = \int e^{2x} \sin x \, dx = \frac{e^{2x}}{5} (\sin x + 2\cos x) + c$

14.(b)
$$\int e^{-3x} \cos 4x \, dx$$

$$= \frac{e^{-3x}}{3^2 + 4^2} (-3\cos 4x + 4\sin 4x) + c$$
[7 a stant for a for a

$$\begin{split} \therefore \int e^{ax} (a \sin bx + b \cos bx) dx &= e^{ax} \sin bx + c \\ \mathbf{16(a)} \int \frac{x-3}{(1-2x)(1+x)} dx \\ &= \int [\frac{1}{2} - 3}{(1-2x)(1+\frac{1}{2})} + \frac{-1-3}{(1-2(-1))(1+x)}] dx \\ &= \int [\frac{-\frac{5}{2}}{\frac{3}{2}(1-2x)} + \frac{-4}{3(1+x)}] dx \\ &= -\frac{5}{3}(-\frac{1}{2}) \int \frac{d(1-2x)}{(1-2x)} - \frac{4}{3} \int \frac{1}{1+x} dx \\ &= -\frac{5}{6} \ln|1-2x| - \frac{4}{3} \ln|1+x| + c \\ \mathbf{16(b)} \int \frac{dx}{x^4 - 1} &= \int \frac{dx}{(x^2 - 1)(x^2 + 1)} \\ &= \int \{\frac{1}{(x^2 - 1)(1+1)} + \frac{1}{(-1-1)(x^2 + 1)}\} dx \\ &= \frac{1}{2} \int \frac{dx}{x^2 - 1^2} - \frac{1}{2} \int \frac{1}{1+x^2} dx \\ &= \frac{1}{2} \cdot \frac{1}{2.1} \ln|\frac{x-1}{x+1}| - \frac{1}{2} \tan^{-1} x + c \\ &= \frac{1}{4} \ln|\frac{x-1}{x+1}| - \frac{1}{2} \tan^{-1} x + c \\ &= \frac{1}{4} \ln|\frac{x-1}{x+1}| - \frac{1}{2} \tan^{-1} x + c \\ &= \frac{1}{4} \ln|\frac{x-1}{x+1}| - \frac{1}{2} \tan^{-1} x + c \\ &= 1A(x+1)^2 = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{(x+1)^2} \\ \Rightarrow 1 = A(x+1)^2 + Bx(x+1) + Cx \cdots (1) \\ (1) = x = 0$$
 afficial mids, $1 = A \Longrightarrow A = 1 \\ (1) = 4 x = -1$ afficial mids, $1 = -C \Longrightarrow C = -1 \\ (1) = A x = B \Rightarrow B = -A = -1 \\ \therefore \int \frac{1}{x(x+1)^2} dx = \int \{\frac{1}{x} - \frac{1}{x+1} - \frac{1}{(x+1)^2}\} dx \end{aligned}$

$$= \ln |x| - \ln |x+1| - (-\frac{1}{x+1}) + c$$

$$= \ln |\frac{x}{x+1}| + \frac{1}{x+1} + c$$

$$17(b) \int \frac{3x+1}{(x+1)^2} dx = \int \frac{3(x+1)-2}{(x+1)^2} dx$$

$$= \int \{\frac{3(x+1)}{(x+1)^2} - \frac{2}{(x+1)^2}\} dx$$

$$= \int \{\frac{3}{x+1} - \frac{2}{(x+1)^2}\} dx$$

$$= 3\ln |x+1| - 2(-\frac{1}{x+1}) + c$$

$$= 3\ln |x+1| + \frac{2}{x+1} + c$$

$$18. (a) \int \frac{dx}{x(x^2+1)} \int \frac{(x^2+1)-x^2 dx}{x(x^2+1)}$$

$$= \int \{\frac{1}{x} - \frac{x}{x^2+1}\} dx$$

$$= \int \frac{1}{x} dx - \frac{1}{2} \int \frac{(2x+0) dx}{x^2+1}$$

$$= \ln |x| - \frac{1}{2} \ln(x^2+1) + c$$

$$18(b) 4fa, I = \int \frac{x dx}{(x-1)(x^2+4)} dac$$

$$\frac{x}{(x-1)(x^2+4)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+4}$$

$$\Rightarrow x = A(x^2+4) + (Bx+C)(x-1) \cdots (1)$$

$$(1) 4x = 1 afn(x miz, 1 = 5A \Rightarrow A = \frac{1}{5}$$

$$(1) 4a \ 5ean 4m \ cace x^2 4a \ 5m \ 7a + 5m \ 7a + 5m \ 7a + 4m \ 7a + 5m \ 7a + 5m \ 7a + 5m \ 7a + 5m \ 7a + 4m \ 7a + 5m \$$

$$= \frac{1}{5} \ln |x-1| - \frac{1}{10} \int \frac{2xdx}{x^2 + 4} + \frac{4}{5} \int \frac{dx}{x^2 + 2^2}$$

$$= \frac{1}{5} \ln |x-1| - \frac{1}{10} \ln(x^2 + 4) + \frac{4}{5} \cdot \frac{1}{2} \tan^{-1} \frac{x}{2} + c$$

$$= \frac{1}{5} \ln |x-1| - \frac{1}{10} \ln(x^2 + 4) + \frac{2}{5} \tan^{-1} \frac{x}{2} + c$$

19.(a) $\int xe^{-x} dx$

$$= x \int e^{-x} dx - \int \{\frac{d}{dx}(x) \int e^{-x} dx\} dx$$

$$= -xe^{-x} - \int 1.(-e^{-x}) dx = -xe^{-x} - e^{-x} + c$$

19(b) $\int xe^{ax} dx$

$$= x \int e^{ax} dx - \int \{\frac{d}{dx}(x) \int e^{ax} dx\} dx$$

$$= x \cdot \frac{1}{a} e^{ax} - \int 1.(\frac{1}{a} e^{ax}) dx = \frac{1}{a} xe^{ax} - \frac{1}{a^2} e^{ax} + c$$

$$= \frac{1}{a^2} (ax-1)e^{ax} + c$$

19(c) $\int x^3 e^{2x} dx$

$$= x^3 \int e^{2x} dx - \int \{\frac{d}{dx}(x^3) \int e^{2x} dx\} dx$$

$$= x^3 (\frac{1}{2} e^{2x}) - \int (3x^2)(\frac{1}{2} e^{2x}) dx$$

$$= \frac{1}{2} x^3 e^{2x} - \frac{3}{2} [x^2 \int e^{2x} - \int \{\frac{d}{dx}(x^2) \int e^{2x} dx\} dx]$$

$$= \frac{1}{2} x^3 e^{2x} - \frac{3}{2} [x^2 \cdot \frac{1}{2} e^{2x} - \int (2x) \cdot \frac{1}{2} e^{2x} dx]$$

$$= \frac{1}{2} x^3 e^{2x} - \frac{3}{2} [\frac{x^2 e^{2x}}{2} - \{x \int e^{2x} - \int 1.\frac{e^{2x}}{2} dx\}]$$

$$= \frac{1}{2} x^3 e^{2x} - \frac{3}{2} [\frac{x^2 e^{2x}}{2} - \{x \int e^{2x} - \frac{1}{4}\}] + c$$

$$= (\frac{1}{2} x^3 - \frac{3}{4} x^2 + \frac{3}{4} x - \frac{3}{8})e^{2x} + c$$

[MCQ and concess
 $\int x^3 e^{2x} dx = \{\frac{1}{2} x^3 - \frac{1}{2} (3x^2) + \frac{1}{2} (6x) - \frac{1}{2} \frac{e^{2x}}{4} + \frac{3}{8} e^{2x}\}$

20. (a) $\int x \sin x dx$ $= x \int \sin x dx - \int \{ \frac{d}{dx}(x) \int \sin x dx \} dx$ $= x(-\cos x) - \int 1.(-\cos x) dx$ $= -x\cos x + \sin x + c$ **20. (b)** $\int x \cos x dx$ $= x \int \cos x dx - \int \{ \frac{d}{dx}(x) \int \cos x \, dx \} \, dx$ $= x \sin x - \int 1 \sin x dx$ $= x \sin x + \cos x + c$ **20(c)** $\int x^2 \sin x dx$ $= x^2 \int \sin x dx - \int \{\frac{d}{dx}(x^2) \int \sin x \, dx\} \, dx$ $= x^2(-\cos x) - \int 2x(-\cos x) dx$ $= -x^2 \cos x + 2[x \int \cos x -$ $\int \left\{ \frac{d}{dx}(x) \int \cos x \, dx \right\} dx$ $= -x^{2} \cos x + 2[x \sin x - \int 1 \sin x \, dx]$ $= -x^{2} \cos x + 2[x \sin x - (-\cos x)] + c$ $= -x^2 \cos x + 2x \sin x + 2\cos x + c$ 20(d) ধরি, I = $\int \cos \sqrt{x} \, dx$ এবং $\sqrt{x} = z$ তাহলে $\frac{1}{2\sqrt{r}} dx = dz \Rightarrow dx = 2z dz$ এবং $I = \int 2z \cos z \, dz$ $= 2\left[z\int\cos z \, dz - \int \left\{\frac{d}{dz}(z)\int\cos z \, dz\right\} dz\right]$ $= 2[z\sin z) - \int 1.\sin z dz]$ $= 2z \sin z - 2(-\cos z) + c$ $= 2\sqrt{x} \sin \sqrt{x} + 2\cos \sqrt{x} + c$ 21.(a) $\int x^2 \cos^2 x \, dx$ [2.5.9. 7. 70, 36]

$$= \int x^{2} \frac{1}{2} (1 + \cos 2x) dx$$

$$= \frac{1}{2} [\int x^{2} dx + \int x^{2} \cos 2x dx]$$

$$= \frac{1}{2} [\int x^{2} dx + \int x^{2} (\cos 2x) dx]$$

$$+ 2(-\frac{1}{2^{2}} \cos 2x) + 2(-\frac{1}{2^{2}} \cos 2x) + 2(-\frac{1}{2^{3}} \sin 2x)] + c$$

$$= \frac{1}{2} [\frac{x^{3}}{3} + \frac{x^{2}}{2} \sin 2x + \frac{1}{2} x \cos 2x - \frac{1}{4} \sin 2x] + c$$

21(b) $\int x \sin x \cos x dx = \frac{1}{2} \int x \sin 2x dx$

$$= \frac{1}{2} [x \int \sin 2x dx - \int \{\frac{d}{dx}(x) \int \sin 2x dx\} dx]$$

$$= \frac{1}{2} [x(-\frac{\cos 2x}{2}) - \int 1.(-\frac{\cos 2x}{2}) dx]$$

$$= \frac{1}{4} [-x \cos 2x + \frac{\sin 2x}{2}] + c$$

21(c) $\int x \sin x \sin 2x dx$

$$= \int x \frac{1}{2} (\cos x - \cos 3x) dx$$

$$= \frac{1}{2} [x \int \cos x dx - \int \{\frac{d}{dx}(x) \int \cos x dx\} dx]$$

$$= \frac{1}{2} [x \int \cos x dx - \int \{\frac{d}{dx}(x) \int \cos 3x dx\} dx]$$

$$= \frac{1}{2} [x \sin x - \int 1.\sin x dx$$

$$-x \frac{\sin 3x}{3} + \int 1.\frac{\sin 3x}{3} dx]$$

$$= \frac{1}{2} [x \sin x + \cos x - \frac{x \sin 3x}{3} - \frac{\cos 3x}{9}] + c$$

4. (c) $\int \frac{x}{\sin^{2} x} dx = \int x \cos ec^{2} x dx$

$$= x \int \cos ec^{2} x dx - \int \{\frac{d}{dx}(x) \int \cos ec^{2} x dx\}$$

$$= x(-\cot x) - \int 1.(-\cot x) dx$$

$$= -x \cot x + \ln |\sin x| + c$$

21(d) $\forall \mathbf{a}, \mathbf{l} = \int \sec^3 x \, dx = \int \sec^2 x \sec x \, dx$ $= \sec x \int \sec^2 x \, dx - \int \{\frac{d}{dx} (\sec x) \int \sec^2 x \, dx\} dx$ $= \sec x \tan x - \int \sec x \tan x \tan x dx$ $= \sec x \tan x - \int \sec x (\sec^2 x - 1) dx$ $= \sec x \tan x - \int \sec^3 x dx + \int \sec x dx$ \Rightarrow I = sec x tan x - I + ln $| tan(\frac{\pi}{4} + \frac{x}{2}) + c_1$ \Rightarrow 2I = sec x tan x + ln $| tan(\frac{\pi}{4} + \frac{x}{2}) + c_1$ \Rightarrow I = $\frac{1}{2}$ sec x tan x + $\frac{1}{2}$ ln | tan($\frac{\pi}{4} + \frac{x}{2}$) + $\frac{1}{2}c_1$ $\Rightarrow I = \frac{1}{2} \sec x \tan x + \frac{1}{2} \ln |\tan(\frac{\pi}{4} + \frac{x}{2})| + c$ **22(a)** $\int x^2 \ln x dx$ $= \ln x \int x^2 dx - \int \{\frac{d}{dx} (\ln x) \int x^2 dx\} dx$ $= \ln x \cdot \frac{x^3}{2} - \int \frac{1}{x} \cdot \frac{x^3}{2} dx = \frac{x^3}{2} \ln x - \frac{1}{2} \int x^2 dx$ $=\frac{x^{3}}{2}\ln x - \frac{1}{2} \cdot \frac{x^{3}}{2} + c = \frac{x^{3}}{2}\ln x - \frac{x^{3}}{2} + c$ $22(\mathbf{b}) \int x^3 \ln x dx$ $= \ln x \int x^3 dx - \int \{\frac{d}{dx} (\ln x) \int x^3 dx\} dx$ $= \ln x \cdot \frac{x^4}{4} - \int \frac{1}{x} \cdot \frac{x^4}{4} dx = \frac{x^4}{4} \ln x - \frac{1}{4} \int x^3 dx$ $=\frac{x^4}{4}\ln x - \frac{1}{4} \cdot \frac{x^4}{4} + c = \frac{x^4}{4}\ln x - \frac{x^4}{16} + c$ $22(c) \int \frac{\ln x}{x^2} dx$ $= \ln x \int \frac{1}{x^2} dx - \int \{ \frac{d}{dx} (\ln x) \int \frac{1}{x^2} dx \} dx$ $= \ln x \cdot (-\frac{1}{x}) - \int \frac{1}{x} \cdot (-\frac{1}{x}) dx$

$$= -\frac{1}{x} \ln x + \int \frac{1}{x^2} dx = -\frac{1}{x} \ln x + (-\frac{1}{x}) + c$$

$$= -\frac{1}{x} \ln x - \frac{1}{x} + c$$
23(a) $\int 2^x \sin x \, dx = \int e^{x \ln 2} \sin x \, dx$

$$= \frac{e^{x \ln 2}}{(\ln 2)^2 + 1^2} [\ln 2 \cdot \sin x - 1 \cdot \cos x] + c$$
[$\Im e^{x \ln 2} \sin x - 1 \cdot \cos x + c$
[$\Im e^{x \ln 2} \sin x - 1 \cdot \cos x + c$
[$\Im e^{x \ln 2} \sin x - 1 \cdot \cos x + c$
[$\Im e^{x \ln 2} \sin x - 1 \cdot \cos x + c$
[$\Im e^{x \ln 2} \sin x - 1 \cdot \cos x + c$
[$\Im e^{x \ln 2} \sin x - 1 \cdot \cos x + c$
[$\Im e^{x \ln 2} \sin x - 1 \cdot \cos x + c$
[$\Im e^{x \ln 2} \sin x - 1 \cdot \cos x + c$
[$\Im e^{x \ln 2} \sin x - 1 \cdot \cos x + c$
[$\Im e^{x \ln 2} \sin x - 1 \cdot \cos x + c$
[$\Im e^{x \ln 2} \sin x - 1 \cdot \cos x + c$
[$\Im e^{x \ln 2} \sin x - 1 \cdot \cos x + c$
[$\Im e^{x \ln 2} \sin x - 1 \cdot \cos x + c$
[$\Im e^{x \ln 2} \sin x - 1 \cdot \cos x + c$
[$\Im e^{x \ln 2} \sin x - 1 \cdot \cos x + c$
[$\Im e^{x \ln 2} \sin x - 1 \cdot \cos x + c$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$]
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$]
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$]
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$]
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$]
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$]
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$]
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$]
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$]
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$]
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$]
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$]
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$]
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$]
[$\Im e^{x \ln 2} \sin x + 1 \cdot \ln x \, dx$]
[$\Im e^{x \ln 2} \sin x + 1 \cdot$

α

$$= \frac{e^{y}}{y} + c = \frac{x}{\ln x} + c$$
26.
$$\int \frac{x}{(x-1)^{2}(x+2)} dx$$
At $a, \frac{x}{(x-1)^{2}(x+2)} = \frac{A}{x-1} + \frac{B}{(x-1)^{2}} + \frac{C}{x+2}$
 $\Rightarrow x = A(x-1)(x+2) + B(x+2) + C(x-1)^{2} \cdots (1)$
(1) $a = 1$ and $x = 1$

862
1.
$$\int \frac{dx}{\cos^2 x \sqrt{\tan x}} = ?$$
 [DU 07-08; NU06-07]
Solⁿ: I= $\int \frac{\sec^2 x dx}{\sqrt{\tan x}} = \int \frac{d(\tan x)}{\sqrt{\tan x}} = 2\sqrt{\tan x}$
2. $\int \frac{e^x (1+x)}{\cos^2 (xe^x)} dx = ?$ [DU 07-08; NU07-
08; KU 03-04]
Solⁿ: I = $\int \sec^2 (xe^x) d(xe^x) = \tan(xe^x)$
3. $\int \frac{dx}{x + \sqrt{x}} = ?$ [DU 02-03]
Solⁿ: I = $\int \frac{dx}{\sqrt{x}(\sqrt{x}+1)} = 2\int \frac{d(\sqrt{x}+1)}{\sqrt{x}+1}$
= $2\ln(\sqrt{x}+1) + c$
4. $\int \sin^5 x \cos x dx = ?$ [DU 98-99]
Solⁿ: I = $\int \sin^5 x d(\sin x) = \frac{1}{6} \sin^6 x + c$
5. $\int \frac{dx}{e^{x} + e^{-x}} = ?$ [JU 06-07; CU 04-05]
Solⁿ: I = $\int \frac{e^x dx}{e^{2x} + 1} = \int \frac{d(e^x)}{1 + (e^x)^2}$
= $\tan^{-1}(e^x) + c$
6. $\int \sqrt{\frac{1+x}{1-x}} dx = ?$ [DU 95-96; JU 07 08]
Solⁿ: I = $\int \frac{1+x}{\sqrt{1-x^2}} dx$
= $\int \frac{1}{\sqrt{1-x^2}} dx + (-\frac{1}{2}) \int \frac{d(1-x^2)}{\sqrt{1-x^2}}$
= $\sin^{-1} x - \frac{1}{2} \cdot 2\sqrt{1-x^2} = \sin^{-1} x - \sqrt{1-x^2}$
7. $\int xe^x dx = ?$ [JU 07-08]
Solⁿ: I = (x+1)e^x + c
8. $\int \frac{dx}{ay - bx} = ?$ [SU 06-07]

$$\begin{aligned} \sum_{q \in [0,\infty]} \sum_{q \in [0,\infty]$$

 $=\frac{x^{2}}{2}\ln(1+2x)-\{\frac{x^{2}}{4}-\frac{1}{4}x+\frac{1}{8}\ln(2x+1)\}+c$ $=\frac{x^{2}}{2}\ln(1+2x)-\frac{x^{2}}{4}+\frac{1}{4}x-\frac{1}{8}\ln(2x+1)+c$ 15. $\int \log_3 x \, dx = ?$ [CU 06-07] $Sol^{n}: I = x \log_3 x - \int \frac{1}{x \ln 3} x \, dx$ $= x \log_3 x - \frac{x}{\ln^3} + c$ অন্তরক ও যোগজের মিশ্রিত সমসা 16. $y = x^2$ হলে $\int (\frac{dy}{dx}) dx$ এর মান কত ? [CU 02-03; IU 05-06] Sol": $\int (\frac{dy}{dx}) dx = y + c = x^2 + c$ 17. যদি $\frac{dy}{dx} = 2a$ হয় তাহলে y এর মান কত [CU 02-03] **Sol**^{*u*}: $\frac{dy}{dx} = 2a \implies y = \int 2adx = 2ax + c$ 18. $\int f(x)dx = \cos x + k$ হলে f(x) এর মান [CU 02-03] কত ? Solⁿ: $f(x) = \frac{d}{dx}(\cos x + k) = -\sin x$ 19. $\frac{d}{dx}(\int y dx)$ এর মান কত যখন $y = \sin x^2$ [CU 02-03] Sol": $\frac{d}{dx}(\int y dx) = y = \sin x$

<u>आहेमिक छन्नोहम</u> 20. $\frac{x+17}{(x-3)(x+2)} = \frac{a}{x-3} + \frac{b}{x+2}$ হলে a ও b এর মান কত? [DU 08-09; JU, CU 07-08] Solⁿ: $a = \frac{3+17}{3+2} = 4$; $b = \frac{-2+17}{-2-3} = -3$ 21. $\frac{x+A}{(x+1)(x-3)} \equiv \frac{B}{x+1} + \frac{1}{x-3}$ Solⁿ: $\frac{3+A}{3+1} = 1 \Rightarrow A = 1$; $B = \frac{-1+A}{-1-3} = \frac{-1+1}{-4} = 0$

800

$$\begin{aligned} & \begin{array}{c} \widehat{\mathsf{Priffs}} \operatorname{converses} \operatorname{seq} \operatorname{seq}$$

.

1

$$= \int_{0}^{\pi/2} \frac{1}{4} (3\cos x + \cos 3x) dx$$

$$= \frac{1}{4} \left[3\sin x + \frac{1}{3}\sin 3x \right]_{0}^{\pi/2}$$

$$= \frac{1}{4} (3\sin \frac{\pi}{2} + \frac{1}{3}\sin \frac{3\pi}{2} - 3\sin 0 - \frac{1}{3}\sin 0)$$

$$= \frac{1}{4} (3.1 + \frac{1}{3}(-1) - 0 - 0) = \frac{1}{4} \times \frac{8}{3} = \frac{2}{3}$$

4(c) $\int_{0}^{\pi/2} \cos^{4} x \, dx$ [4.'08]
 $\cos^{4} x = \frac{1}{4} (2\cos^{2} x)^{2} = \frac{1}{4} (1 + \cos 2x)^{2}$

$$= \frac{1}{4} (1 + 2\cos 2x + \cos^{2} 2x)$$

$$= \frac{1}{4} (1 + 2\cos 2x + \frac{1}{2}(1 + \cos 4x))$$

$$= \frac{1}{4} (\frac{3}{2} + 2\cos 2x + \frac{1}{2}\cos 4x)$$

 $\int_{0}^{\pi/2} \cos^{4} x \, dx$

$$= \frac{1}{4} \left[\frac{3}{2} x + \frac{2}{2}\sin 2x + \frac{1}{2} \cdot \frac{1}{4}\sin 4x \right]_{0}^{\pi/2}$$

$$= \frac{1}{4} (\frac{3\pi}{2} \cdot \frac{\pi}{2} + \sin \pi + \frac{1}{8}\sin 2\pi - 0)$$

$$= \frac{1}{4} (\frac{3\pi}{4} + 0) = \frac{3\pi}{16}$$

4(d) $\int_{0}^{\pi/4} \tan^{2} x \, dx = \int_{0}^{\pi/4} (\sec^{2} x - 1) \, dx$

$$= [\tan x - x]_{0}^{\pi/4} = \tan \frac{\pi}{4} - \frac{\pi}{4} - (\tan 0 - 0)$$

$$= 1 - \frac{\pi}{4}$$

4(e) $\int_{0}^{\pi/2} \sin^{2} 2\theta \, d\theta$ [41.c41.'c5]

$$= \int_{0}^{\pi/2} \frac{1}{2} (1 - \cos 4\theta) \, d\theta = \frac{1}{2} \left[x - \frac{\sin 4x}{4} \right]_{0}^{\pi/2}$$

$$= \frac{1}{2} \{\frac{\pi}{2} - 0 - (0 - 0)\} = \frac{\pi}{4}$$

5 (a) $\int_{0}^{\pi/2} \cos^{5} x \sin x dx$ [FL'ow, FR.'30; T.'35]

$$= -\int_{0}^{\pi/2} (\cos x)^{5} (-\sin x) dx$$

$$= -\left[\frac{1}{6} (\cos x)^{6}\right]_{0}^{\pi/2}$$

$$= -\frac{1}{6} \{(\cos \frac{\pi}{2})^{6} - (\cos 0)^{6}\}$$

$$= -\frac{1}{6} \{0 - 1\} = \frac{1}{6}$$

5(b) $4 \operatorname{fr} I = \int_{0}^{\pi/4} \sin^{4} x \cos^{4} x dx$ [4.5.4%]
 $\sin^{4} x \cos^{4} x = \frac{1}{16} (2 \sin x \cos x) = \frac{1}{16} \sin^{4} 2x$

$$= \frac{1}{16} \cdot \left\{\frac{1}{2} (1 - \cos 4x)\right\}^{2}$$

$$= \frac{1}{64} \{1 - 2 \cos 4x + \cos^{2} 4x\}$$

$$= \frac{1}{128} (3 - 4 \cos 4x + \cos 8x)$$

 $\therefore I = \frac{1}{128} [3x - 4 \cdot \frac{1}{4} \sin 4x + \frac{1}{8} \sin 8x]_{0}^{\pi/4}$

$$= \frac{1}{128} (\frac{3\pi}{4} - \sin \pi + \frac{1}{8} \sin 2\pi - 0)$$

$$= \frac{1}{128} \times \frac{3\pi}{4} = \frac{3\pi}{512}$$

5(c) $\int_{0}^{\pi/2} \sin^{2} x \sin 3x dx$
 $[\operatorname{T} \cdot \operatorname{oet}; \operatorname{TL} \cdot \operatorname{os}; \operatorname{T.'s8}]$

$$= \int_{0}^{\pi/2} \frac{1}{2} (1 - \cos 2x) \sin 3x dx$$

$$= \int_{0}^{\pi/2} (\frac{1}{2} \sin 3x - \frac{1}{2} \cos 2x \sin 3x) dx$$

$$= \int_{0}^{\pi/2} (\frac{1}{2} \sin 3x - \frac{1}{4} (\sin 5x + \sin x)) dx$$

উচ্চতর গণিত: ১ম পত্রের সমাধান বঠঘর কম 865 $\left| -\frac{1}{2} \cdot \frac{1}{2} \cos 3x - \frac{1}{4} \left(-\frac{1}{5} \cos 5x - \cos x \right) \right|^{n}$ $= -\frac{1}{6}(\cos\frac{3\pi}{2} - \cos 0) + \frac{1}{2b}(\cos\frac{5\pi}{2} - \cos 0)$ $+\frac{1}{4}(\cos\frac{\pi}{2}-\cos 0)$ $-\frac{1}{6}(0-1)+\frac{1}{20}(0-1)+\frac{1}{4}(0-1)$ $\frac{1}{6} - \frac{1}{20} - \frac{1}{4} - \frac{10 - 3 - 15}{60} - \frac{-8}{60} - \frac{-2}{15}$ $\mathfrak{S}(\mathfrak{g}) \ll \int_0^{\pi} 3\sqrt{1 - \cos x} \sin x \, dx \qquad [\mathbb{R}^{3/2} \otimes \mathfrak{g}]$ $dz = -\sin x dx$ $z = \cos x$ x = 0 and z = 1 $x = \pi$ and z = -1 $-3\int_{1}^{1}\sqrt{1-z}dz = -3\left|-\frac{2}{3}(1-z)^{\frac{3}{2}}\right|^{1}$ $2!(1+1)^{\frac{3}{2}} - (1-1)^{\frac{3}{2}}$ $2 \times 2\sqrt{2} = 4\sqrt{2}$ $\lim_{\theta \to 0} \int_{0}^{\pi/2} (1 + \cos \theta)^{2} \sin \theta \, d\theta$ [YTN), UN-08; (US)] $z = 1 + \cos x$ $dz = -\sin x dx$ x=0 we z=2 $x=\frac{\pi}{2}$ z=1 $\int_0^{\pi/2} (1 + \cos \theta)^2 \sin \theta \, d\theta = -\int_0^1 z^2 dz$ $\left[-\frac{z^3}{3}\right]^4 = -(\frac{1^3}{3} - \frac{2^3}{3}) = -(\frac{1}{3} - \frac{8}{3}) = \frac{7}{3}$ $\int_0^{\pi/2} \sin x \sin 2x \, dx$ $\int_{0}^{\frac{\pi}{2}} \frac{1}{2} (\cos x - \cos 3x) \, dx$ $\frac{1}{2} \left[\sin x - \frac{1}{3} \sin 3x \right]^{\frac{\pi}{2}}$ $\frac{1}{2}(\sin\frac{\pi}{2} - \frac{1}{3}\sin\frac{3\pi}{2} - \sin 0 + \frac{1}{3}\sin 0)$

 $\frac{1}{2}\left\{1-\frac{1}{3}(-1)-0+0\right\}=\frac{1}{2}\times\frac{4}{3}=\frac{2}{3}$ $\mathfrak{H}(\mathfrak{b}) \int_{0}^{\pi/2} \cos 2x \cos 3x \, dx$ {**₹**. $\int_{0}^{\pi/2} \frac{1}{2} (\cos 5x + \cos x) \, dx$ $\frac{1}{2} \left[\frac{1}{5} \sin 5x + \sin x \right]^{\pi/2}$ $\frac{1}{2}(\frac{1}{5}\sin\frac{5\pi}{2} + \sin\frac{\pi}{2} - \frac{1}{5}\sin 0 - \sin 0)$ $\frac{1}{2}(\frac{1}{5}.1+1) = \frac{1}{2} \times \frac{6}{5} = \frac{3}{5}$ $6(x) \int_0^{\pi/2} \sin 2x \cos x \, dx \quad [3, \infty]$ $\int_{0}^{\pi/2} \frac{1}{2} (\sin 3x + \sin x) \, dx$ $= \frac{1}{2} \left[-\frac{1}{3} \cos 3x - \cos x \right]^{n/2}$ $\frac{1}{2}(-\frac{1}{3}\cos 3\frac{\pi}{2}-\cos \frac{\pi}{2}+\frac{1}{3}\cos 0+\cos 0)$ $\frac{1}{2}\left[-\frac{1}{3}(\cos 3\frac{\pi}{2}-\cos 0)-(\cos \frac{\pi}{2}-\cos 0)\right]$ $\frac{1}{2}\left[-\frac{1}{3}(0-1)-(0-1)\right] = \frac{1}{2}\left(\frac{1}{3}+1\right) = \frac{2}{3}$ 7.(a) $\Re_{1} = \int_{0}^{\pi/2} \sqrt{\cos x} \sin^3 x dx$ $\int_{0}^{\pi/2} \sqrt{\cos x} \sin^2 x \sin x dx$ $\int_0^{\pi/2} \sqrt{\cos x} (1 - \cos^2 x) \sin x dx$ $z = \cos x$ $dz = -\sin x dx$ $x = 0 \quad \text{Rescale } z = 1 \qquad x = \frac{\pi}{2} \quad \text{Rescale } z = 0$ $= -\int_{1}^{0} \sqrt{z}(1-z^2) dz$ $-\int_{1}^{0} (\sqrt{z} - z^{5/2}) dz = -\left[\frac{z^{3/2}}{3/2} - \frac{z^{7/2}}{7/2}\right]^{0}$ $-\left\{\frac{2}{3}(0-1)-\frac{2}{7}(0-1)\right\} = -\left(-\frac{2}{3}+\frac{2}{7}\right)$

$$\frac{2\pi \tan \pi}{\sqrt{2} \sqrt{3}} = \frac{8}{21}$$
7(b) Afd $\int_{0}^{\pi/2} \frac{\cos^{3} x dx}{\sqrt{\sin x}} \{ \sqrt{3}, \sqrt{3}, \sqrt{3}, \sqrt{3} \}$

$$\int_{0}^{\pi/2} \frac{\cos^{2} x \cos x dx}{\sqrt{\sin x}} \{ \sqrt{3}, \sqrt{$$

$$8^{(3/2)} \int_{0}^{1} \frac{\sin^{-1} x}{\sqrt{1-x^{2}}} dx \{ \sqrt[3]{}, 08_{3} [\sqrt[3]{}, 09_{3} \sqrt[3]{}, 09_{3}$$

X D
B
$$\frac{1}{2} \{(\frac{\pi}{2})^2 - 0\} = \frac{\pi^2}{8}$$

B(c) Add, $\int_0^1 \frac{\tan^{-1}x}{1+x^2} dx$ [ACBB obs. 5]
 $z = \tan^{-1}x$ $dz = \frac{1}{1+x^2} dx$
B(a) $\int_0^1 \frac{xdz}{\sqrt{1-x^2}} = \left[\frac{z^2}{2}\right]_0^{\pi/4} \frac{1}{2} \frac{\pi^2}{16} = \frac{\pi^2}{32}$
B(a) $\int_0^1 \frac{xdx}{\sqrt{1-x^2}} = \left[\frac{1}{2}\left[2\sqrt{1-x^2}\right]_0^1 - \left(\frac{1-x^2}{\sqrt{1-x^2}}\right)\right]_0^1 - \left(\frac{1-x^2}{\sqrt{1-x^2}}\right) = -\left(\frac{1}{2}\right] \left[2\sqrt{1-x^2}\right]_0^1 - \left(\frac{1-x^2}{\sqrt{1-x^2}}\right]_0^1 - \left(\frac{1-x^2}{\sqrt{1-x^2}}\right) = -\left(\frac{1}{2}\right] \left[2\sqrt{x^2-15}\right]_4^8 \frac{d(x^2-15)}{\sqrt{x^2-15}} - \frac{1}{2}\left[2\sqrt{x^2-15}\right]_4^8 \frac{\sqrt{64-15} - \sqrt{16-15}}{\sqrt{64-15} - \sqrt{16-15}} \frac{\sqrt{64-15} - \sqrt{16-15}}{\sqrt{64-15} - \sqrt{16-15}} - \frac{1}{4}\left[2\sqrt{9-2x^2}\right]_0^2 - \frac{1}{4}\left[2\sqrt{9-2x^2}\right]_0^2 - \frac{1}{2}\left(\sqrt{9-8} - \sqrt{9-0}\right) = -\frac{1}{2}(1-3) = \frac{9}{2}(d)$ After $\int_0^1 \frac{xdx}{\sqrt{4-x^2}}$
B(x) $\int_0^1 \frac{xdx}{\sqrt{4-x^2}} dz = -2xdx$
 $x = 0$ After $z = 4$ $x = 1$ $z = 3$

$$\int_{-\frac{1}{2}}^{3} \frac{dz}{\sqrt{z}} = -\frac{1}{2} [2\sqrt{z}]_{4}^{3}$$

$$-(\sqrt{3} - \sqrt{4}) = 2 - \sqrt{3}$$

$$(c) \qquad \int_{-2}^{5} \frac{7x}{\sqrt{x^{2} + 3}} dx \qquad [NLOWE '08]$$

$$z = x^{2} + 3 \qquad dz = 2xdx$$

$$x = -2 \text{ Wey } z = 7 \qquad x = 5 \qquad z = 28$$

$$I \qquad \frac{7}{2} \int_{7}^{28} \frac{dz}{\sqrt{z}} = \frac{7}{2} [2\sqrt{z}]_{7}^{28}$$

$$7(\sqrt{28} - \sqrt{7}) = 7(2\sqrt{7} - \sqrt{7}) = 7\sqrt{7}$$

$$9(1) \qquad \text{Wey, III } \int_{0}^{1} x^{3} \sqrt{1 + 3x^{4}} dx \qquad \text{'oby; III } (02, \text{'oby})$$

$$\text{Wey, III } \int_{0}^{1} x^{3} \sqrt{1 + 3x^{4}} dx \qquad \text{'oby; III } (02, \text{'oby})$$

$$\text{Wey, III } \int_{0}^{1} \sqrt{z} dz = \frac{1}{12} [\frac{z^{3/2}}{3/2}]_{1}^{4}$$

$$I \qquad \frac{1}{12} \int_{1}^{4} \sqrt{z} dz = \frac{1}{12} [\frac{z^{3/2}}{3/2}]_{1}^{4}$$

$$I \qquad \frac{1}{12} \times \frac{2}{3} (4^{3/2} - 1) = \frac{1}{18} (8 - 1) = \frac{7}{18}$$

$$\text{Wey, III } (02, \text{'oby; III } (02, \text{'oby})$$

$$z = x^{3} \qquad dz = 3x^{2} dx \qquad \text{Wey or } x = 3e$$

$$\int_{1}^{2} x^{2} e^{x^{3}} dx = \frac{1}{3} \int_{1}^{8} e^{z} dz = \frac{1}{3} [e^{z}]_{1}^{8}$$

$$= \frac{1}{3} (e^{8} - e^{1}) = \frac{1}{3} (e^{8} - e)$$

$$\text{Wey of } x = 0$$

$$x = 1 \qquad z = 0$$

$$x = 0 \qquad x = 1 \qquad z = 1$$

$$\int_{0}^{1} xe^{x^{2}} dx \qquad [$$

$$x = 0 \qquad x = 1 \qquad z = 1$$

$$\int_{0}^{1} xe^{x^{2}} dx \qquad [$$

$$x = 0 \qquad x = 1 \qquad z = 1$$

$$\int_{0}^{1} xe^{x^{2}} dx \qquad [$$

$$x = 0 \qquad x = 1 \qquad z = 1$$

$$\int_{0}^{1} xe^{x^{2}} dx \qquad \frac{1}{2} \int_{0}^{1} e^{z} dz = \frac{1}{2} [e^{z}]_{0}^{1}$$

$$\frac{1}{2}(e^{1} - e^{0}) = \frac{1}{2}(e^{-1})$$

$$H(e) \int_{0}^{\ln 2} \frac{e^{x}}{1 + e^{x}} dx$$

$$x = 0$$

$$z = 1 + e^{x} dz = e^{x} dx$$

$$x = 0$$

$$z = 1 + e^{0} = 1 + 1 = 2$$

$$x = \ln 2 \quad \text{(if } z = 1 + e^{\ln 2} = 1 + 2 = 3$$

$$\int_{0}^{\ln 2} \frac{e^{x}}{1 + e^{x}} dx = \int_{2}^{3} \frac{dz}{z} = [\ln z]_{2}^{3}$$

$$\ln 3 - \ln 2 = \ln \frac{3}{2}$$

$$H(e) \int_{1}^{3} \frac{1}{x} \cos(\ln x) dx$$

$$\log(x) \int_{1}^{3} \frac{1}{x} \cos(\ln x) dx$$

$$\log(x) \int_{0}^{\pi/3} \cos z dz$$

$$[\sin z]_{1}^{\ln 3} = \sin(\ln 3) - \sin 0 = \sin(\ln 3)$$

$$H(e) \int_{\pi/3}^{\pi/2} \frac{\cos^{5} x}{\sin^{7} x} dx$$

$$[\pi, -\cos x, -\cos ec^{2} x dx = dz$$

$$\int_{\pi/3}^{\pi/2} \cot^{5} x \cos ec^{2} x dx$$

$$\lim_{x \to \infty} x = \frac{\pi}{3}$$

$$z = \cot \frac{\pi}{3} = \frac{1}{\sqrt{3}}$$

$$x = \frac{\pi}{2} \quad \text{(if } z = \cot \frac{\pi}{2} = 0$$

$$\int_{\pi/3}^{\pi/2} \frac{\cos^{5} x}{\sin^{7} x} dx$$

$$\int_{1/\sqrt{3}}^{\pi/2} \frac{\cos^{5} x}{\sin^{7} x} dx$$

$$\int_{1/\sqrt{3}}^{\pi/2} \frac{\cos^{5} x}{\sin^{7} x} dx$$

$$\int_{1/\sqrt{3}}^{0} z^{5} (-dz)$$

$$-\left[\frac{1}{6} z^{6}\right]_{1/\sqrt{3}}^{0} - \frac{1}{6} \{0 - (\frac{1}{\sqrt{3}})^{6}\} = \frac{1}{162}$$

11.(b) ধরি, I = $\int_0^{\pi/4} \tan^3 x \sec^2 x dx$ [ग.'o৬;
মা.'০৬,'০৮; ক্.ু, সি , দি.'০৯; ঢা.,ব্.'১১; সি.'১৩]
এবং $\tan x = z$: $\sec^2 x dx = dz$
সীমা: $x = 0$ হলে $z = \tan 0 = 0$ এবং
$x = \frac{\pi}{4}$ হল $z = \tan \frac{\pi}{4} = 1$
$\therefore I = \int_0^1 z^3 dz = \left[\frac{1}{4}z^4\right]_0^1 = \frac{1}{4}(1^4 - 0^4) = \frac{1}{4}$
11(c) $\int_0^{\pi/4} (\tan^3 x + \tan x) dx$ [4. or]
$= \int_0^{\pi/4} (\tan^2 x + 1) \tan x dx$
$= \int_0^{\pi/4} \sec^2 x \tan x dx$
$= \int_0^{\pi/4} (\tan x) d(\tan x) = \left[\frac{1}{2} (\tan x)^2\right]_0^{\pi/4}$
$=\frac{1}{2}\left\{\left(\tan\frac{\pi}{4}\right)^2 - \left(\tan 0\right)^2\right\} = \frac{1}{2}\left\{\left(1\right)^2 - 0\right\} = \frac{1}{2}$
11(d) $\int_0^{\pi/4} \tan^2 x \sec^2 x dx$ [51.'00,'30; \overline{q} .
'০৪,'০৬; য. '০৪; ঢা. '০৫; রা. '০৫; চ. '১১]
ধরি, $\tan x = z$: $\sec^2 x dx = dz$
সীমা: $x = 0$ হলে $z = \tan 0 = 0$ এবং
$x = \frac{\pi}{4}$ হলে $z = \tan \frac{\pi}{4} = 1$
$\int_0^{\pi/4} \tan^2 x \sec^2 x dx = \int_0^1 z^2 dz$
$= \left[\frac{1}{3}z^{3}\right]_{0}^{1} = \frac{1}{3}(1^{3} - 0^{3}) = \frac{1}{3}$
12. (a) $\int xe^{-3x} dx$ [fr.'.'
$= x \int e^{-3x} dx - \int \{\frac{d}{dx}(x) \int e^{-3x} dx\} dx$
$= x(-\frac{1}{3}e^{-3x}) - \int 1.(-\frac{1}{3}e^{-3x})dx$
$= -x\frac{1}{3}e^{-3x} + \frac{1}{3}(-\frac{1}{3}e^{-3x})$

$$= -\frac{1}{3}xe^{-3x} - \frac{1}{9}e^{-3x} = -\frac{1}{9}(3x+1)e^{-3x}$$

$$\therefore \int_{0}^{1} xe^{-3x} dx = \left[-\frac{1}{9}(3x+1)e^{-3x}\right]_{0}^{1}$$

$$= -\frac{1}{9}\{(3+1)e^{-3} - (0+1)e^{-0}\}$$

$$= -\frac{1}{9}(4e^{-3}-1) = \frac{1}{9}(1-4e^{-3})$$

12(b) $\int \ln(2x) dx$ [**A**. 'o>;**A**. 'o>]

$$= \ln(2x)\int dx - \int [\frac{d}{dx}\{\ln(2x)\}\int dx] dx$$

$$= x\ln(2x) - \int \frac{2}{2x} \cdot x dx$$

$$= x\ln(2x) - \int dx = x\ln(2x) - x + c$$

$$\therefore \int_{2}^{4}\ln(2x) dx = [x\ln(2x) - x]_{2}^{4}$$

$$= 4\ln 8 - 4 - (2\ln 4 - 2)$$

$$= 4\ln 2^{3} - 4 - 2\ln 2^{2} + 2$$

$$= 12\ln 2 - 2 - 4\ln 2 = 8\ln 2 - 2$$

12(c) $\int \frac{\ln x}{\sqrt{x}} dx$ [**A**...**7**]

$$= \ln x \int \frac{1}{\sqrt{x}} dx - \int [\frac{d}{dx}(\ln x) \int \frac{1}{\sqrt{x}} dx] dx$$

$$= 2\sqrt{x} \ln x - \int \frac{1}{x} \cdot 2\sqrt{x} dx$$

$$= 2\sqrt{x} \ln x - 2\int \frac{1}{\sqrt{x}} dx$$

$$= 2\sqrt{x} (\ln x - 2) + c$$

$$\int_{1}^{4} \frac{\ln x}{\sqrt{x}} dx = [2\sqrt{x}(\ln x - 2)]_{1}^{4}$$

$$= 2\sqrt{4}(\ln 4 - 2) - 2\sqrt{1}(\ln 1 - 2)$$

$$= 8\ln 2 - 8 + 4 = 8\ln 2 - 4$$

12(d) $\int x^{2} \cos x dx$ [**A**...on]

 $= x^{2} \int \cos x \, dx - \int \{\frac{d}{dx}(x^{2}) \int \cos x \, dx\} dx$ $= x^2 \sin x - \int 2x \sin x \, dx$ $= x^{2} \sin x - 2[x \int \sin x \, dx - \int 1.(-\cos x) \, dx]$ $= x^{2} \sin x - 2[x(-\cos x) + \sin x] + c$ $= x^2 \sin x + 2x \cos x - 2 \sin x + c$ $\int_{0}^{\pi/2} x^2 \cos x \, dx$ $= \left[x^{2} \sin x + 2x \cos x - 2 \sin x \right]_{0}^{\pi/2}$ $=(\frac{\pi}{2})^{2}\sin\frac{\pi}{2}+2\cdot\frac{\pi}{2}\cos\frac{\pi}{2}-2\sin\frac{\pi}{2}-0$ $=\frac{\pi^2}{4}.1+2.\frac{\pi}{2}.0-2.1=\frac{\pi^2}{4}-2$ 12(e) $\int x \tan^{-1} x \, dx$ [ता. '٥৮, '১২; ४. '٥৮, '১২; ४. '১১; मि. '১২; क्. '১8] $= \tan^{-1} x \int x dx - \int \{ \frac{d}{dx} (\tan^{-1} x) \int x dx \} dx$ $=\frac{x^2}{2}\tan^{-1}x-\int \frac{1}{1+x^2}\cdot\frac{x^2}{2}dx$ $=\frac{x^2}{2}\tan^{-1}x-\frac{1}{2}\int\frac{1+x^2-1}{1+x^2}dx$ $=\frac{x^2}{2}\tan^{-1}x-\frac{1}{2}\int (1-\frac{1}{1+x^2})dx$ $= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} (x - \tan^{-1} x) + c$ $=\frac{1}{2}\{(x^2+1)\tan^{-1}x-x\}+c$ $\int_{1}^{\sqrt{3}} x \tan^{-1} x \, dx = \left[\frac{(x^2 + 1) \tan^{-1} x - x}{2} \right]^{\sqrt{3}}$ $=\frac{(3+1)\tan^{-1}\sqrt{3}-\sqrt{3}-(1+1)\tan^{-1}1+1}{2}$ $=\frac{1}{2}(4.\frac{\pi}{3}-\sqrt{3}-2.\frac{\pi}{4}+1)$ $=\frac{1}{2}(\frac{4\pi}{3}-\frac{\pi}{2}-\sqrt{3}+1)$

$$= \frac{1}{2} \left(\frac{8\pi - 3\pi}{6} - \sqrt{3} + 1\right) = \frac{1}{12} (5\pi - 6\sqrt{3} + 6)$$

$$12(f) 4 f R, I = \int_{0}^{\pi/2} e^{x} (\sin x + \cos x) dx$$

$$[\mathbf{a}, 'ot, '55; \mathbf{a}, '5o]$$

$$(\mathbf{a} \mathcal{R}, f(x) = \sin x \dots f'(x) = \cos x$$

$$\therefore I = \int_{0}^{\pi/2} e^{x} \{f(x) + f'(x)\} dx$$

$$= \left[e^{x} f(x)\right]_{0}^{\pi/2} = \left[e^{x} \sin x\right]_{0}^{\pi/2}$$

$$= e^{\pi/2} \sin \frac{\pi}{2} - e^{0} \sin 0 = e^{\pi/2} - 0 = e^{\pi/2}$$

$$12(g) \int \ln x dx$$

$$[\mathbf{a}, \mathbf{b}, \mathbf{a}, 'ot]$$

$$= \ln x \int dx - \int \left\{\frac{d}{dx} (\ln x) \int dx\right\} dx$$

$$= x \ln x - \int \frac{1}{x} \cdot x dx = x \ln x - \int dx$$

$$= x \ln x - \int \frac{1}{x} \cdot x dx = [x(\ln x - 1)]_{1}^{0}$$

$$= 0 - 1(\ln 1 - 1) = -1(0 - 1) = 1$$

$$12(h) \int x \sin^{2} x dx$$

$$= \frac{1}{2} \cdot \frac{x^{2}}{2} - \frac{1}{2} [x \int \cos 2x dx - \int \{1, \frac{1}{2} \sin 2x dx\}]$$

$$= \frac{1}{4} x^{2} - \frac{1}{2} [x \cdot \frac{1}{2} \sin 2x - \frac{1}{2} \int \sin 2x dx]$$

$$= \frac{1}{4} (x^{2} - x \sin 2x - \frac{1}{2} \cos 2x) + c$$

$$\therefore \int_{0}^{\pi} x \sin^{2} x dx = \frac{1}{4} [x^{2} - x \sin 2\pi - \frac{1}{2} \cos 2x]_{0}^{\pi}$$

12(i) $\int x \cot^{-1} x \, dx$ [ৰুয়েট'০১] $= \cot^{-1} x \int x dx - \int \{\frac{d}{dx} (\cot^{-1} x) \int x dx\} dx$ $=\frac{x^2}{2}\cot^{-1}x+\int \frac{1}{1+x^2}\cdot\frac{x^2}{2}dx$ $=\frac{x^2}{2}\cot^{-1}x+\frac{1}{2}\int\frac{1+x^2-1}{1+x^2}dx$ $=\frac{x^2}{2}\cot^{-1}x+\frac{1}{2}\int(1-\frac{1}{1+x^2})dx$ $= \frac{x^2}{2} \cot^{-1} x + \frac{1}{2} (x + \cot^{-1} x) + c$ $=\frac{1}{2}\{(x^2+1)\cot^{-1}x+x\}+c$ $\int_{1}^{\sqrt{3}} x \cot^{-1} x \, dx = \left[\frac{(x^2 + 1) \cot^{-1} x + x}{2} \right]^{\sqrt{3}}$ $=\frac{(3+1)\cot^{-1}\sqrt{3}+\sqrt{3}-(1+1)\cot^{-1}1-1}{2}$ $=\frac{1}{2}(4.\frac{\pi}{6}+\sqrt{3}-2.\frac{\pi}{4}-1)$ $=\frac{1}{2}(\frac{2\pi}{3}-\frac{\pi}{2}+\sqrt{3}-1)$ $=\frac{1}{2}(\frac{4\pi-3\pi}{6}+\sqrt{3}-1)=\frac{1}{12}(\pi+6\sqrt{3}-6)$ (j) $\int x \ln x \, dx$ [र.'०८; त्रा.')8] $= \ln x \int x \, dx - \int \{\frac{d}{dx} (\ln x) \int x \, dx\} \, dx$ $= \ln x \cdot \frac{x^2}{2} - \int (\frac{1}{x} \times \frac{x^2}{2}) dx$ $= \ln x \cdot \frac{x^2}{2} - \frac{1}{2} \int x dx = \frac{x^2}{2} \ln x - \frac{1}{2} \times \frac{x^2}{2} + c$ $\int_{1}^{\sqrt{e}} x \ln x \, dx = \left[\frac{x^2}{2} \ln x - \frac{1}{4} x^2 \right]^{\sqrt{e}}$ $=\frac{(\sqrt{e})^{2}}{2}\ln\sqrt{e}-\frac{1}{4}(\sqrt{e})^{2}-\frac{1}{2}\ln 1+\frac{1}{4}$

$$= \frac{e}{2} \cdot \frac{1}{2} \ln e - \frac{1}{4} e - \frac{1}{2} \times 0 + \frac{1}{4}$$

$$= \frac{e}{4} \cdot 1 - \frac{1}{4} e - \frac{1}{2} \times 0 + \frac{1}{4} = \frac{1}{4}$$
13(a) $\int_{0}^{1} \frac{x \, dx}{0 + \frac{1}{4} + \frac{1}{4}}$ [1.8.4.5.06]

$$= \frac{1}{2} \int_{0}^{1} \frac{2x \, dx}{1 + (x^{2})^{2}} = \left[\frac{1}{2} \tan^{-1}(x^{2})\right]_{0}^{1}$$

$$= \frac{1}{2} (\tan^{-1} - \tan^{-1} 0) = \frac{1}{2} (\frac{\pi}{4} - 0) = \frac{\pi}{8}$$
13(b) $\int_{0}^{1} \frac{1 + x}{1 + x^{2}} \, dx$
[st. '06, '06; $\overline{4}$. '09; $\overline{9}$. '09; $\overline{9}$. '09; $\overline{9}$. '78.'32,'38]

$$= \int_{0}^{1} (\frac{1}{1 + x^{2}} + \frac{x}{1 + x^{2}}) \, dx$$

$$= \int_{0}^{1} (\frac{1}{1 + x^{2}} + \frac{1}{2} \frac{2x}{1 + x^{2}}) \, dx$$

$$= \left[\tan^{-1} x + \frac{1}{2} \ln(1 + x^{2}) \right]_{0}^{1}$$

$$= \tan^{-1} 1 + \frac{1}{2} \ln 2 - \tan^{-1} 0 - \frac{1}{2} \ln 1$$

$$= \frac{\pi}{4} + \frac{1}{2} \ln 2 - 0 + 0 = \frac{\pi}{4} + \frac{1}{2} \ln 2$$
13(c) $\int_{0}^{\pi} \frac{\sin x}{1 + \cos^{2} x} \, dx$ [5t. '09]

$$= -\left\{ \tan^{-1}(\cos \pi) - \tan^{-1}(\cos 0) \right\}$$

$$= -\left\{ \tan^{-1}(-1) - \tan^{-1}(1) \right\}$$

$$= -\left(-\frac{\pi}{4} - \frac{\pi}{4} \right) = \frac{\pi}{2}$$
13(d) $4 \ln R$, $I = \int_{0}^{\pi/4} \frac{\sin 2x}{\cos^{4} x + \sin^{4} x} \, dx$ [8.5.4.'09]

$$= (\sin^{2} x + \cos^{2} x)^{2} - 2 \sin^{2} x \cos^{2} x$$

উচ্চতর গণিত: ১ম পত্রের সমাধান বইঘর.কম

$$= 1 - \frac{1}{2} (2 \sin x \cos x)^2 = 1 - \frac{1}{2} \sin^2 2x$$

$$= 1 - \frac{1}{2} (1 - \cos^2 2x) = \frac{1}{2} (1 + \cos^2 2x)$$

$$I = 2 \int_0^{\pi/4} \frac{\sin 2x}{1 + \cos^2 2x} dx$$

$$= 2 (-\frac{1}{2}) \int_0^{\pi/4} \frac{(-2 \sin 2x)}{1^2 + (\cos 2x)^2} dx$$

$$= - [\tan^{-1}(\cos 2x)]_0^{\pi/4}$$

$$= - \{\tan^{-1}(\cos \frac{\pi}{2}) - \tan^{-1}(\cos 0)\}$$

$$= - \{\tan^{-1}0 - \tan^{-1}1\} = -\{0 - \frac{\pi}{4}\} = \frac{\pi}{4}$$

$$I3(e) \int_0^1 \frac{dx}{e^x + e^{-x}}$$

$$[\overline{a}t.'>\varsigma; \overline{b}t. 'og; \overline{a}, 'ob; \overline{s}.'>g; \overline{b}t.'>8]$$

$$= \int_0^1 \frac{e^x dx}{e^x (e^x + e^{-x})} = \int_0^1 \frac{e^x dx}{(e^x)^2 + 1}$$

$$4 \overline{t} \overline{s}, e^x = z \quad \therefore e^x dx = dz$$

$$\overline{t} \overline{s} = 2 \overline{t} \cdot e^x dx = dz$$

$$\overline{t} \overline{s} = 2 \overline{t} \cdot e^x dx = dz$$

$$\overline{t} \overline{s} = 2 \overline{t} \cdot e^x dx = dz$$

$$\overline{t} \overline{s} = 2 \overline{t} \cdot e^x dx = dz$$

$$\overline{t} = 1 \overline{c} \overline{t} = 1 \overline{t} = \frac{1}{2} \overline{t} \frac{dx}{2^2 + 1} = [\tan^{-1} z]_1^e$$

$$= \tan^{-1} e - \tan^{-1}(1) = \tan^{-1} e - \frac{\pi}{4}$$

$$I4(a) \int_3^4 \frac{dx}{25 - x^2} = \left[\frac{1}{2.5} \ln \left|\frac{5 + x}{5 - x}\right|\right]_3^4$$

$$= \frac{1}{10} (\ln \left|\frac{5 + 4}{5 - 4}\right| - \ln \left|\frac{5 + 3}{5 - 3}\right|)$$

$$= \frac{1}{10} (\ln 9 - \ln 4) = \frac{1}{10} \ln \frac{9}{4} = \frac{1}{10} \ln(\frac{3}{2})^2$$

$$= \frac{1}{10} \times 2 \ln(\frac{3}{2}) = \frac{1}{5} \ln(\frac{3}{2})$$

(b)
$$\int_0^{\pi/2} \frac{\cos x dx}{9 - \sin^2 x} dx \ [\overline{v} \cdot \cdot oe; \overline{v} \cdot \overline{v$$

$$\begin{aligned} 4\bar{f}\bar{a}, \sin x = z, \quad \cos xdx = dz \\ \bar{f}\bar{h}\bar{h} : x = 0 \ \bar{\chi}C\bar{f} \ z = 0 \ \bar{q}\bar{q}\bar{q} \ x = \frac{\pi}{2} \ \bar{\chi}C\bar{f} \ z = 1 \\ \therefore \int_{0}^{\pi/2} \frac{\cos xdx}{9 - \sin^{2} x} dx = \int_{0}^{1} \frac{dz}{3^{2} - z^{2}} \\ = \left[\frac{1}{2.3}\ln\left|\frac{3+z}{3-z}\right|\right]_{0}^{1} = \frac{1}{6}(\ln\left|\frac{3+1}{3-1}\right| - \ln\left|\frac{3+0}{3-0}\right|) \\ = \frac{1}{6}(\ln 2 - \ln 1) = \frac{1}{6}\ln 2 \\ 15 \ (a) \ \int_{0}^{1} \frac{dx}{\sqrt{2x - x^{2}}} = \int_{0}^{1} \frac{dx}{\sqrt{1 - (x^{2} - 2x + 1)}} \\ = \int_{0}^{1} \frac{d(x-1)}{\sqrt{1 - (x - 1)^{2}}} = \left[\sin^{-1}(x-1)\right]_{0}^{1} \\ = \sin^{-1}(1-1) - \sin^{-1}(0-1) = \sin^{-1}0 + \sin^{-1}1 \\ = \frac{\pi}{2} \\ 15 \ (b) \ \int_{1/2}^{1} \frac{dx}{x\sqrt{4x^{2} - 1}} = \left[\sec^{-1}(2x)\right]_{1/2}^{1} \\ = \sec^{-1}2 - \sec^{-1}1 = \frac{\pi}{3} - 0 = \frac{\pi}{3} \\ 15(c) \ 4\bar{f}\bar{a} \ I = \int_{1}^{2} \frac{dx}{x^{2}\sqrt{4 - x^{2}}} \qquad [4.5.7.6] \\ 4\bar{q}\bar{q}r \ x = 2\cos\theta \ . \ 5\bar{s}\bar{c}\bar{c}\bar{q} \ dx = -2\sin\theta \ d\theta \\ \bar{f}\bar{h}\bar{h}\bar{l} : x = 1 \ \bar{z}\bar{c}\bar{q} \ \theta = \cos^{-1}\frac{1}{2} = \frac{\pi}{3} \ d\bar{q}r \\ x = 2 \ \bar{z}\bar{c}\bar{q} \ \theta = \cos^{-1}1 = 0 \\ \therefore \ I = \int_{\pi/3}^{0} \frac{-2\sin\theta \ d\theta}{4\cos^{2}\theta\sqrt{4(1 - \cos^{2}\theta)}} \\ = \int_{\pi/3}^{0} \frac{-2\sin\theta \ d\theta}{4\cos^{2}\theta\sqrt{2\sin\theta}} = -\frac{1}{4}\int_{\pi/3}^{0} \sec^{2}\theta \ d\theta \\ = -\frac{1}{4}[\tan\theta]_{\pi/3}^{0} = -\frac{\sqrt{3}}{4} \end{aligned}$$

15 (d) $\int_{0}^{\pi/6} \frac{dx}{1-\tan^2 x}$ [বুয়েট ০৭–০৮] $= \int_0^{\pi/6} \frac{\cos^2 x \, dx}{\cos^2 x - \sin^2 x}$ $=\int_{0}^{\pi/6} \frac{\frac{1}{2}(1+\cos 2x)dx}{\cos 2x} = \frac{1}{2}\int_{0}^{\pi/6} (\sec 2x+1)dx$ $= \frac{1}{2} \left[\frac{1}{2} \ln |\tan 2x + \sec 2x| + x \right]^{\pi/2}$ $= \frac{1}{2} \{ \frac{1}{2} \ln | \tan \frac{\pi}{3} + \sec \frac{\pi}{3} | + \frac{\pi}{6} - 0 \}$ $=\frac{1}{4}\ln|\sqrt{3}+2|+\frac{\pi}{12}=\frac{1}{4}\ln(\sqrt{3}+2)+\frac{\pi}{12}$ 16. (a) ধরি I = $\int_{a}^{a} \sqrt{a^{2} - x^{2}} dx$ [সি. '০৭; রা. '०৫; कू. '०৯, '১७; ह. '०৯; य., त. '১২, मि. '১২, '১8] এবং $x = a \sin \theta$. তাহলে $dx = a \cos \theta \, d\theta$ সীমা : x = 0 হলে $\theta = \sin^{-1} 0 = 0$ এবং x = a **R** $\theta = \sin^{-1} 1 = \frac{\pi}{2}$ $\therefore I = \int_{0}^{\pi/2} \sqrt{a^2 (1 - \sin^2 \theta)} a \cos \theta \, d\theta$ $=a^{2}\int_{0}^{\pi/2}\cos^{2}\theta \,d\theta = \frac{a^{2}}{2}\int_{0}^{\pi/2}(1+\cos 2\theta) \,d\theta$ $=\frac{a^2}{2}\left[\theta+\frac{1}{2}\sin 2\theta\right]^{\pi}$ $= \frac{a^2}{2} \left\{ \left(\frac{\pi}{2} + \frac{1}{2} \sin \pi \right) - \left(0 + \frac{1}{2} \sin 0 \right) \right\}$ $=\frac{a^2}{2}\cdot\frac{\pi}{2}=\frac{1}{4}\pi a^2$ 16(b) $\sqrt[4]{a} I = \int_{0}^{\sqrt{2}} \frac{x^2}{(4-x^2)^{3/2}} dx$ [প্র.ড.প, ফে৫] এবং $x = 2\sin\theta$. তাহলে $dx = 2\cos\theta d\theta$ সীমা : x = 0 হলে $\theta = \sin^{-1} 0 = 0$ এবং $x = \sqrt{2}$ even $\theta = \sin^{-1} \frac{1}{\sqrt{2}} = \frac{\pi}{4}$

 $\therefore I = \int_{0}^{\pi/4} \frac{4\sin^2 \theta (2\cos \theta) \, d\theta}{\left(4(1-\sin^2 \theta)\right)^{3/2}}$ $= \int_{0}^{\pi/4} \frac{8\sin^2\theta\cos\theta\,d\theta}{8\cos^3\theta} = \int_{0}^{\pi/4} \tan^2\theta\,d\theta$ $= \int_{0}^{\pi/4} (\sec^2 \theta - 1) \, d\theta = [\tan \theta - \theta]_{0}^{\pi/4}$ $= \tan \frac{\pi}{4} - \frac{\pi}{4} - (\tan 0 - 0) = 1 - \frac{\pi}{4}$ 17. ধরি, I = $\int_{-1}^{4} y \sqrt{4-y} \, dy$ [ব.'০৫: রা.'০৭:ঢা.'০৯,'১২: রা.'১৩: চ.'১০,'১৪] এবং $4 - y = z^2 \cdot \therefore - dy = 2z dz$ সীমা : y = 0 হলে z = 2 এবং y = 4 হলে z = 0:. I = $\int_{2}^{0} (4-z^2) \sqrt{z^2} (-2z \, dz)$ $= 2 \int_{2}^{0} (z^{4} - 4z^{2}) dz = 2 \left| \frac{1}{5} z^{5} - \frac{4}{3} z^{3} \right|^{2}$ $=2(-\frac{1}{5}\times 2^5+\frac{4}{3}\times 2^3)=2^6(-\frac{1}{5}+\frac{1}{3})=\frac{128}{15}$ 18. $\int_{1}^{15} \frac{x+2}{(x+1)(x+3)} dx$ 2. 9. 9. '১৫] $=\int_{1}^{15} \{\frac{-1+2}{(x+1)(-1+3)} + \frac{-3+2}{(-3+1)(x+3)}\} dx$ $=\int_{1}^{15} \{\frac{1}{2(r+1)} + \frac{1}{2(r+3)}\} dx$ $= \frac{1}{2} \left[\ln |x+1| + \ln |x+3| \right]_{1}^{15}$ $= \frac{1}{2} \left[\ln \left| (x+1)(x+3) \right| \right]_{1}^{15}$ $= \frac{1}{2} \{ \ln | (15+1)(15+3) | -\ln | (1+1)(1+3) | \}$ $= \frac{1}{2} \{ \ln(16 \times 18) - \ln(2 \times 4) \}$ $=\frac{1}{2}\ln\frac{16\times18}{2\times4}=\frac{1}{2}\ln6^2=\frac{2}{2}\ln6=\ln6$

$$\begin{split} & \nabla \left[\nabla \left[\frac{1}{\sqrt{1 + \sin \theta}} \right] d\theta \right] \\ = \int_{0}^{\pi/2} \sqrt{\sin^{2} \frac{\theta}{2} + \cos^{2} \frac{\theta}{2} + 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}} d\theta \\ = \int_{0}^{\pi/2} \sqrt{\left(\sin \frac{\theta}{2} + \cos \frac{\theta}{2}\right)^{2}} d\theta \\ = \int_{0}^{\pi/2} \left(\sin \frac{\theta}{2} + \cos \frac{\theta}{2}\right) d\theta \\ = \left[-2 \cos \frac{\theta}{2} + 2 \sin \frac{\theta}{2} \right]_{0}^{\pi/2} \\ = 2\{-\cos \frac{\pi}{4} + \sin \frac{\pi}{4} - (-\cos \theta + \sin \theta)\} \\ = 2\{-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - (-1 + \theta)\} = 2 \\ 2 \cdot \int_{\pi/2}^{\pi/4} \frac{dx}{\sin x} = \int_{\pi/2}^{\pi/4} \cos e c x dx \\ = \left[\ln |\tan \frac{\pi}{2}| \right]_{\pi/2}^{\pi/4} \\ = \ln |\tan \frac{\pi}{8}| - \ln |\tan \frac{\pi}{4}| = \ln(\tan \frac{\pi}{8}) - \ln 1 \\ = \ln(\tan \frac{\pi}{8}) - \theta = \ln(\tan \frac{\pi}{8}) \\ 3 \cdot \int_{0}^{\pi/2} \sin^{3} x dx = \int_{0}^{\pi/2} \frac{1}{4} (3 \sin x - \sin 3x) dx \\ = \frac{1}{4} \left[-3 \cos x + \frac{1}{3} \cos 3x \right]_{0}^{\pi/2} \\ = \frac{1}{4} \left\{ (-\theta + \theta) - (-3.1 + \frac{1}{3}) \right\} = \frac{1}{4} \times \frac{8}{3} = \frac{2}{3} \\ 4 (a) \int_{0}^{\pi/2} \sin^{5} x \cos x dx \\ = \left[\frac{1}{6} (\sin x)^{6} \right]_{0}^{\pi/2} = \frac{1}{6} \left\{ (\sin \frac{\pi}{2})^{6} - (\sin \theta)^{6} \right\} \end{split}$$

 $\int_{0}^{1} 2x^{3} e^{-x^{2}} dx = \left[-(x^{2}+1)e^{-x^{2}} \right]_{0}^{1}$ $= -(1+1)e^{-1} + (0+1)e^{0} = 1-2e^{-1}$ **7(b)** $\int \ln(1+x) dx$ $= \ln(1+x) \int dx - \int \left[\frac{d}{dx} \{\ln(1+x)\} \int dx\right] dx$ $= x \ln(1+x) - \int \frac{1}{1+x} dx$ $= x \ln(1+x) - \int \frac{1+x-1}{1+x} dx$ $= x \ln(1+x) - \int (1-\frac{1}{1+x}) dx$ $= x \ln(1+x) - \{x - \ln(1+x)\} + c$ $= (x+1)\ln(1+x) - x + c$ $\int_{-1}^{1} \ln(1+x) dx = \left[(x+1) \ln(1+x) - x \right]_{0}^{1}$ $= 2\ln 2 - 1 - \ln 1 = 2\ln 2 - 1 - 0 = 2\ln 2 - 1$ 8(a) $\int_{1}^{\sqrt{3}} \frac{3 dx}{1 + x^2} = 3 [\tan^{-1} x]_{1}^{\sqrt{3}}$ $= 3(\tan^{-1}\sqrt{3} - \tan^{-1}1) = 3(\frac{\pi}{3} - \frac{\pi}{4})$ $= 3 \times \frac{\pi}{12} = \frac{\pi}{4}$ $\mathbf{8}(\mathbf{b}) \int_{-2}^{2} \frac{dx}{x^{2} + 4} = \int_{-2}^{2} \frac{dx}{x^{2} + 2^{2}} = \left[\frac{1}{2} \tan^{-1} \frac{x}{2}\right]^{2}$ $=\frac{1}{2}\{\tan^{-1}1-\tan^{-1}(-1)\}=\frac{1}{2}\{\frac{\pi}{4}+\frac{\pi}{4}\}=\frac{\pi}{4}$ 8(c) $\int_{0}^{a} \frac{dx}{a^{2} + x^{2}} = \left| \frac{1}{a} \tan^{-1} \frac{x}{a} \right|^{a}$ $=\frac{1}{a}(\tan^{-1}1-\tan^{-1}0)=\frac{1}{a}(\frac{\pi}{4}-0)=\frac{\pi}{4a}$ 9. $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} = [\sin^{-1} x]_{0}^{1}$ $=\sin^{-1}1-\sin^{-1}0=\frac{\pi}{2}$

$$\begin{aligned} \mathbf{10(a)} &\int_{0}^{1} x(1-\sqrt{x})^{2} dx = \int_{0}^{1} x(1-2\sqrt{x}+x) dx \\ &= \int_{0}^{1} (x-2x^{\frac{3}{2}}+x^{2}) dx = \left[\frac{x^{2}}{2}-2\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}+\frac{x^{3}}{3}\right]_{0}^{1} \\ &= (\frac{1}{2}-2\times\frac{2}{5}+\frac{1}{3})-0 = \frac{15-24+10}{30} = \frac{1}{30} \\ &(\mathbf{b}) \int_{1}^{2} \frac{(x^{2}-1)^{2}}{x^{2}} dx = \int_{1}^{2} \frac{x^{4}-2x^{2}+1}{x^{2}} dx. \\ &= \int_{1}^{2} (x^{2}-2+\frac{1}{x^{2}}) dx = \left[\frac{x^{3}}{3}-2x-\frac{1}{x}\right]_{1}^{2} \\ &= (\frac{8}{3}-4-\frac{1}{2})-(\frac{1}{3}-2-1) \\ &= \frac{8}{3}-1-\frac{1}{2}-\frac{1}{3}=\frac{16-6-3-2}{6}=\frac{5}{6} \\ &(\mathbf{e}) \int_{\pi/2}^{\pi} (1+\sin 2\theta) d\theta = \left[\theta-\frac{1}{2}\cos 2\theta\right]_{\pi/2}^{\pi} \\ &= (\pi-\frac{1}{2}\cos 2\pi)-(\frac{\pi}{2}-\frac{1}{2}\cos 2\cdot\frac{\pi}{2}) \\ &= \pi-\frac{1}{2}\cdot1-\frac{\pi}{2}+\frac{1}{2}(-1)=\frac{\pi}{2}-1 \\ &\mathbf{11.} \int_{-\pi/4}^{0} \tan(\frac{\pi}{4}+x) dx \\ &= \left[-\ln|\cos(\frac{\pi}{4}+x)|\right]_{-\pi/4}^{0} \\ &= -\ln|\cos\frac{\pi}{4}|+\ln|\cos(\frac{\pi}{4}-\frac{\pi}{4})| \\ &= -\ln|\frac{1}{\sqrt{2}}|+\ln|\cos\theta| = -\ln 2^{-\frac{1}{2}}+\ln 1 \\ &= \frac{1}{2}\ln 2+\theta=\frac{1}{2}\ln 2 \\ &\mathbf{12(a)} \int_{0}^{\pi/2} \sin^{2} x dx \qquad \left[\mathbf{\overline{4.}}\cdot\mathbf{o}; \mathbf{\overline{4.}}\cdot\mathbf{o}; \right]_{0}^{\pi/2} \end{aligned}$$

উচ্চতর গণিত: ১ম পত্রের সমাধান বইঘর কম

 $=\frac{1}{2}\left\{\left(\frac{\pi}{2}-\frac{1}{2}\sin\pi\right)-\left(0-\frac{1}{2}\sin0\right)\right\}=\frac{\pi}{4}$ **12(b)** $\int_{0}^{\pi/2} \sin^5 x \cos^4 x dx$ $= \int_{0}^{\pi/2} \sin^4 x \cos^4 x \sin x dx$ $= \int_{0}^{\pi/2} (1 - \cos^2 x)^2 \cos^4 x \sin x dx$ মনে করি, $\cos x = z$: $-\sin x \, dx = dz$. x = 0 হলে, $z = \cos 0 = 1$: $x = \frac{\pi}{2}$ হলে, $z = \cos \frac{\pi}{2} = 0$ $\therefore \int_{0}^{\pi/2} \sin^{5} x \cos^{4} x dx = -\int_{0}^{0} (1-z^{2})^{2} z^{4} dz$ $= -\int_{1}^{0} (1 - 2z^{2} + z^{4}) z^{4} dz$ $= -\int_{0}^{0} (z^{4} - 2z^{6} + z^{8}) dz$ $= -\left[\frac{1}{5}z^{5} - 2 \cdot \frac{1}{7}z^{7} + \frac{1}{9}z^{9}\right]^{0}$ $= -\{0 - (\frac{1}{5} - \frac{2}{7} + \frac{1}{9})\} = \frac{63 - 90 + 35}{315}$ $=\frac{98-90}{215}=\frac{8}{315}$ 12(c) $4 \operatorname{I}{3}$, I = $\int_{0}^{\pi/2} \frac{\cos x}{(1 + \sin x)^3} dx$ এবং $z = 1 + \sin x$ $dz = \cos x dx$ সীমা: x = 0 হলে z = 1 এবং $x = \frac{\pi}{2}$ হলে z = 2 $\therefore \mathbf{I} = \int_{1}^{2} \frac{dz}{z^{3}} = \int_{1}^{2} z^{-3} dz = \left[\frac{z^{-2}}{-2}\right]^{2} = \left[-\frac{1}{2z^{2}}\right]^{2}$ $= -\frac{1}{2}(\frac{1}{2^2} - \frac{1}{1^2}) = -\frac{1}{2}(\frac{1}{4} - 1) = \frac{3}{8}$ 13. $\forall \exists, I = \int_0^1 \frac{\cos^{-1} x}{\sqrt{1 - x^2}} dx$ [প্র.ড.প. '০৪] এবং $z = \cos^{-1} x$ $dz = -\frac{1}{\sqrt{1-x^2}} dx$

$$\begin{aligned} \widehat{\Re} |\widehat{\Re}|_{\mathbf{k}} : x = 0 \ \overline{\epsilon} |\overline{c}| \ z = \frac{\pi}{2} \ ^{4} \operatorname{qre} \ x = 1 \ \overline{\epsilon} |\overline{c}| \ z = 0 \\ \therefore \ \mathbf{I} = -\int_{\pi/2}^{0} z dz = -\left[\frac{z^2}{2}\right]_{\pi/2}^{0} \\ = -\frac{1}{2} \{0 - (\frac{\pi}{2})^2\} = \frac{\pi^2}{8} \\ \mathbf{14}(\mathbf{a}) \ \int_{1}^{3} \frac{2xdx}{1+x^2} = \int_{1}^{3} \frac{d(1+x^2)}{1+x^2} \\ &= \left[\ln(1+x^2)\right]_{1}^{3} = \ln(1+9) - \ln(1+1) \\ = \ln\frac{10}{2} = \ln 5 \\ \mathbf{14}(\mathbf{b}) \ \int_{0}^{4} \frac{dx}{\sqrt{(2x+1)}} = \frac{1}{2} \int_{0}^{4} \frac{d(2x+1)}{\sqrt{(2x+1)}} \\ &= \frac{1}{2} \left[2\sqrt{2x+1}\right]_{0}^{4} = \sqrt{8+1} - \sqrt{0+1} = 3 - 1 = 2 \\ \mathbf{15}(\mathbf{a}) \ \int \ln(x^2+1) dx \\ &= \ln(x^2+1) \int dx - \int \left[\frac{d}{dx} \{\ln(x^2+1)\} \int dx] dx \\ &= \ln(x^2+1) - \int \frac{2x}{x^2+1} dx \\ &= x\ln(x^2+1) - 2\int \frac{x^2+1-1}{x^2+1} dx \\ &= x\ln(x^2+1) - 2\int (1 - \frac{1}{x^2+1}) dx \\ &= x\ln(x^2+1) - 2x + 2\tan^{-1}x) + c \\ &= x\ln(x^2+1) - 2x + 2\tan^{-1}x) + c \\ &= x\ln(x^2+1) dx = \left[x\ln(x^2+1) - 2x + 2\tan^{-1}x\right]_{0}^{1} \\ &= \ln 2 - 2 + 2\tan^{-1} 1 - 0 \\ &= \ln 2 - 2 + 2\tan^{-1} 1 - 0 \\ &= \ln 2 - 2 + 2\tan^{-1} 1 - 0 \\ &= \ln 2 - 2 + 2\tan^{-1} 1 - 0 \\ &= \ln 2 - 2 + 2\tan^{-1} 1 - 0 \\ &= \ln 2 - 2 + 2\tan^{-1} 1 - 0 \\ &= \ln 2 - 2 + 2\tan^{-1} 1 - 0 \\ &= \ln 2 - 2 + 2\tan^{-1} 1 - 0 \\ &= \ln 2 - 2 + 2\tan^{-1} 1 - 0 \\ &= \ln 2 - 2 + 2\tan^{-1} 1 - 0 \\ &= \ln 2 - 2 + 2\tan^{-1} 1 - 0 \\ &= \ln 2 - 2 + 2 \tan^{-1} 1 - 0 \\ &= \ln 2$$

প্রশূমালা $\underset{\mathtt{A}}{\mathtt{A}}$ D

$$= \int e^{y} \{\frac{1}{y} + D(\frac{1}{y})\} dy = \frac{e^{y}}{y} + c = \frac{x}{\ln x}$$

$$\therefore I = \left[\frac{x}{\ln x}\right]_{2}^{e} = \frac{e}{\ln e} - \frac{2}{\ln 2} = e - \frac{2}{\ln 2}$$

$$16(a) \int_{0}^{1} \frac{3 dx}{1 + x^{2}} = 3\left[\tan^{-1} x\right]_{0}^{1}$$

$$= 3(\tan^{-1} 1 - \tan^{-1} 0) = \frac{3\pi}{4}$$

$$16(b) \int_{0}^{\pi/2} \frac{\cos x}{1 + \sin^{2} x} dx = \int_{0}^{\pi/2} \frac{d(\sin x)}{1^{2} + (\sin x)^{2}}$$

$$= \left[\tan^{-1} (\sin x)\right]_{0}^{\pi/2} = \tan^{-1} (\sin \frac{\pi}{2}) - \tan^{-1} (\sin 0)$$

$$= \tan^{-1} 1 - \tan^{-1} 0 = \frac{\pi}{4} - 0 = \frac{\pi}{4}$$

$$17(a) \int_{-1}^{2} \frac{dx}{x^{2} - 9} = \int_{-1}^{2} \frac{dx}{x^{2} - 3^{2}}$$

$$= \left[\frac{1}{2.3}\ln\left|\frac{x - 3}{x + 3}\right|\right]_{-1}^{2}$$

$$= \frac{1}{6} \left\{\ln\left|\frac{2 - 3}{2 + 3}\right| - \ln\left|\frac{-1 - 3}{-1 + 3}\right|\right\}$$

$$= \frac{1}{6} \left(\ln\frac{1}{5} - \ln 2\right) = \frac{1}{6} \ln\frac{1}{5 \times 2} = \frac{1}{6} \ln(0 \cdot 1)$$

$$17(b) \int_{0}^{a/2} \frac{1}{a^{2} - x^{2}} dx = \left[\frac{1}{2a}\ln\left|\frac{a + x}{a - x}\right|\right]_{0}^{a/2}$$

$$= \frac{1}{2a}\ln\left|\frac{a + \frac{a}{2}}{a - \frac{a}{2}}\right| = \frac{1}{2a}\ln\left|\frac{3a}{a}\right| = \frac{1}{2a}\ln 3^{2}$$

$$18(a) \int_{0}^{a} \frac{dx}{\sqrt{a^{2} - x^{2}}} = \left[\sin^{-1} \frac{x}{a}\right]_{0}^{a}$$

$$= \sin^{-1} \frac{a}{a} - \sin^{-1} \frac{0}{a} = \sin^{-1} 1 - \sin^{-1} 0 = \frac{\pi}{2}$$

$$18(b) \int_{0}^{1} \frac{dx}{\sqrt{4 - 3x^{2}}} \qquad [\mathbb{R}.\mathbb{Q}, 1, \infty; \mathfrak{A}.\mathbb{Q}, 4, \infty]$$

$$= \frac{1}{\sqrt{3}} \int_{0}^{1} \frac{\sqrt{3}dx}{\sqrt{2^{2} - (\sqrt{3}x)^{2}}} = \left[\frac{1}{\sqrt{3}}\sin^{-1}\frac{\sqrt{3}x}{2}\right]_{0}^{1}$$

$$= \frac{1}{\sqrt{3}} (\sin^{-1}\frac{\sqrt{3}}{2} - \sin^{-1}0) = \frac{1}{\sqrt{3}} (\frac{\pi}{3} - 0) = \frac{\pi}{3\sqrt{3}}$$
18 (c) $4\pi, 1 = \int_{0}^{\pi/2} \frac{\cos xdx}{\sqrt{4 - \sin^{2}x}} d\pi$
sin $x = z$. $\nabla |\nabla| \nabla || \cos xdx = dz$
 $\pi || x = 0$ $2\nabla || z = 0$ $d\pi || x = \frac{\pi}{2}$ $2\nabla || z = 1$
 $\therefore I = \int_{0}^{1} \frac{dz}{\sqrt{2^{2} - z^{2}}} = \left[\sin^{-1}\frac{x}{2}\right]_{0}^{1}$
 $= \sin^{-1}\frac{1}{2} - \sin^{-1}0 = \frac{\pi}{2} - 0 = \frac{\pi}{2}$
18 (d) $\int_{2}^{3} \frac{dx}{(x - 1)\sqrt{x^{2} - 2x}}$ [$\exists \cdot \nabla \cdot \pi \cdot ' \circ \Sigma \cdot ' \circ \nabla \cdot ' \circ \nabla$]
 $= \int_{2}^{3} \frac{d(x - 1)}{(x - 1)\sqrt{(x - 1)^{2} - 1}}$
 $= \left[\sec^{-1}(x - 1)\right]_{2}^{3} = \sec^{-1}(3 - 1) - \sec^{-1}(2 - 1)$
 $= \sec^{-1}2 - \sec^{-1}1 = \frac{\pi}{3} - 0 = \frac{\pi}{3}$
19. $\int_{0}^{a} \frac{a^{2} - x^{2}}{(x(\frac{a^{2}}{x} + x))^{2}} dx = \int_{0}^{a} \frac{(\frac{a^{2}}{x} - 1)}{(\frac{a^{2}}{x} + x)^{2}} dx$
 $= \int_{0}^{a} \frac{-(-\frac{a^{2}}{x} + 1)}{(\frac{a^{2}}{x} + x)^{2}} dx = -\left[-\frac{1}{\frac{a^{2}}{x} + x}\right]_{0}^{a}$
 $= \left[\frac{x}{a^{2} + x^{2}}\right]_{0}^{a} = \frac{a}{a^{2} + a^{2}} - 0 = \frac{1}{2a}$

20. $\int_{8}^{27} \frac{dx}{x - x^{1/3}} = \int_{8}^{27} \frac{dx}{x(1 - x^{-2/3})}$ ধরি $x^{\frac{2}{3}} = z$. তাহলে $-\frac{2}{2}x^{\frac{5}{3}}dx = dz$ $\Rightarrow -\frac{2}{2}x^{-\frac{2}{3}}\frac{dx}{x} = dz \Rightarrow -\frac{2}{3}z\frac{dx}{x} = dz$ $\Rightarrow \frac{dx}{r} = -\frac{3}{2}\frac{dz}{z}$ সীমা : x = 8 হলে $z = 2^{-2} = \frac{1}{4}$ এবং x = 27 হল $z = 3^{-2} = \frac{1}{2}$ $\therefore \int_{x}^{27} \frac{dx}{x - x^{1/3}} = -\frac{3}{2} \int_{1/4}^{1/9} \frac{dz}{z(1 - z)}$ $=\frac{3}{2}\int_{1/4}^{1/9}\{\frac{1}{z-1}-\frac{1}{z}\}dz$ $= \frac{3}{2} \left[\ln |z - 1| - \ln |z| \right]_{1/4}^{1/9} = \frac{3}{2} \left[\ln |\frac{z - 1}{z}| \right]_{1/9}^{1/9}$ $=\frac{3}{2}\left\{\ln\left|\frac{\frac{1}{9}-1}{\frac{1}{2}}\right|-\ln\left|\frac{\frac{1}{4}-1}{\frac{1}{4}}\right|\right\}$ $= \frac{3}{2} \{ \ln |-8| - \ln |-3| \} = \frac{3}{2} (\ln 8 - \ln 3)$ $=\frac{3}{2}\ln\frac{8}{2}$ **21.** $\int_{-1}^{1} \frac{1-x}{1+x} dx$ থি.ড.প. '৮৪] $= \int_{-1}^{1} \frac{-(1+x)+2}{1+x} dx = \int_{-1}^{1} (-1+\frac{2}{1+x}) dx$ $= \left[-x + 2 \ln |1 + x| \right]_{-1}^{1}$ $= -1 + 2 \ln |1 + 1| - (1 + 2 \ln |1 - 1|)$ $= -1 + 2 \ln 2 - 1 - 2 \ln 0$ $= 2(\ln 2 - 1)$ প্রশ্রমালা X E 1(a) Solⁿ: $\int \sin ax \, dx = -\frac{1}{a} \cos ax + c$

Ans. A

উচ্চতর গণিত: ১ম পত্রের সমাধান রইয়র ক্র **(b)** Solⁿ: $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + c$: Ans. B (c) Solⁿ : : ক্যালকুলেট্রের সাহায্যে $\int_{0}^{\pi/2} \cos^5 x dx = 0.533$,যা 8/15 এর সমান : Ans. D. (d) Solⁿ: न्रानज्य २८७ २८न, $\frac{d}{dx}{F(x)} = 0$ २८७ হবে। এখানে, $\frac{d}{dx}$ {F(x)} = $\frac{t-3}{t^2+7} = 0 \Longrightarrow t = 3$: Ans. D. (e) y = $\frac{1}{2}x^2 + 1$ পরাবৃত্ত ও তার উপকেম্দ্রিক লম্ব দ্বারা বেষ্টিত ক্ষেত্রের ক্ষেত্রফল কত? Sol^n : $x^2 = 2y - 2 = 2(y - 1) = 4 \times \frac{1}{2}(y - 1)$ পরাবৃত্তের শীর্ষ (0,1) , উপকেন্দ্রিক লম্ব, y $-1=\frac{1}{2}$ $= \int_{1}^{3/2} \sqrt{2(y-1)} dy = 0.666 = \frac{2}{2}$ Ans. C (f) Solⁿ: সবঙলি তথ্য সত্য। : Ans. D (g) Solⁿ: $\int \frac{dx}{dy - bx} = -\frac{1}{b} \int \frac{d(dy - bx)}{dy - bx}$ $= -\frac{1}{h}\ln(ay - bx) + c$: Ans. A (h) Solⁿ : $\int \frac{dx}{\sqrt{9-16x^2}} = \frac{1}{4} \int \frac{d(4x)}{\sqrt{3^2-(4x)^2}}$ $=\frac{1}{4}\sin^{-1}\frac{4x}{2}+c$: Ans. **B** (i) Solⁿ: $\int_{0}^{1/a} d(\tan^{-1}ax) = [\tan^{-1}ax]_{0}^{1/a}$ (j) Solⁿ: কৌশল: $\int_{a}^{b} f(x) = \int_{a+a}^{b+c} f(x-c)$

প্রশ্নমালা X E বইঘর কম

এখানে, $\int_{0}^{4} f(x)dx = \int_{0-1}^{4-1} f(x+1)dx$ = $\int_{-1}^{3} f(x+1)dx = 6$ (k) Solⁿ : pv = 5 \Rightarrow p = $\frac{5}{v}$ $\int_{1}^{2} pdv = \int_{1}^{2} \frac{5}{v} dv = 5 \int_{1}^{2} \frac{1}{v} dv$ = 5(ln2 - ln1) = 5 *ln*2

(1) Solⁿ : ধনাত্মক x এর জন্য $F(x) = \int_{1}^{x} \ln t dt$ হলে $F'(x) = \frac{d}{dx} (\int_{1}^{x} \ln t dt) = \ln x - \ln 1 = \ln x$ (m) Solⁿ : $x^{2} + y^{2} = a^{2}$ বৃত্তের ব্যেফল = πa^{2} $y = -\sqrt{a^{2} - x^{2}}$ ও y = 0 দ্বারা আবদ্ধ বেতের ব্যেফল = অর্ধবৃত্তের ব্যেফল = $\frac{1}{2}\pi a^{2}$ (n) Solⁿ : রেখাদ্ধিত জায়গার ব্যেফল = $\int_{1}^{5} y dx$

$$\int_{2}^{5} x^{2} dx = \left[\frac{x^{3}}{3}\right]_{2}^{5} = \frac{1}{3}(125 - 8) = 39$$

2.(a)
$$y = 3x$$
 সরলরেখা, x-অক্ষ এবং কোটি
 $x = 2$ দ্বারা সীমাবন্দ্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর।
সমাধান নির্ণেয় ক্ষেত্রফল =
 $y = 3x$ সরলরেখা, x-অক্ষ এবং Y
 $x = 0$ ও $x = 2$ রেখাদ্বয় দ্বারা
সীমাবন্দ্ধ ক্ষেত্রের ক্ষেত্রফল
 $= \int_0^2 y \, dx = \int_0^2 3x \, dx$
 $= 3\left[\frac{x^2}{2}\right]_0^2 = \frac{3}{2}(2^2 - 0) = 6$ বর্গ একক।

2(b) 3x + 4y = 12 সরলরেখা এবং স্থানাজ্জের অক্ষদ্বয় দ্বারা সীমাবন্দ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। [মা.বো.'০৩] সমাধান: 3x + 4y = 12 অর্থাৎ $y = 3 - \frac{3}{4}x$ সরলরেখা xজক্ষকে (4,0) বিন্দুতে ছেদ করে।

: নির্ণেয় ক্ষেত্রফল = প্রদন্ত রেখা, x-অক্ষ এবং x = 0 ও x = 4 রেখাদয় দারা সীমাবন্দ্র ক্ষেত্রত্ব ক্ষেত্রফল $=\int_{0}^{4} y \, dx$ x = 4 $=\int_{0}^{4} (3 - \frac{3}{4}x) dx$ $= \left[3x - \frac{3}{4} \cdot \frac{x^2}{2} \right]^4 = 12 - \frac{3}{8} \cdot 16 = 6$ বর্গ একক। 3.(a) $x^2 + y^2 = a^2$ বুও ঢারা সীমাবন্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। [য. '০৬, '০৯;ব. '১৩; প্র.ভ.প. '০৪] সমাধান ঃ $x^2 + y^2 = a^2$ বৃত্তের কেন্দ্র মূলকিন্দু ও ব্যাসার্ধ a 1 $x^2 + y^2 = a^2$ $\implies y^2 = a^2 - x^2$ $\Rightarrow y = \pm \sqrt{a^2 - x^2}$ ক্ষেত্র OAB এর \mathbf{x}' ক্ষেত্ৰফল = $y = \sqrt{a^2 - x^2}$ Y বৰুৱেখা. x-অক্ষ এবং x = 0 ও x = a রেখাদ্বয় দ্বারা সীমাবন্ধ ক্ষেত্রের ক্ষেত্রফল $=\int_{0}^{a} y \, dx$ $=\int_{0}^{a}\sqrt{a^{2}-x^{2}}\,dx$ $= \left| \frac{x\sqrt{a^2 - x^2}}{2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right|^a$ $=\frac{a^2}{2}\sin^{-1}1 = \frac{a^2}{2}\cdot\frac{\pi}{2} = \frac{a^2\pi}{4}$ ∴ বৃত্তের ক্ষেত্রফল = 4 × ক্ষেত্র OAB এর ক্ষেত্রফল $= 4 \times \frac{a^2 \pi}{4}$ বর্গ একক $= a^2 \pi$ বর্গ একক । $3(b) x^2 + y^2 = 4$ বৃত্ত দ্বারা সীমাবন্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। ঢা. '০৭] সমাধান s $x^2 + y^2 = 4$ বৃত্তের কেন্দ্র মূলবিন্দু ও ব্যাসাধি 2 $x^2 + y^2 = 4$ $\Rightarrow y^2 = 4 - x^2$

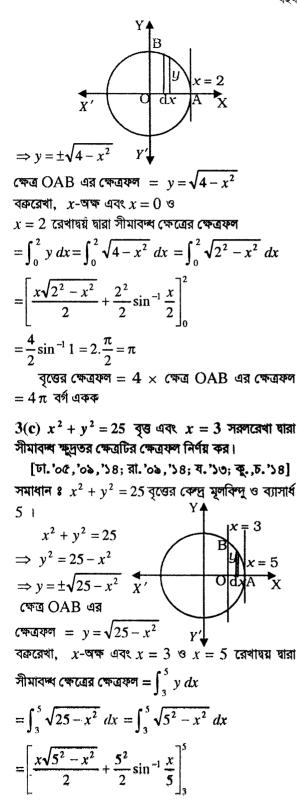
উচ্চতর গণিডু: ৣমু পুত্রের সমাধান

2

-

Э

-



$$= (0 + \frac{25}{2}\sin^{-1}1) - (\frac{3\sqrt{25} - 9}{2} + \frac{25}{2}\sin^{-1}\frac{3}{5})$$

$$= \frac{25}{2} \cdot \frac{\pi}{2} - \frac{3 \times 4}{2} - \frac{25}{2}\sin^{-1}\frac{3}{5}$$

$$= \frac{25\pi}{4} - 6 - \frac{25}{2}\sin^{-1}\frac{3}{5}$$

$$= (\frac{25\pi}{4} - 6 - \frac{25}{2}\sin^{-1}\frac{3}{5})$$

$$= (\frac{25\pi}{2} - 12 - 25\sin^{-1}\frac{3}{5}) = \sqrt{4} - 6 - \frac{25}{2}\sin^{-1}\frac{3}{5})$$

$$= (\frac{25\pi}{2} - 12 - 25\sin^{-1}\frac{3}{5}) = \sqrt{4} = 4 + \frac{1}{2} + \frac{1}{2} = 36 = \sqrt{2} = \sqrt{4} + 6 - \frac{25}{2}\sin^{-1}\frac{3}{5})$$

$$= (\frac{25\pi}{2} - 12 - 25\sin^{-1}\frac{3}{5}) = \sqrt{4} = \sqrt{4} + \sqrt{2} = 36 = \sqrt{2} = \sqrt{4} + \sqrt{2} = 36 = \sqrt{2} = \sqrt{2} + \sqrt{2} = 36 = \sqrt{2} = \sqrt{2} = \sqrt{2} + \sqrt{2} = 36 = \sqrt{2} = \sqrt{2} + \sqrt{2} = \sqrt{3} = \sqrt{2} + \sqrt{2} = \sqrt{3} = \sqrt{2} + \sqrt{2} = \sqrt{2} = \sqrt{2} + \sqrt{2} = \sqrt{2} = \sqrt{2} = \sqrt{2} + \sqrt{2} = \sqrt{2} = \sqrt{2} = \sqrt{2} + \sqrt{2} = \sqrt{2} = \sqrt{2} + \sqrt{2} = \sqrt{2} = \sqrt{2} + \sqrt{2} = \sqrt{2} = \sqrt{2} = \sqrt{2} + \sqrt{2} = \sqrt{2} = \sqrt{2} = \sqrt{2} + \sqrt{2} = \sqrt{2} + \sqrt{2} = \sqrt{2} = \sqrt{2} + \sqrt{2} + \sqrt{2} = \sqrt{2} + \sqrt$$

4.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 छेनवुछ घाता जीमावल (क्यवत
क्वरक निर्मय करा [ए।.'७६; ता.'७५; नि.'७५; नि.'३२]
मार्गास इ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ छेनवुछत (क्वरक पुणविष्म्]
 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ छेनवुछत (क्वरक पुणविष्म्]
 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{x^2}{a^2}$ $\frac{y'}{y'+}$
 $\Rightarrow y^2 = \frac{b^2}{a^2}(a^2 - x^2) \Rightarrow y = \pm \frac{b}{a}\sqrt{a^2 - x^2}$
(क्व OAB এর (क्वरक =
 $y = \frac{b}{a}\sqrt{a^2 - x^2}$ विद्या (x-वक्क जवर x = 0 क
x = a (त्रवाचत प्रांत) जीमावल (क्वरक =
 $y = \frac{b}{a}\sqrt{a^2 - x^2}$ विद्वा (x-वक्क जवर x = 0 क
x = a (त्रवाचत प्रांत) जीमावल (क्वरक =
 $y = \frac{b}{a}\sqrt{a^2 - x^2}$ विद्वा (x-वक्क जवर x = 0 क
x = a (त्रवाचत प्रांत) जीमावल (क्वरक =
 $y = \frac{b}{a}\sqrt{a^2 - x^2}$ विद्व ($\frac{x}{2} \sin^{-1}$ 1) $= \frac{db}{2}, \frac{\pi}{2} = \frac{ab\pi}{4}$ वर्ष जवरू 1
 $= \frac{b}{a}(\frac{x^2}{2} \sin^{-1}) = \frac{db}{2}, \frac{\pi}{2} = \frac{ab\pi}{4}$ वर्ष जवरू 1
 $= \frac{b}{a}(\frac{a^2}{2} \sin^{-1}) = \frac{db}{2}, \frac{\pi}{2} = \frac{ab\pi}{4}$ वर्ष जवरू 1
 $= \frac{b}{a}(\frac{x^2}{2} \sin^{-1}) = \frac{ab\pi}{4} = ab\pi$ वर्ष अवरू 1
 $= 5$ (a) $y = 4x^2$ नत्रावुछ वर्ष ($y = 4$ तत्रवाक्त ($\frac{\pi}{2}$, $\frac{\pi}{2}$) $\frac{d}{4} = 2x^2$ ($\frac{3}{2}$, $\frac{3}{2} - \frac{4^2}{2}$)
 $= \frac{32}{3} - 8 = \frac{32 - 24}{3} = \frac{8}{3}$ वर्ग जरू 1
 $= \frac{2}{3} - 8 = \frac{32 - 24}{3} = \frac{8}{3}$ वर्ग जरू 1
 $= \frac{2}{3} \sqrt{y}$ विद्व क्त $y = 2x$ त्रव्वव्व वर्ग ($\frac{\pi}{4} \cos 3$)
 $= \frac{1}{2} \sqrt{y}$ विद्वत्वा ($\frac{\pi}{4} \cos 3$) $\frac{\pi}{4} = \frac{\pi}{4}$ वर्ग जर्क ($\frac{\pi}{4} \cos 3$) $\frac{\pi}{4} = \frac{\pi}{4} = \frac{\pi}{4}$ ($\frac{\pi}{4} \cos 3$)
 $= \frac{1}{3} \sqrt{a^2} - \frac{x^2}{2} = \frac{1}{4} y$
 $\Rightarrow x = \pm \frac{1}{2} \sqrt{y}$ विद्वा ($\frac{\pi}{4} \sin 3$) $\frac{\pi}{4} = \frac{\pi}{4}$ वर्ग ($\frac{\pi}{4} \cos 3$)
 $= \frac{1}{3} (1, -2x); \frac{\pi}{2} - \frac{1}{2} = 2x^2 - \frac{1}{2}$
 $= \frac{1}{2} \sqrt{y}$ विद्वत्वा, y , जक्क वत्त
 $x = \frac{1}{2} \sqrt{y}$ विद्वत्वा ($\frac{\pi}{4} \sin 3$) त्रवा ($\frac{\pi}{4} \sin 3$)
 $x = \frac{1}{2} \sqrt{y}$ विद्वत्वा ($\frac{\pi}{4} \sin 3$) $\frac{\pi}{4}$ ($\frac{\pi}{4} \cos 3$)
 $= \frac{1}{3} (1, -2x); \frac{\pi}{2} - \frac{1}{2} = 2x^2 - \frac{1}{2}$
 $= \frac{1}{3} - 1 = \frac{4 - 3}{3} = \frac{1}{3}$ वर्ग ($\frac{\pi}{4} = 1$)

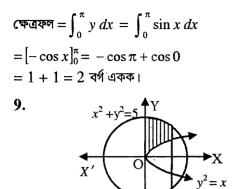
 $0 = 2x - x^2 \implies x = 0.2$ $5(\mathbf{d}) y^2 = 16x$ পরাবৃত্ত এবং y = x সরলরেখা দারা সীমাবন্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। নির্ধেয় ক্ষেত্রফল = প্রদন্ত dx [সি. '০২] x = 2সমাধান v = x হতে y এর মান বৰুৱেখা, x-অক্ষ এবং x = 0ও x = 2 রেখাদয় দারা $y^2 = 16x$ সমীকরণে বসিয়ে পাই. সীমাবন্ধ ক্ষেত্রের ক্ষেত্রফল $x^2 = 16x \Longrightarrow x = 0, 16$ $=\int_{0}^{2} y \, dx = \int_{0}^{2} (2x - x^2) \, dx$: নির্ণেয় ক্ষেত্রফল = $\frac{1}{X'}$ $y_1 = 4\sqrt{x}$ বরুরেখা ও $y_2 = x$ $=\left[2.\frac{x^2}{2}-\frac{x^3}{3}\right]^2=4-\frac{8}{3}=\frac{4}{3}$ বর্গ একক সরলরেখা এবং x = 0 ও x = 16রেখাদ্যয় দ্বারা আবন্দ্র ক্ষেত্রফল $= \int_{-1}^{16} (y_1 - y_2) \, dx = \int_{-1}^{16} (4\sqrt{x} - x) \, dx$ $5(b) y = x^2$ বব্রুরেখা, x-আঞ্চ এবং x = 1 ও x = 7 রেখাদ্য দারা সীমাবন্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। $= \left[4 \times \frac{x^{3/2}}{3/2} - \frac{x^2}{2} \right]^{16} = 4 \times \frac{2}{3} (16)^{\frac{3}{2}} - \frac{16^2}{2}$ **[q**. '02] সমাধান 8 নির্ণেয় ক্ষেত্রফল = $x = \sqrt{y}$ বব্রুরেখা, x-অক্ষ এবং $=\frac{512}{3}-128=\frac{512-384}{3}=\frac{128}{3}$ of upper 1 x = 1 ७ x = 4 রেখাবয় দারা সীমাবন্ধ ক্ষেত্রের ক্ষেত্রফল $5(e) y^2 = 16x$ পরাবৃত্ত এবং এর উপকেন্দ্রিক লম্ব দারা $= \int_{1}^{7} y \, dx = \int_{1}^{7} x^{2} \, dx = \left[\frac{x^{3}}{3}\right]^{7}$ সীমাবন্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। [সি.'০৫] সমাধান 8 $y^2 = 16x \Longrightarrow y^2 = 4.4.x$ **A**Y পরাবৃত্তের উপকেন্দ্রিক লম্বের $=\frac{1}{3}(343-1)=144$ ব্যা একক সমীকরণ x = 4. $6(c) \ y = x^2$ বব্রুরেখা এবং x - y + 2 = 0 সরলরেখা $v^2 = 16x \implies v = \pm 4\sqrt{x}$ দ্বারা সীমাবন্দ্র ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। ক্ষেত্র OAB এর ক্ষেত্রফল = [সি.'০৩] $y = 4\sqrt{x}$ বৰুৱেখা, x-অক্ষ এবং x = 0 ও x = 4সমাধান ঃ $y = x^2 \cdots (1)$ হতে ν এর মান সীমাবন্ধ রেখাদ্বয় দ্বারা ক্ষেত্রের ক্ষেত্ৰফল x - y + 2 = 0 সমীকরণে বসিয়ে পাই, $= \int_0^4 y \, dx = \int_0^4 4\sqrt{x} \, dx$ $x - x^2 + 2 = 0$ $\Rightarrow x^2 - x - 2 = 0$ $=4\left[\frac{y^{3/2}}{3/2}\right]^4=4\times\frac{2}{3}(4)^{\frac{3}{2}}=\frac{8}{3}\times8=\frac{64}{3}$ বর্গএকক $\Rightarrow (x+1)(x-2) = 0$ X'- $\Rightarrow x = -1.2$ ∴ নির্ণেয় ক্ষেত্রফল = 2 × ক্ষেত্র OAB এর ক্ষেত্রফল এখানে x এর সীমা –1 থেকে 2 $=\frac{128}{2}$ বর্গএকক । এবং $y_1 = x + 2$, $y_1 = x^2$:. নির্শেয় ক্ষেত্রফল = $\int_{-1}^{2} (y_1 - y_2) dx$ 6.(a) $y = 2x - x^2$ বক্ররেখা এবং x-অক্ষ দারা সীমাবন্দ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। [রা.'০১] $=\int_{-1}^{2} (x+2-x^2) \, dx = \left| \frac{x^2}{2} + 2x - \frac{x^3}{3} \right|^2$ সমাধান ঃ $y = 2x - x^2 \cdots (1)$ x-অক্ষের সমীকরণ $y = 0 \cdots (2)$ $=\frac{4^{\frac{3}{2}}}{2}+4-\frac{8}{3}-(\frac{1}{2}-2+\frac{1}{3})=8-\frac{8}{3}-\frac{1}{2}-\frac{1}{3}$ (1) এ y = 0 বসিয়ে পাই.

প্রশ্নমালা 🕅 E

$$=\frac{48-16-3-2}{6} = \frac{48-21}{6} = \frac{27}{6} = \frac{9}{2} \operatorname{adistr} \frac{9}{2} \operatorname{adistr} \frac{1}{2}$$

$$y_1 = 2\sqrt{a}\sqrt{x}, \quad y_2 = \frac{1}{4a}x^2.$$

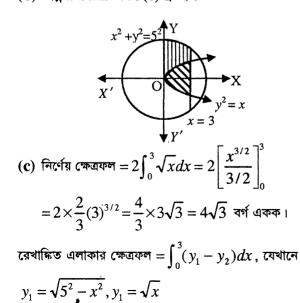
$$(x + y^2 = 1 + y + y^2 = 1 - x + (x + 1) + (y + 1) + ($$



চিত্রে, x = 3 সরলরেখা $x^2 + y^2 = 25$ বৃত্তকে এবং $y^2 = x$ পরাবৃত্তকে ছেদ করেছে। (a) $\int_0^4 \sqrt{16 - x^2} dx$ এর মান নির্ণয় কর। [সি.'০৯; কু.'১১; বা.'১১,'১৪; চা.'১১; ব.'১০]

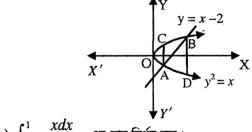
(b) প্রদন্ত বৃত্ত ও সরলরেখা দ্বারা সীমাবদ্ধ ক্ষুদ্রতর ক্ষেত্রটির ক্ষেত্রফল নির্ণয় কর। [য,'১৩; ঢা.'১৪; কু., রা.,চ.,'১৪]
 (c) প্রদন্ত পরাবৃত্ত ও সরলরেখার সাথে y = 0 সরলরেখা যে ৰেত্র তৈরি করে তার এবং রেখাদ্ধিত এলাকার ৰেত্রফল নির্ণয় কর ।

সমাধান: (a) প্রশ্নমালা XD এর উদাহরণ 5 দ্রষ্টব্য। (b) প্রশ্নমালা XE এর 3(c) দ্রষ্টব্য।



$$\begin{aligned} & \operatorname{Free}\left[\frac{x\sqrt{25-x^2}}{2} + \frac{25}{2}\sin^{-1}\frac{x}{5} - \frac{x^{3/2}}{3/2}\right]_0^3 \\ &= \left[\frac{x\sqrt{25-x^2}}{2} + \frac{25}{2}\sin^{-1}\frac{x}{5} - \frac{x^{3/2}}{3/2}\right]_0^3 \\ &= \frac{3\sqrt{25-3^2}}{2} + \frac{25}{2}\sin^{-1}\frac{3}{5} - 2\sqrt{3} \\ &= \frac{3\times4}{2} + \frac{25}{2}\sin^{-1}\frac{3}{5} - 2\sqrt{3} \\ &= 6 - 2\sqrt{3} + \frac{25}{2}\sin^{-1}\frac{3}{5} \end{aligned}$$

10. চিত্রে y = x - 2 সরলরেখা $y^2 = x$ পরাবৃত্তকে A ও B বিন্দুতে ছেদ করেছে ৷



(a)
$$\int_0^1 \frac{xax}{\sqrt{4-x^2}}$$
 এর মান নির্ণয় কর।

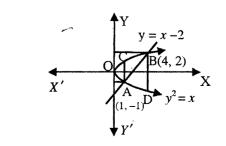
(b)

[সি.'০৯; ঢা.,রা.,কু.'১০; দি.'১৩]

(b) y = x - 2 সরলরেখা ও $y^2 = x$ পরাবৃত্ত দ্বারা অবদ্ধ ৰেত্রের ৰেত্রফল নির্ণয় কর।

[DU 12-13, BUET 13-14]

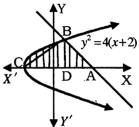
(c) A ও B বিন্দুগামী y-অক্ষের সমান্তরাল রেখা পরাবৃত্তটিকে যথাক্রমে D ও C বিন্দুতে ছেদ করে। ABC ও ADBC ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। সমাধান: (a) প্রশ্নমালা XD এর 9(d) দ্রষ্টব্য।



 $y = x - 2 \implies x = y + 2$ হতে x এর মান $y^2 = x$ সমীকরণে বসিয়ে পাই, $y^2 = y + 2 \Longrightarrow y^2 - y - 2 = 0$ \Rightarrow (y - 2) (y + 1) = 0 v = -1, 2 अवर x = 1, 4এখানে y এর সীমা -1 থেকে 2 এবং $x_1 = y + 2$ $x_{2} = y^{2}$. নির্ণেয় ক্ষেত্রফল = $\int_{-1}^{2} (x_1 - x_2) dy$ $= \int_{-1}^{2} (y+2-y^2) dy = \left[\frac{y^2}{2} + 2y - \frac{y^3}{3} \right]^2$ সমাধান ঃ $=\frac{4}{2}+4-\frac{8}{3}-(\frac{1}{2}-2+\frac{1}{3})$ $=\frac{4}{2}+4-\frac{8}{3}-\frac{1}{2}+2-\frac{1}{3}$ $=\frac{12+24-16-3+12-2}{6}$ $=\frac{27}{6}=\frac{9}{2}$ वर्ग अकक। (c) এখানে, A ও B বিন্দুর স্থানান্ধ যথাক্রমে (1, -1) ও (2, 4).AOC ৰেত্ৰের ৰেত্রফল = $y = \sqrt{x}$ বব্রুরেখা, x-জক্ষ এবং x = 0 ও x = 1 রেখাদ্বয় দ্বারা সীমাবন্দ্ধ ক্ষেত্রের ক্ষেত্রফলের দ্বিগুণ = $2 \int_0^1 y \, dx = 2 \int_0^1 \sqrt{x} \, dx$ $= 2\left[\frac{x^{3/2}}{3/2}\right]_{0}^{1} = 2 \times \frac{2}{3} = \frac{4}{3} \operatorname{end} \left[y = -x + 13 \Longrightarrow x + y = 13 \Longrightarrow \frac{x}{13} + \frac{y}{13} = 1 \right]$... এখন, ABC ৰেত্ৰের ৰেত্রফল = AOB ৰেত্রের ৰেত্রফল AOC ৰেত্ৰের ৰেত্রফল $=\frac{9}{2}-\frac{4}{3}=\frac{27-8}{6}=\frac{19}{6}$ $\sqrt{2}$ এবং ADBC ৰেত্রের ৰেত্রফল = $y = \sqrt{x}$ বব্রুরেখা, x-অক্ষ এবং x = 1 ও x = 4 রেখাদ্বয় দ্বারা সীমাবন্দ্ব ক্ষেত্রের ক্ষেত্রফলের দিগুণ

$$= 2 \int_{1}^{4} y dx = 2 \int_{1}^{4} \sqrt{x} dx = 2 \left[\frac{x^{3/2}}{3/2} \right]_{1}^{4}$$
$$= 2 \times \frac{2}{3} (4^{3/2} - 1) = \frac{4}{3} \times (8 - 1)$$
$$= \frac{28}{3} = 4 \text{ for } 4 \text{ for } 5 \text$$

11. পাশের চিত্রে, $y^2 = 4(x+2)$ বরুরেখাটি অক্ষকে C বিন্দুতে ও AB রেখাকে B বিন্দুতে ছেদ করে। AB রেখার ঢাল -1 ও B বিন্দুর y স্থানাজ্ঞ 6 ।



(a) ধরি, AB রেখার সমীকরণ y = -x + c(i) এবং B বিন্দুর স্থানাজ্ঞ (α 6) যা (i) রেখা ও y² = 4(x + 2) ব্র্রুরেখার ছেদবিন্দু : $6 = -\alpha + c \Rightarrow c = \alpha + 6$ are $6^2 = 4(\alpha + 2) \Rightarrow \alpha + 2 = 9 \Rightarrow \alpha = 7$ $\therefore c = 7 + 6 = 13$ ∴ B কিন্দুর স্থানাজ্ঞ্ব (7, 6) এবং AB রেখার সমীকরণ A কিন্দুর স্থানাজ্ঞ্ব (13,0) (b) প্রদত্ত বর্ত্তরেখা x অক্ষকে C বিন্দুতে ছেদ করে। : C বিন্দুর y স্থানাজ্ঞ 0 $y^2 = 4(x+2)$ এ y = 0 বসিয়ে পাই, x = -2.. C বিন্দুর স্থানাজ্ঞ্ব (- 2, 0) এখন, ΔABC এর ক্ষেত্রফল $= \frac{1}{2} \begin{vmatrix} 13 & 7 & -2 & 13 \\ 0 & 6 & 0 & 0 \end{vmatrix}$

 $= \frac{1}{2}|78+12| = \frac{90}{2} = 45$ वर्ग अकक। (c) B হতে AC এর উপর BD লম্ব টানি। ΔBCD এর ক্ষেত্রফল = $\frac{1}{2}(CA \times BD)$ $=\frac{1}{2} \times |-2-7| \times 6 = 27$ বर्গ একক। $\mathbf{v} = 2\sqrt{x+2}$ বক্ররেখা, $\mathbf{x} = 7$ সরলরেখা ও x অক্ষ দ্বারা সীমাবন্দ ক্ষেত্রের ক্ষেত্রফল = $\int_{-\infty}^{7} 2\sqrt{x+2} dx$ $= 2 \left[\frac{(x+2)^{3/2}}{3/2} \right]^{7}$ $= \frac{4}{2} \{ (7+2)^{3/2} - (-2+2)^{3/2} \}$ $= \frac{4}{2} \times 27 = 36$ বর্গ একক । দাগান্জিত ABC সম্পূর্ণ এলাকার ক্ষেত্রফল 45 + (36 -27) = 54 বর্গ একক I অতিরিক্ত প্রশ্ন (সমাধানসহ) 1. $y = x^3$ বৰুৱেখা, x-অক্ষ এবং y = 0, x = 1 ও x = 3 সরলরেখা তিনটি দ্বারা সীমাবন্দ্ব ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। সমাধান ঃ নির্ণেয় ক্ষেত্রফল = $\int_{1}^{3} y \, dx = \int_{1}^{3} x^{3} \, dx$ $= \left\lceil \frac{x^4}{4} \right\rceil^3 = \frac{1}{4}(81 - 1) = \frac{80}{4} = 20$ বর্গ একক । 2. $xy = c^2$ অধিবৃত্ত, x-অক্ষ এবং x = a ও x = bরেখা দুইটি দ্বারা সীমাবন্দ্র ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। সমাধান ঃ নির্ণেয় ক্ষেত্রফল = $\int_{a}^{b} y \, dx = \int_{a}^{b} \frac{c^2}{x} \, dx$ $= c^{2} [\ln x]_{a}^{b} = c^{2} (\ln b - \ln a) = c^{2} \ln \frac{b}{a}$ 3. দেখাও যে, $\sqrt{x} + \sqrt{y} = \sqrt{a}$ অধিবৃত্ত এবং স্থানাজ্জের অক্ষ দুইটি দ্বারা সীমাবন্দ ক্ষেত্রের ক্ষেত্রফল a^2 / 6 .

প্রমাণ ঃ $\sqrt{x} + \sqrt{y} = \sqrt{a} \implies \sqrt{y} = \sqrt{a} - \sqrt{x}$ \Rightarrow $y = (\sqrt{a} - \sqrt{x})^2 = a - 2\sqrt{a}\sqrt{x} + x$ এখানে r এব সীমা 0 হতে a :. নির্ণেয় ক্ষেত্রফল = $\int_{a}^{a} y \, dx$ $= \int_{a}^{a} (a - 2\sqrt{a}\sqrt{x} + x) dx$ $=\left[ax-2\sqrt{a}.\frac{2}{3}x^{3/2}+\frac{x^2}{2}\right]^a$ $= a^2 - 2\sqrt{a} \cdot \frac{2}{2} a^{3/2} + \frac{a^2}{2}$ $= a^{2} - \frac{4}{3}a^{2} + \frac{a^{2}}{2} = \frac{6a^{2} - 8a^{2} + 3a^{2}}{6} = \frac{a^{2}}{6}$ ব্যবহারিক অনুশীলনী 1. পাঁচটি কোটি ব্যবহার করে মান নির্ণয় কর $\int_{1.5}^{3.5} \ln x \, dx, \int_{0}^{1} \frac{1}{1+x} \, dx$ নাম ঃ ছয়টি কোটি ব্যবহার পরীক্ষণের করে $\int_{1}^{3.5} \ln x \, dx$ এর মান নির্ণয়। মূলতত্ত্ব ঃ মনে করি, ক্ষেত্রফল $A = \int_{1.5}^{3.5} \ln x \, dx$ পাঁচটি কোটির Α জন্য = $h(\frac{y_0}{2} + y_1 + y_2 + y_3 + \frac{y_4}{2})$ ব্যবহার করে $\int_{-\infty}^{\infty} \ln x \, dx$ এর মান নির্ণয় করি। প্রয়োজনীয় উপকরণ ঃ (i) পেন্সিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) সায়েন্টিফিক ক্যালকুলেটর। কাৰ্যপন্ধতি ঃ 1. $1.5 \le x \le 3.5$ ব্যবধিতে সমদূরবর্তী 5টি কোটি y_0, y_1, y_2, y_3, y_4 এর জন্য এই জন্য ব্যবধির নিম্নপ্রাশত ও উর্ধ্বপ্রান্দেতর বিয়োগফলকে (5 - 1) = 4 দ্বারা ভাগ করে প্রত্যেক ক্ষদ্র অংশের দৈর্ঘ্য h এর মান নির্ণয় করি।

:
$$\vec{h} = \frac{3 \cdot 5 - 1 \cdot 5}{4} = 0 \cdot 5$$

895

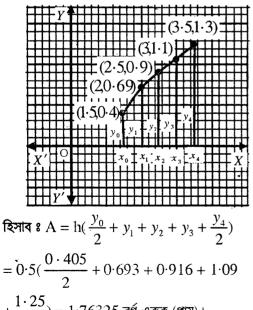
2. h এর মান হতে $x_n = x_{n-1} + h$ সূত্র ব্যবহার করে | মন্দতব্য : n এর মান যত বেশি হবে h এর মান তত ক্ষুদ্র x_1, x_2, x_3, x_4 নির্ণয় করি যেখানে $x_0 = 1.5$.

3. $y = f(x) = \ln x$ থেকে y_0, y_1, y_2, y_3, y_4 এর মান নির্ণয় করি:

<u>.</u>	
$x_0 = 1.5$	$y_0 = \ln 1.5 = 0.405$
$x_1 = x_0 + h = 2$	$y_1 = \ln 2 = 0.693$
$x_2 = x_1 + h = 2.5$	$y_2 = \ln 2 \cdot 5 = 0.916$
$x_3 = x_2 + h = 3$	$y_3 = \ln 3 = 1.09$
$x_4 = x_3 + h = 3.5$	$y_4 = \ln 3 \cdot 5 = 1.25$

4. x - অক্ষ বরাবর ক্ষুদ্রতম বর্গের 5 বাহ = 1 একক ও y - অক্ষ বরাবর ক্ষুদ্রতম বর্গের 10 বাহু = 1 একক ধরে তালিকাভুক্ত বিন্দুগুলি ছক কাগজে স্থাপন করে লেখচিত্রটি অজ্ঞকন করি।

প্রাপত পাঁচটি কোটিকে x অক্ষের সহিত স্কেলের 5. সাহায্যে সংযুক্ত করে 4টি ট্রাপিজিয়াম আকারে প্রকাশ করি।



ফলাফল ঃ নির্ণেয় ক্ষেত্রফল

$$A = \int_{1.5}^{3.5} \ln x \, dx = 1.76325 \, \vec{57} \, (213)$$

হবে এবং A এর মান অধিকতর শুদ্ধ হবে।

পরীক্ষণের নাম পাঁচটি কোটি ব্যবহার করে $\int_{0}^{1} rac{1}{1+x} dx$ এর মান নির্ণয়। মূলতন্ত্র ঃ মনে করি, ক্ষেত্রফল A = $\int_0^1 \frac{1}{1+x} dx$ শাঁচটি কোটির জন্য = $h(\frac{y_0}{2} + y_1 + y_2 + y_3 + \frac{y_4}{2})$ ব্যবহার করে $\int_{0}^{1} \frac{1}{1+x} dx$ এর মান নির্ণয় করি।

প্রয়োজনীয় উপকরণ ঃ (i) পেন্সিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) সায়েন্টিফিক ক্যালকুলেটর।

কাৰ্যপদ্ধতি ঃ

1. $0 \le x \le 1$ ব্যবধিতে সমদরবর্তী 5টি কোটি y_0, y_1, y_2, y_3, y_4 এর জন্য এই জন্য ব্যবধির নিমুপ্রামত ও উর্ধ্বপ্রান্দেতর বিয়োগফলকে (5 – 1) = 4 দ্বারা ভাগ করে প্রত্যেক ক্ষদ্র অংশের দৈর্ঘ্য h এর মান নির্ণয় করি।

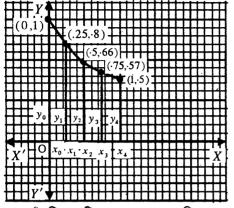
$$h = \frac{1-0}{4} = 0 \cdot 25$$

2. h এর মান হতে $x_n = x_{n-1} + h$ সূত্র ব্যবহার করে x_1, x_2, x_3, x_4 নির্ণয় করি যেখানে $x_0 = 0$.

3.
$$y = f(x) = \frac{1}{1+x}$$
 থেকে y_0, y_1, y_2, y_3, y_4 এর মান নির্ণয় করি:

$x_0 = 0$	$y_0 = \frac{1}{1+0} = 1$
$x_1 = x_0 + h = 0.25$	$y_1 = \frac{1}{1 + 0 \cdot 25} = 0.8$
$x_2 = x_1 + h = 0.5$	$y_2 = \frac{1}{1+0.5} = 0.66$
$x_3 = x_2 + h = 0.75$	$y_3 = \frac{1}{1+0.75} = 0.57$
$x_4 = x_3 + h = 1$	$y_4 = \frac{1}{1+1} = 0.5$

x - অক্ষ বরাবর ক্ষুদ্রতম বর্গের 10 বাহ্ = 1 একক ও y - অক্ষ বরাবর ক্ষুদ্রতম বর্গের 15 বাহ্ = 1 একক ধরে তালিকাভুক্ত কিন্দুগুলি ছক কাগজে স্থাপন করে লেখচিত্রটি অজ্ঞকন করি।



5. প্রাশ্ত পাঁচটি কোটিকে x অক্ষের সহিত স্কেলের সাহায্যে সংযুক্ত করে 4টি ট্রাপিজিয়াম আকারে প্রকাশ করি।

হিসাৰ 8 A = h(
$$\frac{y_0}{2} + y_1 + y_2 + y_3 + \frac{y_4}{2}$$
)
= 0.25($\frac{1}{2}$ + 0.8 + 0.66 + 0.57
+ $\frac{0.5}{2}$) = 0.69.5 বর্গ একক (প্রায়)।

ফলাফল ঃ নির্ণেয় ক্ষেত্রফল

$$A = \int_{1.5}^{3.5} \ln x \, dx = 0.695 \, \mathsf{d}\mathfrak{h} \, \mathsf{u}\mathfrak{d}\mathfrak{h} \, \mathsf{u}\mathfrak{d}\mathfrak{h}$$
 (প্রায়) ।

মশতব্য : n এর মান যত বেশি হবে h এর মান তত ক্ষুদ্র হবে এবং A এর মান অধিকতর শুদ্ধ হবে।

2. ছয়টি কোটি ব্যবহার করে মান নির্ণয় কর
$$\int_{1}^{2} x^{2} dx$$
পরীক্ষণের নাম ঃ ছয়টি কোটি ব্যবহার করে $\int_{1}^{2} x^{2} dx$ এর মান নির্ণয়।
মূলতত্ত্ব ঃ মনে করি, ক্ষেত্রফল $A = \int_{1}^{2} x^{2} dx$

শাঁচটি কোটির জন্য A = $\ln(\frac{y_0}{2} + y_1 + y_2 + y_3 + y_4 + \frac{y_5}{2})$ ব্যবহার করে $\int_1^2 x^2 dx$ এর মান নির্ণয় করি।

প্রয়োজনীয় উপকরণ ঃ (i) পেন্সিল (ii) ফেকল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) সায়েন্টিফিক ক্যালকুলেটর।

কাৰ্যপন্ধতি ঃ

1. $1 \le x \le 2$ ব্যবধিতে সমদূরবর্তী 5টি কোটি $y_0, y_1, y_2, y_3, y_4, y_5$ এর জন্য এই জন্য ব্যবধির নিমুপ্রাশত ও উর্ধ্বপ্রাশেতর বিয়োগফলকে (6 - 1) = 5 দ্বারা ভাগ করে প্রত্যেক ক্ষুদ্র অংশের দৈর্ঘ্য h এর মান নির্ণয় করি।

$$\therefore h = \frac{2-1}{5} = 0 \cdot 2$$

 2. h এর মান হতে $x_n = x_{n-1} + h$ সূত্র ব্যবহার করে x_1, x_2, x_3, x_4, x_5 নির্ণিয় করি যেখানে $x_0 = 1$.

 3. $y = f(x) = x^2$ প্রেকে $y_0, y_1, y_2, y_3, y_4, y_5$ এর মান নির্ণিয় করি:

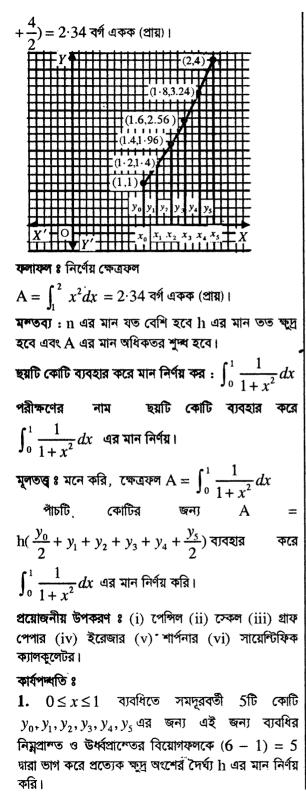
$x_0 = 1$	$y_0 = 1^2 = 1$
$x_1 = x_0 + h = 1.2$	$y_1 = (1 \cdot 2)^2 = 1.44$
$x_2 = x_1 + h = 1.4$	$y_2 = (1 \cdot 4)^2 = 1.96$
$x_3 = x_2 + h = 1.6$	$y_3 = (1 \cdot 6)^2 = 2 \cdot 56$
$x_4 = x_3 + h = 1.8$	$y_4 = (1 \cdot 8)^2 = 3 \cdot 24$
$x_4 = x_3 + h = 2$	$y_5 = (2)^2 = 4$

x - অক্ষ বরাবর ক্ষুদ্রতম বর্গের 10 বাহ্ = 1 একক ও y - অক্ষ বরাবর ক্ষুদ্রতম বর্গের 5 বাহ্ = 1 একক ধরে তালিকাভুক্ত কিন্দুগুলি ছক কাগজে স্থাপন করে লেখচিত্রটি অজ্ঞন করি।

 প্রাশ্ত ছয়টি কোটিকে x অক্ষের সহিত স্কেলের সাহায্যে সংযুক্ত করে 5টি ট্রাপিজিয়াম-আকারে প্রকাশ করি।

देशाव 8 A = h(
$$\frac{y_0}{2} + y_1 + y_2 + y_3 + y_4 + \frac{y_5}{2}$$
)
= 0·2($\frac{1}{2}$ + 1·44 + 1·96 + 2·56 + 3.24

যোগ্ৰজীৰুৱণ

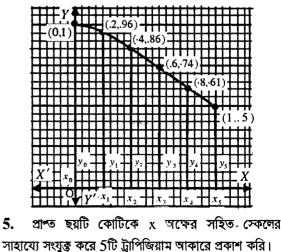


$$\therefore h = \frac{1-0}{5} = 0 \cdot 2$$
2. h এর মান হতে $x_n = x_{n-1} + h$ সূত্র ব্যবহার করে
 x_1, x_2, x_3, x_4, x_5 নির্ণয় করি যেখানে $x_0 = 0$.
3. $y=f(x)=\frac{1}{1+x^2}$ থেকে $y_0, y_1, y_2, y_3, y_4, y_5$
এর মান নির্ণয় করি:

$$\boxed{x_0 = 0} \qquad y_0 = \frac{1}{1+0^2} = 1$$
 $x_1 = x_0 + h = 0.2$ $y_1 = \frac{1}{1+(0.2)^2} = 0.96$

	$1 + (0.2)^{-1}$
$x_2 = x_1 + h = 0.4$	$y_2 = \frac{1}{1 + (0.4)^2} = 0.86$
$x_3 = x_2 + h = 0.6$	$y_3 = \frac{1}{1 + (0.6)^2} = 0.74$
$x_4 = x_3 + h = 0.8$	$y_4 = \frac{1}{1 + (0.8)^2} = 0.61$
$x_4 = x_3 + h = 1$	$y_5 = \frac{1}{1+(1)^2} = 0.5$

x - অক্ষাবরাবর ক্ষুদ্রতম বর্গের 20 বাহ্ = 1 একক ও y - অক্ষ বরাবর ক্ষুদ্রতম বর্গের 20 বাহ্ = 1 একক ধরে তালিকাভুক্ত কিন্দুগুলি ছক কাগজে স্থাপন করে লেখচিত্রটি অজ্ঞকন করি।



Remark A = h(
$$\frac{y_n}{2} + y_1 + y_2 + y_3 + y_4 + \frac{y_x}{2}$$
)2. $\int_0^1 \frac{\cos^{-1} xdx}{\sqrt{1-x^2}} = ?$ [DU,NU 05-06] $= 0 \cdot 2(\frac{1}{2} + 0.96 + 0.86 + 0.74 + 0.61$ $= 0.784 = 3\% + 0.784 = 0.$

A. $\frac{\pi}{4}$ B. $\frac{\pi}{3}$ C. $\frac{\pi}{8}$ D. $\frac{2\pi}{3}$ Solⁿ. I = .392699 = $\frac{\pi}{8}$ (By Calculator) 9. $\int_{a}^{a} \sqrt{a^{2} - x^{2}} dx = ? [JU 07-08; RU 06-$ 07: KU 06-07] Sol^{n} I = $\left[\frac{x\sqrt{a^{2}-x^{2}}}{2} + \frac{a^{2}}{2}\sin^{-1}\frac{x}{a}\right]_{a}^{a}$ $=\frac{a^2}{2}\cdot\frac{\pi}{2}=\frac{\pi}{4}a^2$ a=2 4G3, I=3.1416(By Calculator) अवर $\frac{\pi}{4}a^2 = 3.1416$ d/dx ldx 🛛 x~ (grs) C , 2 , 3.1416 10. $y^2 = 4x$ $\Im y = x$ দ্বারা আবন্দ কেন্দ্রের কেন্দ্রবন্দ [DU 05-06, 08-09] ৰ ত হ Sol^n $x^2 = 4x \implies x = 0.4$

:. (काख्यम् = $\int_{0}^{4} (2\sqrt{x} - x) dx = \frac{8}{3}$ (By Calculator) 11. y = 3x সরগরেখা , x অক এবং x = 2 রেখা হারা আবন্দ্র কেত্রের ক্রের্ফন কত? [IU 07-08;SU 06-07] Sol^{n} . (ক্রের্ফন = $\int_{0}^{2} 3x dx = \left[3 \cdot \frac{x^{2}}{2}\right]_{0}^{2} = 6$ 12. $x^{2} + y^{2} = a$ এর ক্রের্ফন কত? [SU 04-05;CU 02-03] $Sol^{n} \cdot x^{2} + y^{2} = (\sqrt{a})^{2}$:. (ক্রের্ফন = $\pi(\sqrt{a})^{2} = \pi a$

www.boighar.com