Boighar.com

$$
\begin{aligned}
& \text { घणन গज } \\
& \text { जयोधान } \\
& \text { একাদশ ও দ্বাদশ শ্রেণি }
\end{aligned}
$$

बোঃ কেতাব উদ্গীন
মোঃ কেতাব উদ্দীন
বি.এসসি.(সম্মান) প্রথম শ্রেণি, এম.এসসি.(ঢাকা বিশ্ববিদ্যালয়)
সহকাব্রী অধ্যাপক, ব্রংপুর ক্যাডেট কলেজ, বংপুব্ন।
প্রাক্তন সহকাব্রী অধ্যাপক, ফেেনী গার্লস ক্যাড্টেট কলেজ, ফেনী।
প্রাক্তন প্রতাষক, মির্জাপুর ক্যাডেট কলেজ, মির্জাপুর।
র্রংপুর্ ক্যাডেট কস্লেজ, ব্রংপুর ।

প্র্সশनায়：
কাব্দীফ－লাজ্িिম，ঢাকা ।

প্রুথম প্রকাশ ：জুল，＜OJ৩
প্রেব সংস্কর্রণ：20ゝ8
ব্বিণীয় সংক্কজ্গণ：ব্，২০১৫

মूल্য：र৬০．00 টौকা মাত্র ।

नেvক，হ্মাঃ ক্কোব উদ্দীন ।

মুর্রণে ：সাজু প্রিন্টিং প্রেস ，২৭，সিক্রিশ দাস ল্লে，বাংলাবাজান，ঢাকা－১১00

প্রাপ্তিস্থান ：সাজ্জু প্রিন্টিং প্রেন ৭ পাবলিকেশ্ন
প্্রিচাললায় মোঃ ক্কোব উদ্দীন
जb，বাংনাবাজাব（৩য় কলা ），ঢাকা－১১০০।
শোবার্লি ：o\9ゝbrbs808b，o১৬b৯১৯けu8৩

BOIGHAR.COM

Please Give Us Some Credit When You Share Our Books!

Visit Us at bot g hor. com

বিস্মিল্মাiহিন রাহ्ञ্যানিন্ত রাহিय

লেখকের কথা

www.boighar.com

" উচ্চতর র্গণিত ১ম পত্রের সমাধান পুস্তকখ্যানি মোঃ নজব্ন ইসলাম ও নোঃ কেতান উদ্দীন রচিত " উচ্চতর গণিত ১ম পত্র পুস্তকখানির সম্পূর্ণ সমাধান। সর্কিপ্তু পদ্জতি ও ক্যালকুলেটর ব্যবছারের

 ভূমিকা পালन করবে বলে আমার দৃঢ় বিশ্বান।
 বিশ্ববিদ্যালয়ে ভর্তি পর্ষন্ब যथাযথভতে সাহাय্য কর়তত পারে।

যাঁরা প্রত্যক্ক ও পরোক্ারে এ পুন্তকখানি প্রণয়নে সহর্যোগিতা করেছেন্ন ঢাঁঢরর সকনের প্রতি কৃতজ্ঞতা
 পুস্তকখ্গানি তাদের নিকট. আদৃত হলেই आমার শ্রাম সার্থক বলে মনে করব

निपেদক
小োঃ কেতাব উদ্দীন।

উচ্চতর গণিত সমাধান ১ম পত্র

মা.

SCAN \& EDITED BY:

BOIGHER

WEBSITE:
wwwobatghar.cam
FACEBOOK:
https://www.facebook.com/groups/Boighar-বইঘর

সূচিপত্র

1. (a) $A=\left[\begin{array}{ccc}8 & 4 & -1 \\ 0 & 1 & 3 \\ 5 & 4 & 8\end{array}\right]$ बबर $B=\left[\begin{array}{ccc}-4 & 6 & 2 \\ 1 & 3 & 7 \\ 5 & 4 & 1\end{array}\right]$

1(b) $A=\left[\begin{array}{ccc}3 & 1 & -1 \\ 2 & 3 & 4 \\ -4 & 5 & 6\end{array}\right]$ ษ $B=\left[\begin{array}{ccc}1 & -4 & 6 \\ 2 & 0 & -7 \\ 3 & 5 & 0\end{array}\right]$ रणन, 7A-5B निर्ष़য় कव।
[ক.'০২]
সমাধান : 7A-5B=

$$
\begin{aligned}
& 7\left[\begin{array}{ccc}
3 & 1 & -1 \\
2 & 3 & 4 \\
-4 & 5 & 6
\end{array}\right]-5\left[\begin{array}{ccc}
1 & -4 & 6 \\
2 & 0 & -7 \\
3 & 5 & 0
\end{array}\right] \\
&=\left[\begin{array}{ccc}
21 & 7 & -7 \\
14 & 21 & 28 \\
-28 & 35 & 42
\end{array}\right]-\left[\begin{array}{ccc}
5 & -20 & 30 \\
10 & 0 & -35 \\
15 & 25 & 0
\end{array}\right] \\
&=\left[\begin{array}{ccc}
21-5 & 7+20 & -7-30 \\
14-10 & 21-0 & 28+35 \\
-28-15 & 35-25 & 42-0
\end{array}\right] \\
&= {\left[\begin{array}{ccc}
16 & 27 & -37 \\
4 & 21 & 63 \\
-43 & 10 & 42
\end{array}\right.}
\end{aligned}
$$

2(a) $A=\left[\begin{array}{cc}1 & 6 \\ -3 & 5\end{array}\right]$ ㄷ बए $B=\left[\begin{array}{cc}4 & 0 \\ 2 & -1\end{array}\right]$ रजে, Ai) : 114 नलण्श़ कर।

ममाधान $\mathrm{AB}=\left[\begin{array}{ll}1 & 6 \\ 3 & 5\end{array}\left[\begin{array}{cc}4 & 0 \\ 2 & 1\end{array}\right]\right.$
$=\left[\begin{array}{cc}4+12 & 0-6 \\ -12+10 & 0-5\end{array}\right]=\left[\begin{array}{rr}16 & -6 \\ 2 & 6\end{array}\right]$ (Ans.)
$\left.\mathrm{BA}=\left[\begin{array}{cccc}4 & 0 & & \\ 2 & -1\end{array}\right] \quad 3 \quad 5\right]$
$=\left[\begin{array}{ll}4+0 & 24+0 \\ 2+3 & 12-5\end{array}\right]=\left[\begin{array}{cc}4 & 24 \\ 5 & 7\end{array}\right.$ (Alis.)
2(b) $A=\left[\begin{array}{ccc}3 & \cdots & 2 \\ -2 & 1 & 0 \\ -1 & -1 & 1\end{array}\right]$ जबए $A=\left[\begin{array}{lll}1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5\end{array}\right]$ रण
দেখাও যে, $\mathbf{A B}=\mathbf{B A}=I_{3}$

প্রমাণ \& $\mathrm{AB}=\left[\begin{array}{ccc}3 & -4 & 2 \\ -2 & 1 & 0 \\ -1 & -1 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & 5\end{array}\right]$
$=\left[\begin{array}{ccc}3-8+6 & 6-20+14 & -6+16-10 \\ -2+2+0 & -4+5+0 & 4-4+0 \\ -1-2+3 & -2-5+7 & 2+4-5\end{array}\right]$
$=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I_{3}$
$\mathrm{BA}=\left[\begin{array}{lll}1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5\end{array}\right]\left[\begin{array}{ccc}3 & -4 & 2 \\ -2 & 1 & 0 \\ -1 & -1 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}3-4+2 & -4+2+5 & 2+0-2 \\ 6-10+4 & -8-5+4 & 4+0-4 \\ 9-14+5 & -12+7+5 & 6+0-5\end{array}\right]$
$[100]$
$=\left[\begin{array}{lll}0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]=I_{3}$
$\mathrm{AB}=\mathrm{BA}=1$ (Showed)

2(c) $A=\left[\begin{array}{ccc}\mathbf{2} & \mathbf{0} & -1 \\ \mathbf{5} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{3}\end{array}\right]$ जयर $\mathbf{B}=\left[\begin{array}{ccc}\mathbf{3} & \mathbf{- 1} & \mathbf{1} \\ -\mathbf{1 5} & \mathbf{6} & -\mathbf{5} \\ \mathbf{5} & -\mathbf{2} & \mathbf{2}\end{array}\right] \left\lvert\,=\left[\begin{array}{ccc}0+8 & 0+10 & 0+12 \\ 1+8 & 2+10 & 3+12 \\ 0-4 & 0-5 & 0-6\end{array}\right]=\left[\begin{array}{ccc}8 & 10 & 12 \\ 9 & 12 & 15 \\ -4 & -5 & -6\end{array}\right]\right.$
 थमान : $\mathrm{AB}=\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$
$=\left[\begin{array}{ccc}6-0-5 & -2+0+2 & 2+0-2 \\ 15-15+0 & -5+6+0 & 5-5+0 \\ 0-15+15 & 0+6-6 & 0-5+6\end{array}\right]$
$=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\mathbf{B A}=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$
$=\left[\begin{array}{ccc}6-5+0 & 0-1+1 & -3+0+3 \\ -30+30+0 & 0+6-5 & 15+0-15 \\ 10-10+0 & 0-2+2 & -5+0+6\end{array}\right]$
$=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$A B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=$ BA (Showed)
3(a) $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ बरह $B=\left[\begin{array}{cc}0 & 2 \\ 1 & 2 \\ 0 & -1\end{array}\right]$ इका,
(i) $\mathrm{AB} B \mathrm{BA}$ मिर्या क्या
 (ii) तौथा® बে, $\mathbf{A B} \neq \mathbf{B A}$

(i) अभाषाम : $\mathrm{AB}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{cc}0 & 2 \\ 1 & 2 \\ 0 & -1\end{array}\right]$
$=\left[\begin{array}{ll}0+2+0 & 2+4-3 \\ 0+5+0 & 8+10-6\end{array}\right]=\left[\begin{array}{cc}2 & 3 \\ 5 & 12\end{array}\right]$
$\mathrm{BA}=\left[\begin{array}{cc}0 & 2 \\ 1 & 2 \\ 0 & -1\end{array}\right]\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$

3(b) $A=\left[\begin{array}{ll}2 & 1\end{array}\right]$ जবर $B=\left[\begin{array}{ccc}1 & -2 & 0 \\ 4 & 5 & -3\end{array}\right]$ रणে , $A B$ विर्गय्य क्र।
[ব.'০७]
সमाधान : $\mathrm{AB}=\left[\begin{array}{ll}2 & 1\end{array}\right]\left[\begin{array}{ccc}1 & -2 & 0 \\ 4 & 5 & -3\end{array}\right]$
$=\left[\begin{array}{lll}2+4 & -4+5 & 0-3\end{array}\right]=\left[\begin{array}{lll}6 & 1 & -3\end{array}\right]$
(Ans.)
3(c) $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right]$ बयर $C=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ इजে,

(ii) দেষাఆ यে, (AB) $\mathrm{C}=\mathbf{A}(\mathbf{B C})$ [य.'०8]
(i) ग्याथान \& $\mathrm{AB}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right]$
$=\left[\begin{array}{cc}4+4 & 3+2 \\ 12+8 & 9+4 \\ 0+2 & 0+1\end{array}\right]=\left[\begin{array}{cc}8 & 5 \\ 20 & 13 \\ 2 & 1\end{array}\right]$ (Ans.
$\mathrm{BC}=\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$
$=\left[\begin{array}{ll}4+6 & 8+9 \\ 2+2 & 4+3\end{array}\right]=\left[\begin{array}{cc}10 & 17 \\ 4 & 7\end{array}\right]$ (Ans.)
(ii) গ্রমाण : $\mathrm{AB}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right]$
$=\left[\begin{array}{cc}4+4 & 3+2 \\ 12+8 & 9+4 \\ 0+2 & 0+1\end{array}\right]=\left[\begin{array}{cc}8 & 5 \\ 20 & 13 \\ 2 & 1\end{array}\right]$
$\mathrm{BC}=\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$
$=\left[\begin{array}{ll}4+6 & 8+9 \\ 2+2 & 4+3\end{array}\right]=\left[\begin{array}{cc}10 & 17 \\ 4 & 7\end{array}\right]$
जvन $\quad(\mathrm{AB}) \mathrm{C}=\left[\begin{array}{cc}8 & 5 \\ 20 & 13 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right]$
$=\left[\begin{array}{cc}8+10 & 16+15 \\ 20+26 & 40+39 \\ 2+2 & 4+3\end{array}\right]=\left[\begin{array}{cc}18 & 31 \\ 46 & 79 \\ 4 & 7\end{array}\right]$
$\mathrm{A}(\mathrm{BC})=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}10 & 17 \\ 4 & 7\end{array}\right]$
$=\left[\begin{array}{cc}10+8 & 17+14 \\ 30+16 & 51+28 \\ 0+4 & 0+7\end{array}\right]=\left[\begin{array}{cc}18 & 31 \\ 46 & 79 \\ 4 & 7\end{array}\right]$
$\therefore(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$ (Showed)
4(a) $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right], B=\left[\begin{array}{lll}1 & 3 & 0 \\ 2 & 0 & 1\end{array}\right]$ जदर $C=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$

প्रমान : $\mathrm{AB}=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]\left[\begin{array}{lll}1 & 3 & 0 \\ 2 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{lll}1+2 & 3+0 & 0+1 \\ 0+4 & 0+0 & 0+2\end{array}\right]=\left[\begin{array}{lll}3 & 3 & 1 \\ 4 & 0 & 2\end{array}\right]$
$\mathrm{BC}=\left[\begin{array}{lll}1 & 3 & 0 \\ 2 & 0 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]=\left[\begin{array}{l}2+9+0 \\ 4+0+1\end{array}\right]=\left[\begin{array}{c}11 \\ 5\end{array}\right]$
এখन , (AB) $\mathrm{C}=\left[\begin{array}{lll}3 & 3 & 1 \\ 4 & 0 & 2\end{array}\right]\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$
$=\left[\begin{array}{l}6+9+1 \\ 8+0+2\end{array}\right]=\left[\begin{array}{l}16 \\ 10\end{array}\right]$
$\mathrm{A}(\mathrm{BC})=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]\left[\begin{array}{c}11 \\ 5\end{array}\right]=\left[\begin{array}{l}11+5 \\ 0+10\end{array}\right]=\left[\begin{array}{l}16 \\ 10\end{array}\right]$
$(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$
4(b) $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right], B=\left[\begin{array}{cc}0 & 2 \\ 1 & 2 \\ 0 & -1\end{array}\right]$, $C=\left[\begin{array}{cc}-1 & 2 \\ 0 & 4 \\ 3 & 6\end{array}\right]$
इनে, (i) AB এবर AC निर्षয় कर।
(ii) দেঋাఆ যে, $\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})$.
(i) সম:খান : $\mathrm{AB}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{cc}0 & 2 \\ 1 & 2 \\ 0 & -1\end{array}\right]$
$\left\lvert\,=\left[\begin{array}{ll}0+2+0 & 2+4-3 \\ 0+5+0 & 8+10-6\end{array}\right]=\left[\begin{array}{cc}2 & 3 \\ 5 & 12\end{array}\right]\right.$
$\mathrm{AC}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{cc}-1 & 2 \\ 0 & 4 \\ 3 & 6\end{array}\right]$
$=\left[\begin{array}{cc}-1+0+9 & 2+8+18 \\ -4+0+18 & 8+20+36\end{array}\right]=\left[\begin{array}{cc}8 & 28 \\ 14 & 64\end{array}\right]$
(ii) প্রমাণ \& $\mathrm{AB}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{cc}0 & 2 \\ 1 & 2 \\ 0 & -1\end{array}\right]$
$=\left[\begin{array}{ll}0+2+0 & 2+4-3 \\ 0+5+0 & 8+10-6\end{array}\right]=\left[\begin{array}{cc}2 & 3 \\ 5 & 12\end{array}\right]$
$\mathrm{AC}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{cc}-1 & 2 \\ 0 & 4 \\ 3 & 6\end{array}\right]$
$=\left[\begin{array}{cc}-1+0+9 & 2+8+18 \\ -4+0+18 & 8+20+36\end{array}\right]=\left[\begin{array}{cc}8 & 28 \\ 14 & 64\end{array}\right]$
$B+C=\left[\begin{array}{cc}0 & 2 \\ 1 & 2 \\ 0 & -1\end{array}\right]+\left[\begin{array}{cc}-1 & 2 \\ 0 & 4 \\ 3 & 6\end{array}\right]$
$=\left[\begin{array}{cc}0-1 & 2+2 \\ 1+0 & 2+4 \\ 0+3 & -1+6\end{array}\right]=\left[\begin{array}{cc}-1 & 4 \\ 1 & 6 \\ 3 & 5\end{array}\right]$
এVन, $\mathrm{AB}+\mathrm{AC}=\left[\begin{array}{cc}2 & 3 \\ 5 & 12\end{array}\right]+\left[\begin{array}{cc}8 & 28 \\ 14 & 64\end{array}\right]$
$=\left[\begin{array}{cc}2+8 & 3+28 \\ 5+14 & 12+64\end{array}\right]=\left[\begin{array}{cc}10 & 31 \\ 19 & 76\end{array}\right]$
$A(B+C)=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{cc}-1 & 4 \\ 1 & 6 \\ 3 & 5\end{array}\right]$
$=\left[\begin{array}{cc}-1+2+9 & 4+12+15 \\ -4+5+18 & 16+30+30\end{array}\right]=\left[\begin{array}{ll}10 & 31 \\ 19 & 76\end{array}\right]$
$A B+A C=A(B+C) \quad$ (Showed)
4. (c) $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right], B=\left[\begin{array}{cc}0 & 2 \\ 1 & 2 \\ 0 & -1\end{array}\right]$ इल. ,
(i) AB जदर BA निर्षय्य कर्या
[Pि.’○]

$=\left[\begin{array}{lll}0+2+0 & 244 & 3 \\ 0+5+0 & 8 & 10\end{array}\right]=6\left[\begin{array}{cc}2 & 3 \\ 5 & 12\end{array}\right]$ ins
2670
$\mathrm{BA}=\left[\begin{array}{cc:c}0 & 2 & i \\ \vdots & 2 & 1 \\ 0 & -1 & 1\end{array}\right.$
$=\left[\begin{array}{ll}0+8 & 0+10 \\ 1+8 & +10 \\ 0-4 & 0\end{array}\right.$
$=\begin{array}{ccc}58 & 10 & 1 \\ 9 & 12 & 15 \\ -4 & 0 & 0\end{array}$
(ii) भ्रमाब : $\mathrm{AB}=\left[\begin{array}{l}5 \\ \mathrm{BA}\end{array},\left[\begin{array}{ccc}8 & 19 & \\ 9 & 12 & 6 \\ -4 & -5 & 6\end{array}\right.\right.$
$\mathrm{AB} \neq \mathrm{BA} \quad$ (S.04ed)
4(d) $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right], B=\left[\begin{array}{c}4 \\ 6 \\ -1\end{array}\right]^{Q}$,
$C=\left[\begin{array}{llll}1 & 2 & -5 & 6\end{array}\right]$ इलে, (i) मिथाఆ यে,
$(\mathrm{AB}) \mathrm{C}=\mathbf{A}(\mathrm{BC})$
[জू.’’২]
(ii) (AB)C निর্ণ কর।
[রা.'১১,'১৩; ব., য. '১০; ঢা.'১১,'১৩; मि.'১২]
(i) भमाष: $\mathrm{AB}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{c}4 . \\ 6 \\ -1\end{array}\right]$
$=\left[\begin{array}{c}4+12-3 \\ 16+30-6\end{array}\right]=\left[\begin{array}{l}13 \\ 40\end{array}\right]$
$\mathrm{BC}=\left[\begin{array}{c}4 \\ 6 \\ -1\end{array}\right]\left[\begin{array}{llll}1 & 2 & -5 & 6\end{array}\right]$
$=\left[\begin{array}{cccc}4 & 8 & -20 & 24 \\ 6 & 12 & -30 & 36 \\ -1 & -2 & 5 & -6\end{array}\right]$
(ii) সমাষান : $\mathrm{AB}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{c}4 \\ 6 \\ -1\end{array}\right]$

$$
=\left[\begin{array}{c}
4+12-3 \\
16+30-6
\end{array}\right]=\left[\begin{array}{l}
13 \\
40
\end{array}\right]
$$

$$
(\mathrm{AB}) \mathrm{C}=\left[\begin{array}{l}
13 \\
40
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & -5 & 6
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
13 & 26 & -65 & 78 \\
40 & 80 & -200 & 240
\end{array}\right] \text { (Ans.) }
$$

$$
\text { 4(e) } A=\left[\begin{array}{cc}
2 & -1 \\
1 & 0 \\
-3 & 4
\end{array}\right], B=\left[\begin{array}{ccc}
1 & -2 & -5 \\
3 & 4 & 0
\end{array}\right] \text { इन्न, }
$$

जেষা যে, $\mathbf{A B} \neq \mathbf{B A}$.
[मि.' Jo]
সমাধাन : $\mathrm{AB}=\left[\begin{array}{cc}2 & -1 \\ 1 & 0 \\ 3 & 4\end{array}\right]\left[\begin{array}{ccc}1 & 2 & -5 \\ 3 & 4 & 0\end{array}\right]$
$=\left[\begin{array}{ccc}2-3 & -4-4 & -10+0 \\ 1+0 & -2+0 & -5+0 \\ -3+12 & 6+16 & 15+0\end{array}\right]$
$=\left[\begin{array}{ccc}-1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15\end{array}\right]$
$\mathrm{BA}=\left[\begin{array}{ccc}1 & -2 & -5 \\ 3 & 4 & 0\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right]$
$\begin{aligned}= & {\left[\begin{array}{cc}2-2+15 & -1+0-20 \\ 6+4+0 & -3+0+0\end{array}\right]=} \\ & A B \neq \mathrm{BA}\end{aligned} \quad\left[\begin{array}{cc}15 & -21 \\ 10 & -3\end{array}\right]$

$$
\begin{aligned}
& \left.\rightarrow \begin{array}{c:cccc}
2 & 4 & 8 & -20 & 24 \\
6 & 6 & 12 & -30 & 36 \\
-i & -2 & 5 & -6
\end{array}\right] \\
& \left.=\begin{array}{rrrr}
4 & 60-6 & 60+15 & 24+72-18 \\
i 5 & +6 i-12 & -80-150+30 & 90+180-35
\end{array}\right] \\
& =\left[\begin{array}{cccc}
13 & 26 & -65 & 78 \\
40 & 80 & -200 & 240
\end{array}\right] \\
& \text {. }(A B) C=A(B C) \text { (Showed) }
\end{aligned}
$$

5.(a) $A=\left[\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right]$ शणन A^{2} जबर A^{3} निफ़का द्त

 চ.'০৯; मि.'০১,'১8; মা.'১৩]
সमायान : $\mathrm{A}^{2}=\mathrm{A} . \mathrm{A}=\left[\begin{array}{ll:cc}1 & 2 & 1 & 2 \\ 4 & 2 & 4 & -3\end{array}\right]$
$=\left[\begin{array}{ccccc}1+8 & 2-67 & {[9} & -4 \\ 4 & 12 & 0 & -9 & 17\end{array}\right]$
$\hat{A}^{2}=1 . A^{2}=1 \quad\left[\begin{array}{ll}1 & -4 \\ i & -4 \\ i 7\end{array}\right]$
$\left.\underset{-9}{-9} \begin{array}{rrr}-4 & -4 & 24\end{array}\right]\left[\begin{array}{cc}-7 & 30 \\ 60 & -67\end{array}\right]$
बशन, \quad - 111
$=\left[\begin{array}{ll} & 17\end{array}\right]+2\left[\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right]-11\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{cc}9 & -4 \\ -8 & 17\end{array}\right]+\left[\begin{array}{cc}2 & 4 \\ 8 & -6\end{array}\right]+\left[\begin{array}{cc}-11 & 0 \\ 0 & -11\end{array}\right]$
$=\left[\begin{array}{ccc}0 & 2-11 & -4+4+0 \\ -8+8+0 & 17-6-11\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
अত৩६ $\mathrm{A}^{2}+2 \mathrm{~A}-111$ একটি শূन্য ম্যারিপ্গ।
(b) $A=\left[\begin{array}{cc}3 & 2 \\ 5 & -1\end{array}\right]$ इलে, $A^{2}-5 A+6 I$ निर्ज़्य कबत ; ব্ষোন I $=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad$ [ঢ.'०৭; সि. '০১; ব.'১২]
ममाथान : $\mathrm{A}^{2}=\mathrm{A} \cdot \mathrm{A}=\left[\begin{array}{cc}3 & 2 \\ 5 & -1\end{array}\right]\left[\begin{array}{cc}3 & 2 \\ 5 & -1\end{array}\right]$
$=\left[\begin{array}{cc}9+10 & 6-2 \\ 15-5 & 10+1\end{array}\right]=\left[\begin{array}{cc}19 & 4 \\ 10 & 11\end{array}\right]$
এขन, $\mathrm{A}^{2}-5 \mathrm{~A}+6 \mathrm{I}$
$=\left[\begin{array}{cc}19 & 4 \\ 10 & 11\end{array}\right]-5\left[\begin{array}{cc}3 & 2 \\ 5 & -1\end{array}\right]+6\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{cc}19 & 4 \\ 10 & 11\end{array}\right]+\left[\begin{array}{cc}-15 & -10 \\ -25 & 5\end{array}\right]+\left[\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right]$
$=\left[\begin{array}{ll}19-15+6 & 4-10+0 \\ 10-25+0 & 11+5+6\end{array}\right]=\left[\begin{array}{cc}10 & -6 \\ -15 & 22\end{array}\right]$

5(c) $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$ इला, $A^{2}-4 A-5$ I निर्या न्त्र ; ख्थारन $I=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 6 & 1\end{array}\right]$

সमाषान : $A^{\angle}=A \cdot A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & \end{array}\right]$
$=\left[\begin{array}{lll}1+4+4 & 2+2+4 & 2+4+2 \\ 2+2+4 & 4+1+4 & 4+2+2 \\ 2+4+2 & 4+2+2 & 4+4+1\end{array}\right]$
$=\left[\begin{array}{lll}9 & 8 & 8 \\ 8 . & 9 & 8 \\ 8 & 8 & 9\end{array}\right]$
१Уन $A^{2}-4 \mathrm{~A}-5 \mathrm{I}$
$=\left[\begin{array}{lll}9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9\end{array}\right]-4\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]-5\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{lll}9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9\end{array}\right]+\left[\begin{array}{ccc}-4 & -8 & -8 \\ -8 & -4 & -8 \\ -8 & -8 & -4\end{array}\right]+\left[\begin{array}{ccc}-5 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -5\end{array}\right]$
$=\left[\begin{array}{ccc}9-4-5 & 8-8+0 & 8-8+0 \\ 8-8+0 & 9-4-5 & 8-8+0 \\ 8-8+0 & 8 & 9-4-5\end{array}\right]$
$=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ (Ans.)
5(d) $A=\left[\begin{array}{rrr}-1 & 1 & -1 \\ 3 & -3 & 5 \\ 5 & -5 & 5\end{array}\right], B=\left[\begin{array}{rrr}0 & 4 & 3 \\ 1 & -3 & -3 \\ -1 & 4 & 4\end{array}\right]$
रान, $A^{2}-B^{2}$ निर्ণय क्र क्।
সयभान : $\mathrm{A}^{2}=\mathrm{A} . \mathrm{A}$
$=\left[\begin{array}{rrr}-1 & 1 & -1 \\ 3 & -3 & 5 \\ 5 & -5 & 5\end{array}\right]\left[\begin{array}{rrr}-1 & 1 & -1 \\ 3 & -3 & 5 \\ 5 & -5 & 5\end{array}\right]$

$$
A^{2}-B^{2}
$$

$$
=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
13 & -13 & 7 \\
5 & -5 & -5
\end{array}\right]-\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
-2 & 1 & 1 \\
13 & -14 & 7 \\
5 & -5 & -6
\end{array}\right] \text { (Ans.) }
$$

6. (a) সমাষান ः মনে <রি, P в Q यথাক্রুম বইর্রের স্ণ্গ্যার ম্যাট্রিঙ্স ও লাভ ম্যাট্রিঙ্স। তাহলে,
$P=\left[\begin{array}{lll}100 & 125 & 110\end{array}\right]$,
$Q=\left[\begin{array}{c}70.00-60.00 \\ 102.00-90.00 \\ 96.00-85.00\end{array}\right]=\left[\begin{array}{l}10.00 \\ 12.00 \\ 11.00\end{array}\right]$
\therefore बाট ना৬ $=P \times Q$

$$
=\left[\begin{array}{lll}
1.00 & 125 & 110
\end{array}\right] \times\left[\begin{array}{l}
10.00 \\
12.00 \\
11.00
\end{array}\right]
$$

$=[1000.00+1500.00+1210.00]$
\therefore মোট লাভ $=3710.00$ টাকা
6(b) সমাষান : মনে করি, P B Q যথাক্রমে বিক্রীত কলমের সং্খ্যার ম্যাট্রিঙ্স ৪ লাভ ম্যাট্রিক্স। তাহলে,

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1+3-5 & & & 1+5-5 \\
-3-9+25 & 3+9 & 2, & -3-15+ \\
-5-15+25 & 5+15 & 25 & -5 \\
\hline
\end{array}\right.} \\
& =\left[\begin{array}{ccc}
-1 & 1 & 1 \\
13 & -13 & - \\
5 & -5 & -
\end{array}\right. \\
& B^{2}=\left[\begin{array}{rrrr}
0 & 4 & & \\
1 & -3 & -6 & \\
-1 & 4 & 4 & -3 \\
0 & 4 & 4
\end{array}\right. \\
& =\left[\begin{array}{cccc}
0+4-3 & 0-12 & 12 & 0-12+12 \\
0-3+3 & 4+9 & i 2 & 3+0-12 \\
0+4-4 & -4 & 2+16 & 3-12: 6
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$P=\left[\begin{array}{lll}140 & 155 & 132 \\ 130 & 100 & 148\end{array}\right], Q=\left[\begin{array}{l}1.50 \\ 2.00 \\ 1.25\end{array}\right]$
कीज
$\left[\begin{array}{ccc|c}140 & 155 & 132 & \times\left[\begin{array}{l}1.50 \\ 2.00 \\ 1.25\end{array}\right]\end{array}\right]$

$$
\left[\begin{array}{c}
2.0 .00+10.00+165.00 \\
105.00+300.00+185.00
\end{array}\right]=\left[\begin{array}{l}
685.00 \\
580.00
\end{array}\right]
$$

\therefore बिनि लुख $=(685.0058$ जण गोका $=1265.00$ चोक

निद्ध

প্রক্নমালা -13
1(a) প্রদত্ত ম্যাট্টিশ্সটি কর্ণ,ক্কলনার 心 অভ্যেক ম্যi্রিক্স ।
(b) B ম্যাট্রিক্সটিির ক্রম $2 \times 3 \therefore$ Ans B
(c) $3 \mathrm{~B}=\left[\begin{array}{lll}3 \times 1 & 3 \times 3 & 3 \times 0^{-} \\ 3 \times 2 & 3 \times 0 & 3 \times 1\end{array}\right] \quad$ Ans. B
(d) $\mathrm{A}-2 \mathrm{C}=\left[\begin{array}{cc}1-2 & -1-0 \\ 0-0 & 2-2\end{array}\right]=\left[\begin{array}{cc}-1 & -1 \\ 0 & 0\end{array}\right]$
(e) A এर ক্রম $=\mathrm{A}$ এর সারি সাং্যা $\times \mathrm{B}$ এর কলাম সংখ্যা $=2 \times 3$ Ans. B
(f) $\quad \mathrm{A}^{-1}=\frac{1}{2-0}\left|\begin{array}{cc}2 & -(-1) \\ -0 & 1\end{array}\right|=\frac{1}{2}\left|\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right|$
(g) $\left[\begin{array}{cc}1 & 0 \\ -1 & 2 \\ 2 & 0\end{array}\right]+\left[\begin{array}{cc}2 & 1 \\ 0 & 1 \\ 2 & -3\end{array}\right]=\left[\begin{array}{cc}x & 1 \\ -1 & z \\ y & -3\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}3 & 1 \\ -1 & 3 \\ 4 & -3\end{array}\right]=\left[\begin{array}{cc}x & 1 \\ -1 & z \\ y & -3\end{array}\right]$
$(x, y, z)=(3,4,3) ;$ Ans. B
(h) $\left|\begin{array}{lll}5 & 6 & 7 \\ 1 & 2 & 3 \\ 3 & 6 & 9\end{array}\right|$ निণায়কের ৩য় সারি ২য় সারির তিনগুণ

বলে নিরায়কের মান শূন্য। \therefore Ans. C.
(i) (i) $\mathrm{A}^{-1}=\frac{1}{5+6}\left[\begin{array}{cc}1 & -2 \\ 3 & 5\end{array}\right]$
（ii） $\mathrm{AB}=\left[\begin{array}{cc}2 & 0 \\ 0 & -3\end{array}\right]\left[\begin{array}{ll}3 & 0 \\ 5 & 1\end{array}\right]=\left[\begin{array}{cc}6 & 0 \\ -15 & -3\end{array}\right]$
（iii）$\left[\begin{array}{cc}a-4 & 8 \\ 2 & a+2\end{array}\right]$ ম্যাট্রিষ্গটি ব্যणिক্পুী বলে
$\left|\begin{array}{cc}a-4 & 8 \\ 2 & a+2\end{array}\right|=0 \Rightarrow a^{2}-2 a-8-8=0$
$\Rightarrow a^{2}-2 a-16=0 \Rightarrow a t-4,-6$
$a=-4,-6$
Ans．A

1．（i）প্রমাণ ক্গ যে，

（a）$\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & p & p^{2} \\ 1 & p^{2} & p^{4}\end{array}\right|=p(p-1)^{2}\left(p^{2}-1\right)$

প্রমাণ ：L．H．S $=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & p & p^{2} \\ 1 & p & p^{2}\end{array}\right|$
$=\left|\begin{array}{ccc}0 & 0 & 1 \\ 1-p & p(1-p) & p^{2} \\ 1-p^{2} & p^{2}\left(1-p^{2}\right) & p^{4}\end{array}\right|$
$\left[c_{1}-c\right.$ बชश $\left.c_{2}-c_{3}\right]$
$=1\left\{(1-p) p^{2}\left(1-p^{2}-p(1-p)\left(1-p^{2}\right)\right\}\right.$
［ $亠$ স সারি বরাবর বিস্তার করে ］
$=(1-p)\left(1-p^{2}\right)\left(p^{*} \quad p\right)$
$=(1-p)\left(1-p^{2}\right) p(p-1)$
$=p(p-1)^{2}\left(p^{2}-1\right)=$ R．H．S．（Proved）
1（i）（b）$\left|\begin{array}{ccc}a a^{2} & a b & b^{2} \\ 2 a & a+b & 2 b \\ 1 & 1 & 1\end{array}\right|=(a-b)^{3}[$ ज．，o）；保，ool
ঞ्रमाण \＆L．H．S $=\left\{\begin{array}{lll}a & a b & h \\ 2 a & +b & h\end{array}\right.$ $=\left|\begin{array}{ccc}a(a & b) & a(a-b \\ a-b & a & b^{2} \\ a-b\end{array}\right|$
［ $c_{1}-c_{2}$ এて゚ $c_{2}-c_{3}$ ］
$=1\{a(a-b)(a-b)-b(a-b)(a-b)\}$
［ শেষষ সারি বরাবর বিস্তার করে।］
$=\left(-b ;^{2}(a-b)=(a-b)^{3}=\right.$ R．H．S．
（Proved）
$1(i)(c)\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2}-b c & b^{2}-c a & c^{2}-a b\end{array}\right|=0$
［य．＇০৩；দ্রে্রেট’০৫－০৬］
L．H．S．$=\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2}-b c & b^{2}-c a & c^{2}-a b\end{array}\right|$
$=\left|\begin{array}{ccc}0 & 0 & 1 \\ a-b & b-c & c \\ a^{2}-b^{2}+c a-b c & b^{2}-c^{2}+a b-c a & c^{2}-a b\end{array}\right|$ $\left[c_{1}^{\prime}=c_{1}-c_{2}\right.$ এব゚ $\left.c_{2}^{\prime}=c_{2}-c_{3}\right]$
$=1\{a-b)\left(b^{2}-c^{2}+a b-c a\right)$
$\left.-(b-c)\left(a^{2}-b^{2}+c a-b c\right)\right\}$ ［ \ম সারি বরাবর বিস্তার করে ।］
$=\left(\begin{array}{ll}a & b\end{array}\right)\left\{\left(\begin{array}{ll}b & c\end{array}\right)(b+c)+a(b \quad c)\right\}$ $-(b-c)\{(a-b)(a+c(a-b)\}$
$=(a \cdots b)(b-c)(a+b+c)-(a-b)(b-c)$
$(a+b+c)=0=$ R．H．S．（Proved）
1（i）（a）$\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y\end{array}\right|=x y$［ব．＇o১］
প्रमाণঃL．H．S．$=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y\end{array}\right|=\left|\begin{array}{ccc}0 & 0 & 1 \\ -1 & x & 1 \\ 0 & y & 1+y\end{array}\right|$
$\left[c_{1}--c, c-c\right]$
$=\{\{y-0\}=x y=$ R．H．S．（Proved）

$(a+b+c)$
15．04；等 20
\mid grav s．L．H．S．$=\left|\begin{array}{lll}1 & 1 & 1 \\ a & h & \end{array}\right|$
$=\left[\begin{array}{ccc}0 & 0 & 1 \\ a-b & b-c & c \\ a^{3}-b^{3} & b^{3}-c^{3} & c^{3}\end{array}\right]$
$\left[\begin{array}{cc}c_{1}-c_{2} & \text { এবर } \\ c_{2}-c_{3}\end{array}\right]$
$=1\left\{(a \quad b)\left(b^{3}-c^{3}\right)-(b-c)\left(a^{3}-b^{3}\right)\right\}$
[১ম সারি বরাব্য: বিষ্টান্র ষর্রে i]
$=\left(0 \quad b: b-\left(0^{2}+b c+c^{2}\right)\right.$

$$
(b-c)(a-b)\left(a^{2}+a b+b^{2}\right)
$$

$\left(a-a\left(b \quad b^{2}+b c c^{2}-a \quad b-b^{2}\right)\right.$
$=(a \quad b)(b-c)\{b(c-a)+(c-a)(c+a)\}$
$=(a-b)(b-c)(c \quad a)(a+b+c)=$ R.H.S.
(Proved)
1(i)(f) $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)\left[\sigma .{ }^{\prime} \gg\right]$
L.H.S. $=\left|\begin{array}{ccc}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=\left|\begin{array}{ccc}0 & a-b & a^{2}-b^{2} \\ 0 & b-c & b^{2}-c^{2} \\ 1 & c & c^{2}\end{array}\right|$

$$
\left[r_{1}-r_{2}, r_{2}-r_{3}\right]
$$

$=1\left\{(a-b)\left(b^{2}-c^{2}\right)-\left(a^{2}-b^{2}\right)(b-c)\right\}$
[১ম ক্লাম বরাবর বিস্তার করে ।]
$=(a-b)(b-c)(b+c)-(a-b)(a+b)(b-c)$
$=a \quad b)(b-c)(b+c-a-b)$
$=(a-b)(b-c)(c-a)$
1(i))(g) $\left|\begin{array}{lll}(b+c)^{2} & a^{2} & 1 \\ (c+a)^{2} & b^{2} & 1 \\ (a+b)^{2} & c^{2} & 1\end{array}\right|$
$=-2(a+b+c)(a-b)(b-c)(c-a)$
ध्रमाण : L.H.S. $=\left|\begin{array}{lll}(b+c)^{2} & a^{2} & 1 \\ (c+a)^{2} & b^{2} & 1 \\ (a+b)^{2} & c^{2} & 1\end{array}\right|$

$$
=(b+c)^{2}-a \quad 1 \quad 1 \quad i c=c-c_{2}!
$$

প्रमान 8 L.H.S. $=\left\lvert\, \begin{array}{ccc}1 & 1 & 1 \\ x^{2} & y^{2} & 1 \\ x^{3} & \end{array}\right.$
$=\left\lvert\, \begin{array}{ccc}0 & 0 & 1 \\ x^{2}-y^{2} & y^{2}-z^{2} & z^{3} \\ x^{3}-y^{3} & y^{3}-z^{3} & z^{3} \\ {\left[c_{1}^{\prime}=c_{1}-c_{2}\right.}\end{array}\right.$
$=1\left\{(x-y)(x+y)(y-z)\left(y^{-}+y z+\right.\right.$

$$
-(y-z)(y+z)(x-y)\left(x^{2}+x y^{\prime}+y\right.
$$

$$
=(x-y)(y-z)\left(x y^{2}+x y z+x z+\right.
$$

$$
y^{2} z+y z^{2}-x^{2} y-x y^{2}-y^{3}-z x^{2}-x y
$$

$$
\left.-y^{2} z\right)
$$

$=(x-y)(y-z)\left(x z^{2}+v z^{2}\right.$
$=(x-y)(y)$
$=(x \quad 1)$

$$
\begin{aligned}
& \left.=\begin{array}{rrrr}
(b-a)(a+c-a) & a^{2} & 1 \\
-b)(c+a-b) & b^{2} & 1 \\
a+b+c)(a+b-c) & c & 1
\end{array} \right\rvert\, \\
& =(a+b+c)\left|\begin{array}{lll}
b+c-a & a^{2} & 1 \\
c+a-b & b^{2} & 1 \\
a+b-c & c^{2} & 1
\end{array}\right| \\
& =(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{ccc}
-2(a-b) & a^{2}-b^{2} & 0 \\
-2(b-c) & b^{2}-c^{2} & 0 \\
a+ & c & c^{2}
\end{array}\right| \\
& {\left[r_{1}^{\prime}=r_{1}-r_{2}, r_{2}^{\prime}=r_{2}-r_{3}\right]} \\
& =(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c}) \\
& \left|\begin{array}{ccc}
-2 & a+b & 0 \\
-2 & b+c & 0 \\
a+b-c & c^{2} & 1
\end{array}\right| \\
& =(a+b+c)(a-b)(b-c)\{1 .(-2 b-2 c \\
& +2 a+2 b) \\
& =-2(a+b+c)(a-b)(b-c)(c-a) \\
& =\text { R.H.S. (Proved) } \\
& \text { 1(i)(h) }\left|\begin{array}{ccc}
1 & 1 & 1 \\
x^{2} & y^{2} & z^{2} \\
x^{3} & y^{3} & z^{3}
\end{array}\right| \\
& =(x-y)(y-z)(z-x)(x y+y z+z x)
\end{aligned}
$$

= R.H.S. \quad (Proved)

(a) $\left|\begin{array}{lll}1 & b c & b c(b+c) \\ 1 & c a & c a(c+a) \\ 1 & a b & a b(a+b)\end{array}\right|=a b c\left|\begin{array}{lll}a & 1 & b+c \\ b & 1 & c+a \\ c & 1 & a+b\end{array}\right|=0$ [ঢ.'০৯; য.'১৩; কুফ্রেট’০৯-১০]
প্রমाণ \& L.H.S. $=\left|\begin{array}{lll}1 & b c & b c(b+c) \\ 1 & c a & c a(c+a) \\ 1 & a b & a b(a+b)\end{array}\right|$
$=\frac{1}{a b c}\left|\begin{array}{lll}a & a b c & a b c(b+c) \\ b & a b c & a b c(c+a) \\ c & a b c & a b c(a+b)\end{array}\right|$
$=\frac{a b c \cdot a b c}{a b c}\left|\begin{array}{lll}a & 1 & b+c \\ b & 1 & c+a \\ c & 1 & a+b\end{array}\right|$
$=\mathrm{abc}\left|\begin{array}{lll}a & 1 & b+c \\ b & 1 & c+a \\ c & 1 & a+b\end{array}\right|=$ M.H.S.
এখन , abc $\left|\begin{array}{lll}a & 1 & b+c \\ b & 1 & c+a \\ c & 1 & a+b\end{array}\right|$
$=\mathrm{abc}\left|\begin{array}{lll}a & 1 & a+b+c \\ b & 1 & a+b+c \\ c & 1 & a+b+c\end{array}\right| \quad\left[c_{3}^{\prime}=c_{3}+c_{1}\right]$
$=\operatorname{abc}(a+b+c)\left|\begin{array}{lll}a & 1 & 1 \\ b & 1 & 1 \\ c & 1 & 1\end{array}\right|$
$=\mathrm{abc}(a+b+c) \cdot 0=0=\mathrm{R} . \mathrm{H} . \mathrm{S}$. [দूইটি কনাম একই ।]

2(b) $\left|\begin{array}{ccc}1 & x-a & y-b \\ 1 & x_{1}-a & y_{1}-b \\ 1 & x_{2}-a & y_{2}-b\end{array}\right|=\left|\begin{array}{ccc}1 & x & y \\ 1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2}\end{array}\right|$
প्रमाण 8 L.H.S. $=\left|\begin{array}{ccc}1 & x-a & y-b \\ 1 & x_{1}-a & y_{1}-b \\ 1 & x_{2}-a & y_{2}-b\end{array}\right|$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
1 & x & y-b \\
1 & x_{1} & y_{1}-b \\
1 & x_{2} & y_{2}-b
\end{array}\right|-\left|\begin{array}{lll}
1 & a & y-b \\
1 & a & y_{1}-b \\
1 & a & y_{2}-b
\end{array}\right| \\
& =\left|\begin{array}{lll}
1 & x & y \\
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2}
\end{array}\right|-\left|\begin{array}{lll}
1 & x & b \\
1 & x_{1} & b \\
1 & x_{2} & b
\end{array}\right|-\left|\begin{array}{lll}
1 & 1 & y-b \\
1 & 1 & y_{1}-b \\
1 & 1 & y_{2}-b
\end{array}\right| \\
& =\left|\begin{array}{lll}
1 & x & y \\
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2}
\end{array}\right|-\mathrm{b}\left|\begin{array}{lll}
1 & x & 1 \\
1 & x_{1} & 1 \\
1 & x_{2} & 1
\end{array}\right|-\mathrm{a} .0 \\
& =\left|\begin{array}{lll}
1 & x & y \\
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2}
\end{array}\right|-b .0=\left|\begin{array}{lll}
1 & x & y \\
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2}
\end{array}\right|=\text { R.H.S }
\end{aligned}
$$

(Proved)
2(c) $\left|\begin{array}{lll}1 & x_{1}+a & y_{1}+b \\ 1 & x_{2}+a & y_{2}+b \\ 1 & x_{3}+a & y_{3}+b\end{array}\right|=\left|\begin{array}{lll}1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3}\end{array}\right|$
[भि.’०१;б.'১১]
প্রমाण \& L.H.S. $=\left|\begin{array}{lll}1 & x_{1}+a & y_{1}+b \\ 1 & x_{2}+a & y_{2}+b \\ 1 & x_{3}+a & y_{3}+b\end{array}\right|$
$=\left|\begin{array}{lll}1 & x_{1} & y_{1}+b \\ 1 & x_{2} & y_{2}+b \\ 1 & x_{3} & y_{3}+b\end{array}\right|+\left|\begin{array}{lll}1 & a & y_{1}+b \\ 1 & a & y_{2}+b \\ 1 & a & y_{3}+b\end{array}\right|$
$=\left|\begin{array}{lll}1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3}\end{array}\right|+\left|\begin{array}{lll}1 & x_{1} & b \\ 1 & x_{2} & b \\ 1 & x_{3} & b\end{array}\right|+\left|\begin{array}{lll}1 & 1 & y_{1}+b \\ 1 & 1 & y_{2}+b \\ 1 & 1 & y_{3}+b\end{array}\right|$
$=\left|\begin{array}{lll}1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3}\end{array}\right|+\mathrm{b}\left|\begin{array}{lll}1 & x_{1} & 1 \\ 1 & x_{2} & 1 \\ 1 & x_{3} & 1\end{array}\right|+\mathrm{a} .0$
$=\left|\begin{array}{lll}1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3}\end{array}\right|+\mathrm{b} .0=\left|\begin{array}{lll}1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3}\end{array}\right|=$ R.H.S.
2(d) $\left|\begin{array}{lll}b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y\end{array}\right|=2\left|\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right|$

$$
\begin{aligned}
& \text { প্রমাণ } 8 \text { LH.S. }=\left|\begin{array}{lll}
b+c & c+a & a+b \\
q+r & r+p & p+q \\
y+z & z+x & x+y
\end{array}\right| \\
& =\left|\begin{array}{lll}
b & c+a & a+b \\
q & r+p & p+q \\
y & z+x & x+y
\end{array}\right|+\left|\begin{array}{lll}
c & c+a & a+b \\
r & r+p & p+q \\
z & z+x & x+y
\end{array}\right| \\
& =\left|\begin{array}{lll}
b & c & a+b \\
q & r & p+q \\
y & z & x+y
\end{array}\right|+\left|\begin{array}{lll}
b & a & a+b \\
q & p & p+q \\
y & x & x+y
\end{array}\right| \\
& \\
& \quad+\left|\begin{array}{lll}
c & c & a+b \\
r & r & p+q \\
z & z & x+y
\end{array}\right|+\left|\begin{array}{lll}
c & a & a+b \\
r & p & p+q \\
z & x & x+y
\end{array}\right| \\
& =\left|\begin{array}{lll}
b & c & a \\
q & r & p \\
y & z & x
\end{array}\right|+\left|\begin{array}{ll}
b & c
\end{array}\right| \begin{array}{ll}
q & z \\
b & q
\end{array}\left|+\left|\begin{array}{lll}
b & a & a \\
q & p & p \\
y & x & x
\end{array}\right|\right. \\
& \\
& +\left|\begin{array}{lll}
b & a & b \\
q & p & q \\
y & x & y
\end{array}\right|+0+\left|\begin{array}{lll}
c & a & a \\
r & p & p \\
z & x & x
\end{array}\right|+\left|\begin{array}{lll}
c & a & b \\
r & p & q \\
z & x & y
\end{array}\right| \\
& =-\left|\begin{array}{lll}
b & a & c \\
q & p & r \\
y & x & z
\end{array}\right|+0+0+0+0
\end{aligned}
$$

$$
+(-)\left|\begin{array}{lll}
a & c & b \\
p & r & q \\
x & z & y
\end{array}\right|
$$

$$
=(-)(-)\left|\begin{array}{lll}
a & b & c \\
p & q & r \\
x & y & z
\end{array}\right|+(-)(-)\left|\begin{array}{lll}
a & b & c \\
p & q & r \\
x & y & z
\end{array}\right|
$$

$$
=2\left|\begin{array}{lll}
a & b & c \\
p & q & r \\
\dot{x} & y & z
\end{array}\right|=\text { R.H.S.(Proved) }
$$

3. প্রমাশ बन्ন यে,

(a) $\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|$

$$
=2(a+b+c)^{3}
$$

[চ.'००; ব.'০৬; য.'০৭; मि.'০১.'১১]

L.H.S.

3(c) $\left|\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3}\end{array}\right|=a b c(a-b)(b-c)(c-a)$
[नि.'০৮; মা.বো.'o৯; ব.'১২]
L.H.S. $=\left|\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3}\end{array}\right|=\mathrm{bc}\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|$
$=a b c\left|\begin{array}{ccc}0 & 0 & 1 \\ a-b & b-c & c \\ a^{2}-b^{2} & b^{2}-c^{2} & c^{2}\end{array}\right|$
$=a b c .1\left\{(a-b)\left(b^{2}-c^{2}\right)-(b-c)\left(a^{2}-b^{2}\right)\right\}$
$=a b c\{(a-b)(b-c)(b+c)-$
$(a-b)(b-c)(a+b)\}$
$=a b c(a-b)(b-c)(b+c-a-b)$
$=a b c(a-b)(b-c)(c-a)$
$=$ R.H.S.
(Proved)
3(d) $\left|\begin{array}{ccc}a+x & b+x & c+x \\ a+y & b+y & c+y \\ a^{2} & b^{2} & c^{2}\end{array}\right|=(a-b)(b-c)$
$(c-a)(x-y)$
[ঢ.'০১; ష্রடয়ৌౌ১০-১১]
প্रমाण 8 L.H.S. $=\left|\begin{array}{ccc}a+x & b+x & c+x \\ a+y & b+y & c+y \\ a^{2} & b^{2} & c^{2}\end{array}\right|$
$=\left|\begin{array}{ccc}a-b & b-c & c+x \\ a-b & b-c & c+y \\ a^{2}-b^{2} & b^{2}-c^{2} & c^{2}\end{array}\right|$
$=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})\left|\begin{array}{ccc}1 & 1 & c+x \\ 1 & 1 & c+y \\ a+b & b+c & c^{2}\end{array}\right|$
$=(a-b)(b-c)\left|\begin{array}{ccc}0 & 0 & x-y \\ 1 & 1 & c+y \\ a+b & b+c & c^{2}\end{array}\right|$

$$
\left[r_{1}^{\prime}=r_{1}-r_{2}\right]
$$

$=(a-b)(b-c)(x-y)(b+c-a-b)$
$=(a-b)(b-c)(c-a)(x-y)$
$=$ R.H.S. (Proved)
3.(e) $\left|\begin{array}{ccc}a & a & a \\ 1 & a & a^{2} \\ 1 & a^{2} & a^{4}\end{array}\right|=a^{2}(a-1)^{2}\left(a^{2}-1\right)$
[B.'०৩ ; त्रा .'०৫]
भ्रमाण 8 L.H.S. $=\left|\begin{array}{ccc}a & a & a \\ 1 & a & a^{2} \\ 1 & a^{2} & a^{4}\end{array}\right|=\mathrm{a}\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & a & a^{2} \\ 1 & a^{2} & a^{4}\end{array}\right|$
$=\mathrm{a}\left|\begin{array}{ccc}0 & 0 & 1 \\ 1-a & a(1-a) & a^{2} \\ (1-a)(1+a) & a^{2}(1-a)(1+a) & a^{4}\end{array}\right|$

$$
\left[c_{1}^{\prime}=c_{1}-c_{2}, c_{2}^{\prime}=c_{2}-c_{3}\right]
$$

$=a^{2}(1-a)^{2}\left|\begin{array}{ccc}0 & 0 & 1 \\ 1 & 1 & a^{2} \\ 1+a & a(1+a) & a^{4}\end{array}\right|$
$=a^{2}(1-a)^{2}\{a(1+a)-(1+a)\}$
$=a^{2}(1-a)^{2}\left(a+a^{2}-1-a\right)$
$=a^{2}(1-a)^{2}\left(a^{2}-1\right)=$ R.H.S. (Proved)
3(f) $\left|\begin{array}{lll}2 & a & b+c \\ 2 & b & c+a \\ 2 & c & a+b\end{array}\right|=0$
[य.’००]
প্রমাण \& L.H.S. $=\left|\begin{array}{lll}2 & a & b+c \\ 2 & b & c+a \\ 2 & c & a+b\end{array}\right|$
$=2\left|\begin{array}{lll}1 & a+b+c & b+c \\ 1 & a+b+c & c+a \\ 1 & a+b+c & a+b\end{array}\right|$
$\left[c_{2}^{\prime}=c_{2}+c_{3}\right]$
$=2(a+b+c)\left|\begin{array}{lll}1 & 1 & b+c \\ 1 & 1 & c+a \\ 1 & 1 & a+b\end{array}\right|$
$=2(a+b+c) .0=0=$ R.H.S.
[\because দুইটি কলাম এবই।]
3(g) $\left|\begin{array}{lll}3 & a & b+c \\ 3 & b & c+a \\ 3 & c & a+b\end{array}\right|=0$
প্रমाण \& L.H.S. $=\left|\begin{array}{lll}3 & a & b+c \\ 3 & b & c+a \\ 3 & c & a+b\end{array}\right|$

$$
\begin{aligned}
& =3\left|\begin{array}{lll}
1 & a+b+c & b+c \\
1 & a+b+c & c+a \\
1 & a+b+c & a+b
\end{array}\right| \quad\left[c_{2}^{\prime}=c_{2}+c_{3}\right] \\
& =3(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{lll}
1 & 1 & b+c \\
1 & 1 & c+a \\
1 & 1 & a+b
\end{array}\right| \\
& =3(\mathrm{a}+\mathrm{b}+\mathrm{c}) .0=0=\text { R.H.S. }
\end{aligned}
$$

$$
\text { [} \therefore \text { দুইটি কশাম একই ।] }
$$

$$
\text { 3(h) }\left|\begin{array}{ccc}
a-b-c & 2 a & 2 a \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|
$$

$$
=(a+b+c)^{3} \quad \text { [द্রা.'০8; ব্রুয্রেট'১১-১২] }
$$

$$
\text { L.H.S. }=\left|\begin{array}{ccc}
a-b-c & 2 a & 2 a \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|
$$

$$
=\left|\begin{array}{ccc}
a+b+c & a+b+c & a+b+c \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|
$$

$$
\left[r_{1}^{\prime}=r_{1}+\left(r_{2}+r_{3}\right)\right]
$$

$$
=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|
$$

$$
=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{ccc}
0 & 0 & 1 \\
(a+b+c) & -(a+b+c) & 2 b \\
0 & (a+b+c) & c-a-b
\end{array}\right|
$$

$$
\left[c_{1}^{\prime}=c_{1}-c_{2}, c_{2}^{\prime}=c_{2}-c_{3}\right]
$$

$=(a+b+c) \cdot 1(a+b+c)^{2}$
$=(a+b+c)^{3}=$ R.H.S. (Proved)

$$
\text { 4.(a) }\left|\begin{array}{ccc}
\log x & \log y & \lg z \\
\log 2 x & \log 2 y & \log 2 z \\
\log 3 x & \log 3 y & \log 3 z
\end{array}\right|=0
$$

 প্রमाष \& L.H.S. $=\left|\begin{array}{ccc}\log x & \log y & \lg z \\ \log 2 x & \log 2 y & \log 2 z \\ \log 3 x & \log 3 y & \log 3 z\end{array}\right|$

$$
=\left|\begin{array}{ccc}
\log x-\log y & \log y-\log z & \log z \\
\log 2 x-\log 2 y & \log 2 y-\log 2 z & \log 2 z \\
\log 3 x-\log 3 y & \log 3 y-\log 3 z & \log 3 z
\end{array}\right|
$$

$$
\left[c_{1}^{\prime}=c_{1}-c_{2}, c_{2}^{\prime}=c_{2}-c_{3}\right]
$$

$=\left|\begin{array}{ccc}\log \frac{x}{y} & \log \frac{y}{z} & \lg z \\ \log \frac{x}{y} & \log \frac{y}{z} & \log 2 z \\ \log \frac{x}{y} & \log \frac{y}{z} & \log 3 z\end{array}\right|$
$=\log \frac{x}{y} \log \frac{y}{z}\left|\begin{array}{lll}1 & 1 & \lg z \\ 1 & 1 & \log 2 z \\ 1 & 1 & \log 3 z\end{array}\right|$
$=\log \frac{x}{y} \log \frac{y}{z} \times 0=0=$ R.H.S.
4(b) $\left|\begin{array}{lll}1 & \cos 2 \alpha & \sin \alpha \\ 1 & \cos 2 \beta & \sin \beta \\ 1 & \cos 2 \gamma & \sin \gamma\end{array}\right|=2(\sin \alpha-\sin \beta)$
$(\sin \beta-\sin \gamma)(\sin \gamma-\sin \alpha) \quad$ [ব.’○৩]
প্রমাণ ः L.H.S. $=\left|\begin{array}{lll}1 & \cos 2 \alpha & \sin \alpha \\ 1 & \cos 2 \beta & \sin \beta \\ 1 & \cos 2 \gamma & \sin \gamma\end{array}\right|$
$=\left|\begin{array}{ccc}0 & \cos 2 \alpha-\cos 2 \beta & \sin \alpha-\sin \beta \\ 0 & \cos 2 \beta-\cos 2 \gamma & \sin \beta-\sin \gamma \\ 1 & \cos 2 \gamma & \sin \gamma\end{array}\right|$

$$
\left[r_{1}^{\prime}=r_{1}-r_{2}, r_{2}^{\prime}=r_{2}-r_{3}\right]
$$

$=1\{(\cos 2 \alpha-\cos 2 \beta)(\sin \beta-\sin \gamma)-$ $(\sin \alpha-\sin \beta)(\cos 2 \beta-\cos 2 \gamma)$
$=\left(1-2 \sin ^{2} \alpha-1+2 \sin ^{2} \beta\right)(\sin \beta-\sin \gamma)$
$-(\sin \alpha-\sin \beta)\left(1-2 \sin ^{2} \beta-1+2 \sin ^{2} \gamma\right)$
$=-2\left(\sin ^{2} \alpha-\sin ^{2} \beta\right)(\sin \beta-\sin \gamma)$
$+2(\sin \alpha-\sin \beta)\left(\sin ^{2} \beta-\sin ^{2} \gamma\right)$
$=-2(\sin \alpha-\sin \beta)(\sin \alpha+\sin \beta)(\sin \beta-\sin \gamma)$
$+2(\sin \alpha-\sin \beta)(\sin \beta-\sin \gamma)(\sin \beta+\sin \gamma)$
$=2(\sin \alpha-\sin \beta)(\sin \beta-\sin \gamma)$
$(-\sin \alpha-\sin \beta+\sin \beta+\sin \gamma)$
$=2(\sin \alpha-\sin \beta)(\sin \beta-\sin \gamma)(\sin \gamma-\sin \alpha)$
$=$ R.H.S. (Proved)
5. भ্রমাল ब্ন बে,
(a) $\left|\begin{array}{ccc}-a^{2} & a b & a c \\ a b & -b^{2} & b c \\ a c & b c & -c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$
[চ.'০২,'০৪; সि.'০৬,'০১; द्रा.'०৮]
প্রমাण 8 L.H.S. $=\left|\begin{array}{ccc}-a^{2} & a b & a c \\ a b & -b^{2} & b c \\ a c & b c & -c^{2}\end{array}\right|$
$=\mathrm{abc}\left|\begin{array}{ccc}-a & a & a \\ b & -b & b \\ c & c & -c\end{array}\right|=\mathrm{abc}\left|\begin{array}{ccc}0 & 2 a & a \\ 0 & 0 & b \\ 2 c & 0 & -c\end{array}\right|$
$\left[c_{1}^{\prime}=c_{1}-c_{2}, c_{2}^{\prime \prime}=c_{2}-c_{3}\right]$
$=\mathrm{abc}\{2 \mathrm{c}(2 \mathrm{ab}-0)\}=\mathrm{abc} .4 \mathrm{abc}$
$=4 a^{2} b^{2} c^{2}=$ R.H.S. (Proved)
5(b) $\left|\begin{array}{ccc}b^{2}+c^{2} & a b & c a \\ a b & c^{2}+a^{2} & b c \\ c a & b c & a^{2}+b^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$
[द.'○8,’১২]
প্रमाण 8 L.H.S. $=\left|\begin{array}{ccc}b^{2}+c^{2} & a b & c a \\ a b & c^{2}+a^{2} & b c \\ c a & b c & a+b^{2}\end{array}\right|$
$=\frac{1}{a b c}\left|\begin{array}{ccc}a b^{2}+a c^{2} & a b^{2} & c^{2} a \\ a^{2} b & b c^{2}+a^{2} b & b c^{2} \\ c a^{2} & b^{2} c & c a^{2}+b^{2} c\end{array}\right|$
$=\frac{1}{a b c} \mathrm{abc}\left|\begin{array}{ccc}b^{2}+c^{2} & b^{2} & c^{2} \\ a^{2} & c^{2}+a^{2} & c^{2} \\ a^{2} & b^{2} & a^{2}+b^{2}\end{array}\right|$
$=\left|\begin{array}{ccc}0 & b^{2} & c^{2} \\ -2 c^{2} & c^{2}+a^{2} & c^{2} \\ -2 b^{2} & b^{2} & a^{2}+b^{2}\end{array}\right|$
$\left[c_{1}^{\prime}=c_{1}-\left(c_{2}+c_{3}\right)\right]$
$=2 c^{2}\left(a^{2} b^{2}+b^{4}-b^{2} c^{2}\right)-$
$2 b^{2}\left(b^{2} c^{2}-c^{4}-c^{2} a^{2}\right)$
$=2 b^{2} c^{2}\left(a^{2}+b^{2}-c^{2}\right)-b^{2} c^{2}\left(b^{2}-c^{2}-a^{2}\right)$
$=2 b^{2} c^{2}\left(a^{2}+b^{2}-c^{2}-b^{2}+c^{2}+a^{2}\right\}$
$=2 b^{2} c^{2} .2 a^{2}=4 a^{2} b^{2} c^{2}=$ R,H.S. (Proved)
5.(c) $\left|\begin{array}{ccc}x^{2} & y z & z x+z^{2} \\ x^{2}+x y & y^{2} & z x \\ x y & y^{2}+y z & z^{2}\end{array}\right|=4 x^{2} y^{2} z^{2}$
[य.’o৪,'০৮; दাा.'১৩]
গ্র্া巾 8 L.H.S. $=\left|\begin{array}{ccc}x^{2} & y z & z x+z^{2} \\ x^{2}+x y & y^{2} & z x \\ x y & y^{2}+y z & z^{2}\end{array}\right|$
$=x y z\left|\begin{array}{ccc}x & z & x+z \\ x+y & y & x \\ y & y+z & z\end{array}\right|$
$=x y z\left|\begin{array}{ccc}-2 z & z & x+z \\ 0 & y & x \\ -2 z & y+z & z\end{array}\right|$
$=x y z\left|\begin{array}{ccc}0 & -y & x \\ 0 & y & x \\ -2 z & y+z & z\end{array}\right| \quad\left[\quad r_{1}^{\prime}=r_{1}-r_{3}\right]$
$=x y z(-2 z)(-x y-x y)=-2 x y z^{2}(-2 x y)$
$=4 x^{2} y^{2} z^{2}=$ R.H.S. (Proved)
5(d) $\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|$
$=\left(1+a^{2}+b^{2}\right)^{3}$

L.H.S. $=\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|$
$=\left|\begin{array}{ccc}1+a^{2}-b^{2}+2 b^{2} & 2 a b-2 a b & -2 b \\ 2 a b-2 a b & 1-a^{2}+b^{2}+2 a^{2} & 2 a \\ 2 b-b+a^{2} b+b^{3} & -2 a+a-a^{3}-a b^{2} & 1-a^{2}-b^{2}\end{array}\right|$
$\left[c_{1}^{\prime}=c_{1}-b c_{3}, c_{2}^{\prime}=c_{2}+a c_{3}\right.$.
$=\left|\begin{array}{ccc}1+a^{2}+b^{2} & 0 & -2 b \\ 0 & 1+a^{2}+b^{2} & 2 a \\ b\left(1+a^{2}+b^{2}\right) & -a\left(1+a^{2}+b^{2}\right) & 1-a^{2}-b^{2}\end{array}\right|$
$=\left(1+a^{2}+b^{2}\right)^{2}\left|\begin{array}{ccc}1 & 0 & -2 b \\ 0 & 1 & 2 a \\ b & -a & 1-a^{2}-b^{2}\end{array}\right|$
$=\left(1+a^{2}+b^{2}\right)^{2}\left\{1\left(1-\mathrm{a}^{2}-\mathrm{b}^{2}+2 \mathrm{a}^{2}\right)+\mathrm{b}(0+2 \mathrm{~b}\}\right.$
$=\left(1+a^{2}+b^{2}\right)^{2}\left(1+\mathrm{a}^{2}-\mathrm{b}^{2}+2 \mathrm{~b}^{2}\right)$
$=\left(1+a^{2}+b^{2}\right)^{3}=$ R.H.S. (Proved)
5(e) $\left|\begin{array}{ccc}a & b & a x+b y \\ b & c & b x+c y \\ a x+b y & b x+c y & 0\end{array}\right|=\left(b^{2}-a c\right)$
$\left(a x^{2}+2 b x y+c y^{2}\right)$
[य.,ঢা.’১০; मि., य., द्रा.,সि.'১২;চ.'১৩]
প্रमाण \& L.H.S. $=\left|\begin{array}{ccc}a & b & a x+b y \\ b & c & b x+c y \\ a x+b y & b x+c y & 0\end{array}\right|$
$=\frac{1}{x y}\left|\begin{array}{ccc}a x & b x & a x^{2}+b x y \\ b y & c y & b x y+c y^{2} \\ a x+b y & b x+c y & 0\end{array}\right|$
$=\frac{1}{x y}\left|\begin{array}{ccc}0 & 0 & a x^{2}+2 b x y+c y^{2} \\ b y & c y & b x y+c y^{2} \\ a x+b y & b x+c y & 0\end{array}\right|$

$$
\left[r_{1}^{\prime}=r_{1}+\left(r_{2}-r_{3}\right)\right]
$$

$=\frac{1}{x y}\left(a x^{2}+2 b x y+c y^{2}\right)$

$$
\left(b^{2} x y+b c y^{2}-a c x y-b c y^{2}\right)
$$

$=\frac{1}{x y}\left(a x^{2}+2 b x y+c y^{2}\right)\left(b^{2}-a c\right) x y$
$=\left(b^{2}-a c\right)\left(a x^{2}+2 b x y+c y^{2}\right)=$ R.H.S.
$5(f)\left|\begin{array}{lll}(b+c)^{2} & a^{2} & b c \\ (c+a)^{2} & b^{2} & c a \\ (a+b)^{2} & c^{2} & a b\end{array}\right|=\left(a^{2}+b^{2}+c^{2}\right)$
$(a+b+c)(b-c)(c-a)(a-b) \quad[ธ . \circ \bigcirc \cup]$
क्रमाष \& L.H.S. $=\left|\begin{array}{lll}(b+c)^{2} & a^{2} & b c \\ (c+a)^{2} & b^{2} & c a \\ (a+b)^{2} & c^{2} & a b\end{array}\right|$

$$
\left.\begin{aligned}
& =\left\lvert\, \begin{array}{c}
(a+b+c)(b+c-a) \\
(a+b+c)(c+a-b) \\
(a+b+c)(a+b-c) \\
(a+c \\
b^{2}
\end{array} \quad a b\right.
\end{aligned} \right\rvert\,
$$

$$
=(a+b+c)(a-b)(b-c)
$$

$$
\left|\begin{array}{ccc}
0 & 0 & -1 \\
-2 & a+b+c & -a \\
a+b-c & c^{2}-a b & a b
\end{array}\right|
$$

$$
\left[c_{2}^{\prime}=c_{2}-c_{3}\right]
$$

$=(a+b+c)(a-b)(b-c)(c-a) .(-1)$

$$
\left[-2 c^{2}+2 a b-\left\{(a+b)^{2}-c^{2}\right\}\right]
$$

$$
=(a+b+c)(a-b)(b-c)(c-a)(-1)
$$

$$
\left(-2 c^{2}+2 a b-a^{2}-b^{2}-2 a b+c^{2}\right)
$$

$$
=(a+b+c)(a-b)(b-c)(c-a)
$$

$$
(-1)(-1)\left(a^{2}+b^{2}+c^{2}\right)
$$

$=\left(a^{2}+b^{2}+c^{2}\right)(a+b+c)(a-b)(b-c)(c-a)$
$=$ R.H.S. (Proved)
6.(a) $\left|\begin{array}{lll}-2 a & a+b & a+c \\ b+a & -2 b & b+c \\ c+a & c+b & -2 c\end{array}\right|$

$$
=4(a+b)(b+c)(c+a)
$$

$$
\begin{aligned}
& \text { প্রमाण } 8 \text { L.H.S. }=\left|\begin{array}{lll}
-2 a & a+b & a+c \\
b+a & -2 b & b+c \\
c+a & c+b & -2 c
\end{array}\right| \\
& =-2 \mathrm{a}\left\{4 \mathrm{bc}-(\mathrm{b}+\mathrm{c})^{2}\right\}-(\mathrm{a}+\mathrm{b})\{-2 \mathrm{c}(\mathrm{~b}+\mathrm{a}) \\
& -(b+c)(c+a)\}+(a+c)\{(a+b)(b+c)+ \\
& 2 \mathrm{~b}(\mathrm{c}+\mathrm{a}) \text { \} } \\
& =-8 a b c+2 a(b+c)^{2}+2 c(a+b)^{2}+ \\
& 2(a+b)(b+c)(c+a)+2 b(c+a)^{2} \\
& =-8 a b c+2 a\left(b^{2}+2 b c+c^{2}\right)+ \\
& 2 c\left(a^{2}+2 a b+b^{2}\right)+2 b\left(c^{2}+2 c a+a^{2}\right)+ \\
& 2(a+b)(b+c)(c+a) \\
& =-8 \mathrm{abc}+2 \mathrm{ab}^{2}+4 \mathrm{abc}+2 \mathrm{ac}^{2}+2 \mathrm{ca}^{2}+ \\
& 4 a b c+2 b^{2} c+2 b c^{2}+4 a b c+2 a^{2} b+ \\
& 2(a+b)(b+c)(c+a) \\
& =2\left\{a b^{2}+2 a b c+a c^{2}+\mathrm{ca}^{2}+\mathrm{a}^{2} \mathrm{~b}+\mathrm{b}^{2} \mathrm{c}\right. \\
& \left.+b c^{2}\right\}+2(a+b)(b+c)(c+a) \\
& =2\left\{\mathrm{a}(\mathrm{~b}+\mathrm{c})^{2}+\mathrm{a}^{2}(\mathrm{~b}+\mathrm{c})+\mathrm{bc}(\mathrm{~b}+\mathrm{c})\right\}+ \\
& 2(a+b)(b+c)(c+a) \\
& =2(b+c)\left(a b+c a+a^{2}+b c\right)+ \\
& 2(a+b)(b+c)(c+a) \\
& =2(b+c)\{a(c+a)+b(c+a)\}+ \\
& 2(a+b)(b+c)(c+a) \\
& =2(b+c)(c+a)(a+b)+2(a+b)(b+c)(c+a) \\
& =4(a+b)(b+c)(c+a)=\text { R.H.S. }
\end{aligned}
$$

বিকम পশ্মি $ঃ$ মनে করি,
$\mathrm{D}=\left|\begin{array}{ccc}-2 a & a+b & a+c \\ b+a & -2 b & b+c \\ c+a & c+b & -2 c\end{array}\right|$
$\mathrm{a}+\mathrm{b}=0$ i.e. $\mathrm{b}=-\mathrm{a}$ বभिয়ে জামরা পাই,
$\mathrm{D}=\left|\begin{array}{ccc}-2 a & 0 & a+c \\ 0 & 2 a & -a+c \\ c+a & c-a & -2 c\end{array}\right|$
$=-2 \mathrm{a}\left(-4 \mathrm{ac}-(\mathrm{c}-\mathrm{a})^{2}\right\}+(\mathrm{c}+\mathrm{a})\{0-2 \mathrm{a}(\mathrm{c}+\mathrm{a})\}$
$=2 a(c+a)^{2}-2 a(c+a)^{2}=0$
$\therefore(\mathrm{a}+\mathrm{b}), \mathrm{D}$ এর এबটি উৎ্পাদক।
অनুরূ পভাবে দেభানো যায়, $(b+c)$ এবए $(c+a)$ নির্ৰায়ক D এর উৎপাদক।

যেহেহ D এবটি তৃঠীয় ক্রমের নির্ণায়ক এবए $(a+b)(b+c)(c+a)$ একটি চৃতীয় ক্মের উৎभाদক, সুতরাए D এর অপর একটি উৎপাদক k बাকতে পারে যা ধ্ব্রবক।
$\therefore\left|\begin{array}{lll}-2 a & a+b & a+c \\ b+a & -2 b & b+c \\ c+a & c+b & -2 c\end{array}\right|=\mathrm{k}(\mathrm{a}+\mathrm{b})(\mathrm{b}+\mathrm{c})(\mathrm{c}+\mathrm{a})$
এখन, উভয় পCক্য $a=b=c=1$ বসিয়ে जाমরা পাई ,

$$
\begin{aligned}
&\left|\begin{array}{ccc}
-2 & 2 & 2 \\
2 & -2 & 2 \\
2 & 2 & -2
\end{array}\right|=\mathrm{k} \cdot 2 \cdot 2 \cdot 2 \\
& \Rightarrow\left|\begin{array}{ccc}
0 & 4 & 2 \\
0 & 0 & 2 \\
4 & 0 & -2
\end{array}\right|=8 \mathrm{k} \Rightarrow 32=\mathrm{k}=4 \\
&\left|\begin{array}{ccc}
-2 a & a+b & a+c \\
b+a & -2 b & b+c \\
c+a & c+b & -2 c
\end{array}\right|=4(\mathrm{a}+\mathrm{b})(\mathrm{b}+\mathrm{c})(\mathrm{c}+\mathrm{a})
\end{aligned}
$$

$$
\text { 6(b) }\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
$$

$$
\text { প্रभाণ \& L.H.S. }=\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|
$$

$$
=\left|\begin{array}{ccc}
a\left(\frac{1}{a}+1\right) & b \cdot \frac{1}{b} & c \cdot \frac{1}{c} \\
a \cdot \frac{1}{a} & b\left(\frac{1}{b}+1\right) & c \cdot \frac{1}{c} \\
a \cdot \frac{1}{a} & b \cdot \frac{1}{b} & c\left(\frac{1}{c}+1\right)
\end{array}\right|
$$

$$
=a b c\left|\begin{array}{ccc}
\frac{1}{a}+1 & \frac{1}{b} & \frac{1}{c} \\
\frac{1}{a} & \frac{1}{b}+1 & \frac{1}{c} \\
\frac{1}{a} & \frac{1}{b} & \frac{1}{c}+1
\end{array}\right|
$$

$$
\left|\begin{array}{ccc}
1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} & \frac{1}{b} & \frac{1}{c} \\
1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} & \frac{1}{b}+1 & \frac{1}{c} \\
1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} & \frac{1}{b} & \frac{1}{c}+1
\end{array}\right|
$$

$$
\left[c_{1}^{\prime}=c_{1}+\left(c_{2}+c_{3}\right)\right]
$$

$=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left|\begin{array}{ccc}1 & \frac{1}{b} & \frac{1}{c} \\ 1 & \frac{1}{b}+1 & \frac{1}{c} \\ 1 & \frac{1}{b} & \frac{1}{c}+1\end{array}\right|$
$=\operatorname{abc}\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left|\begin{array}{ccc}0 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & \frac{1}{b} & \frac{1}{c}+1\end{array}\right|$
$\left[r_{1}^{\prime}=r_{1}-r_{2}, r_{2}^{\prime}=r_{2}-r_{3}\right]$
$=\mathrm{abc}\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) 1(1-0)$
$=\mathrm{abc}\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=$ R.H.S. (Proved)
7. $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$ निभाश्र<ে a_{1}, b_{1}, c_{1} जत्र मशशूवक

खबाबमू $\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}$ रका, প্रमाण कर्त बে, $a_{2} \mathrm{~A}_{1}+b_{2} \mathrm{~B}_{1}+c_{2} \mathrm{C}_{1}=0$. [य.'os; ब.''ot,'os] সমাষান $: \mathrm{A}_{1}=a_{1}$ এর সशগুণক $=b_{2} c_{3}-b_{3} c_{2}$
$\mathrm{B}_{1}=b_{1}$ এর সशগুণক $=-\left(a_{2} c_{3}-a_{3} c_{2}\right)$
$\mathrm{C}_{1}=c_{1}$ এর সহগুণক $=a_{2} b_{3}-a_{3} b_{2}$
L.H.S. $=a_{2} \mathrm{~A}_{1}+b_{2} \mathrm{~B}_{1}+c_{2} \mathrm{C}_{1}$
$=a_{2}\left(b_{2} c_{3}-b_{3} c_{2}\right)+b_{2}\left\{-\left(a_{2} c_{3}-a_{3} c_{2}\right)\right\}+$
$c_{2}\left(a_{2} b_{3}-a_{3} b_{2}\right)$
$=a_{2} b_{2} c_{3}-a_{2} b_{3} c_{2}-a_{2} b_{2} c_{3}+a_{3} b_{2} c_{2}+$
$a_{2} b_{3} c_{2}-a_{3} b_{2} c_{2}=0=$ R.H.S. (Proved)
8. मान निर्षय्य क्न 8
(a) সমাষান $\mathbf{8}\left|\begin{array}{ccc}x+y & x & y \\ x & x+z & z \\ y & z & y+z\end{array}\right|$
$\cdot=\left|\begin{array}{ccc}0 & x & y \\ -2 z & x+z & z \\ -2 z & z & y+z\end{array}\right|\left[c_{1}^{\prime}=c_{1}-\left(c_{2}+c_{2}\right)\right]$
$=\left|\begin{array}{ccc}0 & x & y \\ 0 & x & -y \\ -2 z & z & y+z\end{array}\right|\left[r_{1}^{\prime}=r_{1}-r_{2}\right]$
$=-2 \mathrm{z}(-\mathrm{xy}-\mathrm{xy})=-2 \mathrm{z}(-2 \mathrm{xy})=4 \mathrm{xyz}$
8(b) সমাथান : $\left|\begin{array}{lll}b+c & b-c & c-b \\ a-c & c+a & c-a \\ a-b & b-a & a+b\end{array}\right|$
$=\left|\begin{array}{ccc}2 b & 0 & c-b \\ 2 a & 2 c & c-a \\ 0 & 2 b & a+b\end{array}\right|\left[c_{1}^{\prime}=c_{1}-c_{2}, c_{2}^{\prime}=c_{2}-c_{3}\right]$
$=2.2\left|\begin{array}{lll}b & 0 & c-b \\ a & c & c-a \\ 0 & b & a+b\end{array}\right|$
$=4\{b(c a+b c-b c+a b)+(c-b)(a b-0)\}$
$=4\left\{a b c+a b^{2}+a b c-a b^{2}\right\}$
$=4.2 \mathrm{abc}=8 \mathrm{abc}$ (Ans.)
9. সমাধাन बय :
(a) $\begin{aligned} & \left|\begin{array}{ccc}3+x & 4 & 2 \\ 4 & 2+x & 3 \\ 2 & 3 & 4+x\end{array}\right|=0 \\ & \Rightarrow\left|\begin{array}{ccc}x+9 & 4 & 2 \\ x+9 & 2+x & 3 \\ x+9 & 3 & 4+x\end{array}\right|=0\end{aligned}$
$\left[c_{1}^{\prime}=c_{1}+\left(c_{2}+c_{2}\right)\right]$
$\Rightarrow(\mathrm{x}+9)\left|\begin{array}{ccc}1 & 4 & 2 \\ 1 & 2+x & 3 \\ 1 & 3 & 4+x\end{array}\right|=0$
$\Rightarrow(\mathrm{x}+9)\left|\begin{array}{ccc}0 & 2-x & -1 \\ 0 & x-1 & -(x+1) \\ 1 & 3 & 4+x\end{array}\right|=0$

$$
\left[r_{1}^{\prime}=r_{1}-r_{2}, r_{2}^{\prime}=r_{2}-r_{3}\right]
$$

$\Rightarrow(x+9) 1 \cdot\{-(2-x)(x+1)+x-1\}=0$
$\Rightarrow(x+9)\{(x-2)(x+1)+x-1\}=0$
$\Rightarrow(x+9)\left(x^{2}-x-2+x-1\right)=0$
$\Rightarrow(\mathrm{x}+9)\left(\mathrm{x}^{2}-3\right)=0$
$\therefore \mathrm{x}+9=0 \Rightarrow \mathrm{x}=-9$.
or, $x^{2}-3=0 \Rightarrow x= \pm \sqrt{3}$
निঢেয় সমাধান , $x=-9, \pm \sqrt{3}$

বইঘর. কম
9(b) $\left|\begin{array}{ccc}x-3 & 1 & -1 \\ 1 & x-5 & 1 \\ -1 & 1 & x-3\end{array}\right|=0 \quad$ [ক্যেটে’०8-০৫]
$\Rightarrow\left|\begin{array}{ccc}x-3 & 1 & -1 \\ \dot{x}-3 & x-5 & 1 \\ x-3 & 1 & x-3\end{array}\right|=0$
$\left[c_{1}^{\prime}=c_{1}+\left(c_{2}+c_{3}\right)\right]$
$\Rightarrow(\mathrm{x}-3)\left|\begin{array}{ccc}1 & 1 & -1 \\ 1 & x-5 & 1 \\ 1 & 1 & x-3\end{array}\right|=0$
$\Rightarrow(\mathrm{x}-3)\left|\begin{array}{ccc}0 & -x+6 & -2 \\ 0 & x-6 & -x+4 \\ 1 & 1 & x-3\end{array}\right|=0$

$$
\left[r_{1}^{\prime}=r_{1}-r_{2}, r_{2}^{\prime}=r_{2}-r_{3}\right]
$$

$\Rightarrow(\mathrm{x}-3)\{+(\mathrm{x}-6)(\mathrm{x}-4)+2(\mathrm{x}-6)\}=0$
$\Rightarrow(x-3)\left(x^{2}-10 x+24+2 x-12\right)=0$
$\Rightarrow(\mathrm{x}-3)\left(\mathrm{x}^{2}-8 \mathrm{x}+12\right)=0$
$\Rightarrow(x-3)\left(x^{2}-6 x-2 x+8\right)=0$
$\Rightarrow(x-3)\{x(x-6)-2(x-6)\}=0$
$\Rightarrow(x-3)(x-2)(x-6)=0$ $x=2,3,6$ (Ans.)

9(c) $\left|\begin{array}{ccc}1 & 1 & 1 \\ x & a & b \\ x^{2} & a^{2} & b^{2}\end{array}\right|=0$
[প্র.ভ.श.’○8]
$\Rightarrow\left|\begin{array}{ccc}0 & 0 & 1 \\ x-a & a-b & b \\ x^{2}-a^{2} & a^{2}-b^{2} & b^{2}\end{array}\right|=0$
$\Rightarrow(x-a)(a-b)(a+b)-(x-a)(x+a)(a-b)=0$
$\Rightarrow(x-a)(a-b)(a+b-x-a)=0$
$\Rightarrow(x-a)(x-b)=0 \quad[$ এখानে $a-b \neq 0]$ $\mathrm{x}=\mathrm{a}, \mathrm{b}$ (Ans.)
10. यमि x, y, z बসমांन এব२ $\left|\begin{array}{lll}x & x^{2} & 1+x^{3} \\ y & y^{2} & 1+y^{3} \\ z & z^{2} & 1+z^{3}\end{array}\right|=0$

হয়, তাহাে লেখাও যে $x y z+1=0$ [প.ভ.গ.9.'১০]

প্রমাণ ঃ দেওয়া আছে, $\left|\begin{array}{lll}x & x^{2} & 1+x^{3} \\ y & y^{2} & 1+y^{3} \\ z & z^{2} & 1+z^{3}\end{array}\right|=0$

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{ccc}
x-y & (x-y)(x+y) & (x-y)\left(x^{2}+x y+y^{2}\right) \\
y-z & (y-z)(y+z) & (y-z)\left(y^{2}+y z+z^{2}\right) \\
z & z^{2} & 1+z^{3}
\end{array}\right| \\
& =0 \quad\left[r_{1}^{\prime}=r_{1}-r_{2}, r_{2}^{\prime}=r_{2}-r_{3}\right] \\
& \Rightarrow(x-y)(y-z)\left|\begin{array}{ccc}
1 & x+y & x^{2}+x y+y^{2} \\
1 & y+z & y^{2}+y z+z^{2} \\
z & z^{2} & 1+z^{3}
\end{array}\right|=0 \\
& \Rightarrow(\mathrm{x}-\mathrm{y})(\mathrm{y}-\mathrm{z})\left|\begin{array}{ccc}
0 & x-z & x^{2}-z^{2}+x y-y z \\
1 & y+z & y^{2}+y z+z^{2} \\
z & z^{2} & 1+z^{3}
\end{array}\right|=0 \\
& {\left[r_{1}^{\prime \prime}=r_{1}^{\prime}-r_{2}^{\prime}\right]} \\
& \Rightarrow(x-y)(y-z)\left|\begin{array}{ccc}
0 & x-z & (x-z)(x+y+z) \\
1 & y+z & y^{2}+y z+z^{2} \\
z & z^{2} & 1+z^{3}
\end{array}\right|=0 \\
& \Rightarrow(\mathrm{x}-\mathrm{y})(\mathrm{y}-\mathrm{z})(\mathrm{x}-\mathrm{z})\left|\begin{array}{ccc}
0 & 1 & x+y+z \\
1 & y+z & y^{2}+y z+z^{2} \\
z & z^{2} & 1+z^{3}
\end{array}\right|=0 \\
& \left|\begin{array}{ccc}
0 & 1 & x+y+z \\
1 & y+z & y^{2}+y z+z^{2} \\
z & z^{2} & 1+z^{3}
\end{array}\right|=0
\end{aligned}
$$

$[\mathrm{x}, \mathrm{y}, \mathrm{z}$ जসমান বলে $(\mathrm{x}-\mathrm{y}),(\mathrm{y}-\mathrm{z}),(\mathrm{x}-\mathrm{z})$ এর কোনটি শূন্য হতে পরেনা 1]
$\Rightarrow-\left\{1+z^{3}-z^{2}(x+y+z)\right\}+$ $z\left\{y^{2}+y z+z^{2}-(y+z)(x+y+z)\right\}$
$\Rightarrow-\left\{1+z^{3}-z^{2} x-y z^{2}-z^{3}\right\}+z\left\{y^{2}+y z\right.$

$$
\left.+z^{2}-x y-z x-y^{2}-2 y z-z^{2}\right\}=0
$$

$\Rightarrow-1+z^{2} x+y^{2}+z(-x y-z x-y z)=0$
$\Rightarrow-1+z^{2} x+y z^{2}-x y z-z^{2} x-y z^{2}=0$
$\Rightarrow-1-x y z=0$
$\therefore \mathrm{xyz}+1=0 \quad$ (Showed)
11(a) $\left[\begin{array}{cc}a+3 & 6 \\ 5 & a-4\end{array}\right]$ ম্যাট্কি্भটি ব্যতিক্কমী रलে a এর মান নিধয় কর।
সমাধান: $\left[\begin{array}{cc}a+3 & 6 \\ 5 & a-4\end{array}\right]$ বाতिক্সেী বলে,
$\left|\begin{array}{cc}a+3 & 6 \\ 5 & a-4\end{array}\right|=0 \Rightarrow(a+3)(a-4)-30=0$
$\Rightarrow a^{2}-a-12-30=0 \Rightarrow a^{2}-a-42=0$
$\Rightarrow(a-7)(a+6)=0 \Rightarrow a=-6,7$
 মান निণ্য কর।

সমायान: $\left[\begin{array}{cc}a-2 & 6 \\ 2 & a-3\end{array}\right]$ ब्याजिब्मी बनে,
$\left|\begin{array}{cc}a-2 & 6 \\ 2 & a-3\end{array}\right|=0 \Rightarrow(a-2)(a-3)-12=0$
$\Rightarrow \mathrm{a}^{2}-5 \mathrm{a}+6-12 \Rightarrow \mathrm{a}^{2}-5 \mathrm{a}-6=0$
$\Rightarrow(a-6)(a+1)=0 \Rightarrow a=-1,6$
12. विथद्रोठ घापित्र मिर्णा क का
(a) $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \quad$ (b) $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$
(c) $\mathrm{A}=\left[\begin{array}{ccc}3 & 4 & -1 \\ 1 & 0 & 3 \\ 2 & 5 & -4\end{array}\right]$
(d) $A=\left[\begin{array}{ccc}2 & -1 & -1 \\ 1 & -2 & 1 \\ 1 & -1 & 2\end{array}\right]$
12.(a) $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ ম্যाप्রिज्रिর निণाয়़क
$|A|=4-6=-2$
$|A|$ এর সহগুণক্गুणি হত্ছ, $A_{11}=4, A_{12}=-3$
$A_{21}=-2, A_{22}=1$
$\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \operatorname{Adj}(\mathrm{A})=\frac{1}{-2}\left[\begin{array}{cc}4 & -3 \\ -2 & 1\end{array}\right]^{\top}$
$=\frac{1}{-2}\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]$ (Ans.)
12(b) $\mathrm{A}=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$ म্যাদ্রিক্সের নিণায়ক $|A|=6-5=1$
$|A|$ এর সহগুণকগুলি হচ্ছে, $A_{11}=3, A_{12}=-1$
$A_{21}=-5, A_{22}=2$
$\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \operatorname{Adj}(\mathrm{A})=\frac{1}{1}\left[\begin{array}{cc}3 & -1 \\ -5 & 2\end{array}\right]^{\mathrm{T}}$
$=\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]$ (Ans.)

12(c) $A=\left[\begin{array}{ccc}3 & 4 & -1 \\ 1 & 0 & 3 \\ 2 & 5 & -4\end{array}\right]$
$|A|=3(0-15)-4(-4-6)-1(5-0)$
$=-45+40-5=-10$

$A_{12}=-\left|\begin{array}{cc}1 & 3 \\ 2 & -4\end{array}\right|=10, A_{13}=\left|\begin{array}{ll}1 & 0 \\ 2 & 5\end{array}\right|=5$,
$A_{21}=-\left|\begin{array}{ll}4 & -1 \\ 5 & -4\end{array}\right|=11, A_{22}=\left|\begin{array}{ll}3 & -1 \\ 2 & -4\end{array}\right|=-10$,
$A_{23}=-\left|\begin{array}{cc}3 & 4 \\ 2 & 5\end{array}\right|=-7, A_{31}=\left|\begin{array}{cc}4 & -1 \\ 0 & 3\end{array}\right|=12$,
$A_{32}=-\left|\begin{array}{cc}3 & -1 \\ 1 & 3\end{array}\right|=-10, A_{33}=\left|\begin{array}{ll}3 & 4 \\ 1 & 0\end{array}\right|=-4$
$\therefore \mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|}$ Adj (A)
$=\frac{1}{-10}\left[\begin{array}{ccc}-15 & 10 & 5 \\ 11 & -10 & -7 \\ 12 & -10 & -4\end{array}\right]^{\mathrm{T}}$
$=\frac{1}{-10}\left[\begin{array}{ccc}-15 & 11 & 12 \\ 10 & -10 & -10 \\ 5 & -7 & -4\end{array}\right]$
$=\left[\begin{array}{ccc}3 / 2 & -11 / 10 & -6 / 5 \\ -1 & 1 & 1 \\ -1 / 2 & 7 / 10 & 2 / 5\end{array}\right]$
[ব্যালকূহেটরেন্ন সাহাব্যে উত্ঞ্র যাচাই কর্মা যায়।]
(d) $\mathrm{A}=\left[\begin{array}{ccc}2 & -1 & -1 \\ 1 & -2 & 1 \\ 1 & -1 & 2\end{array}\right]$
$|A|=2(-4+1)+1(2-1)-1(-1+2)$
$=-6+1-1=-6$
$|\mathrm{A}|$ जর সহগুণকলুणি इడ্চ, $\mathrm{A}_{11}=\left|\begin{array}{ll}-2 & 1 \\ -1 & 2\end{array}\right|=-3$,
$A_{12}=-\left|\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right|=-1, A_{13}=\left|\begin{array}{ll}1 & -2 \\ 1 & -1\end{array}\right|=1$,
$A_{21}=-\left|\begin{array}{cc}-1 & -1 \\ -1 & 2\end{array}\right|=3, A_{22}=\left|\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right|=5$,

সमाषান 8 （a）तमөয়ा जाट下， $2 x+3 y=4$
［b．＇os］

$$
x-y=7
$$

＜্লেমার্রের নিয্যম ব্যবহার করে জামর্木া পাই ，

$$
\begin{aligned}
& \mathrm{D}=\left|\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right|=-2-3=-5, \\
& \mathrm{D}_{\mathrm{x}}=\left|\begin{array}{cc}
4 & 3 \\
7 & -1
\end{array}\right|=-4-21=-25, \\
& \mathrm{D}_{\mathrm{y}}=\left|\begin{array}{ll}
2 & 4 \\
1 & 7
\end{array}\right|=14-4=10
\end{aligned}
$$

$$
x=\frac{D_{x}}{D}=\frac{-25}{-5}=5, y=\frac{D_{y}}{D}=\frac{10}{-5}=-2
$$

13（b）मেও্যা बारে，$x+y+z=1$

$$
\begin{aligned}
& x+2 y+z=2 \\
& x+y+2 z=0
\end{aligned}
$$

ব্রেমারের নিয়ম ব্যবহার করে জামরা পাঁ ，

$$
\begin{aligned}
& \mathrm{D}=\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right|=\left|\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 1 & 1 \\
0 & -1 & 2
\end{array}\right| \\
& {\left[c_{1}^{\prime}=c_{1}-c_{2}, c_{2}^{\prime}=c_{2}-c_{3}\right] } \\
&=1(1-0)=1 \\
& \mathrm{D}_{\mathrm{x}}=\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 1 \\
0 & 1 & 2
\end{array}\right|=\left|\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 1 \\
-1 & -1 & 2
\end{array}\right| \\
& {\left[\begin{array}{rl}
c_{1}^{\prime} & \left.=c_{1}-c_{2}, c_{2}^{\prime}=c_{2}-c_{3}\right] \\
& =1(0+1)=1
\end{array}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}_{23}=-\left|\begin{array}{ll}
2 & -1 \\
1 & -1
\end{array}\right|=1, \mathrm{~A}_{31}=\left|\begin{array}{cc}
-1 & -1 \\
-2 & 1
\end{array}\right|=-3 \text {, } \\
& A_{32}=-\left|\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right|=-3, A_{33}=\left|\begin{array}{cc}
2 & -1 \\
1 & -2
\end{array}\right|=-3 \\
& \mathrm{~A}^{-1}=\frac{1}{|\mathrm{~A}|} \operatorname{Adj}(\mathrm{A}) \\
& =\frac{1}{-6}\left[\begin{array}{ccc}
-3 & -1 & 1 \\
3 & 5 & 1 \\
-3 & -3 & -3
\end{array}\right]^{\mathrm{T}}=\frac{1}{-6}\left[\begin{array}{ccc}
-3 & 3 & -3 \\
-1 & 5 & -3 \\
1 & 1 & -3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / 2 \\
1 / 6 & -5 / 6 & 1 / 2 \\
-1 / 6 & -1 / 6 & 1 / 2
\end{array}\right] \\
& \text { (Ans.) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{y}}=\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 1 \\
1 & 0 & 2
\end{array}\right|=\left|\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 1 & 1 \\
1 & -2 & 2
\end{array}\right| \\
& {\left[\begin{array}{rl}
c_{1}^{\prime} & \left.=c_{1}-c_{2}, c_{2}^{\prime}=c_{2}-c_{3}\right] \\
& =1(2-1)=1 \\
\mathrm{D}_{\mathrm{z}} & =\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 1 & 0
\end{array}\right|=\left|\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 0 & 2 \\
0 & 1 & 0
\end{array}\right| \\
\quad\left[c_{1}^{\prime}=c_{1}-c_{2}, c_{2}^{\prime}=c_{2}-c_{3}\right] \\
& =1(-1-0)=-1 \\
x & =\frac{D_{x}}{D}=\frac{1}{1}=1, y=\frac{D_{y}}{D}=\frac{1}{1}=1, \\
z & =\frac{D_{z}}{D}=\frac{-1}{1}=-1
\end{array}\right.}
\end{aligned}
$$

13（c）पেӨয়ा जाएে，$\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & -1 & 3 \\ 2 & 3 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}5 \\ 7 \\ 11\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x+2 y-z \\ 3 x-y+3 z \\ 2 x+3 y+z\end{array}\right]=\left[\begin{array}{c}5 \\ 7 \\ 11\end{array}\right]$
$x+2 y-z=5$
$3 x-y+3 z=7$
$2 x+3 y+z=11$

$\mathrm{D}=\left|\begin{array}{ccc}1 & 2 & -1 \\ 3 & -1 & 3 \\ 2 & 3 & 1\end{array}\right|$

$$
=1(-1-9)-2(3-6)-1(9+2)
$$

$$
=-10+6-11=-15
$$

$\mathrm{D}_{\mathrm{x}}=\left|\begin{array}{ccc}5 & 2 & -1 \\ 7 & -1 & 3 \\ 11 & 3 & 1\end{array}\right|$
$=5(-1-9)-2(7-33)-1(21+11)$
$=-50+52-32=-30$
$\mathrm{D}_{\mathrm{y}}=\left|\begin{array}{ccc}1 & 5 & -1 \\ 3 & 7 & 3 \\ 2 & 11 & 1\end{array}\right|$
$=1(7-33)-5(3-6)-1(33-14)$
$=-26+15-19=-30$

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{z}}=\left|\begin{array}{ccc}
1 & 2 & 5 \\
3 & -1 & 7 \\
2 & 3 & 11
\end{array}\right| \\
& =1(-11-21)-2(33-14)+5(9+2) \\
& =-32-38+55=-15 \\
& \quad x=\frac{D_{x}}{D}=\frac{-30}{-15}=2, \mathrm{y}=\frac{D_{y}}{D}=\frac{-30}{-15}=2, \\
& \quad \mathrm{z}=\frac{D_{z}}{D}=\frac{-15}{-15}=1
\end{aligned}
$$

14. সমाধাन ः (a) $|\mathrm{A}|=\left|\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right|=-3-8=-11$ चেடেতু |A| অশূन्य, সুতরাং A একটি অব্যতিক্রমী घ्यद्রिक्म।
(b) প্রশ্নমালা IA ज্র 5(a) নং প্রশ্ন।
(c) A^{-1} निर्वয় কর।
$|\mathrm{A}|$ এর সহগুণকগুলি হছ্ছ, $\mathrm{A}_{11}=-3, \mathrm{~A}_{12}=-4$, $\mathrm{A}_{21}=-2, \mathrm{~A}_{22}=1$

$$
\begin{aligned}
\mathrm{A}^{-1} & =\frac{1}{|\mathrm{~A}|} \operatorname{Adj}(\mathrm{A})=\frac{1}{-11}\left[\begin{array}{cc}
-3 & -4 \\
-2 & 1
\end{array}\right]^{\mathrm{T}} \\
& =-\frac{1}{11}\left[\begin{array}{cc}
-3 & -2 \\
-4 & 1
\end{array}\right]
\end{aligned}
$$

15(a) $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12\end{array}\right], \mathrm{B}=\left[\begin{array}{c}14 \\ 10 \\ 8\end{array}\right]$
$\mathrm{AB}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12\end{array}\right] \times\left[\begin{array}{c}14 \\ 10 \\ 8\end{array}\right]=\left[\begin{array}{l}14+20+24 \\ 14+30+40 \\ 14+50+96\end{array}\right]$
$=\left[\begin{array}{c}58 \\ 84 \\ 160\end{array}\right]$
মোট লাভ $=(58+84+160)=302$ টাকা।
(b) $\mathrm{A}^{2}=\mathrm{A} \times \mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12\end{array}\right] \times\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12\end{array}\right]$
$=\left[\begin{array}{ccc}1+2+3 & 2+6+15 & 3+10+36 \\ 1+3+5 & 2+9+25 & 3+15+60 \\ 1+5+12 & 2+15+60 & 3+25+144\end{array}\right]$
$=\left[\begin{array}{ccc}6 & 23 & 49 \\ 9 & 36 & 78 \\ 18 & 77 & 172\end{array}\right]$ (Ans.)
(c) A ম্যাট্রিক্রের নির্ণায়ক

$$
\begin{aligned}
|A| & =1(36-25)-2(12-5)+3(5-3) \\
& =11-14+6=3
\end{aligned}
$$

$|\mathrm{A}|$ এর সरগুণকগুলি হচ্ছে, $\mathrm{A}_{11}=\left|\begin{array}{cc}3 & 5 \\ 5 & 12\end{array}\right|=11$,
$A_{12}=-\left|\begin{array}{cc}1 & 5 \\ 1 & 12\end{array}\right|=-7, A_{13}=\left|\begin{array}{ll}1 & 3 \\ 1 & 5\end{array}\right|=2$,
$A_{21}=-\left|\begin{array}{cc}2 & 3 \\ 5 & 12\end{array}\right|=-9, A_{22}=\left|\begin{array}{cc}1 & 3 \\ 1 & 12\end{array}\right|=9$,
$A_{23}=-\left|\begin{array}{cc}1 & 2 \\ 1 & 5\end{array}\right|=-3 A_{31}=\left|\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right|=1$,
$A_{32}=-\left|\begin{array}{ll}1 & 3 \\ 1 & 5\end{array}\right|=-2, A_{33}=\left|\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right|=1$

$$
\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \operatorname{Adj}(\mathrm{A})
$$

$=\frac{1}{3}\left[\begin{array}{ccc}11 & -7 & 2 \\ -9 & 9 & -3 \\ 1 & -2 & 1\end{array}\right]^{\mathrm{T}}=\frac{1}{3}\left[\begin{array}{ccc}11 & -9 & 1 \\ -7 & 9 & -2 \\ 2 & -3 & 1\end{array}\right]$
16. সমাধান (a) A বर्গ ম্যাট্রিক্স এর নির্ণায়ক $|A|$ অশূन্য হলে A এর বিপরীত ম্যাট্টিয্য A^{-1} বिদ্যমাन থাকবে।
আবার, A ম্যাট্রিক্স এর সারি সংখ্যা $=3$. সুতরাং, B ম্যাট্রিষ্স এর কলাম সংখ্যা 3 হলে AB বিদ্যমান थাকবে।
(b) প্রশ্নমানা IB এর 1(a) নং প্রশ্ন।
(c) $\mathrm{p}=2$ रलि, $\mathrm{A}=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 2^{2} \\ 1 & 2^{2} & 2^{4}\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 16\end{array}\right]$
$A \times\left[\begin{array}{c}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}5 \\ 7 \\ 11\end{array}\right] \Rightarrow\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 16\end{array}\right] \times\left[\begin{array}{c}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}5 \\ 7 \\ 11\end{array}\right]$

$$
\begin{gathered}
\Rightarrow\left[\begin{array}{c}
x+y+z \\
x+2 y+4 z \\
x+4 y+16 z
\end{array}\right]=\left[\begin{array}{c}
5 \\
7 \\
11
\end{array}\right] \\
\Rightarrow \quad \begin{array}{c}
x+y+z=5, x+2 y+4 z=7 \\
x+4 y+16 z=11
\end{array}
\end{gathered}
$$

এখন, ক্রেমারের নিয়ম ব্যবহার করে আমরা পাই ,

$$
\begin{aligned}
\mathrm{D} & =\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 4 & 16
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
-1 & -2 & 4 \\
-3 & -12 & 16
\end{array}\right] \\
& =12-6=6 \\
\mathrm{D}_{\mathrm{x}} & =\left[\begin{array}{ccc}
5 & 1 & 1 \\
7 & 2 & 4 \\
11 & 4 & 16
\end{array}\right] \\
& =5(32-16)-1(112-44)+1(28-22) \\
& =80-68+6=18
\end{aligned}
$$

$$
\mathrm{D}_{\mathrm{y}}=\left[\begin{array}{ccc}
1 & 5 & 1 \\
1 & 7 & 4 \\
1 & 11 & 16
\end{array}\right]=\left[\begin{array}{ccc}
0 & -2 & -3 \\
0 & -4 & -12 \\
1 & 11 & 16
\end{array}\right]
$$

$$
=24-12=12
$$

$$
\mathrm{D}_{\mathrm{z}}=\left[\begin{array}{ccc}
1 & 1 & 5 \\
1 & 2 & 7 \\
1 & 4 & 11
\end{array}\right]=\left[\begin{array}{ccc}
0 & -1 & -2 \\
0 & -2 & -4 \\
1 & 4 & 11
\end{array}\right]
$$

$$
=4-4=0
$$

$$
x=\frac{D_{x}}{D}=\frac{18}{6}=3, \mathrm{y}=\frac{D_{y}}{D}=\frac{12}{6}=2
$$

$$
\mathrm{z}=\frac{D_{z}}{D}=\frac{0}{6}=0
$$

निর্ণেয় সমাধান $x=3, y=2, z=0$

অতিরিক্ত প্রশ্ন (সমাধানসহ)

বিग্খ্রান্গ না কর্রে প্রমাণ কন্ন :
1(a) $\left|\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ b c & c a & a b\end{array}\right|=\left|\begin{array}{ccc}1 & 1 & 1 \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3}\end{array}\right|$
প্রমাণ ঃ L.H.S. $=\left|\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ b c & c a & a b\end{array}\right|$
$=\frac{1}{a b c}\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3} \\ a b c & a b c & a b c\end{array}\right|=\frac{a b c}{a b c}\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3} \\ 1 & 1 & 1\end{array}\right|$
$=-\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ 1 & 1 & 1 \\ a^{3} & b^{3} & c^{3}\end{array}\right|=(-)(-)\left|\begin{array}{ccc}1 & 1 & 1 \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3}\end{array}\right|$
$=\left|\begin{array}{ccc}1 & 1 & 1 \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3}\end{array}\right|=$ R.H.S. (Proved)
1(b) $\left|\begin{array}{ccc}b c & c a & a b \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{c} \\ \frac{1}{a}+b & \frac{1}{b}+c & \frac{1}{c}+a\end{array}\right|=0$
প্রमाণ ः L.H.S. $=\left|\begin{array}{ccc} & & \\ b c & c a & a b \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{c} \\ \frac{1}{a}+b & \frac{1}{b}+c & \frac{1}{c}+a\end{array}\right|$
$=\frac{a b c}{a b c}\left|\begin{array}{ccc}b c & c a & a b \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{c} \\ \frac{1}{a}+b & \frac{1}{b}+c & \frac{1}{c}+a\end{array}\right|$
$=\frac{1}{a b c}\left|\begin{array}{ccc}a b c & a b c & a b c \\ a \cdot \frac{1}{a} & b \cdot \frac{1}{b} & c \cdot \frac{1}{c} \\ a\left(\frac{1}{a}+b\right) & b\left(\frac{1}{b}+c\right) & c\left(\frac{1}{c}+a\right)\end{array}\right|$
$=\frac{a b c}{a b c}\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1+a b & 1+b c & 1+c a\end{array}\right|$
$=0=$ R.H.S. $\quad[$ দूそটি সারি একই।]
2(a) $\left|\begin{array}{ccc}x+a & a & a \\ b & x+b & b \\ c & c & x+c\end{array}\right|=x^{2}(x+a+b+c)$
প্রমাণ ः L.H.S. $=\left|\begin{array}{ccc}x+a & a & a \\ b & x+b & b \\ c & c & x+c\end{array}\right|$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
x+a+b+c & x+a+b+c & x+a+b+c \\
b & x+b & b \\
c & c & x+c
\end{array}\right| \\
& =(x+a+b+c)\left|\begin{array}{ccc}
1 & 1 & 1 \\
b & x+b & b \\
c & c & x+c
\end{array}\right| \\
& =(x+a+b+c)\left|\begin{array}{ccc}
0 & 0 & 1 \\
-x & x & b \\
0 & -x & x+c
\end{array}\right| \\
& {\left[\begin{array}{c}
\left.r_{1}^{\prime}=r_{1}+\left(r_{2}+r_{3}\right)\right]
\end{array}\right.} \\
& =(x+a+b+c)\left(x_{2}^{2}-0\right) \\
& \left.=x^{\prime}(x+a+b+c)=c_{2}-c_{3}\right]
\end{aligned}
$$

2(b) $\left|\begin{array}{ccc}1 & a & a^{2} \\ a^{2} & 1 & a \\ a & a^{2} & 1\end{array}\right|=\left(a^{3}-1\right)^{2}$
গ্রमाष 8 L.H.S. $=\left|\begin{array}{ccc}1 & a & a^{2} \\ a^{2} & 1 & a \\ a & a^{2} & 1\end{array}\right|$
$=\left|\begin{array}{ccc}1+a+a^{2} & a & a^{2} \\ 1+a+a^{2} & 1 & a \\ 1+a+a^{2} & a^{2} & 1\end{array}\right|\left[c_{1}^{\prime}=c_{1}+\left(c_{2}+c_{3}\right)\right]$
$=\left|\begin{array}{ccc}1 & a & a^{2} \\ 1 & 1 & a \\ 1 & a^{2} & 1\end{array}\right|$
$=\left(a^{2}+a+1\right)\left|\begin{array}{ccc}0 & a-1 & a(a-1) \\ 0 & 1-a^{2} & a-1 \\ 1 & a^{2} & 1\end{array}\right|$

$$
\left[r_{1}^{\prime}=r_{1}-r_{2}, r_{2}^{\prime}=r_{2}-r_{3}\right]
$$

$$
=\left(a^{2}+a+1\right) 1\left\{(a-1)^{2}-a(a-1)(1-a)(1+a)\right\}
$$

$$
=\left(a^{2}+a+1\right)(a-1)^{2}\left(1+a+a^{2}\right)
$$

$$
=\left(a^{2}+a+1\right)^{2}(a-1)^{2}=\left(a^{3}-1\right)^{2}=\text { R.H.S. }
$$

(Proved)
3. बमाष कत्र बে, $\left|\begin{array}{ccc}1 & 1 & 1 \\ \sin A & \sin B & \sin C \\ \cos A & \cos B & \cos C\end{array}\right|$

$$
\begin{aligned}
& =\sin (A-B)+\sin (B-C)+\sin (C-A) \\
& =-4 \sin \frac{A-B}{2} \sin \frac{B-C}{2} \sin \frac{C-A}{2}
\end{aligned}
$$

প্রমाष 8 L.H.S. $=\left[\begin{array}{ccc}1 & 1 & 1 \\ \sin A & \sin B & \sin c \\ \cos A & \cos B & \cos C\end{array}\right]$
$=\left[\begin{array}{ccc}0 & 0 & 1 \\ \sin A-\sin B & \sin B-\sin C & \sin C \\ \cos A-\cos B & \cos B-\cos C & \cos C\end{array}\right]$

$$
\left[c_{1}-c_{2}, c_{2}-c_{3}\right]
$$

$=(\sin \mathrm{A}-\sin \mathrm{B})(\cos \mathrm{B}-\cos \mathrm{C})-$
$(\sin B-\sin C)(\cos A-\cos B)$
$=\sin A \cos B-\sin A \cos C-\sin B \cos B$
$+\sin B \cos C-\sin B \cos A+\sin B \cos B$
$+\sin C \cos A-\sin C \cos B$
$=(\sin A \cos B-\cos A \sin B)+(\sin B \cos C$
$-\sin C \cos B)+(\sin C \cos A-\sin A \cos C)$
$=\sin (A-B)+\sin (B-C)+\sin (C-B)$
$=$ M.H.S.
जাবার, $(\sin A-\sin B)(\cos B-\cos C)-$ $(\sin B-\sin C)(\cos A-\cos B)$
$=2 \sin \frac{A-B}{2} \cos \frac{A+B}{2} 2 \sin \frac{B+C}{2} \sin \frac{C-B}{2}$
$-2 \sin \frac{B-C}{2} \cos \frac{B+C}{2} 2 \sin \frac{A+B}{2} \sin \frac{B-A}{2}$
$=-4 \sin \frac{A-B}{2} \sin \frac{B-C}{2}\left[\cos \frac{A+B}{2} \sin \frac{B+C}{2}\right.$
$\left.-\cos \frac{B+C}{2} \sin \frac{A+B}{2}\right]$
$=-4 \sin \frac{A-B}{2} \sin \frac{B-C}{2} \cos \left(\frac{B+C}{2}-\frac{A+B}{2}\right)$
$=-4 \sin \frac{A-B}{2} \sin \frac{B-C}{2} \sin \frac{C-A}{2}=$ R.H.S.
L.H.S. $=$ M.H.S. $=$ R.H.S. (Proved)
4. बমাণ কन্ন यে,
(a) $\left|\begin{array}{ccc}0 & b-a & c-a \\ a-b & 0 & c-b \\ a-c & b-c & 0\end{array}\right|=0$

প্রमाप 8 L．H．S．$=\left|\begin{array}{ccc}0 & b-a & c-a \\ a-b & 0 & c-b \\ a-c & b-c & 0\end{array}\right|$
$=\left|\begin{array}{ccc}a-b & b-c & c-a \\ a-b & b-c & c-b \\ a-b & b-c & 0\end{array}\right|$

$$
\left[c_{1}^{\prime}=c_{1}-c_{2}, c_{2}^{\prime}=c_{2}-c_{3}\right]
$$

$=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})\left|\begin{array}{ccc}1 & 1 & c-a \\ 1 & 1 & c-b \\ 1 & 1 & 0\end{array}\right|$
$=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c}) \times 0 \quad[\because$ দूंたট কनाম এবई ।］
$=0=$ R．H．S．（Proved）
4（b）$\left|\begin{array}{ccc}-b c & b c+b^{2} & b c+c^{2} \\ c a+a^{2} & -c a & c a+c^{2} \\ a b+a^{2} & a b+b^{2} & -a b\end{array}\right|$

$$
=(b c+c a+a b)^{3}
$$

भ्रमाण 8 L．H．S．$=\left|\begin{array}{ccc}-b c & b c+b^{2} & b c+c^{2} \\ c a+a^{2} & -c a & c a+c^{2} \\ a b+a^{2} & a b+b^{2} & -a b\end{array}\right|$
$=\frac{1}{\mathrm{abc}}\left|\begin{array}{ccc}-a b c & a b c+a b^{2} & a b c+a c^{2} \\ a b c+a^{2} b & -a b c & a b c+b c^{2} \\ a b c+a^{2} c & a b c+b^{2} c & -a b c\end{array}\right|$
$=\frac{1}{\mathrm{abc}} \mathrm{abc}\left|\begin{array}{ccc}-b c & c a+a b & a b+a c \\ b c+a b & -c a & a b+b c \\ b c+c a & c a+b c & -a b\end{array}\right|$
$=\left|\begin{array}{ccc}a b+b c+c a & a b+b c+c a & a b+b c+c a \\ b c+a b & -c a & a b+b c \\ b c+c a & c a+b c & -a b\end{array}\right|$

$$
\left[r_{1}^{\prime}=r_{1}+\left(r_{2}+r_{2}\right)\right]
$$

$=(a b+b c+c a)\left|\begin{array}{ccc}1 & 1 & 1 \\ b c+a b & -c a & a b+b c\end{array}\right|$ $b c+c a \quad c a+b c \quad-a b$ $=(a b+b c+c a)$
$\left|\begin{array}{ccc}0 & 0 & 1 \\ b c+a b+c a & -(c a+a b+c a) & a b+b c \\ 0 & c a+b c+a b & -a b\end{array}\right|$

$$
\left[c_{1}^{\prime}=c_{1}-c_{2}, c_{2}^{\prime}=c_{2}-c_{3}\right]
$$

$=(a b+b c+c a) \cdot 1\{(a b+b c+c a)(a b+b c+c a)-0\}$
$=(a b+b c+c a)^{3}=0=$ R．H．S．
4（c）$\left|\begin{array}{lll}a^{2}-b c & b^{2}-c a & c^{2}-a b \\ c^{2}-a b & a^{2}-b c & b^{2}-c a \\ b^{2}-c a & c^{2}-a b & a^{2}-b c\end{array}\right|$

$$
=\left(a^{3}+b^{3}+c^{3}-3 a b c\right)^{2}
$$

L．H．S．$=\left|\begin{array}{lll}a^{2}-b c & b^{2}-c a & c^{2}-a b \\ c^{2}-a b & a^{2}-b c & b^{2}-c a \\ b^{2}-c a & c^{2}-a b & a^{2}-b c\end{array}\right|$
$\left|a^{2}+b^{2}+c^{2}-a b-b c-c a \quad b^{2}-c a \quad c^{2}-a b\right|$ $=a^{2}+b^{2}+c^{2}-a b-b c-c a \quad a^{2}-b c \quad b^{2}-c a$ $\left|a^{2}+b^{2}+c^{2}-a b-b c-c a \quad c^{2}-a b \quad a^{2}-b c\right|$
$\left.=a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$\left|\begin{array}{lll}1 & b^{2}-c a & c^{2}-a b \\ 1 & a^{2}-b c & b^{2}-c a \\ 1 & c^{2}-a b & a^{2}-b c\end{array}\right|$
এथन，$\left|\begin{array}{lll}1 & b^{2}-c a & c^{2}-a b \\ 1 & a^{2}-b c & b^{2}-c a \\ 1 & c^{2}-a b & a^{2}-b c\end{array}\right|$
$=$

$$
\begin{array}{r}
\left|\begin{array}{ccc}
0 & -(a-b)(a+b+c) & -(b-c)(a+b+c) \\
0 & -(c-a)(c+a+b) & -(a-b)(a+b+c) \\
1 & c^{2}-a b & a^{2}-b c
\end{array}\right| \\
{\left[r_{1}^{\prime}=r_{1}-r_{2}, r_{2}^{\prime}=r_{2}-r_{3}\right]}
\end{array}
$$

$=\left|\begin{array}{ccc}0 & -(a-b)(a+b+c) & -(b-c)(a+b+c) \\ 0 & -(c-a)(a+b+c) & -(a-b)(a+b+c) \\ 1 & c^{2}-a b & a^{2}-b c\end{array}\right|$
$=(a+b+c)^{3}\left|\begin{array}{ccc}0 & -(a-b) & -(b-c) \\ 0 & -(c-a) & -(a-b) \\ 1 & c^{2}-a b & a^{2}-b c\end{array}\right|$
$=(a+b+c)^{2} 1 \cdot\left\{(a-b)^{2}-(b-c)(c-a)\right\}$
$=(a+b+c)^{2}\left(a^{2}+b^{2}-2 a b-b c+c^{2}+a b-\right.$ ca）
$=(a+b+c)^{2}\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
（i）হতে আমরা পাই，
$\left|\begin{array}{lll}a^{2}-b c & b^{2}-c a & c^{2}-a b \\ c^{2}-a b & a^{2}-b c & b^{2}-c a \\ b^{2}-c a & c^{2}-a b & a^{2}-b c\end{array}\right|$

$$
\begin{aligned}
& =(\mathrm{a}+\mathrm{b}+\mathrm{c})^{2}\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{ab}-\mathrm{bc}-\mathrm{ca}\right)^{2} \\
& =\left\{(\mathrm{a}+\mathrm{b}+\mathrm{c})\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{ab}-\mathrm{bc}-\mathrm{ca}\right)\right\}^{2} \\
& \left.=\left(\mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}-3 \mathrm{abc}\right)^{2}=\text { R.H.S. (Proved }\right) \\
& \mathbf{4 (d)}\left|\begin{array}{ccc}
(a+b)^{2} & \boldsymbol{c a} & \boldsymbol{b c} \\
\boldsymbol{c a} & (b+\boldsymbol{c})^{2} & \boldsymbol{a b} \\
b \boldsymbol{c} & \boldsymbol{a b} & (\boldsymbol{c}+\boldsymbol{a})^{2}
\end{array}\right| \\
& =\boldsymbol{a b c}(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c})^{3} \\
& \text { L.H.S. }=\left|\begin{array}{ccc}
(a+b)^{2} & c a & b c \\
c a & (b+c)^{2} & a b \\
b c & a b & (c+a)^{2}
\end{array}\right| \\
& =\frac{1}{a b c}\left|\begin{array}{ccc}
c(a+b)^{2} & c^{2} a & b c^{2} \\
c a^{2} & a(b+c)^{2} & a^{2} b \\
b^{2} c & a b^{2} & b(c+a)^{2}
\end{array}\right| \\
& =\frac{a b c}{a b c}\left|\begin{array}{ccc}
(a+b)^{2} & c^{2} & c^{2} \\
a^{2} & (b+c)^{2} & a^{2} \\
b^{2} & b^{2} & (c+a)^{2}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
(a+b)^{2} & c^{2} & c^{2} \\
a^{2} & (b+c)^{2} & a^{2} \\
b^{2} & b^{2} & (c+a)^{2}
\end{array}\right|
\end{aligned}
$$

অতপর , উদাহরণ 8 দ্রষ্টব্য ।
4 (e) $\left|\begin{array}{ccc}a+b+c & -c & -b \\ -c & a+b+c & -a \\ -b & -a & a+b+c\end{array}\right|$

$$
=2(b+c)(c+a)(a+b)
$$

L.H.S. $=\left|\begin{array}{ccc}a+b+c & -c & -b \\ -c & a+b+c & -a \\ -b & -a & a+b+c\end{array}\right|$
$=\left|\begin{array}{ccc}a+b & -(b+c) & -b \\ a+b & b+c & -a \\ -(a+b) & b+c & a+b+c\end{array}\right|$

$$
\left[c_{1}^{\prime}=c_{1}-c_{2}, c_{2}^{\prime}=c_{2}-c_{3}\right]
$$

$=(\mathrm{a}+\mathrm{b})(\mathrm{b}+\mathrm{c})\left|\begin{array}{ccc}1 & -1 & -b \\ 1 & 1 & -a \\ -1 & 1 & a+b+c\end{array}\right|$
$=(\mathrm{a}+\mathrm{b})(\mathrm{b}+\mathrm{c})\left|\begin{array}{ccc}0 & -1 & -b \\ 2 & 1 & -a \\ 0 & 1 & a+b+c\end{array}\right|\left[c_{1}^{\prime}=c_{1}-c_{2}\right.$
$=(a+b)(b+c)\{-2(-a-b-c+b)\}$

$$
\begin{aligned}
& =(\mathrm{a}+\mathrm{b})(\mathrm{b}+\mathrm{c})(-2)(-1)(\mathrm{c}+\mathrm{a}) \\
& =2(\mathrm{a}+\mathrm{b})(\mathrm{b}+\mathrm{c})(\mathrm{c}+\mathrm{a})=\text { R.H.S. } \\
& \text { 4(f) }\left|\begin{array}{ccc}
-1 & b & c \\
\boldsymbol{a} & -1 & c \\
\boldsymbol{a} & b & -1
\end{array}\right|=(a+1)(b+1)(c+1) \\
&
\end{aligned}
$$

L.H.S. $=\left|\begin{array}{ccc}-1 & b & c \\ a & -1 & c \\ a & b & -1\end{array}\right|$

$$
=\left|\begin{array}{ccc}
-1 & b & c \\
a+1 & -(b+1) & 0 \\
a+1 & 0 & -(c+1)
\end{array}\right|
$$

$$
=(a+1)(b+1)(c+1)
$$

$$
\left[r_{2}^{\prime}=r_{2}-r_{1}, r_{3}^{\prime}=r_{3}-r_{1}\right]
$$

$$
\left|\begin{array}{ccc}
-\frac{1}{a+1} & \frac{b}{b+1} & \frac{c}{c+1} \\
\frac{a+1}{a+1} & \frac{-(b+1)}{b+1} & \frac{0}{c+1} \\
\frac{a+1}{a+1} & \frac{0}{b+1} & \frac{-(c+1)}{c+1}
\end{array}\right|
$$

$$
=(a+1)(b+1)(c+1)\left|\begin{array}{ccc}
-\frac{1}{a+1} & \frac{b}{b+1} & \frac{c}{c+1} \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right|
$$

$$
=(a+1)(b+1)(c+1)
$$

$$
\left\{-\frac{1}{a+1}(1-0)-\frac{b}{b+1}(-1-0)+\frac{c}{c+1}(0+1)\right\}
$$

$$
=(a+1)(b+1)(c+1)\left\{-\frac{1}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\right\}
$$

$$
=(a+1)(b+1)(c+1)\left\{-\frac{a+1-a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\right\}
$$

$$
=(a+1)(b+1)(c+1)
$$

$$
\left\{-\frac{a+1}{a+1}+\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\right\}
$$

$$
=(a+1)(b+1)(c+1)\left\{\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}-1\right\}
$$

$$
=\text { R.H.S. } \quad \text { (Proved) }
$$

$\left|\begin{array}{ccc}1 & -a & a^{2} \\ a^{2} & 1 & -a \\ -a & a^{2} & 1\end{array}\right|=\left|\begin{array}{ccc}1-a+a^{2} & -a & a^{2} \\ 1-a+a^{2} & 1 & -a \\ 1-a+a^{2} & a^{2} & 1\end{array}\right|$
$=\left(1-a+a^{2}\right)\left|\begin{array}{ccc}1 & -a & a^{2} \\ 1 & 1 & -a \\ 1 & a^{2} & 1\end{array}\right|$
$=\left(1-a+a^{2}\right)\left|\begin{array}{ccc}0 & -a-1 & a^{2}+a \\ 0 & 1-a^{2} & -a-1 \\ 1 & a^{2} & 1\end{array}\right|$
$=\left(1-a+a^{2}\right)\left|\begin{array}{ccc}0 & -(a+1) & a(a+1) \\ 0 & (1+a)(1-a) & -(a+1) \\ 1 & a^{2} & 1\end{array}\right|$
$=\left(1-a+a^{2}\right)(a+1)^{2}\left|\begin{array}{ccc}0 & -1 & a \\ 0 & 1-a & -1 \\ 1 & a^{2} & 1\end{array}\right|$
$=\left(1-a+a^{2}\right)(a+1)^{2}\left(1-a+a^{2}\right)$
$=\left(1-a+a^{2}\right)^{2}(a+1)^{2}$
5. $\mathbf{A}=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0\end{array}\right]$ इनে দেখাও बে, $\mathbf{A}^{3}=$ I. এ वেকে A^{-1} निर्ণয়্য बর।
সমাধান :
$A^{2}=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1\end{array}\right]$
$A^{3}=A^{2} A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1\end{array}\right]$
$=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I$
$\mathrm{A}^{2} \mathrm{~A}=\mathrm{I}$ হতে সিদ্ধান্ত হয় বে, A^{-1} বিদ্যমান এবং এর मान $A^{2}=\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1\end{array}\right]$
6. $\mathbf{A}=\left[\begin{array}{ccc}1 & 3 & 4 \\ 3 & -1 & 6 \\ -1 & 5 & 1\end{array}\right]$ रूে এমন একটि ম্যাট্রিশ্স \mathbf{B} निर्ণয় কর যেন $\mathbf{A B}=\mathbf{B A}=\mathbf{I}$ इয়।

সমাধান : $\mathrm{AB}=\mathrm{BA}=\mathrm{I}$ বনে, $\mathrm{B}=\mathrm{A}^{-1}$
এখानে, $|A|=1(-1-30)-3(3+6)+4(15-1)$
$=-31-27+56=-2$
$\therefore A^{-1}=\frac{1}{-2}\left[\begin{array}{cc}\mid-1 & 6 \\ 5 & 1\end{array}\left|-\left|\begin{array}{cc}3 & 6 \\ -1 & 1\end{array}\right|\right| \begin{array}{cc}3 & -1 \\ -1 & 5\end{array}\left|{ }^{3} \quad 4\right|\left|\begin{array}{cc}1 & 4 \\ 5 & 1\end{array}\right|\left|\begin{array}{cc}1 & 3 \\ -1 & 1\end{array}\right|-\left|\begin{array}{cc}-1 & 5\end{array}\right|\right.$ T
$=\frac{1}{-2}\left[\begin{array}{ccc}-31 & -9 & 14 \\ 17 & 5 & -8 \\ 22 & 6 & -10\end{array}\right]^{\mathrm{T}}$
$=\frac{1}{-2}\left[\begin{array}{ccc}-31 & 17 & 22 \\ -9 & 5 & 6 \\ 14 & -8 & -10\end{array}\right]$
$\therefore \mathrm{B}=\mathrm{A}^{-1}=\left[\begin{array}{ccc}31 / 2 & -17 / 2 & -11 \\ 9 / 2 & -5 / 2 & -3 \\ -7 & 4 & 5\end{array}\right]$
7. $\mathrm{A}=\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right]$ उ $\mathrm{AB}=\left[\begin{array}{cc}10 & 17 \\ 4 & 7\end{array}\right]$ रबन B ম্যাট্রিক্সের উপাদানসমূহ নিণ্ৰয় কর। [রুচ্যেট’ ০৯-১০] সমाधानः এখानে, $A^{-1}=\frac{1}{4-6}\left[\begin{array}{cc}1 & -3 \\ 2 & 4\end{array}\right]$
$=-\frac{1}{2}\left[\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right]=\left[\begin{array}{cc}-1 / 2 & 3 / 2 \\ 1 & -2\end{array}\right]$
এขन, $\mathrm{A}^{-1}(\mathrm{AB})=\left(\mathrm{A}^{-1} \mathrm{~A}\right) \mathrm{B}=(\mathrm{I}) \mathrm{B}=\mathrm{B}$
$\Rightarrow B=A^{i}(A B)=\left[\begin{array}{cc}1 / 2 & 3 / 2 \\ 1 & -2\end{array}\right]\left[\begin{array}{cc}10 & 17 \\ 4 & 7\end{array}\right]$

$$
=\left[\begin{array}{cc}
-5+6 & -\frac{17}{2}+\frac{21}{2} \\
10-8 & 17-14
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]
$$

 $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ একটি অভেদ ম্যাট্টিস্স ।
সমাধানः ধরি, $\mathrm{A}=\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right]$.
ढाহलে, $\mathrm{A}^{-1}=\frac{1}{4-6}\left[\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right]$
$=-\frac{1}{2}\left[\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right]=\left[\begin{array}{cc}-1 / 2 & 3 / 2 \\ 1 & -2\end{array}\right]$
এখন, যেহেহু $\mathrm{AB}=\mathrm{I}$, সুতরাং, $\mathrm{B}=\mathrm{A}^{-1}$

$$
\mathrm{B}=\left[\begin{array}{cc}
-1 / 2 & 3 / 2 \\
1 & -2
\end{array}\right]
$$

उর্তি পরীক্কার MCQ :

ম্যাট্রিঙ্স :

1. यमि $A=\left[\begin{array}{cc}2 & 0 \\ 0 & -3\end{array}\right], B=\left[\begin{array}{ll}3 & 0 \\ 5 & 1\end{array}\right] \quad$ इड,

তবে $A B$ এর সমান - [DU 05-06; Jt.U 08-09, 09-10; JU.09-10; R.U.08-09]
Sol ${ }^{n}$.: $\mathrm{AB}=\left[\begin{array}{cc}2 & 0 \\ 0 & -3\end{array}\right]\left[\begin{array}{ll}3 & 0 \\ 5 & 1\end{array}\right]=\left[\begin{array}{cc}6 & 0 \\ -15 & -3\end{array}\right]$
[বি.দ্র:: ক্যানকূন্টেটরের সাহায্যেও ম্যার্রিক্রের সমাধান कर木ा याয়।]
2. $A=\left[\begin{array}{cc}2 & -3 \\ 3 & 2\end{array}\right]$ रनে, A^{2} সমान- [DU 04-05;

RU, $\mathbf{0 7 - 0 8}$; JU.09-10]
Sol ${ }^{n}$.: $A^{2}=\left[\begin{array}{cc}2 & -3 \\ 3 & 2\end{array}\right]\left[\begin{array}{cc}2 & -3 \\ 3 & 2\end{array}\right]$
$=\left[\begin{array}{ll}4-9 & -6-6 \\ 6+6 & -9+4\end{array}\right]=\left[\begin{array}{cc}-5 & -12 \\ 12 & -5\end{array}\right]$
3. $A=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], B=\left[\begin{array}{lll}4 & 5 & 6\end{array}\right]$ रनि $A B$ रुण ?
[CU 07-08]
a. $\left[\begin{array}{ll}3 & 2\end{array}\right]$ b. $\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]$ c. $\left[\begin{array}{l}5 \\ 7 \\ 9\end{array}\right]$ d. $\left[\begin{array}{ccc}4 & 5 & 6 \\ 8 & 10 & 12 \\ 12 & 15 & 18\end{array}\right]$

Sol ${ }^{n}$: AB এর মাত্রা হবে $(3 \times 1) .(1 \times 3)=3 \times 3$
4. $A=\left[\begin{array}{ccc}0 & 0 & 2 i \\ 0 & 2 i & 0 \\ 2 i & 0 & 0\end{array}\right]$ शबে, $A^{2}+4 I$ मমान-
[CU 06-07]
Sol $^{n}:: A^{2}+4 I=\left[\begin{array}{ccc}(2 i)^{2} & 0 & 0 \\ 0 & (2 i)^{2} & 0 \\ 0 & 0 & (2 i)^{2}\end{array}\right]$
$+\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
5. $M=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ रलে $M^{2}=$?
[CU 02-03]
Sol $^{n}: M^{2}=\left[\begin{array}{cc}2^{2} & 0 \\ 0 & 2^{2}\end{array}\right]=\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]$
6. $\left[\begin{array}{cc}x-y & 1 \\ 7 & x+y\end{array}\right]=\left[\begin{array}{ll}8 & 1 \\ 7 & 2\end{array}\right]$ इलে $(x, y)=$?
[DU 02-03]
Sol ${ }^{n}$: $x-y=8, x+y=2 \therefore(x, y)=(5,-3)$
7. $\left[\begin{array}{cc}3 & 2 \\ 1 & -2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}5 \\ 7\end{array}\right]$ इबে $(x, y)=$?
[CU 05-06]
Sol ${ }^{n}: 3 \mathrm{x}+2 \mathrm{y}=5, \mathrm{x}-2 \mathrm{y}=7$
$\therefore(x, y)=(3,-2)$
8. $\left[\begin{array}{cc}p-4 & 8 \\ 2 & p+2\end{array}\right]$ ม্যাট্রিল্পটি ব্যুীক্প্ী হবে p

यদি এর মান -
[DU 09-10, 07-08]

$$
\begin{aligned}
& \text { Sol }^{n}::(p-4)(p+2)-16=0 \\
& \Rightarrow p^{2}-2 p-8-16=0 \Rightarrow p^{2}-2 p-24=0 \\
& p=-6,4
\end{aligned}
$$

9. $\left[\begin{array}{cc}\alpha+3 & 6 \\ 5 & \alpha-4\end{array}\right]$ ম্যाট্রিঙটি ব্যতীক্কমী হবে यमि

$$
\alpha \text { এর মান - }
$$

[Jt.U 07-08]
Sol ${ }^{n} .:(\alpha+3)(\alpha-4)-30=0$
$\Rightarrow \alpha^{2}-\alpha-42=0 \quad \alpha=7,-6$
कुৗयन : 2×2 जব্যडीब्मমी ম्याढ्विल्र $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ এর বিপরীত ম্যাট্রিল্গ $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
10. यमि $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ इड़ उबে $A^{-1}=$?
[DU 06-07; Jt.U 06-07]
Sol ${ }^{n}:: A^{-1}=\frac{1}{4-6}\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]$
11. यमि $A=\left[\begin{array}{cc}5 & 2 \\ -3 & 1\end{array}\right]$ इয় उबে $A^{-1}=$?
[Jt.U 07-08]
Sol ${ }^{n}:: A^{-1}=\frac{1}{5+6}\left[\begin{array}{cc}1 & -2 \\ 3 & 5\end{array}\right]$
12. $A=\left[\begin{array}{c}4 \\ -1 \\ 3\end{array}\right], B=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ इजে $A B$ रण ?
[BUET 08-09; NU 09-10;CU 07-08]
a. $\left[\begin{array}{ll}4 & -29\end{array}\right]$ b. $\left|\begin{array}{ccc}4 & 8 & 12 \\ -1 & -2 & -3 \\ 3 & 6 & 9\end{array}\right|$ c. $\left[\begin{array}{c}4 \\ -2 \\ 9\end{array}\right]$ d. [11]

Sol ${ }^{n}$: AB ম্যার্রিষ্সের মাত্রা $=\mathrm{A}$ এর সারি $\times \mathrm{B}$ এর কলাম $=3 \times 3 \therefore$ Ans. b.
13. यमि $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] ; \mathrm{X}=\left[\begin{array}{c}y \\ -x\end{array}\right]$ इয, তবে $X A^{2}$ হবে-
[BUET 11-12]
A. $\left[\begin{array}{c}-x \\ -y\end{array}\right]$ B. $\left[\begin{array}{c}x \\ -y\end{array}\right]$ C. $\left[\begin{array}{l}-y \\ -x\end{array}\right]$ D. কোনটি নয় । Sol ${ }^{n}$.: XA^{2} निर्ণয় যোগ্য নয়।
14. A, B, C ম্যাট্রিপ্রসুলির মাত্রা যथার্রমে 4×5, $5 \times 4,4 \times 2$ रলে $\left(A^{T}+B\right) C$ এর্ মাত্রা হবে[BUET 10-11]

Sol" : : A^{T} এর মাত্রা $=5 \times 4,\left(\mathrm{~A}^{\mathrm{T}}+\mathrm{B}\right)$ এরं

$$
\text { মাত্র }=5 \times 4,\left(\mathrm{~A}^{\mathrm{T}}+\mathrm{B}\right) \mathrm{C}=5 \times 2
$$

ম্যাট্রিষ্সে ক্যালকুলেটরের্গ ব্যবহার্র
$\mathbf{A}=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & -3 & 4 \\ 3 & -2 & 3\end{array}\right], \mathbf{B}=\left[\begin{array}{ccc}-1 & -1 & -1 \\ 6 & 1 & 6 \\ 5 & 10 & 5\end{array}\right]$ रबन, $\mathbf{A B}$

- A^{-1} निर्ष্য কর।
$\underset{\text { MODE }}{\text { Declaring Matrix A: }}$ SHIFT
3 times $: 2$ (MAT) $-4 \square$ I (A)
$3=3=1=1=1=2$
$=3=4=3=-2=$ Shri sto
3 RCL
এভাবে Matrix B Declare করি।
এভাবে Matrix B Declare ধরি।
Shift mati 3 (MAT) 1 (A) x
shlft imat;

ধারাবাহিকভাবে এর ডান দিক চাপতে হবে।

ধারাবাহিকडাবে এর ডান দিক চাপত্ হবে।

নিণায়ক :

1. निबाয়ब $\left|\begin{array}{ccc}x+y & x & y \\ x & x+z & z \\ y & z & y+z\end{array}\right|$ এর মान-
[DU 08-09, 05-06, Jt.U06-07; RU 05-06;
KUET 10-11, 08-09; BAU 08-09]
A. 4 xyz
B. 3xyz
C. 2 xyz
D. xyz

Sol ${ }^{n}$.: $\mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=3$ रलে
$\Delta=\left|\begin{array}{lll}3 & 1 & 2 \\ 1 & 4 & 3 \\ 2 & 3 & 5\end{array}\right|=24$ (ক্যালক্ুলেটরের সাহায্যে)
Option গুলোতে $\mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=3$ বসালে $\mathrm{A}=24$ इয়। \therefore Ans. A.
mode
3 times 2 (MAT) 411 (A)
$3=3=3=1=2=4$
$=3=2=3=5=4$

এর ডান দিক চাপতে হবে। 1 (Det)
SHIFT
$31(\mathrm{~A})=24$
2. निণায়ক $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|$ এর মান কত ? [RU 07-08]
A. $(a-b)(b-c)(c-a)$ B. $\left(a^{2}-b^{2}\right)(b-c)(c-a)$
C. $(a-b)\left(b^{2}-c^{2}\right)(c-a)$ D. $(a-b)(b-c)\left(c^{2}-a^{2}\right)$

Sol ${ }^{n}$.: $a=1, b=2, c=3$ रनে, $\Delta=2$
Option গুলোতে $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=3$ বসালে $\mathrm{A}=2$ रয়। Ans. A.
অন্যভাবে বলা যায়- নির্ণায়কে a , b, c. এর উপস্ছিতি সমভাবে বলে নির্ণায়কের মানেও $a, \mathrm{~b}, \mathrm{c}$ এর উপস্থিতি সমভাবে হবে।
3. $\left|\begin{array}{ccc}1 & 1 & 1 \\ x & a & b \\ x^{2} & a^{2} & b^{2}\end{array}\right|=0$ रणে $x=$?
[DU 03-04; CU 02-03]
Sol ${ }^{n}$.: $x=\mathrm{a}$ হलে $C_{1}=C_{2}$ হয়. $\therefore \Delta=0$ $x=\mathrm{b}$ रलि $C_{1}=C_{3}$ रয় . $\quad \Delta=0$

$$
x=\mathrm{a} \text { or } \mathrm{b}
$$

Sol ${ }^{n}$.: এখানে $r_{3}=3 r_{2} \quad \therefore \Delta=0$
5. x এর মান কত হলে $\left|\begin{array}{ccc}x^{2} & x & 2 \\ 2 & 1 & 1 \\ 0 & 0 & -5\end{array}\right|=0$ হবে-

Sol ${ }^{n}$.: $x=0$ इলে $\Delta=0$ इয় ।[BUET 05-06]
$x=2$ হলে $\Delta=2(4-4)=0$ इয় ।
6. $\left|\begin{array}{cc}a-3 & -1 \\ -8 & a+4\end{array}\right|$ निণায়কটির মান শুन্য হনে a এর মান কত হবে?
[DU 07-08]
Sol ${ }^{n} .: a^{2}+a-12-8=0 \Rightarrow a^{2}+a-20=0$ $a=-5$ or 4

প্রশ্নমানা - II A

1. (a) ABC এबढि ज्ञिভूबा $\overrightarrow{\mathrm{BC}}=\underline{a}, \overrightarrow{\mathrm{CA}}=\underline{b}$

जবर $\overrightarrow{\mathrm{BA}}=\underline{c}$ रলে, লেখাও যে, $\underline{a}+\underline{b}=\underline{c}$
প্রমাণ \& দে७য়া জাছে, $\triangle A B C$ এ, $\overrightarrow{B C}=\underline{\mathrm{a}}, \overrightarrow{C A}=\underline{\mathrm{b}}$ जदर $\overrightarrow{B A}=\underline{\mathrm{c}}$. ভেঠ্ঠের যোগের ত্রিভুজ সূত্র হতে পাই,

$$
\begin{aligned}
& \overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{B A} \\
& \underline{\mathrm{a}}+\underline{\mathrm{b}}=\underline{c} \text { (Showed) }
\end{aligned}
$$

 মধ্যবিন্দু । $\overrightarrow{A B}=\underline{c}$ এবर $\overrightarrow{A C}=\underline{b}$ হनে, দেখা বে, $\overrightarrow{\mathrm{AD}}=\frac{1}{2}(\underline{b}+\underline{c})$
প্रমাণ : $\overrightarrow{A D}=\overrightarrow{A B}+\overrightarrow{B D}$
$\Rightarrow \overrightarrow{A D}=\overrightarrow{A B}+\frac{1}{2} \overrightarrow{B C}$
[$\because \mathrm{D}, \mathrm{BC}$ এর মধ্যক্মি ।]

$\Rightarrow \overrightarrow{A D}=\overrightarrow{A B}+\frac{1}{2}(\overrightarrow{A C}-\overrightarrow{A B})$
$=\underline{c}+\frac{1}{2}(\underline{b}-\underline{c})=\frac{1}{2}(2 \underline{c}+\underline{b}-\underline{c})$
$\overrightarrow{A D}=\frac{1}{2}(\underline{b}+\underline{c}) \quad$ (Showed)

1. (c) ABCDE এবটি প্ট্রডूब; $\overrightarrow{\mathrm{AB}}=\underline{a}$, $\overrightarrow{\mathrm{BC}}=\underline{b}, \overrightarrow{\mathrm{CD}}=\underline{c}$ जবर $\overrightarrow{\mathrm{DE}}=\underline{d}$ रनে, मেখাও যে, $\overrightarrow{\mathrm{AE}}=\underline{a}+\underline{b}+\underline{c}+\underline{d}$
[द.'o১]
প্रমাণ : ABC, ACD ও ADE ত্রিডুজ্জে, ভেট্টে যোগের ত্রিভুজ সূত্র रতে পাই,

$$
\begin{aligned}
\overrightarrow{\mathrm{AC}} & =\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}} \\
& =\underline{a}+\underline{b} \cdots(1) \\
\overrightarrow{\mathrm{AD}} & =\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{CD}} \\
& =\underline{a}+\underline{b}+\underline{c}
\end{aligned}
$$

(1) দ্দারা]

এবং $\overrightarrow{\mathrm{AE}}=\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{DE}}=\underline{a}+\underline{b}+\underline{c}+\underline{d}$
 AC ক্ন দুইটির মধ্যবিস্দু। দেখাও মে,
$\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{CD}}=4 \overrightarrow{\mathrm{FE}}$
প্রমাণ ः $\triangle \mathrm{ABD} এ \mathrm{BD}$ বাহুর মধ্যবি্দ্দু E .

$$
\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AD}}=2 \overrightarrow{\mathrm{AE}}
$$ $\triangle B C D \wedge B D$ বাহুর মধ্যক্দ্দু E.

$$
\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{CD}}=2 \overrightarrow{\mathrm{CE}} \cdots(2)
$$

জাবার, $\triangle \mathrm{AEC} \wedge \mathrm{AC}$ বাহুর মধ্যষ্দ্দু F

$$
\Rightarrow \begin{aligned}
& \overrightarrow{\mathrm{EA}}+\overrightarrow{\mathrm{EC}}=2 \overrightarrow{\mathrm{EF}} \\
& \overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{CE}}=2 \overrightarrow{\mathrm{FE}} \cdots \text { (3) }
\end{aligned}
$$

(1) ও (2) ব্যেগ করে পাই,
$\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{CD}}=2(\overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{CE}})$
$\Rightarrow \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{CD}}=2(2 \overrightarrow{\mathrm{FE}})$

www.boighar.com

[(3) দ্ঘারা]
$\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{CD}}=4 \overrightarrow{\mathrm{FE}}$ (Showed)

 কর যেন $\overrightarrow{\mathrm{AC}}=3 \overrightarrow{\mathrm{AB}}$ इয়।

সমাধান ঃ মনে করি C ব্দ্দুর অবস্থান ভেষ্ঠর c .
দেওয়া आছে, $\overrightarrow{\mathrm{AC}}=3 \overrightarrow{\mathrm{AB}} \Rightarrow \underline{\mathrm{c}}-\underline{\mathrm{a}}=3(\underline{b}-\underline{a})$
$\Rightarrow \underline{c}=3 \underline{b}-3 \underline{a}+\underline{a}=3 \underline{b}-2 \underline{a}$
C ক্ন্দুর অবস্মান ভেট্টর $3 \underline{b}-2 \underline{a}$ (Ans.)

1. (f) $P Q R$ ত্রিজूজ্ৰের $Q R, R P$ ® $P Q$ বাহুগুনোর মধ্যকি্দু যथাক্সমে L, M ও N । প্রমাণ কর यে, $\overrightarrow{\mathbf{P L}}+\overrightarrow{\mathbf{Q M}}+\overrightarrow{\mathbf{R N}}=\mathbf{0} \quad$ [मि.’०৭,’০,'’২; য.'০১; দি.'০৯,'১৩; বা.'০৯,'১১,’১৩; ব.'১২,'১৪]

প্রমাণ : QR এর মধ্যब্দ্দু L বনে,
$\overrightarrow{\mathrm{PL}}=\frac{1}{2}(\overrightarrow{\mathrm{PQ}}+\overrightarrow{\mathrm{PR}})$

অনুরূপডাবে,
$\overrightarrow{\mathrm{QM}}=\frac{1}{2}(\overrightarrow{\mathrm{QP}}+\overrightarrow{\mathrm{QR}})$ এবং

$$
\overrightarrow{\mathrm{RN}}=\frac{1}{2}(\overrightarrow{\mathrm{RP}}+\overrightarrow{\mathrm{RQ}})
$$

L.H.S. $=\overrightarrow{\mathrm{PL}}+\overrightarrow{\mathrm{QM}}+\overrightarrow{\mathrm{RN}}$

$=\frac{1}{2}(\overrightarrow{\mathrm{PQ}}+\overrightarrow{\mathrm{PR}}+\overrightarrow{\mathrm{QP}}+\overrightarrow{\mathrm{QR}}+\overrightarrow{\mathrm{RP}}+\overrightarrow{\mathrm{RQ}})$
$\left.=\frac{1}{2}\{(\overrightarrow{\mathrm{PQ}}+\overrightarrow{\mathrm{QP}})+\overrightarrow{(\mathrm{RQ}}+\overrightarrow{\mathrm{QR}})+(\overrightarrow{\mathrm{RP}}+\overrightarrow{\mathrm{PR}})\right\}$
$=\frac{1}{2}(\underline{0}+\underline{0}+\underline{0})=\underline{0}=$ R.H.S. $($ Proved $)$
2. (a) ABC ब्रिडूজ্রের BC, CA ® AB বাহूর

 প্রকাশ কর।
সমাथান : $\overrightarrow{\mathrm{BE}}=\overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{AE}}$ [ভেৃ্টর যোগের ত্রিভুজ সূত্রানুযায়ী]
$\Rightarrow \overrightarrow{\mathrm{BE}}=-\overrightarrow{\mathrm{AB}}+\frac{1}{2} \overrightarrow{\mathrm{AC}}$
[E, AC এর মধ্য<ি্দু |]

$$
\overrightarrow{\mathrm{BE}}=\frac{1}{2} \overrightarrow{\mathrm{AC}}-\overrightarrow{\mathrm{AB}}
$$

$\overrightarrow{\mathrm{CF}}=\overrightarrow{\mathrm{CA}}+\overrightarrow{\mathrm{AF}}$ [ड্ষের য্যেগের ত্রিজুজ সূত্রানুযায়]
$\Rightarrow \overrightarrow{\mathrm{CF}}=-\overrightarrow{\mathrm{AC}}+\frac{1}{2} \overrightarrow{\mathrm{AC}}$
[$\because \mathrm{E}, \mathrm{AC}$ এর মষ্যब্দ্দু ।]

$$
\overrightarrow{\mathrm{CF}}=\frac{1}{2} \overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{AC}}
$$

 $\overrightarrow{O A}=\underline{a}$ এবर $\overrightarrow{O B}=\underline{b}$ इয়, उবে $\overrightarrow{O C}$ సেট্টররে \underline{a} ® \underline{b} जর মাধ্যমে প্রকাশ কর। [ঢা.’০,'১৩; দি.’১২] সমাथান : $\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AC}}$

$$
=\overrightarrow{\mathrm{OA}}+2 \overrightarrow{\mathrm{AB}}
$$

$[\because \mathrm{B}, \mathrm{AC}$ এর মষ্যক্দ্দু]
$\Rightarrow \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OA}}+2(\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}})$

$$
=\underline{a}+2(\underline{b}-\underline{a})
$$

$$
[\overrightarrow{\mathrm{OA}}=\underline{\mathrm{a}} \text { এবং } \overrightarrow{\mathrm{OB}}=\underline{\mathrm{b}}]
$$

$$
\overrightarrow{\mathrm{OC}}=2 \underline{b}-a \quad \text { (Ans.) }
$$

2. (c) $\overrightarrow{\mathrm{OP}}=\underline{a}, \overrightarrow{\mathrm{OQ}}=\underline{b}$ जदर $\overrightarrow{\mathrm{OR}}=\underline{a}+\underline{b}$ रলে OPRQ कि ধরনের চত্রুভ্ब তা निধ্ধারন কর।
সমাধান ः দেওয়া জছে,
$\overrightarrow{\mathrm{OP}}=\underline{a}, \overrightarrow{\mathrm{OQ}}=\underline{\mathrm{b}}$ এবং
$\overrightarrow{\mathrm{OR}}=\underline{a}+\underline{\mathrm{b}}$

avन, $\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OQ}}=\underline{a}+\underline{b}=\overrightarrow{\mathrm{OR}}$
$\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OQ}}=\overrightarrow{\mathrm{OR}}$; या टেౌ্ট্ याभগर সামাল্তরিক সূడ্డর শ৮। অতএব, OPRQ এঝটি সামান্তর্রি।
3. यमि \underline{a} ® \underline{b} अসমরৈথिक डৌ্টের এবर $(\mathrm{x}+1) \underline{a}$ $+(\mathrm{y}-2) \underline{b}=2 \underline{a}+\underline{b}$ इয় তবে x ४ y जর মান निर्ণय़ ক্ন।
সমাধান ঃ দেওয়া জাছে, \underline{a} ও \underline{b} অসমরৈখিক ভে্টের এবং

$$
\begin{aligned}
& (\mathrm{x}+1) \underline{a}+(\mathrm{y}-2) \underline{b}=2 \underline{a}+\underline{b} \\
& \mathrm{x}+1=2 \Rightarrow \mathrm{x}=1, \mathrm{y}-2=1 \Rightarrow \mathrm{y}=3
\end{aligned}
$$

প্রশ্নমানা - II B

1. (a) $\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ जবए $\overrightarrow{\mathbf{B}}=4 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ रলে $2 \overrightarrow{\mathrm{~A}}+\overrightarrow{\mathrm{B}}$ ® $6 \overrightarrow{\mathrm{~A}}-3 \overrightarrow{\mathrm{~B}}$ এर মান निর্য় কর।
[द.'’о१; চ.'०8]
সমাধান : $2 \overline{\mathrm{~A}}+\overline{\mathrm{B}}=2(\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})$

$$
+4 \hat{i}-2 \hat{j}+4 \hat{k}
$$

$=2 \hat{i}+6 \hat{j}-4 \hat{k}+4 \hat{i}-2 \hat{j}+4 \hat{k}$
$=6 \hat{i}+4 \hat{j}$ (Ans.)
$6 \overline{\mathrm{~A}}-3 \overline{\mathrm{~B}}=6(\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})-3(4 \hat{\mathrm{i}}-2 \hat{j}+4 \hat{k})$
$=6 \hat{i}+18 \hat{j}-12 \hat{k}-12 \hat{i}+6 \hat{j}-12 \hat{k}$
$=-6 \hat{i}+24 \hat{j}-24 \hat{k} \quad$ (Ans.)

1. (b) $\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ जবर $\overrightarrow{\mathbf{B}}=4 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ राে $|3 \overline{\mathrm{~A}}+2 \overline{\mathrm{~B}}|$ जর মান निর্ণয় কর।
[ক.’০৭;জ্সর্থয্রেট.১১-১২]

সमाधान ः $3 \overline{\mathrm{~A}}+2 \overline{\mathrm{~B}}=3(\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})$

$$
+2(4 \hat{i}-2 \hat{j}+4 \hat{k})
$$

$=3 \hat{i}+9 \hat{j}-6 \hat{k}+8 \hat{i}-4 \hat{j}+8 \hat{k}$
$=1 \hat{i}+5 \hat{j}+2 \hat{k}$

$$
\begin{aligned}
|3 \overline{\mathrm{~A}}+2 \overline{\mathrm{~B}}| & =\sqrt{11^{2}+5^{2}+2^{2}} \\
& =\sqrt{121+25+4}=\sqrt{150}
\end{aligned}
$$

1. (c) $\overrightarrow{\mathrm{A}}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}, \overrightarrow{\mathrm{~B}}=-\hat{\mathbf{i}}+5 \hat{\mathbf{j}}, \overrightarrow{\mathrm{C}}=8 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}$ হबে $\overline{\mathrm{A}}-3 \overline{\mathrm{~B}}$ जবए $3 \overline{\mathrm{~A}}-7 \overline{\mathrm{C}}$ निর্য় কর। [চ.,o১] সमाथान : $\overline{\mathrm{A}}-3 \overline{\mathrm{~B}}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3(-\hat{\mathrm{i}}+5 \hat{\mathrm{j}})$
$=3 \hat{i}+2 \hat{j}+3 \hat{i}-15 \hat{j}=6 \hat{i}-13 \hat{j}$ (Ans.)
$3 \overline{\mathrm{~A}}-7 \overline{\mathrm{C}}=3(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}})-7(8 \hat{\mathrm{i}}-3 \hat{\mathrm{j}})$
$=9 \hat{i}+6 \hat{j}-56 \hat{i}+2 \hat{j}=-47 \hat{i}+27 \hat{j}$ (Ans.)
2. (a) $\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}} \quad$ এবर $\overrightarrow{\mathbf{B}}=4 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ इলে $(2 \overrightarrow{\mathrm{~A}}-\overrightarrow{\mathrm{B}}) \cdot(6 \overrightarrow{\mathrm{~A}}+3 \overrightarrow{\mathrm{~B}})$ এর মান নির্ণয় কন।
[य.'०৩]
সমাখান : $2 \overline{\mathrm{~A}}-\overline{\mathrm{B}}$
$=2(\hat{i}+3 \hat{j}-2 \hat{k})-(4 \hat{i}-2 \hat{j}+4 \hat{k})$
$=2 \hat{i}+6 \hat{j}-4 \hat{k}-4 \hat{i}+2 \hat{j}-4 \hat{k}$
$=-2 \hat{i}+8 \hat{j}-8 \hat{k}$
$6 \overline{\mathrm{~A}}+3 \overline{\mathrm{~B}}=6(\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})+3(4 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})$
$=6 \hat{i}+18 \hat{j}-12 \hat{k}+12 \hat{i}-6 \hat{j}+12 \hat{k}$
$=18 \hat{i}+12 \hat{j}$
$(2 \bar{A}-\bar{B}) \cdot(6 \bar{A}+3 \bar{B})$
$=(-2 \hat{i}+8 \hat{\mathbf{j}}-8 \hat{k}) \cdot(18 \hat{\mathbf{i}}+12 \hat{j})$
$=-36+96=60$
3. (b) $\underline{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \underline{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$,
$\underline{\mathbf{c}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ হनে $(\underline{\mathbf{a}} \cdot \underline{\mathbf{b}})+(\underline{\mathbf{b}} \cdot \underline{\mathbf{c}})+(\mathbf{c} \cdot \mathbf{a})$ এর মাन निক্ণয় কর।
[রা.’০৩; য.’০৯]
সमाधान ः $(\underline{a} \cdot \underline{b})+(\underline{b} \cdot \underline{c})+(\underline{c} \cdot \underline{a})$

$$
\begin{aligned}
= & (\hat{i}+\hat{j}+\hat{k}) \cdot(\hat{i}-\hat{j}+\hat{k})+ \\
& (\hat{i}-\hat{j}+\hat{k}) \cdot(\hat{i}+j-\hat{k})+ \\
& (\hat{i}+\hat{j}+\hat{k}) \cdot(\hat{i}+\hat{j}-\hat{k})
\end{aligned}
$$

$$
=1-1+1+1-1-1+1+1-1=1
$$

 ভেট্টের দুইটির স্কেণার গুণयল্ন নির্ণয় ক্র।
[ঢा.’০২]
সমাধান : $(2,31)$ ఆ $(31,-2)$ কি অবস্থান ডৌ্ঠের যথাক্রমে $2 \hat{i}+3 \hat{j}+\hat{k}$ ® $3 \hat{i}+j-2 \hat{k}$

এ ভেট্টর দুইটির স্কেলার গুণফল
$=(2 \hat{i}+3 \hat{j}+\hat{k}) \cdot(3 \hat{i}+\hat{j}-2 \hat{k})$
$=6+3-2=7$ (Ans.)
2. (d) $\overrightarrow{O A}=2 \hat{i}+3 \hat{j}-4 \hat{k}, \overrightarrow{O B}=4 \hat{i}-3 \hat{j}+2 \hat{k}$
 য.’১২,’১৪; চ.'১২; দি.'০৯,’১১,’১৪;ঢ.'১৩; মা.'০৯, '১৩]
সमाधান ः $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}$
$=4 \hat{i}-3 \hat{j}+2 \hat{k}-(2 \hat{i}+3 \hat{j}-4 \hat{k})$
$=4 \hat{i}-3 \hat{j}+2 \hat{k}-2 \hat{i}-3 \hat{j}+4 \hat{k}$
$=2 \hat{i}-6 \hat{j}+6 \hat{k}$

$$
\begin{aligned}
|\overrightarrow{\mathrm{AB}}| & =|2 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}|=\sqrt{2^{2}+6^{2}+6^{2}} \\
& =\sqrt{76}=2 \sqrt{19} \text { (Ans.) }
\end{aligned}
$$

3. প্রতি জোড়া ভৌ্বেরেন্র অল্তর্গত কোণ নির্ণয় ক্র :
(a) $\overrightarrow{\mathbf{A}}=2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}} \quad B \quad \overrightarrow{\mathbf{B}}=2 \hat{\mathbf{i}}+10 \hat{\mathbf{j}}-11 \hat{\mathbf{k}}$
[य.'o৩; রা. 'o৬]
সমাধান ः $|\overline{\mathrm{A}}|=|2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}|$
$=\sqrt{2^{2}+2^{2}+1^{2}}=\sqrt{9}=3$
$|\overline{\mathrm{B}}|=|2 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}-11 \hat{\mathrm{k}}|=\sqrt{2^{2}+10^{2}+11^{2}}$
$=\sqrt{4+100+121}=\sqrt{225}=15$ এব尺
$\bar{A} \quad \bar{B}=(2 \hat{i}+2 \hat{j}+\hat{k}) \cdot(2 \hat{i}+10 \hat{j}-11 \hat{k})$
$=2.2+2.10+1 .(-11)$
$=4+20-11=13$
ডৌ্টর দুইটির অন্তর্ভুক্ত কোণ θ হলে,
co. $\quad \frac{\bar{A} \bar{B}}{|A||\bar{B}|}=\frac{13}{3 \times 15}=\frac{13}{45}$
$\theta=\cos ^{-1} \frac{13}{45}$
ভেষ্টর দুইটির অন্তর্ভুক্ত কোণ $\cos ^{-1} \frac{13}{45}$
(b) $\overrightarrow{\mathbf{A}}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-\hat{\mathbf{k}} \quad \otimes \overrightarrow{\mathbf{B}}=\hat{\mathbf{i}}+4 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$
[ঢ. '০৩; রা. '০৪,'১১; य. '০৭,’১৩; সি. '০৮,'১৪; ব.'১১]
সমাষান ঃ $|\overline{\mathrm{A}}|=|2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-\hat{\mathrm{k}}|$
$=\sqrt{2^{2}+3^{2}+1^{2}}=\sqrt{4+9+1}=\sqrt{14}$
$|\overline{\mathrm{B}}|=|\hat{\mathrm{i}}+4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}|=\sqrt{1^{2}+4^{2}+3^{2}}$
$=\sqrt{1+16+9}=\sqrt{26}$ এবং
$\overline{\mathrm{A}} \quad \overline{\mathrm{B}}=(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-\hat{\mathrm{k}}) \cdot(\hat{\mathrm{i}}+4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$
$=2-12-3=-13$
ভেষ্টর দুইটির অন্তর্ভুক্ত কোণ θ হলে,
$\cos \theta=\frac{\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}}{|\overline{\mathrm{A}}||\overline{\mathrm{B}}|}=\frac{-13}{\sqrt{14} \times \sqrt{26}}$

$$
=\frac{-13}{2 \sqrt{7} \sqrt{13}}=\frac{-\sqrt{13}}{2 \sqrt{7}}
$$

$\theta=\cos ^{-1} \frac{-\sqrt{13}}{2 \sqrt{7}}$
ভেষ্টর দুইটির অন্তর্ভুক্ত কোণ $\cos ^{-1}\left(-\frac{\sqrt{13}}{2 \sqrt{7}}\right)$
3. (c) $\overrightarrow{\mathbf{A}}=2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}} \quad \overrightarrow{\mathbf{B}}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$
[य.'০১; চ.'০৪,'০৮; ব.'০৫]
সমাষান $:|\overline{\mathrm{A}}|=|2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}|$
$=\sqrt{2^{2}+2^{2}+1^{2}}=\sqrt{9}=3$
$|\overline{\mathrm{B}}|=|\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}|=\sqrt{1^{2}+3^{2}+5^{2}}$
$=\sqrt{1+9+25}=\sqrt{35}$ এবং
$\overline{\mathrm{A}} \quad \overline{\mathrm{B}}=(2 \hat{i}+2 \hat{j}-\hat{k}) \cdot(\hat{i}-3 \hat{j}+5 \hat{k})$
$=2-6-5=-9$
ভৌ্টর দুইটির অন্তর্ভুক্ত কোণ θ হলে,
$\cos \theta=\frac{\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}}{|\overline{\mathrm{A}}||\overline{\mathrm{B}}|}=\frac{-9}{3 \times \sqrt{35}}=\frac{-3}{\sqrt{35}}$
$\theta=\cos ^{-1} \frac{-3}{\sqrt{35}}$

ভেষ্টর দুইটির অন্তর্ভুক্ত কোণ $\cos ^{-1} \frac{-3}{\sqrt{35}}$
3. (d) $\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ এবং $\overrightarrow{\mathbf{B}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ এর অम্তগ্গত কোণ নিণয় কর।
[কু.'০৫,'১৩]
সমাষান : $|\overline{\mathrm{A}}|=|\hat{\mathrm{i}}-2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}|$
$=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{1+4+9}=\sqrt{14}$
$|\overline{\mathrm{B}}|=|2 \hat{\mathrm{i}}+\mathrm{j}-\hat{\mathrm{k}}|=\sqrt{2^{2}+1^{2}+1^{2}}$
$=\sqrt{4+1+1}=\sqrt{6}$ এবং
$\overline{\mathrm{A}} \quad \overline{\mathrm{B}}=(\hat{\mathrm{i}}-2 \hat{j}-3 \hat{k}) \cdot(2 \hat{i}+j-\hat{k})$

$$
=2-2+3=3
$$

ડেট্টর দুইটির অन্তর্ভুক্ত কোণ θ হলে,
$\cos \theta=\frac{\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}}{|\overline{\mathrm{A}}||\overline{\mathrm{B}}|}=\frac{3}{\sqrt{14} \times \sqrt{6}}=\frac{3}{2 \sqrt{21}}$
$\theta=\cos ^{-1}\left(\frac{3}{2 \sqrt{21}}\right)$
ভেষ্টর দুইটির অন্চর্ডুক্ত কোণ $\cos ^{-1}\left(\frac{3}{2 \sqrt{21}}\right)$
3. (e) $2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ এবং $\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$ ভেষ্টর দুইটির অम্তর্গত কোণ নির্ণয় কর।
[ङ্.'০৬]
সমাধান ঃ ধরি, $\overline{\mathrm{A}}=2 \hat{i}-3 \hat{j}+\hat{k}, \bar{B}=\hat{i}-\hat{j}+\hat{k}$

$$
\begin{aligned}
& \therefore|\overline{\mathrm{A}}|=|2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}}|=\sqrt{2^{2}+3^{2}+1^{2}} \\
& =\sqrt{4+9+1}=\sqrt{14} \\
& |\overline{\mathrm{~B}}|=|\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3} \\
& \overline{\mathrm{~A}} \quad \overline{\mathrm{~B}}=(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\hat{k}) \cdot(\hat{i}-j+\hat{k}) \\
& =2+3+1=6
\end{aligned}
$$

ভৌ্টর দুইটির অন্তর্তুক্ত কোণ θ रালে,

$$
\begin{aligned}
\cos \theta & =\frac{\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}}{|\overline{\mathrm{~A}}||\overline{\mathrm{B}}|}=\frac{6}{\sqrt{14} \times \sqrt{3}} \\
& =\frac{6}{\sqrt{7} \times \sqrt{6}}=\sqrt{\frac{6}{7}} \\
\theta & =\cos ^{-1} \sqrt{\frac{6}{7}}
\end{aligned}
$$

ভেষ্টর দুইটির অন্তর্ভুক্ত কোণ $\cos ^{-1} \sqrt{\frac{6}{7}}$
4. $\underline{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}, \quad \underline{\mathbf{b}}=3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}} \quad$ रणে, $2 \underline{a}+\underline{b} \quad \underline{a}+2 \underline{b}$ डেষ্ঠের দूইটির অল্তর্তण बোण निর্ণয় কর।
[य.'08; ব.'০8; ব. '০৬] সমাষান :

$$
\begin{aligned}
& 2 \underline{a}+\underline{b}=2(\hat{i}+2 \hat{j}-3 \hat{k})+3 \hat{i}-\hat{j}+2 \hat{k} \\
& \quad=2 \hat{i}+4 \hat{j}-6 \hat{k}+3 \hat{i}-\hat{j}+2 \hat{k} \\
& \quad=5 \hat{i}+3 \hat{j}-4 \hat{k} \\
& \begin{array}{l}
\underline{a}+2 \underline{b}=\hat{i}+2 \hat{j}-3 \hat{k}+2(3 \hat{i}-\hat{j}+2 \hat{k}) \\
\quad=i+2 \hat{j}-3 \hat{k}+6 \hat{i}-2 \hat{j}+4 \hat{k}=7 \hat{i}+\hat{k} \\
\quad|2 \underline{a}+\underline{b}|=\sqrt{5^{2}+3^{2}+4^{2}} \\
\quad=\sqrt{25+9+16}=\sqrt{50}
\end{array} \\
& \begin{array}{l}
|\underline{a}+2 \underline{b}|=\sqrt{7^{2}+1^{2}}=\sqrt{50} \text { এবP } \\
(2 \underline{a}+\underline{b}) \cdot(\underline{a}+2 \underline{b}) \\
=(5 \hat{i}+3 \hat{j}-4 \hat{k}) \cdot(7 \hat{i}+\hat{k})=35-4=31
\end{array}
\end{aligned}
$$

ডেঠ্টের দুইটির অন্তর্ভুক্ত কোণ θ হলে,
$\cos \theta=\frac{(2 \underline{a}+\underline{b}) \cdot(\underline{a}+2 \underline{b})}{|2 \underline{a}+\underline{b} \| \underline{a}+2 \underline{b}|}=\frac{31}{\sqrt{50} \times \sqrt{50}}$

$$
\theta=\cos ^{-1} \frac{31}{50}
$$

डেব্টের দুইঢির অন্তর্ভুক্ঠ কোণ $\cos ^{-1} \frac{31}{50}$
 করে তা নিণ্য করে :
(a) $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
[ঢ.., চ.’১১; দি.,ब্রা.,কু.,য’১০; র্রা.,দি.,সি.,চ.’১৩]
সমাধান : ধরি, $x \quad y$ B z-অक्ष প্রদত্ত डেষ্ঠর $2 \hat{i}-j+2 \hat{k}$ এর সাথে যথাক্সমে α, β ও γ কোণ উৎপন্ন করে।

$$
\begin{aligned}
& \cos \alpha=\frac{i \cdot(2 \hat{i}-\hat{j}+2 \hat{k})}{\sqrt{1^{2}} \sqrt{2^{2}+1^{2}+2^{2}}}=\frac{2}{\sqrt{9}}=\frac{2}{3} \\
& \alpha=\cos ^{-1}(2 / 3)
\end{aligned}
$$

উ. গ. (১ম পত্র) সমাধান-৫
$\cos \beta=\frac{\hat{j} \cdot(2 \hat{i}-\hat{j}+2 \hat{k})}{\sqrt{1^{2}} \sqrt{2^{2}+1^{2}+2^{2}}}=\frac{-1}{3}$

$$
\beta=\cos ^{-1}(-1 / 3) \text { এবং }
$$

$$
\cos \gamma=\frac{\hat{k} \cdot(2 \hat{i}-\hat{j}+2 \hat{k})}{\sqrt{1^{2}} \sqrt{2^{2}+1^{2}+2^{2}}}=\frac{2}{3}
$$

$$
\gamma=\cos ^{-1}(2 / 3)
$$

প্রদত্ত डৌ্ঠরটি অক্ষত্রয়ের সাথ্থ $\cos ^{-1}(2 / 3)$, $\cos ^{-1}(-1 / 3)$ ఆ $\cos ^{-1}(2 / 3)$ কোণ উৎপন্ন করে।
5. (b) $\dot{\hat{\mathbf{j}}}+2 \hat{\mathbf{k}}$
[রা.'ob]
 এর সাথ্ে যথাক্সমে α, β ও γ কোণ উৎপন্ন করে।

$$
\begin{aligned}
& \cos \alpha=\frac{\hat{i} \cdot(\hat{j}+2 \hat{k})}{\sqrt{1^{2}} \sqrt{1^{2}+2^{2}}}=\frac{0}{\sqrt{5}}=0=\cos \frac{\pi}{2} \\
& \alpha=\frac{\pi}{2}
\end{aligned}
$$

$$
\cos \beta=\frac{\hat{j} \cdot(\hat{j}+2 \hat{k})}{\sqrt{1^{2}} \sqrt{1^{2}+2^{2}}}=\frac{1}{\sqrt{5}}
$$

$$
\beta=\cos ^{-1}(1 / \sqrt{5}) \text { এবং }
$$

$$
\cos \gamma=\frac{\hat{k} \cdot(\hat{j}+2 \hat{k})}{\sqrt{1^{2}} \sqrt{1^{2}+2^{2}}}=\frac{2}{\sqrt{5}}
$$

$$
\gamma=\cos ^{-1}(2 / \sqrt{5})
$$

প্রদত্ত ভেৃ্টেরটি অক্ষত্রয়ের সাথে $\frac{\pi}{2}, \cos ^{-1}(1 / \sqrt{5})$ ও $\cos ^{-1}(2 / \sqrt{5})$ কোণ উৎপন্ন করে।
5. (c) $3 \hat{i}-6 \hat{j}+2 \hat{k}$
[य.'ob]
সমাধান : ধরি, x y उ z-অक्ब প্রদত্ত ভেষ্টর $3 \hat{i}-6 \hat{j}+2 \hat{k}$ এর সাথে যথাক্সমে $\alpha, \beta \quad \gamma$ কোণ উৎপন্ন করে।

$$
\begin{gathered}
\cos \alpha=\frac{\hat{i} \cdot(3 \hat{i}-6 \hat{j}+2 \hat{k})}{\sqrt{1^{2}} \sqrt{3^{2}+6^{2}+2^{2}}}=\frac{3}{\sqrt{49}}=\frac{3}{7} \\
\alpha=\cos ^{-1}(3 / 7) \\
\cos \beta=\frac{\left.j^{3} \hat{i}-6 \hat{j}+2 \hat{k}\right)}{\sqrt{1^{-}-3^{2}+2^{2}}}=\frac{-6}{\sqrt{49}}=-6
\end{gathered}
$$

$$
\begin{aligned}
& \beta=\cos ^{-1}(-6 / 7) \text { এবং } \\
& \cos \gamma=\frac{\hat{k} \cdot(3 \hat{i}-6 \hat{j}+2 \hat{k})}{\sqrt{1^{2}} \sqrt{3^{2}+6^{2}+2^{2}}}=\frac{2}{\sqrt{49}}=\frac{2}{7} \\
& \gamma=\cos ^{-1}(2 / 7)
\end{aligned}
$$

প্রদত্ত ভেষ্টরটি অক্ষত্রয়ের সাথে $\cos ^{-1}(3 / 7)$ $\cos ^{-1}(-6 / 7)$ ও $\cos ^{-1}(2 / 7)$ কোণ উৎপন্ন করে।
6. (a) $\overrightarrow{\mathrm{B}}=6 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathrm{k}}$ Јৌ্টরের উপর
$\overrightarrow{\mathbf{A}}=2 \hat{\mathbf{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ त্ত্ট্টরের অडিক্ষেপ নিণয় কর। [ক.'০৮,'১১; রা.'০৪,'১৩; চ.'০৫; য.'১২; সি.'১২ কুয়েট'০৫-০৬]

সমাধান \& \vec{B} ভেট্টরের উপর \vec{A} ડৌ্টররর অভিক্ষেপ $=\frac{\vec{A} \vec{B}}{|\vec{B}|}=\frac{(6 \hat{i}-3 \hat{j}+2 \hat{k}) \cdot(2 \hat{i}+2 \hat{j}+\hat{\dot{k}})}{|6 \hat{i} 3 \hat{j}+2 \hat{k}|}$ $=\frac{6 \times 2+(-3 \times 2)+2 \times 1}{\sqrt{6^{2}+3^{2}+2^{2}}}=\frac{12-6+2}{\sqrt{36+9+4}}$ $=\frac{8}{\sqrt{49}}=\frac{8}{7}$ (Ans.)
6. (b) $\underline{a}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, b=\sqrt{\mathbf{3}} \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}} ;$ b ভভ্ঠটেরের উপর a ভৌ্টরের অভিক্ষেপ নির্ণয় কর।
[চ.'১২; কূ.'১২; ব.'০৭; मि.'১১] সমাধান ः \underline{b} ভেষ্টরের উপর \underline{a} ভে’্টরের অভিিক্ষেপ $=\frac{\underline{a} \cdot \underline{b}}{|\underline{b}|}=\frac{(\hat{i}+\hat{j}+\hat{k}) \cdot(\sqrt{3} \hat{i}+3 \hat{j}-2 \hat{k})}{|\sqrt{3} \hat{i}+3 \hat{j}-2 \hat{k}|}$
$=\frac{1 \times \sqrt{3}+(1 \times 3)+1 \times-2}{\sqrt{(\sqrt{3})^{2}+3^{2}+2^{2}}}=\frac{\sqrt{3}+3-2}{\sqrt{3+9+4}}$
$=\frac{\sqrt{3}+1}{\sqrt{16}}=\frac{\sqrt{3}+1}{4}$ (Ans.)
6. (c) $\overrightarrow{\mathbf{P}}=5 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ ডৌ্টেরের উপর $\overrightarrow{\mathbf{Q}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ ডৌ্টেরের অडিক্ষেপ নিণয় কর।
[கू.’08; ঢা.'০৭]
সমাধান ঃ \vec{P} ভ্রেট্টরের উপর \vec{Q} ভেট্টরের অভ্রিক্ষেপ
$=\frac{\vec{P} \cdot \vec{Q}}{|\vec{P}|}=\frac{(5 \hat{i}-3 \hat{j}+2 \hat{k}) \cdot(2 \hat{i}+j-2 \hat{k})}{|5 \hat{i}-3 \hat{j}+2 \hat{k}|}$
$=\frac{5 \times 2+(-3 \times 1)+2 \times-2}{\sqrt{5^{2}+3^{2}+2^{2}}}$
$=\frac{10-3-4}{\sqrt{25+9+4}}=\frac{3}{\sqrt{34}}$ (Ans.)
6. (d) $\underline{b}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ ভেঁ্টরের উপর $\underline{a}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ ভেৃ্টরের অভিক্ষেপ নিণয় কর।
[य.'० ৮]
সমাধান $\& \underline{b}$ ভৌ্টরের উপর \underline{a} ভেট্টরের অভিক্ষেপ
$=\frac{a \cdot b}{|\underline{b}|}=\frac{(2 \hat{i}+3 \hat{j}+2 \hat{k}) \cdot(\hat{i}+2 \hat{j}+\hat{k})}{|\hat{i}+2 \hat{j}+\hat{k}|}$
$=\frac{2 \times 1+3 \times 2+2 \times 1}{\sqrt{1^{2}+2^{2}+1^{2}}}$
$=\frac{2+6+2}{\sqrt{1+4+1}}=\frac{10}{\sqrt{6}} \quad$ (Ans.)
6. (e) $\mathbf{A}(2,3,-1)$ ও $\mathbf{B}(-2,-4,3)$ বিস্দুধ্র্য় সংযেগা সরনরেখার উপর $4 \hat{i}-3 \hat{j}+\hat{k}$ ডেন্টেরের অভিক্ষেপ নির্ণয় কর।
সমাধান : $\mathrm{A}(2 \quad 3,-1)$ ও $\mathrm{B}(-2,-4,3)$ বিन्দুদ্ময়ের অবन्बान ভৌ্টর যথাক্রেমে $2 \hat{i}+3 \hat{j}-\hat{k}$ ও $-2 \hat{i}-4 \hat{j}+3 \hat{k}$.

$$
\begin{aligned}
\overrightarrow{\mathrm{AB}} & =(-2 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})-(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}) \\
& =-4 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}+4 \hat{\mathrm{k}} \\
& -4 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}+4 \hat{\mathrm{k}} \text { ভেক্টেরে উপর } 4 \hat{i}-3 \hat{j}+\hat{k}
\end{aligned}
$$

এর অভিক্ষেপ $=\frac{(-4 \hat{i}-7 \hat{j}+4 \hat{k}) \cdot(4 \hat{i}-3 \hat{j}+\hat{k})}{|-4 \hat{i}-7 \hat{j}+4 \hat{k}|}$
$=\frac{-16+21+4}{\sqrt{16+49+16}}=\frac{9}{9}=1 \quad$ (Ans.)
7. (a) $\overrightarrow{\mathrm{B}}=2 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}-11 \hat{\mathrm{k}}$ ড্টের বরাবর
$\overrightarrow{\mathbf{A}}=2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ জ্টেরের উপাশ্ নিণয় কর।
[ব.'০১,'০৯; রা.'০৫; সি.'০৭,'১১; কু., সি.'১০]
সমাধান : $|\vec{B}|=|2 \hat{i}+10 \hat{j}-11 \hat{k}|$
$=\sqrt{2^{2}+10^{2}+11^{2}}=\sqrt{4+100+121}$
$=\sqrt{225}=15$
\vec{B} डৌ্ঠরের দিক বরাবর একক ভেষ্টর $=\frac{\vec{B}}{|\vec{B}|}=\frac{2 \hat{i}+10 \hat{j}-11 \hat{k}}{15}=\hat{n}$
\vec{B} डৌ্টের বরাবর \vec{A} डৌ্টেরের উभাশ $=(\hat{n} \cdot \vec{A}) \hat{n}$
$=\left\{\frac{1}{15}(2 \hat{i}+10 \hat{j}-11 \hat{k}) \cdot(2 \hat{i}+2 \hat{j}+\hat{k})\right\} \hat{n}$
$=\frac{4+20-11}{15} \cdot \frac{2 \hat{i}+10 \hat{j}-11 \hat{k}}{15}$
$=\frac{13}{225}(2 \hat{i}+10 \hat{j}-11 \hat{k})$（Ans．）
7．（b） $\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ जदर $\overrightarrow{\mathbf{B}}=6 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$

 যে এদের সাথ্যিক মান সমান।［य．＇০৭；ण．＇০১；চ．＇’১］
সমাधান ：$|\overrightarrow{\mathrm{A}}|=|\hat{i}-2 \hat{j}-2 \hat{k}|$

$$
\begin{aligned}
= & \sqrt{1^{2}+2^{2}+2^{2}}=\sqrt{9}=3 \\
|\vec{B}|= & |6 \hat{i}+3 \hat{j}+2 \hat{k}|=\sqrt{36+9+4}=7 \\
\vec{A} \vec{B} & =(\hat{i}-2 \hat{j}-2 \hat{k}) \cdot(6 \hat{i}+3 \hat{j}+2 \hat{k}) \\
& =6-6-4=-4
\end{aligned}
$$

প্রদত্ত ভেৃ্টর \vec{A} ও \vec{B} এর অন্তত্ডুত্ত কোণ θ হলে，
$\cos \theta=\frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|}=\frac{-4}{3 \times 7} \quad \therefore \theta=\cos ^{-1}\left(-\frac{4}{2 \mathrm{i}}\right)$
\vec{A} डেট্ট্টেরর দিক বরাবর একক ভেষ্টর $=\frac{\vec{A}}{|\vec{A}|}$
$=\frac{1}{3}(\hat{i}-2 \hat{j}-2 \hat{k})=\hat{a}$（ধরি）
\vec{A} ভৌ্টর বরাবর \vec{B} তৌ্টরের উপাশশ $=\frac{\vec{A} \cdot \vec{B}}{|\vec{A}|} \hat{a}$
$=\frac{-4}{3}\left\{\frac{1}{3}(\hat{i}-2 \hat{j}-2 \hat{k})\right\}$
$=\frac{-4}{9} \hat{i}+\frac{8}{9} \hat{j}+\frac{8}{9} \hat{k}$
\vec{A} ভেৃ্টর বরাবর \vec{B} ডে户্টরের উপাগণের মান
$=\left|\frac{-4}{9} \hat{i}+\frac{8}{9} \hat{j}+\frac{8}{9} \hat{k}\right|=\sqrt{\frac{16}{91}+\frac{64}{91}+\frac{64}{91}}$
$=\sqrt{\frac{16+64+64}{91}}=\sqrt{\frac{144}{91}}=\frac{12}{9}=\frac{4}{3}$
\vec{A} ハেষ্টর বরাবর \vec{B} ডেব্বেরের जडিক্ষেপ $=\frac{\vec{A} \cdot \vec{B}}{|\vec{A}|}=\frac{-4}{3}$
$\therefore \quad \vec{A}$ ভেট্টে বরাবর \vec{B} ভেট্টরের অর্ভিক্ষেপ এবং
উপাশ্রের সাংখ্যিক মান সমান।
8．（a） $2 \hat{i}+10 \hat{j}-11 \hat{k}$ ङেট্টেটির সমাম্তत্রালে একब ভেট্টর নিি্র কর।
［मि．’○৫，＇od］
সমাষান ः ধরি，$\vec{A}=2 \hat{i}+10 \hat{j}-11 \hat{k}$

$$
\begin{aligned}
|\vec{A}| & =\sqrt{2^{2}+10^{2}+11^{2}} \\
& =\sqrt{4+100+121}=\sqrt{225}=15
\end{aligned}
$$

\vec{A} जৌ্টরের সমান্তরালে একক ডৌ্টর $= \pm \frac{\vec{A}}{|\vec{A}|}$

$$
= \pm \frac{1}{15}(2 \hat{i}+10 \hat{j}-11 \hat{k}) \text { (Ans.) }
$$

8．（b） $\overrightarrow{\mathbf{A}}=2 \hat{\mathbf{i}}+4 \hat{\mathrm{j}}+5 \hat{\mathbf{k}}$ जबर $\overrightarrow{\mathrm{B}}=\hat{\mathrm{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ হলে ভেট্টর দুইটির নब্ষির সমাল্তরান একক ভৌ্টর নির্ণয় बत।
［ Б．＇১০；সি．＇${ }^{\prime}$ ১১］
সমাধান 8 প্রদত্ত ভেট্টর দুইটির লষ্ধি ভেৃ্টের $=\vec{A}+\vec{B}$

$$
\begin{aligned}
& =2 \hat{i}+4 \hat{j}+5 \hat{k}+i+2 \hat{j}+3 \hat{k} \\
& =3 \hat{i}+6 \hat{j}+8 \hat{k} \\
& |\overline{\mathrm{~A}}+\vec{B}|=\sqrt{9+36+64}=\sqrt{109} \\
& \text { নি九ণেয় একক ভেট্টর }= \pm \frac{\vec{A}+\vec{B}}{|\vec{A}+\vec{B}|} \\
& = \pm \frac{1}{\sqrt{109}}(3 \hat{i}+6 \hat{j}+8 \hat{k})
\end{aligned}
$$

8．（c） $\overrightarrow{\mathbf{A}}=4 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ जदर $\overrightarrow{\mathbf{B}}=-\hat{\mathbf{i}}-5 \hat{\mathbf{j}}-\hat{\mathbf{k}}$
হলে，（i）ডেট্টের দুইটির নब্ষ্রির সমাল্তরাল একক ডৌ্টর
निর্র্য কর।
［4．＇08］
 কর।
(iii) ভেঠ্র দুইটির নক্ষির বিসদৃশ সমাশ্তর্রাण একব

সমাধান ः প্রদত ভেষ্টের দুইটির লঙ্ধি ভেষ্ঠের $=\vec{A}+\vec{B}$

$$
\begin{aligned}
& =4 \hat{i}+5 \hat{j}-3 \hat{k}+(-i-5 \hat{j}-\hat{k}) \\
& =3 \hat{i}-4 \hat{k}
\end{aligned}
$$

$\therefore|\vec{A}+\vec{B}|=\sqrt{9+16}=\sqrt{25}=5$
(i) ডৌ্ট্র দুইটির লধ্ধির সমান্তরালে একক ভেষ্টর

$$
= \pm \frac{\vec{A}+\vec{B}}{|\vec{A}+\vec{B}|}= \pm \frac{1}{5}(3 \hat{i}-4 \hat{k})
$$

(ii) ডেঠ্টের দুইটির बঙ্ধির দিক বরাবর একক ভেষ্টের

$$
=\frac{\vec{A}+\vec{B}}{|\vec{A}+\vec{B}|}=\frac{1}{5}(3 \hat{i}-4 \hat{k})
$$

(iii) डেষ্ঠর দুইটির ধষ্ষির বিসদৃশ সমাল্তরাল একক डে户্টের $=-\frac{\vec{A}+\vec{B}}{|\vec{A}+\vec{B}|}=-\frac{1}{5}(3 \hat{i}-4 \hat{k})$
(d) (i) $2 \hat{i}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ जबर $\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ ऊৌ্টে मूইটित्र উপ্র নম্ব একক ভেট্টে নিণ্য কর।
[ব.'০১; চ.'০৫,'১০; ঢা.,কু.'১১;জহ্যেয়'১১-১২] সমাধান ঃ প্রদত্ত ভেষ্ঠর দুইটির উপর লম্ব ভেৃ্টর,
$\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 1 \\ 1 & -2 & 1\end{array}\right|$
$=(1+2) \hat{i}-(2-1) \hat{j}+(-4-1) \hat{k}$
$=3 \hat{i}-\hat{j}-5 \hat{k}$

$$
|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|=\sqrt{9+1+25}=\sqrt{35}
$$

(i) প্রদত ভৌ্টর দুইটির উপর লम্ব একক ভেষ্ঠর

$$
= \pm \frac{\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}}{|\overrightarrow{\mathrm{~A}} \times \overrightarrow{\mathrm{B}}|}= \pm \frac{1}{\sqrt{35}}(3 \hat{i}-\hat{j}-5 \hat{k})
$$

(ii) প্রদত্ত ডেৃ্টর দুইটির উপর লম্ম 5 একক মান বিশিষ্ট

ভেখ্টর $= \pm 5 \frac{\overrightarrow{\mathrm{~A}} \times \overrightarrow{\mathrm{B}}}{|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|}$

$$
= \pm \frac{5}{\sqrt{35}}(3 \hat{i}-\hat{j}-5 \hat{k}) \text { (Ans.) }
$$

8. (e) $\underline{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \underline{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$ रजে, जมन
 সাc্ে সমত্ীীয় হবে এবर \underline{a} এর নम्य হবে।
সমাধান \& ধরি, \underline{a} उ \underline{b} এর সাথে সমতनीয় থেকোন जৌ্টে $\lambda(\hat{i}+\hat{j}-\hat{k})+\mu(\hat{i}-\hat{j}+\hat{k})$ जर्बाৎ $(\lambda+\mu) \hat{i}+(\lambda-\mu) \hat{j}+(-\lambda+\mu) \hat{k}$.
এ ভেৃ্বর $\underline{a}-এ$ এ উপর লম্ব হলে,
$(\lambda+\mu)(1)+(\lambda-\mu)(1)+(-\lambda+\mu)(-1)=0$
$\Rightarrow \lambda+\mu+\lambda-\mu+\lambda-\mu=0$
$\Rightarrow 3 \lambda=\mu$
\underline{a}-এর উপর লम্ম ভেঠ্ঠরটি হচ্ছে,
$4 \lambda i-2 \lambda \hat{j}+2 \lambda \hat{k}$
$\underline{c}= \pm \frac{4 \lambda \hat{i}-2 \lambda \hat{j}+2 \lambda \hat{k}}{\sqrt{16 \lambda^{2}+4 \lambda^{2}+4 \lambda^{2}}}$
$= \pm \frac{2 \lambda(2 \hat{i}-\hat{j}+\hat{k})}{\sqrt{24 \lambda^{2}}}= \pm \frac{2 \lambda(2 \hat{i}-\hat{j}+\hat{k})}{2 \lambda \sqrt{6}}$
$= \pm \frac{1}{\sqrt{6}}(2 \hat{i}-\hat{j}+\hat{k})$ (Ans.)
9. (f) $\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$ এবर $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ ভেট্টে দুইটির উপ্র
 সমাধান ঃ ধরি, $\vec{A}=\hat{i}-\hat{j}+\hat{k}$ এবং $\vec{B}=i+2 \hat{j}-\hat{k}$ প্রদত্ত ভৌ্বের দুইটির উপর লম্ম ভৌ্ঠর,

$$
\begin{aligned}
\overline{\mathrm{A}} & \times \overrightarrow{\mathrm{B}}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -1 & 1 \\
1 & 2 & -1
\end{array}\right| \\
& =(1-2) \hat{i}-(-1-1) \hat{j}+(2+1) \hat{k} \\
& =-i-2 \hat{j}+3 \hat{k}
\end{aligned}
$$

$$
|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|=\sqrt{1+4+9}=\sqrt{14}
$$

প্রদত্ত डেৃ্টে দুইটির উপর নম্ব একক ডৌ্ঠর $= \pm \frac{\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}}{|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|}= \pm \frac{1}{\sqrt{14}}(-\hat{i}-2 \hat{j}+3 \hat{k})$
9. (a) $P(1,1,1)$ जदर $Q(3,2,-1)$ भून्यु

[য.’০৯; বুফ্রৌ’’৩-০8]
সমাथাन \& $\mathrm{P}(1,1,1)$ ఆ $\mathrm{Q}(3,2,-1)$ बি্দ্দু দুইটির बবস্পান डেৃ্ঠের যথাহ্রমে $i+\hat{j}+\hat{k}$, $3 \hat{i}+2 \hat{j}-\hat{k}$

$$
\begin{aligned}
& \overrightarrow{P Q}=(3 \hat{i}+2 \hat{j}-\hat{k})-(\hat{i}+\hat{j}+\hat{k}) \\
&=2 \hat{i}+j-2 \hat{k} \text { (Ans.) } \\
&|\overrightarrow{P Q}|=\sqrt{2^{2}+1^{2}+2^{2}}=\sqrt{9}=3 \\
& \overrightarrow{P Q} \text { ভেষ্ঠেরের সমাল্তরাল একক ভেষ্ঠর }
\end{aligned}
$$

$$
= \pm \frac{\overrightarrow{P Q}}{|\overrightarrow{P Q}|}= \pm \frac{1}{3}(2 \hat{i}+\hat{j}-2 \hat{k})
$$

$\overrightarrow{P Q}$ ডৌ্টরে সমাল্তরাল একটি একক ভেষ্ঠর $\frac{1}{3}(2 \hat{i}+j-2 \hat{k})$ या, $-\frac{1}{3}(2 \hat{i}+\hat{j}-2 \hat{k})$
9. (b) মৃণबিन्मू O এর সাপের্কে $P(2,-1,7)$ जबर $\mathbf{Q}(-4,5,0)$ इबে । $\overrightarrow{\mathrm{PQ}}$ । निर्ণय কর । [Fि.'○ه] সমাধান : $\overrightarrow{O P}=2 \hat{i}-\hat{j}+7 \hat{k}, \overrightarrow{O Q}=-4 \hat{i}+5 \hat{j}$

$$
\begin{aligned}
\overrightarrow{P Q} & =\overrightarrow{O Q}-\overrightarrow{O P} \\
& =-4 \hat{i}+5 \hat{j}-(2 \hat{i}-\hat{j}+7 \hat{k}) \\
& =-6 \hat{i}+6 \hat{j}-7 \hat{k} \\
|\overrightarrow{P Q}| & =\sqrt{36+36+49}=\sqrt{121}=11
\end{aligned}
$$

10. (a) দেभाఆ यে, $\underline{a}=9 \hat{i}+\hat{j}-6 \hat{k}$ जरए $\underline{b}=4 \hat{i}-6 \hat{j}+5 \hat{k}$ তেঠ্ঠের দুইটি পরস্সর बम্ম। [ব.'০৮; <্র[্যেট’’৭-০৮]

भ्रमाण : $\underline{a}=9 \hat{i}+\hat{j}-6 \hat{k} \quad$ उ $\quad \underline{b}=4 \hat{i}-6 \hat{j}+5 \hat{k}$ ভৌ্টের দুইটি পরস্শর बম্ম হলে এদের স্কেলার গূণয়্ণ শূন্য হবে।
এখन, $\vec{a} \cdot \vec{b}=(9 \hat{i}+j-6 \hat{k}) \cdot(4 \hat{i}-6 \hat{j}+5 \hat{k})$
$=36-6-30=36-36=0$
প্রদত ভেৃ্টের দুইটি পরস্পর নম্ম ।

10 (b) দেथाs बে, $\quad \overrightarrow{\mathbf{A}}=8 \hat{\mathbf{i}}+\hat{\mathbf{j}}-6 \hat{\mathbf{k}} \quad$ এج尺

[द्रा.'০৭; '০৭; य.'১২; ষ্বৈ্রৌ' ০৫-০৬; ১০-১১] প्रমাণ : $\quad \underline{a}=8 \hat{i}+\hat{j}-6 \hat{k} \quad$ B $\quad \underline{b}=4 \hat{i}-2 \hat{j}+5 \hat{k}$ ভৌ্টের দুইটি পরস্সর লম্ব হলে এদের ক্কেলার গুণন শূন্য रবে।
এখन, $\vec{a} \cdot \vec{b}=(8 \hat{i}+\hat{j}-6 \hat{k}) \cdot(4 \hat{i}-2 \hat{j}+5 \hat{k})$

$$
=36-6-30=36-36=0
$$

প্রদত্ত ভেট্টর দুইটি পরস্পর নম্ম ।
10(c) $\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}} \quad$ जবर $\overrightarrow{\mathbf{B}}=3 \hat{\mathbf{i}}-\hat{i}+2 \hat{\mathbf{k}}$ रणে দেখাও यে, $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$ जबर $\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}$ त্ঠের मूইणि পরস্পর নম্य। [রা.'০৬; ঢ.'০৮; য.'০৭; চ.'১২,'১8; মা.বো.’০৮; দি.'১০; ব.'১০,’১২; মা.'১৪; বুভ্রৌ'১১-১২।

প्रमाण \& $\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=(1+3) \hat{i}+(2-1) \hat{j}+(-3+2) \hat{k}$

$$
=4 \hat{i}+\hat{j}-\hat{k}
$$

$\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}=(1-3) \hat{\mathbf{i}}+(2+1) \hat{\mathrm{j}}+(-3-2) \hat{\mathbf{k}}$

$$
=-2 \hat{i}+3 \hat{j}-5 \hat{k}
$$

जVन, $(\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}) \cdot(\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}})$

$$
\begin{aligned}
& =(4 \hat{i}+\hat{j}-\hat{k}) \cdot(-2 \hat{i}+3 \hat{j}-5 \hat{k}) \\
& =-8+3+5=0
\end{aligned}
$$

ভেষ্টর দুইটির ল্কেলার গুণন শূন্য বলে তারা পরস্পর मम्य।

10 (d) तেथा बय, $a=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-6 \hat{\mathrm{f}} \mathrm{i} \quad$ जदर
 দूইঢি্র উপ্র নम্ম একब ভেট্টের নির্য় কর।
[ঢ.'০২; ж.'০৫]
প্रমাण : $\vec{a} \cdot \vec{b}=(3 \hat{i}+2 \hat{j}-6 \hat{k}) \cdot(4 \hat{i}-3 \hat{j}+\hat{k})$

$$
=12-6-6=12-12=0
$$

ভেৃ্ট্র দুইটির ল্সেলার গুণন শুন্য বলে তারা পরস্র नम्ष।

$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & -6 \\ 4 & -3 & 1\end{array}\right|$
$=(2-18) \hat{i}-(3+24) \hat{j}+(-9-8) \hat{k}$
$=-16 \hat{i}-27 \hat{j}-17 \hat{k}$
$|\vec{A} \times \vec{B}|=\sqrt{256+729+289}=\sqrt{1274}$
প্রদত্ত डৌ্ঠর দूইটির উপর লম্ব একক ভে户্টর
$= \pm \frac{\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}}{|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|}= \pm \frac{1}{\sqrt{1274}}(-16 \hat{i}-27 \hat{j}-17 \hat{k})$
 $(2 \hat{i}+3 \hat{j}-4 \hat{k}) \otimes(4 \hat{i}-3 \hat{j}+2 \hat{k})$ इनে $\overrightarrow{A B}$ जन

[夕্স<্রেট’○u-০৭]
সयाथानः $\overrightarrow{A B}=4 \hat{i}-3 \hat{j}+2 \hat{k}-(2 \hat{i}+3 \hat{j}-4 \hat{k})$

$$
=2 \hat{i}-6 \hat{j}+6 \hat{k}
$$

$\overrightarrow{A B}$ এর पৈर्य্য $=|\overrightarrow{A B}|=|2 \hat{i}-6 \hat{j}+6 \hat{k}|$

$$
=\sqrt{4+36+36}=\sqrt{76}=2 \sqrt{19} \text { এবং }
$$

$\overrightarrow{A B}$ बরাবর একটি একক ভৌঠন $=\frac{\overrightarrow{A B}}{|\overrightarrow{A B}|}$
$=\frac{2 \hat{i}-6 \hat{j}+6 \hat{k}}{2 \sqrt{19}}=\frac{1}{\sqrt{19}} i-\frac{3}{\sqrt{19}} \hat{j}+\frac{3}{\sqrt{19}} \hat{k}$
11. (a) $a \hat{i}-2 \hat{j}+\hat{k}$ जबर $2 a \hat{i}-a \hat{j}-4 \hat{k}$ דৌ্ট্র
 '১২; य.'০৫,'০৯,'১৩; ঢ.'০৬,'১০; সि.'০৮,'১২; চ.'০৯; ฐ.'১৩; मि.'১8]

সর্মাষানः $a \hat{i}-2 \hat{j}+\hat{k}$ এবং $2 a \hat{i}-a \hat{j}-4 \hat{k}$ ভেষ্টের দুইটি পরশ্রর মম্ব বলে এদের স্কেলার গুণন শূন্য।

$$
(a \hat{i}-2 \hat{j}+\hat{k}) \cdot(2 a \hat{i}-a \hat{j}-4 \hat{k})=0
$$

$\Rightarrow 2 a^{2}+2 a-4=0 \Rightarrow a^{2}+a-2=0$
$\Rightarrow(a+2)(a-1)=0 \quad a=1,-2$

 সমাयानः $\quad 2 \hat{i}+a \hat{j}+\hat{k}$ এবर $4 \hat{i}-2 \hat{j}-2 \hat{k}$ डেষ্ঠর দুইটি পরস্শর লম্ম বলে এদের স্কেমার গুণন শূন্য।

$$
\begin{aligned}
& (2 \hat{i}+a j+\hat{k}) \cdot(4 \hat{i}-2 \hat{j}-2 \hat{k})=0 \\
\Rightarrow & 8-2 a-2=0 \Rightarrow 2 a=6 \therefore a=3
\end{aligned}
$$

11 (c) $\underline{a}=2 \hat{\mathbf{i}}+y \hat{\mathbf{j}}+\hat{\mathbf{k}}$ जবर $\underline{\mathbf{b}}=4 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$

[Б.'०२; রা.'०৫; జू.'०৫]
সমাধানঃ $\underline{a}=2 \hat{i}+y \hat{j}+\hat{k}$ এবং $\underline{b}=4 \hat{i}-2 \hat{j}-\hat{k}$ ד্ডৌ্টর দুইটি পরস্শর মম্ম বলে এদের স্কেলার গুণন শূন্য।
$(2 \hat{i}+y \hat{j}+\hat{k}) \cdot(4 \hat{i}-2 \hat{j}-\hat{k})=0$
$\Rightarrow 8-2 y-1=0 \Rightarrow 2 y=7 \quad a=\frac{7}{2}$
12. (a) দেখা বে, $\mathbf{a}=3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$, $\underline{\mathbf{b}}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}} \quad$ ఆ $\quad \underline{\mathbf{c}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-4 \hat{\mathbf{k}}$ ভেə্টের ঢिनটि अমতनीग़।
[ঢা.’০৬]
প্রমাণ ः প্রদত্ত ভেষ্টের তিনটি সমতলীয় হবে যদি এদের যেকোন দুইটির ক্রস গুণনের সাথে অপরটির ডট গুণন শূন্য .रड़।

$$
\begin{aligned}
& \text { এথन, }(\underline{a} \times \underline{b}) \cdot \underline{c}=\left|\begin{array}{ccc}
3 & -2 & 1 \\
1 & -3 & 5 \\
2 & 1 & -4
\end{array}\right| \\
& =3(12-5)+2(-4-10)+1(1+6) \\
& =21-28+7=28-28=0 \\
& \text { প্রদত্ত जেষ্টর তিনটি সমতলীয় । }
\end{aligned}
$$

12. (b) $\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, 2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}, \lambda \hat{\mathbf{i}}-\hat{j}+\lambda \hat{k}$ כেট্টের তিनটি সমতনীয় इলে λ এর মান निি্য় কর।
[य.'ob]
সমাখান : $i-\hat{j}+\hat{k}, 2 \hat{i}+2 \hat{j}-\hat{k}, \lambda \hat{i}-\hat{j}+\lambda \hat{k}$ जৌ্টে তিनটि সমতनीয় বলে, $\left|\begin{array}{ccc}1 & -1 & 1 \\ 2 & 2 & -1 \\ \lambda & -1 & \lambda\end{array}\right|=0$
$\Rightarrow 1(2 \lambda-1)+1(2 \lambda+\lambda)+1(-2-2 \lambda)=0$
$\Rightarrow 2 \lambda-1+3 \lambda-2-2 \lambda=0$
$\Rightarrow 3 \lambda=3 \quad \lambda=1$ (Ans.)
13. (a) দেখাও बে, $\underline{a}=3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$, $\underline{b}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}} \quad$ এবर $\quad \mathbf{c}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-4 \hat{\mathbf{k}} \quad$ डেৃ্ঠর তিনটি এঝটি সমরোগী ত্রিযুজ গঠন করে। [ব.'০৩,’১২; ঢ.’০৪,’১৪; ব্রা.'০৭,’১৪; বুয়েট’০৩-০৪]

প्र⿱ाग : $|\underline{a}|=|3 \hat{i}-2 \hat{j}+\hat{k}|=\sqrt{9+4+1}=\sqrt{14}$
$|\underline{b}|=|\hat{i}-3 \hat{j}+5 \hat{k}|=\sqrt{1+9+25}=\sqrt{35}$
$|\underline{c}|=|2 \hat{i}+j-4 \hat{k}|=\sqrt{4+1+16}=\sqrt{21}$
$\sqrt{14}, \sqrt{35}$ ఆ $\sqrt{21}$ এর যেকোন দুইটির সমফ্টি তৃতীয়টি অপেক্মা বৃহত্তর এবং $|\underline{a}|^{2}+|\underline{c}|^{2}=14+$ $21=35=|\underline{b}|^{2}$

প্রদভ ভেষ্ঠে ডিনটি একটি সমকোণী ত্রিডুজ গঠন করে।
 $-\hat{\mathbf{i}}-\hat{\mathbf{j}}+8 \hat{\mathbf{k}}$ बदर $-4 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$; मुथाब बে, বিস্দू

প্রমাণ : ধরি, A, B ও C ক্দি তিনটির অবস্থান ভেঠ্ঠর
 $-4 \hat{i}+4 \hat{j}+6 \hat{k}$.

$$
\begin{aligned}
\overrightarrow{A B} & =-i-\hat{j}+8 \hat{k}-(\hat{i}+2 \hat{j}+3 \hat{k}) \\
& =-2 \hat{i}-3 \hat{j}+5 \hat{k}
\end{aligned}
$$

$$
|\overrightarrow{A B}|=\sqrt{4+9+25}=\sqrt{38}
$$

$$
\overrightarrow{B C}=-4 \hat{i}+4 \hat{j}+6 \hat{k}-(-\hat{i}-\hat{j}+8 \hat{k})
$$

$$
=-3 \hat{i}+5 \hat{j}-2 \hat{k}
$$

$$
|\overrightarrow{B C}|=\sqrt{9+25+4}=\sqrt{38}
$$

$$
\overrightarrow{C A}=\hat{i}+2 \hat{j}+3 \hat{k}-(-4 \hat{i}+4 \hat{j}+6 \hat{k})
$$

$$
=5 \hat{i}-2 \hat{j}-3 \hat{k}
$$

$$
|\overrightarrow{C A}|=\sqrt{25+4+9}=\sqrt{38}
$$

$|\overrightarrow{A B}|,|\overrightarrow{B C}|$ ఆ $|\overrightarrow{C A}|$ এর যেকোন দুইঢির সমষ্টি তৃতীয়টি अপেক্ষা বৃহত্তর এবए $|\overrightarrow{A B}|=|\overrightarrow{B C}|$ $=|\overrightarrow{C A}|=\sqrt{38}$

প্রদঙ ব্দিদু তিনিি একটি সমবাহু ত্রিভুজ গঠন করে।
13. (c) ডৌ্টরের সাহায্যে দেখাও «, A $(1,-1,-1)$, B $(3,3,1)$ এदृ C $(-1,4,4)$ बिन्मू তिनটि একটি গোणকের উপর অবস্দিত যার ক্সে্দ্র $\mathbf{P}(\mathbf{0}, \mathbf{1 , 2})$ প্रমाণ : $\overrightarrow{P M}=(1 \quad \hat{i}+(-1-1) \hat{j} \quad(-1-2) \hat{k}$

$$
\begin{gathered}
=i-2 \hat{j}-3 \hat{k} \\
|\overrightarrow{P A}|=\sqrt{1+4+9}=\sqrt{14} \\
\overrightarrow{P B}=(3-0) \hat{i}+(3-1) \hat{j}+(1-2) \hat{k} \\
=3 \hat{i}+2 \hat{j}-\hat{k} \\
|\overrightarrow{P B}|=\sqrt{9+4+1}=\sqrt{14} \\
\overrightarrow{P C}=(-1-0) \hat{i}+(4-1) \hat{j}+(4-2) \hat{k} \\
=-\hat{i}+3 \hat{j}+2 \hat{k} \\
|\overrightarrow{P C}|=\sqrt{1+9+4}=\sqrt{14} \\
|\overrightarrow{P A}|=|\overrightarrow{P B}|=|\overrightarrow{P C}|=\sqrt{14}
\end{gathered}
$$

প্রদজ্ট ক্দি তিনটি $P(0,1,2)$ बেস্দ্র বিশিষ্ট একটি গোনকের উপর অবস্চিত।
13.(d) $A(0,1,2), B(-1,3,0), C(1,-1,1)$

जবए। $\overrightarrow{\mathrm{AC}}$ । निর্ণয় কর
[ण.'ov]
সমাধানঃ $\mathrm{A}(0,1,2)$ বিন্দুর অবস্মান ভিষ্ঠর $=\hat{j}+2 \hat{k}$

$\mathrm{C}(1,-1,1)$ বি্দুর অবস্थান ভেষ্টের $=\hat{i}-\hat{j}+\hat{k}$
$\overrightarrow{A B}=(-1-0) \hat{i}+(3-1) \hat{j}+(0-2) \hat{k}$
$=-\hat{i}+2 \hat{j}-2 \hat{k}$

$$
|\overrightarrow{A B}|=\sqrt{1+4+4}=\sqrt{9}=3
$$

এবং $\overrightarrow{A C}=(1-0) \hat{i}+(-1-1) \hat{j}+(1-2) \hat{k}$

$$
\begin{aligned}
& =i-2 \hat{j}-\hat{k} \\
|\overrightarrow{A C}| & =\sqrt{1+4+1}=\sqrt{6}
\end{aligned}
$$

14. (a) $\overrightarrow{\mathbf{A}}=2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ जबर $\quad \overrightarrow{\mathbf{B}}=\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ হলে, $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$ হত্তে তাদের অশ্তর্ড্< কোণ निর্য় ক্র।
[玉.'○8]
সমাষান ः $|\vec{A}|=|2 \hat{i}+2 \hat{j}+\hat{k}|=\sqrt{4+4+1}=3$
$|\vec{B}|=|\hat{i}+3 \hat{j}+2 \hat{k}|=\sqrt{1+9+4}=\sqrt{14}$
$\vec{A} \times \vec{B}=\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ 2 & 2 & 1 \\ 1 & & 2\end{array}\right|$

$$
\begin{aligned}
& =(4-3) \hat{i}-(4-1) \hat{j}+(6-2) \hat{k} \\
& =i-3 \hat{j}+4 \hat{k}
\end{aligned}
$$

$$
\vec{A} \times \vec{B}=\sqrt{1+9+16}=\sqrt{26}
$$

ভভ্ট্যর দুইটির অন্তর্ভ্রুক্ত কোণ θ হলে,

14(b) $\mathrm{A}=\mathrm{i}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ এবर $\overrightarrow{\mathrm{B}}=3 \hat{\mathbf{i}}-2 \hat{\mathrm{j}}-\hat{\mathrm{k}}$
रनि, $|\lambda \times \vec{B}|$ निर्ण क्र :
[বুয়েট'oo-0১]

$$
\begin{aligned}
& \text { সমाধানः } \vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\hat{i} & j & \kappa \\
1 & 2 & 3 \\
3 & -2 & -1
\end{array}\right| \\
& =(-2 \quad 6) i-1 \quad \vartheta \hat{j}+(-2-6) \hat{k} \\
& =4 \hat{i}+10 \hat{j}-8 k \\
& |\vec{A} \times \vec{B}|=\sqrt{16+100+64}=\sqrt{180} \\
& =6 \sqrt{5}
\end{aligned}
$$

14(c) $\quad(a \hat{i}+b \hat{j}+\hat{k}) \times(2 \hat{i}+2 \hat{j}+3 \hat{k})=\hat{i}-\hat{j}$ रणে, $a \in b$ এর মান নিণয় ক্木। [বুয্যেট'০১-০২] সমাধান ঃ দেওয়া आছে,
$(a i+b \hat{j}+\hat{k}) \times(2 \hat{i}+2 \hat{j}+3 \hat{k})=\hat{i}-\hat{j}$

$$
\Rightarrow\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a & b & 1 \\
2 & 2 & 3
\end{array}\right|=i-\hat{j}
$$

$\Rightarrow(3 b-2) \hat{i}-(3 a-2) \hat{j}+(2 a-2 b) \hat{k}$ $=\hat{i}-\hat{j}$

$$
\begin{array}{ll}
3 b-2=1 \Rightarrow 3 b=3 & b=1 \\
3 a-2=1 \Rightarrow 3 a=3 & a=1
\end{array}
$$

14(d) $\overrightarrow{\mathbf{A}}=3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}} \quad \overrightarrow{\mathbf{B}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}} \quad$ जदर $\overrightarrow{\mathbf{C}}=\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ रनে, $\overrightarrow{\mathbf{A}} \times(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}})$ निर्षर कर। সमाथान : $\vec{B} \times \vec{C}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 1 & 3 & -2\end{array}\right|$

$$
\begin{aligned}
& =(2-3) \hat{i}-(-4-1) \hat{j}+(6+1) \hat{k} \\
& =-i+5 \hat{j}+7 \hat{k} \\
& \vec{A} \times(\vec{B} \times \vec{C})=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3 & 1 & -2 \\
-1 & 5 & 7
\end{array}\right| \\
& =(7+10) \hat{i}-(21-2) \hat{j}+(15+1) \hat{k} \\
& =17 \hat{i}-19 \hat{j}+16 \hat{k} \text { (Ans.) }
\end{aligned}
$$

14(c) $\quad \underline{a}=2 \hat{i}-3 \hat{j}+5 \hat{k}, \quad \underline{b}=-\hat{i}+2 \hat{j}-7 \hat{k}$

সমाथान : $5 \underline{a} \times \underline{b}=5\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 5 \\ -1 & 2 & -7\end{array}\right|$

$$
=5\{(21-10) \hat{i}-(-14+5) \hat{j}+(4-3) \hat{k}\}
$$

$$
=5\{11 \hat{i}+9 \hat{j}+\hat{k}\}=55 \hat{i}+45 \hat{j}+5 \hat{k}
$$

$$
\frac{\underline{b}}{|\underline{a}|}=\frac{-\hat{i}+2 \hat{j}-7 \hat{k}}{|2 \hat{i}-3 \hat{j}+5 \hat{k}|}=\frac{-i+2 \hat{j}-7 \hat{k}}{\sqrt{4+9+25}}
$$

$$
=\frac{1}{\sqrt{38}}(-\hat{i}+2 \hat{j}-7 \hat{k})
$$

14(f)যেকোন দুইটি ভেখ্টে \vec{A} ® \vec{B} এর बन्ग প্রমাণ बत्र यে, $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{A}}$ এবर $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=-\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{A}}$.

প্রমাণ ः মনে করি, $\vec{A}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$,

$$
\vec{B}=b_{1} \hat{i}+b_{2}, \hat{j}+b_{3} \hat{k}
$$

$$
\therefore \vec{A} \cdot \vec{B}=\left(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right) \cdot\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right)
$$

$$
\begin{aligned}
& =a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
& =b_{1} a_{1}+b_{2} a_{2}+b_{3} a_{3} \\
& =\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right) \cdot\left(a_{1} i+a_{2} \hat{j}+a_{3} \hat{k}\right) \\
& =\vec{B} \cdot \vec{A} \\
& \vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}
\end{aligned}
$$

आবाश, $\quad \times \vec{E}=\left|\begin{array}{ccc}i & \hat{j} & \hat{k} \\ a_{i} & b_{i} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|$
$=-\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ a_{2} & b_{2} & c_{2} \\ a_{1} & b_{1} & c_{1}\end{array}\right|=-\vec{B} \times \vec{A}$
$\vec{A} \times \vec{B}=-\vec{B} \times \vec{A}$

14(g) প্রমাण কর बে, $\ddot{\Delta} \times \overrightarrow{\mathrm{B}}=$

$$
\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{\mathbf{k}} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

ঠেथानে $\overrightarrow{\mathbf{A}}=a_{1} \hat{i}+a_{2} \hat{\mathbf{i}}+a_{3} \hat{k}$,

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}=b_{1} \hat{\mathbf{i}}+b_{2} \hat{\mathbf{j}}+b_{3} \hat{\mathbf{k}} \tag{ঢে.’০১;ব.’০২}
\end{equation*}
$$

প্রমাণঃ L.H.S. $={ }^{-} \times \vec{B}$

$$
\begin{aligned}
&=\left(a_{1} i+a_{2} \hat{j}+a_{3} \hat{k}\right) \times\left(b_{1} i+b_{2} \hat{j}+b_{3} \hat{k}\right) \\
&= a_{1} b_{1}(\hat{i} \times \hat{i})+a_{1} b_{2}(\hat{i} \times \hat{j})+a_{1} b_{3}(\hat{i} \times \hat{k}) \\
&+a_{2} b_{1}(\hat{j} \times \hat{i})+a_{2} b_{2}(\hat{j} \times \hat{j})+a_{2} b_{3}(\hat{j} \times \hat{k}) \\
&+a_{3} b_{1}(\hat{k} \times \hat{i})+a_{3} b_{2}(\hat{k} \times \hat{j})+b_{3}(\hat{k} \times \hat{k}) \\
&= a_{1} b_{1}(\underline{0})+a_{1} b_{2}(\hat{k})+a_{1} b_{3}(-\hat{j}) \\
&+a_{2} b_{:}(-\hat{k})+a_{2} b_{2}(\underline{0})+a_{2} b_{3}(\hat{i}) \\
&+ a_{3} b_{1}(\hat{j})+a_{3} b_{2}(-\hat{i})+a_{3} b_{3}(\underline{0}) \\
&=\left(a_{2} b_{3}-a_{3} b_{2}\right) \hat{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) j \\
&+\left(a_{1} b-a_{2} b_{1}\right) \hat{k}
\end{aligned}
$$

$$
=\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & & a_{3} \\
b_{i} & b_{2} & b_{s}
\end{array}\right| \text { R.H.s. (Proved) }
$$

 © ©

जकलार बन

এVन, $i, \hat{j}=|\hat{i} \| \hat{j}| \cos 90^{\circ}=\mathbf{i} \times i \times 0=0$

$$
\hat{\hat{i}}=|\hat{i} \| \hat{i}| \cos 0^{0}=1 \times 1 \times 1=1
$$

15. (a) 心্টৌেরে সাহাব্যে $A(1,3,2), B(2,-1,1)$ ©
相
[Tुज

$$
=-\hat{i}++j+h
$$

$$
\overrightarrow{A C}(1+1) \quad+(2-3) \hat{\imath}
$$

$$
=2 \hat{\mathrm{i}}
$$

$$
\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
& \hat{j} & \hat{k} \\
-1 & 4 & 1 \\
2 & 1 & -1
\end{array}\right|
$$

$$
=(-4-1) \mathrm{i}-(1-2) \hat{j}+(-1-8) \hat{k}
$$

$$
=5 i
$$

ABC ब्रिजूअधित क्षिन्वस्न $=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|$ $=\frac{1}{2}|-5 \hat{i}+j-9 \hat{k}|=\frac{1}{2} \sqrt{5^{2}+1^{2}+9^{2}}$
$\frac{1}{2} \sqrt{251+81}=\frac{1}{2} \sqrt{107}$ बর্গ একক।
15 (b) $\overrightarrow{\mathbf{P}}=4 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+\hat{\mathrm{k}}$ जबर $\overrightarrow{\mathrm{Q}}=2 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-\mathrm{k}$

[বूट्यেট'cu-99]
सड़ान : $\vec{p} \times \vec{Q}=\left|\begin{array}{ccc}i & j \\ 4 & & ; \\ 2 & -2 & -1\end{array}\right|$

15（c）একটি ত্রিভूজ্ষের শীর্\} তিনটির অবস্পান 心েট্টের $\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \quad 3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-\hat{\mathbf{k}} \quad \otimes 2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-4 \hat{\mathbf{k}} ;$

সমাধান ः ধরি，$A B C$ ত্রিভুজের A, B B C শीর্ষ তিনটির অবস্মান ডেষ্টর যथाब্রম $\hat{i}-2 \hat{j}+3 \hat{k}$ ， $3 \hat{i}+5 \hat{j}-\hat{k}$ ఆ $2 \hat{i}+3 \hat{j}-4 \hat{k}$ ．

$$
\begin{aligned}
\overrightarrow{A B} & =3 \hat{i}+\ldots-\hat{k}-(i-2 \hat{j}+3 \hat{k}) \\
& =2 \hat{i}+7 \hat{j}-4 \hat{k} \\
\overrightarrow{A C} & =2 \hat{i}+3 \hat{j}-4 \hat{k}-(\hat{i}-2 \hat{j}+3 \hat{k}) \\
& =\hat{i}+5 \hat{j}-7 \hat{k} \\
\overrightarrow{A B} & \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 7 & -4 \\
1 & 5 & -7
\end{array}\right| \\
= & (-49+20) \hat{i}-(-14+4) \hat{j}+(10-7) \hat{k} \\
= & -29 \hat{i}+10 \hat{j}+3 \hat{k}
\end{aligned}
$$

ABC ত্রিতুজটির ক্কের্রফল $=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|$
$=\frac{1}{2}|-29 \hat{i}+10 \hat{j}+3 \hat{k}|$
$=\frac{1}{2} \sqrt{29^{2}+10^{2}+3^{2}}$ ব斤 একक।
$=\frac{1}{2} \sqrt{841+100+9}$ ব斤 একক।
$=\frac{1}{2} \sqrt{950}$ বর একক $=\frac{5}{2} \sqrt{38}$ ব斤্গ একক।
15 （d） $\overrightarrow{\mathrm{OA}}=2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-\hat{\mathrm{k}}$ जবR $\overrightarrow{\mathrm{OB}}=\hat{\mathbf{i}}+4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ হলে，OAB ब্রিভूফ্ᅣট্রি কোণ তিনটি নির্ণয় কন্ন।

$\vec{A}=2 \hat{i} \quad 3 \hat{i} \hat{k}$
sa $\overline{0 B}$

$\vec{B}=$

$=-2 \hat{i}$

人 $3 \hat{k}$

$$
=-\hat{i}+7 \hat{j}+4 \hat{k} \quad \overrightarrow{B A}=\hat{i}-7 \hat{j}-4 \hat{k}
$$

$$
\cos \mathrm{AOB}=\frac{\overrightarrow{O A} \cdot \overrightarrow{O B}}{|\overrightarrow{O A}||\overrightarrow{O B}|}
$$

$$
=\frac{(2 \hat{i}-3 \hat{j}-\hat{k}) \cdot(\hat{i}+4 \hat{j}+3 \hat{k})}{\sqrt{4+9+1} \sqrt{1+16+9}}
$$

$$
=\frac{2-12-3}{\sqrt{14} \sqrt{26}}=\frac{-13}{\sqrt{364}}
$$

$$
\angle A O B=\cos ^{-1}\left(\frac{-13}{\sqrt{364}}\right)
$$

$$
\cos \mathrm{OAB}=\frac{\overrightarrow{A O} \cdot \overrightarrow{A B}}{|\overrightarrow{A O}||\overrightarrow{A B}|}
$$

$$
=\frac{(-2 \hat{i}+3 \hat{j}+\hat{k}) \cdot(-\hat{i}+7 \hat{j}+4 \hat{k})}{\sqrt{4+9+1} \sqrt{1+49+16}}
$$

$$
=\frac{2+21+4}{\sqrt{14} \sqrt{66}}=\frac{27}{\sqrt{924}}
$$

$\angle \mathrm{OAB}=\cos ^{-1}\left(\frac{27}{\sqrt{924}}\right)$
\cos OBA $=\frac{\overrightarrow{B O} \cdot \overrightarrow{B A}}{|\overrightarrow{B O}||\overrightarrow{B A}|}$

$$
\begin{aligned}
& =\frac{(-i-4 \hat{j}-3 \hat{k}) \cdot(\hat{i}-7 \hat{j}-4 \hat{k})}{\sqrt{1+16+9} \sqrt{1+49+16}} \\
& =\frac{-1+28+12}{\sqrt{26} \sqrt{66}}=\frac{39}{\sqrt{1716}}
\end{aligned}
$$

$\angle \mathrm{OBA}=\cos ^{-1}\left(\frac{39}{\sqrt{1716}}\right)$
15．（e） $\overrightarrow{\mathrm{OA}}=2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}$ Q
 बम्य দूरত্র निর্ণীয়
সমা氏ান ः ধরি，OAB
$\overrightarrow{O A}=2 \hat{i}+2 \hat{j}-\hat{i}$
$\overrightarrow{O B}=6 \hat{i}-3 \hat{j}-2 \hat{k}$ ； $\bar{\circ}$

B ब্দিদ্দু হতে OA এর লম্ম能库 d ．

जখन, $\overrightarrow{O A} \times \overrightarrow{O B}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 2 & -1 \\ 6 & -3 & -2\end{array}\right|$

$$
=(-4-3) \hat{i}-(-4+6) \hat{j}+(-6-12) \hat{k}
$$

$$
=-7 \hat{i}-2 \hat{j}-18 \hat{k}
$$

$\triangle \mathrm{OAB}=\frac{1}{2}|\overrightarrow{O A} \times \overrightarrow{O B}|=\frac{1}{2}|\overrightarrow{O A}| \times d$
$\Rightarrow \sqrt{7^{2}+2^{2}+18^{2}}=\sqrt{2^{2}+2^{2}+1^{2}} d$
$\Rightarrow \mathrm{d}=\frac{\sqrt{377}}{\sqrt{9}}=\frac{\sqrt{377}}{3}$ बकক। (Ans.)
15(i) এरणि জায়णাকার घनবস্তুর ধারগুল্যা $\vec{A}=2 \hat{i}-3 \hat{j}+2 \hat{k}, \quad \vec{B}=\hat{i}+2 \hat{j}-\hat{\mathbf{k}}$,
 आায়णन निभ্য় ক্র।
সমাধাল : আয়তাকার ঘনবন্ডুটির আয়তন
$=\vec{A} \cdot(\vec{B} \times \vec{C})=\left|\begin{array}{ccc}2 & -3 & 2 \\ 1 & 2 & -1 \\ 3 & -1 & 2\end{array}\right|$
$=2(4-1)+3(2+3)+2(-1-6)$
$=6+15-14=7$ घन একক
 $\overrightarrow{\mathbf{B}}=4 \hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ डেখ্টে ঘারা निর্দেশিত। ত্রিভूघणिর কোণগুলো নিি্র কর।
সমাধান $\%$ ধরি, PQR ত্রিভুজে PQ $\because P R$ বাूू দूইটি যাথাক্রমে $\vec{A}=3 \hat{i}+6 \hat{j}-2 \hat{k}$ ও
 $\vec{B}=4 \hat{i}-j+3 \hat{k}$ দ্ঘারা निर्দেশিত।

$$
\begin{aligned}
\overrightarrow{P Q} & =3 \hat{i}+6 \hat{j}-2 \hat{k} \text { এবং } \overrightarrow{P R}=4 \hat{i}-j+3 \hat{k} \\
\overrightarrow{Q R} & =\overrightarrow{Q P}+\overrightarrow{P R} \\
& =-3 \hat{i}-6 \hat{j}+2 \hat{k}+4 \hat{i}-\hat{j}+3 \hat{k} \\
& =\hat{i}-7 \hat{j}+5 \hat{k}
\end{aligned}
$$

$\cos \mathrm{QPR}=\frac{\overrightarrow{P Q} \cdot \overrightarrow{P R}}{|\overrightarrow{P Q}||\overrightarrow{P R}|}$
$=\frac{(3 \hat{i}+6 \hat{j}-2 \hat{k}) \cdot(4 \hat{i}-\hat{j}+3 \hat{k})}{\sqrt{9+36+4} \sqrt{16+1+9}}$
$=\frac{12-6-6}{\sqrt{49} \sqrt{26}}=\frac{0}{7 \sqrt{26}}=0=\cos 90^{\circ}$

$$
\angle Q P R=90^{\circ}
$$

$$
\begin{aligned}
\cos P Q R & =\frac{\overrightarrow{Q P} \cdot \overrightarrow{Q R}}{|\overrightarrow{Q P}||\overrightarrow{Q R}|} \\
& =\frac{(-3 \hat{i}-6 \hat{j}+2 \hat{k}) \cdot(\hat{i}-7 \hat{j}+5 \hat{k})}{\sqrt{9+36+4} \sqrt{1+49+25}} \\
& =\frac{-3+42+10}{\sqrt{49} \sqrt{75}}=\frac{49}{7 \times 5 \sqrt{3}}=\frac{7}{5 \sqrt{3}}
\end{aligned}
$$

$$
\angle P Q R=\cos ^{-1}\left(\frac{7}{5 \sqrt{3}}\right) \text { అবए }
$$

$$
\cos \mathrm{PRQ}=\frac{\overrightarrow{R P} \cdot \overrightarrow{R Q}}{|\overrightarrow{R P}||\overrightarrow{R Q}|}
$$

$$
=\frac{(-4 \hat{i}+j-3 \hat{k}) \cdot(-\hat{i}+7 \hat{j}-5 \hat{k})}{\sqrt{16+1+9} \sqrt{1+49+25}}
$$

$$
=\frac{4+7+15}{\sqrt{26} \sqrt{75}}=\frac{26}{\sqrt{26} 5 \sqrt{3}}=\frac{\sqrt{26}}{5 \sqrt{3}}
$$

$$
\angle P Q R=\cos ^{-1}\left(\frac{\sqrt{26}}{5 \sqrt{3}}\right)
$$

ত্রিভুজটির কেেণগুলো $90^{\circ}, \cos ^{-1}\left(\frac{7}{5 \sqrt{3}}\right)$ এবং $\cos ^{-1}\left(\frac{\sqrt{26}}{5 \sqrt{3}}\right)$

15(h) এবটি সামাল্তরিকেন্ন কর্ণøয় $\overrightarrow{\mathrm{A}}=3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-\hat{\mathrm{k}}$

পমাণ : $\vec{A} \cdot \vec{B}=(3 \hat{i}-4 \hat{j}-\hat{k}) \cdot(2 \hat{i}+3 \hat{j}-6 \hat{k})$

$$
=6-12+6=0 \text {. }
$$

সামাল্তরিকের কর্দ্বয় পরশ্র লম্ব । অতএব, সামান্তরিকটি একটি রম্মস ।
এর ब্সেত্রশন $=\frac{1}{2}|\vec{A}||\vec{B}|$

$$
\begin{aligned}
& =\frac{1}{2} \sqrt{3^{2}+4^{2}+1} \sqrt{2^{2}} \\
& =\frac{1}{2} \sqrt{9+16+1} \sqrt{4+0+36} \\
& =\frac{1}{2} \sqrt{1274}=17.85 \text { वु पक (का़) }
\end{aligned}
$$

 কর।

সমাধান: ধরি, $\underline{a}=2 \hat{i}+3 \hat{j}-4 \hat{k}$ वद
$\underline{b}=5 \hat{i}+6 \hat{j}+8 \hat{k}$

 প্যারামিটার।
 $r=9 \hat{i} \quad 3 \hat{j}-4 \hat{k} \quad(5 \hat{i}+6 \hat{j}+8 \hat{k})$
不।
সমাथान: ४রি, $\underline{a}=i$ « $\underline{b}=\hat{j}$.
\underline{a} ఆ \underline{b} বিচ্দুগামী সরুলরেখার ভেষ্টর সনীীক্র্

$\underline{r}=\hat{i}+\mathrm{t}(\hat{j}-\hat{i}) \Rightarrow \underline{r}=\quad+t$

 कर।

$\vec{i}=2 \hat{i}-3 \hat{j}+$
बिदाल

$\underline{u} \leqslant \underline{b}{ }_{\square}$
动
$\underline{r}=\underline{a}$
(i) $(\neg \hat{i}+a j+\hat{k})(\quad \rightarrow \hat{k})=0$
$\Rightarrow \quad+2 a+2=0 \Rightarrow 2 a=6 \Rightarrow \mathrm{a}=3$
(i) $\vec{A}+\vec{B}) \cdot(\vec{A}+\vec{B})=\left(\begin{array}{ll}-\vec{B}\end{array} \cdot(\vec{A} \quad B)\right.$
$\Rightarrow \quad+B^{2}+2 \vec{A} \vec{B}=A^{2} \quad B^{2} \quad \vec{A} \vec{B}$
$\Rightarrow 4 \quad=0 \Rightarrow \vec{A} \vec{B}=\quad$ ला $=90^{\circ}$

 প্র্যাণ : মলে কন্রি, $A B C$ बিভ্র্জের B ब্দির সাপেকে A

यथাক্রমে \underline{a} ® $\underline{\underline{C}}$ এবং D ,
E, F स्त्पू তিন্গি যथाক্নে BC,
CA, AB এर মধ্যক্রিদ্মু ।

जৌ্টের যথাক্দ্মে $\frac{\underline{c}}{2}, \frac{\underline{c}+\underline{a}}{2}, \frac{a}{2}$
 n 1 बनूপাত্ পরস্ররক G ক্দিতু ছেদ করে।

G जর जবস্দান ভ্টিটর $\frac{m \frac{\underline{c}+\underline{a}}{2}}{m+1}=\frac{m \underline{c}+m a}{2(m+1)}$
এবर $\frac{n \frac{a}{2}+\underline{c}}{n+1}=\frac{n \underline{a}+2 \underline{c}}{2(n+1)}$ अडिन्न হবে।

$$
\frac{m}{2(m+1)}=\frac{n}{2(n+1)} \Rightarrow m n+m=m n+
$$

$\Rightarrow \mathrm{m}=\mathrm{n}$ बবং $\frac{m}{2(m+1 ;}=\frac{2}{2(n+1)}$
$\Rightarrow \frac{m}{m+i}=\frac{2}{m+1} \quad m=2=n$

 G द्मूए ज्ञा रु:
 21 अनूপাতে ণরস্পরকে হ্র করে। BE মধ্যমা একটি

 দেখা
(a) $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}=2 \overrightarrow{\mathrm{AD}}$
[ব.'ग>; সि.'गे?
(b) $A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$ 。
[य.'’৯,’১৩; কু. '১০; ঢা. ’১২; সি.’১০; চ.,मि.'১০; রা.'১১,’১৪; ব.'১৬1

প্রমাণ : (a) ভেট্টের বোগের ত্রিভুজ স্ট হতে পাই,

$$
\begin{align*}
& \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{DB}} \\
& \overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{DC}} \tag{i}\\
& (\mathrm{i})+(\mathrm{i}) \Rightarrow \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}=2 \overrightarrow{\mathrm{D}} \\
& \Rightarrow \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}=2 \overrightarrow{\mathrm{AD}}+(\overrightarrow{\mathrm{DB}}+5 \\
& \Rightarrow \\
& \Rightarrow \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}=2 \overrightarrow{\mathrm{AD}}+ \\
& \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}=2 \overrightarrow{\mathrm{AD}}
\end{align*}
$$

(b) $A B D$ ब্রিভুজে ভ্টের যোগের ত্রিভूজ সৃৰ হৃে ধাই, $\overrightarrow{A B} \cdot \overrightarrow{A B}=(\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{DB}}) \cdot(\overrightarrow{\mathrm{AD}} \overrightarrow{\mathrm{DB}})$
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{DB}^{2}$

$$
+\overrightarrow{A D} \cdot \overrightarrow{D B}+\overrightarrow{D B} \cdot \overrightarrow{A D}
$$

$\Rightarrow \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}+$ $2 \overrightarrow{A D} \cdot \overrightarrow{D B} \cdot$
তদ্দীপ ACD ত্রিভুজে,

$$
\overrightarrow{A C}=\overrightarrow{A D}+\overrightarrow{D C}
$$

$$
\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}+2 \overrightarrow{A D} \cdot \overrightarrow{D C}
$$

$$
\begin{equation*}
\Rightarrow A C^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}+2 \overrightarrow{A D} \cdot \overrightarrow{D C} \tag{2}
\end{equation*}
$$

1) $\mathrm{C}(2)$ নোগ করে পাই,

$$
\begin{aligned}
A B^{2}+C^{2} & =2\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right) \\
& +2 \overrightarrow{A D}(\overrightarrow{D B}+\overrightarrow{D C})
\end{aligned}
$$

$\therefore \mathrm{AB}^{2}+\mathrm{AC}^{2}=2\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)$

$$
[\overrightarrow{D B}+\overrightarrow{D C}=\underline{0}]
$$

व্রমাণ ：মढन করি，ABCO র্মাসর AC BD
 এবং $\overrightarrow{A D}=\dot{b}$ रुज，
$\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}$
$=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AD}}=\underline{a} \quad \underline{?}$
এ๕゚ $\overrightarrow{\mathrm{BD}}=\overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{AD}}$

$$
=-\underline{a}+\underline{b}=\underline{b}-\underline{a}
$$

$$
\begin{aligned}
& \Rightarrow \overrightarrow{D C}=\overrightarrow{A O}+\overrightarrow{O B} \cdots(2) \\
& \text { (1) उ (2) र্তে পাই, } \overrightarrow{A B}=\overrightarrow{D C}
\end{aligned}
$$

$\mathrm{AB}=\mathrm{DC}$ এবং $\mathrm{AB} \| \mathrm{DC}$
AB ャ $D C$ बज्ञ রেখা হতত পারন্যে।।

 जर्दर्दया
প্রমাণ ：

মঢে করি，ABCD ট্রাপিজিয়াম্রে AD ও BC অসমাল্ত

$$
\because \quad \vec{B}=\underline{a}, \overrightarrow{A D}=\underline{b}
$$

$A B D C$ रुन বেকোন স্কেলার রাগি m এর জন্য $\overrightarrow{D C}=\mathrm{m} \overrightarrow{A B}=\mathrm{m} \underline{a}$ ．
$\triangle \mathrm{ABC} \bullet, \overrightarrow{A C}=\overrightarrow{A D}+\overrightarrow{D C}=\underline{b}+m \underline{a}$
C स্দ্দুর জবস্থান ভেট্টর $=\underline{b}+\mathrm{m} \underline{a}$
AD এর মধ্যক্দ্দু E এর অবস্থান ক্টেট $=\frac{b}{2}$
 $\frac{1}{2}(\underline{a}+\underline{b}+m \underline{a})$

$$
\begin{aligned}
& \vec{F}=\frac{1}{2}(\underline{a}+\underline{b}+m \underline{a})-\frac{b}{2} \\
& =\frac{1}{2}(1+m) \underline{a}=\frac{1}{2}(1+m) \overrightarrow{A B}
\end{aligned}
$$

$E F$ অা弓 AB এর সমান্তরাল জতএব，$E F$ DC এরও সমাল্তরাল।

আবার，$|\overrightarrow{E F}|=\frac{1}{2}(1+\mathrm{m})|\overrightarrow{A B}|$

$$
\begin{aligned}
& =\frac{1}{2}\{|\overrightarrow{A B}|+|\mathrm{m} \overrightarrow{A B}|\} \\
& =\frac{1}{2}\{|\overrightarrow{A B}|+|\overrightarrow{D C}|\}
\end{aligned}
$$

$\mathrm{EF}=\frac{1}{2}(\mathrm{AB}+\mathrm{CD})$
 সংযোগ সরলরেরো সমান্তরাল বাহুদ়্ের সমান্তরাল ও ঢাদের যোগফলের অর্ধেক।
 जতিভুজ্ঘের বগ অন্য দুई বাহুর বর্ক্রু যোযফেের সমান।

প্রমাণ 8 মনে করি, ABC সমকোণী ত্রিভুজ্জে, AC অতিভুজ এবং B ক্দ্দুকে মূলক্কি্দু ধরে A ও C এর

$$
\begin{aligned}
& \angle A B C=90^{\circ} \\
& \overrightarrow{B A} \cdot \overrightarrow{B C}=0 \text { या, } \underline{a} \cdot \underline{c}=0
\end{aligned}
$$

जचन, $\overrightarrow{C A}=\underline{a}-\underline{c}$
$\overrightarrow{C A} \cdot \overrightarrow{C A}=(\underline{a}-\underline{c}) \cdot(\underline{a}-\underline{c})$

$\Rightarrow \mathrm{CA}^{2}=\mathrm{a}^{2}+\mathrm{c}^{2}-2 \underline{a} \cdot \underline{c}=\mathrm{a}^{2}+\mathrm{c}^{2}$
$C A^{2}=A B^{2}+B C^{2}$
সমকোণী ত্রিডূজের অতিভুজের বর্গ অন্য দুই বাহूর বর্চের যোগফলের সমান।
8. ডৌ্ট্র পা্ফতিতে প্রমাণ কন যে, একটি সমকোণী
 হতে সমদূরবর্তী।
প্রমাণ \& মনে করি, OAB সমকোণী ত্রিভুজের অতিভুজ AB এর মধ্যক্দ্দু D এবং O বিদ্দুকে মূলক্দ্দু ধরে A B B এর অবস্থান ডেখ্ট্র যথাক্রমে \underline{a} ఆ $\underline{b} \cdot \mathrm{~B}$
$\angle A B C=90^{\circ}$
$\therefore \overrightarrow{B A} \cdot \overrightarrow{B C}=0$ বा, $\underline{a} \cdot \underline{b}=0$
AB এর মধ্যষ্সিদ্দু D এর অবস্থান

$$
\begin{aligned}
\text { Jেৃ্ঠর }=\frac{\underline{a}+\underline{b}}{2} \\
\quad \therefore \overrightarrow{O D}=\frac{1}{2}(\underline{a}+\underline{b}) \\
\overrightarrow{O D} \cdot \overrightarrow{O D}=\frac{1}{4}(\underline{a}+\underline{b}) \cdot(\underline{a}+\underline{b})
\end{aligned}
$$

$$
\Rightarrow O D^{2}=\frac{1}{4}\left(a^{2}+b^{2}+2 \underline{a} \cdot \underline{b}\right)=\frac{1}{4}\left(a^{2}+b ;\right)
$$

$$
\mathrm{OD}=\sqrt{a^{2}+b^{2}}
$$

$$
\vec{D}=\underline{a}-\underline{a}+\underline{b}=-1(a-b)
$$

$\vec{B}=\underline{b}-\frac{\underline{a}+\underline{b}}{2}=\frac{1}{2}(\underline{b}-\underline{a})$
$\mathrm{DA}^{2}=\mathrm{DB}^{2}=\frac{1}{4}\left(a^{2}+b^{2}-2 \underline{a} \cdot \underline{b}\right)$
$\Rightarrow \mathrm{DA}^{2}=\mathrm{DB}^{2}=\frac{1}{4}\left(a^{2}+b^{2}\right)$
$\mathrm{DA}=\mathrm{DB}=\frac{1}{2} \sqrt{a^{2}+b^{2}}$
\therefore একটি সমকোণী ত্রিভুজের অতিভুজ্জের মধ্যবি্দ্দু ত্রিভুজটির শীর্বক্দ্দুগুলো হতে সমদূরবর্তী।
 বিপরীত বাহ্রুর উপর অষ্কিত নম্দজ্রয় সমক্লিদু।

প্রমাণ : মনে করি, ABC ত্রিভুজের শীী A ఆ B रতে BC ও CA বাহুর উপর যথাক্রম্মে AD ఆ BE नম্ম দুইটি পরস্পরকে O ক্দ্দুতে ছেদ করে এবং O
 বিদ্দুকে মূলক্দ্দু ধরে A , B C এর অবস্থান ডেষ্ঠর যথাক্রমে $\underline{a}, \underline{b}, \underline{c} . \mathrm{C}, \mathrm{O}$ এর সৃব্যোগ রেখাংশের বর্ধিতাশ্ AB কে F ক্দিতু ছেদ করে।

$$
\begin{aligned}
& \mathrm{AD} \perp \mathrm{BC} \quad \mathrm{AO} \perp \mathrm{BC} \\
& \underline{a} \cdot(\underline{c}-\underline{b})=0 \Rightarrow \underline{a} \cdot \underline{c}=\underline{a} \cdot \underline{b} \cdots(1)
\end{aligned}
$$

$\mathrm{BE} \perp \mathrm{AC} \quad \mathrm{BO} \perp \mathrm{AC}$
$\underline{b} \cdot(\underline{c}-\underline{a})=0 \Rightarrow \underline{b} \cdot \underline{c}=\underline{a} \cdot \underline{b} \cdots(2)$
(1) ও (2) হতে পাই, $\underline{a} \cdot \underline{c}=\underline{b} \cdot \underline{c}$
$\Rightarrow \underline{c} \cdot(\underline{a}-\underline{b})=0$
$\mathrm{OC} \perp \mathrm{AB}$ जबाৎ $\mathrm{CF} \perp \mathrm{AB}$
শীর্বকিগুগুলি てেকে বিপরীত বাহুর নম্ষত্রয় সমক্দিদ্দু।
 बम्य সমपिখ্ভক্ব্র্য সম<্স্দু।
প্রমাণ মরে করি, ABC స্রিভুজের শীষ $D \quad E \quad F$ प্থাক্রে $\mathrm{BC}, ~ L A, A B$ aর

D E ও F এর बदস্サान डৌ্টর যशাক্রু $\frac{1}{2}\left(\underline{b}+\underline{c}, \quad \frac{1}{2}(\underline{c}+\underline{a})\right.$ ও $\frac{1}{2}(\underline{a}+\underline{b})$ ．
$O D \perp \mathrm{BC}$ बবং $O E \perp \mathrm{AC}$ বলে， $\frac{1}{2}(\underline{b}+\underline{c}) \cdot(\underline{c}-\underline{b})=0 \Rightarrow|\underline{c}|^{2}-|\underline{b}|^{2}=0 \cdots(1)$ $\frac{1}{2}(\underline{c}+\underline{a}) \cdot(\underline{a}-\underline{c})=0 \Rightarrow|\underline{a}|^{2}-|\underline{c}|^{2}=0 \cdots$
$(1)+(2) \Rightarrow|\underline{a}|^{2}-|\underline{b}|^{2}=0$
$\Rightarrow \frac{1}{2}(\underline{a}+\underline{b}) \cdot(\underline{a}-\underline{b})=0$
$O F \perp \mathrm{AB}$ অতএব， OF AB বাহুর बम্ম সমদ্বিখন্ডক।

ত্রিভুজ্েের বাহুগুলোর্র লস্ব সমদ্বিখন্ডকত্র্রয় সমরিস্দু।
11．ভেঠ্ঠের পস্মতিতে প্রমাণ কর যে，पর্ষবৃজস্প কোণ এক সমকোণ ！［ত．，চ．＇১৩；সি．＇০৯，＇১২；র্রা．＇১০；ষ．，কু＇১১］ প্রমাগ ঃ মনে বরি， O ঢকন্দ্র বিশিষ্ট বৃত্তের AB ব্যাস এবং পরিধির উপর C ब बকটি কিন্দু ।

$$
\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\text { ব্যাসাধ }
$$

$\overrightarrow{C A} \cdot \overrightarrow{C B}=(\overrightarrow{C O}+\overrightarrow{O A}) \cdot(\overrightarrow{C O}+\overrightarrow{O B})$
$=(\overrightarrow{C O} \div \overrightarrow{O A}) \cdot(\overrightarrow{C O}-\overrightarrow{B O})$
$=(\overrightarrow{C O}+\overrightarrow{O A}) \cdot(\overrightarrow{C O}-\overrightarrow{O A})$
$\rightarrow \xrightarrow{[} \xrightarrow{\text { কেন্দ্র } \mathrm{O}}, \mathrm{AB}$ ব্যাসের মধ্যবিস্দু 1］
$=\overrightarrow{C O} \cdot \overrightarrow{C O}+\overrightarrow{C O} \cdot \overrightarrow{O A}-\overrightarrow{O A} \cdot \overrightarrow{C O}-\overrightarrow{O A} \cdot \overrightarrow{O A}$
$=|\overrightarrow{C O}|^{2}+\overrightarrow{C O} \cdot \overrightarrow{O A}-\overrightarrow{C O} \cdot \overrightarrow{O A}-|\overrightarrow{O A}|^{2}$
$=\mathrm{CO}^{2}-\mathrm{OA}^{2}=0$
$\mathrm{AC} \perp \mathrm{BC}$ ज瓜ৎ $\angle \mathrm{ACB}=$ এ স স
অর্রবৃত্তস্থ কোণ এক সমকোণ।
万ে（a） $\cos C=\frac{a^{2}+y^{2}-c^{2}}{2 a t}$ Tr， 30,38 ；जा．

भ্रমাष：：४रि ABC त्रिड्ज， $\overrightarrow{\mathrm{BC}}=\underline{\mathrm{a}}, \overrightarrow{\mathrm{CA}}=\underline{\mathrm{b}}$

ভেষ্টর যোগের ত্রিভুজ সূত্র হতে পাই，

$$
\begin{equation*}
\overrightarrow{\mathrm{BA}}=\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}} \tag{2}
\end{equation*}
$$

$\Rightarrow \underline{\mathrm{c}}=\underline{\mathrm{a}}+\underline{\mathrm{b}}$
$\underline{c} \cdot \underline{c}=(\underline{a}+\underline{b}) \quad(\underline{a}+\underline{b})$

$$
=\underline{a} \cdot \underline{a}+\underline{a} \cdot \underline{b}+\underline{b} \cdot \underline{a}+\underline{b} \cdot \underline{b}
$$

$\Rightarrow c^{2}=a^{2}+b^{2}+2 \underline{a} \cdot \underline{b}$
$\Rightarrow c^{2}=a^{2}+b^{2}+2|\underline{a} \| \underline{b}| \cos \mathrm{ACE}$
$\Rightarrow c^{2}=a^{2}+b^{2}+2 a b \cos (\pi-\mathrm{C})$

$$
\begin{aligned}
& {[\quad \angle \mathrm{ACE}=\pi-\angle \mathrm{C}] } \\
&=a^{2}+b^{2}-2 a b \cos \mathrm{C} \\
& \cos \mathrm{C}=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
\end{aligned}
$$

（b）$c=a \cos B+b \cos A$［द．＇ob，＇১১；চ．’১১］
প্রমাণ ：ধরি ABC ত্রिजूজে， $\overrightarrow{\mathrm{BC}}=\underline{a}, \overrightarrow{\mathrm{CA}}=\underline{b}$ $\overrightarrow{B A}=c$ ．
ভেষ্টে যোগের ত্রিভুজ সূত্র হতে পাই，
$\overrightarrow{\mathrm{BA}}=\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}$
$\Rightarrow \underline{c}=\underline{a}+\underline{b}$

$$
\underline{c} \cdot \underline{c}=\underline{c} \cdot(\underline{a}+\underline{b})
$$

$\Rightarrow \mathrm{c}^{2}=\underline{c} \cdot \underline{a}+\underline{c} \cdot \underline{b}$

$\Rightarrow \mathrm{c}^{2}=\mathrm{ca} \cos \mathrm{B}+\mathrm{cos} \cos \mathrm{A}$
$c=a \cos \mathrm{~B}+b \cos \mathrm{~A}$
（c）$\frac{a}{\sin A}=\frac{b}{\sin C}$
क्रानः धरि $A B C$ किज्धि，
$\overrightarrow{\mathrm{BC}}-\quad \dot{\hat{A}}=\underline{b} \quad \overrightarrow{\mathrm{BA}}=\mathrm{c}$

$$
\begin{align*}
\Rightarrow & \underline{c}=\underline{a}+\underline{b} \\
& \underline{c} \times \underline{c}=\underline{c} \times(\underline{a}+\underline{b}) \\
\Rightarrow & \underline{c} \times \underline{c}=\underline{c} \times \underline{a}+\underline{c} \times \underline{b} \\
\Rightarrow & \underline{0}=-\underline{a} \times \underline{c}+\underline{c} \times \underline{b} \\
& \underline{a} \times \underline{c}=\underline{c} \times \underline{b} \cdots \cdots(1) \tag{1}
\end{align*}
$$

आবার, $\underline{a} \times \underline{c}=\underline{a} \times(\underline{a}+\underline{b})$
$\Rightarrow \underline{a} \times \underline{c}=\underline{a} \times \underline{a}+\underline{a} \times \underline{b}$
$\Rightarrow \underline{a} \times \underline{c}=\underline{a} \times \underline{b} \cdot \cdots$
(2) $[\quad \underline{a} \times \underline{a}=\underline{0}]$
(1) ఆ (2) হতে পাই, $\underline{a} \times \underline{c}=\underline{c} \times \underline{b}=\underline{a} \times \underline{b}$
$\Rightarrow \mathrm{ac} \sin \mathrm{B} \hat{n}=\mathrm{cb} \sin \mathrm{A} \hat{n}$

$$
=\mathrm{ab} \sin (\pi-C) \hat{n} \text { यथन } \hat{n} \text { रू }
$$

$\triangle A B C$ সমতলের উপর নম্ব একক ভেষ্ঠর।
$\Rightarrow \frac{a c \sin B}{a b c}=\frac{b c \sin A}{a b c}=\frac{a b \sin C}{a b c}$

$$
-\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

13. $\overline{\mathrm{A}}=\hat{i}+2 \hat{j}-3 \hat{k}$ जবए $\overline{\mathrm{B}}=3 \hat{i}-\hat{j}+2 \hat{k}$.

 চ.'০৭,’১২,’১৪; মা.বো.'০৮; দি.’১০; ব.'১০,’১২; মা.’১8; বুভ্যেট’১১-১২।
(c) দেथাও यে, $\overline{\mathrm{A}}, \overline{\mathrm{A}}-\overline{\mathrm{B}}$ এবए $4 \hat{i}+2 \hat{j}-2 \hat{k}$
 बरে।
সयाधानः (a) $|\overline{\mathrm{A}}|=\sqrt{1+4+9}=\sqrt{14}$
$\overline{\mathrm{A}}$ ভেট্টরের দিক বরাবর একক ভেষ্ঠর $=\frac{\overline{\mathrm{A}}}{|\overline{\mathrm{A}}|}$
$=\frac{\mathrm{i}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}}{\sqrt{14}}=\hat{\mathrm{A}}$
$\overline{\mathrm{A}}$ डেষ্টর বরাবর $\overline{\mathrm{B}}$ ভেষ্ঠেরের অংশক নির্ণয় কর
$=(\hat{A} \cdot \bar{B}) \hat{A}=\left\{\frac{\hat{i}+2 \hat{j}-3 \hat{k}}{\sqrt{14}} \cdot(3 \hat{i}-\hat{j}+2 \hat{k})\right\} \hat{A}$
$=\frac{3-2-6}{\sqrt{14}} \hat{\mathrm{~A}}=-\frac{5}{\sqrt{14}} \frac{\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}}{\sqrt{14}}$

$$
=-\frac{5}{14}(\hat{i}+2 \hat{j}-3 \hat{k})
$$

(b) প্রশ্নমাबা IIB এत्र 10(c).
(c) প্রমাণः $\overline{\mathrm{A}}-\overline{\mathrm{B}}=$

দেষাও यে, $\overline{\mathrm{A}}, \overline{\mathrm{A}}-\overline{\mathrm{B}}$ जबए $4 \hat{i}+2 \hat{j}-2 \hat{k}$ डেষ্ঠ্ব তিনটি একটি সমকোণী बिভ्মজ গঠন কর্রে।
প্रमাण : $|\overline{\mathrm{A}}|=|\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}|=\sqrt{1+4+9}=\sqrt{14}$
$|\overline{\mathrm{A}}-\overline{\mathrm{B}}|=|-2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}|=\sqrt{4+9+25}=\sqrt{38}$
$|4 \hat{i}+2 \hat{j}-2 \hat{k}|=\sqrt{16+4+4}=\sqrt{24}$
$\sqrt{14}, \sqrt{38}$ в $\sqrt{24}$ এর যেকোনো দুইটির সমষ্টি তৃতীয়টি অপেক্ষা বৃহত্তর এবং $(\sqrt{14})^{2}+(\sqrt{24})^{2}=$ $14+24=38=(\sqrt{38})^{2}$

প্রদত্ত ডেষ্ঠের তিনটি একটি সমকোণী ত্রিভুজ গঠন. করে।
14. ABC बিভুজ্রের্গ $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ বাহूधणित्र মধ্যবিন্দু যथাক্রম্মে D,E,F ।
(a) প্রমাণ क্র यে, $\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{BE}}+\overrightarrow{\mathrm{CF}}=\underline{0}$
[ঢ. '০৭; य. '০৬,’১১; চ.'০৬; ব্रा.'১১'১৩; সি.'০৯, '১২; ব. '০৭,'১২; দি.’১৩]
(b) ভেষ্ঠ্র প্্রতিতে দেষাও বে, AD, BE © CF সমবিन्দू।
[ঢ. '১১,'১৪; র্রা. ’১২; ব. '১০,’১8; চ.'০৭; य.'১০; ক. '১০,'১২,'১8; মা.বো.'০৯,'১২; দি.'১৪]
(c) B, C в D Aिन्मूর্र द्रानाई यथाबম্ম $(2,-3,0)$, $(4,-4,1)$ ఆ $(1,2,-6)$ राে DE जत्र ङৌ্ন্ন সমীক্রণ निर्ৰ্য কন্ন।
(a) প্রশ্নমালা IIA এর্প উদাহন্রণ 1(c)
(b) ब্রশ্নমালা IIC जর্र 2 নং থ্র্ন ।
(c) প্রশ্নমানা IIB এর্প উদাহর্রণ 9
15. মूबকिन्मू \mathbf{O} এर সাপেক্ষে $A \ominus B$ এत्र बदग्थान डৌ্ট যथার্মমে $2 \hat{i}-3 \hat{j}-\hat{k} \otimes \hat{i}+4 \hat{j}+3 \hat{k}$ ।
 কর।

(c) OAB ब्बिভूজणिর কোণ তিনটি নির্ণয় কন। সমাধান:

(a) $\overrightarrow{\mathrm{OA}}$ डেঁ্টরের উপর $\overrightarrow{\mathrm{OB}}$ ভद্টরের অভিক্ষেপ

$$
\begin{aligned}
& =\frac{\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}}{|\overrightarrow{\mathrm{OA}}|}=\frac{(2 \hat{i}-3 \hat{j}-\hat{k}) \cdot(\hat{i}+4 \hat{j}+3 \hat{k})}{|2 \hat{i}-3 \hat{j}-\hat{k}|} \\
& =\frac{2-12-3}{\sqrt{4+9+1}}=\frac{-13}{\sqrt{14}}
\end{aligned}
$$

(b) $\quad \overrightarrow{\mathrm{AB}}=(\hat{i}+4 \hat{j}+3 \hat{k})-(2 \hat{i}-3 \hat{j}-\hat{k})$

$$
=-\hat{i}+7 \hat{j}+4 \hat{k}
$$

$\mathrm{A}(\underline{a})$ द্निभूগামী এবং $\overrightarrow{\mathrm{AB}}=\underline{b}$ Јেট্টরের সমান্তরাল সরলরেখার ভেষ্ঠর সমীকরণ

$$
\underline{\mathrm{r}}=\underline{a}+\mathrm{t} \underline{b}
$$

$\Rightarrow \underline{\mathrm{r}}=2 \hat{i}-3 \hat{\mathrm{j}}-\hat{k}+\mathrm{t}(-\hat{\mathrm{i}}+7 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}) ;$ বেখানে t একটি প্যারামিটার।
(c) দদওয়া আছে, OAB ত্রিভুজে,
$\overrightarrow{\mathrm{OA}}=2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-\hat{\mathrm{k}}$

$$
\overrightarrow{\mathrm{AO}}=-2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}}
$$

এবर $\overrightarrow{\mathrm{OB}}=\hat{\mathrm{i}}+4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$

$$
\overrightarrow{\mathrm{BO}}=-\mathrm{i}-4 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}
$$

এथन, $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OB}}$

$$
\begin{aligned}
& =-2 \hat{i}+3 \hat{j}+\hat{k}+\hat{i}+4 \hat{j}+3 \hat{k} \\
& =-i+7 \hat{j}+4 \hat{k} \quad \overrightarrow{B A}=i-7 \hat{j}-4 \hat{k}
\end{aligned}
$$

$$
\cos \mathrm{AOB}=\frac{\overrightarrow{\mathrm{OA}} \overrightarrow{\mathrm{OB}}}{|\overrightarrow{\mathrm{OA}}||\overrightarrow{\mathrm{OB}}|}
$$

এবং $\quad \overline{\mathrm{r}}=(7+2 \mathrm{~s}) \hat{\mathrm{i}}+(4+\mathrm{s}) \hat{\mathrm{j}}+(3+4 \mathrm{~s}) \hat{\mathrm{k}}$ রেখাদ্ময় ছেদ করলে, $3+2 \mathrm{t}=7+2 \mathrm{~s} \quad \cdots$ (i),
$8-\mathrm{t}=4+\mathrm{s} \cdots \quad$ (ii) এবং
$-2+3 \mathrm{t}=3+4 \mathrm{~s}$.
(iii) সত্য হবে।
(i) + (ii) $\times 2 \Rightarrow 3+16=7+8+4 \mathrm{~s}$
$\Rightarrow 4 \mathrm{~s}=4 \Rightarrow \mathrm{~s}=1$
(ii) হতে পাই, $8-\mathrm{t}=4+1 \Rightarrow \mathrm{t}=3$
$\mathrm{s}=1, \mathrm{t}=3$ এর জन্য (iii) এর
বামপক্ষ $=-2+3 \times 3=7$ এবং
ডानপক্ষ $=3+4 \times 1=7$ সমान।
সরলরেখাদ্য পরস্পরকে ছেদ করে।
ছেদবিন্দুর অবস্থান ভেষ্টের $=9 \hat{i}+5 \hat{j}+7 \hat{k}$
ভর্তি পরীশ্শার্র MCQ :
 পরস্সর बম্ব হলে λ এর মান - [DU 02-03, 0607; NU 08-09, 05-06; RU 12-13,09-10]

Sol ${ }^{n} .4 \lambda-6-6=0 \Rightarrow \lambda=3$
2. $\hat{i}+3 \hat{j}-6 \hat{k}$ ® $m \hat{i}+2 \hat{j}+4 \hat{k}$ डেچ্ঠেরबয় পরস্পর बম্ব হলে \mathbf{m} এর মান -
[BUET 07-08]
Sol ${ }^{n} . \mathrm{m}+6-24=0 \Rightarrow \mathrm{~m}=18$
3. $\overrightarrow{F_{1}}=2 \hat{i}-3 \hat{j}$ \& $\overrightarrow{F_{2}}$ दन मूइढित व<्षि $\overrightarrow{F_{3}}=5 \hat{i}+4 \hat{j}$ হबে $\overrightarrow{F_{2}}=$?
[DU 06-07]
Sol ${ }^{n} . \vec{F}_{1}+\overrightarrow{F_{2}}=\overrightarrow{F_{3}} \Rightarrow \overrightarrow{F_{2}}=\overrightarrow{F_{3}}-\overrightarrow{F_{1}}$
$\Rightarrow \overrightarrow{F_{2}}=(5 \hat{i}+4 \hat{j})-(2 \hat{i}-3 \hat{j})=3 \hat{i}+7 \hat{j}$
4. $\vec{A}=\hat{i}-2 \hat{j}+3 \hat{k}$ এবR $\vec{B}=2 \hat{i}+\hat{j}-\hat{k}$ रक़ে $\vec{A} \cdot \vec{B}=$?
[DU 01-02]
Sol $^{n} \cdot \vec{A} \cdot \vec{B}=2-2-3=-3$
5. $\vec{B}=2 \hat{i}+10 \hat{j}-11 \hat{k}$ Јৌ্ট বরাবর
$\vec{A}=2 \hat{i}+2 \hat{j}+\hat{k}$ ডেষ্টরের উপাছশের মান-
[CU 07-08]

Sol n. মान $=\frac{\vec{A} \cdot \vec{B}}{|\vec{B}|}=\frac{4+20-11}{\sqrt{4+100+121}}=\frac{13}{15}$
6. $\vec{Y}=2 \hat{i}-3 \hat{j}+5 \hat{k}$ ङেট্টের উপর $\vec{X}=-\hat{i}+\hat{j}-4 \hat{k}$ এর बडिढ্কেপ- [CU 07-08]
Sol ${ }^{n}$. जडिद्भেপ $=\frac{\vec{X} \vec{Y}}{|\vec{Y}|}=\frac{-2-3-20}{\sqrt{4+9+25}}=\frac{-25}{\sqrt{38}}$
7. $\vec{X}=4 \hat{i}-2 \hat{j}+5 \hat{k}$ जবर
$\vec{Y}=3 \hat{i}+\hat{j}-2 \hat{k}$

[CU 07-08]
Sol $^{n} \cdot \cos \theta=\frac{\vec{X} \cdot \vec{Y}}{|\vec{X}||\vec{Y}|}$
$=\frac{12-2-10}{\sqrt{16+4+25} \sqrt{9+1+4}}=0 \therefore \theta=90^{\circ}$
 কোণ-
[BUET 07-08]
Sol $^{n} \cdot \cos \theta=\frac{2+0-3}{\sqrt{4+9} \sqrt{1+1+1}}=\frac{-1}{\sqrt{13} \sqrt{3}}$

$$
\theta=\cos ^{-1}\left(\frac{-1}{\sqrt{39}}\right)
$$

9. a এর মান रত হাে, $\vec{A}=5 \hat{i}+2 \hat{j}+3 \hat{k}$ जरृ

[IU 07-08]
Sol ${ }^{n} . \vec{A}$ B \vec{B} সমাল্তর্木ाब বनে, $\frac{5}{15}=\frac{2}{a}=\frac{3}{9}$

$$
a=6
$$

10. দूইजि डেৃ্ট $\vec{A}=2 \hat{i}-6 \hat{j}-3 \hat{k}$ এবर $\vec{B}=4 \hat{i}+3 \hat{j}-\hat{k}$ हाরা গঠিত সমতনের উপর এবটি একক নम्य ভেট্ঠর -
[SU 06-07]

$$
\begin{aligned}
& \text { Sol }^{n} \cdot \vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & -6 & -3 \\
4 & 3 & -1
\end{array}\right| \\
& =(6+9) \hat{i}-(-2+12) \hat{j}+(6+24) \hat{k}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\eta}= \pm \frac{\vec{A} \times \vec{B}}{|\vec{A} \times \vec{B}|}= \pm \frac{15 \hat{i}-10 \hat{j}+30 \hat{k}}{\sqrt{225+100+900}} \\
& = \pm \frac{1}{7}(3 \hat{i}-2 \hat{j}+6 \hat{k})
\end{aligned}
$$

11. $|\vec{A} \times \vec{B}|^{2}+|\vec{A} \cdot \vec{B}|^{2}$ এर মান-

Sol $^{n} \cdot|\vec{A} \times \vec{B}|^{2}+|\vec{A} \cdot \vec{B}|^{2}$
$=(\mathrm{AB} \sin \theta)^{2}+(\mathrm{AB} \cos \theta)^{2}$
$=A^{2} B^{2}$

Sol ${ }^{n} . i \cdot(\hat{j} \times \hat{k})=\hat{i} \cdot \hat{i}=1$
13. m उর্রের এ邓টি বস্তর্ন উপর প্রयूब্ভ $\vec{F}=5 \vec{x}+4 \vec{y}$

 কোণ তৈরী করবে সে বলের মান কত? [RU 07-08]

Sol ${ }^{n}$. $(5 \vec{x}+4 \vec{y}) \cos 45^{\circ}$
14. यमि दल $\vec{F}=2 \hat{i}+3 \hat{j}+\hat{k}$ जब সर्तण $\vec{S}=\hat{i}+2 \hat{j}+5 \hat{k}$ इয় হবে বাब $W=$?
[RU 06-07]
Sol ${ }^{n} . \mathrm{W}=\vec{F} \quad \vec{S}=2+6+5=13$
15. यमि প্रयूब्ठ दन $\vec{F}=5 \hat{i}+2 \hat{j}-\hat{k}$ जর घूर्ৰाয়মান
 $\vec{r}=2 \hat{i}-\hat{j}+3 \hat{k}$ इয় তবে বनের মোমেস্ট T এর মান दठ?
[RU 06-07]

$$
\begin{aligned}
& \text { Sol }^{n}:: \vec{T}=\vec{F} \times \vec{r}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3 & 2 & -1 \\
2 & -1 & 3
\end{array}\right| \\
& =(6-1) \hat{i}-(9+2) \hat{j}+(-3-4) \hat{k} \\
& =5 \hat{i}-11 \hat{j}-7 \hat{k} \\
& \quad \mathrm{~T}=|\vec{T}|=\sqrt{25+121+49}=\sqrt{195}
\end{aligned}
$$

16. XOZ उबেন্र সমानত্রাन এবश $3 \hat{i}-\hat{\mathrm{j}}+4 \hat{\mathrm{k}}$心েট্টের্নে সাশে নম্ম একক ভৌ্ট্র হবে-

Sol ${ }^{n}$: : XOZ তनের সমানতরাল বলে $\hat{\mathrm{i}}$ ও $\hat{\mathrm{k}}$ উপাংশ থাকবে। XOZ তनের সমানতরাল এবং $3 \hat{i}-\hat{j}+4 \hat{k}$ ડেষ্টেরের সাথ্থে নম্ম ভেষ্টে $4 \hat{i}-3 \hat{k}$. [BUET 10-11] निচ্ণেয় একক ডেষ্ঠর $=\frac{4 \hat{\mathrm{i}}-3 \hat{\mathrm{k}}}{\sqrt{16+9}}=\frac{4 \hat{\mathrm{i}}-3 \hat{\mathrm{k}}}{5}$

এब ন氏রে প্রর্যো氏নীয় সুদ্রাবসী 8

1. $x=r \cos \theta, y=r \sin \theta$ रबে, $r=\sqrt{x^{2}+y^{2}}, \theta=\tan ^{-1} \frac{y}{x}$
2. (i) $P(x, y)$ বিদ্দুর দুরত্ব x-অক্ হতে $=|y|$ এবर y-অক্ষ इতে $=|x|$
(ii) $\mathrm{P}\left(x_{1}, y_{1}\right)$ बবश $\mathrm{G}\left(x_{2}, y_{2}\right)$ दिস্দুषয়ের মধ্যবর্তী मूব্নত্ব $=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$

 कन্নन, $\mathrm{R} \equiv\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right), \frac{m_{1}}{m_{2}}=\frac{x_{1}-x}{x-x_{2}}=\frac{y_{1}-y}{y-y_{2}}$

বरिर্িিভ্ত করনে, $\mathrm{R} \equiv\left(\frac{m_{1} x_{2}-m_{2} x_{1}}{m_{1}-m_{2}}, \frac{m_{1} y_{2}-m_{2} y_{1}}{m_{1}-m_{2}}\right), \frac{m_{1}}{m_{2}}=\frac{x_{1}-x_{2}}{x_{2}-x}=\frac{y_{1}-y_{2}}{y_{2}-y}$
(ii) $\mathrm{P}\left(x_{1}, y_{1}\right)$ এবং $\mathrm{g}\left(x_{2}, y_{2}\right)$ বিদ্দুময়ের সरযোগ রেখার মধ্যবিস্দুর্র স্থানাজ্অ $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
 স্यानাब্ফ $\left(\frac{k x_{2}+x_{1}}{k+1}, \frac{k y_{2}+y_{1}}{k+1}\right)$

 $\delta_{A B C}=\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=\left|\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right|+\left|\begin{array}{ll}x_{2} & x_{3} \\ y_{2} & y_{3}\end{array}\right|+\left|\begin{array}{ll}x_{3} & x_{1} \\ y_{3} & y_{1}\end{array}\right|=\left(x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}\right)-\left(y_{1} x_{2}+y_{2} x_{3}+y_{3} x_{1}\right)$ $=\left(x_{1}-x_{2}\right)\left(y_{2}-y_{3}\right)-\left(y_{1}-y_{2}\right)\left(x_{2}-x_{3}\right)$ बदर $\triangle \mathrm{ABC}=\frac{1}{2}\left|\delta_{A B C}\right|=\frac{1}{2}| |$
6. $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ বিস্মু
7. ABCD চणूर्षूज्ञে बেত্ত্ण $=\frac{1}{2}\left|\left(x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{4}+x_{4} y_{1}\right)-\left(y_{1} x_{2}+y_{2} x_{3}+y_{3} x_{4}+y_{4} x_{1}\right)\right|$
 9. AB রেখাtি CD রেখাষশকে E কিদ্দুতে $m_{1}: m_{2}$ অनूপতে বিভ্ত্ত করনে $\frac{C E}{D E}=\frac{m_{1}}{m_{2}}=\frac{\delta_{A B C}}{\delta_{A B D}}$. প্রমাণ : AB এর উপর CN ও DM লম্ব হল্ে, $\triangle C N E$ ও $\triangle D M E$ সদৃশ।

$$
\frac{C N}{D M}=\frac{C E}{D E}=\frac{m_{1}}{m_{2}} \quad \frac{\Delta A B C}{\triangle A B D}=\frac{\frac{1}{2} \delta_{A B C}}{\frac{1}{2} \delta_{A B D}}=\frac{\frac{1}{2} A B \times C N}{\frac{1}{2} A B \times D M}=\frac{m_{1}}{m_{2}} \Rightarrow \frac{m_{1}}{m_{2}}=\frac{\delta_{A B C}}{\delta_{A B D}} \frac{\mathrm{C}}{\mathrm{C}}
$$

ক্রম ভিন্ন বলে অনুপাত ঋণাতক হবে। অতএব, অনুপাত (+) হলে বহির্বিভক্ত করবে এবং (-) হলে অম্তর্বিতক্ত করবে।

MCQ এর बन্য，1．$A \equiv\left(x_{2}+x_{3}-x_{1}, y_{2}+y_{3}-y_{1}\right)$

$$
\begin{aligned}
& B \equiv\left(x_{1}+x_{3}-x_{2}, y_{1}+y_{3}-y_{2}\right) \\
& C \equiv\left(x_{1}+x_{2}-x_{3}, y_{1}+y_{2}-y_{3}\right)
\end{aligned}
$$

$$
(\mathrm{x}, \mathrm{y})=\left(x_{2}+x_{3}-x_{1}, y_{2}+y_{3}-y_{1}\right)
$$

 $\left(\frac{x_{1}+x_{2}+\sqrt{3}\left(y_{1}-y_{2}\right)}{2}, \frac{y_{1}+y_{2}-\sqrt{3}\left(x_{1}-x_{2}\right)}{2}\right)$ या，$\left(\frac{x_{1}+x_{2}-\sqrt{3}\left(y_{1}-y_{2}\right)}{2}, \frac{y_{1}+y_{2}+\sqrt{3}\left(x_{1}-x_{2}\right)}{2}\right)$

প্রশ্নমালা III A

1．x－অक्ष रতে P बिंদूरू দूরত্ড y－पक्ष रতে এর দুরচ্大ের চি刀ুণ। x－অক্巾 হত্ এর দূরত্ব 4 একক হলে， \mathbf{P} কিদ্দুর স্পানাষ্巾 निর্ণয় কর।
সমাধান ：মনে করি，P ক্দ্দুর স্থানাভ্ক (α, β) ．
x－অক্ষ হতে P ক্দ্দির দূরত্ব $=|\beta|$ এবং
y－অক্ रতে P ক্দির্রু দূরত্ণ $=|\alpha|$
প্রম্নমত，$|\beta|=4 \Rightarrow \beta= \pm 4$ এবং
$|\beta|=2|\alpha| \Rightarrow 2|\alpha|=4$
$\Rightarrow|\alpha|=2 \Rightarrow \alpha= \pm 2$
P बি্দুর স্थानाष्क $(2,4),(2,-4),(-2,4)$ जขবा，$(-2,-4)$
 यथन $r \geq 0$ এदर $\theta \in[0,2 \pi[$ बथंया,$\theta \in]-\pi, \pi]$
（a）$(-1,-\sqrt{3})$
（b）$(1,-\sqrt{3})$

সমাধান ः（a）ধরি，$(-1,-\sqrt{3})$ এর পোলার স্থানাষ্ক （ r, θ ）．

$$
\mathrm{r}=\sqrt{(-1)^{2}+(-\sqrt{3})^{2}}=2
$$

$\theta \in\left[0,2 \pi\left[\right.\right.$ रलে，$\theta=\tan ^{-1} \frac{-\sqrt{3}}{-1}$

$$
=\pi+\tan ^{-1} \sqrt{3}=\pi+\frac{\pi}{3}=\frac{4 \pi}{3}
$$

$\theta \in]-\pi, \pi]$ इलে ，$\theta=\tan ^{-1} \frac{-\sqrt{3}}{-1}$
$=-\pi+\tan ^{-1} \sqrt{3}=-\pi+\frac{\pi}{3}=-\frac{2 \pi}{3}$
$(-\sqrt{3}, 1)$ এর পোলার স্থানাঙ্ক $\left(2, \frac{4 \pi}{3}\right)$ जথবা， （ $2,-\frac{2 \pi}{3}$ ）．
（b）ধরি，$(1,-\sqrt{3})$ এর পোলার স্থানাভ্ক (r, θ) ．

$$
\mathrm{r}=\sqrt{(-\sqrt{3})^{2}+1^{2}}=2 \text { এবr }
$$

$\theta \in]-\pi, \pi]$ रलে ，$\theta=\tan ^{-1} \frac{-\sqrt{3}}{1}$
$=-\tan ^{-1} \sqrt{3}=-\frac{\pi}{3}$
$\theta \in]-\pi, \pi]$ रून，$\theta=\tan ^{-1} \frac{-\sqrt{3}}{1}$

$$
=2 \pi-\tan ^{-1} \sqrt{3}=2 \pi-\frac{\pi}{3}=\frac{5 \pi}{3}
$$

（ $1,-\sqrt{3}$ ）এর্ পোলার স্থানাজ্ক $\left(2,-\frac{\pi}{3}\right)$ ．বা，
（ $2, \frac{5 \pi}{3}$ ）

（a）$\left(\sqrt{2}, \frac{5 \pi}{4}\right)(b)\left(-2,120^{\circ}\right)\left(\right.$ c）$\left(\sqrt{2},-\frac{\pi}{4}\right)$

2(ii) সমাষান ः (a) ($\left.\sqrt{2}, \frac{5 \pi}{4}\right)$ এর কার্ত্তসীয় স্থানাক্ক $=\left(\sqrt{2} \cos \frac{5 \pi}{4}, \sqrt{2} \sin \frac{5 \pi}{4}\right)$
$=\left(\sqrt{2} \cos \left(\pi+\frac{\pi}{4}\right), \sqrt{2} \sin \left(\pi+\frac{\pi}{4}\right)\right)$
$=\left(\sqrt{2} \cos \left(\pi+\frac{\pi}{4}\right), \sqrt{2} \sin \left(\pi+\frac{\pi}{4}\right)\right)$
$=\left(-\sqrt{2} \cos \frac{\pi}{4},-\sqrt{2} \sin \frac{\pi}{4}\right)$
$=\left(-\sqrt{2} \cdot \frac{1}{\sqrt{2}},-\sqrt{2} \cdot \frac{1}{\sqrt{2}}\right)=(-1,-1)$
(b) $\left(-2,120^{\circ}\right)$ এর কार्তেসীয় স্থাनाष्क
$=\left(-2 \cos 120^{\circ},-2 \sin 120^{\circ}\right)$
$=\left(-2 \cos \left(90^{\circ}+30^{\circ}\right),-2 \sin \left(90^{\circ}+30^{\circ}\right)\right)$
$=\left(2 \sin 30^{\circ},-2 \cos 30^{\circ}\right)$
$=\left(2 \cdot \frac{1}{2},-2 \cdot \frac{\sqrt{3}}{2}\right)=(1,-\sqrt{3})$
(c) $\left(\sqrt{2},-\frac{\pi}{4}\right)$ এর কার্ত্রেীয় স্থানাষ্ক
$=\left(\sqrt{2} \cos \left(-\frac{\pi}{4}\right), \sqrt{2} \sin \left(-\frac{\pi}{4}\right)\right)$
$=\left(\sqrt{2} \cos \frac{\pi}{4},-\sqrt{2} \sin \frac{\pi}{4}\right)$
$=\left(\sqrt{2} \cdot \frac{1}{\sqrt{2}},-\sqrt{2} \cdot \frac{1}{\sqrt{2}}\right)=(1,-1)$
3. পোणाর সমীকরণকে কার্চেসীয় সমীকন্মণে এবए কার্ত্রেীয় সমীক্রণকে পোলার সমীকরণে প্রকাশ কন :
(a) $y=x \cot \alpha$
(b) $\mathrm{r}^{2}=a^{2} \cos 2 \theta$.

সমাধান : (a) $y=x \cos ^{\wedge} \alpha$
$\Rightarrow \mathrm{r} \sin \theta=\mathrm{r} \cos \theta \cot \alpha$
$\Rightarrow \tan \theta=\tan \left(\frac{\kappa}{2}-\alpha\right) \Rightarrow \theta=\frac{\pi}{2}-\alpha$ (Ans.)
(b) $\mathrm{r}^{2}=a^{2} \cos 2 \theta$
$\Rightarrow r^{2}=a^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$

$$
\begin{aligned}
& \Rightarrow \mathrm{r}^{2}=a^{2}\left(\frac{x^{2}}{r^{2}}-\frac{y^{2}}{r^{2}}\right) \\
& \quad[\because x=r \cos \theta, y=r \sin \theta \\
& \Rightarrow\left(\mathrm{r}^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right) \\
&\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right) \text { (Ans.) }
\end{aligned}
$$

4(a) দেখাఆ যে, $\left(2 \sqrt{3}, 90^{\circ}\right),\left(2,120^{\circ}\right)$ এবर
 প্রমাণ : ধরি, প্রদত্ত ক্দিৰুর্র $\mathrm{A}\left(2 \sqrt{3} \quad 90^{\circ}\right)$, $\mathrm{B}\left(2,120^{\circ}\right)$ B $\mathrm{C}\left(2,60^{\circ}\right)$
$\therefore \mathrm{AB}=\sqrt{(2 \sqrt{3})^{2}+2^{2}-2.2 \sqrt{3} \cdot 2 \cos \left(90^{\circ}-120^{\circ}\right)}$
$=\sqrt{12+4-8 \sqrt{3} \cos 30^{\circ}}=\sqrt{16-8 \sqrt{3} \cdot \frac{\sqrt{3}}{2}}$
$=\sqrt{16-12}=2$
$\mathrm{BC}=\sqrt{4+4-8 \cos 60^{\circ}}=\sqrt{8-8 \cdot \frac{1}{2}}=2$

$$
C A=\sqrt{4+12-8 \sqrt{3} \cos 30^{\circ}}
$$

$$
=\sqrt{16-8 \sqrt{3} \cdot \frac{\sqrt{3}}{2}}=\sqrt{16-12}=2
$$

$\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ এর যেকোন দুইটির সমষ্টি ঢৃতীয়ি অপেষ্ষা বৃহতর এবং $\mathrm{AB}=\mathrm{CA}=\mathrm{CA}=2$.

প্রদত্ত বি্দুত্র্য একটি সমবাহু ত্রিভুজের শীর্ষব্দ্দু।
4(b) $P(4,0)$ এবर $Q(0,4)$ বिन्मूष्य এबটि সমবাহ्र
 সমাধান : মনে করি, সমবাাুু ত্রিডুজ্জের ঢৃতীয় শীর্ষের স্সানাষ्க $\mathrm{R}(x, y) . \therefore P Q^{2}=Q R^{2}=R P^{2}$
এখन, $Q R^{2}=R P^{2}$ रতে পাই,
$\Rightarrow(0-x)^{2}+(4-y)^{2}=(x-4)^{2}+(y-0)^{2}$
$\Rightarrow x^{2}+16-8 y+y^{2}=x^{2}-8 x+16+y^{2}$
$\Rightarrow-8 y=-8 x \Rightarrow y=x$
$P Q^{2}=Q R^{2}$ रण পাই,
$\Rightarrow 4^{2}+4^{2}=x^{2}+16-8 y+y$
$\Rightarrow 32=x^{-}+16-8 x+x^{2}\lfloor\quad y=x]$
$\Rightarrow 2 x^{2}-8 x-16=0$
$\Rightarrow \quad-4 x-8=0$

$$
\begin{aligned}
& x=\frac{-(-4) \pm \sqrt{16-(-32)}}{2.1}=\frac{4 \pm \sqrt{48}}{2} \\
&=\frac{4 \pm 4 \sqrt{3}}{2}=2 \pm 2 \sqrt{3} \\
& y=2+2 \sqrt{3}, \text { यथन } x=2+2 \sqrt{3} \text { এবং } \\
& y=2-2 \sqrt{3}, \text { यथन } x=2-2 \sqrt{3} \\
& \text { তৃठीয় गীর্ষের ग्थानाष्क }(2+2 \sqrt{3}, 2+2 \sqrt{3})
\end{aligned}
$$

$$
\text { বा, }(2-2 \sqrt{3}, 2-2 \sqrt{3})
$$

[বি.দ্র.: $M C Q$ এর ক্ষেত্রে ,তৃতীয় শীর্ধের স্থানাষ্ক = $\left(\frac{4+0+\sqrt{3}(0-4)}{2}, \frac{0+4-\sqrt{3}(4-0)}{2}\right)$ या, $\left(\frac{4+0-\sqrt{3}(0-4)}{2}, \frac{0+4+\sqrt{3}(4-0)}{2}\right)$ जबाल $(2-2 \sqrt{3}, 2-2 \sqrt{3})$ বा, $(2+2 \sqrt{3}, 2+2 \sqrt{3})]$
 ' $(3,4)$) $(3,6)$ । AB বাহ্হুর উপর অষ্किত সমবাহ্র

সমাशাन 8 মনে बরি, সমবাহू ত্রিডूজ্জে তৃতীয় শীর্ষের ग्थानाष्क $\mathrm{C}(x, y) . \therefore \quad A B^{2}=B C^{2}=C A^{2}$ এখন, $B C^{2}=C A^{2}$ হতে পাই,

$$
\begin{align*}
& \Rightarrow(3-x)^{2}+(6-y)^{2}=(x-3)^{2}+(y-4)^{2} \\
& \Rightarrow(6-y)^{2}-(y-4)^{2}=0 \\
& \Rightarrow(6-y+y-4)(6-y-y+4)=0 \\
& \Rightarrow 2(-2 y+10)=0 \Rightarrow y=5 \cdots \cdots(1) \tag{1}
\end{align*}
$$

$A B^{2}=B C^{2}$ হতে পাই,
$\Rightarrow|4-6|^{2}=(3-x)^{2}+(6-y)^{2}$
$\Rightarrow 4=9-6 x+x^{2}+(6-5)^{2}[\because y=5]$
$\Rightarrow x^{2}-6 x+6=0$

$$
x=\frac{-(-6) \pm \sqrt{36-24}}{2.1}=\frac{6 \pm \sqrt{12}}{2}
$$

$$
=\frac{6 \pm 2 \sqrt{3}}{2}=3 \pm \sqrt{3}
$$

A ও B ব্দ্দুর ভুজ 3 এবং C ব্দ্দুটি AB রেখার

সাপেক্ষে মৃনব্দ্দুর বিপরীত পাশে অবস্থিত বলে, C এর ভুজ 3 অপেক্ষা বেশী হবে।
C বিन्দूর স্থানাক্ $(3+\sqrt{3}, 5)$
[दि. দ্র. MCQ এর ক্ষেত্রে , তৃতীয় শীর্ষের স্পানাষ্ক
$=\left(\frac{3+3-\sqrt{3}(4-6)}{2}, \frac{4+6+\sqrt{3}(3-3)}{2}\right)$
$=(3+\sqrt{3}, 5)]$
5(a) দেখাও মে, $(2,-2),(8,4),(5,7)$ जবर $(-1,1)$ কিদ্দুগুলি এঝটি জায়তের কৌনিক বিদ্দু।

প্রমাণ : ধরি, প্রদত্ত বিষ্দু চারটি $\mathrm{A}(2,-2), \mathrm{B}(8,4)$, $\mathrm{C}(5,7), \mathrm{D}(-1,1)$.

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(2-8)^{2}+(4+2)^{2}} \\
& =\sqrt{36+36}=6 \sqrt{2}
\end{aligned}
$$

$\mathrm{BC}=\sqrt{(8-5)^{2}+(4-7)^{2}}=\sqrt{9+9}=3 \sqrt{2}$
$\mathrm{CD}=\sqrt{(5+1)^{2}+(7-1)^{2}}=\sqrt{36+36}=6 \sqrt{2}$
$\mathrm{DA}=\sqrt{(-1-2)^{2}+(1+2)^{2}}=\sqrt{9+9}=3 \sqrt{2}$
$\mathrm{AC}=\sqrt{(2-5)^{2}+(-2-7)^{2}}=\sqrt{9+81}=3 \sqrt{10}$
$\mathrm{BD}=\sqrt{(8+1)^{2}+(4-1)^{2}}=\sqrt{81+9}=3 \sqrt{10}$
ABCD চতুর্ভুজ্েের বিপরীত বাদ্মুদ্য পারস্মর সমান অর্বাৎ $\mathrm{AB}=\mathrm{CD}=6 \sqrt{2}, \mathrm{BC}=\mathrm{DA}=3 \sqrt{2}$ এবश কর্ণদ্দয় পরম্র সমান অর্ৰাৎ $\mathrm{AC}=\mathrm{BD}=3 \sqrt{10}$ প্রদত্ত ক্ন্দুগুলি একটি আয়তের কৌিিক কিন্দু।
$5(b)$ দেখাও বে, $(1,1),(-4,13),(8,8)$ এবए $(13$, -4) বিস্দুগুলি একটি রম্মসের কৌনিক বিস্দু। [দি.'১১]

প্রমাণ ঃ ধরি，প্রদত্ত বি্দু চারটি $\mathrm{A}(1,1), \mathrm{B}(-4,13)$ ， $\mathrm{C}(8,8)$ ও $\mathrm{D}(13,-4)$ ．
$\therefore \mathrm{AB}=\sqrt{(1+4)^{2}+(1-13)^{2}}$

$$
=\sqrt{25+144}=\sqrt{169}=13
$$

$\mathrm{BC}=\sqrt{(-4-8)^{2}+(13-8)^{2}}$
$=\sqrt{144+25}=\sqrt{169}=13$
$\mathrm{CD}=\sqrt{(8-13)^{2}+(8+4)^{2}}$
$=\sqrt{25+144}=\sqrt{169}=13$
$\mathrm{DA}=\sqrt{(13-1)^{2}+(-4-1)^{2}}$
$=\sqrt{144+25}=\sqrt{169}=13$
$\mathrm{AC}=\sqrt{(1-8)^{2}+(1-8)^{2}}=\sqrt{2 \times 49}=7 \sqrt{2}$
$\mathrm{BD}=\sqrt{(-4-13)^{2}+(13+4)^{2}}=17 \sqrt{2}$
ABCD চতুর্ভুজের চারটি বাহু পারস্পর সমান অর্ৰাৎ $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=13$ এবং কর্ণদ্ৰয় পরস্ণর जসমান অর্ৰৎ $\mathrm{AC} \neq \mathrm{BD}$

প্রদত্ত ব্ম্দুগুলি একটি রম্অসের কৌনিক বি্দু।
5（c）দেখাও यে，A（a，b），B（a＋$\alpha, b+\beta)$ ， $\mathbf{C}(\mathbf{a}+\alpha+\mathbf{p}, \mathrm{b}+\boldsymbol{\beta}+\mathbf{q})$ এবर $\mathbf{D}(\mathbf{a}+\mathbf{p}, \mathrm{b}+\mathbf{q})$ বিস্দুগুणি এধটি সামাশ্তর্নিক উৎপন্ন করে। কি শর্তে
 निर्ণ্য कर।
প्रघाণ ः $\mathrm{AB}=\sqrt{(a-a-\alpha)^{2}+(b-b-\beta)^{2}}$

$$
=\sqrt{\alpha^{2}+\beta^{2}}
$$

$\mathrm{BC}=\sqrt{(-p)^{2}+(-q)^{2}}=\sqrt{p^{2}+q^{2}}$
$\mathrm{CD}=\sqrt{\alpha^{2}+\beta^{2}}$
$\mathrm{DA}=\sqrt{p^{2}+q^{2}}$
$\mathrm{AC}=\sqrt{(\alpha+p)^{2}+(\beta+q)^{2}}$
$\mathrm{BD}=\sqrt{(\alpha-p)^{2}+(\beta-q)^{2}}$
ABCD চতুর্ভুজ্রের বিপরীত বাহ্ম্বয় পারস্শর সমান অধ্রাৎ $\mathrm{AB}=\mathrm{CD}$ এてং $\mathrm{BC}=\mathrm{DA}$ ．

বিস্দু চারটি একটি সামাল্তরিক উৎপন্ন করে।
（i） ABCD একটি आয়তক্কত্র হলে，কণ দুইটি পরস্পর সমান হবে। $\quad \mathrm{AC}=\mathrm{BD} \Rightarrow \mathrm{AC}^{2}=\mathrm{BD}^{2}$
$\Rightarrow(\alpha+p)^{2}+(\beta+q)^{2}=(\alpha-p)^{2}+(\beta-q)^{2}$
$\Rightarrow(\alpha+p)^{2}-(\alpha-p)^{2}=(\beta-q)^{2}-(\beta+q)^{2}$
$\Rightarrow 4 \alpha p=-4 \beta q \quad \alpha p+\beta q=0 \quad$ ইशाই निर्ণেয় শর্ত।
（ii）ABCD একটি রম্যস হলে，বাহু চারটি সমান হবে।
$\mathrm{AB}=\mathrm{BC} \Rightarrow \mathrm{AB}^{2}=\mathrm{BC}^{2}$
$\Rightarrow \alpha^{2}+\beta^{2}=p^{2}+q^{2}$ ；ইহাই निरণণেয় শর।
 ．দিগুণ এবং তা $(4,3)$ বিन्দू হতে $\sqrt{10}$ একब দুরप্大ে जবস্পিত।［द্রা．＇০৭；মা．＇০৮，＇১২，＇১৪；ঢ．＇১১；户ि．＇১৩］

সমাধান ः ধরি，ক্দ্দুটির স্থানাজ্ক $(\alpha, 2 \alpha)$ ．
$(4,3)$ बিদ্দু হতে $(\alpha, 2 \alpha)$ ক্দ্দুর দূরত্ব

$$
=\sqrt{(\alpha-4)^{2}+(2 \alpha-3)^{2}}
$$

প্রশ্নমতে，$\sqrt{(\alpha-4)^{2}+(2 \alpha-3)^{2}}=\sqrt{10}$
$\Rightarrow \alpha^{2}-8 \alpha+16+4 \alpha^{2}-12 \alpha+9=10$
$\Rightarrow 5 \alpha^{2}-20 \alpha+15=0$
$\Rightarrow \alpha^{2}-4 \alpha+3=0 \Rightarrow(\alpha-3)(\alpha-1)=0$
$\Rightarrow \alpha=1$ बथবा，$\alpha=3$
ক্দ্দুটির স্পানাষ্ক $(1,2)$ বা，$(3,6)$（Ans．）
6（b）$(a+b, b-a)$ बবर $(a-b, a+b)$ বिन्मू लেcক (x, y) কিদ্দুর দুরত্ব সমান হলে，দেখাও যে， $b x-a y=0$ ．
প্রমাণ ：ধরি，প্রদত্ত ক্দি তিনটি $\mathrm{A}(x \quad y)$ ， $\mathrm{B}(a+b, b-a), \mathrm{C}(a-b, a+b)$
প্রশ্নমতে， $\mathrm{AB}=\mathrm{AC} \Rightarrow \mathrm{AB}^{2}=\mathrm{AC}^{2}$
$\Rightarrow(x-a-b)^{2}+(y-b+a)^{2}=$

$$
(x-a+b)^{2}+(y-a-b)^{2}
$$

$$
\begin{aligned}
\Rightarrow & (x-a-b)^{2}-(x-a+b)^{2} \\
& =(y-a-b)^{2}-(y-b+a)^{2} \\
\Rightarrow & (x-a-b-x+a-b)(x-a-b+x-a+b) \\
& =(y-a-b-y+b-a)(y-a-b+y-b+a) \\
\Rightarrow & -2 b \cdot 2(x-a)=-2 a .2(y-b) \\
\Rightarrow & b x-a b=a y-a b \\
& b x-a y=0 \quad \text { (Showed) }
\end{aligned}
$$

সমাथান 8 ४রি, বিস্দूটির্ম স্থানাজ্ছ ($\alpha, 6$).
$(5,6)$ इতে বিস্পুটির দূরত্ব $=|\alpha-5|$
প্রम్नমডে, $|\alpha-5|=4 \Rightarrow \alpha-5= \pm 4$
$\Rightarrow \alpha=9$ जथবा, $\alpha=1$
বিদ্দুটির ভ্রু 9 অथবा 1.
 $B(\sqrt{3}+1,3 \sqrt{3})$ पर $\mathbf{C}(3 \sqrt{3}+1, \sqrt{3})$ दिन्श

य्रयाग $8 \mathrm{AB}=\sqrt{(a-\sqrt{3})^{2}+(a-3 \sqrt{3})^{2}}$

$$
\begin{aligned}
& =\sqrt{a^{2}-2 \sqrt{3} a+3+a^{2}-2 \cdot a \cdot 3 \sqrt{3}+27} \\
& =\sqrt{2 a^{2}-8 \sqrt{3} a+30}
\end{aligned}
$$

जबर $\mathrm{AC}=\sqrt{(a-3 \sqrt{3})^{2}+(a-\sqrt{3})^{2}}$

$$
=\sqrt{2 a^{2}-8 \sqrt{3} a+30}
$$

a এর যেকোন মানের অন্য $\mathrm{AB}=\mathrm{AC}$.

रत्र खर्य 8

$$
\begin{aligned}
B C & =\sqrt{(\sqrt{3}+1-3 \sqrt{3}-1)^{2}+(3 \sqrt{3}-\sqrt{3})^{2}} \\
& =\sqrt{(-2 \sqrt{3})^{2}+(2 \sqrt{3})^{2}}=\sqrt{24}
\end{aligned}
$$

এখन ABC সমবাহ্গ ত্রিভूध्ध হनে,

$$
\begin{aligned}
& \sqrt{2 a^{2}-8 \sqrt{3} a+30}=\sqrt{24} \\
\Rightarrow & 2 a^{2}-8 \sqrt{3} a+30=24 \\
\Rightarrow & 2 a^{2}-8 \sqrt{3} a+6=0 \Rightarrow a^{2}-4 \sqrt{3} a+3=0 \\
\Rightarrow & (a-2 \sqrt{3})^{2}=-3+12=3^{2}
\end{aligned}
$$

$\Rightarrow \mathrm{a}-2 \sqrt{3}= \pm 3 \quad \therefore \mathrm{a}=2 \sqrt{3} \pm 3$ (Ans.)
6(e) y-অष्ब बदर $(7,2)$ दिमू बिकে $(a, 5)$

[त्रा. '১০; य.'০৬,'১০; דू.'О৭; চ.'১০; ঢा.'১৩] সমাষান $8 y$-অक्ष থেকে $(a, 5)$ বিস্দুর দূরত্ব $=|a|$ এবং $(7,2)$ বিम্দু থেকে $(a \quad 5)$ বিস্দুর দূরত $=\sqrt{(a-7)^{2}+(5-2)^{2}}$
প্রশ্নমতে, $|a|=\sqrt{(a-7)^{2}+(5-2)^{2}}$
$\Rightarrow a^{2}=a^{2}-14 a+49+9$
$\Rightarrow 14 a=58 \Rightarrow a=\frac{58}{14}=\frac{29}{7}$ (Ans.)
6(f), x - जन बरर $(-5,-7)$ दिएपू बে大ে $(4, k)$

[区ू.'০১; মা. বো.'J৩]
সমাষান $8 x$-অक्ष থেকে $(4, k)$ বিস্দুটির দূরত্ব $=|k|$ এবং $(-5,-7)$ বিস্দু থেকে $(4, k)$ বিन्দूটির দূরত্ড

$$
\begin{aligned}
& =\sqrt{(-5-4)^{2}+(-7-k)^{2}} \\
& =\sqrt{81+49+14 k+k^{2}}=\sqrt{130+14 k+k^{2}}
\end{aligned}
$$

$$
\text { প্রশ্नমতে, }|k|=\sqrt{130+14 k+k^{2}}
$$

$\Rightarrow \mathrm{k}^{2}=130+14 \mathrm{k}+\mathrm{k}^{2} \therefore \mathrm{k}=-\frac{130}{14}=-\frac{65}{7}$
7.(a) $(5,7),(-1,-1) \cup(-2,6)$ বिभूप্রয় এক্সট
 निर्षय جन्न।

সমাবানঃ ধরি, বৃত্জের কেন্দ্র $O(x, y)$ এবৃ এর পরিষিস্ষ বিদ্দু তিনটি $\mathrm{A}(5,7), \mathrm{B}(-1,-1) \cup \mathrm{C}(-2,6)$ । $\mathrm{OA}=\mathrm{OB}=\mathrm{OC},[\because$ একই বৃত্खের ব্যাসার্ধ।]
$\mathrm{OA}=\mathrm{OB}$ অर्याৎ $\mathrm{OA}^{2}=\mathrm{OB}^{2}$ इতে পাই, $(x-5)^{2}+(y-7)^{2}=(x+1)^{2}+(y+1)^{2}$
$\Rightarrow x^{2}-10 x+25+y^{2}-14 y+49=$

$$
x^{2}+2 x+1+y^{2}+2 y+1
$$

$\Rightarrow 12 x+16 y=72 \Rightarrow 3 x+4 y-18=0 \cdots$ (i)
$\mathrm{OB}=\mathrm{OC}$ অर्थाৎ $\mathrm{OB}^{2}=\mathrm{OC}^{2}$ इতে পाই,
$(x+1)^{2}+(y+1)^{2}=(x+2)^{2}+(y-6)^{2}$
$\Rightarrow x^{2}+2 x+1+y^{2}+2 y+1=$

$$
\begin{equation*}
x^{2}+4 x+4+y^{2}-12 y+36 \tag{ii}
\end{equation*}
$$

$\Rightarrow 2 x-14 y+38=0 \Rightarrow x-7 y+19=0$
（i）$-3 x$（ii）$\Rightarrow 4 y+21 y-18-57=0$
$\Rightarrow 25 \mathrm{y}=75 \Rightarrow \mathrm{y}=3$
（ii）इতে পাई，$x=21-19=2$
বৃচ্জের কেন্দ্রুর স্থানাষ্ক $(2,3)$ ।

সমাষানঃ ধরি，বৃচ্টের ব্যাসটির প্রাল্ত বিপ্দুদ্য়্য $A(5,2)$ B $B(-3,-4)$ ．ঢाइলে，
रृध্िি ব্যাস $=\mathrm{AB}=\sqrt{(5+3)^{2}+(2+4)^{2}}$

$$
=\sqrt{64+36}=10 \text { এबক। }
$$

বৃछটির ব্যাসাধ $=\frac{10}{2}=5$ একক।

 নির্ণ্য কন।
［सू．＇Jo；চ．＇J৩］ সমাধানঃ «রি，$O(5,3)$ বেস্দ্রবিশিষ্ট বৃষ্大েন্গ $A B$ ब্যা এর মধ্যক্দি $\mathrm{C}(3,2)$ । তাহনে，
$\mathrm{OC} \perp \mathrm{AB}$ ，ब्यागार $\mathrm{OA}=5$ এबर $O C^{2}=(5-3)^{2}+(3-2)^{2}=5$
OAC সমকোণী ত্রিডূজ্ब হতে भाई，$O A^{2}=A C^{2}+O C^{2}$
$\Rightarrow 5^{2}=A C^{2}+5$

$\Rightarrow A C^{2}=25-5=20 \Rightarrow A C=2 \sqrt{5}$
$\mathrm{AB}=2 \times \mathrm{AC}=2 \times 2 \sqrt{5}=4 \sqrt{5}$
জ্যা এর দৈদ্য্য $4 \sqrt{5}$ একক।

 निर्गय ब्र।
［ব．＇১১］
সমাষানঃ ধরি，$O(11,2)$ কেন্দ্রবিশিষ বৃজ্তের $A B$ ब্যা এর মধ্যব্দ্দু $\mathrm{C}(2,-1)$ । তাহলে， $\mathrm{OC} \perp \mathrm{AB}$ ，

ব্যাসা\＆ $\mathrm{OA}=10$ এব
$O C^{2}=(11-2)^{2}$
$+(2+1)^{2}=81+9=90$
OAC সমকোণী ত্রিডূজ হতে পাই，$A \rightarrow C(2 .-1) B$
$O A^{2}=A C^{2}+O C^{2}$
$\Rightarrow 10^{2}=\mathrm{AC}^{2}+90$
$\Rightarrow A C^{2}=100-90=10 \Rightarrow A C=\sqrt{10}$
$A B=2 \times A C=2 \times \sqrt{10}=2 \sqrt{10}$
ब্যা এর দৈ局 $2 \sqrt{10}$ একब।
8．$A(4,3), B(11,2) \in C(2,-1)$ बिम्यूख़्र ABC बिजूष्बन कीर्ययियू।
 बत्र।

［दा．＇০৭；মা．＇০৮，＇১২，＇১৪；ঢা．＇১১；फि．＇১৩］
（c）B কেন্দ্র В 10 ব্যাসার্ধ বিশিষ্ট বৃख্জের खে জ্যা C

সমাধানः（a）মূণবিन्দू হতে $\mathrm{C}(2,-1)$ বিन्দूর দূরত্ড
$=\sqrt{2^{2}+1^{2}}=\sqrt{5}$ এक्।
x－जक্ष হতে $\mathrm{C}(2,-1)$ বিপ্দুর দूরত্ড $=|-1|=1$ এবब। এবং y－অক্ষ হতে $C(2,-1)$ বিन्দूর্র দूরত্ড $=|2|=2$ এबক।
（b）6（a）प्रछब्य।
（c）7（d）द्रह्या।

жाध

 ग्थानाण्ब निर्ग্য क्र।

সমাধান ：ধরি，P বিদ্দूর স্পানাজ্ক $(x,-6)$ ．
x－অब্ক হতে P কিদ্দूর দূরত্ব $=|-6|=6$ এবर
y－অক্巾 হতে P ক্দ্দুর দূরত্ব $=|x|$
প্রম্নমত， $6=\frac{1}{2}|x| \Rightarrow|x|=12 \Rightarrow x= \pm 12$
P ক্দির্রু স্যানাজ্ক $(12,-6)$ বা，$(-12,-6)$
2．$(1,1) \leftrightarrow(-\sqrt{3}, 1)$ কে भোनाइ इ इাनाক্ প্রকাশ कबत，यौन $r \geq 0$ जবए $\theta \in[0,2 \pi[\quad$ घथा， $\theta \in]-\pi, \pi]$ ．
সমাধানः মনে করি ，$(1,1)$ এর পোলার স্পানাষ্ট (r, θ) ．

$$
\begin{aligned}
& r=\sqrt{1^{2}+1^{2}}=\sqrt{2} \text { এবर } \\
& \theta=\tan ^{-1} \frac{1}{1}=\tan ^{-1} 1=\frac{\pi}{4}
\end{aligned}
$$

$(1,1)$ এর পোলার স্থানাক্ক $\left(\sqrt{2}, \frac{\pi}{4}\right)$
ধরি，$(-\sqrt{3}, 1)$ এর পোনার স্থানাষ্ক (r, θ) ．

$$
\begin{aligned}
& \mathrm{r}=\sqrt{(-\sqrt{3})^{2}+1^{2}}=2 \text { এবং } \\
& \theta= \tan ^{-1} \frac{1}{-\sqrt{3}}=\pi-\tan ^{-1} \frac{1}{\sqrt{3}} \\
&= \pi-\frac{\pi}{6}=\frac{5 \pi}{6} \\
&(-\sqrt{3}, 1) \text { এর পোলার স্পানাষ্ক }\left(2, \frac{5 \pi}{6}\right)
\end{aligned}
$$

3．$\left(4, \frac{\pi}{3}\right) \leftrightarrow\left(\sqrt{2},-\frac{3 \pi}{4}\right)$ कে কार्大েসীয়्य घानाबक প্রকাশ কন্ন।
$\left(4, \frac{\pi}{3}\right)$ এর बार्তেসীয় श्रानाएक $=\left(4 \cos \frac{\pi}{3}, 4 \sin \frac{\pi}{3}\right)$ $[\because(r, \theta)$ এর কার্ত্তসীয় স্থানাक $(r \cos \theta, r \sin \theta)]$

$$
=\left(4 \times \frac{1}{2}, 4 \times \frac{\sqrt{3}}{2}\right)=(2,2 \sqrt{3})
$$

এবং $\left(\sqrt{2},-\frac{3 \pi}{4}\right)$ এর কার্ত্তসীয় স্মানাষ্ক
$=\left(\sqrt{2} \cos \left(-\frac{3 \pi}{4}\right), \sqrt{2} \sin \left(-\frac{3 \pi}{4}\right)\right)$
$=\left(\sqrt{2} \cos \frac{3 \pi}{4},-\sqrt{2} \sin \frac{3 \pi}{4}\right)$
$=\left(\sqrt{2} \cos \left(\pi-\frac{\pi}{4}\right),-\sqrt{2} \sin \left(\pi-\frac{\pi}{4}\right)\right)$
$=\left(-\sqrt{2} \cos \frac{\pi}{4},-\sqrt{2} \sin \frac{\pi}{4}\right)$
$=\left(-\sqrt{2} \cdot \frac{1}{\sqrt{2}},-\sqrt{2} \cdot \frac{1}{\sqrt{2}}\right)=(-1,-1)$
4．$x^{2}-y^{2}=a^{2}$ बে পোলার্প সমীক্木c্ণ এবए r^{2} $\sin 2 \theta=2 a^{2}$ কে কার্ডেসীয় সমীকব্পণে ब্রকাশ কব্গ ।
गমाधान ：$x^{2}-y^{2}=a^{2}$
$\Rightarrow(\mathrm{r} \cos \theta)^{2}-(\mathrm{r} \sin \theta)^{2}=a^{2}$

$$
[\because x=\mathrm{r} \cos \theta, y=\mathrm{r} \sin \theta]
$$

$\Rightarrow \mathrm{r}^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=a^{2}$
$\Rightarrow \quad \mathrm{r}^{2} \cos 2 \theta=a^{2}$（Ans．）
এবং $\mathrm{r}^{2} \sin 2 \theta=2 a^{2}$
$\Rightarrow \mathrm{r}^{2} .2 \sin \theta \cos \theta=2 a^{2}$
$\Rightarrow 2(\mathrm{r} \cos \theta)(\mathrm{r} \sin \theta)=2 a^{2}$
$\Rightarrow 2 x y=2 a^{2} \quad x y=a^{2}$（Ans．）
5．तেथ゙s बে，$(3,8),(8,3)$ जবर $(-2,3)$

প্রমাণ 8 মনে করি，প্রদত্ত বিদ্দুত্র $\mathrm{A}(3 \mathrm{3})$
$\mathrm{B}(8,3)$ в $\mathrm{C}(-2,3)$ ．

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{(3-8)^{2}+(8-3)^{2}}=5 \sqrt{2} \\
& \mathrm{BC}=\sqrt{(8+2)^{2}+(3-3)^{2}}=10 \\
& \mathrm{CA}=\sqrt{(-2-3)^{2}+(3-8)^{2}}=5 \sqrt{2}
\end{aligned}
$$

$\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ এর যেকোন দুইটির সমষ্টি তৃতীয়টি जপেক্ষা বৃহ্তর এবং $\mathrm{AB}=\mathrm{CA}=5 \sqrt{2}$

প্রদত্ত কিস্দুত্রয় একটি সমদ্বিবাহু তিভুজের শীর্বব্দ্দু।
6．पেখাఆ खে，$(4,4),(5,2)$ এবश $(1,0)$

প্রমাণ ：ধরি，প্রদত কি্দুত্রর $\mathrm{A}(4,4), \mathrm{B}(5,2)$ ও C（ 1,0 ）．

$$
\mathrm{AB}=\sqrt{(4-5)^{2}+(4-2)^{2}}=\sqrt{1+4}=\sqrt{5}
$$

$\mathrm{BC}=\sqrt{(5-1)^{2}+(2-0)^{2}}=\sqrt{16+4}=2 \sqrt{5}$
$\mathrm{CA}=\sqrt{(1-4)^{2}+(0-4)^{2}}=\sqrt{9+16}=5$
$\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ এর যেকোন দুইঢির সমফ্টি তৃতীয়টি অপেশ্ৰ বৃহত্তর বলে বিশ্দুত্র একটি ত্রিডুজ গঠন করে। जাবার, $A B^{2}+B C^{2}=5+20=25=C A^{2}$ অতএব, প্রদछ ক্সিদूত্রয় একটি সমকোণী ত্রিভুজ্েের শীর্ষক্দি যার $\angle B=90^{\circ}$.

২য় জएश :

ত্রিভूটির ক্Pেত্রফল $=\frac{1}{2}(A B \times B C) \quad\left[\because \angle B=90^{\circ}\right]$

$$
=\frac{1}{2}(\sqrt{5} \times 2 \sqrt{5})=5 \text { ব斤 }
$$

একক।
7. तुषाध यে, A $(-3,2), B(-7,-5)$, $\mathbf{C}(5,4)$ जবर $\mathbf{D}(9,11)$ यिन्मूधलि जबणि

প্রমাণ \& ABCD চতूड्डूळজ,
$\mathrm{AB}=\sqrt{(-3+7)^{2}+(2+5)^{2}}=\sqrt{16+49}=\sqrt{65}$
$\mathrm{BC}=\sqrt{(-7-5)^{2}+(-5-4)^{2}}=\sqrt{144+81}$

$$
=\sqrt{225}=15
$$

$\mathrm{CD}=\sqrt{(5-9)^{2}+(4-11)^{2}}=\sqrt{16+49}=\sqrt{65}$
$\mathrm{DA}=\sqrt{(9+3)^{2}+(11-2)^{2}}=\sqrt{144+81}=15$
এथानে $\mathrm{AB}=\mathrm{CD}$ এবर $\mathrm{BC}=\mathrm{DA}$ बर्थाৎ ABCD চতুভ্ডুজ্জের বিপরীত বাহুদ্ময় পারসর সমান।

বিন্দু চারটি একটি সামাল্তরিকের শীর্ষব্দ্দু।
[বिम্দ.: বর্গক্ষেত, आয়তন্ষেত্র ও রम्पস প্রত্যেকে সামাল্তরিক । সুতরাং, সামাল্তরিকের কর্ণদ্য সমান ৫ অসমান উভত্যেই হতে পারে।]
8. দেখাও যে, $(0,7),(4,9),(6,5)$ এবर $(2,3)$ বিদ্দুগুলি এবটি বর্গের শীর্যকিন্দু।
প্রমাণ ः ধরি, প্রদত্ত बিদ্দু চারটি $\mathrm{A}(0,7), \mathrm{B}(4,9)$, $\mathrm{C}(6,5) \leftrightarrow \mathrm{D}(2,3)$.

$$
\mathrm{AB}=\sqrt{(0-4)^{2}+(7-9)^{2}}
$$

$=\sqrt{16+4}=\sqrt{20}=2 \sqrt{5}$

$\mathrm{BC}=\sqrt{(4-6)^{2}+(9-5)^{2}}=\sqrt{4+16}=2 \sqrt{5}$
$\mathrm{CD}=\sqrt{(6-2)^{2}+(5-3)^{2}}=\sqrt{16+4}=2 \sqrt{5}$
$\mathrm{DA}=\sqrt{(2-0)^{2}+(3-7)^{2}}=\sqrt{4+16}=2 \sqrt{5}$
$\mathrm{AC}=\sqrt{(0-6)^{2}+(7-5)^{2}}=\sqrt{36+4}=2 \sqrt{10}$
$\mathrm{BD}=\sqrt{(4-2)^{2}+(9-3)^{2}}=\sqrt{4+36}=2 \sqrt{10}$
ABCD চতুর্ভूজ্েে চারটি বাহू পারস্শর সমান অধ্রাৎ $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=2 \sqrt{5}$ এবए কर्वमय़ পরস্পর সমান অबাৎ $\mathrm{AC}=\mathrm{BD}=2 \sqrt{10}$.

প্রদד্ত ব্মিগুগিলি একটি বর্গের কৌনিক বিদ্দু।
9. x-बক্ব্র উপ্প অবস্থিত P কিস্দू পেকে $(0,2)$ जदर
 সমাধান ः ধরি, P ষ্দ্দুর স্থানাঙ্ক $(\alpha, 0)$.
P बिन्দू থেকে $(0,2)$ এর দুরত্ড $=\sqrt{\alpha^{2}+4}$ এবर
P बি্দ্দু থেকে $(6,4)$ এর দুরত্র

$$
=\sqrt{(\alpha-6)^{2}+16}
$$

প্রশ্নমতে, $\sqrt{\alpha^{2}+4}=\sqrt{(\alpha-6)^{2}+16}$
$\Rightarrow \alpha^{2}+4=\alpha^{2}-12 \alpha+36+16$
$\Rightarrow 12 \alpha=48 \Rightarrow \alpha=4$
P বিদ্দুর স্থानाष्क $(4,0)$. (Ans.)

প্রশ্নমাना III B

[সि.'०৫,’১৩; ব.'০৭ ; মা’৫]
প্রমাণ : ধরি, প্রদত্ত বিদ্দুদ্য $\mathrm{A}(2,-2)$ ও $\mathrm{B}(-1,4)$ এবং x-অক্ষ AB রেখাংশকে $\mathrm{P}(\alpha, 0)$ ক্দ্দুত m $\quad 1$ অনুপাত্ অন্তর্বিতক্ত করে।

$$
0=\frac{4 m+1 \times-2}{m+1} \Rightarrow 4 m=2 \Rightarrow m=\frac{1}{2}
$$

 অশ্তর্বিঙ্ক করে।
জাবার, ४রি y-世न्ब $A B$ त्रেथाए।কে $Q(0, \beta)$ বিদ্দूতে $\mathrm{n}: 1$ जनूभाত্ত অল্তर्বিভ্তে ক্রে।

$$
0=\frac{n \times-1+1 \times 2}{n+1} \Rightarrow \mathrm{n}=2 \Rightarrow \mathrm{n}: 1=2: 1
$$

बबाल y-बन्ब $A B$ রেथाएकে 21 जनूभाতে অল্তর্বিড্ট করে।
$\therefore \mathrm{AB}$ রেथाएサ অषপ্য চারা সমান তিনভাগে বিজ্ক হয়।

 बরে।

$$
\mathrm{B}(-1,4)
$$

$$
\frac{A P}{P B}=\frac{2-\alpha}{\alpha+1}=\frac{-2-0}{0-4}=\frac{1}{2}
$$

$$
\begin{equation*}
\Rightarrow 2 \mathrm{AP}=\mathrm{PB}=\mathrm{PQ}+\mathrm{QB} \tag{2,-2}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow P Q=2 A P-Q B \cdots \cdots \tag{1}
\end{equation*}
$$

जाবाর, $\frac{A Q}{Q B}=\frac{2-0}{0+1}=\frac{-2-\beta}{\beta-4} \Rightarrow \frac{A Q}{Q P}=\frac{2}{1}$
$\Rightarrow \mathrm{AQ}=2 \mathrm{QB} \Rightarrow \mathrm{AP}+\mathrm{PQ}=2 \mathrm{QB}$
$\Rightarrow \mathrm{AP}+2 \mathrm{AP}-\mathrm{QB}=2 \mathrm{QB}[(1)$ घारा]
$\Rightarrow 3 \mathrm{AP}=3 \mathrm{QB} \quad \mathrm{AP}=\mathrm{QB}$
(1) $\Rightarrow P Q=2 A P-A P=A P$
$\therefore \mathrm{AP}=\mathrm{PQ}=\mathrm{QB}$

[ব.'oct; दা.'o৯,'১১]
সयाषान 8

$$
\begin{array}{llll}
\mathrm{A}(7,5) & \mathrm{P} & \mathrm{O} & \mathrm{~B}(-2,-1)
\end{array}
$$

ধরি, প্রদজ্য बি্দুদ্য় $\mathrm{A}(7,5)$ B $\mathrm{B}(-2,-1)$ এবং P ও
 B 2:1 অनूभाতে অল্তর্বিজ্ক করে।

$$
P \equiv\left(\frac{1 \times-2+2 \times 7}{1+2}, \frac{1 \times-1+2 \times 5}{1+2}\right)=(4,3)
$$

$$
\mathrm{Q} \equiv\left(\frac{2 \times-2+1 \times 7}{2+1}, \frac{2 \times-1+1 \times 5}{2+1}\right)=(1,1)
$$

 निर्थय्य ब्र।
[ण.'০১; त्वा. '০8, '০৮; य. '০২] সমাथান $:$

$$
{ }^{8} \mathrm{~A}(2,-4) \quad \mathrm{P} \quad \mathrm{~B}(-3,6)
$$

ধরি, প্রদষ্ভ ক্স্দুদ্ম $\mathrm{A}(2,-4) ও \mathrm{~B}(-3,6)$ এবर AB রেখাশশকে P बि্দू $k: 1$ जनूপাত্ত অল্তর্বিত্ক করে।

$$
\mathrm{P} \equiv\left(\frac{k \times-3+1 \times 2}{k+1}, \frac{k \times 6+1 \times-4}{k+1}\right)
$$

এ ব্স্দूটি x-অক্ষের উপর অবস্ছিত इলে এর কোটি $\frac{6 k-4}{k+1}=0 \Rightarrow 6 \mathrm{k}-4=0 \Rightarrow \mathrm{k}=\frac{2}{3}$
जबाए $\mathrm{k}: 1=2: 3$
জাবার, এ বি্দूটি y-অক্ষে উপর অবস্থিত হলে এর ভুভ $\frac{-3 k+2}{k+1}=0 \Rightarrow-3 \mathrm{k}+2=0 \Rightarrow \mathrm{k}=\frac{2}{3}$
जबुल $\mathrm{k}: 1=2: 3$
x ৫ y-অক্ষরেথা প্রদত বিপ্দুদ্যের সৃযোগ রেখাশশকে $2: 3$ এবर $2: 3$ অनूপাত্ অল্তর্বিভক্ত করে।

1(d) $(-2,3) \bullet(4,-7)$ বिभ्मूपढ্যেন্র সख<यान

[б.'०१; มा.'०१]
সমাथান 8 প্রদত $(-2,3)$ ® $(4,-7)$ बि
 ব্দ্দুটির স্থানাজ্ক $=\left(\frac{k \times 4+1 \times-2}{k+1}, \frac{k \times-7+1 \times 3}{k+1}\right)$ এ বিদ্দুটি x-অক্ষের উপর অবস্থিত হলে এর কোটি $\frac{-7 k+3}{k+1}=0 \Rightarrow-7 \mathrm{k}+4=0 \Rightarrow \mathrm{k}=\frac{3}{7}$
जबा९ $\mathrm{k}: 1=3: 7$
জাবার, এ ক্দ্দুটি y-অক্কের উপর অবস্পিত হনে এর ভুজ $\frac{4 k-2}{k+1}=0 \Rightarrow 4 \mathrm{k}-2=0 \Rightarrow \mathrm{k}=\frac{1}{2}$
जबाल $\mathrm{k}: 1=1: 2$
 যথাক্রমে $3: 7$ এবং 1:2 अनুপাতে অল্ত়র্বিভক্ট করে।

[य.'००] সমাষান \& প্রদভ $(2,-5)$ © $(2,3)$ কিস্দুদ্বয়ের সংযোগ রেখাংশকে $k: 1$ অनूপাতে অল্তর্বিড্কুকারী বিস্দুটির স्शानाভ्क $=\left(\frac{k \times 2+1 \times 2}{k+1}, \frac{k \times 3+1 \times-5}{k+1}\right)$
এ বিস্দুটি x-অক্ষের উপর অবস্থিত হলে এর কোটি $\frac{3 k-5}{k+1}=0 \Rightarrow 3 \mathrm{k}-5=0 \Rightarrow \mathrm{k}=\frac{5}{3}$

जब্বाৎ $\mathrm{k}: 1=53$
x-অक्षরেখা প্রদত বিপ্দুদ্মেয়ে সংযোগ রেখাংশকে 5:3 অनুপাতে অল্তর্বিভ্ক্ করে এবৃ বিস্দুটির স্থানাৰ্ক $=\left(\frac{2 \cdot \frac{5}{3}+2}{\frac{5}{3}+1}, 0\right)=\left(\frac{10+6}{5+3}, 0\right)=(2,0)$
[MCQ এর ক্ষেত্রে, বিস্দু দুইটির সাধারন ভ্র 2 বলে বিদ্দুদ্ময়ের সংতোগ রেখাংশকে x-অক্ষরেখা $(2,0)$ বিস্দুতে এ<ং $\frac{-5-0}{0-3}=\frac{5}{3}$ अনুপাতে অग्णর্বিজ্ক করে।]

[সि. '০২,'০৮; জূ.'০৩; ঢ. '০৬; চ. 'ot; य. '০১,'J৩] সমাষান 8 ধরি, প্রদজ বিস্দू দूইটি $\mathrm{A}(-3,-2)$ © $\mathrm{B}(6,4)$ এবং P В Q সমত্রিখম্ডক বিল্দু দूইটি AB রেখাশশকে যथাক্রম $1 \quad 2 \quad 3 \quad 2 \quad 1$ अनूপাডে অন্তর্বিভক্ত করে।

$$
\begin{aligned}
P & \equiv\left(\frac{1 \times 6+2 \times-3}{1+2}, \frac{1 \times 4+2 \times-2}{1+2}\right) \\
& =\left(\frac{6-6}{3}, \frac{4-4}{3}\right)=(0,0) \\
\text { এবং } Q & \equiv\left(\frac{2 \times 6+1 \times-3}{2+1}, \frac{2 \times 4+1 \times-2}{2+1}\right) \\
& =\left(\frac{12-3}{3}, \frac{8-2}{3}\right)=(3,2)
\end{aligned}
$$

 ग्थानाब्क $(3,2)$.

 क्ब।
[य. '১১]
সমাयान 8

$$
A(a, b) \quad P(3,3) \quad Q(8,5) \quad C(c, d)
$$

 তাহলে, P, AQ এর মধ্যবিদ্দু ।

$$
\begin{aligned}
& \frac{a+8}{2}=3 \Rightarrow \mathrm{a}=6-8=-2 \text { এชR } \\
& \frac{b+5}{2}=3 \Rightarrow \mathrm{~b}=6-5=1
\end{aligned}
$$

आাবার, Q, PC এর মধ্যবিল্দু ।

$$
\begin{aligned}
& \frac{3+c}{2}=8 \Rightarrow c=16-3=13 \text { এदर } \\
& \frac{3+d}{2}=5 \Rightarrow d=10-3=7
\end{aligned}
$$

2.(a) A B दि

 সমাथान :

$$
\begin{array}{lll}
\mathrm{A}(-2,4) & \mathrm{B}(4,-5) & \mathrm{C}^{\prime} \\
\\
x, y)
\end{array}
$$

খরি, C বিদ্দুর স্থানাষ্ম (x, y).
দु७য়ा जाছে, $\mathrm{AB}=3 \mathrm{BC} \Rightarrow \frac{A B}{B C}=\frac{3}{1}$
 কर্রে । B ब্দ্দুর স্থাनाष्ए $=\left(\frac{3 x-2}{3+1}, \frac{3 y+4}{3+1}\right)$
প্রশ্নমঢে, $\frac{3 x-2}{4}=4 \Rightarrow 3 x-2=16$
$\Rightarrow 3 \mathrm{x}=18 \Rightarrow \mathrm{x}=6$
এব: $\frac{3 y+4}{4}=-5 \Rightarrow 3 y+4=-20$
$\Rightarrow 3 y=-24 \Rightarrow y=-8$

C বিস্দুর স্থানাজ্ক $(6,-8)$（Ans．） $\begin{array}{r}\text { www．boighar．com } \\ (2,7),(6,1) ও(x, y) \text { শীর্ষবিশিষ্ট ত্রিভুজ্রের }\end{array}$

বিকক্প পদ্ধতি ：
দেওয়া आছে， $\mathrm{AB}=3 \mathrm{BC} \Rightarrow \frac{A B}{B C}=3$
ধরি，C বিন্দুর স্থানাঙ্ক (x, y) ．

$$
\begin{aligned}
& \frac{A B}{B C}=\frac{-2-4}{4-x}=\frac{4+5}{-5-y}=3 \\
& \frac{-6}{4-x}=3 \Rightarrow-6=12-3 x \Rightarrow x=6 \text { এবং } \\
& \frac{9}{-5-y}=3 \Rightarrow 9=-15-3 y \Rightarrow y=-8
\end{aligned}
$$

C বিম্দুর স্থানাঙ্ক $(6,-8)$（Ans．）
2（b）$A(8,10) \in \dot{B}(18,20)$ दिम्দूর সश্যোগ
 অস্তর্বিজ্ক Ө বহির্বিভ্ত করে এবং P বিদ্দু $A B$ এর
 ক্র যে， $\mathbf{P Q} \times \mathbf{P R}=\mathbf{P B}^{\mathbf{2}}$
［রা．＇০০］
সমाषान ： $\mathrm{P} \equiv\left(\frac{8+18}{2}, \frac{10+20}{2}\right)=(13,15)$
$\mathrm{Q} \equiv\left(\frac{36+24}{2+3}, \frac{40+30}{2+3}\right)=\left(\frac{60}{5}, \frac{70}{5}\right)=(12,14)$
$R \equiv\left(\frac{36-24}{2-3}, \frac{40-30}{2-3}\right)=(-12,-10)$
Q ও R বিস্দুর স্থানাজ্ক যথাক্রমে $(12,14)$ ও $(-12,-10)$
এখন， $\mathrm{PQ}=\sqrt{(13-12)^{2}+(15-14)^{2}}=\sqrt{2}$
$\mathrm{PR}=\sqrt{(13+12)^{2}+(15+10)^{2}}=\sqrt{2 \times 25^{2}}$
$=25 \sqrt{2}$
$\mathrm{PB}^{2}=(13-18)^{2}+(15-20)^{2}=50$
$\mathrm{PQ} \times \mathrm{PR}=\sqrt{2} \times 25 \sqrt{2}=50=\mathrm{PB}^{2}$
3．（a）একটি ত্রিভুজ্জের দুইটি শীর্ষবিস্দু $(2,7)$ ఆ $(6,1)$ এবং এর ভরক্রেন্র $(6,4)$ ；তৃতীয় শীর্ষ নির্ণয় কর।［সি．＇০৪，’১২；মা．বো．＇০৭；ব．＇১০，＇১২；চ．＇১২］ সমাथান ঃ ধরি，তৃতীয় শীর্ষের স্থানাজ্ক (x, y) ．

ভরকেন্দ্র $\left(\frac{2+6+x}{3}, \frac{7+1+y}{3}\right)$ ．
প্রশ্নমতে，$\frac{2+6+x}{3}=6 \Rightarrow x+8=18 \Rightarrow x=10$
এてং $\frac{7+1+y}{3}=4 \Rightarrow y+8=12 \Rightarrow y=4$
তৃতীয় শীর্বের স্থানাঙ্ক $(10,4)$ ．
3（b）এகটি ত্রিভूজ্জের দুইটি শীী $(3,5)$ ఆ $(7,-1)$ এবং এর ভরকেস্দ্র $(7,2)$ তৃতীয় শীর নির্ণয় কন্ন।
［ব．’০৬］
সমাধান ঃ ধরি，তৃতীয় শীর্ষের স্থানাঙ্ক (x, y) ．
$(3,5),(7,-1)$ ও (x, y) শীর্ষবিশিষ্ট ত্রিডুজ্জের ভরকেন্দ্র $\left(\frac{3+7+x}{3}, \frac{5-1+y}{3}\right)$ ．
প্রশ্নমতে，$\frac{3+7+x}{3}=7 \Rightarrow x+10=21 \Rightarrow x=11$
এবং $\frac{5-1+y}{3}=2 \Rightarrow y+4=6 \Rightarrow y=2$
তৃতীয় শীর্ষের স্থানাঙ্ক $(11,2)$ ．
3（c）একটি ত্রিষूজ্রের শীর্ষবিন্দूর স্থানাফ্ক $\left(a t_{1}{ }^{2}, 2 a t_{1}\right),\left(a t_{1}{ }^{2}, 2 a t_{2}\right)$ এবং $\left(a t_{3}{ }^{2}, 2 a t_{3}\right)$
यमি এর ভরক্নেন্দ্র x－অক্ষের উপর্木 অবস্থিত হয়，তাহচে দেখাఆ যে，$t_{1}+t_{2}+t_{3}=0$［সि．＇০৫；太ू．＇০৬； য．＇০১；মা．＇০৯］

সমাধান \＆ত্রিভুজটির ভারকেন্দ্রের স্থানাঙ্ক
$=\left(\frac{a t_{1}{ }^{2}+a t_{2}{ }^{2}+a t_{3}{ }^{2}}{3}, \frac{2 a\left(t_{1}+t_{2}+t_{3}\right)}{3}\right)$
এ বিন্দুটি x－অক্ষের উপর অবস্ছিত বলে এর কোটি শূন্য।

$$
\frac{2 a\left(t_{1}+t_{2}+t_{3}\right)}{3}=0
$$

$\Rightarrow t_{1}+t_{2}+t_{3}=0$（Showed）
3（d）ABC ত্রিভूজ্জের শীর্ষত্রয় A（10 20）， $\mathrm{B}(20,30)$ এবং $\mathrm{C}(30,10) . \mathrm{ABC}$ ब्रिভूজ্রের ভরকেস্দ্র G হনে GBC ত্রিভূজ্জের GD মধ্যমার দৈর্ঘ্য निৰয় কর।［প্র．ভ．প．（প্রকৌশন ভर্তি পরীষা ）＇08］ সমাধান ：

ABC ত্রিভুজের ভরকেন্দ্র G এর স্পানাঙ্ক
$=\left(\frac{10+20+30}{3}, \frac{20+30+10}{3}\right)=(20,20)$
BC এর মধ্যब্দ্দু $\mathrm{D}(25,20)$

$$
\begin{aligned}
\mathrm{GD} & =\sqrt{(20-25)^{2}+(20-20)^{2}} \text { একক } \\
& =5 \text { একক (Ans.) }
\end{aligned}
$$

3（e） ABC ত্রिডूজ্জের BC, CA जदर AB এর

रলে \mathbf{A}, \mathbf{B} এবर \mathbf{C} गीীब্রয়ের স্থানাষ্巾 নির্ণয় কর।
সমাধান ：

মনে করি， ABC ত্রিডুজের শীর্ষब্রয় $\mathrm{A}\left(x_{1}, y_{1}\right)$ $\mathrm{B}\left(x_{2}, y_{2}\right)$ ও $\mathrm{C}\left(x_{3}, y_{3}\right)$ এชः BC, CA ও AB এর ম্্যক্দি যথাক্রম $\mathrm{D}(2,4), \mathrm{E}(5,0)$ ও $\mathrm{F}(4,-2)$

$$
\begin{align*}
& \frac{x_{1}+x_{2}}{2}=4 \Rightarrow x_{1}+x_{2}=8 \tag{1}\\
& y_{1}+y_{2}=-4 \quad \text { (2), } x_{2}+x_{3}=4 \tag{3}\\
& y_{2}+y_{3}=8 \\
& \text { (4), } x_{3}+x_{1}=10 \tag{5}
\end{align*}
$$

(

$$
(1)+(3)-(5) \Rightarrow 2 x_{2}=4 \Rightarrow x_{1}=
$$

आবার，（2）＋（4） $69-2 y_{2}=4 \Rightarrow y_{2}=2$
 St！
$C \equiv(2+5-44+0+2)=(3,6)]$
\qquad
1．（a）ABC ब्विडूজ্জে শীষ্ষख্র A（－3，－2）， $B(-3,9)$ এবर $C(5,-8)$ ；त्रिशूर्ध নির্র্য কর এবং এর সাহায্যে B হত্大ে CA এর উক্র बম্মের দৈর্ঘ্য নির্ণয় কর।［কু．＇০৪；य．＇০৪，＇১৩；ז．＇ob］ সমাধান ： $\mathrm{A}(-3,-2), \mathrm{B}(-3,9)$ এব $\mathrm{C}(5,-8)$ বিন্দু冋্রয় দ্বারা গঠিত ত্রিভুজের ক্ষ্রকল

$$
\left.\Delta A B C=\frac{1}{2} \right\rvert\,(-3) 9+(-3)(-8)+5(-2)-
$$

$$
(-2)(-3)-9(5)-(-8)(-3)
$$

$$
\left[\left.\frac{1}{2}\right|_{x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{4}+x_{4} y_{1}}\right.
$$

$-y_{1} x_{2}-y_{2} x_{3}-y_{3} x_{4}-y_{4} x_{1}$ मूब्ब ज्बारा］

$=\frac{1}{2}|-27+24-10-6-45-24|$
$=\frac{1}{2}|-88|=44$ ব斤 একক।

বিকब्প পদ্ধতি：

$$
\begin{aligned}
& \triangle A B C=\frac{1}{2}\left|\begin{array}{cccc}
-3 & -3 & 5 & 3 \\
-2 & 9 & -8 & -2
\end{array}\right| \\
& =\frac{1}{2}|-27+24-10-(6+45+24)| \\
& =\frac{1}{2}|-13-75|=\frac{1}{2}|-88|=44
\end{aligned}
$$

万安
पुर्ध d बक्ष：

$$
A B C=\frac{1}{2} \times C A \times d
$$

$$
4
$$

$\Rightarrow 88=\sqrt{64+36} \times d \Rightarrow \mathrm{~d}=\frac{88}{10}=8 \frac{4}{5}$
B হত্ CA এর উপর লম্বের দৈর্ঘ্য $8 \frac{4}{5}$ একক।
1（b） ABC ত্রিजूজ্⺀ের मीর্ষকি্দ্দু $\mathrm{A}(5,6), \mathrm{B}(-9$ ， 1）এবर $\mathbf{C}(-3,-1)$ ；ब্রিভूधটির क্Pত্রফ্न निর্ণয় কর এবং এর সাহায্যে \mathbf{A} হতে $\mathbf{B C}$ এর উপর নজ্মের לৈর্য্য निর্ণয় কর।［ঢা．＇০৮；চ．＇১০；য．＇০৭；দি．০৯，’১০］

সमाधान ：$\triangle A B C=\frac{1}{2}\left|\begin{array}{cccc}5 & -9 & -3 & 5 \\ 6 & 1 & -1 & 6\end{array}\right|$ $=\frac{1}{2}|5+9-18-(-54-3-5)|$ $=\frac{1}{2}|-4+62|=\frac{1}{2}|-4+62|=\frac{1}{2}(58)$ $=29$

ত্রিভুজটির ক্ষে্রফল্ন＝ 29 বর্গ একক।
 একক।

$$
\begin{aligned}
& \Delta A B C=\frac{1}{2} \times B C \times d \\
\Rightarrow & 29=\frac{1}{2} \times \sqrt{(-9+3)^{2}+(1+1)^{2}} \times d \\
\Rightarrow & 58=\sqrt{36+4} \times d \\
\Rightarrow & \mathrm{~d}=\frac{58}{2 \sqrt{10}}=\frac{29 \sqrt{10}}{10}
\end{aligned}
$$

$\therefore \mathrm{A}$ इতে BC এর উপর बম্ষের দৈঘ্য্য $\frac{29 \sqrt{10}}{10}$ একক।
1（c）দেখাও বে，$(3,5),(3,8)$ এবर মৃনবি্দ্দু এবটি
 সমাধান ：মন্নে করি，প্রদত্ত বিি্দু দুইটি $\mathrm{A}(3,5)$ ও $\mathrm{B}(3,8)$ এবং মृলब尺্দি $\mathrm{O}(0,0)$ ．

$$
\begin{aligned}
& \mathrm{OA}=\sqrt{3^{2}+5^{2}}=\sqrt{9+25}=\sqrt{34} \\
& \mathrm{OB}=\sqrt{3^{2}+8^{2}}=\sqrt{9+64}=\sqrt{73} \\
& \mathrm{AB}=\sqrt{0^{2}+3^{2}}=\sqrt{9}=3
\end{aligned}
$$

এथान ， $\mathrm{OA}+\mathrm{AB}=\sqrt{34}+3>\sqrt{73}=\mathrm{OB}$
\therefore প্রদত্ত ক্ন্দু দুইটি এবং মূলबি্দু একটি ত্রিভুজের শীर्גब्तर।

$$
\begin{aligned}
& \text { এVन, } \triangle A B O=\frac{1}{2}\left|\begin{array}{llll}
3 & 3 & 0 & 3 \\
5 & 8 & 0 & 5
\end{array}\right| \\
& =\frac{1}{2}|24+0+0-(15+0+0)| \\
& =\frac{1}{2}|24-15|=\frac{9}{2}=4 \frac{1}{2}
\end{aligned}
$$

ত্রিতুজটির ক্ষেত্রফল $4 \frac{1}{2}$ ব斤 একক।
1（d）ABC ত্রিভুজ্রের বাহুগুলির মধ্যবি্দ্রু $(1,2),(4,4)$
 সমাধান ：

ধরি， ABC ত্রিভুজের বাহুগুলির মধ্যষ্দ্দু $\mathrm{D}(1,2)$ ， $\mathrm{E}(4,4)$ এবং $\mathrm{F}(2,8)$ ．

$$
\begin{aligned}
& \therefore \delta_{D E F}=(1-4)(4-8)-(2-4)(4-2) \\
& \quad=12+4=16 \\
& \quad \triangle D E F=\frac{1}{2}|16|=8 \\
& \triangle A B C=4 \times \triangle D E F=4 \times 8=32
\end{aligned}
$$

ABC ত্রিভুজ্জের ক্ষেত্রফন 32 বর্গ একক।
1（e）ABC ত্রিযুজ্জের মধ্যমাগুলির মধ্যকি্দু $(1,2)$ ，
 সমাধান ：ধরি，ABC ত্রিতুজের মধ্যমাগুলির মধ্যবিল্দু $\mathrm{P}(1,2), \mathrm{Q}(4,4)$ এবং $\mathrm{R}(2,8)$ ．

$$
\begin{aligned}
& \triangle P Q R=\frac{1}{2}\left|\begin{array}{llll}
1 & 4 & 2 & 1 \\
2 & 4 & 8 & 2
\end{array}\right| \\
= & \frac{1}{2}|4+32+4-(8+8+8)| \\
= & \frac{1}{2}|40-24|
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{1}{2}|32|=16 \\
& \triangle A B C
\end{aligned}=16 \times \triangle D E F=16 \times 8=128 \text {. }
$$

ABC ত্রিভুজের ক্ষেত্রফল 128 বর্গ একক।

 निর্ণ্য কর। দেখাও মে, $t=2$ অथবা $t=-1 / 2$ হলে, বিস্পুগুলো সমরেখ হবে। [বৃ. '>০; রা. '১০; ব.'’০] সমাধান ৪ বিস্দুত্রয় দ্মারা গঠিত ত্রিভুজটির ক্ষেত্রফল $=\frac{1}{2}\left|\begin{array}{cccc}t+1 & 2 t+1 & 2 t+2 & t+1 \\ 1 & 3 & 2 t & 1\end{array}\right|$
$\left.=\frac{1}{2} \right\rvert\, 3 \mathrm{t}+3+4 \mathrm{t}^{2}+2 \mathrm{t}+2 \mathrm{t}+2-(2 \mathrm{t}+1+$
$\left.6 t+6+2 t^{2}+2 t\right) \mid$
$=\frac{1}{2}\left|4 \mathrm{t}^{2}+7 \mathrm{t}+5-2 \mathrm{t}^{2}-10 \mathrm{t}-7\right|$
$=\frac{1}{2}\left|2 t^{2}-3 t-2\right|$ वरि बकब
$t=2$ रल.
$2 \mathrm{t}^{2}-3 \mathrm{t}-2=8-6-2=8-8=0$
এবং $t=-\frac{1}{2}$ হलে,
$2 \mathrm{t}^{2}-3 \mathrm{t}-2=\frac{1}{2}+\frac{3}{2}-2=\frac{1+3-4}{2}=0$
$\mathrm{t}=2$ বा $-\frac{1}{2}$ হলে বিন্দুগুলো সমরেখ হবে।
2(b) $(a, b),(b, a)$ बবर $\left(\frac{1}{a}, \frac{1}{b}\right)$ ভिन्न বিস্भूब्রয় সমরেখ হলে, দেখাఆ যে, $a+b=0$.
সমাধান 8 যেহেতু ব্দ্গুগুলি সমরেখ,
$\left|\begin{array}{cccc}a & b & 1 / a & a \\ b & a & 1 / b & b\end{array}\right|=0$
$\Rightarrow a^{2}+1+\frac{b}{a}-\left(b^{2}+1+\frac{a}{b}\right)=0$
$\Rightarrow a^{2}-b^{2}+\frac{b}{a}-\frac{a}{b}=0$
$\Rightarrow a^{2}-b^{2}+\frac{b^{2}-a^{2}}{a b}=0$
$\Rightarrow\left(a^{2}-b^{2}\right)\left(1-\frac{1}{a b}\right)=0$
$\Rightarrow(a-b)(a+b)(a b-1)=0$
এখানে $a-b=0$ जर্ৰाৎ $a=b$ रলে অথবा $a b=1$ হলে ক্দ্দু তিনটি ভিন্ন হয় না।

$$
a+b=0 \text { (Showed). }
$$

 $(a+1, a-3),(a+2, a)$ राে এর क्ञেख্লে निর্ণয় কর এবং a এর মান কত হলে ক্ক্দুগুল্সি সমরেখ হবে?
[রা.'১২; य.'১২;দি.'১৪]
সমাধান ঃ ब্দিদ্রুর্র দ্বারা গঠিত ত্রিভুজটির ক্ষেত্রফল
$\left.=\frac{1}{2}| | \begin{array}{cccc}2 & a+1 & a+2 & 2 \\ -1 & a-3 & a & -1\end{array} \right\rvert\,$
$\left.=\frac{1}{2} \right\rvert\, 2 a-6+a^{2}+a-a-2-$
$\left(-a-1+a^{2}-a-6+2 a\right) \mid$
$=\frac{1}{2}\left|a^{2}+2 a-8-a^{2}-7\right|$
$=\frac{1}{2}|2 a-1|$ বর একक। (Ans.)
এখন ক্দ্দুগুলো সমরেখ হলে, $2 a-1 \Rightarrow a=\frac{1}{2}$
3(a) यमि $\mathrm{A}(3,4), \mathrm{B}(2 \mathrm{t}, 5)$ এবश $\mathrm{C}(6, t)$
 হয়, তবে \mathbf{t} এর মান নির্ণয় কর। 15/2
[य.'০৩,'ग৪; जा.'০৪; जि.'০৪; ব.'১৩; মা.'১8]
সমাধানঃ প্রদত্ত ব্দিত্র্র দ্বারা গঠিত ত্রিভুজের ক্ষেত্রফল,

$$
\begin{aligned}
& \frac{1}{2}\left|\begin{array}{cccc}
3 & 2 t & 6 & 3 \\
4 & 5 & t & 4
\end{array}\right|=19 \frac{1}{2} \\
\Rightarrow & \frac{1}{2}\left|15+2 t^{2}+24-(8 t+30+3 t)\right|=\frac{39}{2} \\
\Rightarrow & \left|2 t^{2}-11 t+9\right|=39 \\
\Rightarrow & 2 \mathrm{t}^{2}-11 \mathrm{t}+9= \pm 39 \\
‘ & + \text { চिश् निए़ পাই, } 2 \mathrm{t}^{2}-11 \mathrm{t}+9-39=0 \\
\Rightarrow & 2 \mathrm{t}^{2}-11 \mathrm{t}-30=0 \\
\Rightarrow & 2 \mathrm{t}^{2}-15 \mathrm{t}+4 \mathrm{t}-30=0
\end{aligned}
$$

$\Rightarrow \mathrm{t}(2 \mathrm{t}-15)+2(2 \mathrm{t}-15)=0$
$\Rightarrow(t+2)(2 t-15)=0$
$t=-2$ बথবা, $t=15 / 2$
--' চिহ निख़ে পাই, $2 \mathrm{t}^{2}-11 \mathrm{t}+48=0$
$(-11)^{2}-4.2 .48<0$ বनে, t এর কোন বাস্ত্ব মানের জন্য সমীকরণটি সিদ্ধ হবেনা।
t এর মান-2 বা, 15/2.
3(b) দেখাও यে, $(p, p-2),(p+3, p)$ जবए $(p+2, p+2)$ বিন্দूब्बत्र ঢারা উৎপন্ন ব্রিভूজ্রের
 প্রমাণ : প্রদত্ত বি্দুত্রহ্রের ঘ্বারা গঠিত ত্রিযুজের ক্ষেত্রফল, $\left.=\frac{-}{2} \right\rvert\,(p-p-3)(p-p-2)-$
$(p-2-p)(p+3-p-2) \mid$
$=\frac{1}{2}|(-3)(-2)-(-2) \cdot 1|$
$=\frac{1}{2}|6+2|=4$ đर्গ একক; या p বर्জ্जिण।
বিক্দুত্র দ্মারা উৎপন্ন ত্রিভুজ্রের ক্ষেত্রফল p বর্জিত।
 $-\mathrm{A} \sin \beta$) এবং $(\mathrm{A} \sin \alpha, \mathrm{A} \cos \alpha)$; দেখাও যে,
 মানি निণয় কর।
[ব.'০৪; চ.'১২]
প্রমাণ প্রদ্ত ক্স্দুব্রয়ের দ্রারা গঠিত ত্রিভুজের ক্ষেত্রফন

$$
\begin{aligned}
= & \frac{1}{2}\left|\begin{array}{ccc}
0 & 0 & 1 \\
A \cos \beta & -A \sin \beta & 1 \\
A \sin \alpha & A \cos \alpha & 1
\end{array}\right| \\
& =\frac{1}{2}\left(\mathrm{~A}^{2} \cos \alpha \cos \beta+\mathrm{A}^{2} \sin \alpha \sin \beta\right) \\
& =\frac{1}{2} \mathrm{~A}^{2} \cos (\alpha-\beta) \text {; ইश বৃহত্তম হবে यদि }
\end{aligned}
$$

$\cos (\alpha-\beta)=1$ इड़
$\Rightarrow \cos (\alpha-\beta)=\cos 0 \Rightarrow \alpha-\beta=0$
$\alpha=\beta \quad$ (Showed)
বृ₹ত্তम মাनটি $=\frac{1}{2} \mathrm{~A}^{2}$ ব氒 बকক

3 (d) দूটি অकরেथা পরস্সর নম্যভাবে \mathbf{O} কিস্দুতে ছেদ করে। A এবং \mathbf{B} এর ধনাज্রক স্থানাষ্ক যथाাক্মমে $\left(x_{1}, y_{1}\right)$ এবং $\left(x_{2}, y_{2}\right)$ । মूণ निয়মে প্রমাণ কর যে,
 একক।
[य.’০৫;णা.’৯; দি.’১২]
প্রমাণ :

A ও B ব্দি হতে x - অক্ষের উপর যथাক্রম্ AC ఆ BD नস্ব औौकि। তाহलে, $\mathrm{OC}=x_{1}, \mathrm{OD}=x_{2}$, $\mathrm{AC}=y_{1}, \mathrm{BD}=y_{2}$ बवश $\mathrm{CD}=x_{2}-x_{1}$, यथन $x_{2}>x_{1}$ OAB ब্রিভ্জের ক্ষেজ্রেল্ল $\triangle \mathrm{OAB}$ হানে,
 ACDB এর ক্ষেত্রফল - OBD ত্রিভুজের ক্সেত্রক্ল

$$
\begin{aligned}
= & \frac{1}{2}(\mathrm{OC} \times \mathrm{AC})+\frac{1}{2}(\mathrm{AC}+\mathrm{BD}) \times \mathrm{CD}- \\
& \frac{1}{2}(\mathrm{OD} \times \mathrm{BD}) \\
= & \frac{1}{2}\left\{x_{1} y_{1}+\left(y_{1}+y_{2}\right)\left(x_{2}-x_{1}\right)-x_{2} y_{2}\right\} \\
= & \frac{1}{2}\left(x_{1} y_{1}+x_{2} y_{1}+x_{2} y_{2}-x_{1} y_{1}-x_{1} y_{2}-\right. \\
& \left.-x_{2} y_{2}\right)
\end{aligned}
$$

$$
\Delta \mathrm{OAB}=\frac{1}{2}\left(x_{2} y_{1}-x_{1} y_{2}\right)
$$

এখন, $\triangle \mathrm{OAB}$ ধनाত্র হবে যখন $x_{2} y_{1}>x_{1} y_{2}$ এবং ねণাঅক হরে যখন $x_{2} y_{1}<x_{1} y_{2}$. কিন্তু ত্রিযুজের ক্ষেশ্রেল্ন ঋণাঅক হতে পারে না।

OAB ত্রিযুজের ক্ষেত্রফन $\frac{1}{2}\left|x_{2} y_{1}-x_{1} y_{2}\right|$ यগ একক।

দেখাఆ যে，$x-5 y=0$ অथবা，$x-5 y+36=0$ ．
［ রা．’’৩］
প্রমাণ：ABC ত্রিভুজ্জে ক্乛েত্রক
$=\frac{1}{2}|(x-2)(4-3)-(y-4)(2+3)|$
$=\frac{1}{2}|x-2-5 y+20|$
$=\frac{1}{2}|x-y+18|$ ব斤 এ একক
প্রশ্নমতে，$\frac{1}{2}|x-5 y+18|=9$
$\Rightarrow x-5 y+18= \pm 18$
$x-5 y=0$ बথবा，$x-5 y+36=0$（Showed）

 দেখাও যে， $7 x+5 y+240$ অขবা， $7 x+5 y-12$ $=0$ ．［ ব．’০৬］
প্রমাণ：ABC ত্রিভুজ্জের ক্ষেজ্রেন
$=\frac{1}{2}|(x-2)(-4-3)-(y+4)(2+3)|$
$=\frac{1}{2}|-7 x+14-5 y-20|$
$=\frac{1}{2}|-7 x-5 y-6|$ ब斤 একক
প্রশ্নমতে，$\frac{1}{2}|-7 x-5 y-6|=9$
$\Rightarrow 7 x+5 y+6= \pm 18$
$7 x+5 y+24=0$ जขবा， $7 x+5 y-12=0$
5．（a）$\triangle \mathrm{ABC}$ এর A，B ，C बর স্থানাষ্ক যथাब্মমে $(3,5),(-3,3),(-1,-1)$ এবर BC，CA ， AB এর মধ্যক্স্দু $\mathrm{D}, \mathrm{E}, \mathrm{F}$ रनে，ত্রিভুজ ABC এবए DEF এর লেশ্র্রফন নির্ণয় কর। লেখাও যে，$\triangle \mathrm{ABC}$ $=4 . \triangle \mathrm{DEF}$ ．
［ব．＇०৫］
সমাধান：$\triangle \mathrm{ABC}$ এর ক্ষের্রফন
$=\frac{1}{2}|(3+3)(3+1)-(5-3)(-3+1)|$
$=\frac{1}{2}|24+4|=\frac{1}{2}(28)=14$ ব斤 একक।
BC এর ম্্যब্দ্দু $\mathrm{D} \equiv\left(\frac{-3-1}{2}, \frac{3-1}{2}\right)=(-2,1)$
CA এর মধ্যক্দ্মু $\mathrm{E} \equiv\left(\frac{-1+3}{2}, \frac{-1+5}{2}\right)=(1,2)$
AB এর মধ্যব্দ্দু $\mathrm{F} \equiv\left(\frac{3-3}{2}, \frac{5+3}{2}\right)=(0,4)$
\triangle DEF এর ক্ষেশ্রষল
$=\frac{1}{2}|(-2-1)(2-4)-(1-2)(1-0)|$
$=\frac{1}{2}|6+1|=\frac{7}{2}$ বর্গ একক।

$$
\frac{\triangle A B C}{\triangle D E F}=\frac{14}{7 / 2}=4 .
$$

$\triangle \mathrm{ABC}=4 . \Delta \mathrm{DEF}$
5（b）ABC ত্রিভুজ্জের শীর্যক্স্দু A, B, C এর স্থানাষ্ब যथाबक्षम $(4,-3),(13,0),(-2,9)$ जदर D ， E，F ক্সিদু তিনটি ত্রিজুজ্রের বাহুগুুোর উপর এমনভাবে बবস্ছিত যেন，$\frac{B D}{D C}=\frac{C E}{E A}=\frac{A F}{F B}=2 . \mathrm{ABC}$ जदर
 মে，এদের জানুপাত 3 ： 1.
［র্木া．’০২］
সমাধান ः প্রদত্ত বি্দু $\mathrm{A}(4,-3), \mathrm{B}(13,0)$ এবर C $(-2,9)$ এর নিচায়ক，
$\delta_{A B C}=(4-13)(0-9)-(-3-0)(13+2)$
$=81+45=126$
$\Delta \mathrm{ABC}=\frac{1}{2}|126|$ বর্গ একক $=63$ বর্গ একক
প্রশ্নমতে，$\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{2}{1} \Rightarrow \mathrm{BD}: \mathrm{DC}=2: 1$
তদ্দু $প \mathrm{CE}: \mathrm{EA}=2: 1, \mathrm{AF}: \mathrm{FB}=2: 1$
D $\equiv\left(\frac{2 \times-2+1 \times 13}{2+1}, \frac{2 \times 9+1 \times 0}{2+1}\right)$
$=\left(\frac{-4+13}{3}, \frac{18}{3}\right)=(3,6)$
$\mathrm{E} \equiv\left(\frac{2 \times 4+1 \times-2}{2+1}, \frac{2 \times-3+1 \times 9}{2+1}\right)$
$=\left(\frac{8-2}{3}, \frac{-6+9}{3}\right)=(2,1)$

$$
\begin{aligned}
\mathrm{F} & \equiv\left(\frac{2 \times 13+1 \times 4}{2+1}, \frac{2 \times 0+1 \times-3}{2+1}\right) \\
& =\left(\frac{26+4}{3}, \frac{-3}{3}\right)=(10,-1) \\
& \delta_{\mathrm{DEF}}=(3-2)(1+1)-(6-1)(2-10) \\
& =2+40=42
\end{aligned}
$$

$\triangle \mathrm{DEF}=\frac{1}{2}|42|$ ব升 একক $=21$ বর্গ একক दिजीয় जश्श ：$\triangle \mathrm{ABC}: \triangle \mathrm{DEF}=63 \quad 21=3 \quad 1$
 যथाब্চম $(-1,2),(2,3) \bullet(3,-4)$ ； P বিদ্দুর স্থানাষ্థ (x, y) रলে，जেখা যে， $\frac{\triangle P A B}{\triangle A B C}=\frac{|x-3 y+7|}{22}$
［ङ̌．’○q］
প্রমাণ：$\delta_{P A B}=(x+1)(2-3)-(y-2)(-1-2)$

$$
=-x-1+3 y-6=-x+3 y-7
$$

$$
\Delta \mathrm{PAB}=\frac{1}{2}|-x+3 y-7| \text { बর্গ একক }
$$

$$
=\frac{1}{2}|x-3 y+7| \text { বর্গ একক }
$$

$$
\delta_{A B C}=(-1-2)(3+4)-(2-3)(2-3)
$$

$$
=-21-1=-22
$$

$\triangle \mathrm{PAB}=\frac{1}{2}|-22|$ वর্গ একক $=11$ बর একক

$$
\frac{\Delta P A B}{\Delta A B C}=\frac{|x-3 y+7|}{22}
$$

6．（a）ABCD द্রशসে্র তিনणि শীর্ষবিन्দू $A(2,5)$ ， $B(5,9)$ এयर $\mathrm{D}(6,8)$ ．
I． ABD बिडूজের ক্ষেত্রকন্न নির্ণয় কর।
II．চতুর্থ শীর্ষ C এর স্থানাক্ক নির্ণয় কর। রম্বসणির ক্ষেত্রফল নির্ণয় কর।［ঢ．＇০৫，＇১০；সি．＇০৯；ব．＇০৯］ III．প্রমাণ কর বে，রম্বসটির বহু চারটি সমান । সমাধান ：I．

ABD ত্রিভুজের ক্ষের্রস্न $\left.=\frac{1}{2} \right\rvert\,(2-5)(9-8)-$ $(5-9)(5-6) \left\lvert\,=\frac{1}{2}\{(-3)(1)-(-4)(-1)\}\right.$
$=\frac{1}{2}|-3-4|=\frac{1}{2}|-7|=\frac{7}{2}$ বর্গ একক।
II．ধরি， C কিন্দুর স্থানাষ্ক (x, y) ． ABCD একটি রম্যস বলে AC কর্ণ্র মধ্যब্দ্দু $\left(\frac{x+2}{2}, \frac{y+5}{2}\right)$ এবং BD কর্ণের মধ্যক্দ্দু $\left(\frac{11}{2}, \frac{17}{2}\right)$ अডিন্ন।

$$
\frac{x+2}{2}=\frac{11}{2} \Rightarrow x+2=11 \Rightarrow x=9
$$

এてং $\frac{y+5}{2}=\frac{17}{2} \Rightarrow y+5=17 \Rightarrow y=12$
C दিদ্দুর স্থানাষ্ক $(9,12)$ ．
২য় जश्श ： $\mathrm{AC}=\sqrt{(2-9)^{2}+(5-12)^{2}}=7 \sqrt{2}$
$\mathrm{BD}=\sqrt{(5-6)^{2}+(9-8)^{2}}=\sqrt{2}$
রম্সসটির ক্ষের্রম্ল $=\frac{1}{2}(\mathrm{AC} \times \mathrm{BD})$ বর্গ একক $=\frac{1}{2}(7 \sqrt{2} \times \sqrt{2})$ ব斤 এबক $=7$ बर्গ একক।
［বि．দ্র．： $\mathrm{C} \equiv(6+5-2,9+8-5)=(9,12)$ ］
III． $\mathrm{AB}=\sqrt{(2-5)^{2}+(5-9)^{2}}=\sqrt{9+16}=5$
$\mathrm{BC}=\sqrt{(5-9)^{2}+(9-12)^{2}}=\sqrt{16+9}=5$
$\mathrm{CD}=\sqrt{(9-6)^{2}+(12-8)^{2}}=\sqrt{9+16}=5$
$\mathrm{DA}=\sqrt{(6-2)^{2}+(8-5)^{2}}=\sqrt{16+9}=5$
রম্বসটির বহু চারটি সমান ।
6（b）ABCD आায়ের তিनটि শীর্বি্দি A（3，2）， $\mathbf{B}(2,-1), \mathbf{C}(8,-3)$ इনে，চड़ूर्य गीী \mathbf{D} जर

［ব．＇০২；ঢা．＇০৩；চ．＇০৬］
সমাধান ধরি， D बি্দুর স্থানাষ্ক $(x, y) . \mathrm{ABCD}$ একটি আয়তক্ষেত্র বলে BD কণণ্র মধ্যব্দি
$\left(\frac{x+2}{2}, \frac{y-1}{2}\right)$ এবং AC কর্ণর মধ্যবিন্দু $\left(\frac{11}{2},-\frac{1}{2}\right)$ जডिন्न।

$\frac{x+2}{2}=\frac{11}{2} \Rightarrow x+2=11 \Rightarrow x=9$
এবং $\frac{y-1}{2}=-\frac{1}{2} \Rightarrow y-1=-1 \Rightarrow y=0$
D বি্দুর স্শানাষ্ক $(9,0)$ (Ans.)
रत़ षश्ं : $\mathrm{AB}=\sqrt{(3-2)^{2}+(2+1)^{2}}=\sqrt{10}$
$\mathrm{BC}=\sqrt{(2-8)^{2}+(-1+3)^{2}}=\sqrt{40}=2 \sqrt{10}$
आয়তঢির ক্ষেত্রফল্ন $=\mathrm{AB} \times \mathrm{BC}$ বর্গ একক
$=\sqrt{10} \times 2 \sqrt{10}$ বর্গ একক $=20$ বর্গ একক।
[বि.দ্র. : $\mathrm{D} \equiv(8+3-2,-3+2+1)=(9,0)$]
6(c) A, B, C এবश D बिन्मू চার্रটित्ন ন্থানাळ यथাক্রম্মে $(0,-1),(15,2),(-1,2)$ এबए $(4,-5)$ ।

I. $\mathbf{A B}: \mathbf{C D}$ निर्ष़त কর।

III. ब্রমাণ কর্গ यে, CD কে AB त্রেथाजि 2:3 অनूপাতে অম্प্রर्বিতজ্ত করে । [ব.'০৭; কু.'১>; मि.’১৩]

1. সমाथान : $\mathrm{AB}=\sqrt{(0-15)^{2}+(-1-2)^{2}}$

$$
=\sqrt{225+9}=3 \sqrt{26}
$$

$\mathrm{CD}=\sqrt{(-1-4)^{2}+(2+5)^{2}}=\sqrt{25+49}=\sqrt{74}$

$$
\mathrm{AB}: \mathrm{CD}=3 \sqrt{26} \quad \sqrt{74}=3 \sqrt{13}: \sqrt{37}
$$

II. ब्रिडूज ABC बर त्र্রফन $\left.=\frac{1}{2} \right\rvert\,(0+30+1)$ $-(-15-2-0) \mid$
$=\frac{1}{2}|31+17|=24$ वर्भ बकव:

ब्विडूজ ABD এর त्রেফम $\left.=\frac{1}{2} \right\rvert\,(0-75-4)$

$$
-(-15+8+0)
$$

$$
=\frac{1}{2}|-79+7|=36 \text { বর্গ একক। }
$$

III. ब্রমাণ:

ধরি, CD রেখাপশকে AB রেরেখাটি $\mathrm{k} \quad 1$ जনুপাতে E ক্দিদুতে অন্তর্বিিক্ত করে।

E किদ्দूর স্থानाध्क $=\left(\frac{4 k-1}{k+1}, \frac{-5 k+2}{k+1}\right)$
এখন A, E, B ब্দি তিনটি সমরেখ বলে তাদের निकाয়ক, $\delta_{A E B}=0$
$\therefore 0 \times \frac{-5 k+2}{k+1}+\frac{4 k-1}{k+1} \times 2+15 \times-1-$ $\left(-1 \times \frac{4 k-1}{k+1}+\frac{-5 k+2}{k+1} \times 15+2 \times 0\right)=0$
$\Rightarrow \frac{8 k-2}{k+1}-15-\frac{-4 k+1-75 k+30}{k+1}=0$
$\Rightarrow 8 \mathrm{k}-2-15 \mathrm{k}-15+79 \mathrm{k}-31=0$
$\Rightarrow 72 \mathrm{k}-48=0 \Rightarrow \mathrm{k}=\frac{2}{3}$ जबाৎ $\mathrm{k}: 1=2: 3$
CD রেখাংশকে AB রেখাটি 23 অনুপাতে অন্তর্ব্বভক্ত করে।

বিক্প প্র্রি :

$$
\begin{aligned}
& \delta_{A B C}=(0-15)(2-2)-(-1-2)(15+1) \\
& \quad=0+48=48 \\
& \delta_{A B D}=(0-15)(2+5)-(-1-2)(15-4) \\
& \quad=-105+33=-72 \\
& \frac{\delta_{A B C}}{\delta_{A B d}}=\frac{48}{-72}=-\frac{2}{3}<0
\end{aligned}
$$

C ® D, AB এর বিপরীত পালে অবস্পিত। অতএব

 যলাब্রমে $(3,1),(1,0),(5,1)$ এবৃ $(-10,-4)$

CD সরুরেনেখা AB রেখাছ্বকে বহিঃস্থভাবে শে অনুপাতে বিভ্ত করে তা নির্ণয় কর।
［ চ．＇০২］

সমাধান ：

$$
\begin{aligned}
& \delta_{C D A}=(5+10)(-4-1)-(1+4)(-10-3) \\
&=-75+65=-10 \\
& \delta_{C D B}=(5+10)(-4-0)-(1+4)(-10-1) \\
&=-60+55=-5 \\
& \frac{\delta_{C D A}}{\delta_{C D B}}=\frac{-10}{-5}=\frac{2}{1}>0
\end{aligned}
$$

C ও $\mathrm{D}, \dot{\mathrm{A}} \mathrm{B}$ এর একই পাশে অবঙ্থিত এবং AB কে CD রেখাট 21 অনুপাতে বহহির্বিত্ত করে।

6（e）ABCD চতूर्डूজ্রে A，B ，C，D শীর্ষ চারটির স্থানাষ্ক যলাबমম $(1,2),(-5,6),(7,-4)$ এবर（ $\mathrm{k},-2$ ）；এর बেঅ্রख্ण শून्य হাে k এর মান निর্ণয় কন।
［য．＇০২；সি．＇০৮］
সমাধান ः ABCD চতুর্ভুজের ক্ষেত্রফল

$$
\begin{aligned}
& =\frac{1}{2}\left|\begin{array}{ccccc}
1 & -5 & 7 & k & 1 \\
2 & 6 & -4 & -2 & 2
\end{array}\right| \text { বर्গ একক } \\
& =\frac{1}{2}|(6+20-14+2 \mathrm{~h})-(-10+42-4 \mathrm{k}-2)|
\end{aligned}
$$

বর্গ একক
$=\frac{1}{2}|12+2 \mathrm{k} \quad 30+4 \mathrm{k}|$ বর্গ একক
$=\frac{1}{2}|6 \mathrm{k}-18|$ ব斤্গ একক
প্রশ্নমতে，$\frac{1}{2}|6 k-18|=0 \Rightarrow 6 k-18=0$
$\mathrm{k}=3$（Ans．）

প্রশ্নমানা III D

 जनूभाত $2: 3$ राে সষ্চার পৃটির সমীকরণ নির্ণয় কর।
［চ．＇১১；রা．＇০৭；দি．＇১১；ব．＇১২；ঢা．＇，কু．，য．＇১৪］
 উপর যেকোন একটি ক্নিদ্দু ।

$$
\begin{aligned}
& \mathrm{PA}=\sqrt{(x-2)^{2}+(\quad 3} \\
& \mathrm{PB}=\sqrt{(x+1)^{2}+(y-4)^{2}}
\end{aligned}
$$

প্রশ্নমতে， $\mathrm{PA}: \mathrm{PB}=23 \Rightarrow \frac{P A}{P B}=\frac{2}{3}$
$\Rightarrow 9 \mathrm{PA}^{2}=4 \mathrm{~PB}^{2}$
$\Rightarrow 9\left\{(x-2)^{2}+(y-3)^{2}\right\}$

$$
\left.=4(x+1)^{2}+(y-4)^{2}\right\}
$$

$\Rightarrow 9\left(x^{2}-4 x+4+y^{2}-6 y+9\right)$

$$
=4\left(x^{2}+2 x+1+y^{2}-8 y+16\right)
$$

$\Rightarrow 9 x^{2}-36 x+9 y^{2}-54 y+117$

$$
=4 x^{2}+4 y^{2}+8 x-32 y+68
$$

$\Rightarrow 5 x^{2}+5 y^{2}-44 x-22 y+49=0$ ，ইহাই সঞ্চার পথের নিক্ণেয় সমীকরণ।

1（b）এবটि ত্রिडूप्জের শীর্ষত্রয় $\mathrm{A}(x, y), \mathrm{B}(-6,-3)$ এবং $\mathrm{C}(6,3) . \mathrm{A}$ বি্দ্দूটি একটি সেটের সদস্য যে সেটটির যেবোন সি্দু হত্ত BC এর উপর অষ্কিত মধ্যমার দৈ匈 5 একক। দেখাও যে，A বি্দুর সঞ্চারপপের সমীকর্নণ $x^{2}+y^{2}=25$［চ．＇০২］ সমাধান ः BC এর মধ্যক্দি D （ ধরি）এর স্থানাঙ্ক＝ $\left(\frac{-6+6}{2}, \frac{-3+3}{2}\right)=(0,0)$

AD মধ্যমার দৈর্ঘ্য $=\sqrt{x^{2}+y^{2}}$ একক প্রশ্নমতে， AD মধ্যমার দৈর্ঘ্য 5 একক।

$$
\begin{aligned}
& \sqrt{x^{2}+y^{2}}=5 \\
\Rightarrow & x^{2}+y^{2}=25 \text { (Showed) }
\end{aligned}
$$

 सঙ：

 সমাধান ঃ মরন করি， $\mathrm{P}\left(\begin{array}{ll}x & y\end{array}\right)$ ব্দ্দুটি সঞ্চার পথের せপর যেকোন একটি বিদ্দু ।

$$
\begin{aligned}
& \mathrm{PA}^{2}=(x-0)^{-}+(y-4)^{2} \\
& =x \quad-8: 16
\end{aligned}
$$

PB $x-0$

$$
=x^{2}+y^{2}-12 y+36
$$

$A B^{2}=(0-0)^{2}+(4-6)^{2}=4$
প্রশ্নমতে, P এর সাথে AB রেখাংশ এক সমকোণ উৎপন্ন করে।

$$
\mathrm{PA}^{2}+\mathrm{PB}^{2}=\mathrm{AB}^{2}
$$

$\Rightarrow x^{3}+y^{2}-8 y+16+x^{2}+y^{2}-$ $12 y+36=4$
$\Rightarrow 2\left(x^{2}+y^{2}\right)-20 y+48=0$
$\therefore x^{2}+y^{2}-10 y+24=0$, ইহাই সঞ্চার পথের নিওক্ণে সমীকরণ।

1(d) $\mathrm{A}(a, b)$ ఆ $\mathrm{B}(0, b)$ बिन्मू দूইটির সাত্থ এবটি বিদ্দু-সেটের যেকোন উপাদান একটি সমকোণী ত্রিযুজ উৎপন্ন করে। ঐ সেটটট দ্রারা সৃষ্ট সঞ্চারপধের সমীকরণ নিণ্য় কর।
[য.'০৪,’১০; রা.’১২] সমাধান ঃ মনে করি, $\mathrm{P}(x \quad y)$ बिন্দুটি সঞ্চার পথের উপর যেকোন একটি বিন্দু

$$
\begin{aligned}
& \mathrm{PA}^{2}=(x-a)^{2}+(y-b)^{2} \\
& =\quad 2-2 a x+\dot{a}^{2}+y^{2}-2 b y+b^{2}
\end{aligned}
$$

$\mathrm{PB}^{2}=(x-0)^{2}+(y-b)^{2}$

$$
=x^{2}+y^{2}-2 b+b^{2}
$$

$\mathrm{AB}^{2}=|a-0|^{2}=a^{2}$
প্রশ্নমতে, P এর সাণ্থ AB রেখাংশ এক সমকোণ উৎপন্ন করে। $\mathrm{PA}^{2}+\mathrm{PB}^{2}=\mathrm{AB}^{2}$
$\Rightarrow x-2 a x+a^{2}+y^{2}-2 b y+b^{2}+$
$x^{2}+y^{2}-2 b y+b^{2}=a^{2}$
$\Rightarrow 2\left(x^{2}+y^{2}\right)-2 a x-4 b y+2 b^{-}=0$
$x^{2}+y^{2}-a x-2 b y+b^{2}=0$, ইशই সঞ্চার প্דথর निर্ণ্য সमীকন্।
1(e) একটি ক্নিস্দু-সেটেরে যেকোন উপাদান $(2,-1)$ বিন্দু থেকে সর্বদা 4 একক দূরত্ডে অবস্থান কর্রে। ঐ সেটটট দারা সৃষ্ট সঞ্ধারপণের সমীক্রণ নির্ণয় কর।(কু.’’৷। সমাধাन ः ধরि, প্रमड বিক্দूটি $\mathrm{A}(2,-1)$ এবং $\mathrm{P}(x, y)$

$$
\mathrm{PA}=\sqrt{(1.1} \quad 2)^{2}+(y+1)^{2}
$$

mater, $\left.\left.v_{1} \quad\right)^{2}+(1) 1\right)^{2}=14$
 1. 种为
2. (a) y-অम্ম হতে একটি বিদ্দু-সেটের যেকোন উপাদান্নে দুরত্ব মুণষ্দিদু হতে তার দুরত্বের অর্ধেক। ঐ সেটটি দারা সৃট্ট স্্চারপপ্রের সমীক্রণ নির্ণয় কর:
[প্র.ভ.প.'০৪; কু.’১২]
সমাধান : মনে করি, $\mathrm{P}(x \quad y)$ বি্দুটি সঞ্চার পথের উপর যেকোন একটি ক্দি
y-অক্ম হতে $\mathrm{P}(x y)$ बিন্দুর দূরত্ব $=|x|$ একক এবং মূनক্দ্দু $(0,0)$ रতে $\mathrm{P}(x, y)$ बि্দুর দूরज़ $=\sqrt{x^{2}+y^{2}}$ একক প্রশ্নমতে, $|x|=\frac{1}{2} \sqrt{x^{2}+y^{-}} \Rightarrow 4|x|^{2}=x^{2}+y^{2}$ $\Rightarrow 4 x^{2}=x^{2}+y^{2} \quad y^{2}=3 x \quad$ ইহাই স্ক্রার পথের নিণ্ণেয় সমীকরণ

2(b) $(2,0)$ কিপ্দু হতে একটি কিস্দু-সেটের যেকোন উপাদানের দুরত্ব $x=0$ রেখা হতে তার দूরত্রের তিনগুণ। ঐ সেটটি দারা সৃষ্ট সষ্চারপপ্রে সমীক্রণ নির্ণয় कर।
[রা ’০১]
সমাধান ঃ মরে করি, $\mathrm{P}(x, y)$ বিन्দूটি সপ্চার পক্থর উপর ভ্যেোন একটি বিন্দু ।
 দূরত্ব $=|x|$ একব: এনে $(2,0)$ ন্দি হতে $\mathrm{P}(x, v)$ ক্দির দূরত্ $=\sqrt{(x-2)^{2}+y^{2}}$ बকक
প্রশ্নমভে, $3|x|=\sqrt{(x-2)^{2}+y^{2}}$
$\Rightarrow 9|x|^{2}=x-4 x+4+y^{2}$
$\Rightarrow 9 x^{2}=x^{2}-4 x+4+y^{2}$
$y^{2}-8 x^{2}-4 x+4=0 \quad$ ইহাই স্্চার পথের নির্ণেয় সমীকরণ।
$2(\mathrm{c}) \mathrm{B}(2,6) \otimes \mathrm{C}(x, y)$ बिम्मू দूইটি $\mathrm{O}(0,0)$

अমাषान :

$\delta_{O A B}=(0-3)(5-6)-(0-5)(3-2)$
$=3+5=8$
$\delta_{\text {OAC }}=(0-3)(5-y)-(0-5)(3-x)$
$=-15+3 y+15-5 x=3 y-5 x$
প্রশ্নমতে, $\triangle \mathrm{OAC}=2 \Delta \mathrm{OAB}$
$\Rightarrow \frac{1}{2}\left|\dot{\delta}_{O A C}\right|=2 \cdot \frac{1}{2}\left|\delta_{O A B}\right|$
$\Rightarrow\left|\delta_{\text {OAC }}\right|=2 .\left|\delta_{\text {OAB }}\right|$
B ও C ক্দিদু দুইটি O ও A বিদ্দুদ্ব্যের সংয়োগ সরলরেখার একই পার্শ্বে অবস্থিত বলে $\delta_{\text {OAB }}$ ও $\delta_{\text {OAC }}$ একই চিহ্যুক্ত হবে।

$$
\delta_{O A C}=2 \cdot \delta_{O A B} \Rightarrow 3 y-5 x=2 \times 8
$$

$\therefore \quad 5 x-3 y+16=0$, ইহাই সঞ্চার পথের নির্ণেয় সমীকরণ।

2(d) $\mathrm{C}(2,-1)$ ఆ $\mathrm{D}(x, y)$ কি্দू দूইটি $\mathrm{A}(1,1)$ © B(4, -2) কি্দুদ্যের সহযোগ সরনরেথার বিপরীত পার্শ্বে जবস্ছিত। $\mathrm{D}(x, y)$ বিস্দুটি এমন এबকি কিন্দूসেটের সদস্য যার প্রতিটি কিস্দুর बন্য $\triangle \mathrm{ABD}=$ 3. $\triangle \mathrm{ABC}$. ঐ সেটটি ঘারা সৃষ্ট সঞ্চারপপ্রের সমীকরণ निর্ণ কর।

সমাধান ः $\delta_{A B C}=(1-4)(-2+1)-(1+2)(4-2)$

$$
\begin{aligned}
& \quad=3-6=-3 \\
& \delta_{A B D}=(1-4)(-2-y)-(1+2)(4-x) \\
& \quad=6+3 y-12+3 x=3 x+3 y-6 \\
& \text { প্রশ্নমত, } \triangle \mathrm{ABD}=3 \cdot \Delta \mathrm{ABC} \\
& \Rightarrow \frac{1}{2}\left|\delta_{A B D}\right|=3 \cdot \frac{1}{2}\left|\delta_{A B C}\right| \\
& \Rightarrow\left|\delta_{A B D}\right|=3 \cdot\left|\delta_{A B C}\right|
\end{aligned}
$$

 সরলরেখার বিপরীত পার্শ্বে অবঙ্ছিত বলে $\delta_{A B D}$ उ $\delta_{A B C}$ বিপজ্রীত চিছ্যুক্ত হবে।
$\delta_{A B D}=-3 . \delta_{A B C}$
$\Rightarrow 3 x+3 y-6=-3(-3)=9$
$\Rightarrow 3 x+3 y=15$
$x+y=5$ ইহাই সঞ্চার প্থের নিক্রেয় সমীকরণ।
3(a) k এর যেকোন মানের জন্য P নিদ্দুর স্যানাজ্ক $\left(2 a \mathrm{k}, a \mathrm{k}^{2}\right) . \mathrm{P}$ স্দ্দুর সঞ্চারপণ্থে সমীকরণ নিৰ়্ क्र।

সমাধান ः ধরি, P ক্দ্নির কার্তেসীয় স্পানাষ্জ (x, y).

$$
\begin{aligned}
& 2 \mathrm{ak}=x \Rightarrow \mathrm{k}=\frac{x}{2 a} \text { जবং } \\
& a \mathrm{k}^{2}=y \Rightarrow a\left(\frac{x}{2 a}\right)^{2}=y\left[\quad \mathrm{k}=\frac{x}{2 a}\right] \\
& \Rightarrow a \frac{x^{2}}{4 a^{2}}=y
\end{aligned}
$$

$x^{2}=4 a y$, या নিক্কেয় সন্চারপণের সমীকরণ।
3(b) θ পরিবর্ঠনশীল হলে, $\mathbf{P}(1+2 \cos \theta,-2+$ $2 \sin \theta$) सिम्দूর সণ্চারপণের সমীক্রণ নির্ণয় কর। সমাধান ः ধরি, P बিন্দুর কার্তেসীয় স্থানাজ্ক (x, y).
$1+2 \cos \theta=x \Rightarrow 2 \cos \theta=x-1$ এব?
$-2+2 \sin \theta=y \Rightarrow 2 \sin \theta=y+2$
$(x-1)^{2}+(y+2)^{2}=4\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$\Rightarrow(x-1)^{2}+(y+2)^{2}=4$, या निर্ণেয় সঞ্চারপথথর সমীকরণ।

অতিরিক্ত প্রশ্ন (সমাধানসহ্)

1. দেখাও বে, $(a, a) \quad(-a,-a)$ এবং $(-a \sqrt{3}, a \sqrt{3})$ বিम্দूগুলি একটি সমবাহू ত্রিযুজ্রের শীর্ববি্দ্রু।

প্রমাণ 8 মনन করি, প্রদত্ত ব্দিত্দুত্র $\mathrm{A}(a \quad a)$ $\mathrm{B}(-a,-a)$ 凶বং $\mathrm{C}(-a \sqrt{3}, a \sqrt{3})$

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(a \quad a)^{2}+(a+a)^{2}}=\sqrt{8 a^{2}} \\
\mathrm{BC} & =\sqrt{(-a+a \sqrt{3})^{2}+(-a-a \sqrt{3})^{-}} \\
& =\sqrt{2\left\{(-a)^{2}+(a \sqrt{3})^{2}\right\}} \\
& =\sqrt{2\left(a^{2}+3 a^{2}\right)}=\sqrt{8 a^{2}} \\
\mathrm{CA} & =\sqrt{(-a \sqrt{3}-a)^{2}+(\sqrt{3} a-a)^{2}} \\
& =\sqrt{2\left\{(-a)^{2}+(a \sqrt{3})^{2}\right\}} \\
& =\sqrt{2\left(a^{2}+3 a^{2}\right)}=\sqrt{8 a^{2}}
\end{aligned}
$$

$\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ এর এ্রেকেন দুইটির সমষ্টি ঢৃতীয়টি অপপপ্কে বৃহজ্জর बবং $\mathrm{AB}=\mathrm{CA}=\mathrm{CA}=\sqrt{8 a^{2}}$

প্রদত্ত বি্দিতুয় এবfiি সমবাহু ত্রিভুজের শীর্ষব্ন্দু।

मমाथान : $\quad \overrightarrow{\mathrm{A}(-5,4)} \mathrm{B}(3,-2) \quad \mathrm{C}(x, y)$
দেওয়া आছে, $3 \mathrm{AB}=2 \mathrm{BC} \Rightarrow \frac{A B}{B C}=\frac{2}{3}$
ধরি, C ক্দ্দুর স্থানাজ্ক (x, y).

$$
\begin{aligned}
& \frac{A B}{B C}=\frac{-5-3}{3-x}=\frac{4+2}{-2-y}=\frac{2}{3} \\
& \frac{-8}{3-x}=\frac{2}{3} \Rightarrow-24=6-2 x \\
\Rightarrow & 2 x=30 \Rightarrow x=15 \text { এ『ং } \\
& \frac{6}{-2-y}=\frac{2}{3} \Rightarrow 18=-4-2 y \\
\Rightarrow & 2 y=-22 \Rightarrow y=-11
\end{aligned}
$$

C ब্দ্দুর স্থানাজ্क $(15,-11)$ (Ans.)
3. यमि $\mathrm{A}(-4,6), B(-1,-2)$ এবং $C(a,-2)$
 হয়, তবে ' a ' এর মান এবং \mathbf{A} रতে BC এর মম্ব দুরত্ত নিণ্য় কর।
[প্র.ভ.প.’’৫]
সমাধাन : $\delta_{A B C}=(-4+1)(-2+2)-$
$(6+2)(-1-a)=8(a+1)$
$\triangle \mathrm{ABC}$ এর ক্ষেত্রফল $=\frac{1}{2}\left|\delta_{A B C}\right|$ বর একক

$$
=\frac{1}{2}|8(a+1)| \text { বর্গ একক }
$$

প্রশ্নমতে $\frac{1}{2}|8(a+1)|=16 \Rightarrow|a+1|=4$
$\Rightarrow \mathrm{a}+1= \pm 4 \Rightarrow \mathrm{a}=3$ आขবा, $\mathrm{a}=-5$
a बর মাन 3 বा, -5
২য় জংশ: A হতে BC এর बम্ম দূরত্ব d একক হলে
$\triangle \mathrm{ABC}$ बর ক্ষেত্রেन $=\frac{1}{2}(\mathrm{BC} \times \mathrm{d})=16$
$\Rightarrow|-1-\mathrm{a}| \times \mathrm{d}=32$
$\Rightarrow 4 \mathrm{~d}=32 \quad[\mathrm{a}=3$ বा, -5 বসिख़ে]
A रতে BC এর লम্ম দূরত্ব 8 একক।

4(a) দেथাও यে, $\left(3,90^{\circ}\right) *\left(3,30^{\circ}\right)$ কিস্দু দুইটি মুণক্সিদুর সাথ্েে এবটি সমবাIু ত্রিজুজ উৎপন্ন করে। ত্রিভুজটির ক্মেত্রख্ন নিক্য় কর।
সমাধান : $\left(3,90^{\circ}\right)$ उ $\left(3 \quad 30^{\circ}\right)$ এর बार्তणসীয় স্সানাজ্ক যথার্রে $\left(3 \cos 90^{\circ}, 3 \sin 90^{\circ}\right)=(0,3)$ $ও\left(3 \cos 30^{\circ}, 3 \sin 30^{\circ}\right)=\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)$.
র্ধরি, প্রদত্ত ক্দি দুইটি $\mathrm{A}(0,1)$ ও $\mathrm{B}\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)$ এবং মূलबिন্দু $\mathrm{O}(0,0)$.

$$
\mathrm{OA}=\sqrt{0+3^{2}}=3
$$

$$
\begin{aligned}
\mathrm{OB} & =\sqrt{\left(\frac{3 \sqrt{3}}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}}=\sqrt{\frac{27+9}{4}}=\sqrt{\frac{36}{4}}=3 \\
\mathrm{AB} & =\sqrt{\left(0-\frac{3 \sqrt{3}}{2}\right)^{2}+\left(3-\frac{3}{2}\right)^{2}}=\sqrt{\frac{27}{4}+\frac{9}{4}} \\
& =\sqrt{\frac{36}{4}}=3
\end{aligned}
$$

$\mathrm{OA}, \mathrm{OB} \mathrm{AB}$ এর য্যেকোন দুইটির সমক্টি তৃতীয়টি অপপफ্ম বৃহত্তর এব: $\mathrm{OA}=\mathrm{OB}=\mathrm{AB}=3$.
\therefore প্রদত্ত ক্দ্দু দুইটি মূলক্দ্দুর সাহ্থ একটি সমবাছু ত্রিজুজ উংপন্ন করে!
এখন, সমবাহू ত্রিডুজটির ক্ষেত্রফল $=\frac{\sqrt{3}}{4}(3)^{2}$

$$
=\frac{9 \sqrt{3}}{4} \text { বর্গ একক }
$$

4(b) দেथ゙ఆ বে, $\mathrm{C}(-2,-1)$ এবং $\mathrm{D}(5,-4)$ बिन्দू দুইটি $\mathrm{A}(-3,1)$ এবং $\mathrm{B}(1,-1)$ বিপ্দুদ্যের সংয়াগ রেখার এধই পার্ণ্বে অবস্কিত। AB রেখার কোন পার্ণ্রে মূণকিস্দু অবস্ధিত ?

সমाधान \& $\delta_{\mathrm{ABC}}=(-3-1)(-1+1)-(1+1)(1+2)$

$$
\begin{aligned}
& =-6 \\
\delta_{A B D} & =(-3-1)(-1+4)-(1+1)(1-5) \\
& =-12+8=-4
\end{aligned}
$$

এখন, $\delta_{\mathrm{ABC}} \times \delta_{\mathrm{ABD}}=-6 \times-4>0$ বলে C এবং
D ক্দ্দুদ্দ্য AB এর একই পার্শ্বে অবস্থিত।
দিতীয় जशশ : $\mathrm{O}(0,0)$ মূनঝ্নিদू হলে,
$\delta_{A B 0}=(-3-1)(-1-0)-(1+1)(1-0)$
$=4-2=2$
$\delta_{A B 0} \times \delta_{A B C}=-6 \times 2<0$ বলে AB রেখার যে পার্শ্বে C ও D অবস্ছিত ঢার বিপরীত পার্শ্বে মূল্লবিন্দু শ্মবস্মিত।
5. $(-2,3),(-3,-4),(5,-1)$ ఆ $(2,2)$ বিস্দু চারটি ক্মাস্বয়ে নিয়ে ভে চতুর্ভুজ গঠিত হয় তার ক্কেত্রফ্ম নিি্য় কর।

সমাধান ঃ প্রদত্ত বিন্দু চারটি ক্রমান্ময়ে নিয়ে যে চতুর্ভুজ গঠিত হয় তার ক্ষেত্রফল
$=\frac{1}{2}\left|\begin{array}{ccccc}-2 & -3 & 5 & 2 & -2 \\ 3 & -4 & -1 & 2 & 3\end{array}\right|$
$\left.=\frac{1}{2} \right\rvert\, 8+3+10+6-(-9-20-2-4 \mid$
$=\frac{!}{2}|27+35|=31$ ब এক্ষ. (Ans.)
6(a) t এর মান কত হন্নে $(2 t+1 . t+2)$, $(2-t$, 2-5t) এবং (5 t, 7t) বিস্দুত্রয় ধনাত্ক ক্রমে অবস্পান করে একাট ত্রিভুজ গঠন করবে ?
সমাধান ঃ প্রদত্ত ব্ন্দুজ!়়ের নিচ্চায়ক $=(2 t+1-2+t)$
$(2-5 \mathrm{t}-7 \mathrm{t})-(\mathrm{t}+2-2+5 \mathrm{t})(2-\mathrm{t}-5 \mathrm{t})$
$=(3 t-1)(2-12 t)+6 t(2-6 t)$
$=(3 t-1)(2-12 t+12 t)=2(3 t-1)$
প্রদত্ত বিন্দুত্রয় ধনাত্মক ক্রমে অবস্থান করে একটি
ত্রিভুজ্ গঠন করলে, $2(3 t-1)>0 \Rightarrow t>\frac{1}{3}$
6(b) मেখা এবং $(-\mathbf{t},-\mathbf{t})$ বিন্দूত্রয় অণাত্আক কমে থাকবে, যদি t>1 इश़।

সমাধান ঃ প্রদত্ত বিন্দুত্রয়ের নিসায়ক $=(t-1+2 t)$
$(2-3 t+t)-(3 t-2-2+3 t)(1-2 t+t)$
$=(3 t-1)(2-2 t)-(6 t-4)(1-t)$
$=(1-t)(6 t-2-6 t+4)=2(1-t)$
 ত্রিভুজ গঠন করলে, $2(1-t)<0$
$\mathrm{t}>1$ (Showed)
7. t পরিবর্তনশীল হলে দেখাও যে, $P(t+2,3 t)$ কিদ্দুর সঞ্ভারপণের সমীকরণ $3 x-y=6$.
প্রমাণ : ধরি, P বিন্দুর কার্তেসীয় স্থানাঙ্ক (x, y).
$\mathrm{t}+2=x \Rightarrow \mathrm{t}=\mathrm{x}-2$ এবং
$3 \mathrm{t}=y \Rightarrow 3(x-2)=\mathrm{y}[\because \mathrm{t}=x-2]$
$3 x-y=6$, या निক্কেয় गঞ্চারপথের সমীকরণ।
8. একটট ত্রিডুজ্জের শীর্ষ বিन्দूখুলি $A(x, y), B(1,3)$ उ $\mathrm{C}(3,1)$ रजन এবং $\mathrm{x}+\mathrm{y}=1$ रणन बिजूজ্রটির त্রেফম निর্ণয় কর।
[KUET 07-08] সমাধান : প্রদত্ত বিন্দু তিনটি ন্বারা গঠিত ত্রিভুজের ত্রেফল্ল $=\frac{1}{2}|(x-1)(3-1)-(y-3)(1-3)|$
$=\frac{1}{2}|2 x-2+2 y-6|=\frac{1}{2}|2 x+2 y-8|$
$=|x+y-4|=|1-4|=3$ বর্গ একক।

www.boighar.com

ডর্তি পরীাষ্ষার MCQ :

1. কোন বিদ্দুর কার্তেসীয় স্থানাষ্ক $(-1, \sqrt{3})$ হলে বিস্দুটির পোলার স্থানাষ্ফ- [JH,IU 07-08; CU 05-06; KU 03-04]
Sol ${ }^{n} .: r=\sqrt{1+3}=2, \theta=\tan ^{-1} \frac{\sqrt{3}}{-1}$
$=180^{\circ}-\tan ^{-1} \sqrt{3}=180^{\circ}-30^{\circ} \therefore\left(2,120^{\circ}\right)$
2. $(1,4)$ এবং $(9,-12)$ বিদ্দুদ্বয়ের সशযোগকারী রেখাংশ অস্তঃস্সভাবে যে বিদ্দুতে 5:3 অনুপাতে বিভ্ত্ত হয় তার স্যানাংক- [DU, Jt.U 06-07, RU 07-08, 06-07; KUET 05-06]
Sol $^{n} .:$ স্থানাংক $=\left(\frac{3+45}{8}, \frac{12-60}{8}\right)=(6,-6)$
3. $(2,-4),(-3,6)$ বিम্দুদ্বয়ের সংযোগ রেখাएশকে yঅপ্মরেখা যে অনুপাতে বিভক্ু করে-
[RU 07-08]
$\mathrm{Sol}^{n} .:$ बनूकाज $=\frac{-4-0}{0-6}=\frac{2}{3}$
4. ABC ত্রিভুজ্জের শীী্ষ বিস্দুর স্থানাজ্ক $(2,2),(3,4)$ ও (5.6) হচেে উক্ত ত্রিজ্জুটির ভরকেন্দ্র - [RU 07-08] SoI $^{n} .: G=\left(\frac{2+3+5}{3}, \frac{2+4+6}{3}\right)=\left(\frac{10}{3}, 4\right)$

5．$(x, y),(2,3)$ এবर $(5,1)$ এবই সরনরেখায় অবস্থিত হলে－
［DU 05－06］
Sol ${ }^{n}$ ．$(\mathrm{x}-2)(3-1)-(\mathrm{y}-3)(2-5)=0$
$\Rightarrow 2 \mathrm{x}-4+3 \mathrm{y}-9=0 \Rightarrow 2 \mathrm{x}+3 \mathrm{y}-13=0$
6．$(2,2-2 x),(1,2)$ এবर $(2, b-2 x)$ কিम্দूभूলো সমরেখ হাল，এর মান－
［DU 06－07］
Sol ${ }^{n} .:(2-1)(2-b+2 x)-(2-2 x-2)(1-2)=0$
$\Rightarrow 2-\mathrm{b}+2 \mathrm{x}-2 \mathrm{x}=0 \Rightarrow \mathrm{~b}=2$
7．কোন ত্রিজুজ্大ের শীর্বকিদ্দু সমূহ $(-1,-2),(2,5)$ ， $(3,10)$ হनে，তার ক্Pেশ্রশ্ল－
［DU 03－04］
Sol $^{n}: \frac{1}{2}|(-3)(-5)-(-7)(-1)|=\frac{1}{2}(8)=4$
8．द্কান ত্রিভूজ্জে শীর্ষবিস্দু সমूহ $(-4,3),(-1,-2)$ ， $(3,-2)$ হলে，তার ক্ষেত্রयস－
［ Jt．U 08－09］
Sol ${ }^{n} .: \frac{1}{2}|(-3) \cdot 0-5(-4)|=\frac{1}{2} \cdot 20=10$
9． ABCD সামান্তরিকের $\mathrm{A}, \mathrm{B}, \mathrm{C}$ বিদ্দু তিन心্রি স্থানাষ্ক যরাब্রম্ম $(1,2),(3,4),(1,0)$ হলে সামাম্ত রিকের ক্ষেত্রফল－
［RU07－08］
Sol ${ }^{n}$ ．：সামান্তরিকের ক্ষে্র্রকন $\left.=2 \cdot \frac{1}{2} \right\rvert\,\{(-2) .4-$ $(-2) \cdot 2|=|-8+4|=4$ ব斤 একক।
10． $\mathrm{A}(2,4), \mathrm{B}(2,8)$ এবং C सिम्দूघয় সমবাহू ত্রিভूজ গঠন ক্র । AB এর যে পার্শ্বে মূলব্দ্দু ， C তার বিপরীত পার্শ্রে অবস্খিত হলে \mathbf{C} এর স্থানাষ্ভ নির্ণয় কর।
［RU 06－07］

Sol＂．：দুইইট＇শীর্টের ভুজ সমান বলে C এর কোটি $=\frac{4+8}{2}=6$ এช゚．ভूজ $=2 \pm \frac{\sqrt{3}}{2}|4-8|=2 \pm 2 \sqrt{3}$ आবার， $2>0$ এবং বিন্দুটি মূলব্দ্দুর বিপরীত পার্ণে বিধায় C এর স্পানাষ্ক $(2+\sqrt{3}, 6)$ ．

11．একটি ত্রিভুজ্জের বাহूগুলোর সমীকরণ $2 x+y=12$ ，
 নির্য় কর।
［ RU 05－06；KU 03－04］
Sol ${ }^{n}$ ： ক্যালকুুলৌটরের সাহা্্যে শীর্বত্রহ $(5,2),(1,0)$ ， $(4,4) . \therefore \Delta=\frac{1}{2}|4 .(-4)-2 .(-3)|=5$ दर्ध এकক। 3 times $4 \mathrm{EQN} 22=1=1$ 22 $\mathrm{y}=2$
12． a এর কোন মানের জন্য $\left(\mathrm{a}^{2}, 2\right),(\mathrm{a}, 1)$ এবং $(0,0)$ কি্দুত্রয় সমরেখ হবে？
［BUET 05－06］
Sol ${ }^{n} \cdot\left(a^{2}-a\right)(1-0)-(2-1)(a-0)=0$
$\Rightarrow \mathrm{a}^{2}-2 \mathrm{a}=0 \Rightarrow \mathrm{a}=0,2$

এক ন氏রে প্রয়োজনীয় সূত্রাবলী

（a）ঢাन（ m ）：1．একটি সরनরেখা x－অক্ষের ধনাত্যক দিক্েে সাiেে θ কোণ উৎপন্ন করনে তার ঢान，$m=\boldsymbol{\operatorname { t a n }} \theta$
2．একটি সরুनরেখা $\left(x_{1}, y_{1}\right)$ ७ $\left(x_{2}, y_{2}\right)$ दि্দूগাयী रनে তার ঢা冋， $\mathrm{m}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$ ．
3．এবটি সরনরেখা মুলবিস্দু এবং $\left(x_{1}, y_{1}\right)$ বিন্দুগামী रनে ঢाর णान， $\mathrm{m}=\frac{y_{1}}{x_{1}}$ ．
（b）এবাট রেখার সমীক্রণ ：
$\begin{array}{ll}\text { 1．} y \text {－অс্মে ，} x=0 . & \text { 2．} x \text {－অক্ষে ，} y=0\end{array}$
3．y－অক্ষে সমান্তরান অর্ৰাৎ x－অক্ষের উপর নম্ম রেখার সমীব্রণ，$x=a$ ．
4．x－অক্ষুর সমান্তরাল অর্বাৎ y－অడ্巾ের উপর অম্य রেथার সমীকরণ，$y=\mathrm{b}$ ．
5． m जা বিশিষ্ট এবగ মুনবিস্দুগামী র্রেখার সমীক্রণ， $y=m x$ ．
6．একটি সরনরেখার ঢাল \mathbf{m} এবং y－অণ্ষের ছেদক অংশ c হলে তার সমীকরণ হবে $y=m x+c$
7．এবটি রেখার ঢাল m এবং রেখাটি $\left(x_{1}, y_{1}\right)$ ক্স্দুগামী হলে，রেখাটির সমীকরণ，

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

8．$\left(x_{1}, y_{1}\right)$ जবং $\left(x_{2}, y_{2}\right)$ কिन्मूभाমी রেখার সমीকत्तণ $\frac{x-x_{1}}{x_{1}-x_{2}}=\frac{y-y_{1}}{y_{1}-y_{2}}$
$\Rightarrow\left(x-x_{1}\right)\left(y_{1}-y_{2}\right)-\left(y-y_{1}\right)\left(x_{1}-x_{2}\right)=0$.
$\Rightarrow\left(y_{1}-y_{2}\right) x-\left(x_{1}-x_{2}\right) y=$

$$
\left(y_{1}-y_{2}\right) x_{1}-\left(x_{1}-x_{2}\right) y_{1}
$$

 जיশ ছেদকারী রেখার সমীকরণ $\frac{x}{a}+\frac{y}{b}=1$ ．

10．মুনক্দিন্দু এবং $\left(x_{1}, y_{1}\right)$ বিন্দুগামী রেখার সমীকরণ
$y=\frac{y_{1}}{x_{1}} x \Rightarrow x y_{1}-y x_{1}=0$
11．মু্বিি্দু হতে কোন সরনরেখার উপর অষ্কিতত

সাথ্ে α কোণ উৎপন্ন করনে，রেখ্যাটির সমীকর্রণ হবে $x \cos \alpha+y \sin \alpha=p$ ．
x－অட্মের ধনাত্অক দিক্কে সাথ্ θ ক্কো উৎপন্ন করে এমন সরনরেখার সমীকরণ $\frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=r$ ， যেখানে (x, y) ষিদ্দু হতে $\left(x_{1}, y_{1}\right)$ বিদ্দুর দूরত্ব r ．

MCQ এর জন্য বিশেষ সূত্র：
1． AD মধ্যমার সমীকরণ，
$\left(2 y_{1}-y_{2}-y_{3}\right) \mathrm{x}-$
$\left(2 x_{1}-x_{2}-x_{3}\right) \mathrm{y}=$ $\left(2 y_{1}-y_{2}-y_{3}\right) x_{1}-$ $\left(2 x_{1}-x_{2}-x_{3}\right) y_{1} \mathrm{~B}$

2． $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ দারা x －অक্ষের ছেদাएশ $=-c / a, y-$ অক্भের ছেদাশ $=-c / b$ ；অक्षদয়ের মধ্যবणी খভ्डिত जशশ $=\sqrt{(c / a)^{2}+(c / b)^{2}}$ ；

 ক্দিত্তে সমদ্খিষ্ডিত इলে তার সমীকরণ， $\frac{x}{2 \alpha}+\frac{y}{2 \beta}=1$
4．মুणক্স্দু হতে রোন রেখার উপর অষ্কিত নম্ম x－ অক্ষের ধনাত্রক দিকের সাথ্ে θ बোণ উৎপন্ন করলে তার সমীকর্木ণ $\frac{x}{a}+\frac{y}{b}=1$ ，ভেখানে $\tan \theta=\frac{a}{b}$

5．$a_{1} x+b_{1} y+c_{1}=0 \cdots(\mathbf{1})$ ，
$a_{2} x+b_{2} y+c_{2}=0 \cdots(2) \otimes$
$a_{3} x+b_{3} y+c_{3}=0 \cdots(3)$ রেथा তিনটি घ্মারা গঠিত ज्रिडूজ্রের कেত্রযস্न $=$
$\frac{\left\{c_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)-c_{2}\left(a_{1} b_{3}-a_{3} b_{1}\right)+c_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)\right\}^{2}}{2\left|\left(a_{2} b_{3}-a_{3} b_{2}\right)\left(a_{1} b_{3}-a_{3} b_{1}\right)\left(a_{1} b_{2}-a_{2} b_{1}\right)\right|}$
6．（1）ও（2）রেখার ছেদবিস্দুগামী এবং
（3）এর সমান্তরাण ® লস্ম এরূপ রেখার সমীক্রণ
যथाबমম $\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}=\frac{a_{1} b_{3}-a_{3} b_{1}}{a_{2} b_{3}-a_{3} b_{2}}$
$\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}=\frac{a_{1} a_{3}+b_{1} b_{3}}{a_{2} a_{3}+b_{2} b_{3}}$

প্রশ্নমানা－III E

1（i）（a）x অর্রে ধনাس্ক দিকের সাথে 30° কোণ উৎপন্ন করে এক্রপ সন্রধর্নেখার ঢাল নির্ণয় কর।

সমাধান：निर्विय़ जाल $=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
（b）$(3,-4)$ В $(4,-5)$ বিन्দুগামী সর্নनরেখার ঢাল निর্ণীয কর।

সমাধান：প্রদত্ত বিন্দুদ্ময় দিয়ে অতিক্র্小কারী！সরন্লেখার
गाल $=\frac{-4-(-5)}{3-4}=\frac{1}{-1}=-1$
（c）একটি সরুররেখার সমীকন্যকরণ নির্ণয় কর যা
x －অढ़ সমাষ্তরাল এবং गढ़ 4 একক দূরে जयभ्रिज

সমাধান：x－অরে সমান্তরাল্ बবং তার নিट5 4 একক দূরে অবস্থিত এরূপ সরনরেেখার সমীকরণ，$y=-4$
（d）একটি সরনর্রেখার সমীক্রকরূণ নি⿵人⿻二⿰丿丨丶য় কর য！ y －অরে সমাষ্তরাল এবং তার ডানে 5 একক দূর্র अर्वश्रिज।

সমাধান：y－जার সমান্তयাল এবং ঢার ডানে 5 একক

（e）x－अর্রে সমাত্তরাল
$(3,-4)$ বিদ্দুগানী

সমাধানः ধরি，x－－অরে মমাত্তরাল সরলরেখার

$y=k$ तেथ্যাটি $(3,-4)$ বিन्नू গামী।

$$
-4=k \Rightarrow k=-4
$$

k এর মান বসিয়ে পাই，$y=-4$（Ans．）
1（ii）निম্লের দूইটি বিন্দूগামী রেোন্ন সমীকরণ নির্ণয় কর ：
（a）(a, b) बবং $(-a,-b)$
（b）(a, b) এবং $(a+b, a-b)$
সমাধান ：（a）$(a \quad b)$ এবং $(-a,-b)$ নিন্দুগামী রেখার সমীকরণ，$\frac{x-a}{a+a}=\frac{y-b}{b+b} \Rightarrow \frac{x-a}{2 a}=\frac{y-b}{2 b}$
$\Rightarrow b x-a b=a y-a b \Rightarrow b x-a y=0$
（b）(a, b) এবং $(a+b \quad a-b)$ बিন্দুগামী রেখার সমীকরণ，$(\mathrm{b}-\mathrm{a}+\mathrm{b}) x-(\mathrm{a}-\mathrm{a}-\mathrm{b}) y$

$$
=(b-a+b) \cdot a-(a-a-b) b
$$

$\left[\left(y_{1}-y_{2}\right) x-\left(x_{1}-x_{2}\right) y=\right.$
$\left(y_{1}-y_{2}\right) x_{1}-\left(x_{1}-x_{2}\right) y_{1}$ সুজ্রের সাহাত্য্য ］
$\Rightarrow(2 \mathrm{~b}-a) x+\mathrm{by}=2 a \mathrm{~b}-\mathrm{a}^{2}+b^{2}$

$$
(2 b-a) x+b y+a^{2}-2 a b-b^{2}=0
$$

2．একটि সর্ররেেোর সমীকরণ নির্ণয় কর या x－ অক্ষে ধনাত্মক দিকের সাথে $\sin ^{-1}(5 / 13)$ কোণ উৎপন্ন করে এবং y－অক্ষের ধনাত্যক দিকের ছেদাংশ 5 একক।

সমাধান：ধরি，$\theta=\sin ^{-1}(5 / 13) \Rightarrow \sin \theta=\frac{5}{13}$
$\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}$
$\Rightarrow \tan \theta=\frac{5 / 13}{\sqrt{1}-5 / 169}=\frac{5}{13} \times \frac{13}{12}=\frac{5}{12}$
 にून आश्य， $\mathrm{c}=5$ একक

निণেে রর্যার সমীক্রণ，$y=m x+c$
$\Rightarrow y=\frac{-12}{12} x+5 \Rightarrow 12 y=5 x+60$ ．（Ans．）
3．（a） $\mathrm{A}(1,1), \mathrm{B}(3,4)$ ब 4 （ $\mathrm{C}(5,-2)$

সমাধান ঃ ধরি, AB ও AC এর মধ্যবিন্দু যথাক্রমে D ® E. 丁ाइल. $\mathrm{D} \equiv\left(\frac{1+3}{2}, \frac{1+4}{2}\right)=\left(2, \frac{5}{2}\right)$ এবং $E \equiv\left(\frac{1+5}{2}, \frac{1-2}{2}\right)=\left(3,-\frac{1}{2}\right)$.

DE রেখার সমীকরণ, $\frac{x-2}{2-3}=\frac{y-\frac{5}{2}}{\frac{5}{2}+\frac{1}{2}}$
$\Rightarrow \frac{x-2}{-1}=\frac{2 y-5}{6} \Rightarrow 6 x-12=-2 y+5$

$$
6 x+2 y-17=0(\text { Ans. })
$$

3(b) $(2,4),(-4,-6)$ এবং $(6,-8)$ বি肩 তিনটি একটি ত্রিজুজ্রের শীর্ষকিন্দু । ত্রিভूधটির মধ্যমাগুলোর সমীকরণ নিণয় কর। [চ.'०৭] সমাধান :

४রি, ত্রিভুজের শীর্ষত্রয় $\mathrm{A}(2,4), \mathrm{B}(-4,-6)$ ও $\mathrm{C}\left(\begin{array}{ll}6 & -8\end{array}\right)$ এবং BC, CA AB বাহুর মধ্যবিন্দু যথाক্রুম D, E, F.

$$
D \equiv\left(\frac{-4+6}{2}-6-8\right)=(1,-7)
$$

$E \equiv\left(\frac{6+2}{2}, \frac{-8+4}{2}\right)=(4,-2)$
$P \equiv\left(\frac{2-4}{2}, \frac{4-6}{2}\right)=(-1,-1)$

11. $22=4=11 x-y-18=0$

$+10=8 y 48$
$1+4+30 x-2 y-8=1$

$\Rightarrow-x+6=y+8 \Rightarrow x+y+2=0$
[MCQ এর জন্য, AD মধ্যমার সगীকরণ, $(8+6$ $+8) x-(4+4-6) y=22 \times 2-2 \times 4=36$
$\Rightarrow 11 \mathrm{x}-\mathrm{y}-18=0$]
3(c) A(h, k) বিন্দুটি $6 x-y=1$ রেখার উপর এবং $B(k, h)$ বিন্দুটি $2 x-5 y=5$ রেখার উপর অবস্ছিত। AB সরলরেখাটির সমীকরণ নির্ণয় কর। [मि.'০৯; ঢা.চ.'১২,'১৪; ব.'১০; রা.,য.'১১; সি.,য.'১৪] সমাধান : $\mathrm{A}(\mathrm{h}, \mathrm{k})$ রিন্দুটি $6 x-v=1$ রেখার উপর अবস্ছিত । $\quad 6 h-k=1$
আবার, $\mathrm{B}(\mathrm{k}, \mathrm{h})$ বিন্দুটি $2 x-5 y=5$ রেখার উপর অবস্Pिত । $2 \mathrm{k}-5 \mathrm{~h}=5$

$$
\begin{equation*}
(1) \times 2+(2) \Rightarrow 12 h-5 h=7 \Rightarrow h=1 \tag{2}
\end{equation*}
$$

(1) হরে আমরা পাই, $6.1-k=1 \Rightarrow k=5$

$$
\mathrm{A} \equiv(1,5) \text { এবং } \mathrm{B} \equiv\left(\begin{array}{ll}
5 & 1
\end{array}\right)
$$

AB রেখার সমীকরণ, $\frac{x-1}{1-5}=\frac{y-5}{5-1}$
$\Rightarrow 4 x-4=-4 y+20 \Rightarrow 4 x+4 y=24$

$$
x+y-6=0 \quad \text { (Ans.) }
$$

$3(\mathrm{~d})$ यमि $(\mathrm{a}, \mathrm{b}),\left(a^{\prime}, b^{\prime}\right),\left(a-a^{\prime}, b-b^{\prime}\right)$ বিস্দুত্রয় সমরেখ হয়, তবে দেখাও যে, তাদের সংযযোগ রেখাটি মূণ্গিিদু দিয়ে যায় এবং $a b^{\prime}=a^{\prime} \boldsymbol{b}$. [কু.’০৯] প্রমাণ: ধরি, প্রদত্ত বিন্দুত্রয় $\mathrm{A}(\mathrm{a}, \mathrm{b}) \quad \mathrm{B}\left(a^{\prime}, b^{\prime}\right)$ $\mathrm{C}\left(a-a^{\prime}, b-b^{\prime}\right)$. বিন্দু তিনটি সমরেখ বলে,
AB রেখার ঢাল $=\mathrm{AC}$ ররখার ঢাল
$\Rightarrow \frac{b-b^{\prime}}{a-a^{\prime}}=\frac{b-b+b^{\prime}}{a-a+a^{\prime}} \Rightarrow \frac{b-b^{\prime}}{a-a^{\prime}}=\frac{b^{\prime}}{a^{\prime}}$
$\Rightarrow a^{\prime} b-a^{\prime} b^{\prime}=a b^{\prime}-a^{\prime} b^{\prime} \quad a^{\prime} b^{\prime}=a b^{\prime}$
এখন, $\mathrm{A}(\mathrm{a}, \mathrm{b}), \mathrm{B}\left(a^{\prime}, b^{\prime}\right)$ কিন্দুগামী রেখারর সমীকণ
$\frac{x-a}{a-a^{\prime}}=\frac{y-b}{b-l^{\prime}} \Rightarrow\left(b-b^{\prime}\right) x-a b+a b^{\prime}$

$$
=\left(a \cdots a, a^{\prime}\right) y-a b+a^{\prime} b
$$

$3(i)(a) x-t=0, y \cdots 3 \quad$ it $i \quad 3 \quad 0$

ক্ণদ্যের সমীকরণ নিণয় কর।[ঢা.'১২; চ.'০৫; কু.'০৫ ; ব.'১8]
সমাধান :
ধরি, $\mathrm{AB} \equiv x=4$
$\mathrm{DC} \equiv x=-3$
$\mathrm{BC} \equiv y=5$ এবৃ
$\mathrm{DA} \equiv y=-2$ রেখা

চারটি ABCD চর্তুভুজের বাহু।
AB ও AD বাহুদ্বয় $\mathrm{A}(4,-2)$ কিন্দুতে , AB ও BC বাহুদ্বয় $\mathrm{B}(4,5)$ বিন্দুতে, BC ও CD বাহুদ্বয় $\mathrm{C}(-3,5)$ কিন্দুতে, CD ও DA বাহুদ্বয় $\mathrm{D}(-3,-2)$ বিস্দুতে ছেদ করে।

- AC কর্ণের সমীকরণ, $\frac{x-4}{4+3}=\frac{y+2}{-2-5}$
$\Rightarrow-x+4=y+2 \Rightarrow x+y-2=0$
BD কণের সমীকরণ, $\frac{x-4}{4+3}=\frac{y-5}{5+2}$
$\Rightarrow \mathrm{x}-4=\mathrm{y}-5 \Rightarrow x-y+1=0$
কর্ণদ্বয়ের সমীকরণ, $x-y+1=0 ; x+y-2=0$
3(i) (b) $x=4, x=8, y=6$ এবং $y=10$ রেখাগুলো ঘারা উৎপন্ন জায়তক্মেত্রের কর্ৰঘয়ের সমীকরণ নির্য় কর।
সমাধান ধরি,
$\mathrm{AB} \equiv x=4$
$\mathrm{D} \equiv x=8$
$\mathrm{BC} \equiv y=10$ এবং
$\mathrm{AD} \equiv y=6$ রেখা
চারটি ABCD आয়তক্ষেত্রের Y^{+}

বাহু।
AB ও AD বাহুদ্ব্য $\mathrm{A}(4$ 6) বিস্দুতে, AB ও $B C$ বাহুদ্বয় $B(4,10)$ কিন্দুতে, $B C$ ও CD বাহুদ্বয় $\mathrm{C}(8,10)$ বিন্দুতে, CD ও DA বাহুদ্বয় $\mathrm{D}(8,6)$ বিন্দুতে ছছদ করে।

AC কর্ণের সমীকরণ $\frac{x-4}{4-8}=\frac{y-6}{6-10}$
$\Rightarrow x-4=y-6 \Rightarrow x-y+2=0$
BD কর্ধের नমীকরণ, $\frac{x-4}{4-8}=\frac{y-10}{10-6}$
$\Rightarrow x-4=-y+10 \Rightarrow x+y-14=0$

কর্ণদ্বয়ের সমীকরণ, $x-y+2=0, x+y-14=0$
4. (a) $3 x+\sqrt{3} y+2=0$ এ এৃং $x \cos \alpha+y$ $\sin \alpha=p$ একই সরনরেখা নির্দেশ করুেে p এর মান নির্ণ কর।
[মা.বো.'০৫] সমাধান: দেওয়া আছে, $3 x+\sqrt{3} y+2=0$ এবং x $\cos \alpha+y \sin \alpha=\mathrm{p}$ একই সরলরেখা নির্দেশ করে।

$$
\frac{\cos \alpha}{3}=\frac{\sin \alpha}{\sqrt{3}}=\frac{-p}{2}
$$

$\Rightarrow \cos \alpha=\frac{-3 p}{2}$ এবং $\sin \alpha=\frac{-\sqrt{3} p}{2}$

$$
\sin ^{2} \alpha+\cos ^{2} \alpha=\left(\frac{-\sqrt{3} p}{2}\right)^{2}+\left(\frac{-3 p}{2}\right)^{2}
$$

$\Rightarrow 1=\frac{3 p^{2}}{4}+\frac{9 p^{2}}{4} \Rightarrow 12 \mathrm{p}^{2}=4$
$\Rightarrow \mathrm{p}^{2}=\frac{1}{3} \quad \mathrm{p}= \pm \frac{1}{\sqrt{3}}$ (Ans.)
(b) $3 x-4 y=12$ এবং $x \cos \alpha+y \sin \alpha=p$ একই সররনরো নির্দেশ করচে p এবং α এর মান নির্ণয় ক্র।
[প্র.ভ.প ’०8]
সমাধান: দেওয়া আছে, $3 x-4 y=12$ এবং $x \cos \alpha+y \sin \alpha=\mathrm{p}$ একই সরলরেখা নির্দেশ করে।

$$
\begin{aligned}
& \frac{\cos \alpha}{3}=\frac{\sin \alpha}{-4}=\frac{p}{12} \\
\Rightarrow & \cos \alpha=\frac{3 p}{12}=\frac{p}{4} \text { এবং } \sin \alpha=\frac{-p}{3} \\
& \sin ^{2} \alpha+\cos ^{2} \alpha=\left(\frac{p}{4}\right)^{2}+\left(\frac{-p}{3}\right)^{2} \\
\Rightarrow & 1=\frac{p^{2}}{16}+\frac{p^{2}}{9} \Rightarrow \frac{p^{2}(9+16)}{16.9}=1 \\
\Rightarrow & p^{2}=\frac{144}{25} \quad p= \pm \frac{12}{5} \text { (Ans.) }
\end{aligned}
$$

আবার, $\tan \alpha=\frac{\sin \alpha}{\cos \alpha}=\frac{-p / 3}{p / 4}=r-\frac{4}{3}$

$$
\alpha=\tan ^{-1}\left(-\frac{4}{3}\right) \quad \text { (Ans.) }
$$

5. (a) একটি সরनরেখা অক্ষম্য হতে সমান সমান অश्य কर्ठन बরে. এবर (α, β) বिम्দू मिয়ে जতিক্Rম করে তার সমীক্রণ নির্ণয় কন। [दू.'08; দি.'১১] সমাধান: ধরি, অক্ষদ্য় হতে সমান সমান অংশ্ কর্তন করে এরূপ রেখাটির সমীকরণ $\frac{x}{a}+\frac{y}{ \pm a}=1$ $\Rightarrow x \pm y=a \Rightarrow x+y=a$ बथबा, $x-y=a$ রেখাটি (α, β) বিন্দু দিয়ে অতিক্সম করলে, $a=\alpha+\beta$.जशবा, $a=\alpha-\beta$

निক্ণেয় রেখার সমীকরণ, $x+y=\alpha+\beta$ जขবা, $x-y=-\alpha-\beta$

5(b) এबটি সর্রबরেখা $(2,6)$ বিস্দू দিয়ে যায় এবर
 সমীকর্রণ নির্য়্ কর।
[মা.বো.'০8,'০৮]
সমাধান: ধরি, $(2,6)$ ক্দ্দুগামী রেখার সমীকরণ $y-6=m(x-2)$
$\Rightarrow \mathrm{mx}-\mathrm{y}=2 \mathrm{~m}-6$
$\Rightarrow \frac{x}{(2 m-6) / m}+\frac{y}{-(2 m-6)}=1$
প্রশ্নমতে, $\frac{2 m-6}{m}+\{-(2 m-6)\}=15$
$\Rightarrow 2 \mathrm{~m}-6-2 \mathrm{~m}^{2}+6 \mathrm{~m}=15 \mathrm{~m}$
$\Rightarrow 2 \mathrm{~m}^{2}+7 \mathrm{~m}+6=0$
$\Rightarrow 2 \mathrm{~m}^{2}+4 \mathrm{~m}+3 \mathrm{~m}+6=0$
$\Rightarrow 2 \mathrm{~m}(\mathrm{~m}+2)+3(\mathrm{~m}+2)=0$
$\Rightarrow(\mathrm{m}+2)(2 \mathrm{~m}+3)=0$
$\mathrm{m}=-2$ जथবা, $\mathrm{m}=-\frac{3}{2}$
(1) $এ \mathrm{~m}$ এর মান বসিয়ে পাই,

$$
-2 x-y=2(-2)-6 \Rightarrow 2 x+y=10
$$

जขया, $-\frac{3}{2} x-y=2 .\left(-\frac{3}{2}\right)-6$
$\Rightarrow 3 \mathrm{x}+2 \mathrm{y}=6+12 \Rightarrow 3 x+2 y=18$
উত্তর : $2 x+y=10$ বা, $3 x+2 y=18$
5. (c) এধটি সরলরেখা $(1,4)$ বিদ্দু দিয়ে যায় এবए
 ক্কের্র্ন্ববিশিষ্ট একটি ত্রিডূজ গঠন করে তার সমীক্নণ নিধ্য় কর।
[ব.'০৬; চ.’১১; কু.'১২]

সমাধান: ধরি, রেখাটির সমীকরণ $\frac{x}{a}+\frac{y}{b}=1 \cdots$ (1)
(1) রেখাটি $(1,4)$ ক্দ্দু দিত়ে অতিক্রম করে।
$\frac{1}{a}+\frac{4}{b}=1 \Rightarrow \frac{1}{a}=1-\frac{4}{b}=\frac{b-4}{b}$
$\Rightarrow \mathrm{a}=\frac{b}{b-4}$
(1) রেখাটি অক্ষদ্মের়ের সাথে বে ত্রিভুজ গঠন ক্রে তার क্ষেত্রফল $=\frac{1}{2} a b$.
প্রশ্নমতে, $\frac{1}{2} a b=8 \Rightarrow \frac{b}{b-4} \cdot \mathrm{~b}=16$
$\Rightarrow b^{2}=16 b-64 \Rightarrow b^{2}-16 b+64=0$
$\Rightarrow(b-8)^{2}=0 \Rightarrow b=8$
(2) इতে পাই, $a=\frac{8}{8-4}=2$

রেখাটির সমীকরণ $\frac{x}{2}+\frac{y}{8}=1 \Rightarrow 4 \mathrm{x}+\mathrm{y}=8$
5(d) এবটি সরबরেथা $(3,7)$ কিদ্দू দিয়ে যায় এবए অஈদ্য হতে বিপরীত চিंহবিশিফ্ট সমমানের অশশ ছেদ

করে তার সমীকরণ নির্ণয় কর।
[b, '० $]$ সমাধান: ধরি, অক্ষ্দ্য় হতে বিপরীত চিश্বিশিষ্ট সমমনের অংশ ছুদ করে এরূপ রেখাটির সমীকরণ

$$
\begin{equation*}
\frac{x}{a}+\frac{y}{-a}=1 \Rightarrow x-y=a \tag{1}
\end{equation*}
$$

(1) রেখাটি $(3,7)$ বিদ্দু দিয়ে যায় ।
$3-7=\mathrm{a} \Rightarrow \mathrm{a}=-4$
রেখাটির সমীকর্ন $x-y=-4 \Rightarrow x-y+4=0$
6. (a) $x+2 y+7=0$ রেখাটির অক্ఘঘয়ের মধ্যবর্ঠী খভিতাহশের ম্য়্কি্দ্র স্পানাষ্ক নির্য় কর। উপরি উত্ত
 কর। [ঢ.'০৭; চ.'০৮; ব্রা.'১০;ব. '০৫,’১২; य.'১৩; দि.'১০; সি.'১8; মা.'১২]

সমাধান: প্রদত্ত সমীকরণ, $x+2 y+7=0$
$\Rightarrow x+2 y=-7 \Rightarrow \frac{x}{-7}+\frac{y}{-7 / 2}=1$
রেখাটি অক্ষদ্ময়কে (ধরি) $\mathrm{A}(-7,0)$ এবং $\mathrm{B}(0,-7 / 2)$ ক্দিতু ছেদ করে।

AB এর মধ্যক্দ্দুর স্থানাজ্ক $=\left(\frac{-7}{2}, \frac{-7 / 2}{2}\right)$

$$
=\left(\frac{-7}{2}, \frac{-7}{4}\right)
$$

এবং $\mathrm{AB}^{2}=(-7)^{2}+(-7 / 2)^{2}=49+\frac{49}{4}=61 \frac{1}{4}$
রেখাটির অক্ষদ্বয়ের মধ্যবর্তী খন্ডিতাংশ AB কোন বর্গের বাহু হলে, তার ক্ষেত্রফল $=61 \frac{1}{4}$ বর্গ একক।

6(b) যে সরনরেখার অদ্মম্ময়ের মধ্যবর্তী খভ্ডিত -অश্ $(6,2)$ दिम्দूতে $2: 3$ অনুপাতে অন্ত্রर्বিভক্ত হয্য তার্র সমীকন্নণ নিণয় কর। [ব.'০৪,'০৭; রা.'০৮; দি.'১১] সমাষান: ধরি, রেখাটির সমীকরণ $\frac{x}{a}+\frac{y}{b}=1 \cdots(1)$ (1) রেখাটি অক্ষদ্বয়কে (ধরি) $\mathrm{A}(\mathrm{a}, 0)$ এবং $B(0, b)$ বিদ্দুতে ছেদ করে।

AB রেখাশ $(6,2)$ বিন্দুতে 23 অনুপাতে অন্ত र्বিতক্ত হয় ।

$$
\begin{aligned}
& \frac{2.0+3 a}{2+3}=6 \Rightarrow 3 a=30 \Rightarrow a=10 \text { এবং } \\
& \frac{2 b+3.0}{2+3}=2 \Rightarrow 2 b=10 \Rightarrow b=5
\end{aligned}
$$

রেখাটির সমীকরণ $\frac{x}{10}+\frac{y}{5}=1 \Rightarrow x+2 y=10$
6(c) য়ে সরলরেখার অহ্পদ্বয়ের মধ্যবর্তী খষ্ডিত অশ্শ $(-4,3)$ বिम्দूতে $5: 3$ অनুপাতে অम्তর্বিভক্ত হয় তার সমীকরণ নিণ্য কর। [কু.'০৬; সি.'১১; ব.'১৩] সমাধান: ধরি, রেখাটির সমীকরণ $\frac{x}{a}+\frac{y}{b}=1 \cdots$
(1) রেখাটি অক্ষদ্ময়কে (ধরি) $\mathrm{A}(\mathrm{a}, 0)$ এবং $B(0, b)$ বিদ্দুতে ছেদ করে।
AB রেখাশ $(-4,3)$ বিপ্দুতে 53 অনুপাতে অন্ত र्বিভক্ত হয় ।

$$
\frac{5.0+3 a}{5+3}=-4 \Rightarrow 3 a=-32 \Rightarrow a=-\frac{32}{3}
$$

এबং $\frac{5 b+3.0}{5+3}=3 \Rightarrow 5 b=24 \Rightarrow b=\frac{24}{5}$
নিণণয় রেখার সমীকরণ $\frac{x}{-32 / 3}+\frac{y}{24 / 5}=1$

$$
\begin{gathered}
\Rightarrow \frac{3 x}{-32}+\frac{5 y}{24}=1 \Rightarrow \frac{-9 x+20 y}{96}=1 \\
9 x-20 y+96=0 \text { (Ans.) }
\end{gathered}
$$

6(d) একটি সরศরেখার • সমীকরণ নিণয় কর যা অन्巾দ্ঘয়ের সাথে 16 বর্গ একক ক্মেত্রফন্লবিশিষ্ট ত্রিভূজ গঠন করে একং মূলক্সিদু থেকে যার উপর অঙ্কিত মম্ব x-অঞ্झের ধনাঅ্য দিকের সাকে 45° কোণ উৎপন্ন করে।
[मि.'০৫; य. '১০]
সমাধান: ধরি, রেখাটির সমীকরণ
$\mathrm{x} \cos 45^{\circ}+\mathrm{y} \sin 45^{\circ}=$
$\Rightarrow \frac{x}{\sqrt{2}}+\frac{y}{\sqrt{2}}=p$
$\Rightarrow \frac{x}{\sqrt{2} p}+\frac{y}{\sqrt{2} p}=1 \cdots$

(1) রেখাটির x-অক্ষকে $\quad \mathrm{A}(\sqrt{2} p, 0) \quad$ এবং y-অক্ষকে $\mathrm{B}(0, \sqrt{2} p)$ বিন্দুতে ছেদ করে।
প্রশ্নমতে, $\triangle O A B=\frac{1}{2}(O A \times O B)=.16$
$\Rightarrow \frac{1}{2}(\sqrt{2} p \times \sqrt{2} p)=16$
$\Rightarrow \mathrm{p}^{2}=16 \Rightarrow \mathrm{p}= \pm 4$
রেখাটির সমীকরণ, $x+y+4 \sqrt{2}=0$
অথবা, $x+y-4 \sqrt{2}=0$

$$
\left[\frac{a}{b}=\tan 45^{\circ} \Rightarrow \mathrm{a}=\mathrm{b} \therefore \mathrm{a}^{2}=32\right]
$$

6(e) একটি সরণরেখার সমীকরণ निণয় কর যা
 গঠন করে একং মূলকিন্দু থেকে যার উপর অষ্কিত অম্ব x-অক্ষের ধনাতক मিকের সাশে 45° কোণ উৎপন্ন করে। [চ.'০৬;'১৩; দি.'১৩; রা.'কু.'১8; য.'১০] সমাধান: ধরি, রেখাটির সমীকরণ

$$
\begin{align*}
& \mathrm{x} \cos 45^{\circ}+\mathrm{y} \sin 45^{\circ}=\mathrm{p} \\
& \Rightarrow \frac{x}{\sqrt{2}}+\frac{y}{\sqrt{2}}=p \\
& \Rightarrow \frac{x}{\sqrt{2} p}+\frac{y}{\sqrt{2} p}=1 \cdots(1) \mathrm{O} \xrightarrow[\mathrm{~A}]{\mathrm{X}}
\end{align*}
$$

(1) রেখাটির x-অক্ষকে $\mathrm{A}(\sqrt{2} p, 0) \quad$ এবহ y-অक্ষকে $\mathrm{B}(0, \sqrt{2} p)$ কিস্দুতে ছেদ করে।
প্রশ্নমতে, $\triangle O A B=\frac{1}{2}(O A \times O B)=8$
$\Rightarrow \frac{1}{2}(\sqrt{2} p \times \sqrt{2} p)=8$
$\Rightarrow \mathrm{p}^{2}=8 \Rightarrow \mathrm{p}= \pm 2 \sqrt{2}$
রেখাটির সমীকরণ, $x+y+4=0$
অথবা, $x+y-4=0$
7. (a) P ® Q বিস্দুদ্র x-অক্ষের উপর এবং R ఆ
 সমীকরণ য়াষমম $4 x+3 y+6=0$ ४ $x+2 y-1=0$ रলে, দেখাও শে, $\mathbf{P Q}=\mathbf{R S}$.
[ঢा.'०8]
প্রমাণ : PR রেখার সমীকরণ, $4 x+3 y+6=0$
$\Rightarrow 4 x+3 y=-6 \Rightarrow \frac{\mathrm{x}}{-3 / 2}+\frac{\mathrm{y}}{-2}=1$ जदर
QS রেখার সমীকরণ, $x+2 y-1=0$
$\Rightarrow x+2 y=1 \Rightarrow \frac{x}{1}+\frac{y}{1 / 2}=1$

$$
\text { প্রপ্নমহে, } \mathrm{P} \equiv(-3 / 2 \quad 0), \mathrm{R} \equiv(0
$$

$\mathrm{Q} \equiv(1,0), \mathrm{S} \equiv(0,1 / 2)$:
$\mathrm{PQ}=\sqrt{\left(-\frac{3}{2}-1\right)^{2}+(0-0)^{2}}=\frac{3+2}{2}=\frac{5}{2}$
এवर $\mathrm{RS}=\sqrt{(0-0)^{2}+\left(2-\frac{1}{2}\right)^{2}}=\frac{4+1}{2}=\frac{5}{2}$

$$
P Q=\frac{5}{2}=R S \text { (Showed) }
$$

7.(b)এমন একটি সরণরেখার সমীকরণ নির্ণয় কন যা $(-2,-5)$ दिन्दू मिয়ে याয় এবर x ® y-অकকে যथাब্মে A ఆ B ব্দ্দूতে ছ্ছে করে যেন OA + 2. $\mathrm{OB}=0$ হয় , যथन O মूलকি্দ্দু। [ঢ. '০৬,’১৩; य.’০৬,'১১২; চ. '০৬; সি. '০৭; ব. '০৮,'১০] সমাখান: ধরি, রেখাটির সমীকরণ

- $\frac{x}{a}+\frac{y}{b}=1$

এখানে, $a=O A$ এবং $b=O B$
প্রপ্নমতে, $\mathrm{OA}+2 . \mathrm{OB}=0$
$\Rightarrow \mathrm{a}+2 \mathrm{~b}=0 \Rightarrow \mathrm{a}=-2 \mathrm{~b}$
(1) রেখাটি $(-2,-5)$ বিন্দুগামী।
$\therefore \frac{-2}{a}+\frac{-5}{b}=1 \Rightarrow \frac{-2}{-2 b}+\frac{-5}{b}=1[\because a=-2 b]$
$\Rightarrow \frac{1-5}{b}=1 \Rightarrow \mathrm{~b}=-4$ এবং $\mathrm{a}=-2 \times-4=8$
নির্ণেয় রেখার সমীকরণ $\frac{x}{8}+\frac{y}{-4}=1$
$\Rightarrow x-2 y=8$ (Ans.)
(c) এমন একটি সরबরেখার সমীকরণ নিণ্য় কর যা
 $A \bullet B$ বিদ্দুতে ছেদ করে যেন $O A-O B=2$ হয় যथন O মুণক্দ্দু। [কू.’০২; য.’০৪,’১২; ব.'০৫; ; রা., চ., দি.'১০]
সমাষান: ধরি, রেখাটির সমীকরণ $\frac{x}{a}+\frac{y}{b}=1 \cdots$ (1)
এখানে, $a=O A$ এবং $b=O B$
প্রশ্নম্তে, $\mathrm{OA}-\mathrm{OB}=2 \Rightarrow \mathrm{a}-\mathrm{b}=2$
$\Rightarrow \mathrm{a}=\mathrm{b}+2$
(1) রেখাটি $(3,2)$ বিস্দুগামী।

$$
\begin{aligned}
& \frac{3}{a}+\frac{2}{b}=1 \Rightarrow \frac{3}{b+2}+\frac{2}{b}=1[\because \mathrm{a}=\mathrm{b}+2] \\
\Rightarrow & \frac{3 b+2 b+4}{(b+2) b}=1 \Rightarrow \mathrm{~b}^{2}+2 \mathrm{~b}=5 \mathrm{~b}+4 \\
\Rightarrow & \mathrm{~b}^{2}-3 \mathrm{~b}-4=0 \Rightarrow(\mathrm{~b}-4)(\mathrm{b}+1)=0 \\
& \mathrm{~b}=4 \text { जबবा, } \mathrm{b}=-1
\end{aligned}
$$

$$
\text { (2) } \Rightarrow \mathrm{a}=4+2=6 \text {, যथन } b=4
$$

$$
\text { অথবা, } \mathrm{a}=-1+2=1 \text {, যথন } \mathrm{b}=-1
$$

রেখাটির সমীকরণ $\frac{x}{6}+\frac{y}{4}=1 \Rightarrow 2 x+3 y=12$
जबया, $\frac{x}{1}+\frac{y}{-1}=1 \Rightarrow x-y=1$
7(d) $x+a y=a$ রেখাটি x ఆ y-অ中কে যथাপ্মমে A ๑ B বিদ্দুতে ছেদ করে যেন $\mathrm{OA}=3.0 \mathrm{~B}$ হয়, यथन O মून<্দি। P এর স্থানাফ্ব $(0,-9)$ इলে, AP এর সমীক্রণ নির্ণয় কর।
সমাষান: প্রদত রেখার সমীকরণ, $x+a y=a$.
$\Rightarrow \frac{x}{a}+\frac{y}{1}=1$
(1) রেখাটি x ও y-অক্ষকে যথাক্রম $\mathrm{A}(\mathrm{a}, 0)$ এবং $\mathrm{B}(0,1)$ ब্দ্দুতে ছেদ করে এবং $\mathrm{OA}=\mathrm{a}$ ও $\mathrm{OB}=1$.
প্রশ্নমতে, $\mathrm{OA}=3 . \mathrm{OB} \Rightarrow \mathrm{a}=3.1=3$
A বিস্দুর স্ানাজ্ক $(3,0)$
AP এর সমীকরণ $\frac{x-3}{3-0}=\frac{y-0}{0+9}$
$\Rightarrow 9 x-27=3 y \quad \therefore 3 x-y=9$ (Ans.)
7(e) $x \cos \alpha+y \sin \alpha=p$ সরনরেখাঢি $x y$ অकকে যथাब্মম A B B বিদুতে ছেদ করে। α बে পরিববন্তনীী ধরে দেখাఆ বে, AB এর মষ্যবিদ্দির সষ্জারপণ্পে সমীকর্র $p^{2}\left(x^{2}+y^{2}\right)=4 x^{2} y^{2}$.
[य. '০২; ব. '০ २; সि.'০৩; жू.'০৭; ঢ.'১S]
সমাধান: প্রদত্ত রেथার সমীকরণ,
$x \cos \alpha+y \sin \alpha=\mathrm{p}$
$\Rightarrow \frac{x}{p / \cos \alpha}+\frac{y}{p / \sin \alpha}=1$
(1) রেখাটি x ও y-অक্ষকে যथाबুমে $\mathrm{A}(\mathrm{p} / \cos \alpha, 0)$ এবং $\mathrm{B}(0, \mathrm{p} / \sin \alpha)$ बিদ্দুতে ছেদ করে ।

AB এর মধ্যब্দুর স্থানাষ্ক $\left(\frac{p}{2 \cos \alpha}, \frac{p}{2 \sin \alpha}\right)$ ধরি AB এর ম্যব্দ্দুর সেটের যেকোন একটি উপাদান (x, y).

$$
\begin{gathered}
x=\frac{p}{2 \cos \alpha} \Rightarrow \cos \alpha=\frac{p}{2 x} \text { এबং } \\
y=\frac{p}{2 \sin \alpha} \Rightarrow \sin \alpha=\frac{p}{2 y} \\
\cos ^{2} \alpha+\sin ^{2} \alpha=\left(\frac{p}{2 x}\right)^{2}+\left(\frac{p}{2 y}\right)^{2} \\
\Rightarrow 1=\frac{p^{2}}{4 x^{2}}+\frac{p^{2}}{4 y^{2}} \Rightarrow \frac{p^{2}\left(y^{2}+x^{2}\right)}{4 x^{2} y^{2}}=1 \\
\mathrm{p}^{2}\left(x^{2}+y^{2}\right)=4 x^{2} y^{2} \text { (Showed) }
\end{gathered}
$$

8. (a) $x+3 y-12=0$ রেथার অক্ময়ের মধ্যবর্ঠী

 य.'ob; রাा. 'Jo]
সমাধান: প্রদত্ত রেখা $x+3 y-12=0$
$\Rightarrow x+3 y=12$
$\Rightarrow \frac{x}{12}+\frac{y}{4}=1$.
(1) রেখাটি x ఆ y-অकকে যथाক্রমে (భরি) $\mathrm{A}(12,0)$ ও $\mathrm{B}(0,4)$ बিদ্দুতে ছেদ করে। ধরি, $A B$ রেখাণশের সমত্রিখল্ভক ক্দিদ্দ P ও Q এব O মূলबি্দু ।

$$
\begin{aligned}
& \mathrm{P} \equiv\left(\frac{1 \times 0+2 \times 12}{1+2}, \frac{1 \times 4+2 \times 0}{1+2}\right)=\left(8, \frac{4}{3}\right) \\
& \mathrm{Q} \equiv\left(\frac{2 \times 0+1 \times 12}{2+1}, \frac{2 \times 4+1 \times 0}{2+1}\right)=\left(4, \frac{8}{3}\right)
\end{aligned}
$$

OP রেখার সমীকরণ, $y=\frac{4 / 3}{8} x$
$\Rightarrow y=\frac{1}{6} x \Rightarrow x=6 y$ जबए
OQ রেথার সমীকরণ, $y=\frac{8 / 3}{4} x$
$\Rightarrow y=\frac{2}{3} x \Rightarrow 2 x=3 y$
निক̛ণ়̛ রেখাদ্য়ের সমীকরণ, $x=6 y$ ও $2 x=3 y$
8 (b) $5 x+4 y-20=0$ রেभाটি x उ y -অকে यथাক্রম্ম A ও B বিন্দুতে ছেদ করে।
 কब্ন, यেখানে \mathbf{O} মूबবিन्দू।
II. P © Q বिम्मूष्य $A B$ त्रেभाকে সমान তিन ভालে

[ঢ.'০৫; সি.'০৯; চ.'১৩]
III. मেथাs বে, OAP, OPQ © OQB बिशूज

সমাধান: I. প্রদত রেখার সমীকরণ, $5 x+4 y-20=0$ $\Rightarrow 5 x+4 y=20 \Rightarrow \frac{x}{4}+\frac{y}{5}=1$, या x उ $\mathrm{y}-$ অকে যথাক্রম্ম $\mathrm{A}(4,0)$ ও $\mathrm{B}(0,5)$ বিन्দूতে ছেদ করে।

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{(4-0)^{2}+(0-5)^{2}}=\sqrt{16+25} \\
& =\sqrt{41} \text { এकক। }
\end{aligned}
$$

এবং OAB ब্রিজুজের त্রেকল $=\frac{1}{2} \times 5 \times 4=10$ বर्গ একক।
II. P বিन्দूর স্ছানাক
$\left(\frac{1 \times 0+2 \times 4}{1+2}, \frac{1 \times 5+2 \times 0}{1+2}\right)$
$=\left(\frac{8}{3}, \frac{5}{3}\right)$

Q বিন্দুর স্থানাঙ্ক $\left(\frac{2 \times 0+1 \times 4}{2+1}, \frac{2 \times 5+1 \times 0}{2+1}\right)$

$$
=\left(\frac{4}{3}, \frac{10}{3}\right)
$$

OP রেখার সমীকরণণ, $y=\frac{5 / 3}{8 / 3} x$
$\Rightarrow y=\frac{5}{8} x \Rightarrow 5 x=8 y$ এবং
OQ রেখার সমীকরণ, $y=\frac{10 / 3}{4 / 3} x$
$\Rightarrow y=\frac{10}{4} x \Rightarrow 5 x=2 y$
নির্ণেয় রেখাদ্যের সমীকরণ, $5 x=8 y$ ও $5 x=2 y$
III. x-অ रচে P বিन्দूর দূরত্ব $\frac{5}{3}$ এবং y-অ হতে Q বিন্দুর দূরত্ণ $\frac{4}{3}$.

OAP ज্রিডুজের ब্রেফল $=\frac{1}{2}\left(\mathrm{OA} \times \frac{5}{3}\right)$

$$
=\frac{1}{2}\left(4 \times \frac{5}{3}\right)=\frac{10}{3} \text { বर्গ একক। }
$$

OBQ ब্রিডুজের ন্রেষল $=\frac{1}{2}\left(\mathrm{OB} \times \frac{4}{3}\right)$

$$
=\frac{1}{2}\left(5 \times \frac{4}{3}\right)=\frac{10}{3} \text { বর্গ একক। }
$$

OPQ विভूজ্জের ত্রেयল $=\frac{1}{2}\left|\frac{8}{3} \times \frac{10}{3}-\frac{4}{3} \times \frac{5}{3}\right|$
$=\quad \frac{1}{2}\left|\frac{80}{9}-\frac{20}{9}\right|=\frac{1}{2} \times \frac{60}{9}=\frac{10}{3}$ वर्श
একক।
OAP, OPQ ও OQB ब্রিডুজ তিনটির ত্রেফল পরস্পর সমান।
9. (a) $2 y+x-5=0, y+2 x-7=0$ जर尺

[य.'०७] সমাধান: মনে করি, ABC ত্রিভুজের বাহু তিনটি,
$\mathrm{AB} \equiv x+2 y-5=0 \cdots(1)$,
$\mathrm{BC} \equiv 2 x+y-7=0 \cdots(2)$,
$\mathrm{CA} \equiv x-y+1=0 \cdots$ (3)
(1) ও (3) এর ছেদবিদ্দু ,

$\mathrm{A} \equiv\left(\frac{2-5}{-1-2}, \frac{-5-1}{-2-1}\right)=(1,2)$
(1) ও (2) এর ছেদবিদ্দু,
$\mathrm{B} \equiv\left(\frac{-14+5}{1-4}, \frac{-10+7}{1-4}\right)=(3,1)$
(2) $\dot{3}$ (3) এর ছেদক্দি,

$$
\begin{aligned}
& C \equiv\left(\frac{1-7}{-2-1}, \frac{-7-2}{-2-1}\right)=(2,3) . \\
& \quad \delta_{A B C}=(1-3)(1-3)-(2-1)(3-2) \\
& \quad=4-1=3
\end{aligned}
$$

$\therefore \triangle \mathrm{ABC}$ এর ক্ষেত্রফল $=\frac{1}{2}\left|\delta_{A B C}\right|=\frac{3}{2}$ বর্গ একক
\therefore রেখাত্রয় দারা গঠিত ত্রিভুজ্েের ক্pেত্রফন $\frac{3}{2}$ বগ্গ একক।

9(b) দেখাө যে, $x=a, y=b$ এব尺 $y=m x$
 $m a)^{2}$ বগ এক্ ।[य. '০৫; ব্রা.'০৮; কু.'১২; ব.'১৩]

প্রমাণ 8 ধরি， ABC
ত্রিভুজ্জের বাছু তিনটি，
$\mathrm{AB} \equiv x=a \cdots(1)$ ，
$\mathrm{BC} \equiv y=b$
$\mathrm{AC} \equiv y=\mathrm{m} x \cdots$（3）

（1）ও（3）এর ছেদক্দু ， $\mathrm{A} \equiv(\mathrm{a}, \mathrm{ma})$
（1）ও（2）এর ঢैদক্স্দু ， $\mathrm{B} \equiv(\mathrm{a}, \mathrm{b})$
（2）ও（3）এর ছেদब্দ্দু, $\mathrm{C} \equiv\left(\frac{b}{m}, \mathrm{~b}\right)$
$\delta_{A B C}=(\mathrm{a}-\mathrm{a})(\mathrm{b}-\mathrm{b})-(\mathrm{ma}-\mathrm{b})\left(\mathrm{a}-\frac{b}{m}\right)$
$=-(m a-b) \frac{m a-b}{m}=-\frac{(b-m a)^{2}}{m}$
প্রদত্ত রেখাত্রয় দারা গঠিত ত্রিভুজ্রের ক্ষেত্রফস্ন
$=\frac{1}{2}\left|-\frac{(b-m a)^{2}}{m}\right|$ य斤 একक
$=\frac{1}{2|m|}(b-m a)^{2}$ ব斤্গ একক। Showed）
10．（a）t এর যে＜োন বাস্ত্ব মানের জন্য P বিদ্দূর্র
 সমীক্রণ নির্ণয় কন্ন। সঞ্চারপथt অক্ষম্য হতে বে অश্ণ ছেদ করে তা নির্ণয় কর।
সমাষান：P বিদ্দুর কার্ত্তেসীয় স্থানাঙ্ছ (x, y)

$$
t+5=x \Rightarrow t=x-5 \cdots \text { (1) এবং }
$$

$2 \mathrm{t}-4=\mathrm{y} \Rightarrow 2(\mathrm{x}-5)-4=\mathrm{y}[(1)$ দ্যারা］
$2 x-y=14$ ；या নির্ণেয় সঞ্চারপথের সমীকরণ।
২য় जश्ग ： $2 x-y=14 \Rightarrow \frac{x}{7}+\frac{y}{-14}=1$
সঞ্চারপথটির x－অক্ষের খভ্ডিতাশশ $=7$ এবং y－बক্ষের খভ্ডিতাশশ $=-14$ ．
（b）দেখাও যে，$(-3,6)$ কিদ্দু হতে $x-2 y-5=0$ রেখার উপর অষ্ষিত যেকোন রেখাশশকে $x-2 y+5$ $=0$ রেখাটি সমদ্খিষিত করে।
［ সि．＇০১；य．＇০৫；ঢা．＇০১；চ．＇১১；দি．＇১২］ প্রমাণ ：প্রদত্ত রেখাদ্য়，
$x-2 y-5=0$
（1）$~ ও ~$
$x-2 y+5=0 \cdots$
এবং ক্দ্দুটি P $(-3,6)$
（2）রেখার উপর $Q(\alpha, \beta) \overline{Q(\alpha, \beta)(1)}$

যেকোন একটি বিম্দু নেই। তাহলে，$\alpha-2 \beta-5=0$
…（3）
এখন ইহা প্রমাণ করা যথেষ্ট যে，PQ এর মধ্যষ্দ্দু $\left(\frac{-3+\alpha}{2}, \frac{6+\beta}{2}\right), x-2 y+5=0$ রেখার উপর जবঙ্থিত।
（3）হতে পাই，$y=b$ ．
（1）এর বামপন্ম $=x-2 y+5$
$=\frac{-3+\alpha}{2}-2 \frac{6+\beta}{2}+5$
$=\frac{1}{2}(\alpha-3-12-2 \beta+10)$
$=\frac{1}{2}(\alpha-2 \beta-5)=\frac{1}{2} \times 0=0 \quad[(3)$ जारा ］
PQ এর মধ্যब্দ্দু $x-2 y+5=0$ রেখার উপর অবঙ্ছিত।

10（c）মূणকি্দ্দু হতে কোন সরনणরেখার উপর অষ্ষিণত
 দিকের সাc্লে 120° কোণ উৎৎন্ন করে ；রেখাটি্র সমীক্রণ নির্র্য ক্র।
［মা：বো．’ó］ সমাখান：নির্ণেয় রেোর সমীকরণ
$\mathrm{x} \cos 120^{\circ}+\mathrm{y} \sin 120^{\circ}=5$

$$
\begin{aligned}
\Rightarrow & x\left(-\frac{1}{2}\right)+y \cdot \frac{\sqrt{3}}{2}=5 \Rightarrow-x+\sqrt{3} y=10 \\
& x-\sqrt{3} y+10=0 \text { (Ans.). }
\end{aligned}
$$

11．（a）$(2,-1)$ কिम्দूभाমী এবটি সরনनরেখার ঢাण $-\frac{3}{4} \cdot এ$ রেখার উপর $(2,-1)$ বিস্দू হতে 15 একক দूরে অবস্থিত দুঁটি বিস্দুর স্থানাষ্巾 নির্য়্য কর।
সমাধান ঃ মনে করি，রেখাটি x－অক্ষের সাথে α কোণ উৎপন্ন করে।

$$
\tan \alpha=-\frac{3}{4}
$$

$\Rightarrow \sin \alpha=\frac{3}{5}$ এবং $\cos \alpha=-\frac{4}{5}$
जথবা， $\sin \alpha=-\frac{3}{5}$ এヌং $\cos \alpha=\frac{4}{5}$
$(2,-1)$ ক্মিমু হচে 15 একক দূরে অবস্থিত কিস্দুর
স্থানাষ্ক（ x, y ）হলে，$\frac{x-2}{\cos \alpha}=\frac{y+1}{\sin \alpha}=15$
$x-2=15 \cos \alpha \Rightarrow x=15 \cos \alpha+2$ जヌश $y+1=15 \sin \alpha \Rightarrow y=15 \sin \alpha-1$
$\sin \alpha=\frac{3}{5}$ এবश $\cos \alpha=-\frac{4}{5}$ এর জন্য， $x=15 \times-\frac{4}{5}+2=-12+2=-10$ এ『ং $y=15 \times \frac{3}{5}-1=9-1=8$
$\sin \alpha=-\frac{3}{5}$ এবर $\cos \alpha=\frac{4}{5}$ এর জন্য， $x=12+2=14$ এবश $y=-9-1=-10$

बিদ্দু দুইটির স্পানাজ্木 $(-10,8)$ ও $(14,-10)$
11（b）（－1，1）কিস্দুগামী একটি সরনরেখার ঢাল $\frac{5}{12} . এ$ র্রেখার উপর $(-1,1)$ বিי্দু হচে 26
 সমাধান \＆মনে করি，রেখাটি x－অক্ষের সাথে α কোণ উৎপন্ন করে।
$\tan \alpha=\frac{5}{12}$
$\Rightarrow \sin \alpha=\frac{5}{13}$ এবश $\cos \alpha=\frac{12}{13}$

12

जथया， $\sin \alpha=-\frac{5}{13}$ এবং $\cos \alpha=-\frac{12}{13}$
（－1 1）बি্দ্দু হতে 26 একক দূরে অবস্থিত सिम्দूর স্থাनाष्क（ x, y ）হলে，$\frac{x+1}{\cos \alpha}=\frac{y-1}{\sin \alpha}=26$
$x+1=26 \cos \alpha \Rightarrow x=26 \cos \alpha-1$ जবং $y-1=26 \sin \alpha \Rightarrow y=26 \sin \alpha+1$
$\sin \alpha=\frac{5}{13}$ এđং $\cos \alpha=\frac{12}{13}$ এর জন্য，
$x=26 \times \frac{12}{13}-1=24-1=23$ এবং
$y=26 \times \frac{5}{13}+1=10+1=11$
$\sin \alpha=-\frac{5}{13}$ बবर $\cos \alpha=-\frac{12}{13}$ এर बन्य， $x=-24-1=-25$ এবং $y=-10+1=-9$

দूইটি ক্দির স্শানাভ্ক $(23,11)$ ও $(-25,-9)$
（c）A $\left(3,-\frac{7}{2}\right)$ কিদ্দুগামী একটি সরনরেथার ঢাল
 डেन $\mathrm{AP}=\frac{13}{2}$ इয়।
সমাধান ः মনে করি，রেখাটি x－অক্ষে সাথে α কোণ উৎপন্ন করে।

$$
\begin{aligned}
\tan \alpha & =\frac{5}{12} \\
\Rightarrow \sin \alpha & =\frac{5}{13} \text { এবং } \cos \alpha=\frac{12}{13}
\end{aligned}
$$

जथবा， $\sin \alpha=-\frac{5}{13}$ এবश $\cos \alpha=-\frac{12}{13}$
$\mathrm{A}\left(3,-\frac{7}{2}\right)$ 今心茄 रणত $\mathrm{AP}=\frac{13}{2}$ একक দূরে অবস্থিত P बি্দ্দুর স্থানাষ্ক（ $\mathrm{x} \quad \mathrm{y})$ रলে， $\frac{x-3}{\cos \alpha}=\frac{y+7 / 2}{\sin \alpha}=\frac{13}{2}$

$$
x-3=\frac{13}{2} \cos \alpha \Rightarrow x=\frac{13}{2} \cos \alpha+3
$$

जবং $y+\frac{7}{2}=\frac{13}{2} \sin \alpha \Rightarrow y=\frac{13}{2} \sin \alpha-\frac{7}{2}$
$\sin \alpha=\frac{5}{13}$ এবং $\cos \alpha=\frac{12}{13}$ এর জন্য，
$x=\frac{13}{2} \times \frac{12}{13}+3=6+3=9$ এবः
$y=\frac{13}{2} \times \frac{5}{13}-\frac{7}{2}=\frac{5}{2}-\frac{7}{2}=-1$
$\sin \alpha=-\frac{5}{13}$ এবং $\cos \alpha=-\frac{12}{13}$ এর জন্য，$x=$
$-6+3=-3$ এবং $y=-\frac{5}{2}-\frac{7}{2}=-6$
ব্ন্দু দুইটির স্থানাজ্ক $(9,-1)$ ও $(-3,-6)$

কাজ：

১．মূণক্স্দুগামী একটি রেখার সমীকর্木ণ নির্ণয় কর যা x－অক্ষের ধনাত্যক দিক্লে সাল্大 135° কোণ উৎপন্ন করে।
সমাধান ：নির্ণেয় রেথার ঢাল， $\mathrm{m}=\tan 135^{\circ}$
$=\tan \left(180^{\circ}-45^{\circ}\right)=-\tan 45^{\circ}=-1$
निণণেয় রেখার সমীকরণ，$y=\mathrm{m} x \Rightarrow \mathrm{y}=-x$ $x+y=0$（Ans．）
২．সরণরেখার সমীকরণ নির্ণয় কর যা y－অক্小ের সালে 30° কোণ উৎপ্ন করে এবং y－অক্ষের ধনাजা দিক হতে 5 একক অংサ ছেদ করে ।
সমাখান：নির্ণেয় রেখার ঢাল，$m=\cot \left(\pm 30^{\circ}\right)$
$= \pm \cot 30^{\circ}= \pm \sqrt{3}$ এবং y－অক্ষের ছেদক ज゚শ， $\mathrm{c}=5$ একক।

निক্ণেয় রেখার সমীকরণ，$y=m x+c$
$\Rightarrow y= \pm \sqrt{3} x+5$（Ans．）
3．একটি সরুরেখা $(6,-1)$ কিস্দू দিয়ে যায় এবং যার ঘারা অক্ষब্য়র খষ্ডিত অशশের গুণফ্ন 1 তার সমীকরণ নির্য় কর।

সমাধান：ধরি，রেখাটির সমীকরণ $\frac{x}{a}+\frac{y}{b}=1 \cdots$（1） প্রশ্নমতে， $\mathrm{ab}=1 \Rightarrow \mathrm{~b}=\frac{1}{a} \cdots$
（1）রেখাtি $(6,-1)$ ক্দ্দুগামী ।
$\frac{6}{a}+\frac{-1}{b}=1 \Rightarrow \frac{6}{a}-a=1 \quad\left[\quad \frac{1}{b}=a\right]$
$\Rightarrow 6-a^{2}=a \Rightarrow \mathrm{a}^{2}+\mathrm{a}-6=0$
$\Rightarrow(a+3)(a-2)=0 \therefore a=2$ बथবा，$a=-3$
$\mathrm{b}=\frac{1}{2}$ जথবा， $\mathrm{b}=-\frac{1}{3}$
রেখাটির সমীকরণ，$\frac{x}{2}+2 y=1 \Rightarrow x+4 y=2$
অथना，$\frac{x}{-3}-3 y=1 \Rightarrow x+9 y+3=0$
4．একটি সরनরেथা ঘারা অক্ষদ্যের খভিত অशশের সমষ্টি ও অन्তরসস যপাক্রমে 9 ও 5 তার，সমীকরণ निর্ণ

সমাখান：ধরি，রেখাটির সমীকরণ $\frac{x}{a}+\frac{y}{b}=1 \cdots$（1）
প্রंশ্নমতে，$a+b=9 \Rightarrow b=9-a$
এবং $|a-b|=5 \Rightarrow a-b= \pm 5$
$\Rightarrow \mathrm{a}-9+\mathrm{a}= \pm 5$
［（2）দ্মার］
$\Rightarrow 2 \mathrm{a}=12$ या， $4 \therefore \mathrm{a}=6$ या， 2
（2）হনত পাই，$b=9-6=3$ ，যখন $a=6$

$$
b=9-2=7 \text {, यখन } a=2
$$

রেখাটির সমীকরণ $\frac{x}{6}+\frac{y}{3}=1 \Rightarrow x+2 y=6$
जขবा，$\frac{x}{2}+\frac{y}{7}=1 \Rightarrow 7 x+2 y=14$
5．যে সরুরেখার অक্ময়ের মধ্যবর্তী খভ্তিত অशশ $(2,3)$ বিদ্দুতে সমদ্বিষষিত হয় তার সমীকরণ নির্ণয় ক্র।
［दू．’o০］
সমাধান：ধরি，রেখাটির সমীকরণ $\frac{x}{a}+\frac{y}{b}=1$
（1）রেখাটির অক্ষদ্ময়ের মধ্যবত্তী খভ্ডিত অধললর মধ্যক্ন্দুর স্সানাজ্木 $\left(\frac{a}{2}, \frac{b}{2}\right)$ ．
প্রশ্নমতে，$\frac{a}{2}=2 \Rightarrow a=4$ এবং $\frac{b}{2}=3 \Rightarrow b=6$
\therefore রেখাটির সমীকরণ，$\frac{x}{4}+\frac{y}{6}=1 \Rightarrow 3 x+2 y=12$
［MCQ এর অন্য，तেখাটির সমীকরণ $\frac{x}{2 \times 2}+\frac{y}{2 \times 3}=1$ ］
6．（b） $2 x+y=3$ в $3 x-5 y=-4$ রেখাঘয়
 নির়্ে কর।
সমাধান：x－অক্ষের সমীকরণ ，$y=0$ মনে করি， ABC ত্রিতুজের বাহু তিনটি， $\mathrm{AB} \equiv 2 x+y-3=0 \cdots(1)$ ，

$\mathrm{AC} \equiv 3 x-5 y+4=0 \cdots(2)$
$\mathrm{BC} \equiv y=0 \cdots(3)$ ，
（1）ও（2）এর ছেদক্দ্দু ，
$A \equiv\left(\frac{4-15}{-10-3}, \frac{-9-8}{-10-3}\right)=\left(\frac{11}{13}, \frac{17}{13}\right)$
（1）В（3）এর ছেদক্দি ， $\mathrm{B} \equiv\left(\frac{3}{2}, 0\right)$
（2）अ（3）এর ছেদব্দিদু， $\mathrm{C} \equiv\left(-\frac{4}{3}, 0\right)$

$$
\begin{aligned}
& \delta_{A B C}=\left|\begin{array}{ccc}
11 / 13 & 17 / 13 & 1 \\
3 / 2 & 0 & 1 \\
-4 / 3 & 0 & 1
\end{array}\right| \\
& =-\frac{17}{13}\left(\frac{3}{2}+\frac{4}{3}\right)=-\frac{17}{13} \times \frac{17}{6}=-\frac{289}{78}
\end{aligned}
$$

$\therefore \triangle \mathrm{ABC}$ এর क্লেख্ন $=\frac{1}{2}\left|-\frac{289}{78}\right|$ ब斤 একक

$$
=\frac{289}{156} \text { ব斤 একক (Ans.) }
$$

 $2 x-y=3 \otimes x-y+2=0$ ．প্রমাण ক্ন যে，
 সমাষান：মন্ে করি，ABC ত্রিজুজ্জে বাহू তিনটি， $\mathrm{AB} \equiv x+2 y-4=0 \cdots(1)$,
$\mathrm{BC} \equiv 2 x-y-3=0$
$\mathrm{CA} \equiv x-y+2=0 \cdots(3)$
（1）®（3）এর ছেদबিদ্দু ，

$\mathrm{A} \equiv\left(\frac{4-4}{-1-2}, \frac{-4-2}{-1-2}\right)=(0,2)$
（1）（2）এর হেদকিদ্দু，
$\mathrm{B} \equiv\left(\frac{-6-4}{-1-4}, \frac{-8+3}{-1-4}\right)=(2,1)$
（2）（3）এর ছেদবিদ্দু，
$\mathrm{C} \equiv\left(\frac{-2-3}{-2+1}, \frac{-3-4}{-2+1}\right)=(5,7)$
এขन， $\mathrm{AB}=\sqrt{2^{2}+1^{2}}=\sqrt{5}$
$\mathrm{B} \dot{\mathrm{C}}=\sqrt{3^{2}+6^{2}}=\sqrt{9+36}=3 \sqrt{5}$
$\mathrm{CA}=\sqrt{5^{2}+5^{2}}=\sqrt{25+25}=5 \sqrt{2}$
$\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ এর যেকে小ন দুইটির সমফ্টি তৃতীয়টি অপেকা বৃহত্তর এবং $\mathrm{AB}^{2}+\mathrm{BC}^{2}=5+45=50$
$=\mathrm{CA}^{2}$ অতএব， ABC ত্রिजूজটি সমকোণী যার $\angle B=90^{\circ}$ ．
২য় জश्य ：ত্রিডুজটি ন্ছেত্রফ্ল $=\frac{1}{2}(A B \times B C)$
$=\frac{1}{2}(\sqrt{5} \times 3 \sqrt{5})$ ব斤্গ একक $=7 \frac{1}{2}$ ব斤 একক
$\left[\Delta=\left|\frac{\{-4(-2+1)+3(-1-2)+2(-1-4)\}^{2}}{2(-2+1)(-1-2)(-1-4)}\right|\right.$
$\left.=\left|\frac{(4-9-10)^{2}}{2(-1)(-3)(-5)}\right|=\frac{15}{2}\right]$
8．मেथा® यে， $2 x+7 y=14$ ® $2 x-7 y=14$
 সমাষান：y－बক্ষের সমীকরণ ，$x=0$ মনে করি，ABC ত্রিভুজের বাহু তিনটি， $\mathrm{AC} \equiv 2 x+7 y-14=0 \cdots(1)$ ， $\mathrm{BC} \equiv 2 x-7 y-14=0 \cdots$（2） $\mathrm{AB} \equiv x=0 \cdots(3)$ ，
（1）ও（3）এর ছেদब্দ্দু ，$A \equiv(0,2)$
（2）ও（3）এর ছেদক্দি ，$B \equiv(0,-2)$
（1）$+(2) \Rightarrow 4 x=28 \Rightarrow x=7$

（1）$\Rightarrow 14+7 y-14=0 \Rightarrow y=0$
\therefore（1）ও（2）এর ছেদক্দ্দু， $\mathrm{C} \equiv(7,0)$
जখन， $\mathrm{AB}=\sqrt{2^{2}+2^{2}}=2 \sqrt{2}$
$B C=\sqrt{2^{2}+7^{2}}=\sqrt{4+49}=\sqrt{53}$
$\mathrm{CA}=\sqrt{7^{2}+2^{2}}=\sqrt{49+4}=\sqrt{53}$
$\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ এর যেকোন দুইটির সমষ্টি তৃতীয়টি অপেক্ষা বৃंश্তর এবং $\mathrm{BC}=\sqrt{53}=\mathrm{CA}$ প্রদত্ত রোোদ্য y－অক্ষের সাথে সমদ্বিবাহু ত্রিভুজ গঠন করে।

1． k এর যেকোন অশून्य मानের घन्य $a_{1} x+b_{1} y+c_{1}=0$ Ө $a_{2} x+b_{2} y+c_{2}=0$ সর্নণর্নেখাময়ের্ন ছেদবিসুগামী সর্নথরেখার সমীক্ন্নণ $a_{1} x+b_{1} y+c_{1}+k\left(a_{2} x+b_{2} y+c_{2}\right)=0$.

2．（ α, β ）এবং $\mathrm{f}(x, y) \equiv a_{1} x+b_{1} y+c_{1}=0$ －$g(x, y) \equiv a_{2} x+b_{2} y+c_{2}=0$ রেোর ছেদবিস্फूগামী র্রেখার সমীকব্মণ，$\frac{f(x, y)}{f(\alpha, \beta)}=\frac{g(x, y)}{g(\alpha, \beta)}$ i．e．，$\frac{a_{1} x+b_{1} y+c_{1}}{a_{1} \alpha+b_{1} \beta+c_{1}}=\frac{a_{2} x+b_{2} y+c_{2}}{a_{2} \alpha+b_{2} \beta+c_{2}}$
3．$y=m_{1} x+c_{1}$ ® $y=m_{2} x+c_{2}$ त্রেখाমढ़়ের মধ্যবভী কোণ，$\varphi= \pm \tan ^{-1} \frac{m_{1}-m_{2}}{1+m_{1} m_{2}}$ ．
4．$y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ र্রেখাচয় সमाल्ठর্木ान इनে，$\quad m_{1}=\quad m_{2}$ बবर $a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$ রেখাषয় সমাল্চর্মাল হলে，$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$ ．
$a x+b y+c=0$ রেখার সমাল্তব্রাण যেকোণ রেখার্ম সমীকর্র $a x+b y+k=0$ ；যেখানে k এ＜টি ধ্র্ববক

5．$a x+b y+c=0$ রেখোন সমাল্তত্রাण এবং (α, β) বिসूগামী রেখার্গ সমীকন্মণ，$a x+b y=$ $a \alpha+b \beta$ ．

6．$y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ রেখাচয় बम्य হबে，$m_{1} m_{2}=-1$ এবश $a_{1} x+b_{1} y+c_{1}=0$ ， $a_{2} x+b_{2} y+c_{2}=0$ तেখাচয় बम्ब इबে， $a_{1} a_{2}+b_{1} b_{2}=0 . a x+b y+c=0$ त্রোর নम्ब যে．্কান রেখোর সমীকন্নণ $b x-a y+k=0$ ； যেখানে k একটট ধ্রুবক ।
7．$a x+b y+c=0$ त্রেখান बम्य এবং (α, β) কिम्मूগামী রেখার্ন সমীকব্নণ，$b x-a y=b \alpha-a \beta$ ．
8．$a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$ в $a_{3} x+b_{3} y+c_{3}=0$ রেখাত্র্য সমকিস্দু হলে，
$\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=0$
 थ्रणिবিম্ষ（ $\left.2 x_{1}-h, 2 y_{2}-k\right)$ ．
（b）(x, y) বিস্দুর্র প্রতিবিम্ब x－অক্ষর সাপেক্ब $(x,-y)$ এবR y－षক্ষে্ন সাপেক্巾 $(-x, y)$ ．
（c）$y=m x+c$ রেথান সাপেক্ষ $y=m_{1} x+c_{1}$ রেখার প্রতিবিম্ম $y=m_{2} x+c_{2}$ इবে，यमि $\frac{m_{1}-m}{1+m_{1} m}=\frac{m-m_{2}}{1+m m_{2}}$ रड़। $\underbrace{\frac{y=m_{2} x}{y=m x}+c}_{y=m_{1} x+c_{1}}$
 त্রেथात्र প্রতিবিস্य যथाক্মম $a x-b y+c=0$ जरR $-a x+b y+c=0$ ．

MCQ बत्न জना বिশেষ সূख 8

1．$\left(x_{1}, y_{1}\right) \otimes\left(x_{2}, y_{2}\right)$ दिन्मूशামী রেখার সমীকরণ

$$
\begin{aligned}
& \left(y_{1}-y_{2}\right) x-\left(x_{1}-x_{2}\right) y= \\
& \quad\left(y_{1}-y_{2}\right) x_{1}-\left(x_{1}-x_{2}\right) y_{1}
\end{aligned}
$$

 এবर $\left(x_{3}, y_{3}\right)$ दिन्দूগামী ज্ৈোর সমীক্ন্নণ

$$
\begin{aligned}
& \left(y_{1}-y_{2}\right) x-\left(x_{1}-x_{2}\right) y \\
& \quad=\left(y_{1}-y_{2}\right) x_{3}-\left(x_{1}-x_{2}\right) y_{3}
\end{aligned}
$$

3．$\left(x_{1}, y_{1}\right)$ 囚 $\left(x_{2}, y_{2}\right)$ दिস্দুগামী র্রেখার बम্ব এবং $\left(x_{3}, y_{3}\right)$ दिभ्भूগামী ज्ञেখান সমीকরণ $\begin{aligned}\left(x_{1}-x_{2}\right) x+ & \left(y_{1}-y_{2}\right) y \\ & =\left(x_{1}-x_{2}\right) x_{3}+\left(y_{1}-y_{2}\right) y_{3}\end{aligned}$
4．$\left(x_{1}, y_{1}\right) \cup\left(x_{2}, y_{2}\right)$ दिग्रूशामी ज़েখার बम्ब সমদ্রিষভক্নে সমীক্নণ $\left(x_{1}-x_{2}\right) x+\left(y_{1}-y_{2}\right) y$

$$
=\frac{1}{2}\left(x_{1}^{2}+y_{1}^{2}-x_{2}^{2}-y_{2}^{2}\right)
$$

5．$a_{1} x+b_{1} y+c_{1}=0$ В $a_{2} x+b_{2} y+c_{2}=$ 0 রেখাষয়ের ছেদকিস্দুগামী এবर m ঢान বিশিষ্ট রেখার সমीকর্রণ，$\left(a_{2}+m b_{2}\right)\left(a_{1} x+b_{1} y+c_{1}\right)-$
$\left(a_{1}+m b_{1}\right)\left(a_{2} x+b_{2} y+c_{2}\right)=0$
6. x -बক্भের সমাল্তরাण ४ $\mathrm{f}(\mathrm{x}) \equiv a_{1} x+b_{1} y+c_{1}=0$ उ $\mathrm{g}(\mathrm{x}) \equiv a_{2} x+b_{2} y+c_{2}=0$ রেখাময়ের ছেদকি্দুগামী রেখার সমীকরণ, $a_{2} \mathrm{f}(\mathrm{x})-a_{1} \mathrm{~g}(\mathrm{x})=0$ y -बক্ষে স সাল্তরাण $४ \mathrm{f}(\mathrm{x}) \equiv a_{1} x+b_{1} y+c_{1}=0$ ४ $\mathrm{g}(\mathrm{x}) \equiv a_{2} x+b_{2} y+c_{2}=0$ রেখাঘয়ের ছেদ<িন্দুগামী রেখার সমীকরণ, $b_{2} f(x)-b_{1} g(x)=0$
7. অक্রয় হতে সমান সং্থ্যামানের অংশ ছেদ করে जबए $\mathrm{f}(\mathrm{x}) \equiv a_{1} x+b_{1} y+c_{1}=0 \quad$ ® $\mathrm{g}(\mathrm{x}) \equiv$ $a_{2} x+b_{2} y+c_{2}=0$ রেগোময়ের ছেদবি্দুগামী রেখার সমীকরণ $\left(a_{2}-b_{2}\right) f(x)-\left(a_{1}-b_{1}\right) g(x)=0$ जदर $\left(a_{2}+b_{2}\right) \mathrm{f}(\mathrm{x})-\left(a_{1}+b_{1}\right) \mathrm{g}(\mathrm{x})=0$.
8. $\left(x_{1}, y_{1}\right)$ বি্দूগামী এবং m_{1} ঢान বিশিষ্ট রেখার সাণে $\theta\left(m_{2}=\tan \theta\right)$ কোণ উৎপন্ন ক্রলে রেখা দুইটির সমীকরণ, $\left(m_{1}-m_{2}\right) x-\left(1+m_{1} m_{2}\right) y$

$$
=\left(m_{1}-m_{2}\right) x_{1}-\left(1+m_{1} m_{2}\right) y_{1} \text { এবং }
$$

$\left(m_{1}+m_{2}\right) x-\left(1-m_{1} m_{2}\right) y=$

$$
\left(m_{1}+m_{2}\right) x_{1}-\left(1-m_{1} m_{2}\right) y_{1}
$$

9. $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ রেথার সাপেক্巾 $\left(x_{1}, y_{1}\right)$ কिদ্দুর প্রতিবিম্ম $\left(x_{1}-\frac{2 a\left(a x_{1}+b y_{1}+c\right)}{a^{2}+b^{2}}\right.$,

$$
\left.y_{1}-\frac{2 b\left(a x_{1}+b y_{1}+c\right)}{a^{2}+b^{2}}\right)
$$

10. $\mathbf{f}(\mathbf{x}) \equiv \mathbf{a x}+\mathbf{b y}+\mathbf{c}=\mathbf{0}$ রেথার সাপেক্巾 $\mathrm{g}(\mathrm{x}) \equiv a_{1} x+b_{1} y+c_{1}=0$ রেখার প্রতিবিম্ব

$$
\begin{gathered}
\left(a^{2}+b^{2}\right) \mathrm{g}(\mathrm{x})-2\left(a a_{1}+b b_{1}\right) \mathrm{f}(\mathrm{x})=0 \\
\text { প্রশ্নমানা - III F }
\end{gathered}
$$

1.(a) মুणক্স্দু এবং $\frac{x}{a}+\frac{y}{b}=1$ ® $\frac{x}{b}+\frac{y}{a}=1$ রেখাদয়ের ছেদক্স্দুগামী সরনরেখার সমীক্রণ নিণয় কর।
[চ.’০৫,’○৭] সমাধান: ধরি, প্রদত্ত রেখাদ্য়ের ছেদব্ন্দুগামী রেখাটির সমीকরণ $\frac{x}{a}+\frac{y}{b}-1+\mathrm{k}\left(\frac{x}{b}+\frac{y}{a}-1\right)=0, \mathrm{k} \neq 0$

রেখাটি মুলক্দ্মু $(0,0)$ দিয়ে অতিক্রম করলে, $\frac{0}{a}+\frac{0}{b}-1+\mathrm{k}\left(\frac{0}{b}+\frac{0}{\dot{a}}-1\right)=0 \Rightarrow \mathrm{k}=-1$
\therefore निর্ণেয় রেখার সমীকরণ,

$$
\frac{x}{a}+\frac{y}{b}-1-\frac{x}{b}-\frac{y}{a}+1=0
$$

$\Rightarrow \mathrm{bx}+\mathrm{ay}-\mathrm{ax}-\mathrm{by}=0$
$\Rightarrow(b-a) x-(b-a) y=0$
$x-y=0$ (Ans.)
1(b) দেখাఆ বে, k এর সব মানের জন্য একগুচ্ম সরনরেখা $(3+2 \mathrm{k}) x+5 \mathrm{ky}-3=0$ এবটি নির্দিফ্ট কিস্দুগামী। কিদ্দুটির স্থানাষ্ছ নির্ণয় কর।
[রা.’ov]
প্রমাণ : $(3+2 \mathrm{k}) x+5 \mathrm{ky}-3=0$
$\Rightarrow 3 \mathrm{x}+2 \mathrm{kx}+5 \mathrm{k} y-3=0$
$\Rightarrow 3 \mathrm{x}-3+\mathrm{k}(2 \mathrm{x}+5 \mathrm{y})=0$.এ রেখাটি k এর বিভিন্ন মানের জন্য একগুচ্ছ সরনরেরা সূচিত করে যারা সকলেই $3 \mathrm{x}-3=0 \cdots$ (1) এবং $2 \mathrm{x}+5 \mathrm{y} \cdots$ (2) রেখাদ্যের্যে ছেদক্দ্দুগামী ।
(1) হতে পাই, $3 x=3 \Rightarrow x=1$. আবার, $x=1$ হলে, (2) হতে পাই, $2+5 y=0 \Rightarrow y=-\frac{2}{5}$.

নিণ্ণেয় নির্দিষ্ট ব্দ্দুটির স্থানাজ্ক $\left(1,-\frac{2}{5}\right)$
2(a) $x-2 y-1=0$ ® $2 x+3 y+2=0$ রেখাময়ের ছেদবিদ্দুগামী এবং $\tan 45^{\circ}$ ঢान বিশিষ্ট সরনরেখার সমীক্রণ নিণয় কর। [ঝ্.'০৮,’০১] সমাধান : ধরি, প্রদত্ত রেখাদ্যের ছেদব্দ্দুগামী রেখাটির সমীকরণ $x-2 y-1+\mathrm{k}(2 x+3 y+2)=0$
$\Rightarrow(1+2 k) x+(3 k-2) y+2 k-1=0 \cdots(1)$
(1) রেখাটির ঢাল $=-\frac{1+2 k}{3 k-2}$

প্রশ্নমতে, $-\frac{1+2 k}{3 k-2}=\tan 45^{\circ}=1$
$\Rightarrow 3 \mathrm{k}-2=-1-2 \mathrm{k} \Rightarrow 5 \mathrm{k}=1 \Rightarrow \mathrm{k}=\frac{1}{5}$
নির্ণেয় রেখার সমীকরণ
$x-2 y-1+\frac{1}{5}(2 x+3 y+2)=0$
$\Rightarrow 5 \mathrm{x}-10 \mathrm{y}-5+2 x+3 y+2=0$
$\Rightarrow 7 \mathrm{x}-7 \mathrm{y}-3=0$ (Ans.)
বিক্প পশ্র্তি : $x-2 y-1=0$ ও

$$
2 x+3 y+2=0 \text { রেখা দুইটির }
$$

ছেদब্দি $\left(\frac{-4+3}{3+4}, \frac{-2-2}{3+4}\right)$ অब্ৰৎ $\left(-\frac{1}{7},-\frac{4}{7}\right)$
$\left(-\frac{1}{7},-\frac{4}{7}\right)$ बি্দুগামী এবং $\tan 45^{\circ}=1$ ঢन বিশিষ্ট সরলরেখার সমীকরণ $y+\frac{4}{7}=1 .\left(x+\frac{1}{7}\right)$
$\Rightarrow 7 y+4=7 x+1 \therefore 7 x-7 y-3=0$
[MCQ এর জন্য, $(2+1.3)(x-2 y-1)-$ $(1+1 \times-2)(2 x+3 y+2)=0 \Rightarrow 5 \mathrm{x}-10 \mathrm{y}$ $-5+2 \mathrm{x}+3 \mathrm{y}+2=0 \Rightarrow 7 \mathrm{x}-7 \mathrm{y}-3=0$] 2(b) $5 x-9 y+13=0$ * $9 x-5 y+11=0$ রেখাঘয়ের ছেদ বিদ্দু দিয়ে यায় এবং x-बকে小 সক্ো 45° কোণ উৎপন্ন করে এরূপ সরুরেখার সমীক্রণ নির্ণীয় কর।
[মা.বো.’০৪; ঢা.’১২]
সমাষান : নির্ণেয় রেখার ঢাল $=\tan \left(\pm 45^{\circ}\right)= \pm 1$

$$
5 x-9 y+13=0 \text { ъ }
$$

$9 x-5 y+11=0$ রেখা দুইটির ছেদক্দ্দুর স্পানাজ্ক $=\left(\frac{-99+65}{-25+81}, \frac{117-55}{-25+81}\right)$
$=\left(-\frac{34}{56}, \frac{62}{56}\right)=\left(-\frac{17}{28}, \frac{31}{28}\right)$
$\left(-\frac{17}{28}, \frac{31}{28}\right)$ ক্দ্দুগামী এবং ± 1 ঢাল বিশিষ্ট
সরনরেখার সমীকরণ $y-\frac{31}{28}= \pm 1 .\left(x+\frac{17}{28}\right)$
$\Rightarrow 28 \mathrm{y}-31= \pm(28 \mathrm{x}+17)$
' + ' निয়ে পাই, $28 \mathrm{x}-28 \mathrm{y}+48=0$

$$
7 x-7 y+12=0
$$

জাবার, ‘-’ নিয়ে পাই, $28 \mathrm{x}+28 \mathrm{y}-14=0$

$$
\therefore 2 x+2 y-1=0
$$

উজ্জর : $7 x-7 y+12=0$ বा, $2 x+2 y-1=0$ 2(c) মूलক্দ্দু এবং $4 x+3 y-8=0$ ఆ $x+y=$ 1 রেथা দুইটির ছেদক্দ্দুগামী সরলরেখার সমীকরণ নির্ণয় কর।

সমাধান ধরি, প্রদত্ত রেখাদ্যের ছেদক্দিগুগামী রেখাটির সমীকরণ $4 x+3 y-8+\mathrm{k}(x+y-1)=0$
$\Rightarrow(4+k) x+(3+k) y-8-k=0 \cdots$ (i)
(i) রেখাটি মূলক্সি্দু $(0,0)$ দিয়ে অতিক্মম করে। $(4+k) \times 0+(3+k) \times 0-8-k=0$
$\Rightarrow \mathrm{k}=-8$
নির্ণেয় রেখার সমীকরণ,

$$
\begin{aligned}
& (4-8) x+(3-8) y-8+8=0 \\
\Rightarrow & 4 x+5 y=0 \text { (Ans.) }
\end{aligned}
$$

3. (a) দूঁঢট সরনরেখা $(6,7)$ বিদ্দু দিয়ে যায় এবং তারা $3 x+4 y=11$ রেখার সচ্ে 45° কোণ উৎপন্ন করে। রেখা দুইটির সমীকরণ নির্ণয় কর।
[রা.’১১,’১৩; দি’০৯; চ.'১১; ব.’১৩]
সমাধান : ধরি, $(6,7)$ बি্দিগামী রেখার সমীকরণ

$$
\begin{equation*}
y-7=m(x-6) \tag{1}
\end{equation*}
$$

$3 x+4 y=11$ রেখার ঢাল $=-\frac{3}{4}$
প্রশ্নমতে, $\tan 45^{\circ}= \pm \frac{m+\frac{3}{4}}{1-\frac{3}{4} m}$
$\Rightarrow 1= \pm \frac{4 m+3}{4-3 m} \Rightarrow 4-3 \mathrm{~m}= \pm(4 \mathrm{~m}+3)$
' + ' निख़ে, $4-3 \mathrm{~m}=4 \mathrm{~m}+3 \Rightarrow \mathrm{~m}=\frac{1}{7}$
' - ' निख़ि $4-3 m=-4 m-3 \Rightarrow m=-7$
রেখা দুইটির সমীকরণ, $y-7^{\circ}=\frac{1}{7}(x-6)$
$\Rightarrow 7 y-49=x-6 \Rightarrow x-7 y+43=0$ এব゚ $\mathrm{y}-7=-7(\mathrm{x}-6) \Rightarrow \mathrm{y}-7=-7 \mathrm{x}+42$
$\Rightarrow 7 x+y-49=0$
[MCQ এর জন্য,
$\left(-\frac{3}{4}-1\right) x-\left(1-\frac{3}{4}\right) y=-\frac{7}{4} .6-\frac{1}{4} .7$,
$\left.\left(-\frac{3}{4}+1\right) \mathrm{x}-\left(1+\frac{3}{4}\right) \mathrm{y}=\frac{1}{4} \cdot 6-\frac{7}{4} \cdot 7\right]$
 $x-2 y=3$ রেখার সজ্ে 45° কোণ উৎপন্ন করে । রেখা দুইটির সমীকরণ নির্ণয় কন।
[य.'ob]

সমাধান : ধরি, $(3,2)$ ক্দিগুগামী রেখার সমীকরণ

$$
y-2=m(x-3) \cdots(1)
$$

$x-2 y=3$ রেখার ঢাল $=\frac{1}{2}$
প্রশ্নমতে, $\tan 45^{\circ}= \pm \frac{m-\frac{1}{2}}{1+\frac{1}{2} m}$
$\Rightarrow 1= \pm \frac{2 m-1}{2+m} \Rightarrow 2+m= \pm(2 m-1)$
' + ' निए़ে, $2+m=2 m-1 \Rightarrow m=3$
'-' निड़ि $2+m=-2 m+1 \Rightarrow m=-\frac{1}{3}$
রেখা দুইটির সমীকরণ, $y-2=3(x-3)$
$\Rightarrow \mathrm{y}-2=3 \mathrm{x}-9 \Rightarrow 3 x-y=7$
जবং $y-2=-\frac{1}{3}(x-3) \Rightarrow 3 y-6=-x+3$
$\Rightarrow x+3 y=9$
3 (c) मूইটি সরুनর্রেथ $(-1,2)$ কिन्मू मिख्यে যায় जবए তান্রা $3 x-y+7=0$ রেখার স飞্ण 45° बোণ উৎপন্ন কর্রে । র্রেধা দুইটিন সমীক্নণ নির্তয় কন্ন এবৃ তাদের সমীক্ন্নণ इতে দেখাఆ বে, তারা পরস্থর बम्बভাবে অবস্थান করে। [द্রা.'J০; ব.'১১; সि.'০৭,'১২,’১৪; মা.’০৯; य.'১১,’১৪; य.,সि.'১৩] সমাধান : ধরি, $(-1,2)$ বি্দুগামী রেখার সমীকরণ

$$
\begin{aligned}
& y-2=m(x+1) \cdots(1) \\
& 3 x-y+7=0 \text { রেগার ঢাল }=3
\end{aligned}
$$

প্র্নমতে, $\tan 45^{\circ}= \pm \frac{m-3}{1+3 m}$
$\Rightarrow 1= \pm \frac{m-3}{1+3 m} \Rightarrow 1+3 \mathrm{~m}= \pm(\mathrm{m}-3)$
' + ' निয়ে, $2 m=-4 \Rightarrow m=-2$
'-' निए़ि $4 \mathrm{~m}=2 \Rightarrow \mathrm{~m}=\frac{1}{2}$
রেো দুইটির সমীকরণ, $\mathrm{y}-2=-2(\mathrm{x}+1)$
$\Rightarrow \mathrm{y}-2=-2 \mathrm{x}-2 \Rightarrow 2 x+y=0$ (Ans.)
ađश $\mathrm{y}-2=\frac{1}{2}(\mathrm{x}+1) \Rightarrow 2 \mathrm{y}-4=\mathrm{x}+1$
$\Rightarrow x-2 y+5=0$ (Ans.)

এখন, রেখা দুইটির ঢালদয়ের গুুফ্ল $=-2 \cdot \frac{1}{2}=-1$ রেখা দুইটি পরস্পর অম্মভাবে অবস্পান করে।

3(d) দूইটি সরণরেখা $(6,-7)$ বिन्मू मिয়ে যায় जবए তারা $y+\sqrt{3} x=1$ রেখার স飞্েে 60° কোণ উৎপन্ন করে। রেখা দুইটির সমীকরণ নির্ণ্য কন।
[ঢ.’o৫; मि.’o১; жू.’১১]

সমাধান : ধরি, $(6,-7)$ বিদ্দুগামী রেখার সমীকরণ

$$
y+7=m(x-6) \cdots(1)
$$

$y+\sqrt{3} x=1$ রেথার ঢাল $=-\sqrt{3}$
প্রশ্নমতে, $\tan 60^{\circ}= \pm \frac{m+\sqrt{3}}{1-\sqrt{3} m}$
$\Rightarrow \sqrt{3}= \pm \frac{m+\sqrt{3}}{1-\sqrt{3} m}$
$\Rightarrow \sqrt{3}-3 m= \pm(m+\sqrt{3})$
' + ' निয়ে, $\sqrt{3}-3 m=m+\sqrt{3} \Rightarrow m=0$
' - ' निख़ে $\sqrt{3}-3 m=-m-\sqrt{3}$
$\Rightarrow 2 \mathrm{~m}=2 \sqrt{3} \Rightarrow \mathrm{~m}=\sqrt{3}$
রেথা দুইটির সমীকরণ, $y+7=0(x-6)$
$\Rightarrow y+7=0$ (Ans.)
এबং $\mathrm{y}+7=\sqrt{3}(\mathrm{x}-6)$ (Ans.)
3(e) দूইটি সরनরেথা মূণ<িস্দু দিয়ে यায় এবर তারা $3 y=2 x$ রেখার সד্ে $\tan ^{-1} \frac{1}{2}$ बোণ উৎপন্ন করে। রেখা দুইটির সমীকরণ নির্ণয় কন।
[ব. '১১]
সমাধান : ধরি, মৃলব্প্দু $(0,0)$ দিয়ে যায় এরূপ রেখার সমীকরণ $\mathrm{y}=\mathrm{mx} \cdots$ (1)
$3 y=2 x$ রেখার ঢাল $=\frac{2}{3}$
প্রশ্নমতে, $\tan \tan ^{-1} \frac{1}{2}= \pm \frac{m-\frac{2}{3}}{1+\frac{2}{3} m}$
$\Rightarrow \frac{1}{2}= \pm \frac{3 m-2}{3+2 m}$
$\Rightarrow 3+2 \mathrm{~m}= \pm(6 \mathrm{~m}-4)$
' + ' निয়ে, $3+2 m=6 m-4$
$\Rightarrow 4 \mathrm{~m}=7 \Rightarrow \mathrm{~m}=\frac{7}{4}$
'-' नित्य, $3+2 m=-6 m+4$
$\Rightarrow 8 \mathrm{~m}=1 \Rightarrow \mathrm{~m}=\frac{1}{8}$
রেখা দুইটির সমীকরণ, $y=\frac{7}{4} x \Rightarrow 7 x=4 y$
जবং $y=\frac{1}{8} x \Rightarrow x=8 y$
4(a) $(4,-3)$ दिम्मूभाমী जবर $2 x+11 y-2=0$ রেথার সমান্তরাণ সরনরেখার সমীকরণ নিंণয় কর।
[भि.'০৬; মা.’০৪,’০৬]
সমাষান : ধরি, $2 x+11 y-2=0$ এর সমাল্তরাল निর্চেয় রেখার সমীকরণ $2 x+11 y+\mathrm{k}=0$

প্রশ্নমতে (1) রেখাট $(4,-3)$ ক্দ্দুগামী ।
$2 \times 4+11 \times-3+\mathrm{k}=0 \Rightarrow \mathrm{k}=25$
निর্ণেয় রেখার সমীকর্ণ $2 x+11 y+25=0$
[MCQ এর জন্য, $2 x+11 y=2 \times 4+$ $11 x-3=-25]$
4(b) $(1,2)$ दिम्मूগামী এবং $3 x-4 y+8=0$ রেখার সমাস্তরাण সরণরেখার সমীকর্রণ নির্ণয় ক্ন।
[א.'०8]
সমাখান : $3 x-4 y+8=0$ রেখার ঢাল $=\frac{3}{4}$
$(1,2)$ ক্मिभाभী এবং $3 x-4 y+8=0$ র্রেখার সমান্তরাল সরলরেশাঁ্র সমীকরণ,

$$
\begin{aligned}
& y-2=\frac{3}{4}(x-1) \Rightarrow 4 y-8=3 x-3 \\
& 3 x-4 y+5=0
\end{aligned}
$$

4(c) y-অক্मের সমাল্তর্রাण এবर $2 x-3 y+4=0$ © $3 x+3 y-5=0$ রেথা দুইটির ছেদক্দ্দুগামী সরণরেখার সমীক্রণ নির্ণয় কর।
[চ.'০৪; ব.'০৪; মা.বো.'০৭; ব.'১০;' দি.'১৪] সমাধান : ধরি, প্রদত রেখা দুইটির ছেদক্দিগামী রেখার সমीকরণ $2 x-3 y+4+\mathrm{k}(3 x+3 y-5)=0$ $\Rightarrow(2+3 \mathrm{k}) \mathrm{x}+(-3+3 \mathrm{k}) y+4-5 \mathrm{k}=0$

এ রেখাটি y-অক্ষের সমাল্তরাল বলে, y-এর मरগ $-3+3 \mathrm{k}=0 \Rightarrow \mathrm{k}=1$

निर्ণেয রেখার সकীকরণi, $(2+3) x+4-5=0$
$5 x-1=0 \quad$ (Ans.)
[MCQ এর জন্য, $3(2 x-3 y+4)-(-3)(3 x+$ $3 y-5)=0$]
4 (d) x - बক্小ে সমাল্তন্মাन ज⿰< $x-3 y+2=0$ - $x+y-2=0$ त্রো দুইটির ছেদবিস্মুামী
 সমাষান : ধরি, প্রদত রেখা দুইটির ছেদক্দ্দুগামী রেখার সমীকরণ $x-3 y+2+\mathrm{k}(x+y-2)=0$
$\Rightarrow(1+\mathrm{k}) \mathrm{x}+(-3+\mathrm{k}) y+2-2 \mathrm{k}=0$
এ রেখাটি x-बক্ষের সমাম্তরাল বলে, x-এর সइগ $1+k=0 \Rightarrow k=-1$

निর্ণেয় রেখার সমীকরণ, $-4 \mathrm{y}+2+2=0$ $y-1=0 \quad$ (Ans.)
[MCQ এর बन্য, $1(x-3 y+2)-1(x+y-2)=0$]
 $7 x+13 y-87=0$ * $5 x-8 y+7=0$ र्ञायाषड़ের
 হেদ করে।
[চ.'০৬; সি.'০৬; ব.'’8]
সমাষান ধরি,প্রদত্ত রেখাদয়ের ছেদক্ন্দুগামী রেখার সমীকরণ $7 x+13 y-87+\mathrm{k}(5 x-8 y+7)=0$ $\Rightarrow(7+5 \mathrm{k}) x+(13-8 \mathrm{k}) y+7 \mathrm{k}-87=0$ ইহা অক্ষ দুইটি হতে সমান সং্খ্যমানের অংশ ছেদ করলে x ও y এর সহগের সং্খমমান সমান হবে।
$7+5 \mathrm{k}= \pm(13-8 \mathrm{k})$
' + ' निऱ, $13 \mathrm{k}=6 \Rightarrow \mathrm{k}=\frac{6}{13}$
' + ' नि<़ে, $3 k=20 \Rightarrow k=\frac{20}{3}$
রেখা দুইটির সমীকরণ,
$7 x+13 y-87+\frac{6}{13}(5 x-8 y+7)=0$
$\Rightarrow 91 x+169 y-1131+30 x-48 y+42=0$
$\Rightarrow 121 x+121 y-1089=0 \Rightarrow x+y-9=0$ এবং $7 x+13 y-87+\frac{20}{3}(5 x-8 y+7)=0$
$\Rightarrow 21 x+39 y-261+100 x-160 y+140=0$
$\Rightarrow 121 x-121 y-121=0 \Rightarrow x-y-1=0$
[MCQ এর জন্য, $(5+8)(7 x+13 y-87)-$ $(7-13)(5 x-8 y+7)=0$ এবং $(5-8)$ $(7 x+13 y-87)-(7+13)(5 x-8 y+7)=0]$ (b) यদি $\frac{x}{a}+\frac{y}{b}=1$ সরबরেখাট $2 x-y=1$ ® $3 x-4 y+6=0$ রেগাদয়ের ছেদক্স্দুগামী হয় এবए $4 x+3 y-6=0$ রেখাটির সমাল্তরান হয়, তাহলে $a \otimes \mathrm{~b}$ जর মান निর্র্য কর।
[ঢा. ’১২; রা. ’’৩] সমাষান : $2 x-y-1=0$ ও
$3 x-4 y+6=0$ রেখা দুইটির ছেদব্দ্মুর স্থानाE्क $=\left(\frac{-6-4}{-8+3}, \frac{-3-12}{-8+3}\right)=(2,3)$
প্রশ্নমতে, $\frac{x}{a}+\frac{y}{b}=1$ রেখাটি $4 x+3 y-6=0$ রেখাটির সমান্তরাল এবং $(2,3)$ বি্দুগামী

$$
\frac{1 / a}{4}=\frac{1 / b}{3} \Rightarrow 4 \mathrm{a}=3 \mathrm{~b} \Rightarrow \mathrm{a}=\frac{3 b}{4}
$$

งवश $\frac{2}{a}+\frac{3}{b}=1 \Rightarrow \frac{8}{3 b}+\frac{3}{b}=1 \Rightarrow \frac{8+9}{3 b}=1$
$\Rightarrow \mathrm{b}=\frac{17}{3} \quad \mathrm{a}=\frac{3}{4} \times \frac{17}{3}=\frac{17}{4}$
উত্তর : $a=\frac{17}{4}, b=\frac{17}{3}$
5(c) $3 x-4 y+1=0$ ง $5 x+y-1=0$ রেখাবয়ের ছেদবি্দू দিয়ে যায় এবং অক্ময় হতে একই চिश্নবিশিট্ট সমান সমান অश্ ছেদ করে এব্ধৃপ সরনরেখার সমীকরণ নির্ণয় কর।
[রা.’০২]
সমাধান ধরি,প্রদত রেখাদয়ের ছেদক্ন্দুগুামী রেখার সমীকরণ $3 x-4 y+1+\mathrm{k}(5 x+y-1)=0$
$\Rightarrow(3+5 \mathrm{k}) x+(-4+\mathrm{k}) y+1-\mathrm{k}=0$
ইহ অক্ষ দুইটি হতে একই চিহ্ববিশিফ সমান সমান অংশ ছেদ করলে x ও y এর সহগ সমান হবে।

$$
3+5 k=-4+k \Rightarrow 4 k=-7 \Rightarrow k=-\frac{7}{4}
$$

নির্ণেয় রেখার সমীকরণ,

$$
\begin{aligned}
& 3 x-4 y+1-\frac{7}{4}(5 x+y-1)=0 \\
\Rightarrow & 12 \mathrm{x}-16 \mathrm{y}+4-35 \mathrm{x}-7 \mathrm{y}+7=0 \\
\Rightarrow & -23 \mathrm{x}-23 \mathrm{y}+11=0 \\
& 23 x+23 y=11 \text { (Ans.) }
\end{aligned}
$$

[MCQ এর জন্য,
$(5-1)(3 x-4 y+1)-(3+4)(5 x+y-1)=0]$
5(d) $A(1,1), B(3,4) * C(5,-2)$
ক্দিদুুুো ABC ত্রিযूজ্রে শীর্ষকিস্দু। AB © AC এর মধ্যক্প্দুর সহযোগ সরণরেখার সমীকরণ নিণয় কর। এবং দেখা৫ যে, সরুরেখাটি BC এর সমান্তরাণ। [চ., দি.'১০; ঢা.'১১]
সমাধান ধরি, AB ఆ AC এর মধ্যबি্দু যথাক্রমে D ও E .
$\mathrm{D} \equiv\left(\frac{1+3}{2}, \frac{1+4}{2}\right)=\left(2, \frac{5}{2}\right)$ এব२
$E \equiv\left(\frac{1+5}{2}, \frac{1-2}{2}\right)=\left(3,-\frac{1}{2}\right)$
DE রেथা অধ্ধাৎ AB ও AC এর মধ্যক্ন্দুর সংয়ো রেখার সমীক্নণ $\frac{x-2}{2-3}=\frac{y-\frac{5}{2}}{\frac{5}{2}+\frac{1}{2}}$ $\Rightarrow \frac{x-2}{2-3}=\frac{2 y-5}{5+1} \Rightarrow 6 x-12=-2 y+5$ $6 x+2 y=17$ (Ans.)
২য় जशশ : $6 x+2 y=17$ রেখার ঢाল $=-\frac{6}{2}=-3$ এৰং BC রেখার ঢাল $=\frac{4+2}{3-5}=\frac{6}{-2}=-3$ পরস্পর সমান। অতএব, রেখাটি BC এর সমাল্তরাল।
6(a) $(4,-3)$ কি্দু দিয়ে যায় এবং $2 x+11 y-2=0$ রেখার উপর মम্ব সরনরেখার সমীকরণ নির্ণয় কর। [ব.'১২; ক.'১৪; মা.'১২,’১৪] সমাধান : ধরি, $2 x+11 y-2=0$ এর উপর লম্ম নিক্ণেয় রেখার সমীকরণ $11 x-2 y+k=0$ প্রশ্নমতত (1) রেখাটি $(4,-3)$ ক্ন্দুগামী ।

$$
11 \times 4-2 \times-3+k=0 \Rightarrow k=-50
$$

নির্ণেয় রেখার সমীকরণ, $11 x-2 y-50=0$ [MCQ এর জना, $11 x-2 y=11 \times 4-2 x-3=50$]
(b) $(2,-3)$ बिन्দू मिয়ে याয় এবং $2 x-3 y=7$ রেখার উপর নম্ম সরনরেখার সমীক্রণ নির্ণয় কর।
［飞ू．＇০১；য．＇০৭；মা．＇০৩］ সমাধান ：ধরি， $2 x-3 y=7$ এর উপর লম্ব নির্ণেয় রেখার সমীকরণ $3 x+2 y+\mathrm{k}=0 \cdots$（1） প্রশ্নমতে (1) রেখাটি $(2,-3)$ বিন্দুগামী ।
$3 \times 2+2 \times-3+k=0 \Rightarrow k=0$
নিকেয় রেখার সমীকরণ， $3 x+2 y=0$
6（c）$(2,5)$ दिम्দू मिয়ে যায় এবং $3 x+12 y=3$ রেখার উপর बম্ব সর্রেেখার সমীকরণ ননণয় কর।
［কু．＇০৫；চ．＇১8］ সমাধান ধরি， $3 x+12 y=3$ এর টপর লম্ব নিণ্ণেয় রেখার সমীকরণ $12 x-3 y+\mathrm{k}=0 \cdots$（1）

প্রশ্নমতে (1) রেখাটি $(2,5)$ বিন্দুগামী ।
$12 \times 2-3 \times 5+\mathrm{k}=0 \Rightarrow \mathrm{k}=-9$
নিণেয় রেখার সমীকরণ， $12 x-3 y-9=0$
7．（a）মূনবি্দু $\Theta\left(x_{1}, y_{1}\right)$ दिস্দুর সহযোগ রেখা এবং $(b, 0)$ Ө $\left(x_{2}, y_{2}\right)$ বিন্দুদ্যের সহযোগ রেখা পরস্পর बम্ম হলে প্রমাণ কর যে，$x_{1} x_{2}+y_{1} y_{2}=\mathrm{b} x_{1}$ ．
［চ．＇০৩；রা．＇০৪，＇১৩；ব．＇০৬；ঢা．＇১৩］
প্রমাণ：ধরি，মূলবিন্দু ও $\left(x_{1}, y_{1}\right)$ বিন্দুর সংযোগ রেখার ঢাল m_{1} এবং $(b, 0)$ ও $\left(x_{2}, y_{2}\right)$ বিন্দুদ্মের সংযোগ রেখার ঢাল m_{2}

$$
m_{1}=\frac{y_{1}}{x_{1}} \text { এবং } m_{2}=\frac{y_{2}-0}{x_{2}-b}=\frac{y_{2}}{x_{2}-b}
$$

প্রশ্নমতে，রেখাদ্য় পরস্পর লম্ব ।

$$
m_{1} m_{2}=-1 \Rightarrow \frac{y_{1}}{x_{1}} \times \frac{y_{2}}{x_{2}-b}=-1
$$

$$
\Rightarrow y_{1} y_{2}=x_{1} x_{2}+b x_{1}
$$

$$
\left.x_{1} x_{2}+y_{1} y_{2}=\mathrm{b} x_{1} \quad \text { (Proved }\right)
$$

7．（b）$(2,3)$ বিন্দুগামী সরলরেখার উপর (x, y) যেকোন একটি বিল্দু এবং রেখাটি $(-1,2)$ ৩ $(-5,4)$ বিদ্দুদ্বয়ের সংযোগ রেখার উপর बম্ম। প্রমাণ কর যে， $2 x-y-1=0$ ．

প্রমাণ：ধরি，（ $(\sim, 3)$ বিন্দুগামী সরল়রেখার ঢাল m_{1} এবং $(-1,2)$ ও $(-5,4)$ বিন্দুদ্বয়ের সংযোগ রেখার ঢাল m_{2} 。
$m_{1}=\frac{y-3}{x-2}[\quad(2,3)$ বিন্দুগামী সরলরেখার উপর (x, y) যেকোন একটি বিন্দু 1］
এবং $m_{2}=\frac{2-4}{-1+5}=\frac{-2}{4}=-\frac{1}{2}$
প্রশ্নমতে，রেখাদ্বয় পরস্পর লম্ব ।

$$
\begin{aligned}
\frac{y-3}{x-2} \times-\frac{1}{2} & =-1 \Rightarrow-y+3=-2 x+4 \\
2 x-y-1 & =0(\text { Proved })
\end{aligned}
$$

7（c） $\mathbf{A}(1,1), \mathbf{B}(3,4)$ в $(5,-2)$ কिम্দুগুজো ABC ত্রিভুজ্জের শীর্ষবিস্দু । A বিন্দুগামী এবং BC রেখার উপর অম্ম সরনরেখার সমীকরণ নিণয় কর।
［প্র．ভ．প．’०8］
সমাধান A বিস্দুগামী এবং BC রেখার উপর লম্ব সরলরেখার সমীকরণ $y-1=-\frac{3-5}{4+2}(x-1)$ $\Rightarrow y-1=-\frac{-2}{6}(x-1)$
$\Rightarrow 3 y-3=x-1 \therefore x-3 y+2=0$（Ans．）
8．（a）এরূপ একটি সরনরেখার সমীকরণ নিণয় কর যা $\frac{x}{a}-\frac{y}{b}=1$ রেখার উপর মম্ব এবং প্রদত্ত রেখা ৫ x－অক্小ের ছেদ বিদ্দু দিয়ে অতিক্রম করে।［চ．＇০২； ব．＇০৫；জু．＇০৮，’১০］
সমাধান ：প্রদত্ত রেখা $\frac{x}{a}-\frac{y}{b}=1 \Rightarrow \frac{x}{a}+\frac{y}{-b}=1$ $\Rightarrow b x-a y=a b \quad, x$－অক্ষকে $(a, 0)$ বিস্দুতে ছেদ করে।

ধরি，প্রদত্ত রেখার উপর লম্ব রেখার সমীকরণ， $a x+b y=k$

প্রম্নমতে，（1）রেখাটি $(a, 0)$ বিন্দুগামী ।
$a \cdot a+b \cdot 0=k \Rightarrow \mathrm{k}=a^{2}$
नিণেয় রেখার সমীকরণ $a x+b y=a^{2}$ ．
8（b）এরূপ একটি সরণরেখার সমীকরণ নিণয় কর যা $3 x+2 y=9$ в $2 x+3 y=11$ রেখাদয়ের ছেদ বিন্দু দিয়ে যায় এবং প্রথম রেখার উপর মম্ব হয়।

$$
\text { সমাধান: } 3 x+2 y-9=0 \cdots(1) \text { ও }
$$

$$
2 x+3 y-11=0 \cdots(2) \text { রেখাদ্যের ছেদক্দ্দুর }
$$

স্গানাজ্ক $=\left(\frac{-22+27}{9-4}, \frac{-18+33}{9-4}\right)=(1,3)$.
$(1,3)$ ক্ন্দু দিয়ে যায় এবং (1) রেখার উপর লম্ম এরূপ রেখার সমীকরণ $2 x-3 y=2 \times 1-3 \times 3$
$\Rightarrow 2 x-3 y=2-9 \quad 2 x-3 y+7=0$
9. (a) এরূপ একটি সরুলরেখার সমীকরণ নির্ণয় কর या $(1,2)$ ও $(4,5)$ ক্দ্দুদ্যের সংযোগ রেখাশশকে 3:1 অনूপাতে অন্তর্বিভক্ত করে এবং ী রেখার উপর बम्य হয়।
সমাধান:(1,2) ও $(4,5)$ ক্দ্দুদ্ভররের সংযোগ রেখাশশকে 31 অनूभाতে অন্তর্বিতক্তকারী বিন্দুর স্থানাফ্ক $=\left(\frac{3 \times 4+1 \times 1}{3+1}, \frac{3 \times 5+1 \times 2}{3+1}\right)=\left(\frac{13}{4}, \frac{17}{4}\right)$

এVন, $(1,2)$ ఆ $(4,5)$ বিन्मूদ্রয়ের সংযোগ রেখাণ্শর উপর লম্ম এবং $\left(\frac{13}{4}, \frac{17}{4}\right)$ बিন্দুগামী রেখার সমীকরণ $\left(y-\frac{17}{4}\right)=-\frac{1-4}{2-5}\left(x-\frac{13}{4}\right)$
$\Rightarrow\left(y-\frac{17}{4}\right)=-1\left(x-\frac{13}{4}\right)$
$\Rightarrow 4 \mathrm{y}-17=-4 \mathrm{x}+13 \Rightarrow 4 \mathrm{x}+4 \mathrm{y}=30$
$2 x+2 y=15$ (Ans.)
9(b) $\mathbf{P}(\mathrm{h}, \mathrm{k})$ ক্স্দু रতে x - y-बক্ষে উপর যপাকুমে PA © PB बम्य। P বিস্দুগামী जবए AB রেখার উপর অম্ব এরূপ সরণরেখার সমীক্রণ নিণয় কর্ন। সমাধান: $P(h, k)$ ब্দি इনত x ও y-बক্ষের উপর যথাক্রমে PA ও PB লम्य বলে A ও B ক্দিদ্দুর স্থানাজ্ক যথাক্রমে $(h, 0)$
 ఆ $(0, \mathrm{k})$.
P ब্দ্দুগামী এবং AB রেখার উপর লম্ম এরূপ রেখার সমীকরণ $\mathrm{y}-\mathrm{k}=-\frac{h-0}{0-k}(\mathrm{x}-\mathrm{h})$
$\Rightarrow \mathrm{y}-\mathrm{k}=\frac{h}{k}(\mathrm{x}-\mathrm{h})$
$\Rightarrow \mathrm{ky}-\mathrm{k}^{2}=\mathrm{hx}-\mathrm{h}^{2}$
$\mathrm{h} x-\mathrm{ky}=\mathrm{h}^{2}-\mathrm{k}^{2}$ (Ans.)

9 (c) এরূপ এবটি সরনরেখার সমীকরণ নির্ণয় কর যা $4 x+7 y=11$ রেখার উপর बম্ম এবং y-অक্ रতে 2 একক দৈর্য্য বর্তন করে।
[প্র.ভ.৭.' ’০]
সমাধান: $4 x+7 y=11$ রেখার ঢাল $=-\frac{4}{7}$ $4 x+7 y=11$ এর উপর লম্ম রেখার ঢাল $=\frac{7}{4}$ y-অक্ষ হতে 2 একক দৈর্ঘ্য কর্তনকারী এবং $\frac{7}{4}$ ঢাল বিশিষ্ট রেখার সমীকরণ $\mathrm{y}=\frac{7}{4} \mathrm{x} \pm 2$
$\Rightarrow 7 x-4 y \pm 8=0$ (Ans.)
10. (a) $3 x-4 y+8=0$ রেখার সমাশ্তরান मिखে $3 x+y+4=0$ রেখা হতে $(1,2)$ ক্দ্দুর मूरज्व निর্ণয় কর।
[রা.'০২; य.'ob]
সমাধান:

ধরি, $3 x-4 y+8=0$
(1) রেथার সমান্তরাল এবং $\mathrm{P}(1,2)$ ক্দ্দুগামী সরনলরেখা $3 x+y+4=0 \quad$ (2) রেখাকে Q बি্দুতে ছেদ করে।

PQ রেখার সমীকরণ $3 x-4 y=3 \times 1-4 \times 2$ $\Rightarrow 3 x-4 y=-5 \Rightarrow 3 x-4 y+5=0$.
(2) $-(3) \Rightarrow 5 y-1=0 \Rightarrow y=\frac{1}{5}$.
(2) रणে পাই, $3 x+\frac{1}{5}+4=0 \Rightarrow 3 x=-\frac{21}{5}$ $\Rightarrow \mathrm{x}=-\frac{7}{5} \therefore \mathrm{Q}$ ब্দ্দুর স্থানাজ্ক $\left(-\frac{7}{5}, \frac{1}{5}\right)$

निर্ণেয় দূরত্ব, $\mathrm{PQ}=\sqrt{\left(1+\frac{7}{5}\right)^{2}+\left(2-\frac{1}{5}\right)^{2}}$
$=\sqrt{\frac{144+81}{25}}=\sqrt{\frac{225}{25}}=\sqrt{9}=3$ बकक।
10(b) যে সরলরেখা x-অক্ষের ধনাঅক দিকের সাল্ধ $\tan ^{-1}\left(\frac{3}{4}\right)$ কোণ উৎপন্ন করে তার সমান্তরাছ বরাবর
$3 x+5 y-11=0$ রেখা হতে $(-1,1)$ বিদ্দুর দুরप্ব निर्ण द्र।

সমাধান: যে সরলরেখা x-অক্ষের ধনাঅক দিকের সাথে $\tan ^{-1}\left(\frac{3}{4}\right)$ কোণ উৎপন্ন করে তার সমান্তরাল এবং $\mathrm{P}(-1,1)$ क्मिभूামী রেথার সমীকনণ,

$$
\begin{align*}
& y-1=(x+1) \tan \tan ^{-1}\left(\frac{3}{4}\right) \\
\Rightarrow & y-1=\frac{3}{4}(x+1) \Rightarrow 4 y-4=3 x+3 \\
\Rightarrow & 3 x-4 y+7=0 \cdots \cdots(1) \\
& \text { धরি, (1) রেখা } 3 x+5 y-11=0 \tag{2}
\end{align*}
$$

রেখকে Q ब্দিতু ছেদ করে।
जখন, (1)-(2) $\Rightarrow-9 y+18=0 \Rightarrow y=2$
(1) $\Rightarrow 3 x-8+7=0 \Rightarrow 3 x=1 \Rightarrow x=\frac{1}{3}$

Q বিদ্দুর স্থানাজ্木 $\left(\frac{1}{3}, 2\right)$.
निর্ণেয় দূরত্ব, $\mathrm{PQ}=\sqrt{\left(-1-\frac{1}{3}\right)^{2}+(1-2)^{2}}$

$$
=\sqrt{\frac{16}{9}+1}=\sqrt{\frac{16+9}{9}}=\frac{5}{3} \text { একক। }
$$

10(c) যে সরুনরেথা $y=2 x$ রেোর সচ্ভে 45° কোণ উৎপন্ন করে তার সমাশ্তরাান বরাবর $3 x-4 y=$ 15 রেখা হতে মুলবিদ্দুর দূুত্ত নির্ণয় কর্।
সমাধান:

$y=2 x$ রেখার ঢাল (ধরি) $m_{1}=2$.
ধরি, যে সরলরেখা $y=2 x$ রেখার সखে 45° কোণ উৎপন্ন করে তার ঢাল m_{2}

$$
\tan 45^{\circ}= \pm \frac{m_{1}-m_{2}}{1+m_{1} m_{2}} \Rightarrow 1= \pm \frac{2-m_{2}}{1+2 m_{2}}
$$

$\Rightarrow 1+2 m_{2}= \pm\left(2-m_{2}\right)$
' + ' निड़ि, $1+2 m_{2}=2-m_{2} \Rightarrow m_{2}=\frac{1}{3}$ এবर
' - ' निर्तে, $1+2 m_{2}=-2+m_{2} \Rightarrow m_{2}=-3$

বিশিষ্ট রেখা $y=\frac{1}{3} x \Rightarrow x=3 y \cdots(1), 3 x-$ $4 y=15 \cdots$ (2) রেখাকে P বিদ্দুতে ছেদ বরে।
(2) হতে পাই, $9 y-4 y=15[\because x=3 y]$
$\Rightarrow 5 y=15 \Rightarrow y=5$ এবং $x=15$.

$$
\begin{aligned}
P \equiv(15,5) & \text { এবং } \mathrm{OP}=\sqrt{5^{2}+15^{2}} \\
= & \sqrt{5^{2}\left(1+3^{2}\right)}=5 \sqrt{10} \text { একক। }
\end{aligned}
$$

জাবার, ধরি মূলষ্দিদু $\mathrm{O}(0,0)$ দিয়ে जতিক্রমকারী এবং -3 ঢाल বিশিষ্ট রেখা $\mathrm{y}=-3 \mathrm{x} \cdots(3)$, $3 x-4 y=15 \cdots(2)$ রেখাকে Q ক্দিতে ছেদ করে।

$$
\text { (2) হতে পাই, } 3 x+12 x=15[\because y=-3 x]
$$

$$
\Rightarrow 15 x=15 \Rightarrow x=1 \text { এবং } y=-3
$$

$$
\begin{aligned}
Q \equiv(1,-3) \text { এবर } \mathrm{OP} & =\sqrt{1^{2}+3^{2}} \\
& =\sqrt{10} \text { একক। }
\end{aligned}
$$

10(d) ABCD রম্মসের দুইটি বাহ্র $x-y=5$ ও
 ছেদে করে। A বি্দি \mathbf{x} - অক্ষের উপর অবস্থিত হলে A এর স্থানাध্क निর্য় কন।
সমাধান:

ধরি, A এর স্থানাঙ্ক $(\alpha, 0)$.
$x-y=5$ এর সমন্তরাল $(2,1)$ ক্দ্দুগামী রেখার সমীকরণ $x-y=2-1=1 \cdots$ (i) এবং
$\mathrm{A}(\alpha, 0)$ ক্দিগুমী রেখোর সমীকরণ $\mathrm{x}-\mathrm{y}=\alpha \cdots$ (ii) आবার, $7 x-y=3$ এর সমান্তরাল $(2,1)$ बি-্দুগামী রেখার সমীকরণ $7 \mathrm{x}-\mathrm{y}=7 \times 2-1$
$\Rightarrow 7 x-y=13 \quad$ (iii) এবং $A(\alpha, 0)$ बি্দুগামী রেখার সমীকরণ $7 \mathrm{x}-\mathrm{y}=7 \alpha \cdots$ (iv).
(i) ఆ (iv) এর ছেদब্দ্মু $\mathrm{P}\left(\frac{7 \alpha-1}{6}, \frac{7 \alpha-7}{6}\right)$
(ii) ఆ (iii) এর ছেদब্দ্দু $\mathrm{Q}\left(\frac{13-\alpha}{6}, \frac{13-7 \alpha}{6}\right)$
$\mathrm{AP}=\mathrm{AQ},[\because \mathrm{ABCD}$ একটি রম্মস]
$\Rightarrow \mathrm{AP}^{2}=\mathrm{AQ}^{2}$
$\Rightarrow\left(\alpha-\frac{7 \alpha-1}{6}\right)^{2}+\left(\frac{7 \alpha-7}{6}\right)^{2}=$

$$
\left(\alpha-\frac{13-\alpha}{6}\right)^{2}+\left(\frac{13-7 \alpha}{6}\right)^{2}
$$

$\Rightarrow(1-\alpha)^{2}+49(1-\alpha)^{2}=2(7 \alpha-13)^{2}$
$\Rightarrow 25(1-\alpha)^{2}=(7 \alpha-13)^{2}$
$\Rightarrow 5(1-\alpha)= \pm(7 \alpha-13)$
' + ' চिহ्ञ निख्यে, $5-5 \alpha=7 \alpha-13 \Rightarrow \alpha=3 / 2$
'-' চिश निয়ে, $5-5 \alpha=-7 \alpha+13 \Rightarrow \alpha=4$
A এর স্থানাঙ্ক $(4,0)$ বা, $(3 / 2,0)$.
11. (a) $(8,5)$ © $(-4,-3)$ কिम्मूपूয়ের সষ্যোগ রেখাঁশের নম্ব সমদ্পিখ্ভক সরঅরেখার সমীক্রণ निর্ণ़ কর। [द्रा.'১२; ঢ.'০৬; థ.'০৬; সि.'০১,'১৩; চ.'ว২]
সমাষান: প্রদষ্ঠ বি্দুদ্যের সংযোগ রেখাংশের মধ্যব্দ্দুর স্যাनाध्क $\left(\frac{8-4}{2}, \frac{5-3}{2}\right)=(2,1)$
$(8,5)$ ও $(-4,-3)$ বিদ্দুদ্যের সংশোগ
রেখার ঢাল $=\frac{5+3}{8+4}=\frac{8}{12}=\frac{2}{3}$.
লম্ম সমদ্খিল্ডক রেখার ঢাল $=-\frac{3}{2}$
নির্ণেয় নম্ব সমদ্ঘিখ্ডক রেখার সমীকরণ,
$y-1=-\frac{3}{2}(x-2)$
$\Rightarrow 2 \mathrm{y}-2=-3 \mathrm{x}+6$
$3 x+2 y-8=0$ (Ans.)
[MCQ এর মন্য, $(8+4) \mathrm{x}+(5+3) \mathrm{y}$

$$
\left.=\frac{1}{2}(64-16+25-9)=32\right]
$$

11(b) $(2,1) \cup(6,3)$ বिम्मूूয়ের সरেোগ রেখাrশের অম্ম সমদ্ধিভ্ভক সরনরেখার সমীক্রণ নির্ণয় कर।
[य.’०৬]

সমাষান: প্রদত্ত ক্দিদুদ্যের সৃযেোগ রেখাংশের মধ্যব্দ্দুর স্থानाब्क $\left(\frac{2+6}{2}, \frac{1+3}{2}\right)=(4,2)$
 লম্ম সমদ্দিখল্ডক সরলরেখার ঢাল $=-\frac{2-6}{1-3}=-2$

নির্ণেয় লম্ম সমদ্খখ্ভক রেখার সমীকরণ,

$$
\begin{aligned}
& y-2=-2(x-4) \Rightarrow y-2=-2 x+8 \\
& 2 x+y-10=0 \text { (Ans.) }
\end{aligned}
$$

 রেখাহশের बম্ম সমঘ্খিখ্ভ সরণরেখার সমীক্রণ নিণ়্ ब $\bar{\alpha} 1$
[.्र.ய.भ. '०8]
সমাধান: PQ এর মধ্যবি্দ্রুর স্থানাজ্ক $\left(1, \frac{13}{2}\right)$
P ও Q ব্দিদুদ্যের সRযোগ রেখাংশের লম্ম সমদ্দিখভ্ডক রেখার ঢাল $=-\frac{4+2}{11-2}=-\frac{2}{3}$

নির্ণেয় লম্ম সমদ্ধিখ্ডক রেখার সমীকরণ,

$$
\begin{aligned}
& \mathrm{y}-\frac{13}{2}=-\frac{2}{3}(\mathrm{x}-1) \\
\Rightarrow & \frac{2 y-13}{2}=-\frac{2}{3}(\mathrm{x}-1) \\
\Rightarrow & 6 \mathrm{y}-39=-4 \mathrm{x}+4 \\
& 4 x+6 y-43=0 \text { (Ans.) }
\end{aligned}
$$

 সমीক্রণ $(a-c) x+(b-d) y=\frac{1}{2}\left(a^{2}+b^{2}\right.$ $-c^{2}-d^{2}$).
[ব.'o১]
 স্थानाজ्क $\left(\frac{a+c}{2}, \frac{b+d}{2}\right)$
(a, b) ও (c, d) বিদ্দুদ্রের সৃযোগ রেখাংশের নস্ম সমদ্মিখ্ডক সরলরেখার ঢাল $=-\frac{a-c}{b-d}$

নির্ণ্য় নম্ম সমদ্খিঙ্ডক রেখার সমীকরণণ,

$$
\mathrm{y}-\frac{b+d}{2}=-\frac{a-c}{b-d}\left(\mathrm{x}-\frac{a+c}{2}\right)
$$

$\Rightarrow(b-d) y-\frac{b^{2}-d^{2}}{2}$

$$
=-(a-c) \mathrm{x}+\frac{a^{2}-c^{2}}{2}
$$

$$
(a-c) x+(b-d) y=\frac{1}{2}\left(a^{2}+b^{2}-c^{2}-d^{2}\right)
$$

12. (a) $(2,3)$ सिन्मू रতে $4 x+3 y-7=0$ সরনরেখা উপ্র অষ্ধিত নম্মের পাদবিদ্দুর স্থানাষ্ নির্ণয় কর এবr এর সাহায্যে বিদ্দুটি হতে সরণর্নোর্র बम्य-দূহप्र निর্ণয় কন।
[य.'০৯; র্যা., সি.,ব.'০৯; ঢা.'১০; মা.'১৩]
সমাষান: $(2,3)$ ब্দিগুামী এবং $4 x+3 y-7=0$ রেখার উপর অষ্কিত লম্বের সমীক্রণ,
$3 x-4 y=3 \times 2-4 \times 3=6-12$

$$
3 x-4 y+6=0
$$

$$
4 x+3 y-7=0 \text { ® }
$$

$3 x-4 y+6=0$ রেখাদ্যের ছেদক্দ্দুর
स्थानाध्क $=\left(\frac{18-28}{-16-9}, \frac{-21-24}{-16-9}\right)$

$$
=\left(\frac{-10}{-25}, \frac{-45}{-25}\right)=\left(\frac{2}{5}, \frac{9}{5}\right)
$$

অध्किত बদ্মের. পাদক্দ্দুর স্থানাজ্ক $\left(\frac{2}{5}, \frac{9}{5}\right)$
২য় बश्ष $(2,3)$ ক্দ্দুটি হতে প্রদভ রেথার वम्ম-मृরज्ব $=\sqrt{\left(2-\frac{2}{5}\right)^{2}+\left(3-\frac{9}{5}\right)^{2}}$

$$
=\sqrt{\frac{64}{25}+\frac{36}{25}}=\frac{\sqrt{100}}{5}=\frac{10}{5}=2 \text { একক। }
$$

12(b) (2,-1) বिन्दू इতে $3 x-4 y+5=0$
 निर्जग्र কर।।य.'১২; সि.'০৭,'১২; ঢা.'০৮,'১৪; কু.'০8; চ.'০৭,’১০; মা.বো.'০৮,'০৯; ব্রা.’১২; দি.’১২]

সমাধান: $(2,-1)$ বিস্দুগামী এবং $3 x-4 y+5=0$ রেথার উপর অঙ্কিত মম্টের সমীকরণ, $4 x+3 y=4 \times 2+3 x-1=8-3$

$$
4 x+3 y-5=0
$$

$$
4 x+3 y-5=0
$$

$3 x-4 y+5=0$ রেখাদ্যের ছেদবিদ্দুর স्थानाब्क $=\left(\frac{15-20}{-16-9}, \frac{-15-20}{-16-9}\right)$.
$=\left(\frac{-5}{-25}, \frac{-35}{-25}\right)=\left(\frac{1}{5}, \frac{7}{5}\right)$
অঙ্কিত बম্মের পাদব্দ্দুর স্থানাজ্ক $\left(\frac{1}{5}, \frac{7}{5}\right)$
12(c) $(3,1)$ বिי्मू হতে $2 x+y-3=0$
 निर्ণয় কন।
[ব.’०৫]
সমাধান: $(3,1)$ ক্দ্দুগামী এবং $2 x+y-3=0$ রেখার উপর অষ্ধিত লম্ষের সমীকরণ,

$$
x-2 y=1 \times 3-2 \times 1=3-2
$$

$$
x-2 y-1=0
$$

$x-2 y-1=0$ ๑
$2 x+y-3=0$ রেখাদয়ের ছেদক্দ্দুর স्थानाब्क $=\left(\frac{6+1}{1+4}, \frac{-2+3}{1+4}\right)=\left(\frac{7}{5}, \frac{1}{5}\right)$

অজ্কিত লম্বের পাদক্মিন্দুর স্থানাজ্ক $\left(1, \frac{1}{5}\right)$
12(d) $P(h, k)$ বিস্দু হতে মুলকিস্দুদামী সরননরেথার
 সমাখান: ধরি, মূলब্দ্দু $(0,0)$ দিढ্যে অতিক্রমকারী রেখার সমীকরণ $y=m x$ অ戶ाৎ $m x-y=0 \cdots$ (1) $\mathrm{P}(\mathrm{h} \mathrm{k})$ ক্দ্গুগামী এবং (1) রেথার উপর অঙ্ণিত नम্ষের সমীকরণ, $x+m y=\mathrm{h}+\mathrm{mk}$
(1) रতে পাই, $\mathrm{m}=\frac{y}{x}$
(2) নং সমীকরণে m-এর মান বসিয়ে পাই,

$$
x+\frac{y}{x} y=\mathrm{h}+\frac{y}{x} \cdot \mathrm{k}
$$

$\Rightarrow x^{2}+y^{2}=h x+k y$; या নির্ণেয় সঞ্চারপপ্থে সমীকরণ।
13(a) এরুপ সরনরেখার সমীক্নণ निণ্য় কর या x बढ্ষে সমাশ্তরাण এবং $4 x+3 y=6$ © $x-2 y$

সমাধান: $4 x+3 y-6=0$ В

$$
x-2 y-7=0 \text { রেথাদ্যের ছেদক্দুুর স্থানাজ্ক }
$$

$$
\begin{aligned}
& =\left(\frac{-21-12}{-8-3}, \frac{-6+28}{-8-3}\right)=\left(\frac{-33}{-11}, \frac{22}{-11}\right) \\
& =(3,-2)
\end{aligned}
$$

x-অক্ষের সমান্তরাল এবং প্রদত্ত রেখাদ্ময়ের সজ্ঞো সমক্সিন্দু নিক্ণেয় রেখার সমীকরণ $y=-2 \Rightarrow y+2=0$

13(b) $2 x+b y+4=0,4 x-y-26=0$, $3 x+y-1=0$ রেখাত্রয় সম<িস্দু হলে b এর মান নির্ণয় কর।
[প্র.Ш.প.'०১]
সমাধান: প্রদত্ত রেখাত্রয় সমক্ন্দু বলে,

$$
\left|\begin{array}{ccc}
2 & b & 4 \\
4 & -1 & -26 \\
3 & 1 & -1
\end{array}\right|=0
$$

$\Rightarrow 2(1+26)-\mathrm{b}(-4+78)+4(4+3)=0$
$\Rightarrow 54-74 b+28=0 \Rightarrow 74 b=82$
$\mathrm{b}=\frac{82}{74}=\frac{41}{37}$ (Ans.)
13(c) $a x+b y+c=0, b x+c y+a=0$, $c x+a y+b=0$ রেখাত্রয় সমকি্দু হলে, দেখাও যে, $a+b+c=0$.
[fि.'০১, [ঢा.'১8]]
প্রমাণ : প্রদত্ত রেখাত্রয় সমবিন্দু হলে,

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|=0 \Rightarrow\left|\begin{array}{ccc}
a+b+c & b & c \\
a+b+c & c & a \\
a+b+c & a & b
\end{array}\right|=0 \\
& \Rightarrow\left|\begin{array}{ccc}
0 & b-c & c-a \\
0 & c-a & a-b \\
a+b+c & a & b
\end{array}\right|=0
\end{aligned}
$$

$\Rightarrow(\mathrm{a}+\mathrm{b}+\mathrm{c})\left(\mathrm{ab}-\mathrm{ca}-\mathrm{b}^{2}+\mathrm{bc}-\mathrm{c}^{2}+\right.$ $\left.2 c a-a^{2}\right)=0$
$\Rightarrow(a+b+c)\left(2 a^{2}+2 b^{2}+2 \dot{c}^{2}-2 a b-\right.$ $2 b c-2 c a)=0 \quad[-2$ দ্বারা গুণ করে।]
$\Rightarrow(a+b+c)\left\{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right\}=0$ এখानে, $a \neq b \neq c,\left\{(\mathrm{a}-\mathrm{b})^{2}+(\mathrm{b}-\mathrm{c})^{2}\right.$ $\left.+(c-a)^{2}\right\}=0 \therefore a+b+c=0$ (Showed)

13(d) $3 x+5 y-2=0,2 x+3 y=0, a x+$ $b y+1=0$ রেখাত্রয় সমবিস্দু হছে, a ఆ b এর মধ্যে সম্পর্ক নির্ণয় কর। [य.'০৯,'১৩; দি.'১১; চ.'১২] প্রমাণ : প্রদত্ত রেখাত্রয় সমবিন্দু হলে,
$\left|\begin{array}{ccc}3 & 5 & -2 \\ 2 & 3 & 0 \\ a & b & 1\end{array}\right|=0$
$\Rightarrow-2(2 b-3 a)+1(9-10)=0$
$\Rightarrow-4 b+6 a-1=0 \Rightarrow 6 a-4 b=1$
14. (a) দেখাও যে, $x=t, y=2 t+1$ এবং $x=2 t, y=-t-4$ রেখা দুইটি পর্রস্পরকে $(-2,-3)$ বিদ্দুতেে সমকোণে ছেদ করে। [ব.’১১] প্রমাণ : $x=\mathrm{t}, y=2 \mathrm{t}+1$ রেখাটিকে লেখা যায়-
$y=2 x+1 \cdots(1) ;$ যার ঢাল $=2$
আবার, $x=2 \mathrm{t}, y=-\mathrm{t}-4$ রেখাটিকে লেখা যায়-

$$
\mathrm{y}=-\frac{x}{2}-4 \cdots(2) ; \text { याর ঢাল }=-\frac{1}{2}
$$

$(1)-(2) \Rightarrow 0=\left(2+\frac{1}{2}\right) x+5$
$\Rightarrow \frac{5}{2} x=-5 \Rightarrow \mathrm{x}=-2 \quad \therefore \mathrm{y}=-4+1=-3$
রেখাদ্ময়ের ছেদবিন্দু $(-2,-3)$:
আবার, রেখাদ্বয়ের ঢালদ্দয়ের গুণফল্ল $=2\left(-\frac{1}{2}\right)=-1$
রেখা দুইটি পরস্পরকে $(-2,-3)$ বিন্দুতে সমকেণে ছেদ করে।
(Showed)
14(b) দেখাఆ यে, $2 x=1-4 t, y=1+t$ এবৃ $x=-2 t, y=t-1$ রেখা দুইটি সমান্তরান।
প্রমাণ $2 x=1-4 \mathrm{t}, y=1+\mathrm{t}$ রেখাটিকে লেখা याয়, $2 x=1-4(\mathrm{y}-1) \Rightarrow 2 \mathrm{x}+4 \mathrm{y}=5 \cdots(1)$ আবার, $x=-2 \mathrm{t}, y=\mathrm{t}-1$ রেখাটিকে লেখা যায়-

$$
x=-2(y+1) \Rightarrow x+2 y+2=0 \cdots(2)
$$

(1) রেখাটির ঢাল $=-\frac{2}{4}=-\frac{1}{2}$ এবং
(2) রেখাটির ঢাল $=-\frac{1}{2}$

রেখা দুইটির ঢাল পরস্পর সমান বলে তারা সমান্তরাল ।
(Showed)
14(c) OABC এক্ট সামাল্তরিক। x-অল্巾 বরাবর OA অবস্থিত। OC বাহूরু সমীকরণ $y=2 x$ এবহ B दिস্দুর স্থানাষ্ষ $(4,2) . ~ A \cup C$ दिम्দूর স্থানাষ্ক এবং AC কর্ণের সমীকরণ নির্ণয় কর। [রা.'০৯,'১৩;

य.'০৭; ঢা.'০৮; সি.'০৮; চ.'১১; দি.'১৪; ব.'১৪]
 মূলক্নিন্দু। জাবার, CB বাহু
x-অক্ষের সমান্তরাল , সুতরাং B ও C শীর্ষের কোটি একই হবে।

ধরি, C শীর্ষের স্থানাঙ্ক $(\alpha, 2)$ या $y=2 x$ রেখার উপর অবঙ্ছিত।
$2=2 \alpha \Rightarrow \alpha=1$.
C শীর্ষের স্শানাঙ্ক $(1,2)$.
এখन, $\mathrm{OA}=\mathrm{CB}=|1-4|=3$
A गীर্ষের স্সানাঙ্ক $(3,0)$
AC কর্ণের সমীকরণ $\frac{x-3}{3-1}=\frac{y-0}{0-2}$
$\Rightarrow \mathrm{x}-3=-\mathrm{y} \therefore \mathrm{x}+\mathrm{y}-3=0$
14(d) A, B ४ C এর স্থানাষ্ক যथাब্চমে (1, - 2), $(-3,0)$ ® $(5,6)$. ট্রমাণ কর বে, AB ® AC রেখদ্য় পরশ্শরে সমকোণে ছেদ করে। কিদ্দুগুলি একটি আায়তক্সেত্রের তিনটি শীর্যক্ন্দু হনে চতूর্ধ শীt্ষের স্খালাফ্ক নির্য়় কর।
[य.'०8]
প্রমাণ :

AB রেখার ঢাল $=\frac{-2-0}{1+3}=-\frac{1}{2}$
AC রেখার ঢল $=\frac{-2-6}{1-5}=2$
AB ও AC এর ঢালদ্বয়ের গুণফল $=-\frac{1}{2} .2=-1$
AB ও AC রেখদ্যয় পরস্পরেে সমকেণণে ছেদ কর্র।
ধরি, আয়তক্ষেত্রের চতুব্ব শীর্ষ্বের $\mathrm{D}(\alpha, \beta)$. आয়তক্ষ্কেরে BC ক্ধ্র মধ্যাক্দি
$\left(\frac{-3+5}{2}, \frac{0+6}{2}\right)=(1,3)$ এবং AD কर্ণের মধ্যब্দ্দু $\left(\frac{1+\alpha}{2}, \frac{-2+\beta}{2}\right)$ একই হবে।
$\frac{1+\alpha}{2}=1 \Rightarrow \alpha=2-1=1$ এ《ং
$\frac{-2+\beta}{2}=3 \Rightarrow \beta=6+2=8$
চতুব্থ শীর্ষের স্শানাজ্ক $(1,8)$.
14(e) একটি ত্রিযूজ্রে দুইটি শীর্ষবি্দু যथাক্মম $\mathrm{A}(6,1)$ ง $\mathrm{B}(1,6)$ जবर এর बम्यबি্দू $\mathrm{P}(3,2)$; অবশিষ্ট শীর্ষের স্থানাষ্क নির্ষয় কর।
[ঢ.’○8]
সমাধান : ধরি, ABC ত্রিভুজের
AD, BE नम्प्দय़ $\mathrm{P}(3$
2) $A(6,1)$

ক্দিদুতে ছেদ করে।
AP অब্ৰাৎ AD রেরোর णाल $=\frac{1-2}{6-3}=-\frac{1}{3}$

AD এর উপর লম্ব BC রেখার ঢাল $=3$
BC বाহूর সমীকরণ $y-6=3(x-1)$
$\Rightarrow y-6=3 x-3 \Rightarrow y=3 x+3 \cdots(1)$
BP অणাৎ BE এর উপর লम্ম AC বাহूর जा $=-\frac{3-1}{2-6}=\frac{2}{4}=\frac{1}{2}$

AC বाহूর সমীকরণ $\mathrm{y}-1=\frac{1}{2}(\mathrm{x}-6)$
$\Rightarrow 2 \mathrm{y}-2=\mathrm{x}-6$
$\Rightarrow 2(3 x+3)-2=x-6 \quad[(1)$ जाরা]
$\Rightarrow 6 \mathrm{x}+6-\mathrm{x}=-4 \Rightarrow 5 \mathrm{x}=-10 \Rightarrow \mathrm{x}=-2$
(1) হতে পাই, $y=3(-2)+3=-3$

অবশিষ্ট শীর্ব C এর স্থানাজ্ক $(-2,-3)$
15. (a) $4 x+7 y-12=0$ রেथाটি এবটি বর্গের ব্ণ নির্দেশ করে এবং বর্গের এবটি শীর্ষ $(3,2)$ কিন্দুতত অবস্থিত। এ কিদ্দুটি দিয়ে অতিক্রমকারী বর্গের বাহু দুইটির সমীকরণণ নিণ্র কর। সমাধান : ধরি, ABCD বক্গের $4 x+7 y-12=0$ r্সে BD কর্ নির্দেশ করে এবং

$\mathrm{A}(3,2)$ শীর্ষ দিয়ে जতিক্রমকারী বাহুর ঢাল m.

BD ब্র্ণর ঢাল $=-\frac{4}{7}$
AC কर্ণের ঢাল= $\frac{7}{4}[\because$ বব্গের কর্দদ্য পরস্পর মম্ম $]$
AC কণ AD ఆ AB বাহুর সজেে 45° কোণ উৎপন্ন করে।
$\tan 45^{\circ}= \pm \frac{m-\frac{7}{4}}{1+m \cdot \frac{7}{4}} \Rightarrow 1= \pm \frac{4 m-7}{4+7 m}$
$\Rightarrow 4+7 \mathrm{~m}= \pm(4 \mathrm{~m}-7)$
' + ' निर्nে, $3 \mathrm{~m}=-11 \Rightarrow \mathrm{~m}=-\frac{11}{3}$
'-' निऱে, $11 \mathrm{~m}=3 \Rightarrow \mathrm{~m}=\frac{3}{11}$
$(3,2)$ শীর্ষ দিয়ে অতিক্রমকারী বাহুর সমীকরণ,
$y-2=-\frac{11}{3}(x-3) \Rightarrow 3 y-6=-11 x+33$
$\Rightarrow 11 \mathrm{x}+3 \mathrm{y}-39=0$ এবং
$y-2=\frac{3}{11}(x-3) \Rightarrow 11 y-22=3 x-9$
$\Rightarrow 3 x-11 y+13=0$
15(b) দেখাও বে, $2 x+y+5=0$ ө $x-2 y-3=$ 0 রেথা দूইটি পরস্সর অম্ম। রেখা দুইটিকে কোন জায়তত্乛ের্রের দুইটি সন্নিহিত বাহू ধরনে এবং অপর বাহू দूইঢ $(3,4)$ বিস্দুতে পরস্পরকে ছেদ কন্নে অবশিষ্ট বাহ্ৰ দूইটি্র সমীকরণ নির্ণয় কর।

প্রমাণ : $2 x+y+5=0 \cdots(1)$ রেথার ঢাল $=-2$
এবং $x-2 y-3=0 \cdots(2)$ রেখার ঢान $=\frac{1}{2}$
ঢাল দুঁটির গুণফল $=-2 \times \frac{1}{2}=-1$ বলে প্রদত্ত রেখাদ্য় পরস্র লম্ব।
২য় জश্শ রেখা দুইটিকে কোন আয়তত্মেত্রের দুইটি সন্নিহিত বাহু ধরলে অপর বাহ্র দুইটির একটি (1) রেখার সমাম্তরাল এবং बপরটি (2) রেখার সমান্তরাল হবে।
(3) 4) বিক্দুগামী এবং (1) রেখার সমান্তরাল বাহুটির সমীকরণ $2 x+y=2 \times 3+4$

$$
\Rightarrow 2 x+y=10
$$

এবং $(3,4)$ বিস্দুগামী এবং (2) রেখার সমাল্তরাল বাহুটির সমীকরণ $x-2 y=3-2 \times 4$

$$
\Rightarrow x-2 y+5=0
$$

15(c) ABCD সামাল্তরিকেন AB , BC বাহू দুইঢির সমীকরণ যथাब্চম $2 x+y-8=0, x-y+$ $2=0$ এবং D কিদ্দুর স্পানাষ্巾 $(2,-4)$ হলে AD B DC এর সমীকরণ नির্ণয় কর।
সমাখান ABCD সামান্তরিক বলে, $B C \| A D$ এবং $A B \| D C$
$\mathrm{D}(2,-4)$ बিন্দুগামী

$$
\overline{\mathrm{A}}
$$

AD এর সমীকরণ $x-y=2-(-4)$

$$
\Rightarrow x-y=6 \text { এবং }
$$

DC এর সমীকরণ $2 x+y=2 \times 2+(-4)$

$$
\Rightarrow 2 x+y=0
$$

15(d) $\mathbf{A}(3,-1), \mathbf{B}(-2,3)$ বिन्দू দूইটি একটि
 অবশিষ্ট শীর্ষের স্থানাষ্ब নির্ণয় কর।
সমাধান : ধরি, ABP ত্রিভুজের
AD, BE ศম्মদ্য $\mathrm{O}(0,0)$
ক্দিুেত ছেদ করে।

AO जধ্গা AD রেখার ঢাল $=\frac{-1-0}{3-0}=-\frac{1}{3}$
AD এর উপর লম্ব BC রেখার ঢাল $=3$
BC বाूুর সমীকরণ $\mathrm{y}-3=3(\mathrm{x}+2)$
$\Rightarrow y-3=3 x+6 \Rightarrow y=3 x+9$
BO जर্াৎ BE এর উপর লম্ম AC বাহুর ঢाल $=-\frac{-2-0}{3-0}=\frac{2}{3}$
$\therefore \mathrm{AC}$ বাহूর সমীকরণ $\mathrm{y}+1=\frac{2}{3}(\mathrm{x}-3)$
$\Rightarrow 3 y+3=2 x-6$
$\Rightarrow 3(3 \mathrm{x}+9)+3=2 \mathrm{x}-6 \quad[(1)$ দ্মার]
$\Rightarrow 9 \mathrm{x}+27-2 \mathrm{x}=-9 \Rightarrow 7 \mathrm{x}=-36$
$\Rightarrow \mathrm{x}=-\frac{36}{7} \quad \mathrm{y}=3\left(-\frac{36}{7}\right)+9=-\frac{45}{7}$
जবশিষ্ট শীর্ব C এর স্থানাষ্ক ($-\frac{36}{7},-\frac{45}{7}$)
[MCQ এর জন্য, BC বIूুর সমীকরণ,
$(3-0) x+(-1-0) y=3 \times-2+(-1) \times 3]$

কাজ

ว. $4 x-3 y-1=0$ * $2 x-5 y+3=0$
 সমান সমান কোণ উৎপন্ন করে এরুপ সরনরেখার সমীকরণ निর্ণ কর।
সমাষান : অক্ষ দুইটির সজ্েে সমান সমান কোণ উৎপন্ন করে এরূপ সরললরেখার ঢাল $=\tan \left(\pm 45^{\circ}\right)= \pm 1$ এখन, $4 x-3 y-1=0$ ও
$2 x-5 y+3=0$ রেখা দুইটির ছেদক্দ্দুর
স্থानास्क $=\left(\frac{-9-5}{-20+6}, \frac{-2-12}{-20+6}\right)=(1,1)$
$(1,1)$ बिन्দूগামী এবং ± 1 ঢাল বিশিষ্ট সরনলরেখার সমীকরণ $y-1= \pm 1 .(x-1)$
' + ' निয়ে পাই, $y-1=x-1 \Rightarrow x-y=0$
'-' निख़ে পাই, $y-1=-x+1 \Rightarrow x+y=2$
উত্তর : $x+y=2, x-y=0$.
२. $2 x+3 y-1=0$ ७ $x-2 y+3=0$ तেथा

সমাষান: ধরি, প্রদত্ত রেখা দুইটির অন্তর্ভুক্ত কোণ φ
बाমরা জানি, $a_{1} x+b_{1} y+c_{1}=0$ ఆ $a_{2} x+b_{2} y+c_{2}=0$ রেখা দুইটির অন্তর্ভুক্ত কোণ φ इलि, $\tan \varphi= \pm \frac{a_{2} b_{1}-a_{1} b_{2}}{a_{1} a_{2}+b_{1} b_{2}}$.
$\tan \varphi= \pm \frac{1 \cdot 3-2(-2)}{2 \cdot 1+3(-2)}= \pm \frac{3+4}{2-6}= \pm \frac{7}{4}$.
' + ' চিছ্ নিয়ে পাই, $\varphi=\tan ^{-1} \frac{7}{4}$
নির্ণেয় সূক্মকোণের মান $\tan ^{-1} \frac{7}{4}$
৩. k -এর মান কত হলে $5 x+4 y-6=0$ ® $2 x$ $+\mathrm{ky}+9=0$ রেখা দুইটি পরস্পর সমাশ্তরান হবে? সमाथान : $5 x+4 y-6=0$ ® $2 x+\mathrm{k} y+9=0$ রেখা দুইটি পরশর সমাল্তরাল হলে, $\frac{5}{2}=\frac{4}{k}$ $\Rightarrow \mathrm{k}=\frac{8}{5}$ (Ans.)
8. $5 x-3 y-7=0$ * $4 x+y-9=0$ त्रেथा দूইण্রিন্ন ছেদবিন্দू দিয্রে যায়্ এবং $13 x-y-1=0$

সমাধান : ধরি, প্রদত্ত রেখা দুইটির ছেদব্দ্দুগামী রেখার সমीকরণ $(5 x-3 y-7)+\mathrm{k}(4 x+y-9)=0$
$\Rightarrow(5+4 \mathrm{k}) \mathrm{x}+(-3+\mathrm{k}) \mathrm{y}-7-9 \mathrm{k}=0 \cdots(1)$
(1) রেখাটি $13 x-y-1=0$ এর সমান্তরাল। $\frac{5+4 k}{13}=\frac{-3+k}{-1} \quad\left[\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}\right.$ गृত্র फ्ञरा]
$\Rightarrow-39+13 \mathrm{k}=-5-4 \mathrm{k} \Rightarrow 17 \mathrm{k}=34$
$\Rightarrow \mathrm{k}=2$
নিক্ণেয় রেখার সমীকরণ,

$$
\begin{aligned}
& (5+8) \mathrm{x}+(-3+2) \mathrm{y}-7-18=0 \\
\Rightarrow & 13 \mathrm{x}-\mathrm{y}-25=0 \text { (Ans.) }
\end{aligned}
$$

[MCQ এর জন্য,

$$
\left.\frac{5 x-3 y-7}{4 x+y-9}=\frac{\left|\begin{array}{cc}
5 & -3 \\
13 & -1
\end{array}\right|}{\left|\begin{array}{cc}
4 & 1 \\
13 & -3
\end{array}\right|}=\frac{-5+39}{-4-13}=-2\right]
$$

৩. k এর মান কত হলে $2 x-y+7=0$ ® $3 x+$ $\mathrm{ky}-5=0$ রেখা দুইটি পরস্সর নম্ম হবে ?
সমাখান : $2 x-y+7=0$ ও $3 x+\mathrm{ky}-5=0$ রেখা দুইটি পরস্পর লম্ব হলে,
$2 \times 3+(-1) \times \mathrm{k}=0\left[a_{1} a_{2}+b_{1} b_{2}=0\right.$ সूত্র দারা $]$
$\Rightarrow \mathrm{k}=6$ (Ans.)
৬. $(2,-3)$ বিস্দুগামী এবए $(5,7) *(-6,3)$ ক্স্দুদয়ের সংযোগ রেখার উপর নম্ম এরূপ সরনরেখার সীকরণ নির্ণয় কর।
সমাষান : $(2,-3)$ बিন্দুগামী এবং $(5,7)$ ও $(-6,3)$ ব্স্দুদ্রের্রের সৃযোগ রেখার লম্ম এরূপ সরলররখার সমীকরণ $y+3=-\frac{5+6}{7-3}(x-2)$
$\Rightarrow y+3=-\frac{11}{4}(x-2)$
$\Rightarrow 4 y+12=-11 x+22$
$11 x+4 y=10 \quad$ (Ans.)
$\Rightarrow[(5+6) x+(7-3) y=11 \times 2+$ $4 x-3=10$]
 $2 x+3 y+4=0$ * $3 x+4 y-5=0$ तেরে দুইট্রিন্ন ছেদ কিস্দু দিয়ে যায় এবহ $6 x-7 y+8=0$ त্রেথান্ন উপ্ন অম্ব इয়।
সমাষান: $2 x+3 y+4=0$ ఆ
$3 x+4 y-5=0$ রেখাদ্যের ছেদব্দ্দুর
ग्थानाए्क $=\left(\frac{-15-16}{8-9}, \frac{12+10}{8-9}\right)=(31,-22)$.
$(31,-22)$ बি্দিগামী এবং $6 x-7 y+8=0$ রেখার উপর লম্ব এরৃপ রেখার সমীকরণ,
$7 x+6 y=7 \times 31+6 x-22$
$\Rightarrow 7 x+6 y=217-132$

$$
7 x+6 y-85=0 \text { (Ans.) }
$$

[MCQ जर ตना, $\frac{2 x+3 y+4}{3 x+4 y-5}=\frac{2 \times 6+3 x-7}{3 \times 6+4 \times-7}$]
৮. $(2,5) \cup(5,6)$ दिम्मूগামী সরনরেথার

 সমাধান: $(2,5)$ ও $(5,6)$ বিস্দুগামী সরলরেখার সমीক্রণ $\frac{x-2}{2-5}=\frac{y-5}{5-6} \Rightarrow \frac{x-2}{-3}=\frac{y-3}{-1}$ $\Rightarrow \mathrm{x}-2=3 \mathrm{y}+9 \therefore \mathrm{x}-3 \mathrm{y}+13=0$.
২য্ग बएन : (1) রেথার ঢान $=-\frac{1}{-3}=\frac{1}{3}$
$(-4,5)$ ® $(-3,2)$ বিদ্দুদ্রয়ের সংহোগ রেথার ঢাল $=\frac{5-2}{-4+3}=\frac{3}{-1}=-3$

ঢাन দूইটির গুণফ্ন $=\frac{1}{3} \times-3=-1$
$(2,5)$ ఆ $(5,6)$ বিন্দুগামী রেখাটি $(-4,5)$ ৫ $(-3,2)$ বিস্দুদ্যের্রে সংযোগ রেখার উপর নম্ম।
か. $(-3,-2)$ বিम्मूগামী এবर $2 x+3 y=3$ রেथाর উপ্গ নम্দ সরণরেখার সমীক্রণ নির্ণয় কর। মূণকি্দুগামী এবर এই দুইটি রেখান ছেদক্স্দুগামী সর্নরেথোনও সমীক্নণ निর্ণ্য কন্ন।
সমাধান: $(-3,-2)$ बিদ্দুগামী এবং $2 x+3 y=3$

$$
3 x-2 y=3 x-3-2 x-2
$$

$\Rightarrow 3 \mathrm{x}-2 \mathrm{y}=-9+4 \quad \therefore 3 x-2 y+5=0$ ২য় জश্ণ: ধরি, $2 x+3 y-3=0$ ఆ $3 x-2 y+5=0$ রেখাদ্যের ছেদব্দ্দুগামী রেখার সমীকরণ,

$$
2 x+3 y-3+k(3 x-2 y+5)=0
$$

$\Rightarrow(2+3 \mathrm{k}) \mathrm{x}+(3-2 \mathrm{k}) \mathrm{y}-3+5 \mathrm{k}=0$
এ রেখাটি মূলব্দ্দুগামী বলে, ধ্রবপদ $-3+5 k=0$
$\Rightarrow \mathrm{k}=\frac{3}{5}$. অতএব, নিণ্ণেয় রেখার সমীকরণ,

$$
2 x+3 y-3+\frac{3}{5}(3 x-2 y+5)=0
$$

$\Rightarrow 10 \mathrm{x}+15 \mathrm{y}-15+9 \mathrm{x}-6 \mathrm{y}+15=0$
$\Rightarrow 19 x+9 y=0$ (Ans.)
১०. $(1,2),(4,4),(2,8)$ दिम्मूभूळো এবটি ज্রিভूজ্রের বাহ্হগুলোর মধ্যবিস্দू । বাञ্গুগুলোর সমীকর্রণ নির্র্য কর।
সমাষান ধরি, ABC ত্রিडूজে $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ বাহूর মধ্যক্দিদ্দু যথাক্রমে $\mathrm{D}(1,2), \mathrm{E}(4,4)$,

[ব.’০২] $\mathrm{F}(2,8)$.
$B C\|F E, C A\| D F$ এবং $A B \| E D$.
BC রেগান ঢাল $=\mathrm{FE}$ র্রেथার ঢাল $=\frac{8-4}{2-4}=-2$
AC র্রেथा ঢাन $=\mathrm{FD}$ রেথার ঢান $=\frac{8-2}{2-1}=6$
AB র্রোর ঢাল $=\mathrm{ED}$ রেখার ঢল $=\frac{4-2}{4-1}=\frac{2}{3}$
$D(1,2)$ ब্ন্দুগামী BC বাহूর সমীকরণy -2 $=-2(\mathrm{x}-1) \Rightarrow 2 \mathrm{x}+\mathrm{y}-4=0$
$\mathrm{E}(4,4)$ बি্দুগামী CA বাহूর সমীকরণ $y-4$ $=6(x-4) \Rightarrow 6 x-y-20=0$
जবং $\mathrm{F}(2,8)$ বিদ্দুগামী AB বাহूর সমীকরণ -8
$=\frac{2}{3}(x-2) \Rightarrow 3 y-24=2 x-4$

$$
2 x-3 y+20=0
$$

[MCQ এর बন্য, BC বাহूর সমীকরণ,
$\Rightarrow(4-8) x-(4-2) y=-4 \times 1-2 \times 2]$
১১. এবুপ সব্রলর্রেथান সমীকরণ নির্ৰয়. কর যা $2 x+$ $3 y=1$ ও $x-2 y+3=0$ সরনत্রো দूইটির नহ্গ

সমবিन्দू এবং অস্মদ্ఫয়্য হতে সমান সংখ্যামানের অংশ ছেদ করে।

সমাধান: ধরি, প্রদত্ত রেখাদ্বয়ের সজ্জে সমকিস্দু এরূপ রেখার সমীকরণ $2 x+3 y-1+\mathrm{k}(x-2 y+3)=0$ $\Rightarrow(2+\mathrm{k}) \mathrm{x}+(3-2 \mathrm{k}) \mathrm{y}-1+3 \mathrm{k}=0 \quad$ এ রেখাটি অক্ষদ্বয় হতে সমান সংখ্যামানের অংশ ছেদ করে বলে x ఆ y এর সহগের সংখ্যামান সমান।

$$
2+k= \pm(3-2 k)
$$

$$
2+\mathrm{k}=3-2 \mathrm{k} \Rightarrow 3 \mathrm{k}=1 \Rightarrow \mathrm{k}=\frac{1}{3}
$$

অथবा, $2+\mathrm{k}=-3+2 \mathrm{k} \Rightarrow \mathrm{k}=5$
নির্ণেয় রেখার সমীকরণ,

$$
2 x+3 y-1+\frac{1}{3}(x-2 y+3)=0
$$

$\Rightarrow 6 x+9 y-3+x-2 y+3=0$
$\Rightarrow 7 \mathrm{x}+7 \mathrm{y}=0 \Rightarrow \mathrm{x}+\mathrm{y}=0$
অথবা, $2 x+3 y-1+5 x-10 y+15=0$
$\Rightarrow 7 \mathrm{x}-{ }^{7} \mathrm{y}+14=0 \Rightarrow \mathrm{x}-\mathrm{y}+2=0$

প্রশ্নমালা III G

এক নজরে প্রয়োজনীয় সৃত্রাবলী 8

1. $\mathrm{P}\left(x_{1}, y_{1}\right)$ दिস্দু থেকে $a x+b y+c=0$ সরলরেখার অম্ব দুর্সত্ব $=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}$
2.(i) $a x+b y+c_{1}=0$ B $a x+b y+c_{2}=0$ সমাশ্তর্মাল সরলরেখা দুইটির মধ্যবভী দুরত্ব=$\frac{\left|c_{2}-c_{1}\right|}{\sqrt{a^{2}+b^{2}}}$
(ii) $a x+b y+c=0$ হতে d একক দূরবর্তী রেখার সমীকরণ $a x+b y+c \pm d \sqrt{a^{2}+b^{2}}=0$
2. $\mathrm{f}(x, y) \equiv a_{1} x+b_{1} y+c_{1}=0$ в
$\mathrm{g}(\mathrm{x}, \mathrm{y}) \equiv a_{2} x+b_{2} y+c_{2}=0$ রেখা দুইটির
 $\frac{a_{1} x+b_{1} y+c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}}}= \pm \frac{a_{2} x+b_{2} y+c_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}}}$
(i) $P(\alpha, \beta)$ বিদ্দু ধারণকারী কোণটির সমম্খ্ভক্নের সমীক্ররণ '+' হবে যখন $f(\alpha, \beta) \times g(\alpha, \beta)>0$
'-' হবে যখন $\mathrm{f}(\alpha, \beta) \times \mathrm{g}(\alpha, \beta)<0$
 সমীকরণ ' + ' जथবा ' - ' इবে यथन נथाङాম $c_{1} \times c_{2}>0$ বা, <0
 স্থু্কোণে অथবা সুষ্মকোণে অবস্থিত হবে যখন যथাক্সমম $f\left(x^{\prime}, y^{\prime}\right) \times g\left(x^{\prime}+y^{\prime}\right)$

$$
\times\left(a_{1} a_{2}+b_{1} b_{2}>0\right. \text { বা, <0 }
$$

(iv) $a_{1} a_{2}+b_{1} b_{2}>0$ इलে, ' + ' স্শুब<োণেন θ '-' সুক্ষ্ণকোণের সমষ্ধিখ্ভকেন্ন সমীকন্নণ ।
$a_{1} a_{2}+b_{1} b_{2}<0$ रबে, ' + ' সूक्্কোেের ৫ '-' স্ষুলকোণের সমচ্থিখ্েক্ন সমীকন্নণ ।
4. ABC ত্রিষ্ভের $\mathrm{AB} \equiv a_{1} x+b_{1} y+c_{1}=0$, $\mathrm{AC} \equiv a_{2} x+b_{2} y+c_{2}=0, \mathrm{BC} \equiv \mathrm{p} x+\mathrm{q} y$ $+\mathbf{r}=0$ इनে, $\angle \mathbf{A}$ ग्रূणকোণ जथবा সুক্ষকোণ হবে यमि যथाক্মম $\left|\begin{array}{ll}a_{1} & b_{1} \\ p & q\end{array}\right|\left|\begin{array}{cc}p & q \\ a_{2} & b_{2}\end{array}\right|\left(a_{1} a_{2}+b_{1} b_{2}\right)$ >0, पथया < 0 इয়।
5. ABC जिएूध्बের मीर তिनটि $\mathrm{A}\left(x_{1}, y_{1}\right)$, $\mathrm{B}\left(x_{2}, y_{2}\right)$ © $\mathrm{C}\left(x_{3}, y_{3}\right)$ रनि, $\angle \mathrm{A}$ সू⿻्禸<োণ या স্থুनকোগ इबে यमि यथाबमে $\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)$ $+\left(y_{1}-y_{2}\right)\left(y_{1}-y_{3}\right)>0$, फथया <0 इয়।
6. ABC ज्विषूब्बित শীব তिनটि $\mathrm{A}\left(x_{1}, y_{1}\right)$, $\mathrm{B}\left(x_{2}, y_{2}\right)$ BC($\left.x_{3}, y_{3}\right)$ হनে, অम्ত:ব্যাসার্ব ,
$\mathbf{r}=\frac{1}{a+b+c}\left|\delta_{A B C}\right|$ बबए অग्ड:কেন্দ্র $=$ $\left(\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}, \frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}\right) ;$ यখन $\mathrm{AB}=\boldsymbol{c}, \mathrm{BC}=\boldsymbol{a}, \mathrm{CA}=\boldsymbol{b}$ এবగ $\delta_{A B C}=$ $\left(x_{1}-x_{2}\right)\left(y_{2}-y_{3}\right)-\left(x_{2}-x_{3}\right)\left(y_{1}-y_{2}\right)$
অর্থাৎ অল্ত:কেল্দ্রের
ভूब $=\frac{\sum x_{1} \sqrt{\left(x_{2}-x_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}}}{\sum \sqrt{\left(x_{2}-x_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}}}$ जबर
কোটি $=\frac{\sum y_{1} \sqrt{\left(x_{2}-x_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}}}{\sum \sqrt{\left(x_{2}-x_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}}}$

MCQ এর बन্য বিশেষ সূত্র :

1. $a_{1} x+b_{1} y+c_{1}=0$ उ $a_{2} x+b_{2} y+c_{2}=0$ সমান্তরাল রেখাদ্যের মধ্যবর্তী দূরত্ব = $\frac{\left|c_{1} \sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}}-c_{2} \sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}}\right|}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}} \sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}}}$
2. $\mathbf{f}(\mathbf{x}) \equiv \mathbf{a x}+\mathbf{b y}+\mathbf{c}=\mathbf{0}$ রেো $\mathrm{g}(\mathrm{x}) \equiv a_{1} x+b_{1} y+c_{1}=0 \quad$ © AB রেभাषয়ের অল্তর্ভুক্ঠ কোণগুলোর একটি সমদ্খিখ্ডক হনে AB এর সমীক্রণ $\left(a^{2}+b^{2}\right) g(x)-2\left(a a_{1}+b b_{1}\right) f(x)=0$ 3. $\mathrm{A}\left(x_{1}, y_{1}\right), \mathrm{B}\left(x_{2}, y_{2}\right)$ বिम्मूपड़ের সशयোগ রেখাশেকে $a x+b y+c=0$ সরনরেখাটি $\left|a x_{1}+b y_{1}+c\right| \quad\left|a x_{2}+b y_{2}+c\right|$ जনুপাতে বিভ্ভ করে।

প্রপ্নমাणা III G

1(a) Sol $^{\mathrm{n}}$:: সবभুলি তথ্য সত্য।। Ans. D
(b) Soln. $(2,3)$ ও (6 7) বিন্দুগামী সরলর্রোর ঢাল $=\frac{3-7}{2-6}=\frac{-4}{-4}=1 \quad$ Ans. A
(c) Sol ${ }^{\mathrm{n}}: ~ y$ - অক্ষের সমীকরণ $\mathrm{x}=0$

निर्ণ্যে অনুপাত $=|7| \quad|-5|=7: 5$
(d) Sol ${ }^{\mathrm{n}}$:: ब्রिजूজটির ক্ষেত্রফन $=\frac{1}{2}\left|\mathrm{x}_{1} \mathrm{y}_{2}-\mathrm{x}_{2} \mathrm{y}_{1}\right|$

$$
=\frac{1}{2}|24-15|=4 \cdot 5
$$

(e) Sol ${ }^{\mathrm{n}}$: निर্ণেয় কোণ $=\tan ^{-1}\left(\frac{4}{-4}\right)$

$$
=180^{\circ}-\tan ^{-1} 1=180^{\circ}-45^{\circ}=135^{\circ}
$$

(f) Sol $^{\mathrm{n}} .:$ রেখাটির সমীকরণ, $x=(3,-6)$ বিन्দুর x -স্থানাঙ্ক $\Rightarrow \mathrm{x}=3$
(g) Sol ${ }^{\mathrm{n}}$.: Ans.D
(h) Sol ${ }^{\mathrm{n}}$.: সবभूলি তথ্য সত্য। Ans. D
(i) Sol ${ }^{\mathrm{n}}$: রেখাটির সমীকরণ, $3 \mathrm{x}+4 \mathrm{y}=3 \times 5+$ $4 \times(-3) \Rightarrow 3 x+4 y=3$
(j) Sol ${ }^{\mathrm{n}}$: রেখাটির সমীকরণ,, $4 \mathrm{x}-3 \mathrm{y}=4 \times 4-$ $3 x 0 \Rightarrow 4 \mathrm{x}-3 \mathrm{y}=16$
(k) Sol n.: बम्यদূরত্q $=\frac{|-12|}{\sqrt{3^{2}+4^{2}}}=\frac{12}{5}$
(l) Sol ${ }^{\mathrm{n}}: 3 \mathrm{x}+4 \mathrm{y}=12 \Rightarrow \frac{\mathrm{x}}{4}+\frac{\mathrm{y}}{3}=1$

ত্রিডুজটির ক্ষেত্র্ল্ $=\frac{1}{2}|a b|=\frac{1}{2}|12|=6$;

$$
\text { [এখানে, } a=4, b=3]
$$

$\mathrm{AB}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}=\sqrt{4^{2}+3^{2}}=5$ একক।
রেখার সমীকরণ, $y=\frac{b}{a} x \Rightarrow y=\frac{3}{4} x \Rightarrow 3 x=4 y$
(m) Sol ${ }^{\mathrm{n}}: \mathrm{r}=\sqrt{(-\sqrt{3})^{2}+(-\sqrt{3})^{2}}$

$$
=\sqrt{3+3}=\sqrt{6} \quad \therefore \text { Ans. C }
$$

(n) Sol ${ }^{\mathrm{n}}$: রেখার সমীকরণ
$7 x-3 y=7.2-3.1=11$
$\Rightarrow 7 \mathrm{x}-3 \mathrm{y}-11=0 \quad$ Ans. B
(o) Sol ${ }^{\mathrm{n}}$: $\mathrm{y}=6$ ఆ $\mathrm{x}=5$ এর ছেদ্কিদ্দু $\mathrm{A}(5,6)$
$y^{2}=a(x-7) এ y=6$ বসिয়ে পাই,
$36=\mathrm{a}(\mathrm{x}-7) \Rightarrow \mathrm{x}=\frac{36}{a}+7$

$$
\mathrm{B}\left(\frac{36}{a}+7,6\right)
$$

$\mathrm{AB}=\left|\frac{36}{a}+7-5\right|=7 \Rightarrow \frac{36}{a}+2= \pm 7$
$\Rightarrow \frac{36}{a}=5,-9 \Rightarrow \mathrm{a}=-\frac{36}{9}=-4, \quad \mathrm{a}<0$
\therefore Ans. A
1(i) (a) $(1,2)$ বিস্দू रতে $x-\sqrt{3} y+4=0$ রেখার উপর একটি নম্ম অধ্ণিত হন। মুণबিদ্দু পেকে এ बम্দের্ন নম্মদুরত্ত নির্ণয় কর।
[প্র.ভ.প.’○৫] সমাধাन : $(1,2)$ बिস्দू হতে $x-\sqrt{3} y+4=0$ রেথার উপর অভ্কিত লম্মের সমীকরণ,

$$
\begin{align*}
& \sqrt{3} x+y=\sqrt{3} \times 1+2 \\
\Rightarrow & \sqrt{3} x+y-2-\sqrt{3}=0 . \tag{1}
\end{align*}
$$

\therefore মূলূক্দ্দুর থেকে (1) এর লম্ব দূরত্ব $=\frac{|-2-\sqrt{3}|}{\sqrt{3+1}}$

$$
=\frac{2+\sqrt{3}}{2} \text { (Ans.) }
$$

（b） $4 x+3 y=\mathrm{c}$ जবर $12 x-5 y=2(\mathrm{c}+3)$ রেো দুইটি হতে মূণক্ন্দু সমদূরবণ্ণী। \mathbf{c} এর ধনাত্ মান निর্য় কর।［ র্रा．＇০৮，’১২；চ．＇০৬；য．’১০，’১৪； ঢ．＇০»］
সমাধান ： $4 x+3 y=\mathrm{c}$ जথ্ৰৎ $4 x+3 y-\mathrm{c}=0$ रতে মূলब্দ্মু দুরত্ব $=\frac{|-c|}{\sqrt{16+9}}=\frac{|c|}{5}$
आবার， $12 x-5 y=2(c+3)$ जब্ৰाৎ $12 x-5 y-2(c+3)=0$ रতে মূলষ্দিদুর দূরত়্ $=\frac{|-2(c+3)|}{\sqrt{144+25}}=\frac{|2(c+3)|}{13}$
প্রশ্নমতে，$\frac{|2(c+3)|}{13}=\frac{|c|}{5} \Rightarrow \frac{2(c+3)}{13}= \pm \frac{c}{5}$ ＇+ ＇निर्य， $10 c+30=13 c \Rightarrow 3 c=30 \therefore c=10$ ＇－＇निয়ে， $10 \mathrm{c}+30=-13 \mathrm{c} \Rightarrow 23 \mathrm{c}=-30$ $\Rightarrow \mathrm{c}=-30 / 23$
c এর ধनাত্মক মান 10．（Ans．）
（c）(a, b) বিদ্দूটি $3 x-4 y+1=0$ এবर $4 x+3 y+1=0$ রেथाष亠⿻ হতে সমদুরবর্তী হলে， দেখাও বে，$a+7 b=0$ অ『বা $7 a-b+2=0$
［রা．＇০১，＇১০；সি．＇০১；মা．＇০৮；চ．＇১৩］ প্রমাণ ： $3 x-4 y+1=0$ রেখা হতে (a, b) বি্দুর দূरত্ম $=\frac{|3 a-4 b+1|}{\sqrt{9+16}}=\frac{|3 a-4 b+1|}{5}$
জাবার， $4 x+3 y+1=0$ রেখা হতে (a, b) বিপ্দুর
मूरण्व $=\frac{|4 a+3 b+1|}{\sqrt{16+9}}=\frac{|4 a+3 b+1|}{5}$
প্রশ্নমতে，$\frac{|3 a-4 b+1|}{5}=\frac{|4 a+3 b+1|}{5}$
$\Rightarrow 3 a-4 b+1= \pm(4 a+3 b+1)$
＇＋＇नित़ে， $3 a-4 b+1-4 \mathrm{a}-3 \mathrm{~b}-1=0$
$\Rightarrow-\mathrm{a}-7 \mathrm{~b}=0 \Rightarrow \mathrm{a}+7 \mathrm{~b}=0$
＇－＇निয়ে， $3 a-4 b+1+4 \mathrm{a}+3 \mathrm{~b}+1=0$
$\Rightarrow 7 \mathrm{a}-\mathrm{b}+2=0$
$a+7 b=0$ অথবা $7 a-b+2=0$
（d）মুのক্স্দু পেকে $x \sec \theta-y \operatorname{cosec} \theta=k$ $\bigcirc x \cos \theta-y \sin \theta=k \cos 2 \theta$ রে小া দুইটির্র
 $4 p^{2}+p^{\prime 2}=k^{2} \quad$［চ．＇০৩，＇১১；রা．＇০৪；য．＇০১］ প্রমাণ ：মূল্ন্ন্দু থেকে $x \sec \theta-y \operatorname{cosec} \theta-\mathrm{k}=0$ এর দূরত্দ $p=\left|\frac{-k}{\sqrt{\sec ^{2} \theta+\operatorname{cosec}{ }^{2} \theta}}\right|$
মূनব্দ্দু（0 0 ）থেকে $x \cos \theta-y \sin \theta-\mathrm{k}$ $\cos 2 \theta=0$ এর দূরত্ব，

$$
p^{\prime}=\left|\frac{-k \cos 2 \theta}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}}\right|
$$

L．H．S．$=4 p^{2}+p^{\prime 2}$

$$
\begin{aligned}
& =4 \frac{k^{2}}{\sec ^{2} \theta+\operatorname{cosec}^{2} \dot{\theta}}+\frac{k \cos ^{2} 2 \theta}{1} \\
& =\frac{4 k^{2}}{1 / \cos ^{2} \theta+1 / \sin ^{2} \theta}+\mathrm{k}^{2} \cos ^{2} 2 \theta \\
& =\frac{4 k^{2}\left(\sin ^{2} \theta \cos ^{2} \theta\right)}{\sin ^{2} \theta+\cos ^{2} \theta}+\mathrm{k}^{2} \cos ^{2} 2 \theta \\
& =\frac{k^{2}(2 \sin \theta \cos \theta)^{2}}{1}+\mathrm{k}^{2} \cos ^{2} 2 \theta \\
& =\mathrm{k}^{2}\left(\sin ^{2} 2 \theta+\cos ^{2} 2 \theta\right) \\
& =\mathrm{k}^{2} .1=\mathrm{k}^{2}=\text { R.H.S. (Proved) }
\end{aligned}
$$

（e）দেখা যে，$(\pm 4,0)$ বিক্দু দুইটি থেকে $3 x \cos \theta+5 y \sin \theta=15$ এর উপর অষ্ণিত নम্ম দুইটির গুণফ্ন θ মুক্ত হবে।
［य．＇০৩；ঢা．＇০৬；ব．＇ot ；दू．＇’৩］ প্রমাণ ：$(4,0)$ बি্দ্দু থেকে $3 x \cos \theta+5 y \sin \theta$ $-15=0$ এর লम্মদূরত্ত

$$
\begin{equation*}
=\left|\frac{12 \cos \theta-15}{\sqrt{9 \cos ^{2} \theta+25 \sin ^{2} \theta}}\right|=d_{1} \tag{ধরি}
\end{equation*}
$$

$(4,0)$ बিন্দু থেকে $3 x \cos \theta+5 y \sin \theta$ － $15=0$ এর লम্মদূরত্র

$$
=\left|\frac{-12 \cos \theta-15}{\sqrt{9 \cos ^{2} \theta+25 \sin ^{2} \theta}}\right|=d_{2} \text { (ধরি) }
$$

লম্মদূরত্ব দুইটির গুণফল，
$d_{1} d_{2}=\left|\frac{12 \cos \theta-15}{\sqrt{9 \cos ^{2} \theta+25 \sin ^{2} \theta}}\right|$

$$
\left|\frac{-12 \cos \theta-15}{\sqrt{9 \cos ^{2} \theta+25 \sin ^{2} \theta}}\right|
$$

$=\left|\frac{225-144 \cos ^{2} \theta}{9 \cos ^{2} \theta+25\left(1-\cos ^{2} \theta\right)}\right|$
$=\left|\frac{9\left(25-16 \cos ^{2} \theta\right)}{\left(25-16 \cos ^{2} \theta\right)}\right|=9$; या θ मूक्र।
লম্ম দূরত্ব দুইটির গুণফলӨ মুক্ত।
1(f) $(\sqrt{3}, 1)$ ষি্দু শেকে $\sqrt{3} x-y+8=0$ जর উপর অध्கिত वম্বের দৈঘ্য নিিক্ন बর এই बम্ম x -অক্ষে সর্শে যে কোণ উৎপন্ন করে তা নির্ণয় কর।
[ฬ.'०१]
সমাथান : $(\sqrt{3}, 1)$ बি্দ্দু থেকে $\sqrt{3} x-y+8=0$ এর্ন উপর অজ্সিত লম্মের দৈর্ঘ্য $=\frac{|3-1+8|}{\sqrt{3+1}}$

$$
=\frac{10}{2}=5
$$

২য় অশ্শ : প্রদত্ত রেখার ঢাল $=\sqrt{3}$
প্রদত্ত রেখার উপর নম্ম রেথার ঢাল $=-\frac{1}{\sqrt{3}}$
মম্মরেখা x-অক্ষের সজ্েে যে কোণ উৎপন্ন করে তার পরিমাণ $=\tan ^{-1}\left(-\frac{1}{\sqrt{3}}\right)=180^{\circ}-\tan ^{-1} \frac{1}{\sqrt{3}}$

$$
=180^{\circ}-30^{\circ}=150^{\circ}
$$

(g) $(2,3)$ কिम्पू बবং $4 \mathrm{x}+37-7=0$ রেथाज
 बन।
[প্র.Ј.भ.'०৫; జू.'১১]
সমাथান : $(2,3)$ बি্দু হতে $4 x+3 y-7=0$ রেখার দূরত্ব $=\frac{|4 \times 2+3 \times 3-7|}{\sqrt{16+9}}$
$=\frac{|8+9-7|}{5}=\frac{10}{5}=2$ একक
$\therefore(2,3)$ बিদ্দু এবং প্রদত্ত রেখার সাপেক্ষে উক্ত ক্দ্দুর প্রতিবিম্মের মধ্যবর্তী দূরত্ব $=2 \times 2=4$ একক
(h) প্রমাণ কর শে, $(\pm c, 0)$ বি্দ্দু দুটি হতে bx $\cos \theta+\mathbf{a y} \sin \theta=\mathbf{a b}$ এর উপর অध্ণিত वम्पघয়্রের গুণফ্ণ b^{2} इয় যथन $a^{2}=b^{2}+c^{2}$
[қ.'o৯]
প্রমাণ : $(c, 0)$ ক্দ্দু হতে প্রদত্ত রেখার উপর অভ্কিত नम्य $=\left|\frac{b c \cos \theta-a b}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}\right|=d_{1}$
এবৃ $(-\mathrm{c}, 0)$ बিন্দু হতে প্রদত্ত রেখার উপর অষ্কিত ศম্ম $=\left|\frac{-b c \cos \theta-a b}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}\right|=d_{2}$ (धरि)

$$
\begin{aligned}
& d_{1} d_{2}=\left|\frac{-\left(b^{2} c^{2} \cos ^{2} \theta-a^{2} b^{2}\right)}{b^{2} \cos ^{2} \theta+a^{2}-a^{2} \cos ^{2} \theta}\right| \\
& =\left|\frac{-b^{2}\left(c^{2} \cos ^{2} \theta-a^{2}\right)}{\left(b^{2}-a^{2}\right) \cos ^{2} \theta+a^{2}}\right| \\
& =\left|\frac{b^{2}\left(a^{2}-c^{2} \cos ^{2} \theta\right)}{-c^{2} \cos ^{2} \theta+a^{2}}\right|\left[\because a^{2}=b^{2}+c^{2}\right]
\end{aligned}
$$

$$
\text { লম্দদ্যের গুণফল্ = b }{ }^{2}
$$

2(a) $3 x-2 y=1$ এदर $6 x-4 y+9=0$ সমাল্ত
 সমাধান ः প্রদত্ত রেখাদ্য,

$$
\begin{align*}
& 3 x-2 y=1 \Rightarrow 3 x-2 y-1=0 \cdots \text { (1) এてং } \\
& 6 x-4 y+9=0 \Rightarrow 3 x-2 y+\frac{9}{2}=0 \cdots \tag{2}
\end{align*}
$$

(1) ఆ (2) সমান্তরাল রেখাদয়ের মধ্যবর্তী দূরত্ণ

$$
=\frac{\left|-1-\frac{9}{2}\right|}{\sqrt{9+4}}=\frac{\left|-\frac{11}{2}\right|}{\sqrt{13}}=\frac{11}{2 \sqrt{13}} \text { একक। }
$$

2(b) দেখাఆ যে, $4 x+7 y-26=0$ রেथার উপরিস্রিত যেবোন কিস্দू $3 x+4 y-12=0$ • $5 x+12 y-52=0$ রেখা দूইটি হতে সমদূরবণী। প্রমাণ : ধরি, $4 x+7 y-26=0$ রেখার উপর $P(\alpha, \beta)$ यেকোন একটি বিদ্দু ।

$$
4 \alpha+7 \beta-26=0 \Rightarrow \alpha=\frac{26-7 \beta}{4}
$$

$3 x+4 y-12=0$ রেখা হতে $P(\alpha, \beta)$ এর দূরত্ব
$=\frac{|3 \alpha+4 \beta-12|}{\sqrt{9+16}}=\frac{\left|3 \frac{26-7 \beta}{4}+4 \beta-12\right|}{5}$
$=\frac{|78-21 \beta+16 \beta-48|}{5 \times 4}=\frac{|30-5 \beta|}{5 \times 4}$
$=\frac{|6-\beta|}{4}$
$5 x+12 y-52=0$ রেখা হতে $P(\alpha, \beta)$ এর দূরত্ব
$=\frac{|5 \alpha+12 \beta-52|}{\sqrt{25+144}}=\frac{\left|5 \frac{26-7 \beta}{4}+12 \beta-52\right|}{13}$
$=\frac{|130-35 \beta+48 \beta-208|}{13 \times 4}=\frac{|-78+13 \beta|}{5 \times 4}$
$=\frac{13|6-\beta|}{13 \times 4}=\frac{|6-\beta|}{4}$
$\therefore 4 x+7 y-26=0$ রেখার উপরিস্ছিত যেকোন
बिन्मू $3 x+4 y-12=0$ ও $5 x+12 y-52=0$ রেখা দুইটি হতে সমদূরবর্তী।
বিকল্প পদ্ষতি প্রশ্নমতে এটাই প্রমাণ করা যথেষ্ট যে, $3 x+4 y-12=0 \cdots$ (1) ও
$5 x+12 y-52=0 \cdots$ (2) রেখাদ্ময়ের অন্তর্ভুক্ঠ কোণগুলোর সমদ্বিখন্ডকদ্বয়ের একটি $4 x+7 y-26=0$ এখন,(1) ও (2) রেখাদ্বয়ের অন্তর্ভুক্ত কোণগুলোর সমদ্ঘিখ্ডকের সমীকরণ,

$$
\begin{aligned}
& \frac{3 x+4 y-12}{\sqrt{9+16}}= \pm \frac{5 x+12 y-52}{\sqrt{25+144}} \\
& \Rightarrow \frac{3 x+4 y-12}{5}= \pm \frac{5 x+12 y-52}{13} \\
& \Rightarrow 39 x+52 y-156= \pm(25 \mathrm{x}+60 \mathrm{y}-260) \\
& ‘- \text { निয়ে, } 64 \mathrm{x}+112 \mathrm{y}-416=0 \\
& \Rightarrow 4 \mathrm{x}+7 \mathrm{y}-26=0, \text { যা একটি সমদ্বিখল্ডকের } \\
& \text { সমীকরণ। }
\end{aligned}
$$

3.(a) $12 x-5 y+26=0$ রেখা থেকে 2 একক দুরে এবং $x+5 y=13$ রেখার উপর অবস্থিত বিস্দুসমূহের স্থানাষ্ফ্ক নিণয় কর।
সমাধান ঃ ধরি, $x+5 y=13 \cdots$ (1) রেখাস্থ বিন্দু $(\alpha, \beta), 12 x-5 y+26=0 \cdots(2)$ রেখা থেকে 2 একক দৃরে অবস্ফিত।

$$
\begin{align*}
& \alpha+5 \beta=13 \Rightarrow \alpha=13-5 \beta \tag{3}\\
& \text { এবং } \frac{|12 \alpha-5 \beta+26|}{\sqrt{144+25}}=2 \\
& \Rightarrow 12 \alpha-5 \beta+26= \pm 26 \\
& \text { ' }+ \text { ' निয়ে, } 12 \alpha-5 \beta=0 \\
& \Rightarrow 12(13-5 \beta)-5 \beta=0 \quad[(3) \text { দারা }] \\
& \Rightarrow 156-60 \beta-5 \beta=0 \Rightarrow 65 \beta=156 \\
& \Rightarrow \beta=\frac{156}{65}=\frac{12}{5} \therefore \alpha=13-5 . \frac{12}{5}=1 \\
& \text { আবার, '-' নিয়ে, } 12 \alpha-5 \beta+52=0 \\
& \Rightarrow 12(13-5 \beta)-5 \beta+52=0[(3) \text { দ্বারা] } \\
& \Rightarrow 156-60 \beta-5 \beta+52=0 \Rightarrow 65 \beta=208 \\
& \Rightarrow \beta=\frac{208}{65}=\frac{16}{5} \therefore \alpha=13-5 \cdot \frac{16}{5}=-3
\end{align*}
$$

বিস্দুসমূহের স্থানাঙ্ক $\left(1, \frac{12}{5}\right),\left(-3, \frac{16}{5}\right)$
3(b) (x, y) বিन्পूট $3 x-4 y+1=0$ в $4 x+3 y+1=0$ রেখা দুইটি হতে সমদুরবর্ণী হচে ছেখাఆ যে, $x+7 y=0$ অथবা, $7 x-y+2=0$. [চ.'০২; সি.'০৮]
সমাধান : $3 x-4 y+1=0$ রেখা হতে (x, y) বিস্দুর দূরত্ব $=\frac{|3 x-4 y+1|}{\sqrt{9+16}}=\frac{|3 x-4 y+1|}{5}$ এবং $4 x+3 y+1=0$ রেখা হতে (x, y) ব্ন্দুর দূরত্ব $=\frac{|4 x+3 y+1|}{\sqrt{16+9}}=\frac{|4 x+3 y+1|}{5}$
প্রশ্নমতে, $\frac{|3 x-4 y+1|}{5}=\frac{|4 x+3 y+1|}{5}$

$$
3 x-4 y+1= \pm(4 x+3 y+1)
$$

' + ' निয়ে পাই, $3 x-4 y+1=4 x+3 y+1$
$\Rightarrow \mathrm{x}+7 \mathrm{y}=0$
'-' निয়ে পাই, $3 x-4 y+1=-4 x-3 y-1$
$\Rightarrow 7 x-y+2=0$
4.(a) $12 x-5 y=7$ রেখার 2 একৃক দুরবর্ণী সমাল্তরাण রেখার সমীকরণ নিণয় কর। [ব.'১০ কু.'০৮; য.'১০,'১২; রা.'১৩; চ.'১৪]

সমাধান : ধরি, $12 x-5 y=7$ অর্বাৎ $12 x-5 y-7=0$ রেখার সমান্তরাল রেখার সমীকরণ $12 x-5 y+\mathrm{k}=0$ এ রেখা দুইটির মধ্যবর্তী দূরত্ব $=\frac{|k+7|}{\sqrt{144+25}}$
প্রশ্নমতে, $\frac{|k+7|}{\sqrt{144+25}}=2 \Rightarrow \frac{k+7}{13}= \pm 2$
$\Rightarrow k= \pm 26-7$
$\mathrm{k}=19$ অথবা, $\mathrm{k}=-33$
নির্ণেয় রেখার সমীকরণ $12 x-5 y+19=0$ Фথবা, $12 x-5 y-33=0$
 এবং $3 x+4 y=7$ রেখাটির সমাম্তরাण রেখাসমুহের সমীকরণ নির্ণ্য কর।
[मि.'১০; চ.'১২; য.'১৩; ঢা.'১৪; সি.'১৩; ব.'১৪] সমাধান \& ধরি, প্রদত্ত রেখার সমান্তরাল রেখার সমীকরণ $3 x+4 y+\mathrm{k}=0 \cdots$
(1) রেখা হতে $(1,-2)$ বিস্দুর দূরত্ব $=\frac{|3-8+k|}{\sqrt{9+16}}$ প্রশ্নমতে , $\frac{|3-8+k|}{\sqrt{9+16}}=7 \frac{1}{2} \Rightarrow \frac{k-5}{5}= \pm \frac{15}{2}$
$2 \mathrm{k}-10=75 \Rightarrow \mathrm{k}=85 / 2$ এবং
$2 \mathrm{k}-10=-75 \Rightarrow \mathrm{k}=-65 / 2$
নির্ণেয় রেখাসমূহের সমীকরণ $3 x+4 y+\frac{85}{2}=0$
$\Rightarrow 6 x+8 y+85=0$
এবং $3 x+4 y-\frac{65}{2}=0 \Rightarrow 6 x+8 y=65$
4(c) $4 x-3 y=8$ সরনরেখার সমাল্তরাण এবং তা থেকে 2 একক দূরে অবস্থিত রেখাসমূহের সমীকরণ नির্ণয় কর। [সि.'০৭,'১৩; ঢা'১০,'১৩; য.'০8; মা.'০৫; চ.'০৯; ব.'১৩; দি.'১8]

সমাধান ঃ ধরি, $4 x-3 y=8$ অর্থাৎ $4 x-3 y-8=0$ রেখার সমান্তরাল রেখার সমীকরণ $4 x-3 y+\mathrm{k}=0$ এ রেখা দুইটির মধ্যবর্তী দূরত্ব $=\frac{|k+8|}{\sqrt{16+9}}$

প্রশ্নমতে,$\frac{|k+8|}{\sqrt{16+9}}=2 \Rightarrow \frac{k+8}{5}= \pm 2$
$\Rightarrow \mathrm{k}= \pm 10-8$
$\mathrm{k}=10-8=2$ এবং, $\mathrm{k}=-10-8=-18$
নির্ণেয় রেখাসমূহের সমীকরণ $4 x-3 y+2=0$ এবং $4 x-3 y-18=0$
4(d) $(7,17)$ दिन्দू मिয়ে याয় এবং $(1,9)$ কिन्मू থেকে 6 একক দুরে অবস্থিত সরনরেখার সমীকর্ণ নির্ণয় কর।
সমাষান $\stackrel{\text { ধরি, }(7,17) \text { বিন্দু দিয়ে. যায় এরূপ রেখার } \quad \text { (}}{ }$ সমীকরণ, $y-17=m(x-7)$
$\Rightarrow m x-y-7 m+17=0$
(1) রেখাটি থেকে $(1,9)$ বিন্দুর দূরত্ব

$$
=\left|\frac{m-9-7 m+17}{\sqrt{m^{2}+1}}\right|=\left|\frac{8-6 m}{\sqrt{m^{2}+1}}\right|
$$

পশ্নমতে , $\left|\frac{8-6 m}{\sqrt{m^{2}+1}}\right|=6 \Rightarrow\left|\frac{4-3 m}{\sqrt{m^{2}+1}}\right|=3$
$\Rightarrow(4-3 m)^{2}=9\left(m^{2}+1\right)$
$\Rightarrow 16-24 m+9 m^{2}=9 m^{2}+9$
$\Rightarrow 24 \mathrm{~m}=7 \Rightarrow \mathrm{~m}=7 / 24$
নির্ণেয় রেখার সমীকরণ $y-17=\frac{7}{24}(x-7)$
$\Rightarrow 24 y-408=7 x-49$
$\Rightarrow 7 x-24 y+359=0$
5. (a) এমন সরনরেখার সমীকনণ নির্য কন্ন যার ঢাল -1 এবং মুলবিদ্দু থেকে যার দুরত্ড 4 একক।
[க্.'০৬; সি.'০৯]
সমাধান ঃ ধরি, -1 ঢাল বিশিষ্ট সরলরেখার সমীকরণ, $y=-1 . x+c \Rightarrow x+y-c=0 \cdots(1)$
মূলবিদ্দু $(0,0)$ থেকে (1) এর দূরত্ব $=\frac{|-c|}{\sqrt{2}}$
প্রণ্নমতে, $\frac{|-c|}{\sqrt{2}}=4 \Rightarrow|c|=4 \sqrt{2}$
$\Rightarrow c= \pm 4 \sqrt{2}$
নির্ণেয় রেখার সমীকরণ, $\mathrm{x}+\mathrm{y} \pm 4 \sqrt{2}=0$
5 (b) মৃष<িন্দু থেকে 7 একক দূরত্বে এবং $3 x-4 y+$ $7=0$ রেখার উপর লম্ম রেখাসসূূহের সমীকরণ নির্ণয় কর।
[চ.'০৫; সि.'০৬,’১১; রা.' ০৯; দি.'০৯, '১১,’১২; ব.'১১; মা.’১8]
সমাধান ঃ ধরি, প্রদত্ত রেখার উপর লম্ব রেখার সমীকরণ
$4 x+3 y+\mathrm{k}=0 \cdots$
মূলब্দ্দু $(0,0)$ থেকে (1) এর দূরত্ব $=\frac{|k|}{\sqrt{16+9}}$
প্রশ্নমতে, $\frac{|k|}{\sqrt{16+9}}=7 \Rightarrow \frac{k}{5}= \pm 7$
$= \pm 35$
নির্ণেয় রেখাসমূহের সমীকরণ $4 x+3 y+35=0$ এช゚ $4 x+3 y-35=0$
5(c) এ<টি সরबরেখার সমীকরণ নিণয় কর যা x -
 এবং মু बকিদ্দু লেকে 4 একক দূরে অবশ্তিত। [চ.’১৩] সমাধান : ধরি, রেখাটির সমীকরণ,
$y=x \tan 60^{\circ}+c \Rightarrow y=\sqrt{3} x+c$
$\Rightarrow \sqrt{3} x-y+c=0$
মূলब্দ্দু $(0,0)$ থেকে (1) এর দূরত্ব $=\frac{|c|}{\sqrt{3+1}}=\frac{|c|}{2}$
প্রশ্নমতে. $\frac{|c|}{2}=4 \Rightarrow \frac{c}{2}= \pm 4 \Rightarrow \mathrm{c}= \pm 8$
রেখাটির সমীকরণ $\sqrt{3} x-y+8=0$ जथবा, $\sqrt{3} \mathrm{x}-\mathrm{y}-8=0$
5(d) একটি সরুনরেেখা অफ্థ দুইটি পেকে সমমানের যোগবোধক জংশ ছেদ করে। মূণ বিদ্দু পেকে তার উপর অখ্কিত ஈস্মের দৈদ্য্য 4 একক। তার সমীকরণ বের बর।
[ব.'১১; बू.'১১; সি.'১৩] সমাধান ঃ ধরি, অক্ষ দুইটি থেকে সমমানের যোগবোধক অংশ ছেদ করে এরূপ সরলরেখার সমীকরণ,

$$
\frac{x}{a}+\frac{y}{a}=1 \Rightarrow x+y=a \cdots(\mathrm{i}) \text {, বেখানে } a>0 .
$$

মূল বি্দু থেকে (i) এর উপর অজ্কিত লন্মের দৈর্ঘ্য

$$
\begin{aligned}
& \frac{|0+0-a|}{\sqrt{1^{2}+1^{2}}}=\Rightarrow|-a|=4 \sqrt{2} \\
\Rightarrow & a=4 \quad[\quad a>0 .] \\
& \text { निरকে্যে সরুরেখের সমীকরণ, } x+y=4 \sqrt{2}
\end{aligned}
$$

6(a) $y=2 x+1$ ® $2 y-x=4$ রেথা দুইটির অন্তর্ভূক্ট কোণগুলোর সমদ্খিখ্ভক y-অफকে P ఆ Q বি্দুতে ছেদ করে। PQ এর দুরত্ব নির্ণয় কর।
[রা.’১১,’১8; সি.'০৫; ব.'১২;কু.'১৪; চর্যেট’০৮-০৯] সমাধান ঃ প্রদত্ত $y=2 x+1$ जब্যাৎ $2 \mathrm{x}-\mathrm{y}+1=0$ ও $2 y-x=4$ অর্ৰৎ $\mathrm{x}-2 \mathrm{y}+4=0$ রেখা দুইটির অন্তর্ভুক্ত কেণেণ সমদ্রিখভ্ডকের সমীকরণ,

$$
\begin{aligned}
& \frac{2 x-y+1}{\sqrt{4+1}}= \pm \frac{x-2 y+4}{\sqrt{1+4}} \\
\Rightarrow \quad & 2 x-y+1= \pm(x-2 y+4) \\
& \prime+\text { निढ़, } x+y=3 \Rightarrow \frac{x}{3}+\frac{y}{3}=1, \text { या }
\end{aligned}
$$ y-জक্षকে $\mathrm{P}(0,3)$ ক্দিরুতে ছছদ করে। - - नित्रে, $2 x-y+1=-x+2 y-4$

$\Rightarrow 3 \mathrm{x}-3 \mathrm{y}=-5 \Rightarrow \frac{x}{-5 / 3}+\frac{y}{5 / 3}=1$, या y-অक্ষকে $\mathrm{Q}\left(0, \frac{5}{3}\right)$ बিন্দুতে ছেদ করে।
$P Q$ এর দূরত্ব $=\left|3-\frac{5}{3}\right|=\left|\frac{4}{3}\right|=1 \frac{1}{3}$
6(b) দেখাও यে, $(0,1)$ বিস্দুটি $12 x-5 y+1=$ 0 ® $5 x+12 y-16=0$ রেখা夕য্যের অন্তর্ডূক্ত কোণগুলোর একটি সমদ্খিঙ্ডকের উপর बবস্بিত। [রা.'০৬; সি.'০৮,’১8; কু. '১১,’১৩; চ. ’০৮; য.'১১; দি,’১৩]
প্রমাণ প্রশ্নমতে এটাই প্রমাণ করা যথেষ্ট যে, $12 x-5 y+1=0$ ง $5 x+12 y-16=0$ রেখাদ্য় হতে $(0,1)$ বিন্দুটি সমদূরবর্তী ।
(1) থেকে $(0,1)$ বিদ্দুর দূরত্ব $=\frac{|0-5+1|}{\sqrt{144+25}}$
$=\frac{|-4|}{13}=\frac{4}{13}$
(2) থেকে $(0,1)$ বিন্দুর দূরত্ব $=\frac{|0+12-16|}{\sqrt{25+144}}$
$=\frac{|-4|}{13}=\frac{4}{13}$
পদত্ত রেখাদ্দয় হতে $(0,1)$ বিন্দুটি সমদূরবর্তী ।
$(0,1)$ বিন্দুটি পদত্ত রেথাময়ের অন্তর্ভুক্ত কোগগুলোর একটি সমদ্থিখ্ভকের উপর অবস্থিত।

বিকম্ন পদ্ফতি ঃ পদত্ত রেখাদ্বয়ের অন্তর্ভুক্ত কোণগুলোর সমদ্খিঙ্ডকের সমীকরণ,

$$
\frac{12 x-5 y+1}{\sqrt{144+25}}= \pm \frac{5 x+12 y-16}{\sqrt{25+144}}
$$

$\Rightarrow 12 x-5 y+1= \pm(5 x+12 y-16)$
' + ' निয়ে, $12 x-5 y+1=5 x+12 y-16$
$\Rightarrow 7 x-17 y+17=0 \cdots$
ধরি, $\mathrm{f}(\mathrm{x}, \mathrm{y}) \equiv 7 \mathrm{x}-17 \mathrm{y}+17=0$
' - ' निয়ে, $12 x-5 y+1=-5 x-12 y+16$
$\Rightarrow 17 x+7 y-15=0$
ধরি, $g(x, y) \equiv 17 x+7 y-15=0$ এখন, $\mathrm{f}(0,1)=7.0-17.1+17=0$ এবং $g(0,1)=17.0+7.1-15=-8$
$(0,1)$ বিদ্দুটি (1) কে সিদ্ধ করে অথাৎ $(0,1)$ বিস্দুটি (1) দ্বারা সূচিত সমদ্বিখন্ডকের উপর অবস্থিত।

6(c) $4 y-3 x=3$ এবर $3 y-4 x=5$ রেখা দুইটির অস্তর্ভূক্চ স্ষুণকোণের সমীক্রণ নিণয় কর।
[ব.'০২; দি.’০৯]
সমांधান : $4 y-3 x=3 \Rightarrow 3 \mathrm{x}-4 \mathrm{y}+3=0$ কে $a_{1} x+b_{1} y+c_{1}=0$ এর সাথে এবং $3 y-4 x=5$ $\Rightarrow 4 \mathrm{x}-3 \mathrm{y}+5=0$ কে $a_{2} x+b_{2} y+c_{2}=0$ এর সাথে তুলনা করে পাই,

$$
\begin{aligned}
a_{1} a_{2}+b_{1} b_{2} & =3 \times 4+(-4) \times(-3) \\
& =12+12=24>0
\end{aligned}
$$

রেখা দুইটির অস্তত্ভুক্ত স্থূলকোণের সমদ্বিখন্ডকের
সমীকরণ, $\frac{3 x-4 y+3}{\sqrt{9+16}}=\frac{4 x-3 y+5}{\sqrt{16+9}}$
$\Rightarrow 3 x-4 y+3=4 x-3 y+5$
$\Rightarrow-\mathrm{x}-\mathrm{y}-2=0 \therefore \mathrm{x}+\mathrm{y}+2=0$ (Ans.)
6(d) $3 x+4 y=11$ जबए $12 x-5 y-2=0$ রেখা দুইটির অল্তর্ডুক্ সুক্টকোণের সমঘ্খিঙ্ডকেন্র

সমীকর্নণ নির্ণয় কর।
[প্র.ভ.প.’০৬;ব.'০৯]
সমাধান : $3 x+4 y=11 \Rightarrow 3 x+4 y-11=0$ কে $a_{1} x+b_{1} y+c_{1}=0$ এর সাথে এবং $12 x-5 y-2=0$ কে $a_{2} x+b_{2} y+c_{2}=0$ এর সাথ্যে ঢুলুनা করে 凶; $a_{1} a_{2}+b_{1} b_{2}=3 \times 12+4 \times(-5)$

$$
=36 \quad n=>0
$$

রেখা দুইটির অন্তর্ভুক্ত সূক্মকোণের সমদ্বিখন্ডকের
সমীকরণ, $\frac{3 x+4 y-11}{\sqrt{9+16}}=-\frac{12 x-5 y-2}{\sqrt{144+25}}$
$\Rightarrow \frac{3 x+4 y-11}{5}=-\frac{12 x-5 y-2}{13}$
$\Rightarrow 39 x+52 y-143=-60 x+25 y+10$
$\Rightarrow 99 x+27 y-153=0$
$11 x+3 y-17=0$ (Ans.)
7(a) $4 x-4 y+3=0$ এবং $x+7 y-2=0$ রেখা দুইটির অস্তর্ভুক্ কোণগুমোর সমঘ্খিঙ্ডেের সমীক্রণ নির্ণয় কর এবং দেখাও যে, সমদ্ঘিখষ্ডকদ্যয় পরস্পর লম্ম। এদের কোনটি মুল্ণকি্দু ধারণকারী কোণের সমધ্খিখ্ডক।
[য.'০২,’০৭,’১২
সমাধান: প্রদত্ত রেখাদ্বয়ের অন্তর্ডুক্ত কোণগুলোর সমদ্দিখন্ডকের সমীকরণ
$\frac{4 x-4 y+3}{\sqrt{16+16}}= \pm \frac{x+7 y-2}{\sqrt{1+49}}$
$\Rightarrow \frac{4 x-4 y+3}{4 \sqrt{2}}= \pm \frac{x+7 y-2}{5 \sqrt{2}}$
$\Rightarrow 20 \mathrm{x}-20 \mathrm{y}+15= \pm(4 \mathrm{x}+28 \mathrm{y}-8)$
' + ' निয়ে, $20 \mathrm{x}-20 \mathrm{y}+15=4 \mathrm{x}+28 \mathrm{y}-8$
$\Rightarrow 16 x-48 y+23=0$
'-' निয়ে, $20 \mathrm{x}-20 \mathrm{y}+15=-4 \mathrm{x}-28 \mathrm{y}+8$
$\Rightarrow 24 \mathrm{x}+8 \mathrm{y}+7=0 \cdots$ (2)
২য় জশশ : (1) রেখার ঢাল $=-\frac{16}{-48}=\frac{1}{3}$
(2) রেখার ঢাল $=-\frac{24}{8}=-3$

এ ঢাল দুইটির গুণফল $=\frac{1}{3} \times-3=-1$
সমদ্বিখন্ডকদ্বয় পরস্পর লম্ব।
৩য় অংশ : প্রদত্ত রেখা দুইটির ধ্রুব পদ 3 ఆ -2 বিপরীত চিহ্যযুক্ত বলে '-' চিহ্ নিত্যে প্রাপ্ত সমদ্ধিখন্ডক সমীকরণ অ布! $24 x+8 y+7=0$ मूर्वसिन्मू ধারণकाजी। কোণের সমদ্বিখন্ডক।

7(b) $4 x+3 y+2=0$ এবং $12 x+5 y+13=0$ রেখা দুইটির অন্তর্ভুক্ট যে কোণটি মূলবিন্দু ধারণ কারর তার সমচ্খিখ্ডকের সমীককর নির্ণয় কর। [মা.বো.’০৭]

সমাখান প্রদত্ত রেখা দুইটির ধ্রব পদ 2 ও 13 সমচिश्यूক্ত।

মূলব্দি্দু ধারণকারী কেণের সমদ্গিঙ্ডকের সমীকরণ $\frac{4 x+3 y+2}{\sqrt{16+9}}=\frac{12 x+5 y+13}{\sqrt{144+25}}$
$\Rightarrow \frac{4 x+3 y+2}{5}=\frac{12 x+5 y+13}{13}$
$\Rightarrow 60 x+25 y+65=52 x+39 y+26$
$8 x-14 y+39=0$ (Ans.)
7(c) $x+y+1=0$ রেখাট $3 x-4 y+3=0$ © AB রেথা দূইটির অম্তর্ভূক্ কোণগুলোর এবটির সমঘ্খিষ্ভ। AB রেখার সমীক্রণ নির্ণয় কর।
সমাধান: ধরি, AB রেখার ঢাল $m_{2}, x+y+1=0$ \cdots (1) রেখার ঢাল, $m=-1$ এবং $3 x-4 y+3=0$ \cdots (2) রেখার ঢাল, $m_{1}=\frac{3}{4}$. (1) , (2) ও AB রেখাত্র<্যের
 ছেদক্ন্দু $=\left(\frac{3+4}{-4-3}, \frac{3-3}{-4-3}\right) \stackrel{A}{=}(-1,0)$
(2) ও (1) এর অন্তর্ভুক্ত কোণ $\tan ^{-1} \frac{m_{1}-m}{1+m_{1} m}$ এবং
(1) ఆ AB এর অन्তর্ভুক্ত কোণ $\tan ^{-1} \frac{m-m_{2}}{1+m m_{2}}$ পরশ্পর সমান।

$$
\begin{aligned}
& \frac{m_{1}-m}{1+m_{1} m}=\frac{m-m_{2}}{1+m m_{2}} \\
\Rightarrow & \frac{\frac{3}{4}+1}{1+(-1) \frac{3}{4}}=\frac{-1-m_{2}}{1-m_{2}} \\
\Rightarrow & \frac{4+3}{4-3}=\frac{-1-m_{2}}{1-m_{2}} \Rightarrow 7=\frac{-1-m_{2}}{1-m_{2}} \\
\Rightarrow & 7-7 m_{2}=-1-m_{2} \Rightarrow 6 m_{2}=8 \\
\Rightarrow & m_{2}=\frac{4}{3}
\end{aligned}
$$

AB রেখার সমীকরণ $\mathrm{y}-0=\frac{4}{3}(\mathrm{x}+1)$
$\Rightarrow 3 y=4 \mathrm{x}+4 \therefore 4 x-3 y+4=0$ (Ans.)
[MCQ এর बन्य, $\left(1^{2}+1^{2}\right)(3 x-4 y+3)-$
$2(1 \times 3+1 \times-4)(x+y+1)=0]$
8(a) $(0,0),(0,3) \bullet(4,0)$ सिम्मूभूणि घारा
 দেখাও বে, তারা সমক্স্দু। [ঢা.’০; बূ.’১০; সি.’১১]

সমাধান : মনে করি, ABC
$\mathrm{A}(0,0)$ ত্রিভুজের শীর্য তিনটি A $\mathrm{A}(0,0)$,
$\mathrm{B}(0,3)$ ఆ $\mathrm{C}(4,0)$ এবং AD , BE ও CF ত্রিডুজটির কোণগুলির অन्তর্দ্রিy্ভ BC, CA BAB
বাহুকে যথাক্সম D, E ও F বিক্দুতে ছেদ করে।

$$
\mathrm{BC}=\sqrt{3^{2}+4^{2}}=5, \mathrm{AC}=\sqrt{4^{2}+0^{2}}=4
$$

$\mathrm{AB}=\sqrt{0^{2}+3^{2}}=3$
$\angle \mathrm{A}$ এর অন্তর্তিখ্ভক AD বनে, D बি্দ্রু BC কে $\mathrm{AB}: \mathrm{AC}=34$ जनूপাতে অন্তর্বিতক্ত করবে।

$$
\mathrm{D} \equiv\left(\frac{3.4+4.0}{3+4}, \frac{3.0+4.3}{3+4}\right)=\left(\frac{12}{7}, \frac{12}{7}\right)
$$

अनूরূभভाবে, $\mathrm{E} \equiv\left(\frac{3.4+5.0}{3+5}, \frac{3.0+5.0}{3+5}\right)=\left(\frac{3}{2}, 0\right)$

$$
F \equiv\left(\frac{4.0+5.0}{4+5}, \frac{4.3+5.0}{4+5}\right)=\left(0, \frac{4}{3}\right)
$$

AD অन्তর্দ্রিখ্ডকের সমীকরণ,

$$
\begin{equation*}
y=\frac{12 / 7}{12 / 7} x \quad y=x \cdots \tag{1}
\end{equation*}
$$

BE অন্তর্দ্রিঅ্ডকের সমীকরণ,

$$
\begin{align*}
& (x-0)(0-0)-(y-3)\left(0-\frac{3}{2}\right)=0 \\
\Rightarrow & 3 x+\frac{3}{2} y-\frac{9}{2}=0 \Rightarrow 6 x+3 y-9=0 \\
& 2 x+y-3=0 \cdots(2) \tag{2}
\end{align*}
$$

CF অन्তর্দ্বিशল্ডকের সমীকরণ,

$$
\begin{align*}
& (x-4)\left(0-\frac{4}{3}\right)-(y-0)(4-0)=0 \\
& \Rightarrow-\frac{4}{3} x+\frac{16}{3}-4 y=0 \Rightarrow-4 x-12 y+16=0 \\
& x+3 y-4=0 \tag{3}
\end{align*}
$$

বিক্প্প পপ্ফতি : ধরি, OAB ত্রিডূজ্ের শীর্ব তিনটি $\mathrm{O}(0,0), \mathrm{A}(4,0)$ ७ $\mathrm{B}(0,3)$.

স্সষ্টতঃ OA ও OB বাহু যথাক্রমে x ও y অক্ষ বরাবর।

OA বাহুর সমীকরণ $y=0$ OB বাহুর সমীকরণ $\mathrm{x}=0$ এবং AB বাহুর সমীকরণ $\frac{x}{4}+\frac{y}{3}=$ $\Rightarrow 3 x+4 y-12=0$

OAB ত্রিভুজটির $\angle \mathrm{AOB}=90^{\circ}$
$\angle \mathrm{OAB}$ ও $\angle \mathrm{OBA}$ সূक्ম্মকোণ।
স্সষ্টতঃ $\angle \mathrm{AOB}$ এর সমদ্বিখন্ডকের ঢাল ধনাত্মক। অতএব, $\angle \mathrm{AOB}$ এর সমদ্বিখড্ডকের সমীকরণ
$\frac{y}{\sqrt{1^{2}}}=\frac{x}{\sqrt{1^{2}}} \quad \therefore \mathrm{y}=\mathrm{x} .$.
BO ও BA বাহুর জন্য,

$$
a_{1} a_{2}+b_{1} b_{2}=1.3+0.4>0
$$

$\angle \mathrm{OBA}$ এর সমদ্বিখন্ডকের সমীকরণ

$$
\frac{3 x+4 y-12}{\sqrt{3^{2}+4^{2}}}=-\frac{x}{\sqrt{1^{2}}}
$$

$\Rightarrow 3 x+4 y-12=-5 x$
$\Rightarrow 8 x+4 y-12=0$
$2 x+y-3=0$
आবার, এখন, AO ও AB বাহুর জন্য,

$$
a_{1} a_{2}+b_{1} b_{2}=0.3+1.4>0
$$

$\angle \mathrm{OAB}$ এর সমদ্বিখল্ডকের সমীকরণ
$\frac{3 x+4 y-12}{\sqrt{3^{2}+4^{2}}}=-\frac{y}{\sqrt{1^{2}}}$
$\Rightarrow 3 x+4 y-12=-5 y$
$\Rightarrow 3 x+9 y-12=0$
$\therefore \quad x+3 y-4=0$
চিতীয় অংশ : সমীকরণ (1) ও (2) সমাধান করে পাই, $x=1, y=1$ या সমীকরণ (৩) কেও সিদ্ধ করে ।
$\triangle \mathrm{ABC}$ এর কোণগুলির অन্তর্দ্দিখন্ডকত্রয় সমকিন্দু।

8(b) বে ত্রিজूজের বাञ্গুুোর সমীকনণ $4 x+3 y-12=$ $0,3 x-4 y+16=0$ बदर $4 x-3 y-12=0$ তার অল্ত৪কেস্দ্র নির্ণয় কর।
[সि.'०৩]
সমাধান: ধরি, ABC ত্রিভুজের বাহু তিনটি

চিত্রে ABC ত্রিজুজটি দেখানো হর্যেছে। সমীকরণ তিনটির ধ্রুবপদ ' -' করে পাই, $4 x+3 y-12=0,-3 x+4 y-16=0$, $4 x-3 y-12=0$
$\angle \mathrm{ABC}$ এবং $\angle \mathrm{BAC}$ কোণ দুইটির মধ্যে মূলবিম্দু নাই। অতএব, $\angle \mathrm{ABC}$ এর সমদ্বিখন্ডক

$$
\frac{4 x+3 y-12}{\sqrt{16+9}}=-\frac{-3 x+4 y-16}{\sqrt{9+16}}
$$

$\Rightarrow 4 x+3 y-12=3 x-4 y+16$
$\Rightarrow x+7 y-28=0 \cdots$ (4) এবং
$\angle \mathrm{BAC}$ এর সমদ্বিখন্ডক
$\frac{4 x+3 y-12}{\sqrt{16+9}}=-\frac{4 x-3 y-12}{\sqrt{16+9}}$
$\Rightarrow 4 x+3 y-12=-4 x+3 y+12$
$\Rightarrow 8 x=24 \Rightarrow x=3$
(4) $\Rightarrow 3+7 y-28=0 \Rightarrow y=\frac{25}{7}$

প্রদত্ত রেখা তিনটি দ্বারা গঠিত ত্রিভুজ্ের অন্তঃকেন্দ্র $\left(3, \frac{25}{7}\right)$.

8(c) যে ত্রিডুজ্রের বাহूগूলোর সমীকরণ $x=3, y=4$ এবर $4 x+3 y=12$ তার কোনগুলোর সমদ্দিখভ্ডের সমীক্রণ নিণয় কর।
সমাধান: ধরি, $A B C$ ত্রিভুজের $A B, B C$ ও $C A$ বাకू তিনটির সমীকরণ যথাক্রমে $x=3 \cdots$ (1)
$y=4$
(2) उ $4 x+3 y=12 \cdots(3)$ जर्याई
$\frac{x}{3}+\frac{y}{4}=1$
চিত্রে ABC ত্রিভুজটি দেখান্না হয়েছে। সমীকরণ তিনটির ধ্রুবপদ
‘-’ করে প!ই,

$x-3=0 \cdots(1), y-4=0 \cdots$ (2) এবং
$4 x+3 y-12=0 \cdots(3)$
চিত্র থেকে এটা সষ্ট থে, ত্রিতুজটির $\angle \mathrm{BAC}$ কো মূলब্কিদ্দু ধারণ করে কিন্তু $\angle \mathrm{ABC}$ ও $\angle \mathrm{ACB}$ কোণ দুইটি মূলক্দি ধু ধারণ করে না।
$\angle \mathrm{BAC}$ এর সমদ্দিঙ্ডক $\frac{x-3}{\sqrt{1}}=\frac{y-4}{\sqrt{1}}$
$\Rightarrow \mathrm{x}-3=\mathrm{y}-4 \Rightarrow \mathrm{x}-\mathrm{y}+1=0$
$\angle \mathrm{ABC}$ এর সমদ্খিঙ্ডক $\frac{x-3}{\sqrt{1}}=-\frac{4 x+3 y-12}{\sqrt{16+9}}$
$\Rightarrow 5(\mathrm{x}-3)=-4 \mathrm{x}-3 \mathrm{y}+12$
$\Rightarrow 9 x+3 y-15-12=0 \Rightarrow 9 x+3 y-27=0$
$\Rightarrow 3 \mathrm{x}+\mathrm{y}-9=0$
$\angle \mathrm{ACB}$ এর সমদ্দিখ্ডক $\frac{y-4}{\sqrt{1}}=-\frac{4 x+3 y-12}{\sqrt{16+9}}$
$\Rightarrow 5(\mathrm{y}-4)=-4 \mathrm{x}-3 \mathrm{y}+12$
$\Rightarrow 5 \mathrm{y}-20+4 \mathrm{x}+3 \mathrm{y}-12=0$
$\Rightarrow 4 \mathrm{x}+8 \mathrm{y}-32=0 \Rightarrow \mathrm{x}+2 \mathrm{y}-8=0$
ত্রিভুজ্জের কোনগুলোর সমళ্খিখ্কের সমীকরণ
$\mathrm{x}-\mathrm{y}+1=0,3 \mathrm{x}+\mathrm{y}-9=0$ এবং
$\mathrm{x}+2 \mathrm{y}-8=0$
8(d) $5 x+12 y=15$ এবर অ" দूইটি সমम्बয়ে
 निर्ष़ बर।

$\mathrm{OB} \equiv \mathrm{x}=0 \cdots(2)$ এ
$\mathrm{AB} \equiv 5 x+12 y=15 \cdots(3)$
i.e., $\frac{x}{3}+\frac{y}{5 / 4}=1$

চিত্রে OAB ত্রিভুজটি দ্খোনো হয়েছে। চিত্র থেকে এটা স্ট বে, ত্রিতুজটির $\angle \mathrm{AOB}=90^{\circ}$ অতএব, $\angle \mathrm{OAB}$ ও $\angle \mathrm{OBA}$ এর বহিঃস্থ কোপ দুইটি স্মূলকেণ এবং $\angle \mathrm{AOB}$ এর বহ্হির্দ্থিল্ডকের ঢাল ঋণাত্যক।
(1) ও (2) এর অন্তর্ভুক্ত $\angle \mathrm{AOB}$ কেণের বহির্দ্বিল্ডকের সমীকরণ, $\frac{x}{\sqrt{1}}=-\frac{y}{\sqrt{1}} \Rightarrow x+y=0$ (1) ও (3) সমীকরণে $x-এ র$ সহগদ্বয়ের গুলফল $+y$ এর সহগদ্যের গুণফল $=0 \times 5+1 \times 12=12>0$
(1) ও (3) এর অন্তর্ভুক্ত কোণের বর্হির্দিখ্ভকের সমীকরণ, $\frac{5 x+12 y-15}{\sqrt{25+144}}=\frac{y}{\sqrt{1}}$
$\Rightarrow 5 x+12 y-15=13 y$
$\Rightarrow 5 \mathrm{x}-\mathrm{y}-15=0$
आবার,(2) ও (3) সমীকরণে, x-এর সহগদ্যের গুণফল $+y$-এর সহগদ্যের গুণফল $=1 \times 5+0 \times 12=5>0$
(2) ও (3) এর অन্তর্ভুক্ঠ কেণের বহির্দ্রিখ্ভকের সমীকরণ, $\frac{5 x+12 y-15}{\sqrt{25+144}}=\frac{x}{\sqrt{1}}$
$\Rightarrow 5 \mathrm{x}+12 \mathrm{y}-15=13 \mathrm{x}$
$\Rightarrow 8 \mathrm{x}-12 \mathrm{y}+15=0$
8(e) $\triangle \mathrm{ABC}$ जর गीर मूंढि $\mathrm{A}(5,0)$, B(-4, -3) এবर जN্তะ<েল্দ্র $(1,2)$ रबে, C বিদ্দুর স্পানাষ্ক নিণয় ক্র।
সমাধান :

ধরি, $\triangle \mathrm{ABC}$ এর অন্তঃকেন্দ্র $\mathrm{O}(1,2)$.
AB এর ঢাन $=\frac{0+3}{5+4}=\frac{1}{3}$

AO এর ঢাল $=\frac{0-2}{5-1}=-\frac{1}{2}$
BO এर ঢान $=\frac{2+3}{1+4}=1$
AC রেখার ঢাল m_{1} হলে,
$\frac{m_{1}+\frac{1}{2}}{1-\frac{1}{2} m_{\mathrm{i}}}=\frac{-\frac{1}{2}-\frac{1}{3}}{1+\left(-\frac{1}{2}\right) \cdot \frac{3}{4}} \Rightarrow \frac{2 m_{1}+1}{2-m_{1}}=\frac{-3-2}{8-3}$
$\Rightarrow \frac{2 m_{1}+1}{2-m_{1}}=-1 \Rightarrow 2 m_{1}+1=-2+m_{1}$
$\Rightarrow m_{1}=-3$
AC রেখার সমীকরণ, $y-0=-3(x-5)$
$\Rightarrow y=-3 x+15$
जাবার, BC রেখার ঢাল m_{2} হলে,

$$
\frac{m_{2}-1}{1+1 \cdot m_{2}}=\frac{1-\frac{1}{3}}{1+1 \cdot \frac{1}{3}}=\frac{3-1}{3+1}=\frac{1}{2}
$$

$\Rightarrow 2 m_{2}-2=1+m_{2} \Rightarrow m_{2}=3$
$B C$ রেথার সমীকরণ, $y+3=3(x+4)$
$\Rightarrow \mathrm{y}+3=3 \mathrm{x}+12$
$\Rightarrow-3 x+15+3=3 x+12$ [(1) দ্ঘারা]
$\Rightarrow 6 \mathrm{x}=6 \Rightarrow \mathrm{x}=1$
(1) হতে পাই, $y=-3.1+15=12$
(1) ও (2) এর ছেদব্দ্দু $\mathrm{C} \equiv(1,12)$

বিক্ন পদ্ৰতি : ধরি, $\triangle \mathrm{ABC}$ এর অন্তঃকেন্দ্র $\mathrm{O}(1,2)$.

AB রেখার সমীকরণ, $\frac{x-5}{5+4}=\frac{y-0}{0+3}$
$\Rightarrow \mathrm{x}-5=3 \mathrm{y} \Rightarrow \mathrm{x}-3 \mathrm{y}-5=0$
AO রেখার সমীকরণ, $\frac{x-5}{5-1}=\frac{y-0}{0-2}$
$\Rightarrow-2 \mathrm{x}+10=4 \mathrm{y} \Rightarrow \mathrm{x}+2 \mathrm{y}-5=0$
BO রেখার সমীকরণ, $\frac{x-1}{1+4}=\frac{y-2}{2+3}$
$\Rightarrow \mathrm{x}-\mathrm{l}=\mathrm{y}-2 \Rightarrow \mathrm{x}-\mathrm{y}+1=0$
এখন, AC ও AB এর অন্তর্ডूক্ত কোণের সমদ্খিল্ডক AO. অতএব, AC রেখার সমীকরণ,

$$
\begin{aligned}
& \left(1^{2}+2^{2}\right)(x-3 y-5)-2\{1.1+(-3)(2)\} \\
& \quad(x+2 y-5)=0 \\
& \Rightarrow 5(x-3 y-5)+10(x+2 y-5)=0 \\
& \Rightarrow x-3 y-5+2 x+4 y-10=0 \\
& \Rightarrow 3 x+y-15=0 \Rightarrow y=-3 x+15 \cdots(1)
\end{aligned}
$$

আবার, BA ও BC এর অল্তর্ভুক্ত কোণের সমদ্খিখ্ডক BO. অতএব, BC রেখার সমীকরণ,
$\left(1^{2}+1^{2}\right)(x-3 y-5)-2\{1.1+(-3)(-1)\}$ $(x-y+1)=0$
$\Rightarrow \mathrm{x}-3 \mathrm{y}-5-4(\mathrm{x}-\mathrm{y}+1)=0$
$\Rightarrow \mathrm{x}-3 \mathrm{y}-5-4 \mathrm{x}+4 \mathrm{y}-4=0$
$\Rightarrow-3 x+-3 x+15-9=0 \quad[$ (1) দ্যারা]
$\Rightarrow-6 x=-6 \Rightarrow x=1$
(1) হতে পাই, $y=-3.1+15=12$

AC ও BC এর ছেদষ্দি $\mathrm{C} \equiv(1,12)$
9. $y=2 x+1$ в $2 y-x=4$ দूইढि সद्रणর্নেथात সমीকব্নণ।
(a) মূनবিন্দু ও প্রদত্ত রেখাদ্যের ছেদ বিন্দুগামী রেখার সমীকরণ নির্ণ্য কর।
(b) রেथা দুইটির অন্তর্ভুক্ত কোণদ্বয়ের সমদ্বিখড়ক y অক্ষকে P ও Q বিन्দूতে ছেদ করনে PQ এর দূরত্ব নির্ণয় কর। [बা.'১১,’’8; সি.'০৫; ব.'১২; কু.’১8; চूढ্যেট’০৮-০৯]
 $=4$ त্রেथান্ন উপ্র बম র্রেथাসমূহেন্র সমীকরণ निर्षय़ কর্গ।

সমাধান : (a) ধরি, প্রদত রেথাদ্বেয়ের ছেদবিন্দুগামী রেখার সমীকরণ, $2 x-y+1+\mathrm{k}(\mathrm{x}-2 y+4)=$
0 (i) ; या মূলবিদ্দু $(0,0)$ দিত্যে অত্র্র্ম করে। $2 \times 0-0+1+k(0-2 \times 0+4)=0$
$\Rightarrow \quad 4 \mathrm{k}=-1 \Rightarrow \mathrm{k}=-\frac{1}{4}$
\therefore (i) হতে পাই, $2 x-y+1-\frac{1}{4}(x-2 y+4)=0$
$\Rightarrow \quad 8 x-4 y+4-x+2 y-4=0$
$\Rightarrow 7 x-2 y=0$ (Ans.)
(b) প্রশ্নমালা III G এর 6(a) দ্রষ্টব্য।
(c) ধরি, $2 y-x=4 \Rightarrow x-2 y+4=0$ রেখার উপর লম্ব সরনরেখার সমীকরণ, $2 \mathrm{x}+\mathrm{y}+$ $\mathrm{k}=0 \cdots \cdots$ (i)
মূলবিन्দू $(0,0)$ হতে (i) এর লম্ব দূরত্ব $=\frac{|\mathrm{k}|}{\sqrt{2^{2}+1^{2}}}$
প্রশ্নমতে, $\frac{|k|}{\sqrt{2^{2}+1^{2}}}=\sqrt{5} \Rightarrow k= \pm 5$
রেখাসমূহের সমীকরণ, $2 \mathrm{x}+\mathrm{y} \pm 5=0$
10. $\mathrm{A}(1,1), \mathrm{B}(3,4)$ এবং $\mathrm{C}(5,-2)$ বिन्मू তিনটি ABC ত্রিভুজের শীর্ষবিন্দু ।
(a) ABC ब্রিভুজের ক্ষেত্রফল নির্ণয় কর।
(b) AB ও AC এর মধ্যবিন্দুর সংতোগ রেথার সমীকরণ নির্ণয় কর। [কু.’০৬,’০৮;ঢা.’১; ক.'’8; মা.বো.’○৭; য.’০৯]
(c) ABC ত্রিভুজের কোণগ্জলির অন্তর্দ্খ্খন্ডক নির্ণয় কর ।
সমাধান: (a) ABC ত্রিভুজ্জের ক্ষেত্রফन $\left.=\frac{1}{2} \right\rvert\, 4-6$ $\left.+5-(3+20-2)\left|=\frac{1}{2}\right| 3-21 \right\rvert\,=9$ বর্গ একক।
(b) প্রশ্নমালা III E এর 3(a) দ্রষ্ঠব্য।
(c) সমাধান:

AB, BC ও CA বাহू তিनটির সমীকর়ণ যथাক্রুম, $(x-1)(1-4)-(y-1)(1-3)=0$
$\Rightarrow 3 \mathrm{x}-2 \mathrm{y}-1=0$
$(x-3)(4+2)-(y-4)(3-5)=0$
$\Rightarrow 6 \mathrm{x}-18+2 \mathrm{y}-8=0$
$\Rightarrow 3 x+y-13=0 \cdots \cdots(2)$ এবং

$$
\begin{equation*}
(x-1)(1+2)-(y-1)(1-5)=0 \tag{3}
\end{equation*}
$$

$\Rightarrow 3 x-3+4 y-4=0$
$\Rightarrow 3 x+4 y-7=0$
চিত্রে ABC ত্রিভুজটি দেখানো হয়েছে।
চিত্র থেকে এটা স্ষষ্ট মে, ত্রিভুজটির $\angle \mathrm{BAC}$ কোণ মূলক্দি ধারণ করে কিন্তু $\angle \mathrm{ABC}$ ও $\angle \mathrm{ACB}$ কোণ দুইটি মূলब্নিদ্দু ধারণ করে না।
$\mathrm{AB}=3 \mathrm{x}-2 \mathrm{y}-1=0$
$B C=3 x+y-13=0$
$C A=3 x+4 y-7=0$
$\angle \mathrm{BAC}$ এর সমদ্খিল্ডক

$$
\frac{3 x-2 y-1}{\sqrt{9+4}}=\frac{3 x+4 y-7}{\sqrt{9+16}}
$$

$\frac{3 x-2 y-1}{\sqrt{9+4}}=\frac{3 x+4 y-7}{\sqrt{9+16}}$
$\Rightarrow \frac{3 \mathrm{x}-2 \mathrm{y}-1}{\sqrt{13}}=\frac{3 \mathrm{x}+4 \mathrm{y}-7}{5}$
$\Rightarrow 15 x-10 y-5=3 \sqrt{13} x+4 \sqrt{13} y-7 \sqrt{13}$
$\Rightarrow(15-3 \sqrt{13}) \mathrm{x}-(10+4 \sqrt{13}) \mathrm{y}$
-

$$
\Rightarrow(15-3 \sqrt{13}) x-(10+4 \sqrt{13}) y
$$

$$
-5+7 \sqrt{13}=0
$$ $-5+7 \sqrt{13}=0$

$\angle \mathrm{ABC}$ এর সমদ্দিখন্ডক

$$
\begin{aligned}
& \frac{3 x-2 y-1}{\sqrt{9+4}}=-\frac{3 x+y-13}{\sqrt{9+1}} \\
\Rightarrow & \frac{3 x-2 y-1}{\sqrt{13}}=-\frac{3 x+y-13}{\sqrt{10}} \\
\Rightarrow & 3 \sqrt{13} x+\sqrt{13} y-13 \sqrt{13}=-3 \sqrt{10} x \\
& +2 \sqrt{10}+\sqrt{10} \\
\Rightarrow & (3 \sqrt{13}+3 \sqrt{10}) x+(\sqrt{13}-2 \sqrt{10}) y \\
& \quad-13 \sqrt{13}-\sqrt{10}=0
\end{aligned}
$$

$\angle \mathrm{ACB}$ এর সমদ্দিখল্ডক

$$
\begin{aligned}
& \frac{3 x+4 y-7}{\sqrt{9+16}}=-\frac{3 x+y-13}{\sqrt{9+1}} \\
\Rightarrow & \frac{3 x+4 y-7}{5}=-\frac{3 x+y-13}{\sqrt{10}} \\
\Rightarrow & 15 x+5 y-65=-3 \sqrt{10} x-4 \sqrt{10} y \\
& +7 \sqrt{10}
\end{aligned}
$$

$\Rightarrow(15+3 \sqrt{10}) \mathrm{x}+(5+4 \sqrt{10}) \mathrm{y}-65-$ $7 \sqrt{10}=0$

ত্রিভুজ্রের কোণগুলির সমদ্দিখ্ডকের সমীকরণ, $(15-3 \sqrt{13}) x-(10+4 \sqrt{13}) y$ $-5+7 \sqrt{13}=0$, $(3 \sqrt{13}+3 \sqrt{10}) \mathrm{x}+(\sqrt{13}-2 \sqrt{10}) \mathrm{y}$ $-13 \sqrt{13}-\sqrt{10}=0$ এবং $(15+3 \sqrt{10}) x+(5+4 \sqrt{10}) y-65-$ $7 \sqrt{10}=0$

11.

(a) AD বাহ্র ঢাল $\mathrm{m}=\tan 45^{\circ}=1$, y অক্ষের ছেদাংশ $\mathrm{c}=\mathrm{B}$ বিन्দूর y স্থানাজ্ক $=6$.
$A D$ বাহুর স্মীকরণ $y=m x+c$ $\Rightarrow y=x+6=x+6 \Rightarrow x-y+6=0$
(b) x অক্ষের সমান্তরাল এবং $\mathrm{B}(5,6)$ ব্দ্দুগামী $A B$ বাহুর সমীকরণ $y=6$
$\mathrm{B}(5,6)$ বিন্দুগামী এবং AD এর সমান্তরাল BC বাহুর সমীকরণ $\mathrm{x}-\mathrm{y}=5-6 \Rightarrow \mathrm{x}-\mathrm{y}+1=0$ এখানে $a_{1} a_{2}+b_{1} b_{2}=0 \times 1+1 \times-1=-1<0$ এবং $\angle \mathrm{ABC}$ একটি স্মূলরেণ।

ABC কোণের সমদ্রিখ্ডকেকের সর্মীকরণ,

$$
\frac{x-y+1}{\sqrt{1+1}}=-\frac{y+6}{\sqrt{1}}
$$

$\Rightarrow \mathrm{x}-\mathrm{y}+\mathrm{l}=-\sqrt{2} \mathrm{y}-6 \sqrt{2}$

$$
x+(\sqrt{2}-1) y+1+6 \sqrt{2}=0
$$

(c) এখানে A এর স্থানাষ্ক $(0,6)$

ধরি, $A B \equiv y=6$ বাহুর সমান্তরাল $D C$ বाइूর সমীকরণ $y=k$
$y=k$ এবং $x-y+6=0 \Rightarrow x=y-6$ এর ছেদ বিন্দু $\mathrm{D}(\mathrm{k}-6, \mathrm{k})$.
$y=k$ এবং $x-y+1=0 \Rightarrow x=y-1$ এর ছেদ বিন্দু $C(k-1, k)$
এখन, $\mathrm{AD}=\mathrm{BC}$
$\Rightarrow \sqrt{(k-6-0)^{2}+(k-6)^{2}}=3 \sqrt{2}$
$\Rightarrow \sqrt{2(k-6)^{2}}=3 \sqrt{2}$
$\Rightarrow \sqrt{2}(\mathrm{k}-6)=3 \sqrt{2}$
$\Rightarrow \mathrm{k}-6=3 \Rightarrow \mathrm{k}=9$
C ক্দির স্থানাए্ক $(8,9)$ এবং D ক্দ্দুর স্থানাজ্ক $(3,9)$.

কাজ

3. দেখাও ভে, $\left(-\frac{1}{2},-2\right)$ ষিদ্দूটি $2 x-3 y+4=0$ - $6 x+4 y-7=0$ রেथা দুইটি হতে সমদूরবর্তী। [य.'०৬]
প্রমাণ: $2 x-3 y+4=0$ রেখা হতে $\left(-\frac{1}{2},-2\right)$ এর मूरज्य $=\frac{\left|2 \times-\frac{1}{2}-3 \times-2+4\right|}{\sqrt{2^{2}+3^{2}}}=\frac{|-1+6+4|}{\sqrt{13}}$

$$
=\frac{|9|}{\sqrt{13}}=\frac{9}{\sqrt{13}}
$$

$6 x+4 y-7=0$ রেখা হতে $\left(-\frac{1}{2},-2\right)$ এর बम্ম

$$
\begin{aligned}
\text { मূরত্ব } & =\frac{\left|6 \times-\frac{1}{2}+4 \times-2-7\right|}{\sqrt{6^{2}+4^{2}}}=\frac{|-3-8-7|}{\sqrt{36+16}} \\
& =\frac{|-18|}{\sqrt{52}}=\frac{18}{2 \sqrt{13}}=\frac{9}{\sqrt{13}}
\end{aligned}
$$

প্রদত্ত বিন্দু হতে রেখা দুইটি সমদূরববত্তী।
২. जরুপ সরনরেথার সমীক্রণ निর্ণীয় ক্র যা মুনকিদ্দু দিয়ে याয় এবर $2 x+3 y-5=0$ पदर $3 x+2 y-7=0$ রেখা দুইটির সালে সমান সমান কোণ উৎপ্ন করে।

जर्झाए $m x-y=0 \cdots$（1）

$$
2 x+3 y-5=0 \text { এব゚ } 3 x+2 y-7=0
$$

রেথ্যার ঢলन যथाকমম $m_{1}=-\frac{2}{3}$ এবং $m_{2}=-\frac{3}{2}$
প্রमత রেথাদ্য（1）রেথার সজ্小ে সমান সমান কোণ উৎপন্ন করে বলে，$\frac{m-m_{1}}{1+m m_{1}}= \pm \frac{m-m_{2}}{1+m m_{2}}$
$\Rightarrow \frac{m+\frac{2}{3}}{1-\frac{2}{3} m}= \pm \frac{m+\frac{3}{2}}{1-\frac{3}{2} m}$
$\Rightarrow \frac{3 m+2}{3-2 m}= \pm \frac{2 m+3}{2-3 m}$
$\Rightarrow '+$＇नित्यে， $4-9 \mathrm{~m}^{2}=9-4 \mathrm{~m}^{2}$
$\Rightarrow 5 m^{2}=-5$ ，या সख़ব নয়।
＇－＇निए़， $4-9 m^{2}=-9+4 m^{2}$
$\Rightarrow 13 \mathrm{~m}^{2}=13 \Rightarrow \mathrm{~m}^{2}=1 \Rightarrow \mathrm{~m}= \pm 1$
রেখাটির সমীকরণ ，$x-y=0$ বा，$x+y=0$

অতিব্রিক্ত প্রশ্ন（সমাধানসহ）

1 একটট সরুরেখার সমीকরণ निর্ণয় কর या x－ অক্ষের ধনাঅক দিকের সাথে $\sin ^{-1}(5 / 13)$ কোণ উৎপন্ন করে।
সমাধান：দেওয়া আছে，রেখার ঢাল， $m=\tan \sin ^{-1}(5 / 13)$

$=\tan \tan ^{-1} \frac{5}{12}=\frac{5}{12}$ এবং y－অক্ষের ছেদক जशサ， $\mathrm{c}=5$ একक।

निর্ণেয় রেখার সমীকরণ，$y=m x+c$
$\Rightarrow y=\frac{5}{12} x+5 \Rightarrow 12 y=5 x+60$（Ans．）
2（a）(3.2)＊$(7,3)$ बिन्मू मूंढि $2 x-5 y+3=0$ রেখার একই অथবা বিপরীত পার্ণ্র অবস্চিত दिনা নিণয় কর। ব্সিদ্দ দুইটির কোনটি রেখাটির যে পার্শ্বে মুন কিদ্দু ， ठिক সে পার্ল্ব অবস্ডিত？
সমাধাन ：বরি．$\quad(x \quad y)=2 x-5 y+3=0$

$$
\begin{aligned}
& f(3,2)=2 \times 3-5 \times 2+3=-1 \\
& f(7)=14-15+3=2 \\
& f(0,0)=-0 \quad 5 \times 0+3=3
\end{aligned}
$$

$f(3,2)$ ও $f(7,3)$ বিপরীত চিহ্নবিশিট বলে，কিদ্দু দুইটি রেখাটির বিপরীত পার্ল্ব অবশ্সিত।
आবার，f（7，3）ও f $(0,0)$ একই চিহবিশিষ বলে，মূলকি্দু ও $(7,3)$ বিদ্দু রেখাটির একই পার্শ্ব্ব बবস্ছিত।
 $x-y+4=0$ এবং $x+2 y-4=0$ त्रোाषয়ের জশ্তর্ভূক্ বিপ্রডীপ কোণে অবস্থিত।
প্রমাণ ः ধরি， $\mathrm{f}(x, y) \equiv x-y+4=0 \cdots(1)$

$$
\begin{aligned}
& \text { এবং } \mathrm{g}(x, y) \equiv x+2 y-4=0 \\
& \mathrm{f}(0,0)=0-0+4=4 \\
& \mathrm{f}(1,6)=1-6+4=-1 \\
& \mathrm{f}(0,0) \times \mathrm{f}(1,6)=4 \times-1<0
\end{aligned}
$$

মূলক্রিদ্দু ও $(1,6)$ বিদ্দু（1）রেখার বিপরীত পাশে অবঙ্ছিত।
$\left.\begin{array}{rl}\text { आবার，} g(0,0) & =0+0-4=-4 \\ g(1,6) & =1+12-4=9\end{array}\right)(1,6)$
$g(0,0) \times g(1,6)=-4 \times 9<0$
মূলক্দ্দু ও $(1,6)$ बিন্দু（2）রেখার বিপরীত পালে অবস্ছিত।

মূলब্দ্দু ও $(1,6)$ বিদ্দুটি $x-y+4=0$ এবং $x+2 y-4=0$ রেখাদ্যের অন্তর্ভূক্ర বিপ্রতীপ কোণে जবস্ছिक।

2（c）দেখাও শে，মুのকিস্দু এবং $(2,-1)$ বিদ্দूটি যणাब্মম $2 x-y-4=0$ এবर $4 x+2 y-9=0$
 অবস্ছিত।
প্রমাণ ः ধরি， $\mathrm{f}(x, y) \equiv 2 x-y-4=0 \quad \cdots(1)$

$$
\begin{equation*}
\text { এবং } \mathrm{g}(x, y) \equiv 4 x+2 y-9=0 \tag{2}
\end{equation*}
$$

$\mathrm{f}(0,0)=-4 . \mathrm{g}(0,0)=-9$
$\mathrm{f}(2,-1)=4+1-4=1$
$\mathrm{g}(2,-1)=8-2-9=-3$
এ ㅈ⼋ $a_{1} a_{2}+b_{1} b_{2}=2 \times 4+(-1) \times 2=6$
এVन， $\mathrm{f}(0,0) \times \mathrm{g}(0,0)\left(a_{1} a_{2}+b_{1} b_{2}\right)=216>0$
মূনক্দি প্রদত্ত রেখাদ্য়র্য় অন্তর্ভুক্ত স্মৃলকোপে অदস্ছিज।

এて゚ $\mathrm{f}(2,-1) \times \mathrm{g}(2,-1)\left(a_{1} a_{2}+b_{1} b_{2}\right)=-18<0$
$(2,-1)$ ब্দ্নিটি প্রদত রেখাদ্যের অন্তর্ভুক্ত সৃক্ম্মকেণে অবস্ছিত।
3. $2 x+3 y+5=0$ এবर $4 x-6 y-7=0$
 করে তান সমপ্রিখ্টেেন সমীকরণ নির্ণয় কন।
সমাধান : ধরি, $\mathrm{f}(\mathrm{x}, \mathrm{y}) \equiv 2 x+3 y+5=0$
এবर $\mathrm{g}(\mathrm{x}, \mathrm{y}) \equiv 4 x-6 y-7=0$
$\mathrm{f}(1,2) \times \mathrm{g}(1,2)=(2+6+5)(4-12-7)$
$=12 .(-15)<0$
$(1,2)$ বিস্দু ধারণকারী সমদ্দিষ্ডকের সমীকরণ,

$$
\begin{aligned}
& \frac{2 x+3 y+5}{\sqrt{4+9}}=-\frac{4 x-6 y-7}{\sqrt{16+36}} \\
\Rightarrow & \frac{2 x+3 y+5}{\sqrt{13}}=-\frac{4 x-6 y-7}{\sqrt{52}} \\
\Rightarrow & \frac{2 x+3 y+5}{\sqrt{13}}=-\frac{4 x-6 y-7}{2 \sqrt{13}}
\end{aligned}
$$

$\Rightarrow 4 \mathrm{x}+6 \mathrm{y}+10=-4 \mathrm{x}+6 \mathrm{y}+7$
$\Rightarrow 8 x+3=0$ (Ans.)
4(a) $4 x+3 y=12,3 x-4 y+16=0$ - $4 x$
$-3 y+4=0$ রেযা তিনটি छার্মা গচিত ত্রিভूজ্রের অম্টকেन্র্র নির্চ্য ক্ব।
সমাধান : ধরি, ABC ত্রিডूজের বাহু তিনটি
$\mathrm{AB} \equiv 4 x+3 y-12=0 \cdots(1)$
$\mathrm{BC} \equiv 3 x-4 y+16=0 \cdots(2)$
$\mathrm{CA} \equiv 4 x-3 y+4=0 \cdots(3)$
(1) ఆ (3) এর ছেদকি্দু,

$$
A \equiv\left(\frac{12-36}{-12-12}, \frac{-48-16}{-12-12}\right)=\left(1, \frac{8}{3}\right)
$$

(1) ও (2) এর ছেদব্ন্দু,
$B=\left(\frac{48-48}{-16-9} \cdot \frac{-36-64}{-16-9}\right)=(0,4)$
$\mathrm{A}\left(1, \frac{8}{-}\right)$ ক্নিদूগামী এবং BC बর উপর

জাবার , $\mathrm{B}(0,4)$ ब্দিগুগামী এবং AC এর উপর নম্মরেখার সমীকরণ $3 x+4 y=3.0+4.4$
$\Rightarrow 3 x+4 y-16=0 \cdots$
(4) ও (5) এর ছেদব্দ্দুর স্পানাষ্ক

$$
=\left(\frac{-48+48}{16-9}, \frac{-36+64}{16-9}\right)=(0,4)
$$

5(b) $\mathrm{A}(-3,0), \mathrm{B}(3,0)$ © $\mathbf{C}(6,6)$ কিস্দू তিনটি ABC ত্রিভूজ্জের শীর্বকিদ্দু। ত্রিভूজটির পম্মকেস্দ্র \otimes পরিকেস্র্র নির্ণয় কর।
সমাধান : A $(-3,0)$ বিन्দूগামী এবং BC রেখার উপর লম্ম রেখার সমীকরণ, (3-6)x + (0-6)y

$$
=-3 \times-3-6 \times 0
$$

$\Rightarrow-3 x-6 y-9=0$
$\Rightarrow \mathrm{x}+2 \mathrm{y}+3=0 \cdots$
B $(3,0)$ বিদ্দুগামী এবং AC রেথার উপর লম্ব রেখার সমীকরণ, $(-3-6) x+(0-6) y=-9.3+(-6) .0$ $\Rightarrow-9 \mathrm{x}-6 \mathrm{y}+27=0$ $\Rightarrow 3 x+2 y-9=0$
(1) ఆ (2) এর ছেদব্দ্দু $\left(\frac{-18-6}{2-6}, \frac{9+9}{2-6}\right)$ $=\left(\frac{-24}{-4}, \frac{18}{-4}\right)=\left(6,-\frac{9}{2}\right)$, या ত্রিভুজটির নম্ষরেন্দ্র। এৰং AC এর মধ্যক্সি $\left(\frac{3}{2}, 3\right)$. এখন, BC এর মধ্যব্দ্রু $\left(\frac{9}{2}, 3\right)$ দিয়ে যায় এবং BC এর উপ্র बम্ম এরূপ রেখার সমীকরণ,

$$
\begin{align*}
& (3-6) x+(0-6) y=-3 \cdot \frac{9}{2}+(-6) \cdot 3 \\
\Rightarrow & -3 x-6 y=\frac{-27-36}{2}=\frac{-63}{2} \\
\Rightarrow & -6 x-12 y+63=0 \\
\Rightarrow & 2 x+4 y-21=0 \cdots(3) \tag{3}
\end{align*}
$$

জাবার, AC এর মধ্যক্দিদু $\left(\frac{3}{2}, 3\right)$ দিढ़ে যায় এবং AC এর উপর লম্ব এরূপ রেখার সমীকরণ,

$$
(-3-6) x+(9-6) y=-9 \cdot \frac{3}{2}-6.3
$$

$\Rightarrow 9 x-6 y=\frac{-27-36}{2}=\frac{-63}{2}$
$\Rightarrow-18 x-12 y+63=0$
$\Rightarrow 6 x+4 y-21=0 \cdots$
(3) ఆ (4) এর ছেদবিস্দু $\left(\frac{-84+84}{8-24}, \frac{-126+42}{8-24}\right)$ $=\left(\frac{0}{-16}, \frac{-84}{-16}\right)=\left(0, \frac{21}{4}\right)$, या ত্রিভুজটির পরিকেন্দ্র ।
5(c) সৃঞ্চকোণী ত্রিভুজ ABC এর শীর্ষ তিনটি $A(4,0), B(0,2) \cup C(3,5)$ इलে, $\triangle A B C$ এর পাদত্রিভুজ্জের অস্ত:কেস্ত্র নির্য কর্র। সমাষান : ধরি, $\triangle \mathrm{ABC}$ এ $\mathrm{A}(4,0)$
$\mathrm{AD}, \mathrm{BE}, \mathrm{CF}$ যথাক্রমে $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ এর উপর লম্ব। অতএব, $\triangle \mathrm{ABC}$ এর পাদত্রিভুজ $\triangle \mathrm{DEF}$.
BC এর উপর লম্ব AD এর সমীকরণ,

$$
(3-0) x+(5-2) y=3 \times 4+3 \times 0
$$

$\Rightarrow 3 x+3 y-12=0$
$\Rightarrow x+y-4=0$
আবার, CA এর উপর লম্ব BE এর সমীকরণ,
$(4-3) x+(0-5) y=1 \times 0-5 \times 2$
$\Rightarrow x-5 y+10=0 \cdots$
$(1)-(2) \Rightarrow 6 y-14=0 \Rightarrow y=\frac{7}{3}$
(1) হতে পাই, $x+\frac{7}{3}-4=0$
$\Rightarrow x+\frac{7-12}{3}=0 \Rightarrow x=\frac{5}{3}$
$\triangle \mathrm{ABC}$ এর লম্মকেন্দ্র $=\left(\frac{5}{3}, \frac{7}{3}\right)$.
পাদত্রিভুজ $\triangle \mathrm{DEF}$ পরিকেন্দ্র $=\triangle \mathrm{ABC}$ এর नस्बকেন্দ্র $=\left(\frac{5}{3}, \frac{7}{3}\right)$ (Ans.)

6(a) $\triangle \mathrm{ABC}$ এর $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ বাহू তিনটির সমীকরণ যপাব্রুমে $4 \mathrm{x}+3 \dot{y}-12=0, x-4 y+$ $4=0,6 x+5 y-15=0$. मেখাఆ যে, $\angle A B C$ একটি স্ফূলকোণ।

প্রমাণ : $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ বাহু তিনটির সমীকরণকে

যथাক্রমে $a_{1} x+b_{1} y+c_{1}=0 \mathrm{~A}$
, $a_{2} x+b_{2} y+c_{2}=0$,
$\mathrm{px}+\mathrm{qy}+\mathrm{r}=0$ এর সাশে
তুলনা করে পাই,

$$
\begin{aligned}
&\left|\begin{array}{cc}
a_{1} & b_{1} \\
p & q
\end{array}\right| \times\left|\begin{array}{cc}
p & q \\
a_{2} & b_{2}
\end{array}\right|\left(a_{1} a_{2}+b_{1} b_{2}\right) \\
& \quad=\left|\begin{array}{ll}
4 & 3 \\
6 & 5
\end{array}\right| \times\left|\begin{array}{cc}
6 & 5 \\
1 & -4
\end{array}\right|\{4.1+3 .(-4)\} \\
&=(20-16)(-24-5)(4-12) \\
&= 4(-29)(-8)>0 \\
& \angle A B C \text { একটট স্থূनকোণ। (Showed) }
\end{aligned}
$$

6(b) প্রমাণ কর্ন যে, $\mathbf{A}(-2,4), \mathbf{B}(-3,-2) \cup$
 শीर।

প্রমাণ 8

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(-2+3)^{2}+(4+2)^{2}} \\
& =\sqrt{1+36}=\sqrt{37} \\
\mathrm{BC} & =\sqrt{(-3-5)^{2}+(-2+1)^{2}}=\sqrt{64+1} \\
& =\sqrt{65} \\
\mathrm{CA} & =\sqrt{(5+2)^{2}+(-1-4)^{2}}=\sqrt{49+25} \\
& =\sqrt{74}
\end{aligned}
$$

$\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ এর যেকোন দুইটির সমফ্টি চৃতীয়টি অপেক্ম বৃহ্তর । অতএব, A, B, C बি্দু তিनটি একটি ত্রিভুজ গঠন করে।
এVन, $\angle A$ এর ক্ষেত্রে, $\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)+$ $\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)=(-2+3)(-2-5)+$ $(4+2)(4+1)=-7+30=23>0$
$\angle A$ সূক্ষকোণ i
$\angle B$ जর क্ষেত্রে, $\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)+$ $\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)=(-3+2)(-3-5)+$ $(-2-4)(-2+1)=8+6=14>0$ $\angle B$ সৃক্ষকোণ।
$\angle C$ এর क্ষেত্রে, $\quad\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right) \quad+$ $\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)=(5+2)(5+3)+$ $(-1-4)(-1+2)=56-5=53>1$
$\angle C$ সূক্ষকোণ।
প্রদত্ত বিস্দু তিনটি একটি সূক্ষ্মকোণী ত্রিভুজের শীর।
6(c) প্रমাণ কন্ন यে, $(-2,-1),(1,3) \bullet(4,1)$ दिम्দू তিনটি এবটি স্শুল<োগী ত্রিভুজ্রের শীী ।
প্রমাণ 8 ধরি, প্রদত বিস্দু তিনটি
$\mathrm{A}(-2,-1), \mathrm{B}(1,3)$ ७ $(4,1)$.

$\therefore \mathrm{AB}=\sqrt{(-2-1)^{2}+(-1-3)^{2}}$

$$
=\sqrt{9+16}=5
$$

$\mathrm{BC}=\sqrt{(1-4)^{2}+(3-1)^{2}}=\sqrt{9+4}=\sqrt{13}$
$\mathrm{CA}=\sqrt{(4+2)^{2}+(1+1)^{2}}=\sqrt{36+4}=\sqrt{40}$
$\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ এর যেকোন দুইটির সমফ্টি তৃতীয়টি जপেশ্কা বৃशত্তর । অতএব, A, B, C ब্দ্দু তিनটি একটি ত্রিডুজ গঠন করে যার CA বৃহতম বছ্।
CA বৃহতম বহ্রর বিপরীত কোণ $\angle B$ এর ক্ষেত্রে,
$(1-4)(1+2)+(3-1)(3+1)$

$$
=-9+8=-1<0
$$

$\angle B$ ग्रूलকোণ।
প্রদত্ত বিদ্দু তিনটি একটি স্মূলকোণী ত্রিভুজেনশীর্ষ । 7(a) $\mathrm{A}(0,7)$ এবং $\mathrm{B}(4,9)$ বিপ্দুদ্য ABCD ব夜 শীর্ষব্দ্দু হলে C ও D এর স্থানাজ্ক নির্ৰয় কর । সমাধান :
$\mathrm{AB}=\sqrt{(0-4)^{2}+(7-9)^{2}}$
$=\sqrt{16+4}=2 \sqrt{5}$
AB বाूूর সমীকরণ

$$
(x-0)(7-9)-(y-7)(0-4)=0
$$

$\Rightarrow-2 x+4 y-28=0 \Rightarrow x-2 y+14=0$
$\mathrm{A}(0,7)$ ক্দিগুগী AB বাহूর উপর লম্ম AD বাহুর সমীকরণ, $2 x+y=2 \times 0+7$
$\Rightarrow 2 x+y-7=0$
$\mathrm{B}(4,9)$ ক্দিগামী AB বाহूর উপর नम्य BC বাহুর সমীকরণ, $2 x+y=2 \times 4+9$

$$
\begin{equation*}
\Rightarrow 2 x+y-17=0 \tag{2}
\end{equation*}
$$

AB এর সমান্তরাল $2 \sqrt{5}$ একক দূরবর্তী CD বাহুর সমीকরণ $x-2 y+14 \pm 2 \sqrt{5} \sqrt{1^{2}+2^{2}}=0$
$\Rightarrow x-2 y+14 \pm 10=0$
$x-2 y+24=0$
$x-2 y+4=0 \cdots$
(1) ও (3) ছেদবিদ্দু D এর স্থালাজ্ক $(-2,11)$
(2) ও (3) ছেদब্দ্দু C এর স্পানাঙ্ড $(2,13)$

आাবার, (1) ఆ (4) ছেদক্দ্দু D এর স্থানাজ্ক $(2,3)$
(2) ও (4) ছেদব্দি C এর স্থানাষ্ণ $(6,5)$
$\mathrm{C}(2,13)$ ও $\mathrm{D}(-2,11)$ अขबा, $\mathrm{C}(6,5)$ ఆ $\mathrm{D}(2,3)$

 সমাধান 8 ধরি, ABCD ব组 AC কণ্ণে শীর্যক্দিদ্দু $\mathrm{A}(0,7) \circledast \mathrm{C}(6,5)$.
$\therefore \mathrm{AC}=\sqrt{36+4}=2 \sqrt{10}$
AC কর্ণের লম্মসমদ্রিখল্ড BD
 কণ্ণে সমীকরণ $(0-6) x+(7-5) y=\frac{1}{2}(0+$

$$
\begin{align*}
& 49-36-25) \Rightarrow-6 x+2 y+6=0 \\
& \Rightarrow 3 x-y-3=0 \tag{1}
\end{align*}
$$

AC কর্ণ্ণর সমীকরণ $x+3 y=0+3 x 7$

$$
\Rightarrow x+3 y-21=0
$$

AC কর্ণের সমাল্তরাল $2 \sqrt{10}$ একক দূরবতী রেখার সমীকরণ সরলরেখার সমীকরণ,

$$
\Rightarrow \begin{align*}
& x+3 y-21 \pm \sqrt{10} \sqrt{1^{2}+3^{2}}=0 \\
& x+3 y-21 \pm 10=0 \\
& x+3 y-11=0 \\
& x+3 y-31=0 \cdots \tag{3}
\end{align*}
$$

(1) ఆ (2) এর ছেদ্িিদ্দুর স্শ:নাষ্ক $(2,3)$
(1) ও (3) এর ছছদব্দুর স্মানাষ্ক $(4,9)$

অপর শীর্ষব্দ্দু দুইটির স্থানাজ্ক $(2,3) ও(4,9)$

ব্যবशाরিক অनूশীणन

1. পব্রীWণের नाম : $\mathrm{A}(8,10)$ B $\mathrm{B}(18,20)$ বিদ্দूর্গ সRব্যো র্রেथाशশকে 23 जनूপাত বহির্বিजজ্তকারী বিन्मूद्र झ্থানাक निर्ণয় ।

মূणত্ত্ত : $\mathrm{A}\left(x_{1}, y_{1}\right)$ এবং $\mathrm{B}\left(x_{2}, y_{2}\right)$ बिन्দूŋল্যের
 $\left(\frac{m_{1} x_{2}-m_{2} x_{1}}{m_{1}-m_{2}}, \frac{m_{1} y_{2}-m_{2} y_{1}}{m_{1}-m_{2}}\right)$
প্রয়োজনীয় উপকরণ : (i) বপপ্পিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শাপ্পনার (vi) দপন্সিল কम्পाস।

 © YOY আ́রি।
 বাহूর ไৈর্থ্য $=1$ এক্ক ধরে $\mathrm{A}(8 \quad 10)$ ও $\mathrm{B}(18,20)$ কিন্দুদ্যয়ে গ্রাফ পেপারে স্মাপন করি এবং সরু পেল্লিল দিত্যে. সংযোগ করে AB রেখাংশ লেখচিত্রে উপস্মাপন করি।
(iii) B ক্ন্দু দিয়ে x অক্ষের সমান্তরাল BG রেখার উপর যেককেন দুইটি ক্দি P B Q নেই যেন $\mathrm{PQ} \quad \mathrm{BQ}=2 \quad 3$ शয়। (এখানে, B থেকে 15 ব斤 দূরে Q এবং P থেকে 10 বর্গ দূরে Q কিদ্দু অবশ্থিত।) (iv) P, A য্যাগ করি এবং PA এর সমান্তরাল QC রেখা অজ্ক্ন করি যা BA এর বর্ধিতাংশকে C ক্দিত্দে ছেদ করে।

ए

C এর স্যানাঙ্ক	
গ্রাফ হতে প্রাণ্ত মান	সূত্র হতে প্রা巾্ত মান

$(-12,-10)$	$\left(\frac{2 \times 18-3 \times 8}{2-3}, \frac{2 \times 20-3 \times 10}{2-3}\right)$
$=\left(\frac{36-24}{-1}, \frac{40-30}{-1}\right)$	
	$=(-12,-10)$

य্নাষ্ন : প্রদত্ত ক্ন্দুদ্যের সৃব্রোগ রেখাশশকে 23 অनুপাতে বহির্বিতক্তকারী বিন্দूর স্থানাঙ্ক $(-12,-10)$.
2. পद্রীশণের নাম : ABC बिভুজ্জের শীর্বষিদ্দু $\mathrm{A}(5,6), \mathrm{B}(-9,1)$ এবং $\mathrm{C}(-3,-1)$ ত্রিভूজটির ক্ষে্রস্ন নিণয়।
মूणত্জ ABC ত্রिजूজ্জে শীর্ষত্রয় $\mathrm{A}\left(x_{1}, y_{1}\right)$, $\mathrm{B}\left(x_{2}, y_{2}\right)$ এবং $\mathrm{C}\left(x_{3}, y_{3}\right)$ रून ABC ज্রিভুজের क्षिख्वस,
$\Delta \mathrm{ABC}=\frac{1}{2}| | \begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1}\end{array}| |$ बर्भ এकক।
প্রয়োজনীয় উপক্রণ : (i) পেন্সিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শাপনার (vi) সায়েন্টিফিক কাললুলুেটর।

কার্যপপ্দ্রতি:

(i) একটি ছক কাগজ্জ স্থানাজ্কের অক্ষ রেখা $\mathrm{X}^{\prime} \mathrm{OX}$ ও YOY' আँকি ।

বাহूর দৈর্ঘ্য $=1$ একক ধরে $\mathrm{A}(5,6), \mathrm{B}(-9,1)$ এবং $\mathrm{C}(-3,-1)$ ক্ন্দুগুলি গ্রাফ পেপারে স্সাপন করি এবং সরু পেপ্পিল দিয়ে $\mathrm{A}, \mathrm{B} ; \mathrm{B}, \mathrm{C} ; \mathrm{C}, \mathrm{A}$ সংযোগ ক্রে ABC ত্রিভুজটি অঙ্কন করি।
(iii) A ব্দ্দু দিত্যে y অক্ষের সমান্তরাল PQ রেখা आँकि।
(iv) B ও C হতে PQ এর উপর যথাক্রমে BL ও CM লম্ম आঁকি।
रिসাব: BL=|-9-(5)|=14,
$\mathrm{CM}=|-3-(-5)|=8, \mathrm{AL}=|6-1|=5$, $\mathrm{LM}=|1-(-1)|=2, \mathrm{AM}=5+2=7$

ফ্न স尺ক্নন :

সুত্র হতে প্রাম্ত মান

$\left.\Delta \mathrm{ABC}=\frac{1}{2}| | \begin{array}{cccc}5 & -9 & -3 & 5 \\ 6 & 1 & -1 & 6\end{array} \right\rvert\,$
$=\frac{1}{2}|5+9-18-(-54-3-5)|$
$=\frac{1}{2}|-4+62|=\frac{1}{2}|58|=29$ व斤 একক।
ए্নাষ্ণ ः ABC ত্রিতুজের কেশ্রফল্ন $=29$ বগ একক।
3. পরীকণের নাম : $3 x-5 y=-11$ সরলরেখার লেখচিত্র অজ্কন

প্রয়োজনীয় উপক্রণ : (i) ৃপপ্পিন (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শাপ্পনার (vi) সায়েন্টিফিক ক্যালকুলেটর।
কার্যপদ্ধতি:
(i) প্রদত্ত সরলরেখার সমীকরণ হতে পাই,
$-5 y=-3 x-11 \Rightarrow y=\frac{3 x+11}{5}$
সমীকরণটিতে x এর কয়েকটি মান নিয়ে y এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি :

x	-2	3	-7
y	1	4	-2

(ii) একটি ছক কাগজ্জ স্পানাজ্জের অক্ষ রেখা $\mathrm{X}^{\prime} \mathrm{OX}$ ఆ YOY' আকি।

(iv) x - অक्ष ও y - অक्ष বরাবর ক্ষ্রুতম বগগর 2 বাহুর দৈর্ঘ $=1$ একক ধরে $(-2,1)(3,4)$ ও $(-7,-2)$ ब্দ্নু তিনটি ছক কাগজ্জে স্থাপন করি এবং সরু পেক্সিল দিয়ে সংয়াগ করে $3 x-5 y=-11$ সরললেথার লেখচিত্র অজ্ফন করি।

চেখচিত্রের বৈশিষ্ট :

(i) প্রদত্ত সরলরেখার ঢাল-ছেদ जাকৃতি $y=\frac{3}{5} x+\frac{11}{5}$ a $c=\frac{11}{5}>0$ বলে রেখোি y অணুকে ধনাঅক দিকে $\frac{11}{5}$ একক দূরে ছেদ করবে।
(ii) $\mathrm{m}=\frac{3}{5}>0$ বलে রেখাটি x অক্ষের ধনাতক দিকের সাথে সূহ্মকোণ উৎপন্ন করে।

4．সংযুক্ठ চিত্রের সাহায্যে AB সরনরেখার সমীকনণ নির্ণয় কর，বেখানে $(6,5)$ কি্দুটি AB এর উপর बবস্ছিত।
পরীশণের নাম ৪ প্রদত্ত চিত্র ও তথ্য হতে সরলরেখার সমীকরণ নিণ্র।

মুনত্ত্ন ：a（ x অক্ষের ছেদাংশের পরিমাণ）ও $\mathrm{b}(\mathrm{y}$ অক্ষের ছেদাংশের পরিমাণ）নিণয় করে $\frac{x}{a}+\frac{y}{b}=1$ সূত্র দ্মারা，c（y অক্ষের ছেদাংশের পরিমাণ）ও ঢাল m （ x অক্ষের ধনাতক দিকের সাথে প্রদত্ত রেখার উৎপন্ন কোণের tangent）নির্ণয় করে $y=m x+c$ সূত্র দ্মা সরলরেখার সমীকরণ নির্ণয় করা যায়।

প্রয়োজনীয় উপকরণ ：（i）てেন্সিল（ii）স্কেল（iii）গ্রাফ পপপার（iv）ইরেজার（v）শাপ্পনার（vi）কম্পাস，（vii） চাঁদা ইত্যাদি।

কার্বপা্জতি：

প্রদত রেখা দ্মারা x অক্ষের ধনা｜্রক দিকে সাথ্থে উৎপন্ন কেণেের পরিমাণ চাঁদা দিয়ে পরিমাপ করি। উৎপন্ন কোণের পরিমাণ 30° ।

रिসাব：

রেখাটির ঢাল $=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \cdot y$ অক্ষের ছেদাংশ c হলে রেখাটির সমীকরণ হবে $y=m x+c$

$$
\Rightarrow y=\frac{1}{\sqrt{3}} x+c
$$

তথ্য অনুসারে，রেখাtি $(6,5)$ ক্ন্দুগামী।

$$
5=\frac{6}{\sqrt{3}}+c \Rightarrow c=\frac{5 \sqrt{3}-6}{\sqrt{3}}
$$

রেখাটির নির্ত্ণয় সমীকরণ

$$
\begin{aligned}
& y=\frac{1}{\sqrt{3}} x+\frac{5 \sqrt{3}-6}{\sqrt{3}} \\
\Rightarrow & \sqrt{3} y=x+5 \sqrt{3}-6
\end{aligned}
$$

 B（ 7,2$)$ ® $(5,-4)$ বিপ্দুচয়ের স স্যোগ রেখাাশের প্রতিচ্ছবি নির্রয় ক্র।
পরীষণের নাম ：y－बক্ষের সাপেক্ষে $\mathrm{A}(-5,5)$ ক্দিন এবং B（7，2）ও C（5，－4）ক্দ্দুদ্যের সংযোগ রেখাংশের প্রতিচ্ছবি নির্ণয়।
মুনত্জ ঃ x－অक্ষ ও y－অক্ষের সাপেক্ষ (x, y) বিদ্দুর প্রতিছ্ছবি যথাক্রমে $(x,-y)$ ও $(-x, y)$ ।
প্রয়োজনীয় উপক্রণ ：（i）পপপ্সিল（ii）স্কেল（iii）গ্রাফ পেপার（iv）ইরেজার（v）শাপ্পনার ইত্যাদি।

दार्यभवसि：

（i）একটি ছক কাগজ্জে স্থানাজ্尺ের অক্ষ রেখা $\mathrm{X}^{\prime} \mathrm{OX}$ ఆ YOY＇জঁকি।
 ไৈर्ঘ $=1$ একক ধরে $\mathrm{A}(-5,5)$ ， $\mathrm{B}(7 \quad 2)$ এヌং $\mathrm{C}\left(\begin{array}{ll}5 & -4\end{array}\right)$ বিন্দুগুলি গ্রাফ পেপারে স্পাপন করি এবং সরু পেল্সিল দিত্রে B, C সংয়াগ করে BC রেখাংশ অজ্কন করি।
（iii） $\mathrm{A}(-5,5)$ ক্দ্দু হতে y অক্ষের উপর AL লম্ম অঙ্জन করি এবং AL কে A^{\prime} পর্যন্ত বর্ধিত করি যেন $\mathrm{AL}=\mathrm{LA}^{\prime}$ इয়। তাহলে，y অক্ষের সাপেক্ষে A ক্ন্দুর প্রতিচ্ছবি $\mathrm{A}^{\prime}(5,5)$ ।

(iv) उদ্রপ y অক্ষের সাপেক্ষে $\mathrm{B}(7,2)$ ক্ন্দুর প্রতিছ্ছবি $B^{\prime}(-7,2)$ এবং $C\left(\begin{array}{ll}5 & -4) \text { ক্দ্দুর }\end{array}\right.$ প্রতিচ্ছবি $C^{\prime}(-5,-4)$ নির্ৰয় করি। (v) সরু পেপ্পিল দিয়ে $\mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ সংযোগ করি এবং y অক্ষের সাপেক্ষে BC রেখাাশের প্রতিছ্ছবি $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$ बজ्झन করি, या $(-7,2)$ उ $(-5,-4)$ ন্দ্দুদয়ের সংযোগ রেখাংশ।

বৈশিষ্ট:

(i) y অক্ষের সাপেক্ষে $\mathrm{A}(-5,5)$ ও $\mathrm{A}^{\prime}(5,5)$ পরস্শর পরস্শরের প্রতিচ্ছবি এবং এদের y স্থানাক্ক অভিন্ন ও একটির x স্থানাষ্ক অপরটির বিপরীত ঋণাতক মানের সমান।
(ii) y অক্ষের সাপেক্ষে B C রেখাশ্শ ও $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$ রেখোংশ পরস্পর পরস্পরের প্রতিচ্ছবি ও দৈর্ট্যে সমান এবং y অক্巾 থেকে এদের যেকোন একটির উপরত্ত যেকোন কি্দুর সমদূরবর্তী বিদ্দু অপরটির উপর অবঙ্থিত হবে।
6. $y=x$ সরबরেখার সাপেক্কে $A(5,6)$ বিদ্দুর जবर $B(-3,5)$ ® $C(4,-8)$ दिम्मू র্রেখাঁশের প্রতিচ্ছবি নির্ণয় কর।

পরীকণের নাম : $y=x$ সরনরেथার সাপেক্ষে $\mathrm{A}(5 \quad 6)$ ব্দ্দুর এবং $\mathrm{B}(-3,5)$ ও $\mathrm{C}(4,-8)$ ব্দ্দুদ্যের সংয়োগ রেখাংশের প্রতিচ্ছবি নিণয়।
মুণত্ম : $y=x$ রেখার সাপেক্ষে (h, k) কিদ্দুর প্রতিচ্ছবি (k, h).
প্রয়োজনীয় উপক্রণ : (i) বপন্সিল (ii) স্কেল (iii) গ্রাए পেপার (iv) ইরেজার (v) শাপ্পনার ইত্যাদি।

কার্বপশ্\&তি:

(i) একটি ছক কাগজ্জে স্থানাঙ্কের অক্ষ রেখা $\mathrm{X}^{\prime} \mathrm{OX}$ ఆ YOY' आাকি।
(ii) প্রদত্ত সমীকরণ $y=x$
(i) $\wedge x$ এর কয়েকটি মান নিয়ে y এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি

x	0	2	3
y	0	2	3

 বাহুর দৈর্ঘ $=1$ একক মत্র
$(2,2)$ ও $(3,3)$ কিন্দুগুল্লি গ্রাফ পেপারে স্থাপন করি
 লেখচিত্র অজ্কন করি!

(iv) একই স্কেলে $\mathrm{A}(56), \mathrm{B}(-3,5)$ ও $C(4,-8)$ ক্দিগুগুলি গ্রাফ পেপারে স্থপন করি এবং সরু পপপ্পিল দিয়ে B, C সংয়োগ করে BC রেখাশশ অজ্কন করি।
(v) A ক্দ্দু থেকে (i) নং রেখার উপর অজ্কিত লম্মকে A^{\prime} পর্যন্ত বর্ধি করি যেন A ও A^{\prime} ब্দ্দুদ্র প্রদত্ত রেখা থেকে সমদূরবন্তী হয়। তাহলে, (i) নং রেখার সাপেক্ষে A ক্নিদ্রুর প্রত্ছিবি A^{\prime}
6. उদ্দুপ (i) নং রেগার সাপেক্ষে B বিস্দুর প্রতিছ্ছবি B^{\prime} এবং C ক্দ্দুর প্রতিচ্ছবি C' নির্ণয় করি।
7. সরু পেন্সিল দিয়ে $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$ সংযোগ করে (i) নং রেখার সাপেক্ষে BC রেখাংশের প্রতিচ্ছবি $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$ অङ্কন করি।
रिসাব: $y=x \quad$ (i) রেখার ঢাল $=1$ এবং এর উপর লম্ম রেখার ঢাল $=-1$.
ধরি, (i) এর সাপেক্ষে A(5,6) বিন্দুর প্রতিচ্ছবি $A^{\prime}(h, k)$)
$A A^{\prime}$ এর ম্যাক্দু $\left(\frac{h+5}{2}, \frac{k+6}{2}\right)$ (i) এর औभर जरद़्रिण ववर $A A^{\prime}$ जल $=\frac{k-6}{h-5}=-1$
(i) इड্ত भार, $\frac{k+6}{2}=\frac{h 5}{2}$ $\Rightarrow h \quad 5=k+6$

এবং $-\mathrm{h}+5=\mathrm{k}-6$
$\Rightarrow \mathrm{h}+\mathrm{k}-11=0 \cdots$ (iii)
(ii) + (iii) $\Rightarrow 2 h-12=0 \Rightarrow h=6$
(ii) হতে $6-\mathrm{k}-\mathrm{l}=0 \Rightarrow \mathrm{k}=5$
$y=x$ রেখার সাপেক্ষে $\mathrm{A}(5,6)$ বিন্দুর প্রতিছ্ছবি $(6,5)$ ।

সুৰ্রের সাহাব্যে : A $(5,6)$ বিন্দুর প্রতিছ্ছবি $(6,5)$.
$\mathrm{B}(-3,5)$. বি্দুর প্রতিচ্ছবি $(5,-3)$.
C $(4,-8)$ ক্দুর প্রতিছ্ছবি $(-8,4)$
ফ্নাষ্ন : $y=\mathrm{x}$ রেখার সাপেক্ষে $\mathrm{A}(5,6)$ বিন্দুর প্রতিচ্ছবি $(6,5)$ এবং $\mathrm{B}(-3,5)$ ও $\mathrm{C}(4,-8)$ ক্স্দুদ্মের সংত্যোগ রেখাণশের প্রতিচ্ছবি $(5,-3)$ ও $(-8,4)$ ক্স্দুদ্যের সংযোগ রেখাएশ।

ভর্তি পরীক্মার MCQ :

1. $y=3 x+7$ এবং $3 y-x=8$ সরুরেখাঘয়ের অन্তর্ভূক্ঠ সুশ্ম<োণ -
[DU 08-09]
Sol $^{\mathrm{n}}$: এখाনে $m_{1}=3, m_{2}=\frac{1}{3}$
$\tan \theta=\left|\frac{3-\frac{1}{3}}{1+3 \cdot \frac{1}{3}}\right|=\frac{8}{6} \Rightarrow \theta=\tan ^{-1} \frac{4}{3}$
2. $2 \mathrm{x}-3 \mathrm{y}+6=0$ রেখার উপর बম্ব जবং $(1,-1)$

ক্দিদুগমী রেখার সমীক্রণ-[DU, 02-03, 97-98;
RU 06-07]
Sol ${ }^{n}$: রেখার সমীকরণ $3 x+2 y=3-2=1$
3. $5 \mathrm{x}-2 \mathrm{y}+4=0$ এবर $4 \mathrm{x}-3 \mathrm{y}+5=0$ রেখাময়ের হেদক্স্দু এবং মূণকিস্দু দিয়ে গমনকারী রেখার সমীকরণ -
[DU 05-07; Jt.U 07-08]
Sol ${ }^{\mathrm{n}}$: সমীকরণ $5(5 \mathrm{x}-2 \mathrm{y})-4(4 \mathrm{x}-3 \mathrm{y})=0$
$\Rightarrow 25 \mathrm{x}-10 \mathrm{y}-16 \mathrm{x}+12 \mathrm{y}=0$
$\Rightarrow 9 x+2 y=0$
4. এৰটি সরনরেখার অক্ষদ্ময়ের মধ্যবর্তী জशশ $(2,3)$

ক্দ্দুতে সমদ্খষ্ভিত হয়। রেখাটির সমীকরণ-
[DU04-05]
Sol ${ }^{\text {n }}$: রেথার সমীকরণ $\frac{x}{2 \times 2}+\frac{y}{2 \times 3}=1$
$\Rightarrow 3 \mathrm{x}+2 \mathrm{y}=12$
5. সরনরেथा $3 x+4 y-12=0$ घाরा অफ्यম্যের মধ্যবর্তী খভ্ডিত জংশের দৈব্যু-
[DU 03-04]
Sol $^{\mathrm{n}}$: ไৈर्या $=\sqrt{(12 / 3)^{2}+(12 / 4)^{2}}$

$$
=\sqrt{16+9}=5
$$

6. $2 x-5 y+10=0$ पाরা निদ্দেশিত সরনরেथা

[DU 99-00]
Sol $^{\mathrm{n}}: \frac{1}{2} \cdot \frac{10^{2}}{2 \times 5}=5$
7. একটি সরनরেখা $(3,5)$ বিশ্দू मिয়ে याয় অएक্য় হতে বিপরীত চিহ্ বিশিষ্ট অশশ ছেদ করে।সরনরেখাটি্র সমীকর্র কি?
[DU 98-99]
Sol ${ }^{n}$: সমीকরণ; $x-y=3-5 \Rightarrow x-y+2=0$
8. α এর কোন মানের ছন্য $(\alpha-1) x+(\alpha+1) y=7$ রেখাটি $3 x+5 y+7=0$ রেখার সমাশ্তর্যাण হবে?
[DU 01-02]
Sol $^{n}: \frac{\alpha-1}{3}=\frac{\alpha+1}{5} \Rightarrow 2 \alpha=8 \Rightarrow \alpha=4$
9. $5 x-5 \sqrt{3} y+2=0$ बবर $3 \sqrt{3} x+3 y=4$ রেখা দুইটির অল্তর্ভুক্ত কোণ হবে- [BUET 06-07] Sol $^{\text {n }}$: এथानে , $m_{1}=\frac{1}{\sqrt{3}}, m_{2}=-\sqrt{3}$

$$
m_{1} m_{2}=-1 \quad \text { অन्उर्डूক্ত কোো }=90^{\circ}
$$

10. $(2,3)$ কি্দু হতে $4 x+3 y-7=0$ तেখার সাপেণে প্রতিবিম্ম কিস্দুর দুরত্ব - [BUET 06-07]
Sol n : দृরত্ব $=2 \frac{|8+9-7|}{\sqrt{16+9}}=\frac{2.10}{5}=4$
11. মৃণব্দ্দু হতে $3 \mathrm{x}+4 \mathrm{y}=10$ রেখটির নম্মদুরप্র [DU 07-08, Jt. U 07-08]
Sol ${ }^{\mathrm{n}}$: बम्মদূরত্ব $=\frac{|-10|}{\sqrt{9+16}}=2$
12. $(4,-2)$ বিস্দু হতে $5 x+12 y=3$ রেখার উপর অষ্কিত ণম্বের দৈঁ্য - [DU 06-07, 04-05; RU 06-07, 05-06; CU 02-03]
Sol ${ }^{n}$: बम्बদূরত্ব $=\frac{|20-24-3|}{\sqrt{25+144}}=\frac{7}{13}$
13. α সুক্ষ<োণ হলে $x \cos \alpha+y \sin \alpha=4$ এবर $4 x+3 y=5$ সমাশ্তন্木ান রেখাচয়ের দুর্ত-
[DU 06-07
Sol ${ }^{n}$: সমাল্তরাল রেখাদয়ের দূরত্ব =

$$
\left|\frac{-4}{\sqrt{\cos ^{2} \alpha+\sin ^{2} \alpha}}-\frac{-5}{\sqrt{4^{2}+3^{2}}}\right|
$$

$=4-1=3$
 बম্ম সমপ্খিভকের্র সমীকরণ-
[DU 04-05]
Sol ${ }^{1}$: লম্ম সমঘ্খিল্ডকের সমীকরণ
$(1-2) x+(-1-4) y=\frac{1}{2}\left(1^{2}+1^{2}-2^{2}-4^{2}\right)$
$\Rightarrow-\mathrm{x}-5 \mathrm{y}+10=0 \Rightarrow \mathrm{x}+5 \mathrm{y}-10=0$
15. $(-5,7)$ ® $(3,-1)$ কি बम्य সমপ্বিভকেন্ন সমীক্নণ-[DU 00-01;RU 06-07]
Sol $^{\mathrm{n}}:-8 \mathrm{x}+8 \mathrm{y}=\frac{1}{2}(25+49-9-1)=32$
$\Rightarrow \mathrm{x}-\mathrm{y}+4=0$

 সমীকরণ [DU 07-08, Jt.U 08-09]
Sol ${ }^{\mathrm{n}}: 2 \mathrm{y}+\mathrm{xy}=2+\mathrm{x}+1$
$\Rightarrow \quad x-2 y+3=0[\because$ সরলরেখায় $x y$
थाকেনা]
17. x এর बোন মানের জना $(1,-x),(1, x)$ এবং $\left(x^{2},-1\right)$ বিन्দू তিनঢি এবই রেথায় অবস্পান কন্নবে?
[BUET 12-13]
Sol n : $\left|\begin{array}{cccc}1 & 1 & x^{2} & 1 \\ -x & x & -1 & -x\end{array}\right|=0$
$\Rightarrow \mathrm{x}-1-\mathrm{x}^{3}-\left(-\mathrm{x}+\mathrm{x}^{3}-1\right)=0$
$\Rightarrow \mathrm{x}-1-\mathrm{x}^{3}+\mathrm{x}-\mathrm{x}^{3}+1=0$
$\Rightarrow-2 x^{2}+2 x=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-1)(\mathrm{x}+1)=0$
$\Rightarrow \mathrm{x}=0,1,-1$

এब नজরে প্রয়োজনীয় সুত্রাবनी

1．（a）$(0,0)$ কেন্দ্র जবए＇r＇ব্যাসার্ধবিশিষ্ট বৃজ্েের সমীকরণ $x^{2}+y^{2}=r^{2}$ ．
（b）(h, k) কেল্র্র এবং＇r＇ব্যাসার্রবিশিষ্ট বৃচ্大ের সมीক্নণ $(x-h)^{2}+(y-k)^{2}=r^{2}$ ．
(h, k) কেন্দ্র जরए (α, β) কি্দুগামী বৃচ্জের সमीকत्रণ $(x-h)^{2}+(y-k)^{2}=(\alpha-h)^{2}+$ $(\beta-k)^{2}$
（c）$(-\mathrm{g},-\mathrm{f})$ ক্স্র্র্বিশিফ বৃচ্জের সমীকর্নণ $x^{2}+y^{2}+2 g x+2 f y+c=0$ ，যেथानে ব্যাসা৭ $=\sqrt{g^{2}+f^{2}-c}$
（d）$\left(x_{1}, y_{1}\right)$（ $\left.x_{2}, y_{2}\right)$ বিস্দুম্যের সश্যোগ র্রেখাফকে ব্যাস ধরে অধ্লিত বৃজ্টের সমীক্নণ， $\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0$ ．
（e）এবটি বৃশ এ এবটি সরনणরেখার ছেদক্স্দুগামী বৃচ্টের সমীক্নণ，বৃভ $+k$（সর্রনর্নেখ）$=0$ ； s＜

 ；\ll ব $<\mathbf{k} \neq 0$ ．
（g） $\mathrm{f}(x, y)=0$ বৃষ্ট $\mathrm{g}(x, y)=0$ সরনরেথোর
 ছেদবি্দু এবर (α, β) কिन्मूभाমী বৃজ্তের সমীক্রণ $\frac{f(x, y)}{f(\alpha, \beta)}=\frac{g(x, y)}{g(\alpha, \beta)} ; f(\alpha, \beta) \neq 0, g(\alpha, \beta) \neq 0$
（h）খলিফার প্র্রিঃ যেরোন দুইটি কিদ্দু $\left(x_{1}, y_{1}\right)$ © $\left(x_{2}, y_{2}\right)$ मिয়ে অতিক্ম করে এরুপ বৃख্েের সमीক্র্গণ，
$\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)+$ $k\left\{\left(x-x_{1}\right)\left(y_{1}-y_{2}\right)-\left(y-y_{1}\right)\left(x_{1}-x_{2}\right)\right\}=0$ ；纟্রবব $\mathbf{k} \neq 0$
2．（a）$x^{2}+y^{2}+2 g x+2 f y+c=0$ বৃত घात्रा x－অส্＊ে খडिতাए $=2 \sqrt{g^{2}-c}$ बर y－ बढ্小ে খ খিতাएম $=2 \sqrt{f^{2}-c}$ ．
（b）$(x-h)^{2}+(y-k)^{2}=r^{2}$ বৃछ घात्रा x－ बなের খত্রিতাएশ $=2 \sqrt{r^{2}-k^{2}}$ অবर y－অকের थভ্ভিতাষ্ $=2 \sqrt{r^{2}-h^{2}}$
 স্থानाब्ब বৃत্জের সমীबর্রণ，$a^{2}=r^{2}+r_{1}^{2}-$ $2 \mathrm{rr}_{1} \cos \left(\theta-\theta_{1}\right)$
（b）পোলার স্থানাঙ্কে বৃর্ৰের্ন সাধারণ সমীকর্রণ
$r^{2}+2 r(g \cos \theta+f \sin \theta)+c=0$, यात्र কেন্দ্র $\left(\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}}, \tan ^{-1} \frac{\mathrm{f}}{\mathrm{g}}\right)$ ，
ব্যাসাধ $=\sqrt{g^{2}+f^{2}-c}$

MCQ এर জन्য বিশ্শেষ সুब ：

1． $\mathrm{f}(\mathrm{x}, \mathrm{y})=0$ दुष্টের সাष্बে এক＜েम্দিক অবर $\left(x_{1}, y_{1}\right)$ কिস্দুগামী বৃজ্টের সমীকরণ $f(x, y)=f\left(x_{1}, y_{1}\right)$
 বিস্সুগামী বৃজ্টের সমীকরণ，$\frac{x^{2}+y^{2}}{y}=\frac{x_{1}{ }^{2}+y_{1}{ }^{2}}{y_{1}}$ ．
 বৃচ্টের সমীক্রণ $x^{2}+y^{2}-2 h x-2 k y+h^{2}=0$
 বৃส্জের সমীক্নণ $x^{2}+y^{2}-2 h x-2 k y+h^{2}=0$

প্রশ্নমানা－IV A

1．$a x^{2}+2 b x y-2 y^{2}+8 x+12 y+6=0$ এবটি বৃ® निর্দে কন্নબে，＇a＇＊＇b＇এর মান निর্ণয় －ক্ন। बতপ্র বৃउটির কেন্দ্র ৪ ব্যাসার্ব নির্ণয় ক্ন।
সমाथान ：$a x^{2}+2 b x y-2 y^{2}+8 x+12 y+6=0$ একটি বৃষ নির্দেশ করলে，$x y$ ف़̣ সহগ ， $2 b=0$
$\Rightarrow \mathrm{b}=0$ এবং x^{2} ও y^{2} এর সহগ দूইটি সমাन जबाए $a=-2$ ．

বৃও্জটির সমীকরণ হবে，
$-2 x^{2}-2 y^{2}+8 x+12 y+6=0$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+2(-2) \mathrm{x}+2(-3) \mathrm{y}-3=0$
বৃত্তটির কেন্দ্র $(-2,-3)$ এবং
ব্যाসাধ $=\sqrt{2^{2}+3^{2}-(-3)}=\sqrt{4+9+3}=4$
2. (a, b) কেন্দ্র এবং $\sqrt{a^{2}+b^{2}}$ ব্যাসাধ বিশিষ্ট বৃত্তের সমীকরণ নির্ণয় কর।
সমাধান ः (a, b) কেন্দ্র এবং $\sqrt{a^{2}+b^{2}}$ ব্যाসাধ বিশিট্ট বৃত্তের সমীকরণ,

$$
\begin{aligned}
& (\mathrm{x}-\mathrm{a})^{2}+(\mathrm{y}-\mathrm{b})^{2}=\left(\sqrt{a^{2}+b^{2}}\right)^{2} \\
\Rightarrow & \mathrm{x}^{2}-2 \mathrm{ax}+\mathrm{a}^{2}+\mathrm{y}^{2}-2 \mathrm{by}+\mathrm{b}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2} \\
& x^{2}+y^{2}-2 a x-2 \mathrm{~b} y=0 \text { (Ans.) }
\end{aligned}
$$

3. (a) এরুฯ বৃত্তের সমীক্রণ নিিত্য কর যা $x^{2}+y^{2}$ $-4 x+5 y+9=0$ বৃส্েের সাণে এককেস্দ্রিক এবে $(2,-1)$ বিন্দू দিয়ে জতিক্কম করে।
[ふ.'০৫; য.'১০; পि.'১৩]
সমাধান $8 x^{2}+y^{2}-4 x+5 y+9=0$ বৃৰ্ৃটির কেক্দ্রের স্থাनাফ্জ $=\left(-\frac{-4}{2},-\frac{5}{2}\right)=\left(2,-\frac{5}{2}\right)$, या নিক্ণেয় বৃত্তের কেন্দ্র।

এখন নির্ণেয় বৃত্তের ব্যাসাধ $=$ কেন্দ্র $\left(2,-\frac{5}{2}\right)$
रणে $(2,-1)$ ক্দ্দুর দূরত্ব $=\left|-\frac{5}{2}+1\right|=\frac{3}{2}$
নির্ণেয় বৃত্তের সমীকরণ,

$$
(x-2)^{2}+\left(y+\frac{5}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2}
$$

$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}+4+\mathrm{y}^{2}+5 \mathrm{y}+\frac{25}{4}-\frac{9}{4}=0$
$\Rightarrow x^{2}-4 x+4+y^{2}+5 y+\frac{25-9}{4}=0$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}+4+\mathrm{y}^{2}+5 \mathrm{y}+4=0$

$$
x^{2}+y^{2}-4 x+5 y+8=0 \text { (Ans.) }
$$

[MCQ এর बন্য, $x^{2}+y^{2}-4 x+5 y=2^{2}+$ $\left.1^{2}-4.2+5(-1)=4+1-8-5\right]$
3.(b) এরূপ বৃত্তের সমীক্রণ নিণ্ণয় কর যা $x^{2}+y^{2}-$ $6 x+8 y=0$ বৃส্জের সাচ্ধে এককেস্দ্রিক এবए $(3,-1)$ বিদ্দু দিয়ে অতিক্রম করে।
[ज़ि.'os]
সমাষান : $x^{2}+y^{2}-6 x+8 y=0$ বৃন্তের কেন্দ্রের
 এখন নিণো়় বৃত্তের ব্যাসাধ $=$ কেন্দ্র $(3,-4)$ হতে $(3,-1)$ বিদ্দুর দূরত্ব $=|-4+1|=3$

নিি্ণেয় বৃত্তের সমীকরণ,

$$
\begin{aligned}
& (x-3)^{2}+(y+4)^{2}=3^{2} \\
\Rightarrow & x^{2}-6 x+9+y^{2}+8 y+16=9 \\
& x^{2}+y^{2}-6 x+8 y+16=0 \text { (Ans.) }
\end{aligned}
$$

3(c) এবটি বৃচ্টের কেস্দ্র $(4,-5)$ এবং এটি মূলকিম্দু দিয়ে যায়। তার সমীক্রণ এবং অছ্ দুইটি बেকে তা কি পরিমাণ অংশ ছেদ করে তা নির্ণয় কর।
[সি.'০৬; य.'০৮; কু.'ゝ8]
সমাধান ঃ কেন্দ্র $(4,-5)$ এবং মূলক্নিন্দু দিয়ে যায় এরূপ বৃত্জের সমীরকণ, $\mathrm{x}^{2}+\mathrm{y}^{2}+2(-4) \mathrm{x}+2(5) \mathrm{y}=0$

$$
x^{2}+y^{2}-8 x+10 y=0 \cdots(1)
$$

(1) বৃত্তটিকে $x^{2}+y^{2}+2 g x+2 f y+c=0$ এর সাথে ঢুলনা করে পাই, $\mathrm{g}=-4, \mathrm{f}=5, \mathrm{c}=0$

বৃত্তটি দ্বারা x-बক্ষের খভ্ডিতাংশের পরিমাণ $2 \sqrt{g^{2}-c}=2 \sqrt{4^{2}-0}=8$ এবश
বৃত্তটি দ্বারা y-অক্ষের খভ্ডিতাংশের পরিমাণ $2 \sqrt{g^{2}-c}=2 \sqrt{5^{2}-0}=10$
4.(a) এबढि বৃচ্তের কেন্দ্র $(4,-8)$ এবए তा y অষ্ষকে স্সণ করে। তার সমীক্রণ নির্ণয় ক্র।
[ব.'০১; ঢা.'০২]
সমাধান ः $(4,-8)$ কেন্দ্রবিশিষ্ট বৃওটি y-অकকে স্শর্ড করে।

বৃত্তটির ব্যাসাধ $=\mid$ কেন্দ্রের ভুজ $|=|4|=4$
বৃত্তের সমীকরণ, $(x-4)^{2}+(y+8)^{2}=4^{2}$
$\Rightarrow \mathrm{x}^{2}-8 \mathrm{x}+16+\mathrm{y}^{2}+16 \mathrm{y}+64=16$
$x^{2}+y^{2}-8 x+16 y+64=0$
[MCQ এর জন্য, $x^{2}+y^{2}-8 x+16 y+8^{2}=0$]
4(b) $(-5,7)$ কেস্দ্রবিশিষ এবং x-অकকে স্পৰ করে এরূপ বৃজ্জের সমীকরণ নিণয় কর।
[মা.’○৭]
সমাধান ः $(-5,7)$ কেন্দ্রবিশিষ্ট বৃও্টট x-অकকে স্প্ করে।

বৃত্তটির ব্যাসার্ধ $=\mid$ কেন্দ্রের y-স্থানাজक $|=|7|=7$ বৃত্তের সমীকরণ, $(x+5)^{2}+(y-7)^{2}=7^{2}$ $\Rightarrow x^{2}+10 x+25+y^{2}-14 y+49=49$

$$
x^{2}+y^{2}+10 x-14 y+25=0
$$

4(c) $(2,3)$ কিস্দুতে ক্সেদ্রুবিশিষ এবং x-অफকে
 অশ হতে যে পরিমাণ অশ্প ছেদ করে তা নির্ণয় কর।
[রা.'০১; ঙূ.'০১] সমাభান : $(2,3)$ কেস্দ্রবিশিষ্ট বৃত্তটি x-অক্ষকে স্সর্গ করে ।

বৃত্তটির ব্যাসাধ $=\mid$ কেন্দ্রের কোটি $|=|3|=3$
বৃত্তের সনীীকরণ, $(x-2)^{2}+(y-3)^{2}=3^{2}$
$\Rightarrow x^{2}-4 x+4+y^{2}-6 y+9=9$
$x^{2}+y^{2}-4 x-6 y+4=0$
এখন বৃত্তটিকে $x^{2}+y^{2}+2 g x+2 f y+c=0$ এর সাথে তুলনা করে পাই, $\mathrm{g}=-2, \mathrm{f}=-3, \mathrm{c}=4$

বৃত্তটি দ্বারা"y-অক্ষের খন্ডিতাংশের পরিমাণ

$$
2 \sqrt{g^{2}-c}=2 \sqrt{9-4}=2 \sqrt{5}
$$

5. একটি বৃষ্ত $(-6,5),(-3,-4)$ এবং $(2,1)$ কিদ্দু তিনটি ঘারা অতিক্স্ম করে। বৃওটির সমীকরণ, কেল্দ্রের স্থানাট্ফ এবং ব্যাসার্ব নিণয় কর।[ব.'০২;मि.'০৯] সমাষ্ান ঃ খলিফার নিয়মানুসারে ধরি $(-6 \quad 5)$ ও $(-3,-4)$ বিন্দুগামী বৃত্তের সমীকরণ ,
$(x+6)(x+3)+(y-5)(y+4)+$
$k\{(x+6)(5+4)-(y-5)(-6+3)\}=0$
$\Rightarrow x^{2}+9 x+18+\dot{y}^{2}-y-20+$

$$
k(9 x+54+3 y-15)=0
$$

$\Rightarrow x^{2}+y^{2}+9 x-y-2+$

$$
\begin{equation*}
k(9 x+3 y+39)=0 \tag{1}
\end{equation*}
$$

(1) বৃত্তটি $(2,1)$ বিন্দুগামী বলে,
$4+1+18-1-2+k(18+3+39)=0$
$\Rightarrow 60 \mathrm{k}=-20 \Rightarrow \mathrm{k}=-\frac{1}{3}$
(1) $এ \mathrm{k}$ এর মান বসিয়ে পাই,
$\mathrm{x}^{2}+\mathrm{y}^{2}+9 \mathrm{x}-\mathrm{y}-2-3 \mathrm{x}-\mathrm{y}-13=0$
$x^{2}+y^{2}+6 x-2 y-15=0 \cdots(1)$
(1) বৃত্তটির কেন্দ্রের স্থানাঙ্ক ($-\frac{6}{2},-\frac{-2}{2}$)
$=(-3,1)$ এবং ব্যাসাধ $=\sqrt{9+1-(-15)}=5$
[MCQ: $\frac{(x+6)(x+3)+(y-5)(y+4)}{9(x+6)-(-3)(y-5)}$
$\left.=\frac{(2+6)(2+3)+(1-5)(1+4)}{9(2+6)-(-3)(1-5)}\right]$
6. (a) $2 x-y=3$ রেখার উপর কেন্দ্রবিশিষ্ট একটট বৃত $(3,-2) \cup(-2,0)$ दिन्দू मूইটি मिয়ে অতিক্চেম

করে। বৃত্তটির সমীকরণ নির়্য় কর্ন। [ত.'০৮; ব. '১০,'১২; সি. '০৬; য. '০৭; কू. '০৭; রা.'১০,'১৩] সমাধান ঃ খলিফার নিয়মানুসারে ধর়ি (3-2) ও $(-2,0)$ বিন্দুগামী বৃত্তের সমীকরণ ,
$(x-3)(x+2)+(y+2)(y-0)+$
$\mathrm{k}\{(\mathrm{x}-3)(-2-0)-(\mathrm{y}+2)(3+2)\}=0$
$\Rightarrow x^{2}-x-6+y^{2}+2 y+$

$$
k(-2 x+6-5 y-10)=0
$$

$\Rightarrow x^{2}+y^{2}+(-1-2 k) x+(2-5 k) y-$ $6-4 \mathrm{k}=0$
বৃত্তটির কেন্দ্র $\left(\frac{1+2 k}{2},-\frac{2-5 k}{2}\right), 2 x-y=3$ রেখার উপর অবস্ছিত।

$$
2 \frac{1+2 k}{2}-\left(-\frac{2-5 k}{2}\right)=3
$$

$\Rightarrow 2+4 \mathrm{k}+2-5 \mathrm{k}=6$
$\Rightarrow-\mathrm{k}=2 \Rightarrow \mathrm{k}=-2$
k এর মান (1) এ বসিয়ে পই,

$$
\begin{gathered}
x^{2}+y^{2}+(-1+4) x+(2+10) y-6+8=0 \\
x^{2}+y^{2}+3 x+12 y+2=0(\text { Ans. })
\end{gathered}
$$

6(b) $x+2 y-10=0$ রেখার উপর কেন্দ্রবিশিষ্ট একটি বৃত $(3,5)$ ఆ $(6,4)$ दिन्দू দूইটি मिয়ে অতিক্রুম করে। বৃওটির সমীকরণ নিণয় কর।
[ঢা.'০২; রা.'০৮; য.'১২] সমাষান : খলিফার নিয়মানুসারে ধরি $(3 \quad 5)$ ও $(6,4)$ বিন্দুগামী বৃত্তের সমীকরণ ,

$$
\begin{align*}
& (x-3)(x-6)+(y-5)(y-4)+ \\
& \mathrm{k}\{(x-3)(5-4)-(y-5)(3-6)\}=0 \\
& \Rightarrow x^{2}-9 x+18+y^{2}-9 y+20+ \\
& k(x-3+3 y-15)=0 \\
& \Rightarrow x^{2}+y^{2}+(-9+k) x+(-9+3 k) y \\
& \quad+38-18 k=0 \quad \cdots(1) \tag{1}
\end{align*}
$$

(1) বৃত্তটির কেন্দ্র $\left(\frac{9-k}{2}, \frac{9-3 k}{2}\right), x+2 y-10$ $=0$ রেখার উপর অবস্থিত।

$$
\frac{9-k}{2}+2 . \frac{9-3 k}{2}=10
$$

$\Rightarrow 9-\mathrm{k}+18-6 \mathrm{k}=20$
$\Rightarrow-7 \mathrm{k}=-7 \Rightarrow \mathrm{k}=1$
k এর মান（1）এ বসিয়ে পই，
$\mathrm{x}^{2}+\mathrm{y}^{2}-8 \mathrm{x}-6 \mathrm{y}+38-18=0$
$x^{2}+y^{2}-8 x-6 y+20=0$（Ans．）
6（c）$x+2=0$ রেখার উপর কেস্দ্রবিশিষ্ট একটি বৃত্ত
 করে। বৃৃটট্য সমীকরণ নির্ণয় কন্ন।［চ．＇০৭；মা．＇০৫］ সমাষান ：খলিফার নিয়মানুসারে ধরি (-711) ও $(-1,3)$ বিদ্দুগামী বৃত্তের সমীকরণ ，

$$
\begin{align*}
& (\mathrm{x}+7)(\mathrm{x}+1)+(\mathrm{y}-1)(\mathrm{y}-3)+ \\
& \mathrm{k}\{(\mathrm{x}+7)(1-3)-(\mathrm{y}-1)(-7+1)\}=0 \\
\Rightarrow & \mathrm{x}^{2}+8 \mathrm{x}+7+\mathrm{y}^{2}-4 \mathrm{y}+3+ \\
& \mathrm{k}(-2 \mathrm{x}-14+6 \mathrm{y}-6)=0 \\
\Rightarrow & \mathrm{x}^{2}+\mathrm{y}^{2}+(8-2 \mathrm{k}) \mathrm{x}+(-4+6 \mathrm{k}) \mathrm{y} \\
& +10-20 \mathrm{k}=0 \quad \cdots(1) \tag{1}
\end{align*}
$$

（1）বৃওটির बেন্দ্র $\left(-\frac{8-2 k}{2},-\frac{-4+6 k}{2}\right)=$
$(k-4,2-3 k), x+2=0$ রেখার উপর অবস্পিত।
$\mathrm{k}-4+2=0 \Rightarrow \mathrm{k}=2$
k এর মান（1）এ বসিয়ে পই，
$x^{2}+y^{2}+(8-4) x+(-4+12) y+$ $10-40=0$
$x^{2}+y^{2}+4 x+8 y-30=0$（Ans．）
6．（d）$x+2 y+3=0$ রেथার উপ্র কেন্দ্ববিশিষ্ট এবটি

 সমাষান ：খলিফার নিয়মানুসারে ধরি $(-1,-1)$ ৩ $(3,2)$ বিদ্দুগামী বৃত্তের সমীকরণ ，

$$
\begin{align*}
& (\mathrm{x}+1)(\mathrm{x}-3)+(\mathrm{y}+1)(\mathrm{y}-2)+ \\
& \mathrm{k}\{(\mathrm{x}+1)(-1-2)-(\mathrm{y}+1)(-1-3)\}=0 \\
\Rightarrow & \mathrm{x}^{2}-2 \mathrm{x}-3+\mathrm{y}^{2}-\mathrm{y}-2+ \\
& \mathrm{k}(-3 \mathrm{x}-3+4 \mathrm{y}+4)=0 \\
\Rightarrow & \mathrm{x}^{2}+\mathrm{y}^{2}+(-2-3 \mathrm{k}) \mathrm{x}+(-1+4 \mathrm{k}) \mathrm{y} \\
& -5+\mathrm{k}=0 \quad \cdots(1) \tag{1}\\
& \text { (1) বৃ⿱宀㇇⺀匕匕 কেন্দ্র }\left(\frac{2+3 k}{2}, \frac{1-4 k}{2}\right),
\end{align*}
$$

$x+2 y+3=0$ রেখার উপর অবস্থিত।

$$
\frac{2+3 k}{2}+2 \cdot \frac{1-4 k}{2}+3=0
$$

$\Rightarrow 2+3 \mathrm{k}+2-8 \mathrm{k}+6=0$
$\Rightarrow-5 \mathrm{k}=-10 \Rightarrow \mathrm{k}=2$
k এর মান（1）এ বসিয়ে পই， $\mathrm{x}^{2}+\mathrm{y}^{2}+(-2-6) \mathrm{x}+(-1+8) \mathrm{y}-5+2=0$

$$
x^{2}+y^{2}-8 x+7 y-3=0 \text { (Ans.) }
$$

7．$(a) x$－Чণ্ষের উপর কেন্দ্রবিশিষ্ট একটি বৃত্ত $(3,5)$

 সমাধান \＆খলিফার নিয়মানুসারে ধরি $\left(\begin{array}{ll}3 & 5\end{array}\right)$ ও $(6,4)$ ক্ন্দিগামী বৃত্তের সমীকর্ ，
$(x-3)(x-6)+(y-5)(y-4)+$ $\mathrm{k}\{(\mathrm{x}-3)(5-4)-(\mathrm{y}-5)(3-6)\}=0$ $\Rightarrow \mathrm{x}^{2}-9 \mathrm{x}+18+\mathrm{y}^{2}-9 \mathrm{y}+20+$ $k(x-3+3 y-15)=0$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+(-9+\mathrm{k}) \mathrm{x}+(-9+3 \mathrm{k}) \mathrm{y}$
$+38-18 \mathrm{k}=0$
（1）বৃ্টটির কেন্দ্র $\left(\frac{k-9}{2}, \frac{9-3 k}{2}\right), x$－অক্লের উপর बवन्फिए। $\therefore \frac{9-3 k}{2}=0 \Rightarrow \mathrm{k}=3$
k এর মান（1）এ বসিয়ে পই，
$\mathrm{x}^{2}+\mathrm{y}^{2}+(-9+3) \mathrm{x}+38-54=0$
$x^{2}+y^{2}-6 x-16=0$（Ans．）
বিক্ম পপ্রেি：

ধরি，কেন্দ্র x－অক্ষের উপর অবস্চিত এরৃপ বৃচ্টের সমীকরণ $x^{2}+y^{2}+2 \mathrm{~g} x+\mathrm{c}=0$
（1）বৃৃ্টট $(3,5)$ ও $(6,4)$ ব্দি দিত্যে অতিক্রম করে। $9+25+6 g+c=0$
$\Rightarrow 34+6 \mathrm{~g}+\mathrm{c}=0 \quad \cdots$（2）जবং
$36+16+12 g+c=0$
$\Rightarrow 52+12 \mathrm{~g}+\mathrm{c}=0$ ．
（3）$-(2) \Rightarrow 18+6 \mathrm{~g}=0 \Rightarrow \mathrm{~g}=-3$
（2）হতে পাই， $34-18+c=0 \Rightarrow c=-16$
（1）$এ \mathrm{~g}$ ৫ c এর মান বসিয়ে পাই，

$$
\begin{equation*}
x^{2}+y^{2}-6 x-16=0 \text { (Ans.) } \tag{1}
\end{equation*}
$$

7(b) y-অক্ষের উপর কেন্দ্রবিশিষ্ট একটি বৃ区 $(3,0)$ ® $(-4,1)$ কিদ্দू দুইটি मिয়ে অতিক্রেম করে। ভৃওটির সমীক্রণ निর্শ্য কর।
[Б.'०৫]
সমাষান \& ধরি, বৃઉ্টিির সমীকরণ,
$x^{2}+y^{2}+2 \mathrm{~g} x+2 \mathrm{fy}+\mathrm{c}=0 \cdots$
(1) বৃઉ্টটির কেন্দ্র. y-অক্ষের উপর অবস্থিত।
$\mathrm{g}=0$
বৃउंটি $(3,0)$ ఆ $(-4,1)$ বিস্দুগামী।
$9+0+c=0 \Rightarrow c=-9$ এবং
$16+1+2 \mathrm{f}+\mathrm{c}=0$
$\Rightarrow 17+2 \mathrm{f}-9=0 \Rightarrow 2 \mathrm{f}=-8 \Rightarrow \mathrm{f}=-4$
(1) এ g , f ও c এ এ মান বসিয়ে পাই,
$x^{2}+y^{2}-8 y-9=0$
7. (c) y-অক্ষের উপর কেস্দ্রবিশিফ একটি বৃత
 বৃउটির সমীক্নণ निর্ণ্য ক্ন।
[রা. '০২; সি. '০৪; य. '০৫; ঢা.'১২; রা. ,চ.'১৩] সমাষান ः ধরি, বৃত্তর সমীকরণ,

$$
\begin{equation*}
x^{2}+y^{2}+2 \mathrm{~g} x+2 \mathrm{fy}+\mathrm{c}=0 \ldots \tag{1}
\end{equation*}
$$

(1) বৃত্তটির কেন্দ্র y-অক্কের উপর অবস্থিত।
$\mathrm{g}=0$
বৃతটট মৃनকিন্দু $(0,0)$ ও (p, q) बিন্দুগামী।
$0+0+c=0 \Rightarrow c=0$ এবৃ
$\mathrm{p}^{2}+\mathrm{q}^{2}+2 \mathrm{qf}+0=0$
$\Rightarrow \mathrm{f}=-\frac{p^{2}+q^{2}}{2 q}$
(1) এ g , f ওc এর মান বসিয়ে পাই,
$x^{2}+y^{2}+2\left(-\frac{p^{2}+q^{2}}{2 q}\right) y=0$
$\mathrm{q}\left(x^{2}+y^{2}\right)=\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right) y$ (Ans.)
 [রা.'০২, '০৬; ব.'০২,’১১] সমাধানঃ খলিফার নিয়মানুসারে ধ্রি $\left(\begin{array}{ll}3 & 0)\end{array}\right)$ $(7,0)$ বিস্দুগামী বৃজ্তের সমীকরণ ,

$$
\begin{aligned}
& (x-3)(x-7)+(y-0)(y-0)+ \\
& k\{(x-3)(0-0)-(y-0)(3-7)\}=0 \\
\Rightarrow & x^{2}-10 x+21+y^{2}+k(4 y)=0
\end{aligned}
$$

$$
\Rightarrow x^{2}+y^{2}-10 x+4 k y+21=0 \cdots
$$

(1) বৃত্তির কেন্দ্র $(5,-2 k)$ এবং ব্যাসাধ
$=\sqrt{5^{2}+(-2 k)^{2}-21}=\sqrt{4+4 k^{2}}$
(1) বৃত্তটি y-অশ্ষকে স্শর্গ করে।

$$
\begin{align*}
& \sqrt{4+4 k^{2}}=|5| \\
\Rightarrow & 4+4 \mathrm{k}^{2}=25 \Rightarrow 4 \mathrm{k}^{2}=21 \tag{1}\\
\Rightarrow & \mathrm{k}= \pm \frac{\sqrt{21}}{2}
\end{align*}
$$

k এর মান (1) এ বসিয়ে পই,

$$
\begin{aligned}
& x^{2}+y^{2}-10 x+4\left(\pm \frac{\sqrt{21}}{2}\right) y+21=0 \\
& x^{2}+y^{2}-10 x \pm 2 \sqrt{21} y+21=0
\end{aligned}
$$

বিক্প প্র্জ্মাতি : ধরি , y-অক্ষকে স্স্ করে এরূপ বৃচ্জের সমীকরণ $(x-h)^{2}+(y-k)^{2}=h^{2}$

$$
\begin{equation*}
\Rightarrow x^{2}+y^{2}-2 h x-2 k y+k^{2}=0 . . \tag{1}
\end{equation*}
$$

(1) বৃষটি $(3,0)$ ও $(7,0)$ বি্দুগামী ।
$9-6 h+k^{2}=0 \cdots \cdots$ (2) এব!
$49-14 h+k^{2}=0 \cdots \cdots$ (3)
(2) $-(3) \Rightarrow-40+8 \mathrm{~h}=0 \Rightarrow \mathrm{~h}=5$
(2) $এ \mathrm{~h}=5$ বসিয়ে পাই, $9-30+k^{2}=0$
$\Rightarrow k^{2}=21 \Rightarrow k= \pm \sqrt{21}$
(1) এ h ও k এর মান বসিয়ে পাই,

$$
x^{2}+y^{2}-10 x \pm 2 \sqrt{21} y+21=0
$$

7(e) $(1,1)$ ४ $(2,2)$ বিস্দू দूইটি मिয়ে জতিক্মমকারী
 দেখাও যে, এরৃপ দুইঁটি বৃৃ পাওয়া যাবে। [য.'০৩] স়্মাষান খলিফার নিয়মানুসারে ধরি, (lll) ও $(2,2)$ ক্দ্দুগামী বৃত্ত্রের সমীকরণ ,

$$
\begin{aligned}
& (x-1)(x-2)+(y-1)(y-2)+ \\
& k\{(x-1)(1-2)-(y-1)(1-2)\}=0
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{k}(-\mathrm{x}+\mathrm{l}+\mathrm{y}-1) & =0 \\
\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+(-3-\mathrm{k}) \mathrm{x} & +(-3+\mathrm{k}) \mathrm{y} \\
& +4=0 \cdots(1
\end{aligned}
$$

(1) বৃઉটির কেস্দ্র $\left(\frac{k+3}{2}, \frac{3-k}{2}\right)$ এবং

ব्यागाध $=\sqrt{\left(\frac{k+3}{2}\right)^{2}+\left(\frac{3-k}{2}\right)^{2}-4}$
$=\sqrt{\frac{k^{2}+6 k+9+k^{2}-6 k+9-16}{4}}$
$=\sqrt{\frac{2\left(k^{2}+1\right)}{4}}=\sqrt{\frac{k^{2}+1}{2}}$
প্রশ্নমতে, $\sqrt{\frac{k^{2}+1}{2}}=1 \Rightarrow k^{2}+1=2$
$\Rightarrow \mathrm{k}^{2}=1 \Rightarrow \mathrm{k}= \pm 1$
\therefore निর্ণেয় বৃত্তের সমীকরণ,
$\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{x}-2 \mathrm{y}+4=0$, यथन $\mathrm{k}=1$
जবং $x^{2}+y^{2}-2 x-4 y+4=0$, যখন $k=-1$
8.(a) এরূপ বৃজ্েের সমীকরণ নির্ণয় কর্ন যা মুণক্স্দু
 जক্যার বাসাস্ধ 5 जকক।
[য.'০৫; ব.'১১] সমাধান নির্ণেয় বৃত্তি মূল্ণি্দ্মু থেকে 2 একক দূরে x-অकকে দুইটি ক্দ্দুতে ছেদ বরে বলে তা $(2,0)$ ও ($-2,0)$ मिয়ে অতিক্রম করে।
খলিফার নিয়মানুসারে ধরি, (2 0) ও $(-2,0)$ ক্ন্দুগামী বৃত্তের সমীকরণ ,

$$
\begin{aligned}
& (x-2)(x+2)+(y-0)(y-0)+ \\
& k\{(x-2)(0-0)-(y-0)(2+2)\}=0 \\
\Rightarrow & x^{2}-4+y^{2}+k(-4 y)=0 \\
\Rightarrow & x^{2}+y^{2}-4 k y-4=0 \cdots(1)
\end{aligned}
$$

(1) বৃত্তটির কেন্দ্র $(0,2 k)$ এবং

ब्याসাধ $=\sqrt{0^{2}+(2 k)^{2}+4}=\sqrt{4 k^{2}+4}$
প্রশ্নমতে, $\sqrt{4 k^{2}+4}=5 \Rightarrow 4 \mathrm{k}^{2}+4=25$
$\Rightarrow 4 \mathrm{k}^{2}=21 \Rightarrow \mathrm{k}= \pm \frac{\sqrt{21}}{2}$
k এর মান (1) এ বসিয়ে পই,

$$
\begin{aligned}
& \mathrm{x}^{2}+\mathrm{y}^{2}-4\left(\pm \frac{\sqrt{21}}{2}\right) \mathrm{y}-4=0 \\
& x^{2}+y^{2} \pm 2 \sqrt{21} y-4=0 \text { (Ans.) }
\end{aligned}
$$

8(b) এরূপ বৃc্টের সমীকরণ নির্ণয় কন যা y-অঋককে $(0, \sqrt{3})$ सिम्मूতে স্গ্ করে এবৃ $(-1,0)$ কিन्मू দিয়ে অতিক্মম করে। বৃ刃টির কেন্দ্র ৪ ব্যাসাৰ নির্ণয় কন্ন।
[ঢ.'০৬; য.'১০]

$x^{2}+y^{2}+2 \mathrm{~g} x+2 \mathrm{fy}+\mathrm{c}=0$
(1) বৃত্তটি y-অক্ষকে $(0, \sqrt{3})$

ক্ন্দুতে স্র্ করে।
$\mathrm{f}^{2}=\mathrm{c}$ এবং
$-\mathrm{f}=\sqrt{3}$
$\Rightarrow \mathrm{f}=-\sqrt{3}$
$c=(-\sqrt{3})^{2}=3$
आাবার, (1) বৃত্তটি $(-1,0)$ ক্নিগুামী।
$1+0-2 \mathrm{~g}+0+\mathrm{c}=0$
$\Rightarrow 1-2 \mathrm{~g}+3=0 \Rightarrow \mathrm{~g}=2$
নির্ণেয় বৃত্তের সমীকরণ,

$$
x^{2}+y^{2}+4 x-2 \sqrt{3} y+3=0
$$

২য় অশ্প ঃ বৃত্তটির কেন্দ্র $(-\mathrm{g},-\mathrm{f})=(-2, \sqrt{3})$ এชং ব্যাসাধ $\sqrt{g^{2}+f^{2}-c}=\sqrt{4+3-3}=2$
8(c) এরূপ বৃส্টের সমীকরণ निণ্য কর या x-ब中কে
$(2,0)$ কিস্দুতে স্স্র করে এবए $(-1,9)$ বি্দू मिয়ে অতিক্মম বরে।
[य.’००; চ.'○৩]
সমাধানঃ ধরি, বৃত্তের সমীকরণ,
$x^{2}+y^{2}+2 \mathrm{~g} x+2 \mathrm{fy}+\mathrm{c}=0 \cdots$ (1)
(1) বৃতটি x-অক্ষকে $(2,0)$ ব্দ্দুতে স্পশ করে।

$$
\mathrm{g}^{2}=\mathrm{c} \text { এবং }-\mathrm{g}=2
$$

$\Rightarrow \mathrm{g}=-2$
$\mathrm{c}=(2)^{2}=4$
জাবার, (1) বৃত্তটি
$(-1,9)$ ক্দি দিয়ে অতিক্রম করে।

$$
1+81-2 g+18 f+c=0
$$

$\Rightarrow 82+4+18 \mathrm{f}+4=0$
[c ও g এর মান বসিয়ে।]
$\Rightarrow 18 \mathrm{f}=-90 \Rightarrow \mathrm{f}=-5$
নির্ণেয় বৃত্তের সমীকরণ,

$$
x^{2}+y^{2}-4 x-10 y+4=0 \text { (Ans.) }
$$

[MCQ এর बন্য,

$$
\left.\frac{(x-2)^{2}+(y-0)^{2}}{y}=\frac{(-1-2)^{2}+(9-0)^{2}}{9}\right]
$$

आাবার，（1）বৃᄌ্তটি y－অफ
থেকে 6 একক দীর এবটি জ্যা
কর্তন করে।

$$
2 \sqrt{f^{2}-c}=6 \Rightarrow \sqrt{f^{2}-16}=3
$$

$\Rightarrow \mathrm{f}^{2}-16=9 \Rightarrow \mathrm{f}^{2}=25 \Rightarrow \mathrm{f}= \pm 5$
निর্ণেয় বৃত্তের সমীকরণ，

$$
x^{2}+y^{2}-8 x \pm 10 y+16=0 \text { (Ans.) }
$$

9．（c）$(-4,3)$ в $(12,-1)$ बिन्दू দूইটির সशযোগ রেোকে ব্যাস ষ্ররে অষ্किত বৃচ্তের সমীক্রণ নিণ্য কন।

 সমা氏ান ：$(-4,3)$ ও $(12,-1)$ বিদ্দু দুইটির সৃযোগ রেখাকে ব্যাস ধরে অষ্কিত বৃত্তের সমীকরণ，

$$
\begin{aligned}
& (x+4)(x-12)+(y-3)(y+1)=0 \\
\Rightarrow & x^{2}-8 x-48+y^{2}-2 y-3=0 \\
\Rightarrow & x^{2}+y^{2}-8 x-2 y-51=0 \text { (Ans.) }
\end{aligned}
$$

$$
\text { ২য় অश्य } 8 x^{2}+y^{2}-8 x-2 y-51=0 \text { কে }
$$

$$
x^{2}+y^{2}+2 \mathrm{~g} x+2 \mathrm{fy}+\mathrm{c}=0 \text { এর সজ্েে তুলনা }
$$ করে পাই， $\mathrm{g}=-4, \mathrm{f}=-1$ এবং $\mathrm{c}=-51$

9（d）প্রমাণ কর যে，$(-2,3)$ ® $(3,-4)$ বিস্দू मুইটির সৃ্বোগ রেখাকে ব্যাস ধরে অষ্কিত বৃৰ্জের সमीক्तण $(x+2)(x-3)+(y-3)(y+4)=0$ প্रমাণ：

ধরি，ব্যাসের প্রান্ত ক্দ্দু দুইটি $\mathrm{A}(-2,3)$ ఆ $\mathrm{B}(3$ ， －4）এবং $P(x, y)$ পরিধির উপর যেকোন একটি কिम्मू।
PA এরर PB ব্যেগ করি। যেহেতু AB ব্যাíস， $\angle \mathrm{APB}$ একঢ় অর্ধবৃउग्ष কোণ। $\therefore \angle \mathrm{APB}=90^{\circ}$ （AP রেখার ঢা ）$\times($ BP রেখার ঢাল $)=-1$

$$
\begin{aligned}
& =2 \sqrt{1^{2}-(-51)}=2 \sqrt{52}=4 \sqrt{13}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \frac{y-3}{x+2} \times \frac{y+4}{x-3}=-1 \\
\Rightarrow & (y-3)(y+4)=-(x+2)(x-3) \\
& (x+2)(x-3)+(y-3)(y+4)=0
\end{aligned}
$$

（Proved）
10．এরূभ বৃত্তের সমীকরণ নিণ্য কর যা উভয় অককে স্পর্শ করে এবে $(1,8)$ বিদ্দু দিয়ে ৫তিब্मম করে। ［চ．＇০১，＇০৭；য．＇০৩ ；মা．বো．＇০৬；সি．＇০১；জূ．＇১২］ সমাধান ঃ ধরি，বৃত্তটির সমীকরণ $(x-h)^{2}+(y-k)^{2}=r^{2} \cdots$
（1）বৃভটি উভয় অক্ষকে স্স্ণ করে।
$\mathrm{k}=\mathrm{h}$ এবং $\mathrm{r}=|\mathrm{h}|$
（1）হতে পাই，

$$
(x-h)^{2}+(y-h)^{2}=|h|^{2}
$$

$$
\Rightarrow x^{2}-2 h x+h^{2}+y^{2}-2 h y+h^{2}=h^{2}
$$

$$
\Rightarrow x^{2}+y^{2}-2 h x-2 h y+h^{2}=0 \cdots \text { (2) }
$$

या $(1,8)$ बিন্দু দিয়ে অতিক্রম করে।

$$
1+64-2 h-16 h+h^{2}=0
$$

$\Rightarrow h^{2}-18 \mathrm{~h}+65=0$
$\Rightarrow(h-5)(h-13)=0 \therefore h=5,13$
নির্ণেয় বৃত্大ের সমীকরণ，
$\mathrm{x}^{2}+\mathrm{y}^{2}-10 \mathrm{x}-10 \mathrm{y}+25=0$ এ
$x^{2}+y^{2}-26 x-26 y+169=0$
11．（a）এबটि বৃজ্জের সমীক্নণ নির্ণ ক্র যার बেস্দ্র $(6,0)$ जब या $x^{2}+y^{2}-4 x=0$ दृত্刃 $\otimes x=3$
 ＇০৮，＇১২；চ．＇০৮；মা．＇০৯，＇১৪；য．＇১৩；দি．＇১৪］

সমাধান ঃ ধরি，প্রদত্ত বৃত্ত ও রেখার ছেদব্দি দিয়ে যায় এরৃপ বৃচ্টের সমীকরণ $x^{2}+y^{2}-4 x+\mathrm{k}(x-3)=0$ $\Rightarrow x^{2}+y^{2}+(-4+\mathrm{k}) x-3 \mathrm{k}=0 \cdots$（1）
（1）বৃত্তের কেন্দ্র $\left(-\frac{k-4}{2}, 0\right)$ ．
প্রশ্নমতে ，বৃত্তের ক্স্দ্র $(6,0)$ ．

$$
-\frac{k-4}{2}=6 \Rightarrow \mathrm{k}-4=-12 \therefore \mathrm{k}=-8
$$

निিক্ণে বৃত্তের সমীকরণ，

$$
\begin{aligned}
& x^{2}+y^{2}+(-4-8) x-3 \cdot(-8)=0 \\
& x^{2}+y^{2}-12 x+24=0 \text { (Ans.) }
\end{aligned}
$$

11（b）একটি বৃত্তের সমীক্নণ निর্ণয় কর যা মূলকিস্দू जबर $x^{2}+y^{2}-2 x-4 y-4=0$ বৃठ ® $2 x+3 y+1=0$ রেখার হেদ কিদ্দू দিয়ে মায়।
［य．＇০২；সি．＇০২；ব．＇০৭；চ．＇১১］
সমাষান 8 ধরি，প্রদত্ত বৃত্ত এবং রেথার ছেদক্দিদ্দিয়ে यায় এরূপ বৃত্তের সমীকরণ，$x^{2}+y^{2}-2 x-4 y-4$ $+\mathrm{k}(2 x+3 y+1)=0$
（1）বৃৰ্তটি মূল্বি্দু $(0,0)$ দিয়ে অতিক্রম করে।
$-4+k=0 \Rightarrow k=4$
（1）$\wedge \mathrm{k}$ এর মান বসিয়ে পাই， $x^{2}+y^{2}-2 x-4 y-4+8 x+12 y+4=0$
$\Rightarrow x^{2}+y^{2}+6 x+8 y=0$（Ans．）
 $(0,3)$ जবर या $x^{2}+y^{2}-4 y=0$ दुख ४ $y-2=0$ ब্রেথায্ন হেদ কিস্দু দিত্রে যায়।
［ธ．＇०২］ সমাধান ：ধরি，প্রদত্ত বৃত্ত ও রেখার ছেদব্দ্দু দিয়ে যায় এরৃপ বৃส্তের সমীকরণ $x^{2}+y^{2}-4 y+\mathrm{k}(y-2)=0$ $\Rightarrow x^{2}+y^{2}+(-4+\mathrm{k}) y-2 \mathrm{k}=0 \cdots$（1）
（1）বৃৰ্েের কেন্দ্র $\left(0,-\frac{k-4}{2}\right)$ ．
প্রশ্নমতে ，বৃজ্তের কেন্দ্র $(0,3)$ ．

$$
-\frac{k-4}{2}=3 \Rightarrow \mathrm{k}-4=-6 \therefore \mathrm{k}=-2
$$

निর্ণ্ণে বৃত্তের সমীকরণ，

$$
\begin{aligned}
& x^{2}+y^{2}+(-4-2) y-2 .(-2)=0 \\
& x^{2}+y^{2}-6 x+4=0 \text { (Ans.) }
\end{aligned}
$$

12．（a）फেখাও যে， $\mathrm{A}(1,1)$ বিন্দুটি $x^{2}+y^{2}+$ $4 x+6 y-12=0$ বৃৰ্大ের উপ্র অবস্থিত। A
 ［ঢ．＇১০；य．＇০৭；ষ．，，বা．，’০৯；मि．＇১২；ব．＇১৩；চ．＇১৪］ প্রমাণ \＆ধরি， $\mathrm{f}(\mathrm{x}, \mathrm{y}) \equiv x^{2}+y^{2}+4 x+6 y-12=0$

$$
\begin{aligned}
\mathrm{f}(1,1) & =1^{2}+1^{2}+4.1+6.1-12 \\
& =1+1+4+6-12=0
\end{aligned}
$$

$\mathrm{A}(1,1)$ ব্দ্দুটি প্রদত্ত বৃজ্জের উপর অবস্থিত।
২য় জश্ণ：প্রদত্ত বৃচ্তের ক্লেন্দ্র $=\left(-\frac{4}{2},-\frac{6}{2}\right)=(-2,-3)$ ধরি， $\mathrm{A}(1 \quad 1)$ বিদ্দুগামী ব্যাসের অপর প্রাল্তক্দ্দুর $B(\alpha, \beta)$ ．
$\frac{1+\alpha}{2}=-2 \Rightarrow 1+\alpha=-4 \Rightarrow \alpha=-5$
এবং $\frac{1+\beta}{2}=-3 \Rightarrow 1+\beta=-6 \Rightarrow \beta=-7$
ব্যালের অপর প্রান্তবিন্দুর স্থানাক্ক $(-5,-7)$
12 （b）$x^{2}+y^{2}-8 x+6 y+21=0$ বৃष্টের বর্পিত বে ব্যাসটি $(2,5)$ बি্দू দিয়ে जতিক্মম করে তার্গ সমীক্রণ निর্ণ্য কর।
［玉．＇०১］ সমাধান ः প্রদত বৃত্ত $x^{2}+y^{2}-8 x+6 y+21=0$ এর কেন্দ্রের স্পানাজ্ক $=\left(-\frac{-8}{2},-\frac{6}{2}\right)=(4,-3)$ $(2,5)$ बिন্দু ও কেন্দ্র $(4,-3)$ দিত্যে অতিক্রম করে এরূপ ব্যাসের সমীকরণ，$\frac{x-2}{2-4}=\frac{y-5}{5+3}$
$\Rightarrow 8 x-16=-2 y+10 \Rightarrow 8 x+2 y=26$
$4 x+y=13$（Ans．）
12 （c）$x^{2}+y^{2}=b(5 x-12 y)$ বৃส্大ের বর্ধিত বে ব্যাসটি মুণকিস্দू দিয়ে অতিক্মম করে তার সমীক্রণ নির্ণয় क्र।
［প্র．E．भ．＇$b \Delta$ ，＇08］ সমাथान 』 প্রদত্ত বৃত্ত $x^{2}+y^{2}=b(5 x-12 y)$
$\Rightarrow x^{2}+y^{2}-5 \mathrm{bx}+12 \mathrm{by}=0 \cdots$（1）
（1）বৃচ্জের কেন্দ্র $\left(-\frac{-5 b}{2},-\frac{12 b}{2}\right)=\left(\frac{5 b}{2}, 6 b\right)$
（1）বৃત্大ের বর্ধিত বে ব্যাসটি মূলক্লিদ্দু দিয়ে जতিক্সম করে তার সমীকরণ $\mathrm{y}=\frac{6 b}{5 b / 2} x \Rightarrow \mathrm{y}=\frac{12}{5} x$

$$
12 x+5 y=0(\text { Ans. })
$$

12 （d）$(1,1)$ বिम्मूগাयী এবটি বৃত্জের সমীকब্নণ
 $x+y=3$ রেথ্যান্ন উপ্ন প্রथম চতুর্ডাগে অবস্শিত।
［ç．＇ob］
সমাধান ঃ ধরি，বৃত্তের সমীকরণ
$x^{2}+y^{2}+2 g x+2 f y+c=0 \cdots$
（1）বৃত্তটি x－অक্ষকে স্পর্গ করে।

$$
\begin{equation*}
\mathrm{c}=\mathrm{g}^{2} \cdots(2) \tag{1}
\end{equation*}
$$

（1）বৃওটির কেন্দ্র $(-\mathrm{g},-\mathrm{f}), x+y=3$ রেথার উপর প্রথম চতুর্ভাগে অবস্গিত।

$$
\begin{equation*}
-\mathrm{g}-\mathrm{f}=3 \Rightarrow \mathrm{f}=-\mathrm{g}-3 \tag{3}
\end{equation*}
$$

জাবার，বৃও্টটি $(1,1)$ বিন্দুগামী ।
$1+1+2 \mathrm{~g}+2 \mathrm{f}+\mathrm{c}=0$
$\Rightarrow 2+2 \mathrm{~g}+2(-\mathrm{g}-3)+\mathrm{g}^{2}=0$
［（2）ও（3）দারা］
$\Rightarrow 2+2 \mathrm{~g}-2 \mathrm{~g}-6+\mathrm{g}^{2}=0$
$\Rightarrow \mathrm{g}^{2}=4 \Rightarrow \mathrm{~g}=-2$
［ প্রৃম চতুর্ডাগে g Bf ঋণাতাক।］
এখन（2）হতে পাই， $\mathrm{c}=(-2)^{2}=4$ এবং
（3）হতে পাই， $\mathrm{f}=2-3=-1$
\therefore निর্চেয় বৃচ্তের সমীকরণ，

$$
x^{2}+y^{2}-4 x-2 y+4=0
$$

12（e）$\frac{1}{2} \sqrt{10}$ ব্যাসার্জयিশিষ্ট এঝটি বৃচ্ট $(1,1)$ ষিদ্দू मिত্যে «তিক্মম করে जবर दৃउणित কেস্দ্র $y=3 x-7$

 সমাধান 8 ধরি，$\frac{1}{2} \sqrt{10}$ ব্যাসাধবিশিষ্ট বৃত্টের সমীকরণ $(x-h)^{2}+(y-k)^{2}=\left(\frac{1}{2} \sqrt{10}\right)^{2}=\frac{5}{2}$ $\Rightarrow 2\left(x^{2}-2 h x+h^{2}+y^{2}-2 k y+k^{2}\right)=5$ ． $y=3 x-7$ রেখার উপর（1）বৃষ্জের কেস্দ্র (h, k) बयश्थिज। $\therefore \mathrm{k}=3 \mathrm{~h}-7 \cdots$（2）
（1）বৃত্ভ $(1,1)$ বিদ্দু দিয়ে অতিক্রম করে।
$2\left(1-2 h+h^{2}+1-2 k+k^{2}\right)=5$
$\Rightarrow 2 \mathrm{~h}^{2}+2 \mathrm{k}^{2}-4 \mathrm{~h}-4 \mathrm{k}=1$
$\Rightarrow 2 h^{2}+2(3 h-7)^{2}-4 h-4(3 h-7)=1$
［（2）দ্ञारা］
$\Rightarrow 2 h^{2}+2\left(9 h^{2}-42 h+49\right)-4 h-$ $12 h+28-1=0$
$\Rightarrow 2 h^{2}+18 h^{2}-84 h+98-4 h$ $-12 h+28-1=0$
$\Rightarrow 20 \mathrm{~h}^{2}-100 \mathrm{~h}+125=0$
$\Rightarrow 4 h^{2}-20 h+25=0 \Rightarrow(2 h-5)^{2}=0$
$\Rightarrow \mathrm{h}=\frac{5}{2}$ ．（2）शতে পाई， $\mathrm{k}=3 \frac{5}{2}-7=\frac{1}{2}$
（1）$এ \mathrm{~h}$ ß k এর মান বসিয়ে পাই，

$$
\begin{aligned}
& 2 x^{2}-4 \cdot \frac{5}{2} x+2 \cdot \frac{25}{4}+2 y^{2}-4 \frac{1}{2} y+2 \cdot \frac{1}{4}=5 \\
& \Rightarrow 8 x^{2}-40 x+50+8 y^{2}-8 y+2=20 \\
& \Rightarrow 8 x^{2}+8 y^{2}-40 x-8 y+32=0
\end{aligned}
$$

$$
x^{2}+y^{2}-5 x-y+4=0 \text { (Ans.) }
$$

 সমীক্রণ निর্য় ক্ন।
［य．＇o8］ সমাধান ধরি，OABC বগ্গের এবটি শীর্ষ মূলब্স্দু $O(0,0)$ এবং x－অক্ষের উপর এর বিপরীত শীর্ষ B जयश्थिত।
OAB সমকোগী ত্রিজুজ্জ， $\mathrm{OB}^{2}=\mathrm{OA}^{2}+\mathrm{AB}^{2}$ $=(4 \sqrt{2})^{2}+(4 \sqrt{2})^{2}$

$$
=4 \sqrt{2}]
$$

$=32+32=64$

$\mathrm{OB}= \pm 8=\mathrm{B}$ বিদ্দুর ভूজ।
B বিদ্দুর স্পানাष্क $(\pm 8,0)$
OB কে ব্যাস ধরে অষ্কিত নিণণ্ণে বৃত্তের সমীকরণ

$$
(x-0)(x \pm 8)+(y-0)(y-0)=0
$$

$\Rightarrow \mathrm{x}^{2} \pm 8 \mathrm{x}+\mathrm{y}^{2}=0$

$$
x^{2}+y^{2} \pm 8 x=0 \text { (Ans.) }
$$

13（b）b বাহूবিশিষ্ট OABC একটি ব氏। OA
 সমীক্নণ इবে $x^{2}+y^{2}=b(x+y)$ ．
［ঢा．＇০৫；द्रा．＇১০；ব．＇১৩］ প্রমাণ ：b বাহूবিশিষ OABC ব称 x ও y－অஈ্巾 বরাবর যথাক্রম্ OA B OC जবস্খিত হলে A B C এর স্থানাজ্क যथाबमম $(b, 0)$ ఆ $(0, b)$ ．
বর্গের কণ AC কে ব্যাস ধরে অঙ্কিত পরিবৃন্তের সমীকরণ $(x-b)(x-0)+$

$$
(y-0)(y-b)=0
$$

 $\Rightarrow \mathrm{x}^{2}-\mathrm{bx}+\mathrm{y}^{2}-\mathrm{by}=0$

$$
x^{2}+y^{2}=\mathrm{b}(x+y) \text { (Provsd) }
$$

 প্রত্যেকটির কেস্দ্র $(3,4)$ जবर याता $x^{2}+y^{2}=9$ বৃভকে স্সশ্র．করে।
［य．＇Jo］

সমাধান ঃ প্রদত্ত বৃত্ত $x^{2}+y^{2}=9 \cdots$ (i) এর কেন্দ্র $\mathrm{A}(0,0)$ এবং ব্যাসাধ $r_{1}=3$ ধরি, নির্ণেয় বৃন্জের কেন্দ্র $\mathrm{B}(3,4)$ এবং ব্যাসাধ r_{2} বৃজ্দ্য় পস্সরকে বহিঃস্সভাবে স্শর্গ করলে,

$$
r_{1}+r_{2}=\mathrm{AB} \Rightarrow 3+r_{2}=\sqrt{3^{2}+4^{2}}=5
$$

$\Rightarrow r_{2}=2$
জাবার, বৃষ্টয় পস্পরকে বহিঃস্পভাবে স্পর্গ করলে,

$$
\begin{aligned}
r_{2}-r_{1} & =\mathrm{AB} \Rightarrow r_{2}-3=\sqrt{3^{2}+4^{2}}=5 \\
r_{2} & =8
\end{aligned}
$$

নির্ণেয় বৃত্ট দুইটির সমীকরণ,

$$
\begin{aligned}
& (x-3)^{2}+(y-4)^{2}=2^{2} \\
\Rightarrow & x^{2}+y^{2}-6 x-8 y+9+16-4=0 \\
& x^{2}+y^{2}-6 x-8 y+21=0 \text { এবং } \\
& (x-3)^{2}+(y-4)^{2}=8^{2} \\
\Rightarrow & x^{2}+y^{2}-6 x-8 y+9+16-64=0 \\
& x^{2}+y^{2}-6 x-8 y-39=0
\end{aligned}
$$

14.(b) $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c}$ रबে मেथাఆ बে, $x^{2}+y^{2}+$ $2 a x+c=0$ ® $x^{2}+y^{2}+2 b y+c=0$ 亿ुख দুইটি পরস্সর্নকে স্শর্গ ক্নবে।
[মা.’○৭]
প্রমাण : $x^{2}+y^{2}+2 a x+c=0$ বৃন্জের কেন্দ্র
$\mathrm{A}(-\mathrm{a}, 0)$ এবং ব্যাসাধ $r_{1}=\sqrt{a^{2}-c}$
$x^{2}+y^{2}+2 b y+c=0$ বৃส্েের কেন্দ্র $\mathrm{B}(0,-\mathrm{b})$ এবং ব্যাসাধ $r_{2}=\sqrt{b^{2}-c}$

বৃত্ঠ দুইটি পরস্পরকে স্পর্গ করলে,

$\mathrm{AB}=\left|r_{1} \pm r_{2}\right|$

$$
\begin{aligned}
\Rightarrow & \sqrt{a^{2}+b^{2}}=\left|\sqrt{a^{2}-c} \pm \sqrt{b^{2}-c}\right| \\
\Rightarrow & \mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{a}^{2}-\mathrm{c}+\mathrm{b}^{2}-\mathrm{c} \\
& \pm 2 \sqrt{\left(a^{2}-c\right)\left(b^{2}-c\right)} \text { [বগ্গ করে।] } \\
& 2 \mathrm{c}= \pm 2 \sqrt{\left(a^{2}-c\right)\left(b^{2}-c\right)} \\
\Rightarrow & \mathrm{c}^{2}=\left(a^{2}-c\right)\left(b^{2}-c\right)[\text { বগ করে।] } \\
\Rightarrow & \mathrm{c}^{2}=\mathrm{a}^{2} \mathrm{~b}^{2}-\mathrm{b}^{2} \mathrm{c}-\mathrm{a}^{2} \mathrm{c}+\mathrm{c}^{2} \\
\Rightarrow & \mathrm{~b}^{2} \mathrm{c}+\mathrm{a}^{2} \mathrm{c}=\mathrm{a}^{2} \mathrm{~b}^{2} \Rightarrow \frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c}
\end{aligned}
$$

$$
\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c} \text { इनে, প্রদত্ত রেখা দুইটি স্শর্শ }
$$ করবে।

15. $x=a(\cos \theta-1)$ जবए $y=a(\sin \theta+1)$ रচে, বৃত্তের কার্তেসীয় সমীকন্নণ, ব্যাসার্ধ ও কেন্দ্রের্র स्रानाळ निर्ণय्य কর।
সমাধান: $x=a(\cos \theta-1)=\mathrm{a} \cos \theta-\mathrm{a}$
$\Rightarrow \mathrm{a} \cos \theta=\mathrm{x}-\mathrm{a}$
আবার, $y=a(\sin \theta+1)=\mathrm{a} \sin \theta+\mathrm{a}$ $\Rightarrow a \sin \theta=y-a$ এখन, $a^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta=(x-a)^{2}+(y-a)^{2}$ $\therefore \quad(x-a)^{2}+(y-a)^{2}$, या বৃত্তणित কार्তেসীয় সমীকরণ । বৃত্তটির ব্যাসার্ধ a এবং কেন্দ্র $(a,-a)$ 16. ब্রদख শर্ড সिক্ধ করে এক্রপ বৃর্তের পোনাহ সमीক্रণ निर्ণय्य बत्र:

সমাধানः (a) $\left(4,30^{\circ}\right)$ কেন্দ্র ও 5 ব্যাসার্ধ বিশিষ্ট বৃত্তের পোলার সমীকরণ,

$$
\begin{aligned}
& 5^{2}=r^{2}+4^{2}-2 r \cdot 4 \cos \left(\theta-30^{0}\right) \\
\Rightarrow & 25=r^{2}+16-8 r \cos \left(\theta-\frac{\pi}{6}\right) \\
& r^{2}-8 r \cos \left(\theta-\frac{\pi}{6}\right)-9=0
\end{aligned}
$$

(b) $\left(3, \frac{3 \pi}{2}\right)$ কেন্দ্র ৫ 2 ব্যাসার্ধ বিশিষ বৃত্তের পোলার সমীকরণ,

$$
2^{2}=r^{2}+3^{2}-2 r \cdot 3 \cos \left(\theta-\frac{3 \pi}{2}\right)
$$

$\Rightarrow 4=\mathrm{r}^{2}+9-6 \mathrm{r} \cos \left(\frac{3 \pi}{2}-\theta\right)$
$\Rightarrow \mathrm{r}^{2}+5+6 \mathrm{r} \cos \theta=0$
(c) মনে করি, বৃত্তের ব্যাসার্ধ a. তাহলে বৃত্তের পোলার সমীকরণ, $a^{2}=\mathrm{r}^{2}+3^{2}-2 \mathrm{r} \cdot 3 \cos \left(\theta-0^{0}\right)$
$\Rightarrow a^{2}=\mathrm{r}^{2}+9-6 \mathrm{rcos}(\theta \cdots \cdots$
(1) বৃওটি পোল $\left(0,0^{0}\right)$ বিन्দूগামী বনে, $a^{2}=0^{2}+$ $9-6.0 \cos 0^{\circ} \Rightarrow a^{2}=9 \Rightarrow a=3$.

निर्ণেয় সমীকরণ, $9=r^{2}+9-6 r \cos \theta$
$\Rightarrow r^{2}=6 r \cos \theta \Rightarrow r=6 \cos \theta$
(d) মনে করি, বৃত্তের ব্যাসার্ধ p. তাহলে বৃত্তের পোলার সমীকরণ, $\mathrm{p}^{2}=\mathrm{r}^{2}+\mathrm{r}_{1}^{2}-2 \mathrm{rr}_{1} \cos \left(\theta-\theta_{1}\right) \cdots(1)$
(1) বৃওটি পোল $\left(0,0^{\circ}\right),\left(a, 0^{0}\right),\left(b, 90^{\circ}\right)$

বিন্দूগামীं।

$$
\begin{align*}
& \mathrm{p}^{2}=0^{2}+\mathrm{r}_{1}^{2}-2 \cdot 0 \cdot \mathrm{r}_{1} \cos \left(0^{0}-\theta_{1}\right) \\
\Rightarrow & \mathrm{p}^{2}=\mathrm{r}_{1}^{2} \Rightarrow \mathrm{p}=\mathrm{r}_{1} \cdots \cdots(2) \tag{2}\\
& \mathrm{p}^{2}=a^{2}+\mathrm{r}_{1}^{2}-2 \cdot a \cdot \mathrm{r}_{1} \cos \left(0^{0}-\theta_{1}\right) \\
\Rightarrow & a^{2}=2 a \mathrm{r}_{1} \cos \theta_{1},\left[\because \mathrm{p}=\mathrm{r}_{1}\right] \\
\Rightarrow & a=2 \mathrm{r}_{1} \cos \theta_{1} \cdots \cdots(3) \tag{3}
\end{align*}
$$

এবং $\mathrm{p}^{2}=b^{2}+\mathrm{r}_{1}^{2}-2 . b \cdot \mathrm{r}_{1} \cos \left(90^{0}-\theta_{1}\right)$
$\Rightarrow b^{2}=2 b \mathrm{r}_{1} \sin \theta_{1},\left[\because \mathrm{p}=\mathrm{r}_{1}\right]$
$\Rightarrow b=2 \mathrm{r}_{1} \sin \theta_{1}$
(1) इতে পাই, $r_{1}^{2}=r^{2}+r_{1}^{2}$

$$
-2 r r_{1}\left(\cos \theta \cos \theta_{1}+\sin \theta \sin \theta_{1}\right)
$$

$r^{2}=r\left(\cos \theta .2 r_{1} \cos \theta_{1}+\sin \theta .2 r_{1} \sin \theta_{1}\right)$
$r=a \cos \theta+b \sin \theta$

(a) সমাধানः প্রদত্ত বৃত্তের সমীকরণ $r^{2}-4 \sqrt{3} r$ $\cos \theta-4 \mathrm{r} \sin \theta+15=0$ কে পোলার স্থানাক্কে বৃত্তের সাধারণ সমীকরণ $r^{2}+2 r(g \cos \theta+f$ $\sin \theta)+\mathrm{c}=0$ এর সাথে তুলনা করে পাই, $\mathrm{g}=$ $-2 \sqrt{3}, \mathrm{f}=-2, \mathrm{c}=15$.

$$
\sqrt{g^{2}+f^{2}}=\sqrt{12+4}=4, \tan ^{-1} \frac{-f}{-g}=
$$

$\tan ^{-1} \frac{2}{2 \sqrt{3}}=\tan ^{-1} \frac{1}{\sqrt{3}}=\frac{\pi}{6}$
निর্ণেয় কেন্দ্র $\left(4, \frac{\pi}{6}\right)$ এবং ব্যাসার্ধ $=$ $\sqrt{g^{2}+f^{2}-c}=\sqrt{12+4-15}=1$
(b) $\mathrm{r}=2 \mathrm{a} \cos \theta \Rightarrow \mathrm{r}^{2}-2 \mathrm{ra} \cos \theta=0$ কে てোলার স্থানাক্ক বৃত্তের সাধারণ সমীকরণ $r^{2}+2 r(g$ $\cos \theta+\mathrm{f} \sin \theta)+\mathrm{c}=0$ এর সাথে ঢুলনা করে পाই, $\mathrm{g}=-\mathrm{a}, \mathrm{f}=0, \mathrm{c}=0$.

$$
\sqrt{g^{2}+f^{2}}=\sqrt{a^{2}+0}=a, \tan ^{-1} \frac{-f}{-g}=
$$

$$
\tan ^{-1} \frac{0}{a}=\tan ^{-1} 0=0^{0}
$$

निর্ণেয় কেন্দ্র $\left(a, 0^{0}\right)$ এবং ব্যাসার্ধ $=$ $\sqrt{a^{2}+0^{2}-0}=a$
 মৃनবিन्मू लেকে ধनाज্যক দिকে 7 जকक দूর্রে অবश्रिण।
 निर्ণय्य कर।
সমাধানः প্রশ্নমতে নির্ণেয় বৃওটির কেন্দ্র $(7,0)$ এবং ব্যাসার্ধ $=4$.

বৃত্তটির পোলার সমীকরণ,

$$
4^{2}=r^{2}+7^{2}-2 r .7 \cos (\theta-0)
$$

$\Rightarrow 16=r^{2}+49-14 r \cos \theta$
$r^{2}-14 \mathrm{r} \cos \theta+33=0$ (Ans.)

 कर।

সমাধান: প্রশ্নমতে নির্ণেয় বৃত্তিির কেন্দ্র $\left(8, \frac{\pi}{2}\right)$ এবং ব্যাসার্ধ $=5$.

বৃতটির পোলার সমীকরণ,

$$
5^{2}=r^{2}+8^{2}-2 r .8 \cos \left(\theta-\frac{\pi}{2}\right)
$$

$\Rightarrow 25=r^{2}+64-16 r \cos \left(\frac{\pi}{2}-\theta\right)$
$r^{2}-16 r \sin \theta+39=0$.
(c) এবটি বৃজ্জের কেন্দ্র $\left(3,30^{\circ}\right)$ এবर বৃउটি x -
 कब।

সমাধানः প্রশ্নমতে নির্ণেয় বৃত্তটির কেন্দ্র $\left(3,30^{\circ}\right)$ এবং ব্যाসার্ধ $=C D=3 \sin 30^{\circ}=\frac{3}{2}$

বৃত্তটির পোলার সমীকরণ,
$\left(\frac{3}{2}\right)^{2}=r^{2}+3^{2}-2 \mathrm{r} .3 \cos \left(\theta-30^{0}\right)$
$\Rightarrow \frac{9}{4}=\mathrm{r}^{2}+9-6 \mathrm{rcos}\left(\theta-30^{\circ}\right)$
$\Rightarrow 9=4 \mathrm{r}^{2}+36-24 \mathrm{rcos}\left(\theta-30^{\circ}\right)$
$4 \mathrm{r}^{2}-24 \mathrm{r} \cos \left(\theta-30^{\circ}\right)+27=0$
(d) একঢि বৃত্তের্র কেন্দ্র $\left(4, \frac{\pi}{3}\right)$ এবং বৃखটি y -
 बर।

সমাধান: প্রশ্নমতেં নির্ণেয় বৃত্তির কেন্দ্র $\left(4, \frac{\pi}{3}\right)$ এবং ব্যाসার্ধ $=O B=4 \cos \frac{\pi}{3}=4 \cdot \frac{1}{2}=2$

বৃত্তটির পোলার সমীকরণ,

$$
\begin{aligned}
& (2)^{2}=r^{2}+4^{2}-2 r \cdot 4 \cos \left(\theta-\frac{\pi}{3}\right) \\
\Rightarrow & 4=r^{2}+16-8 r \cos \left(\theta-\frac{\pi}{3}\right) \\
& r^{2}-8 r \cos \left(\theta-\frac{\pi}{3}\right)+12=0
\end{aligned}
$$

19. यमि বৃষ্জের উপরग্প $(4,1)$ বিস্দूট $(1+5$ $\cos \theta,-3+5 \sin \theta$) घারা প্রबাশিত হয়, তবে এ

সমাষান : প্রশ্নমতে
$4=1+5 \cos \theta, 1=-3+5 \sin \theta$
$\Rightarrow 5 \cos \theta=3,5 \sin \theta=4$
$\Rightarrow \cos \theta=\frac{3}{5}, \sin \theta=\frac{4}{5}$
आমরা জানি, প্রদত বিন্দूগামী ব্যাসের অপর প্রান্তে জন্য θ এর মান 180° বৃদ্ধি পায়ে।

অপর প্রান্তের জন্য,
$\cos \left(180^{\circ}+\theta\right)=-\cos \theta=-\frac{3}{5}$ এबए
$\sin \left(180^{\circ}+\theta\right)=-\sin \theta=-\frac{4}{5}$
$(4,1)$ বিন্দুগামী ব্যাসের অপর প্রান্ত্রে স্থানাক্ $\left(1+5 \times\left(-\frac{3}{5}\right),-3+5 \times\left(-\frac{4}{5}\right)\right)$
$=(1-3,-3-4)=(-2,-7)$ (Ans.)
16(a) $r^{2}-4 \sqrt{3} r \cos \theta-4 r \sin \theta+15=0$ বৃত্তের কেন্দ্র ও ব্যাসার্ধ নির্ণয় কর।
সমাষান: পোলার স্থানাজ্কে বৃত্তের সাধারণ সমীকরণ $\mathrm{r}^{2}+2 \mathrm{r}(\mathrm{g} \cos \theta+\mathrm{f} \sin \theta)+\mathrm{c}=0$ उ প্রफত সমীকরণ $r^{2}-4 \sqrt{3} r \cos \theta-4 r \sin \theta+15=0$ पूलना কঞ্ পাই, $\mathrm{g}=-2 \sqrt{3}, \mathrm{f}=-2, \mathrm{c}=15$

$$
\begin{gathered}
\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}}=\sqrt{12+4}=4, \\
\sqrt{\mathrm{~g}^{2}+\mathrm{f}^{2}-\mathrm{c}}=\sqrt{12+4-15}=1 \\
\tan ^{-1} \frac{\mathrm{f}}{\mathrm{~g}}=\tan ^{-1} \frac{-2 \sqrt{3}}{-2}=\pi+\tan ^{-1} \sqrt{3} \\
=\pi+\frac{\pi}{6}=\frac{7 \pi}{6}
\end{gathered}
$$

\therefore বৃত্তের কেন্দ্রের স্থানাষ্ক $=\left(\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}}, \tan ^{-1} \frac{\mathrm{f}}{\mathrm{g}}\right)$
$=\left(4, \frac{7 \pi}{6}\right)$ এবং ব্যাসার্ধ $=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}=1$
16(b) $\left(4,30^{\circ}\right)$ কেন্দ্র ও 5 ব্যাসার্ধবিশিষ্ট বৃত্তের পালার সমীকরণ,
$5^{2}=\mathrm{r}^{2}+4^{2}-2 \mathrm{r} \times 4 \times \cos \left(\theta-30^{\circ}\right)$
$\Rightarrow r^{2}-8 r \cos \left(\theta-\frac{\pi}{6}\right)-9=0$

কাজ

১। এরূপ বৃজ্তের সমীকরণ নির্ণয় কর या প্রত্যেক অж্ষরেখাকে মুণবিদ্দू ৎেকে ধনাঅক দিকে 5 একক দূরজ্পে স্স্র করে।
সমাধানঃ নির্ণেয় বৃভট্টি প্রত্যেক অক্ষরেখাকে মূনক্দিম্দু থেকে ধনাতক দিকে 5 একক দূরত্বে স্প্র করে।
বৃওটির কেন্দ্র $(5,5)$
 এবং ব্যাসার্ধ $=|5|=5$ ．

বৃৰটির সমীকরণ $(x-5)^{2}+(y-5)^{2}=5^{2}$ $\Rightarrow \mathrm{x}^{2}-10 \mathrm{x}+25+\mathrm{y}^{2}-10 \mathrm{y}+25=25$

$$
x^{2}+y^{2}-10 x-10 y+25=0 \text { (Ans.) }
$$

२। দেখাও যে，$x^{2}+y^{2}-4 x+6 y+8=0$ जবए $x^{2}+y^{2}-10 x-6 y+14=0$ বৃ区 দूইটি প্নস্পরকে $(3,-1)$ সিপ্দুতে স্র্ণ করে।
প্রমাণ ：$x^{2}+y^{2}-4 x+6 y+8=0$ বৃד্তের কেস্দ্র $C_{1}(2,-3)$ এবং ব্যাসাধ $r_{1}=\sqrt{4+9-8}=\sqrt{5}$
$x^{2}+y^{2}-10 x-6 y+14=0$ বৃত্জের কেন্দ্র $C_{2}(5,3)$ এবং ব্যাসাধ $r_{2}=\sqrt{25+9-14}=\sqrt{20}$ $=2 \sqrt{5}$
ধরি，প্রদত্ত বি্দু $P(3,-1)$ ．
এचन $C_{1} \mathrm{P}=\sqrt{(2-3)^{2}+(-3+1)^{2}}=\sqrt{5}=r_{1}$
जবং $C_{2} \mathrm{P}=\sqrt{(5-3)^{2}+(3+1)^{2}}=\sqrt{20}$

$$
=2 \sqrt{5}=r_{2}
$$

$C_{1} C_{2}=\sqrt{(2-5)^{2}+(-3-3)^{2}}=\sqrt{9+36}$
$=\sqrt{45}=3 \sqrt{5}=\sqrt{5}+2 \sqrt{5}=C_{1} \mathrm{P}+C_{2} \mathrm{P}$
বৃত্তের ক্সে্দ্র দুইটি এবং $(3,-1)$ বিস্দু একই সরলরেখায় অবঙ্থিত।
অতএব；প্রদত্ত বৃত্ত দুইটি পরস্পরকে $(3,-1)$ বিস্দুতে স্প্গ করে।（ প্রমাণিত）

৩। দেখাও यে，$x^{2}+y^{2}-6 x+6 y-18=0$－
 অল্তःস্শভাবে স্শর্গ করে।

প্রया $8 x^{2}+y^{2}-6 x+6 y-18=0$ বৃ大্টের কেন্দ্র $\mathrm{A}(3,-3)$ এবং ব্যাসাধ $r_{1}=\sqrt{9+9+18}$ $=6$
$x^{2}+y^{2}-2 y=0$ বৃত্তের কেন্দ্র $\mathrm{A}(0,1)$ এবং ব্যाসাধ $r_{2}=\sqrt{0+1+0}=1$
এVन， $\mathrm{AB}=\sqrt{(3-0)^{2}+(-3-1)^{2}}=5$
এবং $r_{1}-r_{2}=6-1=5=\mathrm{AB}$
বৃত্ত দুইটি পরস্ররে অন্তঃস্থভাবে স্পশ
করে।
81 বৃত্তের পোলার সমীকরণ নির্ণয় কর যার কেন্দ্র
$\left(6, \frac{\pi}{4}\right)$ এবং ব্যাসার্ধ 5
©। দেथাও যে，$r=\operatorname{acos} \theta$ একটি বৃख যার কেন্দ্র $\left(\frac{a}{2}, 0\right)$ ও ব্যাসার্ধ $\frac{a}{2}$ ．

অতিব্রিক্ট প্রল্ন（সমাধানসহ）

1．ABCD বক্গের পর্বিবৃस্জের সমীক্রণ $x^{2}+y^{2}-5 x+8 y-39=0 . A(-1,3)$ হলে B, C ® D এর স্থানাট্థ নির্ণ্য ক্ন।
সমাধান ABCD বর্গের পরিবৃষ্ত $x^{2}+y^{2}-5 x+8 y-39=0$ এর কেস্দ্র $\left(\frac{5}{2},-4\right)$ হবে ABCD বর্গের AC ও BD কর্ণদ্ের ছেদব্দ্দু O．
ধরি， C এর স্থানাজ্ন (α, β)
AC এর মধ্যক্সিদ্দু $\left(\frac{5}{2},-4\right)$ ।

$\therefore \frac{\alpha-1}{2}=\frac{5}{2} \Rightarrow \alpha=5+1=6$

$$
\mathrm{A}(-1,3) \quad \mathrm{B}
$$

งヌং $\frac{\beta+3}{2}=-4 \Rightarrow \beta=-8-3=-11$
C এর স্যানাষ্ক $(6,-11)$ ．
ধরি，$A B$ বাহूর ঢাল m এবr $A B$ বाूू $A C$ কর্ণে সাণ্ে 45° কোণ উৎপন্ন করে ।
$\frac{m+2}{1-2 m}=\tan 45^{\circ}=1 \Rightarrow m+2=1-2 m$
$\Rightarrow 3 \mathrm{~m}=-1 \Rightarrow \mathrm{~m}=-\frac{1}{3}$
AB ও DC बाइूর ঢাল $\frac{1}{3}$.
$\mathrm{A}(-1,3)$ ব্দিদ্দুামী AB রেখার সমীকরণ
$y-3=-\frac{1}{3}(x+1) \Rightarrow 3 y-9=-x-1$
$\Rightarrow \mathrm{x}+3 \mathrm{y}-8=0$
$\mathrm{C}(6,-11)$ বিন্দুগামী (1) এর উপর লম্ম BC এর
সমীকরণ $3 \mathrm{x}-\mathrm{y}=18+11$
$\Rightarrow 3 x-y-29=0$
(1) • (2) এর ছেবি্দ্দু B এর স্থানাষ্ক
$=\left(\frac{-87-8}{-1-9}, \frac{-24+29}{-1-9}\right)=\left(\frac{19}{2},-\frac{1}{2}\right)$
$\mathrm{A}(-1,3)$ ব্দিগুগামী AB এর बম্ম AD এর সমীকরণ $3 x-y=-3-3$
$\Rightarrow 3 x-y+6=0 \cdots$
$C(6 \cdot,-11)$ ক্ন্দুগামী (3) এর উপর লম্ম CD এর সমীকরণ $x+3 y=6-33=-27$
$\Rightarrow x+3 y+27=0$
(3) ও (4) এর ছেদক্দ্দু D এর স্থানাক্ক

$$
=\left(\frac{-27-18}{9+1}, \frac{6-81}{9+1}\right)=\left(-\frac{9}{2},-\frac{15}{2}\right)
$$

2.(a)ABC সমবাহ्र ত্রिडूत्धে দूইটি শীর্যকিস্দू $\mathrm{A}(0,0)$ ® $\mathrm{B}(6,0)$ । ABC ब्रिडूधणित পরিবৃত্তের সমীকরণ নির্ণয় কর।
সমাধান ः ধরি, C শীর্ষের স্যানাজ्ब $(\alpha, \beta) . \mathrm{ABC}$ সমবাহू ত্রিজুজ বলে $\mathrm{AC}^{2}=\mathrm{BC}^{2}=\mathrm{AB}^{2}$
$\Rightarrow \alpha^{2}+\beta^{2}=(\alpha-6)^{2}+\beta^{2}$
$\Rightarrow \alpha^{2}+\beta^{2}=\alpha^{2}-12 \alpha+36+\beta^{2}$
$\Rightarrow 12 \alpha=36 \Rightarrow \alpha=3$
जाবाর, $\mathrm{AC}^{2}=\mathrm{AB}^{2} \Rightarrow \alpha^{2}+\beta^{2}=6^{2}$
$\Rightarrow 9+\beta^{2}=36 \Rightarrow \beta^{2}=27 \Rightarrow \beta= \pm 3 \sqrt{3}$
C শীर्षের স্থানাঙ্ক $(3, \pm 3 \sqrt{3})$.
ধরি, $\mathrm{A}(0,0)$ দিয়ে याয় এরূপ পরিবৃত্তের সমীক্রণ $x^{2}+y^{2}+2 g x+2 f y=0$
(1) বৃত্ত $\mathrm{B}(6,0)$ এবং $\mathrm{C}(3, \pm 3 \sqrt{3})$ বিদ্দুগামী।
$36+12 \mathrm{~g}=0 \Rightarrow \mathrm{~g}=-3$ এবং
$9+27+6 g \pm 6 \sqrt{3} f=0$
$36-18 \pm 6 \sqrt{3} \mathrm{f}=0 \Rightarrow \pm 6 \sqrt{3} \mathrm{f}=18$
$\Rightarrow \mathrm{f}= \pm \sqrt{3}$
(1) $\uparrow \mathrm{g}$ ७ f এর মান বসি<্যে পাই, $\mathrm{x}^{2}+\mathrm{y}^{2}-6 \mathrm{x} \pm 2 \sqrt{3} \mathrm{y}=0$ (Ans.)
2 (b) $3 x+4 y=24$ সরणत্রেथा जदर অष मूंইঢि
 निर्ণय़ क्न।
সयाधान \& ४রि, $3 x+4 y=24 \Rightarrow \frac{x}{8}+\frac{y}{6}=1$
 শীর্ষবিষ্দু $\mathrm{A}(0,6), \mathrm{B}(0,0)$ ఆ $\mathrm{C}(8,0)$.

 A ও C বিদ্দুদ্ময় ত্রিজুজটির পরিবৃত্তের একটট ব্যাসের প্রান্তबিস্দু।

নির্ণেয় পরিনৃত্জের সমীকরণ,

$$
\begin{aligned}
& (x-0)(x-8)+(y-6)(y-0)=0 \\
\Rightarrow & x^{2}+y^{2}-8 x-6 y=0 \text { (Ans.) }
\end{aligned}
$$

অল্তষবৃষ : এখানে, $a=\mathrm{BC}=|0-8|=8$,
$b=\mathrm{AC}=\sqrt{6^{2}+8^{2}}=10$,
$c=\mathrm{AB}=|6-0|=6$
$\delta_{A B C}=0(0-0)-6(0-8)=48$
এ『ং $a+b+c=8+10_{\text {有 }}^{6} \mathrm{AC}^{24} \mathrm{BC}^{2}$
অল্তঃবৃত্েের কেন্দ্রের স্ধানাঙ্ক
$=\left(\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}, \frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}\right)$
$=\left(\frac{8 \times 0+10 \times 0+6 \times 8}{24}, \frac{8 \times 6+10 \times 0+6 \times 0}{24}\right)$
$=(2,2)$
जल्তःব্যাসাধ $=\frac{\left|\delta_{A B C}\right|}{a+b+c}=\frac{48}{24}=2$
निর্ণেয় অন্তঃবৃজ্জের সমীকরণ,
$(x-2)^{2}+(y-2)^{2}=2^{2}$
$\begin{aligned} \Rightarrow & x^{2}-4 x+4+y^{2}-4 y+4=4 \\ & x^{2}+y^{2}-4 x-4 y+4=0 \quad \text { (Ans.) }\end{aligned}$
2(c) ABC बिषूজ্জেন্ন শীর্ষ<িলু ठিनটি $\mathrm{A}(1,0)$, $B(0,4) \in \mathbf{C}(2,5) \mid A B C$ ज्विष्ष्धणित
 সমাষান 8

সगीকরণ $(x-1)(x-0)+(y-0)(y-4)=$
$k\{(x-1)(0-4)-(y-0)(1-0)\}$
$\Rightarrow x^{2}+y^{2}-x-4 y=k(-4 x+4-y)$, या $C(2,5)$ বিস্দুগামী।

$$
2^{2}+5^{2}-2-4 \times 5=k(-4 \times 2+4-5)
$$

$\Rightarrow 4+25-2-20=k(-8+4-5)$
$\Rightarrow-9 \mathrm{k}=7 \Rightarrow \mathrm{k}=-7 / 9$
প্রদত বিস্मুগামী ख্রিভূজ্জের পরিবৃজ্তের সমীকরণ
$x^{2}+y^{2}-x-4 y=-\frac{7}{9}(-4 x+4-y)$
$\Rightarrow x^{2}+y^{2}-\left(1+\frac{28}{9}\right) x-\left(4+\frac{7}{9}\right) y+\frac{28}{9}=0$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-\frac{37}{9} x-\frac{43}{9} y+\frac{28}{9}=0$
ত্রিভ্জটির পশিকেন্দ্রের স্থানাজ্ফ $\left(\frac{37}{18}, \frac{43}{18}\right)$

ভরকেন্র্র : AB এর মধ্যবিস্দুর স্থানাঙ্ক $\left(\frac{1}{2}, 2\right)$ এবং $\mathrm{C}(2,5)$ শীর্ষগামী মধ্যমার সমীকরণ,
$(x-2)(5-2)-(y-5)\left(2-\frac{1}{2}\right)=0$
$\Rightarrow \quad 3 x-6-\frac{3}{2} y+\frac{15}{2}=0$
$\Rightarrow 6 x-12-3 y+15=0$
$\Rightarrow \quad 2 x-y+1=0 \cdots$
আবার, BC এর মধ্যব্দ্দুর স্থানাক্ক $\left(1, \frac{9}{2}\right)$ এবং $\mathrm{A}(1,0)$ শীর্ষগামী মষ্যমার সমীকরণ,

$$
(x-1)\left(0-\frac{9}{2}\right)-(y-0)(1-1)=0
$$

$\Rightarrow x=1$; (i) হতে পাই, $y=2+1=3$
ত্রিভুজটির ভরকেন্দ্র $(1,3)$.
बम্মকেল্দ্র : AB বাহুর সমীকরণ

$$
(x-1)(0-4)-(y-0)(1-0)=0
$$

$\Rightarrow-4 x+4-y=0 \Rightarrow 4 x+y-4=0$
AB বাহুর উপর बম্ম এবং $\mathrm{C}(2,5)$ বিন্দুগামী রেখার সমীকরণ, $x-4 y=2-20$
$\Rightarrow x=4 y-18$
জাবার, BC বাহूর সমীকরণ

$$
\begin{aligned}
& (x-0)(4-5)-(y-4)(0-2)
\end{aligned}=0
$$

BC বাহুর উপর লম্ম এবং $A(1,0)$ বিস্দুগামী রেখার সমীকরণ, $2 x+y=2$
$\Rightarrow 2(4 y-18)+y=2,[(i i)$ घाরা $]$
$\Rightarrow 8 y-36+y=2$
$\Rightarrow 9 y=38 \Rightarrow y=38 / 9$
(ii) হতে পাই, $x=4 \times \frac{38}{9}-18=-\frac{10}{9}$

ত্রিভুজটির লম্ষকেন্দ্র $\left(-\frac{10}{9}, \frac{38}{9}\right)$

প্রন্নম妸W B

এক নজরে প্রঢ়োজনীয় সূত্রাবলী www.bo|ghar.com

1. $x^{2}+y^{2}=r^{2}$ বৃखে $y=m x+c$ রেখাঢি স্পর্শক হওয়ার শর্ভ,$c= \pm r \sqrt{m^{2}+1}$ ।
$x^{2}+y^{2}=r^{2}$ বৃד্তের স্সর্শকের সমীকরণ,
 $\left(\frac{-m r}{\sqrt{1+m^{2}}}, \frac{r}{\sqrt{1+m^{2}}}\right)$
2. $x^{2}+y^{2}+2 g x+2 f y+c=0$ বৃส্তের উপর $\mathrm{P}\left(x_{1}, y_{1}\right)$ सिদ্দুতে স্শর্ৰকের সমীক্রণ, $x x_{1}+y y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c=0$
3. यহি৪স্ষ যেকোন কিস্দু $\left(x_{1}, y_{1}\right)$ হতে $x^{2}+y^{2}$
 সমीকরণ, $\left(x x_{1}+y y_{1}+g x+g x_{1}+f y+\right.$ $\left.f y_{1}+c\right)^{2}=\left(x^{2}+y^{2}+2 g x+2 f y+c\right)$ $\left(x_{1}^{2}+y_{1}^{2}+2 g x_{1}+2 f y_{1}+c\right)$
4. $x^{2}+y^{2}+2 g x+2 f y+c=0$ বৃত্তের

উপর $P\left(x_{1}, y_{1}\right)$ বিস্দুতে জড্লিম্বের সমীক্রণ,

$$
\left(y_{1}+f\right) x-\left(x_{1}+g\right) y+g y_{1}-f x_{1}=0
$$

5. $\left(x_{1}, y_{1}\right)$ বিদ্দু হতে $x^{2}+y^{2}+2 g x+2 f y$ $+\mathrm{c}=0$ বৃষ্ভে অষ্কিত স্সর্শকের দৈর্ঘ্য,

$$
=\sqrt{x_{1}^{2}+y_{1}^{2}+2 g x_{1}+2 f y_{1}+c}
$$

6. $\left(x_{1}, y_{1}\right)$ बिन्দু হতে $x^{2}+y^{2}+2 g x+2 f y$ $+\mathrm{c}=0$ বৃब্তে অध্কিত স্স্গ ब্যা এর সমীকরণ, $x x_{1}+y y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c=0$ 7. $x^{2}+y^{2}+2 g x+2 f y+c=0$ বৃজেরর কোন ষ্যা এর ম্ষ্যক্দি $\left(x_{1}, y_{1}\right)$ रলে তার সমীকরণ,
$x x_{1}+y y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c=$ $x_{1}^{2}+y_{1}^{2}+2 g x_{1}+2 f y_{1}+c$
7. $S_{1}=0$ ४ $S_{2}=0$ বৃভ मুইটির সাধারণ জ্যা এর সমীকরণ, $S_{1}-S_{2}=0$.
8. $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$ এর প্রতিবিম্ব (a) x অক্ষে সাপেক্ষে $x^{2}+y^{2}+2 g x-2 f y+c=0$ (b) y অক্মের সাপেক্ষে $x^{2}+y^{2}-2 g x+2 f y+c=0$
(c) $a x+b y+c=0$) রেখার সাপেক্ষে : এ র্রেখার সাপেক্ষে প্রদত্ত বৃজ্েের কেন্দ্র $(-g,-f)$ এর প্রতিবিম্ব
(g^{\prime}, f^{\prime}) কে কেস্দ্র এরং প্রদত্ত বৃত্তের ব্যাসার্ষকে ব্যাসার্ধ ধরে অধ্কিত বৃত্তই নির্ণেয় প্রতিবিস্ব।

প্রশ্নমালা IVB

1. (a) $x^{2}+y^{2}+4 x+6 y+c=0$ বৃজ্জের ব্যাসার্ধ 3 হলে, c এর মান निচের কোনটি?
Sol $^{\mathrm{n}}: \sqrt{2^{2}+3^{2}-c}=3 \Rightarrow c=13-9=4$
(b) $\mathrm{Sol}^{\mathrm{n}}$:
(i) সংশোধন : x-অক্ষের ছেদাংশের পীরনাণ 6
$2 \sqrt{r^{2}-k^{2}}=2 \sqrt{5^{2}-4^{2}}=6$
(ii) $\sqrt{2^{2}+3^{2}-c}>0 \Rightarrow \mathrm{c}<1.3$
(iii) সংশোধন : $(1,1)$ বিন্দুটি $x^{2}+y^{2}+3 x+$ $5 y-\mathrm{c}=0$ বৃত্তের ডিতরে অবস্থান করলে c >10 হবে।

$$
1^{2}+1^{2}+3.1+5.1-c<0 \Rightarrow c>10
$$

(c) Sol ${ }^{n}: r=\sqrt{4^{2}+3^{2}}=5$
(d) Sol ${ }^{\mathrm{n}}:(x-h)^{2}+(y-k)^{2}=\mathrm{k}^{2}$
(e) Sol ${ }^{n}$: উভয় অক্ষ কে স্পর্শ করার শর্ভ $\mathrm{g}^{2}=\mathrm{f}^{2}=\mathrm{c}$ $k= \pm 4, c=16$
(f) Sol ${ }^{n}$: বৃত্তটি যূলবিন্দুগামী বলে, $c=0$ এবং y অক্ষকে স্প্শ কর্র বলে, $\mathrm{f}^{2}=\mathrm{c}=0$).
(g) Soln : $(0,1)$ ও (1,0) বিন্দুদ্বয়ের সংযোগ রেখাংশের মধ্যবিন্দু স্থানাঙ্ক $\left(\frac{0+1}{2}, \frac{1+0}{2}\right)$.
(h) Sol ${ }^{n}$:
(i) $\mathrm{AB}=5-3=2$
(ii) স্পর্শকের দৈর্ঘ্য $=\sqrt{1^{2}+1^{2}+2-6+11}=3$
(iii) জ্যা এর সমীকরণ, $x: 2+y .3=2^{2}+3^{2}$

$$
\Rightarrow 2 x+3 y=13
$$

(i) Sol ${ }^{\mathrm{n}}: \mathrm{r}=\mathrm{a} \cos \theta \Rightarrow \mathrm{r}^{2}=\mathrm{a} \cdot \mathrm{r} \cos \theta$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{ax}=0 \therefore$ কেन্দ্র $\left(\frac{a}{2}, 0\right)$
(j) Sol ${ }^{\mathrm{n}}$: সাধার়ণ জ্যা এর সমীকরণ, $x^{2}+y^{2}+$ $2 x+3 y+1-\left(x^{2}+y^{2}+4 x+3 y+2\right)=0$
$\Rightarrow 2 x+1=0$
$x-3 y=\mathrm{k}$ तেथाढि $x^{2}+y^{2}-6 x+8 y+15=$ 0 বৃত্তে স্পর্শ করে। পরবর্তী তিন্টি প্রশ্নের উত্তর দাও:
(k) Sol ${ }^{\mathrm{n}}$: ব্যাসার্ধ $=\sqrt{3^{2}+4^{2}-15}=\sqrt{10}$, y -অক্ষের খন্ডিতাংশ $=2 \sqrt{4^{2}-15}=2$.
(l) Sol ${ }^{\mathrm{n}}: \frac{|3-3(-4)-k|}{\sqrt{1^{2}+3^{2}}}=\sqrt{10}$
$\Rightarrow|15-k|=10 \Rightarrow \mathrm{k}-15= \pm 10 \Rightarrow \mathrm{k}=5,25$
(m) Sol" : $x-3 y=5$ म्পxর্রকের সমান্তরাল বৃত্তটির অপর স্পর্শকের সমীকনণ, $x-3 y=25$.
(n) Sol ${ }^{n}$.: $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{x}+4 \mathrm{y}-1 / 3=0$

কেন্দ্র $=(-2 / 2,-4 / 2)=(-1,-2) \therefore$ Ans. D
(o) Sol n.: বৃত্তের ব্যাসাধ $=\sqrt{4^{2}+3^{2}}=5$
$(4,3)$ ও $(-1,3)$ এর দृরত্ব $=|4+1|=5$
$(4,3)$ ఆ (9.3) এর দূরण్ব $=|4-9|=5$
$(4,3) \circledast(0,3)$ এর দূরত্ব $=|4-0|=4$
$(0,3)$ বৃত্তের উপর অবস্থিত নয়। Ans. C
(p) Sol ${ }^{n}$.:

বৃত্তের ব্যাসাধ $=\sqrt{g^{2}+f^{2}-c}$
$\mathrm{OA}=\mathrm{OB}=\sqrt{0+c}=\sqrt{c}$
OABC চতুর্ভূজের ক্মে্রফল
$=2 \times \mathrm{OAC}$ সমকোণী ত্রিভুজের ক্ষেত্রফল
$=2 \times \frac{1}{2}(\mathrm{OA} \times \mathrm{AC})$
$=\sqrt{c} \sqrt{g^{2}+f^{2}-c}=\sqrt{c\left(g^{2}+\mathrm{f}^{2}-\mathrm{c}\right)}$
Ans. B

2(a) $(3,7)$ в $(9,1)$ বিপ্দুদ্যের সংযোগ
 দেখাও যে, $x+y=4$ রেখাটি ঐ বৃজ্তের একটি

[Б.'०৫]
প্রমাণ : (3 7) ও (9 1) বিন্দুদ্যের সংহ্রোগ রেখাশকে ব্যাস ষরে অভ্কিত বৃত্তের সমীকরণ,

$$
\begin{align*}
& (x-3)(x-9)+(y-7)(y-1)=0 \\
\Rightarrow & x^{2}-12 x+27+y^{2}-8 y+7=0 \\
\Rightarrow & x^{2}+y^{2}-12 x-8 y+34=0 \tag{1}
\end{align*}
$$

প্রদত রেখা $x+y=4 \Rightarrow y=4-\mathrm{x} \cdots(2)$
(1) $\because y$ এর মান বসিয়ে পাই,
$x^{2}+(4-x)^{2}-12 x-8(4-x)+34=0$
$\Rightarrow x^{2}+16-8 x+x^{2}-12 x-32+8 x+34=0$
$\Rightarrow 2 x^{2}-12 x+18=0 \Rightarrow x^{2}-6 x+9=0$
$\Rightarrow(\mathrm{x}-3)^{2} \Rightarrow \mathrm{x}=3$
(2) $\Rightarrow y=4-3=1$
\therefore (2) রেখাtি প্রদত্ত বৃত্তের সাথে শুষূমাত্র $(3,1)$ ক্দ্দুতে মিলিত হয়।
$x+y=4$ রেখাটি বৃত্তটির একটি স্শর্বক এবং স্পৰ্ণক্দি (3,1)

বিকল্প পশ্বতি : (3 7 7) ও (9 1) বিন্দুদ্রেয়ের সংয়োগ রেখাংশকে ব্যাস ধরে অষ্কিত বৃত্তের সমীকরণ,

$$
(x-3)(x-9)+(y-7)(y-1)=0
$$

$\Rightarrow x^{2}-12 x+27+y^{2}-8 y+7=0$
$\Rightarrow x^{2}+y^{2}-12 x-8 y+34=0$
(1) বৃত্তের কেন্দ্র $(6,4)$ এবং

ব্যागाष $=\sqrt{36+16-34}=\sqrt{18}=3 \sqrt{2}$
বৃত্তের কেন্দ্র $(6,4)$ থেকে প্রদত রেখা $x+y=4$ जর্ৰাৎ $x+y-4=0 \quad$ (2) এর লम্ম দূরত্ব $=\frac{|6+4-4|}{\sqrt{1+1}}=\frac{6}{\sqrt{2}}=3 \sqrt{2}=$ বৃত্টের ব্যাসাধ । প্রদত্ত রেখাটি বৃত্তকে স্পপ্গ করে।
২য় জংশ : (2) রেখার ঊপর লস্ম এবং বৃত্তের কেন্দ্র $(6,4)$ मिয়ে অতিক্রিম করে এরূপ রেখার সমীক্রণ,

$$
\begin{equation*}
x-y=6-4 \Rightarrow x-y=2 \tag{3}
\end{equation*}
$$

(2) $+(3) \Rightarrow 2 x=6 \Rightarrow x=3$
(3) হতে পাই, $3-y=2 \Rightarrow y=1$.
(2) ৫ (3) রেখার ছেদক্দ্দু (3

1) या নিক্ণে স্পর্শ ক্দ্রু।

2(b) দেখাও যে, $y-3 x=10$ রেখাটি $x^{2}+y^{2}=10$ বৃও্েকে সমাপতিত বিদ্দুতে ছেদ করে। বিস্দুটির স্যানাফ্ক निর্ণ্য কন।
[ব.'o১]
প্রমাণ প্রদত রেখা $y-3 x=10$ হতে $\mathrm{y}=3 \mathrm{x}+10 \cdots(1)$ এর মান প্রদত্ত বৃত্তে বসিত্রে भाই, $x^{2}+(3 \mathrm{x}+10)^{2}=10$
$\Rightarrow \mathrm{x}^{2}+9 \mathrm{x}^{2}+60 \mathrm{x}+100-10=0$
$\Rightarrow 10 x^{2}+60 x+90=0$
$\Rightarrow \mathrm{x}^{2}+6 \mathrm{x}+9=0 \Rightarrow(\mathrm{x}+3)^{2}=0$
$\Rightarrow \mathrm{x}+3=0 \Rightarrow \mathrm{x}=-3$
(1) $\Rightarrow y=3 \cdot(-3)+10=-9+10=1$
\therefore প্রদত্ত রেখাটি বৃত্তের সাথে শূধूমাত্র $(-3,1)$ ক্দ্দুত্তে মিলিত হয়।

প্রদত্ত রেখাটি বৃত্তকে সমাপতিত ক্স্দুতে ছেদ করে এবং ব্দিটিরি স্শানাষ্ক $(-3,1)$.
2(c) $x^{2}+y^{2}-4 x-6 y+c=0$ বृउढि x -
 निर्ণয় কন। [ব. '०8; ঢা. '08,'०१'১>; রা. 'o৫, '১২; য.'০৫, '০৮, ’১১ ; চ.'০৫,'০৮; মা.বো.'০৫;] সমাধান : $x^{2}+y^{2}-4 x-6 y+c=0$ বৃত্তের কেস্দ্র $(2,3)$ এবং ব্যাসাধ $=\sqrt{4+9-c}=\sqrt{13-c}$ x-অক্ষ থেকে বৃত্তের কেন্দ্র $(2,3)$ এর দূরত্ব $=|3|=3$ বৃত্তটি x-অক্ষকে স্পর্গ করে।
$\sqrt{13-c}=3$
$\Rightarrow 13-\mathrm{c}=9 \quad \mathrm{c}=4$
আাবার, বৃতটি x-অক্ষকে

স্পৰ করে এবং বৃওটির কেন্দ্রের ভুজ 2.
স্শর্শবিম্দুর স্থানাজ্क $(2,0)$.
2(d) দেখাও यে, $x-3 y=5$ রেখেটি $x^{2}+y^{2}-$
 मिढ़ে যায় এরুপ ব্যাসের সমীক্রণ निর্ণয় কর। [চ.’○৭; মা.’○৩]
প্রমাণ : $x^{2}+y^{2}-6 x+8 y+15=0 \cdots(1)$ বৃত্তের কেন্দ্র $(3,-4)$ এবং
ब्याসাध $=\sqrt{9+16-15}=\sqrt{10}$

বৃত্তের কেন্দ্র $(3,-4)$ থেকে $x-3 y=5$ অর্গাৎ x $-3 y-5=0 \quad$ (2) রেখার बम्य দূরত্ব $=$ $\frac{|3-3 \times(-4)-5|}{\sqrt{1+9}}=\frac{|3+12-5|}{\sqrt{1+9}}$
$=\frac{10}{\sqrt{10}}=\sqrt{10}=$ বৃত্তের ব্যাসাধ ।
প্রদত্ত রেখাটি বৃত্তকে স্পর্গ করে।
২য় অशশ : $x-3 y-5=0$ স্pশরেরে. উপর লম্ব এবং বৃত্েের কেন্দ্র $(3,-4)$ দিত্যে অতিক্সমকারী নিচ্ণেয় ব্যাসের সমীকরণ $3 x+y=3 \times 3-4=9-4$

$$
3 x+y=5 \text { (Ans.) }
$$

3.(a) $3 x+4 y=\mathrm{k}$ রেখाটি $x^{2}+y^{2}=10 x$ বৃওকে স্পর্গ করনে k এর মান নির্র় কর।
[य.'০১; ব.'০৩,'০৭; রা.'০৬; সি.’১২] প্রমाণ ः $x^{2}+y^{2}=10 x$ जर्भाৎ $x^{2}+y^{2}-10 x=0$ বৃত্জের কেস্দ্র $(5,0)$ এবং ব্যাসাধ $=\sqrt{5^{2}}=5$
বৃত্তের কেন্দ্র $(5,0)$ থেকে $3 x+4 y=\mathrm{k}$ অর্থাৎ $3 x$ $+4 y-\mathrm{k}=0$ রেখার লম্ম দূরত্ব $=\frac{|15-k|}{\sqrt{9+16}}$ $=\frac{|15-k|}{5}$
রেখাটি প্রদত্ত বৃত্তকে স্পশ করলে কেন্দ্র থেকে রেখার দূরত্ব ব্যাসার্ধের সমান হবে।

$$
\frac{|15-k|}{5}=5 \Rightarrow|k-15|=25
$$

$\Rightarrow \mathrm{k}-15= \pm 25 \quad \therefore \mathrm{k}=40$ वा, -10
3(b) দেখাও যে, $l x+m y=1$ রেখাটি $x^{2}+y^{2}$ $-2 a x=0$ বৃত্টকে স্পশ্শ করবে যদি $a^{2} \mathrm{~m}^{2}+2 a l=$ 1 হয়।[สू.' 'o৬,'ot; ঢা. 'ot; রা. '১১; সि. 'o8; ব. '০৫,’০৯; চ. '০৮,'’১; মা.'০৩; দি.'০৯; য.'১১] প্রমাণ : $x^{2}+y^{2}-2 a x=0$ বৃত্তের কেন্দ্র $(\mathrm{a}, 0)$ এবং ব্যাসাধ $=\sqrt{a^{2}}=a$
বৃত্তের কেন্দ্র $(a, 0)$ থেকে $l x+m y=1$ অすাৎ $l x+m y-1=0$ রেখার নম্ব দূরত্ব $=\frac{|l a-1|}{\sqrt{l^{2}+m^{2}}}$
রেখাটি প্রদত্ত বৃত্তকে স্পর করলে কেম্দ্র থেকে রেখার দূরত্ব ব্যাসার্ধর সমান হবে।
$\frac{|l a-1|}{\sqrt{l^{2}+m^{2}}}=\mathrm{a}$
$\Rightarrow|l \mathrm{a}-1|^{2}=\mathrm{a}^{2}\left(l^{2}+\mathrm{m}^{2}\right)$［ব斤 করে ］
$\Rightarrow(l a-1)^{2}=\mathrm{a}^{2} l^{2}+\mathrm{a}^{2} \mathrm{~m}^{2}$
$\Rightarrow l^{2} a^{2}-2 l a+1=a^{2} l^{2}+a^{2} \mathrm{~m}^{2}$
$a^{2} m^{2}+2 a l=1$（Showed）
3．（c）$p x+q y=1$ রেখোি $x^{2}+y^{2}=a^{2}$ तৃबকে স্প爪 করে। দেখা যে，(\mathbf{p}, \mathbf{q}) বিপ্দুটি একটি বৃজের উপর অবস্থিত।［য．＇০৬，＇১২ ；ক্রু．＇০৪，＇০৫，＇১৩； রা．＇০৫，＇১৩；ঢা．＇০৬；য．＇০৬；ব．＇০৮］
প্রমাণ ঃ $x^{2}+y^{2}=\mathrm{a}^{2}$ বৃত্তের কেন্দ্র $(0,0)$ এবং ব্যাসাধ $=a$
বৃ大্তের কেন্দ্র $(0,0)$ থেকে $\mathrm{p} x+\mathrm{q} y=1$ অক্থাৎ $\mathrm{p} x+\mathrm{q} y-1=0$ রেখার লম্ব দূরত্ব $=\frac{|-1|}{\sqrt{p^{2}+q^{2}}}$
রেখাটি প্রদত্ত বৃত্তকে স্পশ করনেে কেন্দ্র থেকে রেখার দূরত্ব ব্যাসার্ধের সমান হবে।

$$
\left|\frac{-1}{\sqrt{p^{2}+q^{2}}}\right|=\mathrm{a} \Rightarrow p^{2}+q^{2}=\frac{1}{a^{2}} \Omega
$$

থেকে স্সর্শ যে，(p, q) বিন্দুটি $x^{2}+y^{2}=\frac{1}{a^{2}}$ বৃত্তের সমীকরণকে সিদ্ধ করে।
（ p, q ）বিম্দুটি একটি বৃচ্তের উপর অবস্থিত।
3（d）$a x+2 y-1=0$ রেখাটি $x^{2}+y^{2}-8 x-$ $2 y+4=0$ বৃত্তকে স্সর্শ করনে a এর মান নির্ণয়不।
［রা．＇08］
প্রমাণ \＆$x^{2}+y^{2}-8 x-2 y+4=0$ বৃত্েের বেন্দ্র $(4,1)$ এবং ব্যাসাধ $=\sqrt{4^{2}+1^{2}-4}=\sqrt{13}$
বৃজ্জের কেন্দ্র $(4,1)$ থেকে $a x+2 y-1=0$ রেখার লম্ব দূরত্ব $=\left|\frac{4 a+2-1}{\sqrt{a^{2}+4}}\right|=\left|\frac{4 a+1}{\sqrt{a^{2}+4}}\right|$
রেখাটি প্রদত্তু বৃত্তকে স্পর্শ করলে কেস্দ্র থেকে রেখার দূরত্ব ব্যাসার্ধের সমান হবে।

$$
\begin{aligned}
& \left|\frac{4 a+1}{\sqrt{a^{2}+4}}\right|=\sqrt{13} \\
\Rightarrow & \left.(4 a+1)^{2}=13\left(a^{2}+4\right) \quad \text { [বগ্গ করে }\right] \\
\Rightarrow & 16 a^{2}+8 a+1=13 a^{2}+52
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & 3 a^{2}+8 a-51=0 \\
\Rightarrow & 3 a^{2}+17 a-9 a-51=0 \\
\Rightarrow & a(3 a+17)-3(3 a+17)=0 \\
\Rightarrow & (3 a+17)(a-3)=0 \\
& a=3 \text { বा, }-17 / 3
\end{aligned}
$$

3（e） $3 x+b y-1=0$ রেখাটি $x^{2}+y^{2}-8 x$ $-2 y+4=0$ তৃנকে ग্পর্শ করে। b এর মান নির্ণয় কর।［রা．＇০৮，＇১২；＜্র．＇০৪，＇১০；সি．＇০৮；মা．＇০৫， য．＇১১；চ．’১১；ব．’১২；ঢা．＇১৩］
প্রমাণ ：$x^{2}+y^{2}-8 x-2 y+4=0$ বৃজ্টের কেন্দ্র $(4,1)$ এবং ব্যাসাধ $=\sqrt{4^{2}+1^{2}-4}=\sqrt{13}$
বৃত্তের কেন্দ্র $(4,1)$ থেকে $3 x+b y-1=0$ রেখার লস্ম দূরত্ব $=\left|\frac{12+b-1}{\sqrt{9+b^{2}}}\right|=\left|\frac{11+b}{\sqrt{9+b^{2}}}\right|$
রেখাটি প্রদত্ত বৃত্তকে স্পর্শ করলে কেন্দ্র থেকে রেখার দূরত্ব ব্যাসাধ্ধে সমান হবে।

$$
\begin{aligned}
& \left|\frac{11+b}{\sqrt{9+b^{2}}}\right|=\sqrt{13} \\
\Rightarrow & (11+\mathrm{b})^{2}=13\left(9+\mathrm{b}^{2}\right) \quad[\text { বर्গ করে] } \\
\Rightarrow & 121+22 \mathrm{~b}+\mathrm{b}^{2}=117+13 \mathrm{~b}^{2} \\
\Rightarrow & 12 \mathrm{~b}^{2}-22 \mathrm{~b}-4=0 \\
\Rightarrow & 6 \mathrm{~b}^{2}-11 \mathrm{~b}-2=0 \\
\Rightarrow & 6 \mathrm{~b}^{2}-12 \mathrm{~b}+\mathrm{b}-2=0 \\
\Rightarrow & 6 \mathrm{~b}(\mathrm{~b}-2)+1(\mathrm{~b}-2)=0 \\
\Rightarrow & (\mathrm{~b}-2)(6 \mathrm{~b}+1)=0 \\
& \mathrm{~b}=2 \text { वा, }-1 / 6
\end{aligned}
$$

$3(f)(4,1)$ सिम्দू मिত্যে অणिब्मমকারী বৃত্ত $3 x+4 y$ $-1=0$ ® $x-3=0$ রেখা দুইটিকে স্স爪 করে। r বৃखটির ব্যাসার্ধ হনে দেখাও যে， $\mathrm{r}^{2}-20 r+40=0$ ． প্রমাণ ：ধরি，r ব্যাসাধ বিশিষ্ট বৃত্তের সমীকরণ

$$
\begin{equation*}
(x-h)^{2}+(y-k)^{2}=r^{2} \ldots \tag{1}
\end{equation*}
$$

(1) বৃত্ত $(4,1)$ বিস্দু দিয়ে অতিক্রম করে।

$$
\begin{equation*}
(4-h)^{2}+(1-k)^{2}=r^{2} \cdots \tag{2}
\end{equation*}
$$

（1）বৃত্তের কেন্দ্র（h，k）হতে $3 x+4 y-1=0$ ও $x-3=0$ রেখা দুইটির লম্ব দূরত্ব যथाক্রমে $\frac{|3 h+4 k-1|}{\sqrt{9+14}}=\frac{|3 h+4 k-1|}{5}-\frac{|h-3|}{\sqrt{1}}$
(1) বৃভটি প্রদত্ত রেখা দূইটিকে স্প্গ করলে ,
$|h-3|=r \Rightarrow h-3= \pm r \Rightarrow h= \pm r+3$
এ『ং $\frac{|3 h+4 k-1|}{5}=\mathrm{r} \Rightarrow 3 \mathrm{~h}+4 \mathrm{k}-1= \pm 5 \mathrm{r}$
$\Rightarrow 3(\pm \mathrm{r}+3)+4 \mathrm{k}-1= \pm 5 \mathrm{r} \quad[\because \mathrm{h}= \pm \mathrm{r}+3]$
$\Rightarrow \pm 3 \mathrm{r}+9+4 \mathrm{k}-1= \pm 5 \mathrm{r}$
$\Rightarrow 4 \mathrm{k}+8= \pm 2 \mathrm{r} \Rightarrow 2 \mathrm{k}= \pm \mathrm{r}-4$
$\Rightarrow \mathrm{k}=\frac{ \pm r-4}{2}$
(2) $এ \mathrm{~h} ও \mathrm{k}$ এর মান বসিয়ে পাই,
$(4 \mp r-3)^{2}+\left(1-\frac{ \pm r-4}{2}\right)^{2}=r^{2}$
$\Rightarrow(1 \mp r)^{2}+\frac{(2 \mp r+4)^{2}}{4}=r^{2}$
$\Rightarrow 4\left(1 \mp 2 r+r^{2}\right)+\left(36 \mp 12 r+r^{2}\right)=4 r^{2}$
$\Rightarrow 4 \mp 8 \mathrm{r}+4 \mathrm{r}^{2}+36 \mp 12 \mathrm{r}+\mathrm{r}^{2}=4 \mathrm{r}^{2}$
$\Rightarrow r^{2} \mp 20 r+40=0$
কিন্তু বৃত্তটির ব্যাসাধ $r>0$ বলে r এর কোন ধনাতাক বাস্তব মান $r^{2}+20 r+40=0$ কে সিদ্ধ করে না।
$\mathrm{r}^{2}-20 \mathrm{r}+40=0$ (Showed).

 সमीক্রণ निর্য় ক্র।
[६.'०৫; রা.’○৭; ঢा.'১০] সমাযান \& $x^{2}+y^{2}-2 x-4 y-4=0$ বৃত্তের ক্স্দ্র $(1,2)$ এবং ব্যাসাধ $=\sqrt{1^{2}+2^{2}+4}=3$ ধরি, $3 x-4 y+5=0$ রেখার উপর লম্ম স্পর্ণকের সমীকরণ $4 x+3 y+\mathrm{k}=0 \cdots$
(1) রেখাটি প্রদত বৃত্তকে স্পর্গ করলে কেন্দ্র $(1,2)$ থেকে এর দূরত্ব ব্যাসার্ধ্র সমান হবে।

$$
\frac{|4.1+3.2+k|}{\sqrt{16+9}}=3 \Rightarrow|4+6+\mathrm{k}|=15
$$

$\Rightarrow \mathrm{k}+10= \pm 15 \therefore \mathrm{k}=5,-25$
নির্ণেয় স্সর্শকের সমীকরণ $4 x+3 y-25=0$, $4 x+3 y+5=0$
4(b) $x^{2}+y^{2}-2 x-4 y-4=0$ বृद্তে জध्किज স্শর্শক $3 x-4 y-1=0$ রেখার সমাল্তরান। স্শর্ণকেন্র

সমीক্রণ निর্ণী় কর।
[मि.'os]
সমাধান : $x^{2}+y^{2}-2 x-4 y-4=0$ বৃচ্জের ক্স্দ্র $(1,2)$ এবং ব্যাসাধ $=\sqrt{1^{2}+2^{2}+4}=3$
ধরি, $3 x-4 y-1=0$ রেখার সমান্তরাল স্শর্শকের সমীকরণ $3 x-4 y+\mathrm{k}=0 \cdots$
(1) রেখাটি প্রদত্ত বৃত্তকে স্পপ্গ করলে কেন্দ্র $(1,2)$ থেকে এর দূরত্ব ব্যাস়ার্ধর সমান হবে।

$$
\frac{|3 \cdot 1-4.2+k|}{\sqrt{9+16}}=3 \Rightarrow|3-8+k|=15
$$

$\Rightarrow \mathrm{k}-5= \pm 15 \therefore \mathrm{k}=20,-10$
নির্ণেয় স্সর্রকের সমীকরণ $3 x-4 y+20=0$,

$$
3 x-4 y-10=0
$$

5.(a) $x^{2}+y^{2}+4 x-8 y+2=0$ বৃজ্রের স্সর্শব অन্巾 দুইটি হতে একই চিহ্বিশিট্ট সমমানের অশপ ছো করে। স্প্রকের্ন সমীক্রণ নির্ৰয় কর। [ঢা.'০১,'০১; रा.'०8; य.'०৭; ж.' '১১]
সমাষান : $x^{2}+y^{2}+4 x-8 y+2=0$ বৃত্তের কেন্দ্র ($-2 \quad$ 4) এবং ব্যাসাধ $\sqrt{2^{2}+4^{2}-2}$ $=\sqrt{18}=3 \sqrt{2}$
ধরি, অক্ষ দুইটি হতে একই চিহৃবিশিষ্ট সমমনেনর অশশ ছেদ করে এরূপ স্পর্শকে সমীকর্র $\frac{x}{a}+\frac{y}{a}=1$ जব্ৰাৎ $\mathrm{x}+\mathrm{y}-a=0 \cdots \cdots(1)$
রেখাটি প্রদত্ত বৃতকে স্প্র করলে কেন্দ্র $(-2,4)$ থেকে এর দূরত্ব ব্যাসাধ $3 \sqrt{2}$ এর সমান হবে।

$$
\frac{|-2+4-a|}{\sqrt{1^{2}+1^{2}}}=3 \sqrt{2} \Rightarrow|2-a|=6
$$

$\Rightarrow a-2= \pm 6 \quad a=8,-4$
निঢঢঢ় স্শর্শকের সমীকরণ $x+y+4=0$, $x+y-8=0$
 অকেরে ধনাত্রক দিকের সাকে 30° কোণ উৎপন্ন করে। স্প্রকের্র সমীকরণ নিণয় কর।
[চ.'১০; ব.'১১; বૂ.'য,’১২]
সমাধান ः $x^{2}+y^{2}=4^{2}$ বৃत্তের কেন্দ্র $(0,0)$ এবং ব্যাসাধ $=4$

ধরি, x-অক্ষের ধনাঅক দিকের সাথে 30° কোণ উৎপন্ন করে এরূপ্ণ রেখার সমীকরণ

$$
\begin{aligned}
& y=\tan 30^{\circ} \times x+c=\frac{1}{\sqrt{3}} \times x+c \\
\Rightarrow & x-\sqrt{3} y+\sqrt{3} c=0 \cdots(1)
\end{aligned}
$$

(1) ররখাটি প্রদত্ত বৃত্তকে স্পর্শ করলে কেন্দ্র $(0,0)$ থেকে 'এর দূরত্ব ব্যাসাধ্ধ 4 এর সমান হবে।

$$
\frac{|\sqrt{3} c|}{\sqrt{1+3}}=4 \Rightarrow|\sqrt{3} c|=8 \Rightarrow c= \pm \frac{8}{\sqrt{3}}
$$

নিণেয় স্পশ্শরের সমীকরণ $x-\sqrt{3} y \pm 8=0$
6.(a) $x^{2}+y^{2}=b(5 x-12 y)$ বৃত্তের এটি ব্যাস মূণবি্দু দিয়ে অতিক্রম করে। ব্যাসটির সমীক্ররণ এবং মূণকিদ্দুগামী স্পর্শকের সমীকর্ণণ নিণয় কর। [ঢা.'08] সমাধান : $x^{2}+y^{2}=b(5 x-12 y)$ অर্গাৎ $x^{2}+y^{2}-5 b x+12 b y=0 \cdots$ (1) বৃত্তের কেন্দ্র $\left(\frac{5 b}{2},-6 b\right)$ এবং ব্যাসাধ $=\sqrt{\frac{25 b^{2}}{4}+36 b^{2}}$
$=\sqrt{\frac{25 b^{2}+144 b^{2}}{4}}=\sqrt{\frac{169 b^{2}}{4}}=\frac{13 b}{2}$
মূলবিন্দু $(0,0)$ এবং কেন্দ্র $\left(\frac{5 b}{2},-6 b\right)$ मिढ़ে অতিক্রমকারী নির্ণেয় ব্যাসের সমীকরণ $\mathrm{y}=\frac{-6 b}{5 b / 2} \mathrm{x}$ $\Rightarrow 5 y=-12 x \quad 12 x+5 y=0$

২য় অoশ ঃ মূলবিন্দুগুামী স্সর্শক মূলবিন্দুগামী ব্যাসের উপর লম্ব। অতএব, মূলবিন্দুগামী স্পরকের সমীকরণ $5 x-12 y=0$
6(b) দেখাও যে, $x+2 y=17$ রেখাটি $x^{2}+y^{2}-$ $2 x-6 y=10$ বৃত্তের একটি স্পর্শক । এ বৃজ্তের যে ব্যাসটি ग্স্গ বিদ্দু দিয়ে অতিক্Rম করে তার সমীকরণ নির়্ কর।
[রা.’০২] প্রমাণ : $x^{2}+y^{2}-2 x-6 y=10$ অर্থাৎ $x^{2}+y^{2}-2 x-6 y-10=0$ বৃত্তের কেন্দ্র $(1,3)$ এবং ব্যাসাধ $=\sqrt{1+9+10}=\sqrt{20}=2 \sqrt{5}$ বৃত্তের কেন্দ্র $(1,3)$ থেকে $x+2 y=17$ অর্থাৎ $x+$ $2 y-17=0$ রেখার লম্বদূরত্ব $=\frac{|1+6-17|}{\sqrt{1+4}}$
$=\frac{|-10|}{\sqrt{5}}=2 \sqrt{5}=$ বৃত্তের ব্যাসাধ ।
রেখাটি প্রদত্ত বৃত্তের একটি স্পর্শক ।
২য় অংশ : স্সর্শক্দিগামী ব্যাস স্সর্শকের উপর লম্ব এবং কেন্দ্র দিয়ে অতিক্সম করে। অতএব, $x+2 y=17$ স্পরকের উপর লম্ব এবং কেন্দ্র $(1,3)$ দিয়ে অতিক্রম করে এরূপ ব্যাসের সমীকরণ $2 x-y=2.1-3=-1$ $2 x-y+1=0$
7(a) $x^{2}+y^{2}-3 x+10 y-15=0$ বৃख্েের (4, -11) বিদ্দুতে স্পশ্রের সমীকরণ নির্ণয় কর।
[সि. '০২; রা.'০৯] সমাধান ঃ $x^{2}+y^{2}-3 x+10 y-15=0$ বৃত্তের $(4,-11)$ বিন্দুতে স্পর্রকের সমীকরণ,

$$
\begin{aligned}
& \mathrm{x} .4+\mathrm{y} \cdot(-11)-\frac{3}{2}(\mathrm{x}+4)+5(\mathrm{y}-11)-15=0 \\
& {\left[x x_{1}+y y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c=0\right.} \\
& \text { সূত্র দ্রারা ।] } \\
& \Rightarrow 8 \mathrm{x}-22 \mathrm{y}-3 \mathrm{x}-12+10 \mathrm{y}-110-30=0 \\
& 5 \mathrm{x}-12 \mathrm{y}-152=0 \text { (Ans.) }
\end{aligned}
$$

7(b) $x^{2}+y^{2}=45$ বৃত্তের $(6,-3)$ বিস্দুতে অ飞্কিত স্র্শক $x^{2}+y^{2}-4 x+2 y-35=0$ বৃত্তকে A ৫ B কিন্দুতে ছেদ করে। দেখাও যে, A ও B বিস্দুতে অध্কিত স্পর্শক পরস্পর নম্ম। [প্র.ভ.প.'০০] প্রমাণ : $x^{2}+y^{2}=45$ বৃত্তের $(6,-3)$ বিন্দুতে স্পশককের সমীকরণ, x. $6+y \cdot(-3)=45$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}=15 \Rightarrow \mathrm{y}=2 \mathrm{x}-15 \cdots(1)$ $x^{2}+y^{2}-4 x+2 y-35=0$
বৃত্তে $\mathrm{y}=2 \mathrm{x}-15$ বসিয়ে পাই,

$$
\begin{aligned}
& x^{2}+(2 x-15)^{2}-4 x+2(2 x-15)-35=0 \\
& \Rightarrow x^{2}+4 x^{2}-60 x+225-4 x+4 x-30 \\
&-35=0 \\
& \Rightarrow 5 x^{2}-60 x+160=0 \\
& \Rightarrow x^{2}-12 x+32=0 \Rightarrow(x-4)(x-8)=0
\end{aligned}
$$

$$
\Rightarrow x=4,8
$$

$$
\text { (1) হতে পাই, } y=2.4-15=8-15=-7
$$

$$
\text { এবং } y=2.8-15=16-15=1
$$

$\therefore \quad(1)$ রেখাটি (2) বৃত্তকে $\mathrm{A}(4,-7)$ ও $\mathrm{B}(8,1)$
বিন্দুতে ছেদ করে।
$x^{2}+y^{2}-4 x+2 y-35=0$
（2）বৃত্তের $\mathrm{A}(4,-7)$ ক্দিদ্রুত অষ্কিত স্শশকের সমীকরণ，$x .4+y .(-7)-2(x+4)+(y-7)$ $-35=0$
$\Rightarrow 4 \mathrm{x}-7 \mathrm{y}-2 \mathrm{x}-8+\mathrm{y}-7-35=0$
$\Rightarrow 2 \mathrm{x}-6 \mathrm{y}-50=0 \Rightarrow \mathrm{x}-3 \mathrm{y}-25=0$ ，या ঢान $=-\frac{1}{-3}=\frac{1}{3}$
জাবার (2) বৃত্তের $\mathrm{B}(8,1)$ বি্দ্দুঢে অষ্কিত স্শ্শকের সমীকরণ，

$$
x .8+y .1-2(x+8)+(y+1)-35=0
$$

$\Rightarrow 8 \mathrm{x}+\mathrm{y}-2 \mathrm{x}-16+\mathrm{y}+1-35=0$
$\Rightarrow 6 x+2 y-50=0 \Rightarrow 3 x+y-25=0$ ，याর ঢाल $=-\frac{3}{1}=-3$
এ ঢলদদ্যের গুণফল্ল $=\frac{1}{3} \times-3=-1$
A B B ব্দ্দুতে অध्דিত স্সর্শক পরস্সর बম্ব।
8．（a）$x^{2}+y^{2}=20$ বৃচ্টের 2 ভूबবিশিফ বিস্দুত্তে ग্র্রকের্র সমীক্রণ নির্ণয় কর।
［ ব．＇০৫；সি．＇০১；রা．＇১০；দি．＇＇১১］
সমাষান ：ধরি， 2 ভूজবিশিষ্ট বিদ্দুর স্থানাফ্ক $(2, \beta)$ ， या প্রদত বৃత $x^{2}+y^{2}=20$ এর উপর অবস্পিত।
$4+\beta^{2}=20 \Rightarrow \beta^{2}=16 \Rightarrow \beta=4,-4$
2 ভूজবিশিষ বিস্দুর স্শানাষ্ক $(2,4)$ এবং $(2,-4)$ প্রদত্ত বৃত্েের $(2,4)$ এবং $(2,-4)$ ক্দিদ্রুত স্রর্শকের সমीকরণ $\mathrm{x} .2+\mathrm{y} .4=20 \Rightarrow \mathrm{x}+2 \mathrm{y}=10$ এবए． $\mathrm{x} .2+\mathrm{y} .(-4)=20 \Rightarrow \mathrm{x}-2 \mathrm{y}=10$
8（b）$x^{2}+y^{2}=13$ বৃत্खের 2 কোটিবিশিষ্ট বিদ্দুতে স্সর্শকের সমীক্রণ নির্ণয় কর।
［य．＇ob］ সমাষান ：ধরি， 2 কোটিবিশিষ্ট बি্দুর স্থানাষ্ক $(\alpha, 2)$ ，या প্রদత বৃত্ত $x^{2}+y^{2}=13$ এর উপর অবঙ্ছিত।

$$
\alpha^{2}+4=13 \Rightarrow \alpha^{2}=9 \Rightarrow \alpha=3,-3
$$

2 डूজবিশিষ ক্দ্দুর স্থানাষ্ক $(3,2)$ এবং $(-3,2)$ প্রদত্ত বৃত্তের $(3,2)$ এবং＇$(-3,2)$ বিদ্দুতে স্শর্শকের সমীকরণ $x .3+y .2=13 \Rightarrow 3 x+2 y=13$ এবং $\mathrm{x} .(-3)+\mathrm{y} .2=13 \Rightarrow 3 \mathrm{x}-2 \mathrm{y}+13=0$

9．（a）$(1,-1)$ सिम्मू बেকে $2 x^{2}+2 y^{2}-x+$

［य．＇০২；कू．＇১৩；চ．＇১১］
সমাধান $8(1,-1)$ ক্স্দু থেকে $2 x^{2}+2 y^{2}-x+$ $3 y+1=0$ जबाৎ $x^{2}+y^{2}-\frac{1}{2} x+\frac{3}{2} y+\frac{1}{2}=0$ বৃজ্তে অষ্ণিতত স্পর্রের দৈর্ঘ্য

$$
\begin{aligned}
& =\sqrt{1^{2}+(-1)^{2}-\frac{1}{2} \cdot 1+\frac{3}{2}(-1)+\frac{1}{2}} \\
& =\sqrt{2-\frac{1}{2}-\frac{3}{2}+\frac{1}{2}}=\sqrt{\frac{4-3}{2}}=\frac{1}{\sqrt{2}} \text { जकक। }
\end{aligned}
$$

9．（b）$(3,-3)$ বिস्नू बেকে $x^{2}+y^{2}+8 x+4 y$
 निर्ष़ बर।
［य．＇os］ সমাষান ：$x^{2}+y^{2}+8 x+4 y-5=0$ বৃচ্টের बেন্দ্র $(-4,-2)$ এবए ব্যাসার্ব $=\sqrt{16+4+5}=5$
 $y+3=m(x-3)$ অ瓜ৎ $m x-y-3 m-3=0$ \checkmark রেখাটি প্রদত বৃতকে স্পল করলে কেন্দ্র $(-4,-2)$ থেকে এর দূরত্ব ব্যাসাধ $\sqrt{17}$ এর সমান হবে।

$$
\left|\frac{-4 m+2-3 m-3}{\sqrt{m^{2}+1}}\right|=5
$$

$\Rightarrow(-7 \mathrm{~m}-1)^{2}=25\left(\mathrm{~m}^{2}+1\right)$［ব斤 করে］
$\Rightarrow 49 \mathrm{~m}^{2}+14 \mathrm{~m}+1=25 \mathrm{~m}^{2}+25$
$\Rightarrow 24 \mathrm{~m}^{2}+14 \mathrm{~m}-24=0$
$\Rightarrow 12 \mathrm{~m}^{2}+7 \mathrm{~m}-12=0$
$\Rightarrow 12 m^{2}+16 m-9 m-12=0$
$\Rightarrow 4 m(3 m+4)-3(3 m+4)=0$
$\Rightarrow(3 m+4)(4 m-3)=0$
$\mathrm{m}=-\frac{4}{3}, \frac{3}{4}$
স্পর্শকের সমীকরণ $y+3=\frac{3}{4}(x-3)$
$\Rightarrow 4 \mathrm{y}+12=3 \mathrm{x}-9 \therefore 3 \mathrm{x}-4 \mathrm{y}=21$ へな゚
$y+3=-\frac{4}{3}(x-3) \Rightarrow 3 y+9=-4 x+12$ $4 x+3 y=3$

২য় অश্ণ : $(3,-3)$ बিন্দু থেকে $x^{2}+y^{2}+8 x+$ $4 y-5=0$ বৃত্তে অজ্কিত স্পর্শকের দৈর্ঘ্য
$=\sqrt{(3)^{2}+(-3)^{2}+8 \cdot 3+4 .(-3)-5}$
$=\sqrt{9+9+24-12-5}=\sqrt{25}=5$ একক।
10.(a) $(1,-3)$ ক্কেন্র্বিিশিট্ট একটি বৃ刃্ঠ $2 x-y$ $4=0$ রেখাকে স্স্শ করে। তার সমীক্রণ নির়্য় কর।
[ব.'০৩; সি.'০১; দি.'১০; य.'১২] সমাধান \& বৃত্তের ব্যাসাধ $=$ কেন্দ্র $(1,-3)$ रতে $2 x-y-4=0$ স্পশকের লম্ব দূরত্র
$=\frac{|2.1+3-4|}{\sqrt{4+1}}=\frac{1}{\sqrt{5}}$
$(1,-3)$ কেন্দ্র ও $\frac{1}{\sqrt{5}}$ ব্যাসাধ বিশিফ নিণণেয়
বৃজ্টের সমীকরণ $(x-1)^{2}+(y+3)^{2}=\left(\frac{1}{\sqrt{5}}\right)^{2}$
$\Rightarrow 5\left(x^{2}-2 x+1+y^{2}+6 y+9\right)=1$
$\Rightarrow 5 \mathrm{x}^{2}+5 \mathrm{y}^{2}-10 \mathrm{x}+30 \mathrm{y}+50-1=0$
$5 \mathrm{x}^{2}+5 \mathrm{y}^{2}-10 \mathrm{x}+30 \mathrm{y}+49=0$
10(b) $\sqrt{2}$ ব্যাসার্ববিশিষ্ট দুইটি বৃচ্তের সমীকরণ নির্ণয় कब यার্রা $x+y+1=0$ রেখাকে স্প্গ করে এবং यাদের কেন্দ্র x-অক্ষের উপর অবস্ধিত। [সি.'০৩,'১১] সমাধান : ধরি, x-অক্ষের উপর অবঙ্ছিত বৃত্তের কেন্দ্রের স্পানাষ্ক $(\alpha, 0)$.
$x+y+1=0$ রেখাটি বৃত্তকে স্প্গ করলে কেন্দ্র $(\alpha, 0)$ থেকে এর দূরত্ব ব্যাসার্ধ $\sqrt{2}$ এর সমান হবে।

$$
\frac{|\alpha+0+1|}{\sqrt{1^{2}+1^{2}}}=\sqrt{2} \Rightarrow|\alpha+1|=2
$$

$\Rightarrow \alpha+1= \pm 2 \therefore \alpha=1,-3$
বৃত্ত দুইটির কেন্দ্র $(1,0)$ এবং $(-3,0)$
निকে়় বৃত্তের সমীকরণ $(x-1)^{2}+y^{2}=(\sqrt{2})^{2}$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}+1=2$
$\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-1=0$ (Ans.) এবং
$(x+3)^{2}+y^{2}=(\sqrt{2})^{2}$
$\Rightarrow \mathrm{x}^{2}+6 \mathrm{x}+9+\mathrm{y}^{2}=2$
$x^{2}+y^{2}+6 x+7=0$ (Ans.)

10(c) (p, q) কেন্দ্রবিশিষ্ট এবটি বৃত্ট মুनক্দ্দু দিয়ে অতিক্রম করে। বৃওটির সমীকরণ নির্ণয় কর এবং প্রমাণ ক্র মে, মুণকি্দুতে বৃৃ্তটির স্শর্শকের সমীকরণ হবে $p x+q y=0$.
[কू.'০৩; य.’○৭]
সমাধান ঃ নির্ণেয় বৃত্তের ব্যাসাধ = কেন্দ্র (p, q) হতে মূলব্দ্দুর দূরত্ব $=\sqrt{p^{2}+q^{2}}$
(p, q) কেন্দ্র ও $\sqrt{p^{2}+q^{2}}$ ব্যাসার্ধবিশিফ বৃत্তের সমীকরণ $(x-p)^{2}+(y-q)^{2}=p^{2}+q^{2}$ $\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{px}-2 \mathrm{qy}+\mathrm{p}^{2}+\mathrm{q}^{2}=\mathrm{p}^{2}+\mathrm{q}^{2}$

$$
x^{2}+y^{2}-p x-q x=0 \text { (Ans.) }
$$

২য় জशশ : $\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{px}-\mathrm{qx}=0$ বৃত্তে মূলব্দ্দুতে স্পর্রকের সমীকরণ,

$$
\mathrm{x} .0+\mathrm{y} .0-\frac{1}{2} p(x+0)-\frac{1}{2} q(y+0)=0
$$

$\Rightarrow-\mathrm{px}-\mathrm{qy}=0 \therefore \mathrm{px}+\mathrm{qy}=0$ (Proved)
11.(a) $y=2 x$ রেখাটি $x^{2}+y^{2}=10 x$ বৃচ্তের একটি ब্যা । উত্ত অ্যাকে ব্যাস ধরে অধ্कিত বৃর্তের সমীকরণ নির্ণয় কর।[ঝू.'০৪; চ.'০৩; দি.'০১; য.'১০] সমাধান : ধরি, $y=2 x$ जबাৎ $2 \mathrm{x}-\mathrm{y}=0 \cdots(1)$ রেখা এবং $x^{2}+y^{2}-10 x=0$ বৃত্তের ছেদব্দিগামী বৃত্তের সমীকরণ,

$$
\begin{align*}
& x^{2}+y^{2}-10 x+\mathrm{k}(2 \mathrm{x}-\mathrm{y})=0 \\
\Rightarrow & x^{2}+y^{2}+(-10+2 \mathrm{k}) \mathrm{x}-\mathrm{ky}=0 . \tag{2}
\end{align*}
$$

(2) বৃত্তের কেন্দ্র $\left(-\frac{-10+2 k}{2},-\frac{-k}{2}\right)$

$$
=\left(5-k, \frac{k}{2}\right)
$$

প্রদত্ত রেখাটি (2) বৃত্তের ব্যাস বলে এর কেন্দ্র $2 x-y=0$ রেখার উপর অবঙ্ছিত হবে।

$$
2(5-k)-\frac{k}{2}=0 \Rightarrow 20-4 \mathrm{k}-\mathrm{k}=0
$$

$\Rightarrow 5 \mathrm{k}=20 \Rightarrow \mathrm{k}=4$
(2) $এ \mathrm{k}$ এর মান বসিয়ে পাই,

$$
x^{2}+y^{2}+(-10+8) x-4 y=0
$$

$\therefore x^{2}+y^{2}-2 x-4 y=0$ (Ans.)
বিক্প্প পা্রীি : $y=2 x \cdots$ (1) হতে y এর মান প্রদত্ত বৃত্তের সমীকরণে বসিয়ে পাই, $x^{2}+(2 \mathrm{x})^{2}=10 x$
$\Rightarrow x^{2}+4 x^{2}-10 x=0 \Rightarrow 5 x^{2}-10 x=0$
$\Rightarrow 5 x(x-2)=0 \Rightarrow x=0,2$
(1) হতে পাই, $y=2.0=0$ এবং $y=2.2=4$ প্রদত্ত বৃজ্জের (1) জ্যা এর প্রান্তব্দিন্দু দুইটি $(0,0)$ এて゚ $(2,4)$.
$(0,0)$ এবং $(2,4)$ কিন্দু দুইটির সংযোগ রেখাংশকে ব্যাস ধরে অভ্কিত নিবক্কেয় বৃত্তের সমীকরণ, $(x-0)(x-2)+(y-0)(y-4)=0$
$x^{2}+y^{2}-2 x-4 y=0$ (Ans.)
11. (b) $(3,7) \bullet(9,1)$ বিদ্দू দুইটিিকে একটি ব্যাসের প্রাম্তকিি্দু ধরে অধ্কিত বৃত্তের সমীকর্রণ নিণ্য কর এরং দেখাও যে, বৃত্টি $x-y+4=0$ রেখাকে স্প্ করে।
[চ.'০৫; ধू.'০১; ঢা.’১২]
সমাধান : $(3,7)$ ও $(9 \quad 1)$ ब্দিন্দু দুইটিকে একটি ব্যাস্গের প্রাল্তক্দিন্দু ধরে অজ্কিত বৃত্তের সমীকরণ,
$(x-3)(x-9)+(y-7)(y-1)=0$
$\Rightarrow \mathrm{x}^{2}-12 \mathrm{x}+27+\mathrm{y}^{2}-8 \mathrm{y}+7=0$
$x^{2}+y^{2}-12 x-8 y+34=0 \cdots$
২য় অश্ : (1) বৃत্তের কেন্দ্র $(6,4)$ এবং ব্যাসাধ্ব $=\sqrt{36+16-34}=\sqrt{18}=3 \sqrt{2}$
এখন কেন্দ্র $(6,4)$ থেকে $x-y+4=0$ রেখার बम्ম দূরত্ত $=\frac{6-4+4}{\sqrt{1+1}}=\frac{6}{\sqrt{2}}=3 \sqrt{2}=$ বৃত্তের द्यागाध।

বৃত্তটি প্রদত্ত রেখাকে স্শ্র্র করে।
12.(a) $(3,-1)$ কিস্দুগামী একটি বৃछ x-অक्ष<ে $(2,0)$ কিস্দুত্তে স্ণণ করে। বৃজটির সমীকরণ নির্ণয়
 সমীক্রণ নির্র্য কর।
[ঢ.’০৫; दू.’১২] সমাধান ঃ ধরি, বৃত্তের সমীকরণ,

$$
\begin{equation*}
x^{2}+y^{2}+2 g x+2 f y+c=0 \tag{1}
\end{equation*}
$$

(1) বৃত্তটি x-অक্ষকে স্পশ করে।

$$
\begin{equation*}
c=g^{2} \tag{2}
\end{equation*}
$$

(1) বৃত্তটি $(2,0)$ বি্দি দিত্রে অতিক্রম করে।
$4+0+4 \mathrm{~g}+0+\mathrm{c}=0$
$\Rightarrow 4+4 \mathrm{~g}+\mathrm{g}^{2}=0\left[\cdots \mathrm{c}=\mathrm{g}^{2}\right]$
$\Rightarrow(\mathrm{g}+2)^{2}=0 \Rightarrow \mathrm{~g}+2=0 \Rightarrow \mathrm{~g}=-2$
(2) इढ़ত পাই, $\mathrm{c}=(-2)^{2}=4$

জাবার (1) বৃত্তটি $(3,-1)$ ক্দিদু দিয়ে অতিক্রম করে বলে, $9+1+6 \mathrm{~g}-2 \mathrm{f}+\mathrm{c}=0$
$\Rightarrow 10+6 .(-2)-2 \mathrm{f}+4=0$
$\Rightarrow 14-12-2 \mathrm{f}=0 \Rightarrow 2-2 \mathrm{f}=0 \Rightarrow \mathrm{f}=1$
(1) এ g, f ওc এর মান বসিয়ে পাই,
$x^{2}+y^{2}-4 x+2 y+4=0$
২য় অশশ : ধরি, মূলব্দ্দু দিয়ে অতিক্রেমকারী অপর স্পর্ণকটির সমীকর্রণ $y=m x$ অর্বাৎ $m x-y=0$, $\mathrm{m} \neq 0$.
এ রেখাটি প্রদত্ত বৃত্তকে স্শ করলে কেন্দ্র $(2,-1)$ থেকে এর দূরত্ব ব্যাসাধ $\sqrt{4+1-4}=1$ এর সমান रবে।

$$
\left|\frac{2 m+1}{\sqrt{m^{2}+1}}\right|=1 \Rightarrow(2 m+1)^{2}=m^{2}+1
$$

$\Rightarrow 4 \mathrm{~m}^{2}+4 \mathrm{~m}+1=\mathrm{m}^{2}+1$
$\Rightarrow 3 \mathrm{~m}^{2}+4 \mathrm{~m}=0 \Rightarrow 3 \mathrm{~m}+4=0$
$\Rightarrow \mathrm{m}=-\frac{4}{3}$
মূनবিন্দু দিয়ে অতিক্র্মকারী অপর স্পর্শকটির সমीকরণ $\mathrm{y}=-\frac{4}{3} \mathrm{x} \quad \therefore 4 \mathrm{x}+3 \mathrm{y}=0$ (Ans.)
12 (b) b ব্যাসার্ধयिশিষ্ট এবটি বৃख যার কেন্দ্রের ভুঘ В কোটি উভয়ই ধनाত্মক, x-অन्ष এবৃ $3 y=4 x$ সরনরেখাকে স্সশ্ করে ; তার সমীকরণ নির্ণয় কর। সমাধান ঃ ধরি, b ব্যাসাধধবিশিষ্ট বৃত্তের সমীকরণ $(x-h)^{2}+(y-k)^{2}=b^{2} \cdots(1) ;$ এখाনে h, k উভয়ই ধনাআ্ ।
(1) বৃত্ত x-অक্ষকে স্সর করে।

বৃত্তের ব্যাসার্ধ, $\mathrm{b}=\mid$ কেন্দ্রের কোটি $|=|\mathrm{k}|=\mathrm{k}$ আবার, (1) বৃত্ত $3 y=4 x$ অর্থাৎ $4 x-3 y=0$ রেখাকে স্পর্শ করলে কেন্দ্র (h, k) থেকে এর দূরত্ব ব্যাসার্ধ b এর সমান হবে।

$$
\frac{|4 h-3 k|}{\sqrt{4^{2}+3^{2}}}=b \Rightarrow|4 \mathrm{~h}-3 \mathrm{~b}|=5 \mathrm{~b}
$$

$\Rightarrow 4 \mathrm{~h}-3 \mathrm{~b}= \pm 5 \mathrm{~b}$
$4 \mathrm{~h}=8 \mathrm{~b}$ बথবा, $4 \mathrm{~h}=-2 \mathrm{~b}$
$\Rightarrow \mathrm{h}=2 \mathrm{~b}$ जথবা, $\mathrm{h}=-\frac{b}{2}$; কিন্নু $\mathrm{h}>0$.
$h=2 b$
(1) $এ \mathrm{~h}$ ও k এর মান বসিয়ে পাই,
$(x-2 b)^{2}+(y-b)^{2}=b^{2}$
$\Rightarrow x^{2}-4 b x+4 b^{2}+y^{2}-2 b y+b^{2}+b^{2}=0$
$x^{2}+y^{2}-4 b x-2 b y+4 b^{2}=0$（Ans．）
12 （c） $2 x+3 y-5=0$ जেখ্যt $(3,4)$

 সমাধান ：বৃজ্েের ব্যাসাধ $r=$ ক্স্দ্র $(3,4)$ হতে প্রদত্ত স্সর্গকের बস্মদূরত্ব $=\frac{|6+12-5|}{\sqrt{4+9}}=\frac{13}{\sqrt{13}}$ $=\sqrt{13}$

বৃওটি y－অক্ষের যে অশ্শ ছেদ করে তার পরিমাণ
$=2 \sqrt{r^{2}-h^{2}}$ ，এथানে $\mathrm{h}=$ কেন্দ্রের ভুজ $=3$
$=2 \sqrt{(\sqrt{13})^{2}-3^{2}}=2 \sqrt{13-9}=2.2=4$
13．（a）$x^{2}+y^{2}=144$ বৃজ্खেন্ন এ邓tि छ্যा जत्र

সমাষান \＆ধরি，প্রদত বৃख $x^{2}+y^{2}=144$ এর কেন্দ্র $\mathrm{O}(0,0)$ এবং ब্যা এর মধ্যবিস্দু $\mathrm{P}(4,-6)$ ．

OP রেখের সমীক্রণ $\mathrm{y}=\frac{-6}{4} x \Rightarrow 2 \mathrm{y}=-3 \mathrm{x}$ $\Rightarrow 3 \mathrm{x}+2 \mathrm{y}=0$
$P(4,-6)$ বিम্দুগামী এবং $3 x+2 y=0$ রেথার উপর बम्य नিণণ়় জ্যা এর সমীকরণ，

$$
\begin{aligned}
& 2 x-3 y=2.4-3 .(-6)=8+18=26 \\
& 2 x-3 y=26 \text { (Ans.) }
\end{aligned}
$$

13．（b）$x^{2}+y^{2}-6 x+10 y-21=0$ বৃष্টের এबটি छ্যা এর সমীকরণ \otimes দৈर्ब्य निর্র্য কন যার মষ্যকি্দ্রু $(1,-2)$ सिস্দুতে অবস্খিত।

সমাধান ：

ধরি，প্রদত্ত বৃষ্ঠ $x^{2}+y^{2}-6 x+10 y-21=0$

এর কেন্দ্র $O(3,-5)$ এবং $A B$ জ্যা এর মধ্যবিন্দू $\mathrm{P}(1,-2)$ ．
OP রেथाর ঢान $=\frac{-5+2}{3-1}=\frac{-3}{2}$
$\mathrm{OP} \perp \mathrm{AB}$ বनে， AB এর ঢाল $=\frac{2}{3}$
$P(1,-2)$ ক্দ্দুগামী $\frac{2}{3}$ ঢाল বিশিষ্ট নির্ণেয় জ্যা
AB এর সমীকরণ， $\mathrm{y}+2=\frac{2}{3}(\mathrm{x}-1)$
$\Rightarrow 3 y+6=2 x-2$
$2 x-3 y-8=0 \quad$（Ans．）
২য় জए ：OP $=\sqrt{(3-1)^{2}+(-2+5)^{2}}$

$$
=\sqrt{4+9}=\sqrt{13}
$$

$\mathrm{OA}=$ বৃत्大ের ব্যাসাধ $=\sqrt{3^{2}+5^{2}+21}$

$$
=\sqrt{9+25+21}=\sqrt{55}
$$

OAP সমকোণী ত্রিভুজ্জে OA অতিডুজ।
$\mathrm{AP}^{2}=\mathrm{OA}^{2}-\mathrm{OP}^{2}=55-13=42$
$\Rightarrow \mathrm{AP}=\sqrt{42}$

বिক্প পদ্রতি \＆$x^{2}+y^{2}-6 x+10 y-21=0$ বৃচ্জের বে জ্যাঢি $(1,-2)$ বিস্দুতে সমদ্খিষ্ডিত হয় তার সমীকরণ， $\mathrm{x} .1+\mathrm{y} .(-2)-3(\mathrm{x}+1)+$ $5(y-2)-21=1^{2}+(-2)^{2}-6.1+$ 10．（－2）－ $21 \quad\left[\mathrm{~T}=S_{1}\right.$ সূত্রের সাহায্যে । ］ $\Rightarrow \mathrm{x}-2 \mathrm{y}-3 \mathrm{x}-3+5 \mathrm{y}-10=1+4$ $-6-20$
$\Rightarrow-2 \mathrm{x}+3 \mathrm{y}-13+21=0$
$2 \mathrm{x}-3 \mathrm{y}-8=0 \quad$（Ans．）
২য় অশ্ 8 প্রদত বৃজ্টের কেন্দ্র $(3,-5)$ এবং ব্যাসাধ r $=\sqrt{9+25+21}=\sqrt{55}$ ．
কেন্দ্র $(3,-5)$ এবर জ্যা এর মধ্যষিস্দু $(1,-2)$ এর मूरण्व $d=\sqrt{(3-1)^{2}+(-5+2)^{2}}=\sqrt{13}$

ब্যা এর দৈर্ঘ্য $=2 \sqrt{r^{2}-d^{2}}=2 \sqrt{55-13}$

$$
=2 \sqrt{44} \text { একক। }
$$

14．（a）$x^{2}+y^{2}+6 x+2 y+6=0$＊$x^{2}+$ $y^{2}+8 x+y+10=0$ বৃ刃 দুইটির সাধারণ ब্যাকে ব্যাস ধরে 氏ষ্কিত বৃচ্টের সমীক্রণ নির্ণয় কর।
［ব．＇०6］
সমাধান ：ধরি，$S_{1} \equiv x^{2}+y^{2}+6 x+2 y+6=0$ এयर $S_{2} \equiv x^{2}+y^{2}+8 x+y+10=0$ বৃৃु দুইটির সাধারণ ब্যা এর সुমীকরণ，
$S_{1}-S_{2}=0 \Rightarrow-2 \mathrm{x}+\mathrm{y}-4=0$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}+4=0$
ধরি，এ সাধারণ ब্যাকে ব্যাস ধরে অজ্কিত বৃজ্তের সমीকরণ $x^{2}+y^{2}+6 x+2 y+6+$

$$
k(2 x-y+4)=0
$$

$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+(6+2 \mathrm{k}) \mathrm{x}+(2-\mathrm{k}) \mathrm{y}+$ $6+4 \mathrm{k}=0 \cdots(2)$
（2）বৃৰের কেস্দ্র $\left(-k-3, \frac{k-2}{2}\right)$ ，या সাধারণ জ্যা
（1）এর উপর অবস্ছিত।
$2(-\mathrm{k}-3)-\frac{k-2}{2}+4=0$
$\Rightarrow-4 \mathrm{k}-12-\mathrm{k}+2+8=0$
$\Rightarrow-5 \mathrm{k}-2=0 \Rightarrow \mathrm{k}=-\frac{2}{5}$
निন্ণেয় বৃত্তের সমীকরণ，$x^{2}+y^{2}+6 x+2 y$
$+6-\frac{2}{5}(2 x-y+4)=0$
$\Rightarrow 5\left(x^{2}+y^{2}\right)+30 x+10 y+30-4 x+$ $2 y-8=0$
$5\left(x^{2}+y^{2}\right)+26 x+12 y+22=0$
14 （b）$(x-p)^{2}+(y-q)^{2}=r^{2}$ $(x-q)^{2}+(y-p)^{2}=r^{2}$ বৃভ मूইটির সাধারণ অ্যা এর দৈ⿹্য নিিণয় কর।
সমাধান ঃ প্রদত্ত বৃজ্তের সমীকরণদ্যয়কে লিখা যাই，
$x^{2}+y^{2}-2 p x-2 q y+p^{2}+q^{2}-r^{2}=0$ এて゚ $x^{2}+y^{2}-2 q x-2 p y+p^{2}+q^{2}-r^{2}=0$

বৃ＜্ঠ দুইটির সাধারণ জ্যা এর সমীকরণ，
$(-2 p+2 q) x+(-2 q+2 p) y=0$
$\Rightarrow x-y=0$
১ম বৃত্তের কেন্দ্র（p，q）এবং ব্যাসাধ＝r

কেন্দ্র（ p, q ）থেকে（1）সাধারণ জ্যা এর बম্মদূরত্ব d $=\frac{|p-q|}{\sqrt{1+1}}=\frac{|p-q|}{\sqrt{2}}$

সাধারণ ब্যা এর দৈर्ঘ্য $=2 \sqrt{r^{2}-d^{2}}$

$$
\begin{aligned}
& =2 \sqrt{r^{2}-\frac{|p-q|^{2}}{(\sqrt{2})^{2}}}=\sqrt{4 r^{2}-\frac{4(p-q)^{2}}{2}} \\
& =\sqrt{4 r^{2}-2(p-q)^{2}}
\end{aligned}
$$

14 （c）$x^{2}+y^{2}-4 x+6 y-36=0$ в $x^{2}+y^{2}-5 x+8 y-43=0$ दृ刃 দুইটির সাধারণ ब্যা এর সমীকর্রণ নির্ণয় কর।［প্র．ভ．প．＇০৫；＇০৬］ সমাथান 8 ধরি，$S_{1} \equiv x^{2}+y^{2}-4 x+6 y-36=0$ ज『ং $S_{2} \equiv x^{2}+y^{2}-5 x+8 y-43=0$
বৃত্ত দুইটির সাধারণ অ্যা এর সমীকরণ，
$S_{1}-S_{2}=0$
$\Rightarrow(-4+5) x+(6-8) y+(-36+43)=0$ $\mathrm{x}-2 \mathrm{y}+7=0$（Ans．）
15．（a）দেখাও বে，$x^{2}+y^{2}-2 x+4 y-31=0$ $x^{2}+y^{2}+4 x-4 y+7=0$ दृ刃 मूইটি
 ग्र乐 কিস্দू নির্ণয় কর।
［ব．’১১］
প্রমাণ ：$x^{2}+y^{2}-2 x+4 y-31=0$ বৃত্েের কिস্দ্র $C_{1}(1,-2)$ उ ব্যাসাধ $r_{1}=\sqrt{1+4+31}=6$ এবা $x^{2}+y^{2}+4 x-4 y+7=0$ বৃজ্জের কেন্দ্র $C_{2}(-2,2)$ उ ব्याসাধ $r_{2}=\sqrt{4+4-7}=1$ ．

$$
\begin{aligned}
& C_{1} C_{2}=\sqrt{(1+2)^{2}+(-2-2)^{2}} \\
& =\sqrt{9+16}=5=6-1=r_{1}-r_{2}
\end{aligned}
$$

প্রদত্ত বৃত্ত দুইটি পরস্ররকে অম্তঃস্পাবে স্প্ করে।

সাধারণ স্সর্শক অধাৎ সাধারণ জ্যা এর সমীকরণ，
 $(-2-4) x+(4+4) y+(-31-7)=0$ $\Rightarrow-6 \mathrm{x}+8 \mathrm{y}-38=0$

$$
3 x-4 y+19=0 \text { (Ans.) }
$$

$এ$ সাধারণ স্শর্শক ক্সেদ্দ্রয়ের স২য়োগ রেখাশশ $C_{1} C_{2}$ কে ব্যাসার্ৰদ্যের जनृभाতে অ和 $r_{1}: r_{2}$ जनृभाত

বহির্বিভক্ত করবে। অতএব, স্পর্শবিন্দুর স্থানাঙ্ক $=\left(\frac{6 .(-2)-1.1}{6-1}, \frac{6.2-1 .(-2)}{6-1}\right)=\left(-\frac{13}{5}, \frac{14}{5}\right)$

15(b) দেখাও যে, $x^{2}+y^{2}+2 g x+2 f y+c=0$ যেকোন বিস্দু इতে $x^{2}+y^{2}+2 g x+2 f y+c^{\prime}=0$ বৃত্তে অধ্কিত স্প্রকের দৈর্য্য $\sqrt{c^{\prime}-c}$.
প্রমাণ : ধরি, (α, β) প্রথম বৃত্তের উপর যেকোন বিন্দু ।

$$
\begin{gather*}
\\
\alpha^{2}+\beta^{2}+2 \mathrm{~g} \alpha+2 \mathrm{f} \beta+\mathrm{c}=0 \tag{1}\\
\Rightarrow
\end{gather*} \alpha^{2}+\beta^{2}+2 \mathrm{~g} \alpha+2 \mathrm{f} \beta=-\mathrm{c} \cdots(
$$

এখন (α, β) বিন্দু থেকে দ্বিতীয় বৃত্তে অজ্কিত স্পর্শকের দৈर্ঘ্য $=\sqrt{\alpha^{2}+\beta^{2}+2 g \alpha+2 f \beta+c^{\prime}}$

$$
=\sqrt{-c+c^{\prime}}=\sqrt{c^{\prime}-c}(\text { Showed })
$$

16.(a) $(-5,4)$ ষি্দু পেকে $x^{2}+y^{2}-2 x-4 y$ $+1=0$ বৃজ্েে অঙ্কিত স্পর্শকের সমীকরণ নিণয় কর। [य.'০১; ঢা.'০৫,’১৩]
সমাধান : $x^{2}+y^{2}-2 x-4 y+1=0 \cdots(1)$ বৃত্তের কেন্দ্র $(1,2)$ এবং ব্যাসাধ $=\sqrt{1+4-1}=2$ ধরি, (- 5, 4) বিন্দুগামী সাপশকের সমীকরণ $y-4=m(x+5)$ অর্থাৎ $m x-y+5 m+4=0$ বৃত্তের কেন্দ্র $(1,2)$ থেকে এ স্পর্শকের লস্বদূরত্ব ব্যাসাধ 2 এর সমান হবে।

$$
\frac{|m-2+5 m+4|}{\sqrt{m^{2}+1}}=2 \Rightarrow \frac{|6 m+2|}{\sqrt{m^{2}+1}}=2
$$

$\Rightarrow(3 m+1)^{2}=m^{2}+1$
$\Rightarrow 9 m^{2}+6 m+1=m^{2}+1$
$\Rightarrow 8 m^{2}+6 m=0 \Rightarrow m(8 m+6)=0$

$$
\mathrm{m}=0,-\frac{3}{4}
$$

স্পর্শকের সমীকরণ $y-4=0$ এবং

$$
\begin{aligned}
y-4 & =-\frac{3}{4}(x+5) \\
\Rightarrow 4 y-16 & =-3 x-15 \therefore 3 x+4 y-1=0
\end{aligned}
$$

16.(b) মুলবিস্দু থেকে $x^{2}+y^{2}-10 x+20=0$ বৃচ্টে অध্ধিত স্ণর্শক দুইটির্ন সমীকরণ নিণ্য কর। [ঢা.'o৮,'১১; রা.'১০,'১৩; সি.'১০; য.'০৫; চ. '০৬,'০১, '১৩ ব.'১২] সমাধান ः $x^{2}+y^{2}-10 x+20=0 \cdots(1)$

বৃত্তের কেন্দ্র $(5,0)$ এবং ব্যাসার্ধ $=\sqrt{25-20}=\sqrt{5}$ ধরি, মূলবিস্দু $(0,0)$ দিয়ে অতিক্রমকারী সাপর্শকের সমীকরণ $y=m x$ অর্থাৎ $m x-y=0$
বৃত্তের কেন্দ্র $(5,0)$ থেকে. এ স্সর্শকের লম্বদূরত্ব ব্যাসাধ $\sqrt{5}$ এর সমান হবে।

$$
\begin{aligned}
& \frac{|5 m-0|}{\sqrt{m^{2}+1}}=\sqrt{5} \Rightarrow 25 \mathrm{~m}^{2}=5\left(\mathrm{~m}^{2}+1\right) \\
\Rightarrow & 5 \mathrm{~m}^{2}=\mathrm{m}^{2}+1 \Rightarrow 4 \mathrm{~m}^{2}=1 \therefore \mathrm{~m}= \pm \frac{1}{2} \\
& (3 \mathrm{~m}+1)^{2}=\mathrm{m}^{2}+1
\end{aligned}
$$

$$
\text { স্সর্শক দুইটির সমীকরণ } y=\frac{1}{2} x \Rightarrow x-2 y=0
$$

$$
\text { এবং } y=-\frac{1}{2} x \Rightarrow x+2 y=0
$$

16 (c) মूबবिन्मू শেকে $x^{2}+y^{2}-6 x-4 y+9=0$ বৃত্তে অষ্ট্রিত স্পর্শক দুইটির অন্তর্ভুক্ত কোণ নির্য়় কর। সমাধান ः $x^{2}+y^{2}-6 x-4 y+9=0$ বৃত্তের কেন্দ্র $(3,2)$ এবং ব্যাসাধ $=\sqrt{9+4-9}=2$ ধরি, মূলকিন্দু $(0,0)$ দিয়ে অতিক্রমকারী সাপর্শকের সমীকরণ $\mathrm{y}=\mathrm{mx}$ অर्থाৎ $\mathrm{mx}-\mathrm{y}=0$
বৃত্তের কেন্দ্র $(3,2)$ থেকে এ স্সশকের লম্মদূরত্ব ব্যাসাধ 2 এর সমান হবে।

$$
\begin{aligned}
& \frac{|3 m-2|}{\sqrt{m^{2}+1}}=2 \Rightarrow(3 m-2)^{2}=4\left(m^{2}+1\right) \\
\Rightarrow & 9 m^{2}-12 m+4=4 m^{2}+4 \\
\Rightarrow & 5 m^{2}-12 m=0 \Rightarrow m(5 m-12)=0 \\
\therefore & m=0, \frac{12}{5}
\end{aligned}
$$

স্পরক দুইটির সমীকরণ $\mathrm{y}=0$ এবং $\mathrm{y}=\frac{12}{5} \mathrm{x}$.
এখন $y=\frac{12}{5} x$ রেখা $y=0$ রেখা অর্থাৎ x-অক্ষের সাথে θ কোণ উৎপন্ন করলে, $\tan \theta=m$
$\theta \triangleq \tan ^{-1} \frac{12}{5}$, যা স্পর্শক দূইটির অन্তর্ভুক্ত কোণ।
17.(a) $x=0, y=0$ в $x=a$ রেখা তিনটিকে স্স্গ করে এরূপ বৃজ্ডের সমীকরণ নির্ণয় কর।
[য.'০১; রা.'০৫; কু.'০৪,’১১]

সমাধান \& ধরি, বৃত্তের সমীকরণ
$x^{2}+y^{2}+2 g x+2 f y+c=0$
বৃষ্টটি $\mathrm{x}=0$ রেখাকে অর্বাৎ
y-অक্ষকে এবং $y=0$ রেখাকে অর্ৰ! x-অষকে স্পশ্ করে ।

$$
\begin{aligned}
& \mathrm{f}^{2}=\mathrm{c} \text { এবং } \mathrm{g}^{2}=\mathrm{c} \\
& \mathrm{~g}^{2}=\mathrm{f}^{2}=\mathrm{c}
\end{aligned}
$$

আবার, বৃত্তটি $x=a$ অধাৎ $x-a=0$ রেখাকে স্পশ করে । অতএব, বৃত্তের কেন্দ্র $(-\mathrm{g},-\mathrm{f})$ হতে রেখাটির নম্মদূরত্ব ব্যাসাধ $\sqrt{g^{2}+f^{2}-c}$ এর সমান হবে।

$$
\begin{aligned}
& \frac{|-g-a|}{\sqrt{1}}=\sqrt{g^{2}+f^{2}-c} \\
\Rightarrow & \mathrm{~g}^{2}+2 \mathrm{ag}+\mathrm{a}^{2}=\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c} \\
\Rightarrow & 2 \mathrm{ag}+\mathrm{a}^{2}=\mathrm{f}^{2}-\mathrm{f}^{2} \quad\left[\quad \mathrm{c}=\mathrm{f}^{2}\right] \\
\Rightarrow & 2 \mathrm{ag}+\mathrm{a}^{2}=0 \therefore \mathrm{~g}=-\frac{a}{2} \\
& \mathrm{c}=\mathrm{g}^{2}=\left(-\frac{a}{2}\right)^{2}=\frac{a^{2}}{4} \text { aবং } \\
& \mathrm{f}^{2}=\mathrm{g}^{2}=\frac{a^{2}}{4} \Rightarrow \mathrm{f}= \pm \frac{a}{2}
\end{aligned}
$$

নির্ণেয় বৃত্তের সমীকরণ,
$\mathrm{x}^{2}+\mathrm{y}^{2}+2\left(-\frac{a}{2}\right) \mathrm{x}+2\left(\pm \frac{a}{2}\right) \mathrm{y}+\frac{a^{2}}{4}=0$
$x^{2}+y^{2}-a x \pm a y+\frac{1}{4} a^{2}=0$ (Ans.)
17.(b) $\sqrt{2}$ ব্যাসার্ধবিশিষ একটি বৃত্তের সমীক্রণ নির্ণয় ক্র যা উভয় অশকে স্পণ করে এবং যার ক্সেদ্র তৃতীয় চতুর্ডাগে অবস্থিত।
[প्र.ङ.भ. '०8]
সমাধান ঃ ধরি, বৃত্তের সমীকরণ,
$(x-h)^{2}+(y-k)^{2}=r^{2}$
দেఆয়া জাছ, বৃত্তের ব্যাসাধ $\mathrm{r}=\sqrt{2}$
বৃভটি উভয় অক্ষকে স্পপ্গ করে।

$$
r=|h|=|k|
$$

$\Rightarrow \mathrm{r}=-\mathrm{h}=-\mathrm{k}=\sqrt{2} \quad[$ बেন্দ্র ঢৃতীয় চতুর্ডাগে অবস্থিত, $\therefore \mathrm{h}, \mathrm{k}<0$]
$h=k=-\sqrt{2}$
নিকণ্ণে বৃত্তের সমীকরণ,

$$
\Rightarrow \begin{aligned}
& (\mathrm{x}+\sqrt{2})^{2}+(\mathrm{y}+\sqrt{2})^{2}=(\sqrt{2})^{2} \\
\Rightarrow & \mathrm{x}^{2}+2 \sqrt{2} \mathrm{x}+2+\mathrm{y}^{2}+2 \sqrt{2} \mathrm{y}+2=2 \\
& x^{2}+y^{2}+2 \sqrt{2} x+2 \sqrt{2} y+2=0
\end{aligned}
$$

17(c) $(-5,-6)$ বিন্দूগামী একটি বৃख $3 x+4 y$ $-11=0$ রেখাকে $(1,2)$ কিস্দু বৃও্তটির সমীক্রণ নির্ণয় কর।
সমাধান : $\left(\begin{array}{ll}1 & 2\end{array}\right)$ ক্দ্দুতে ক্দ্দুবৃত্তের সমীকরণ $(x-1)^{2}+(y-2)^{2}=0$
$\Rightarrow \mathrm{x}^{2}-2 \mathrm{x}+1+\mathrm{y}^{2}-4 \mathrm{y}+4=0$
$\Rightarrow x^{2}+y^{2}-2 x-4 y+5=0 \cdots(1)$
$(-5,-6)$ ব্দ্নুগামী এবং (1) বৃত্ত ও প্রদত্ত রেখা $3 x+4 y-11=0$ এর ছেদ বিদ্দুগামী বৃত্তের সমীকরণ,

$$
\begin{aligned}
& \frac{x^{2}+y^{2}-2 x-4 y+5}{3 x+4 y-11}=\frac{25+36+10+24+5}{-15-24-11} \\
& \Rightarrow \frac{x^{2}+y^{2}-2 x-4 y+5}{3 x+4 y-11}=\frac{100}{-50} \\
& \Rightarrow x^{2}+y^{2}-2 x-4 y+5=-6 \mathrm{x}-8 \mathrm{y}+22 \\
& x^{2}+y^{2}+4 x+4 y-17=0
\end{aligned}
$$

18. $12 x+5 y=212$ সরনলরো হতে $x^{2}+y^{2}$ $-2 x-2 y=167$ বৃত্তের উপর বে কিন্দুটির দুরত্র স্যুদ্রত্ম তার স্থানাষ্ক নির্ণ কর।
সমাষান ৪ প্রদত্ত বৃত্তের কেন্দ্র $O(1,1)$ এবং ব্যাসাধ $=\sqrt{1+1+167}=\sqrt{169}=13$
$12 x+5 y-212=0 \cdots(1)$ রেখার উপর লম্ম এবং কেন্দ্র $\mathrm{O}(1,1)$ দিয়ে অতিক্রম করেে এরূপ রেখার সমীকরণ, $5 x-12 y=5 \times 1-12 \times 1=-7$
$\Rightarrow 5 x-12 y+7=0 \cdots$ (2)

(1) ও (2) রেখার ছেদব্দ্মু M হলে,

$$
\begin{aligned}
M & \equiv\left(\frac{35-2544}{-144-25}, \frac{-1060-84}{-144-25}\right) \\
& =\left(\frac{-2509}{-169}, \frac{-1144}{-169}\right)=\left(\frac{193}{13}, \frac{88}{13}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{OM}=\sqrt{\left(1-\frac{193}{13}\right)^{2}+\left(1-\frac{88}{13}\right)^{2}} \\
& =\sqrt{\frac{32400+5625}{169}}=\sqrt{\frac{38025}{169}}=15
\end{aligned}
$$

ধরি，নিণ্ণেয় বি্দ্দুটি $\mathrm{A}(\alpha, \beta) \mid$
$\mathrm{OA}=13$ এてং
$\mathrm{AM}=\mathrm{OM}-\mathrm{OA}=15-13=2$
$\mathrm{OA}: \mathrm{AM}=13: 2$
$\therefore \alpha=\frac{13 \times \frac{193}{13}+2 \times 1}{13+2}=\frac{195}{15}=13$
जबए $\beta=\frac{13 \times \frac{88}{13}+2 \times 1}{13+2}=\frac{90}{15}=6$
निর্ণেয় ব্দিরু স্থানাষ্क $(13,6)$ ।
19．（a）$x^{2}+y^{2}=r^{2}$ বৃজ্েের বেসব জ্যা (α, β)
 ক্র। সমাধান ：

ধরি，প্রদত্ত বৃত্ত $x^{2}+y^{2}=r^{2}$ এর बেন্দ্র $\mathrm{O}(0 \quad 0)$ এবए $\mathrm{A}(\alpha, \beta)$ বিদ্দুগামী জ্যাসমূহের মষ্যক্দ্দুর সঞ্চারপথের উপর $\mathrm{P}(\mathrm{x}, \mathrm{y})$ যেকোন একটি ক্দিদ্দু । তাহলে， $\mathrm{OP} \perp \mathrm{AP}$ ．

OP এर ঢाल $\times \mathrm{AP}$ এর ঢाल $=-1$
$\Rightarrow \frac{0-y}{0-x} \times \frac{y-\beta}{x-\alpha}=-1$
$\Rightarrow y(y-\beta)=-x(x-\alpha)$
$x(x-\alpha)+y(y-\beta)=0$ ，या निर্ণে সঞ্চারপথের সমীকরণ।

19．（b）$(\mathrm{b}, 0)$ কिস্দू रতে $x^{2}+y^{2}=a^{2}$ বৃৰ্তের
 নিণ্য় কর। সমাধান ：

ধরি， $\mathrm{A}(\mathrm{b}, 0)$ बি্দু হতে $x^{2}+y^{2}=a^{2}$ বৃত্তের স্পর্শকের উপর অষ্কিত লম্ষের পাদব্দ্দুর সঞ্চারপথের উপর $\mathrm{P}(\mathrm{x}, \mathrm{y})$ যেকোন একটি ক্দি PT যেকোন একটি স্সর্। তাহলে， $\mathrm{AP} \perp \mathrm{PT}$ ．

PT স্সর্শকের ঢাল， $\mathrm{m}=-\frac{b-x}{0-y}=\frac{b-x}{y}$
PT স্প্রকের সমীকরণ，$y=m x \pm a \sqrt{m^{2}+1}$
$\Rightarrow \mathrm{y}=\frac{b-x}{y} x \pm \mathrm{a} \sqrt{\frac{(b-x)^{2}}{y^{2}}+1}$
$\Rightarrow \mathrm{y}^{2}=\mathrm{bx}-\mathrm{x}^{2} \pm \mathrm{a} \sqrt{(b-x)^{2}+y^{2}}$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{bx}= \pm \mathrm{a} \sqrt{(b-x)^{2}+y^{2}}$
$\left(x^{2}+y^{2}-b x\right)^{2}=a^{2}\left\{(b-x)^{2}+y^{2}\right\}^{2}$,
যা নিত্ণেয় সঞ্চারপপের সমীকরণ।
19 （c）（h，k）কिम्मू পেকে $x^{2}+y^{2}=12$ বৃख্েে पध्विত স্সর্রকের দৈর্য $x^{2}+y^{2}+5 x+5 y=0$
 সঞ্চারপশ্রের সমীক্রণ নির্ণ৷ ক্র।
সমাধান ：(h, k) ক্দি থ্ থেকে $x^{2}+y^{2}=12$ অব্यাৎ $x^{2}+y^{2}-12=0$ বৃজ্大ে অষ্ধিত স্শর্শকের দৈর্ঘ্য $=\sqrt{h^{2}+k^{2}-12}$ এবং（h k）ক্দি থেকে $x^{2}+y^{2}+5 x+5 y=0$ বৃত্নে অভ্কিত স্শর্শকের ไৈ勾র $=\sqrt{h^{2}+k^{2}+5 h+5 k}$ প্রপ্নমতে，

$$
\sqrt{h^{2}+k^{2}-12}=2 \sqrt{h^{2}+k^{2}+5 h+5 k}
$$

$\Rightarrow \mathrm{h}^{2}+\mathrm{k}^{2}-12=4\left(\mathrm{~h}^{2}+\mathrm{k}^{2}+5 \mathrm{~h}+5 \mathrm{k}\right)$
$\Rightarrow 3 \mathrm{~h}^{2}+3 \mathrm{k}^{2}+20 \mathrm{~h}+20 \mathrm{k}+12=0$
এখन h কে x ঘার এবং k কে y ঘারা প্রতিস্মাপন করে भाई， $3 x^{2}+3 y^{2}+20 x+20 y+12=0$ ，या नির্চেয় সঞ্চারপথের সমীকরণ।
19 （d）बেসব কিস্দু লেকে $x^{2}+y^{2}=a^{2}$ বৃশ্大ে অध्बिত স্শর্বক দूইইটি পরস্শর बম্ম হয় তাদের
 সমাধান 8 ধরি，প্রদত্ত বৃত্ত
$x^{2}+y^{2}=\mathrm{a}^{2}$ এর बেন্দ্র $\mathrm{O}(0 \quad 0)$ এবং সষ্চারপপের উপর $\mathrm{P}(\mathrm{x}, \mathrm{y})$ যেবোন একটি

ব্দ্দি থেকে অজ্কিত PA ও $\mathrm{PB} \mathrm{P}(x, y) \mathrm{B}$ বইचौ.ক্থ স্পর্শক দুইটি পরস্সর লম্ম।

PAOB চতুর্ভুজে,
$\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{P}=90^{\circ}$

$$
\angle \mathrm{O}=90^{\circ} \text { তাছাড়া, } \mathrm{AO}=\mathrm{OB}=\mathrm{a}
$$

PAOB একটি বর্গক্ষেত্র যার প্রতিটি বাহুর দৈর্ঘ্য a একক।

$$
\mathrm{PO}^{2}=\mathrm{PA}^{2}+\mathrm{AO}^{2}
$$

$\Rightarrow x^{2}+y^{2}=a^{2}+a^{2}$
$\therefore \mathrm{x}^{2}+\mathrm{y}^{2}=2 \mathrm{a}^{2}$, या निন্নেয় সঞ্চারপথথর সমীকরণ।
বিক্প্প পপ্র্িি ঃ ধরি, প্রদত্ত বৃত্তে স্পর্শকের সমীকরণ,

$$
y=m x \pm a \sqrt{1+m^{2}}
$$

$\Rightarrow y-m x= \pm a \sqrt{1+m^{2}}$
$\Rightarrow y^{2}-2 m x y+m^{2} x^{2}=a^{2}\left(1+m^{2}\right)$
$\Rightarrow\left(x^{2}-a^{2}\right) m^{2}-2 m x y+y^{2}-a^{2}=0$
মূলদ্ব্য m_{1} उ m_{2} হলে, শর্তমতে, $m_{1} m_{2}=-1$

$$
\frac{y^{2}-a^{2}}{x^{2}-a^{2}}=-1 \Rightarrow y^{2}-a^{2}=-x^{2}+a^{2}
$$

$\therefore x^{2}+y^{2}=2 a^{2}$, या निर্ণ্য় সঞ্চারপথের সমীকরণ।

19(e) $3 x-y-1=0$ সরबরেখা $(x-2)^{2}+$ $y^{2}=5$ বৃउকে যে সৃক্ষকোণে ছেদ করে তা নির্ণয় কর।
সমাধান ঃ প্রদত্ত বৃত্ত $(x-2)^{2}+y^{2}=5$
এবং সরনরেখা $3 x-y-1=0$
ऊर्थाए $\mathrm{y}=3 \mathrm{x}-1$
(1) এ y- এর মান বসিয়ে পাই,
$(x-2)^{2}+(3 x-1)^{2}=5$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}+4+9 \mathrm{x}^{2}$
$-6 x+1=5$
$\Rightarrow 10 x^{2}-10 x=0$

$\Rightarrow x(x-1)=0 \Rightarrow x=0,1$
(2) হতে পাই, $y=-1,2$
(2) রেখা (1) বৃত্তকে $(0,-1)$ ও $(1,2)$ ক্দ্দুতে

ছছদ করে।
(i) বৃত্তের কেন্দ্র $(2,0)$.
$(0,-1)$ ক্দ্মুতে অভিলড্মের ঢাল $=\frac{0+1}{2-0}=\frac{1}{2}$
$(0,-1)$ বিদ্দুতে স্পর্শরের ঢল $=-2$
(2) রেখার ঢাল $=3$.

ধরি, নির্ণেয় কোণ φ.

$$
\tan \varphi=\left|\frac{3+2}{1+3 \cdot(-2)}\right|=1 \quad \varphi=45^{\circ}
$$

19(f) দেখাও মে, P(h,k) কি্দ্দু লেকে মুoকি্দু দিয়ে অতিক্কমকারী সরনরেখার উপর অধ্কিত অম্বের্র প্রাদকিস্দুর সষ্চারপপ এবটি বৃত্ত।
প্রমাণ ः ধরি, $\mathrm{P}(\mathrm{h}, \mathrm{k})$ ক্ন্দু থেকে মূলঝ্ন্দ্ $\mathrm{O}(0,0)$ দিয়ে অতিক্রমকারী সরনরেখার উপর
 অজ্尺িত লন্মের পাদক্ন্দুর সঞ্চারপথের উপর $\mathrm{Q}(\mathrm{x}, \mathrm{y})$ যেকোন একটি ব্দ্নু । তাহলে, $\mathrm{OQ} \perp \mathrm{PQ}$

OQ এর ঢাল. $\times \mathrm{PQ}$ এর ঢাन $=-1$
$\Rightarrow \frac{y}{x} \times \frac{y-k}{x-h}=-1 \Rightarrow y^{2}-\mathrm{ky}=-\mathrm{x}^{2}-\mathrm{hx}$
$\Rightarrow \therefore \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{hx}+\mathrm{ky}=0$, या একটি বৃত্大ের সমীকরণ নির্দেশ করে।

সষ্চারপ্টি একটি বৃত্ত।
20. সমাধান ः
(a) ব্যাসের দৈর্ঘ্য $=(2,-4)$ ও $(0,0)$ বিन्দू

দুইটির দৈর্ঘ্য $=\sqrt{2^{2}+(-4)^{2}}=\sqrt{4+16}$

$$
=2 \sqrt{5} \text { একক। }
$$

(b) ব্যাসणির সমীক্রণ,

$$
(x-2)(-4-0)-(y+4)(2-0)=0
$$

$\Rightarrow-4(x-2)-2(y+4)=0$
$\Rightarrow 2(x-2)+(y+4)=0$
$\Rightarrow 2 \mathrm{x}-4+\mathrm{y}+4=0 \therefore 2 \mathrm{x}+\mathrm{y}=0$
আবার, $\left(\begin{array}{ll}2 & -4\end{array}\right)$ ও $\left(\begin{array}{ll}0 & 0\end{array}\right)$ ক্দ্দু দুইটিকে একটি ব্যাসের প্রান্তবিন্দু ধরে অভ্কিত বৃত্তের সমীকরণ,

$$
\begin{aligned}
& (x-2)(x-0)+(y+4)(y-0)=0 \\
\Rightarrow & x^{2}-2 x+y^{2}+4 y=0 \\
& x^{2}+y^{2}-2 x+4 y=0 \cdots(1)(\text { Ans. })
\end{aligned}
$$

(c) $\left(\begin{array}{ll}2 & -4\end{array}\right)$ ও $\left(\begin{array}{ll}0 & 0\end{array}\right)$ বি্দু দিত্যে जতিক্সমকারী ব্যাসের সমীকরণ, $y=\frac{-4}{2} x$
$\Rightarrow y=-2 x \Rightarrow 2 x+y=0$

ধরি, $2 \mathrm{x}+\mathrm{y}=0$ ব্যাসের সমান্তরান স্সশকের সমীকরণ $2 x+y+k=0$
(1) বৃত্ত (2) রেখাকে স্শ্ করলে কেন্দ্র $(1,-2)$ থেকে এর দূরত্ব ব্যাসাধ্ধ $\sqrt{1+4}=\sqrt{5}$ এর সমান হবে।

$$
\frac{|2-2+k|}{\sqrt{4+1}}=\sqrt{5} \Rightarrow|k|=5 \Rightarrow k= \pm 5
$$

(2) $এ \mathrm{k}$ এর মান বসিয়ে পাই, $2 \mathrm{x}+\mathrm{y} \pm 5=0$
21. $x^{2}+y^{2}-4 x-6 y+c=0$ दृत्उणि x অককে স্পর্ণ করে।
(a) প্রদত্ত বৃত্তের সমীকরণ, $x^{2}+y^{2}+2(-2) x+$ 2. $(-3) y+\mathrm{c}=0$

বৃত্তের কেন্দ্র $(2,3)$,

$$
\text { ব্যাসার্ধ }=\sqrt{2^{2}+3^{2}-c}=\sqrt{13-c}
$$

এবং বৃত্তটি দ্ঘারা x -অক্ষের খভ্ডিতাংশ $=2 \sqrt{2^{2}-c}$

$$
=2 \sqrt{4-c}
$$

(b) প্রশ্নমালা IV B এর 2(c) দ্রষষ্যব।

(c) ঋ্রশ্নমানা IV A এর্র 4(c) দ্রষ্রय্য।
22. সমাধান: কার্তেসীয় ও পোলার স্থানাজ্কের সম্পর্ক रতে পাই, $r^{2}=x^{2}+y^{2}, x=r \cos \theta, y=r$ $\sin \theta$.

$$
\begin{aligned}
& r^{2}=-4 r \cos \theta \text { হতে পাই, } \\
& x^{2}+y^{2}=-4 x \Rightarrow x^{2}+y^{2}+4 x=0
\end{aligned}
$$

(a) বৃত্তটির কেন্দ্র $=\left(-\frac{4}{2}, \frac{0}{2}\right)=(-2,0)$

जđং ব্যাসাধ $=\sqrt{2^{2}+0-0}=$
(b) খলিফার নিয়মানুসারে $(-6,5)$ ও $(-3,-4)$ ব্দ্দুগামী বৃত্তের সমীকরণ,

$$
\begin{align*}
& (x+6)(x+3)+(y-5)(y+4)+ \\
& k\{(x+6)(5+4)-(y-5)(-6+3)\}=0 \\
& \Rightarrow x^{2}+9 x+18+y^{2}-y-20+ \\
& \quad k(9 x+54+3 y-15)=0 \\
& \Rightarrow x^{2}+y^{2}+9 x-y-2+ \\
& k(9 x+3 y+39)=0 \tag{1}
\end{align*}
$$

(1) বৃত্তটি $(2,1)$ বিন্দুগামী বলে,
$4+1+18-1-2+k(18+3+39)=0$
$\Rightarrow 60 \mathrm{k}=-20 \Rightarrow \mathrm{k}=-\frac{1}{3}$
(1) $\stackrel{k}{ }$ এর মান বসিয়ে পাই,

$$
\begin{align*}
& x^{2}+y^{2}+9 x-y-2-3 x-y-13=0 \\
& x^{2}+y^{2}+6 x-2 y-15=0 \tag{1}
\end{align*}
$$

(c) দিতীয় বৃত্তের কেন্দ্র $(-3,1)$.
$(-2,0)$ ఆ $(-3,1)$ কেন্দ্রগামী সরলরেখার সমীকরেণ
$\frac{x+2}{-2+3}=\frac{y-0}{0-1} \Rightarrow y=-x-2$
$x^{2}+y^{2}+4 x=0$ বৃত্তে $y=-x-2$ বभिख্যে পाই, $x^{2}+(x+2)^{2}+4 x=0$
$\Rightarrow x^{2}+x^{2}+4 x+4+4 x=0$
$\Rightarrow 2 \mathrm{x}^{2}+8 \mathrm{x}+4=0 \Rightarrow \mathrm{x}^{2}+4 \mathrm{x}+2=0$
$\Rightarrow x=\frac{-4 \pm \sqrt{16-8}}{2}=\frac{-4 \pm 2 \sqrt{2}}{2}$
$=-2 \pm \sqrt{2}$
$\mathrm{x}=-2+\sqrt{2}$ रलि, $\mathrm{y}=2-\sqrt{2}-2=-\sqrt{2}$
$\mathrm{x}=-2-\sqrt{2}$ रलে, $\mathrm{y}=2+\sqrt{2}-2=\sqrt{2}$
প্রথম বৃত্তের ব্যাসের প্রান্তক্দ্দু
$(-2+\sqrt{2},-\sqrt{2})$ ও $(-2-\sqrt{2}, \sqrt{2})$

কাজ

2। $x^{2}+y^{2}+4 x-10 y+28=0$ বৃত্তের $(-2,4)$ কিদ্দুতে স্পর্শক ও অভিনম্বের সমীকরণ নির্ণয় কর।
সমাধান ः $x^{2}+y^{2}+4 x-10 y+28=0$ বৃত্তের $(-2,4)$ ব্দ্রুতে স্পর্ককের সমীকরণ,
$\mathrm{x} .(-2)+\mathrm{y} \cdot 4+2(\mathrm{x}-2)-5(\mathrm{y}+4)+28=0$
$\Rightarrow-2 \mathrm{x}+4 \mathrm{y}+2 \mathrm{x}-4-5 \mathrm{y}-20+28=0$
$\Rightarrow-y+4=0 \quad y=4$
এখন ধরি, $y=4$ স্পপ্রকের উপর লম্ম অভিলম্মের সমীকরণ $x=k$, या $(-2,4)$ ক্দিন্গুমী।

$$
-2=k \Rightarrow k=-2
$$

অडিলদ্মের সমীকরণ $x=-2 \Rightarrow x+2 \doteq 0$

२। $x^{2}+y^{2}=a^{2}$ বৃত্তে অভ্কিত স্শর্শক x-অণ্ষের সাণে $\boldsymbol{\operatorname { t a n }}^{-1} \frac{2}{5}$ কোণ উৎপন্ন করে। স্শশরের্র সমীকরণ निर्षय़ কর।
সমাধান ः $x^{2}+y^{2}=a^{2}$ বৃত্তের কেন্দ্র $(0,0)$ এবং ব্যাসার্ধ $=\mathrm{a}$
ধরি, x-অক্ষের সাথে $\tan ^{-1} \frac{2}{5}$ কোণ উৎপন্ন করে এরূপ রেখার সমীকরণ $y=\tan \left(\tan ^{-1} \frac{2}{5}\right) \mathrm{x}+\mathrm{c}$ $\Rightarrow y=\frac{2}{5} x+c \Rightarrow 2 x-5 y+5 c=0 \cdots$
(1) রেখাটি প্রদত্ত বৃত্তকে স্পগ করলে কেন্দ্র (0 0 0 থেকে এর দূরত্ত ব্যাসার a এর সমান হবে।

$$
\frac{|5 c|}{\sqrt{4+25}}=a \Rightarrow|5 c|=\sqrt{29} a
$$

$\Rightarrow 5 \mathrm{c}= \pm \sqrt{29} \mathrm{a} \quad \mathrm{c}= \pm \frac{\sqrt{29} a}{5}$
নিন্ণেয় স্পশকেের সমীকরণ

$$
\begin{aligned}
& 2 \mathrm{x}-5 \mathrm{y}+5\left(\pm \frac{\sqrt{29} a}{5}\right)=0 \\
& \quad \Rightarrow 2 \mathrm{x}-5 \mathrm{y} \pm \sqrt{29} a=0 \text { (Ans.) }
\end{aligned}
$$

৩। $x^{2}+y^{2}=\mathrm{a}^{2}$ रुত্তে অध्किত স্থশক অफ्क
 করে। স্শর্কে সমীকরণ নিণয় কর।
সমাধান : $x^{2}+y^{2}=a^{2}$ বৃত্তের কেন্দ্র $(0,0)$ এবং ব্যাসাধ $=\mathrm{a}$. ধরি, স্শর্ের সমীকরণ $\frac{x}{b}+\frac{y}{c}=1$ जर्बाৎ $c x+b y-a b=0 \cdots$ (1)
(1) রেখাটি অক্ষ দুইটির সাথে বে ত্রিভুজ গঠন করে তার কुত্রফल $=\frac{1}{2} b c$
প্রশ্নমতে, $\frac{1}{2} b c=\mathrm{a}^{2} \Rightarrow \mathrm{bc}=2 \mathrm{a}^{2} \cdots$
আবার, (1) রেখাটি প্রদত্ত বৃত্তকে স্পর্গ করলে কেন্দ্র $(0,0)$ থেকে এর দূরত্ব ব্যাসাধ a এর সমান হবে।

$$
\left|\frac{0-0-b c}{\sqrt{c^{2}+b^{2}}}\right|=\mathrm{a} \Rightarrow \mathrm{~b}^{2} \mathrm{c}^{2}=\mathrm{a}^{2}\left(\mathrm{~b}^{2}+\mathrm{c}^{2}\right)
$$

$$
\begin{aligned}
\Rightarrow & b^{2} c^{2}=\frac{b c}{2}\left(b^{2}+c^{2}\right) \\
\Rightarrow & b^{2}+c^{2}=2 b c \Rightarrow(b-c)^{2}=0 \\
& b-c=0 \Rightarrow b=c \\
& (2) \Rightarrow b^{2}=2 a^{2} \Rightarrow b=c= \pm \sqrt{2} a
\end{aligned}
$$

নির্ণেয় স্পর্শকের সমীকরণ $\frac{x}{ \pm \sqrt{2} a}+\frac{y}{ \pm \sqrt{2} a}=1$

$$
x+y= \pm a \sqrt{2} \quad \text { (Ans.) }
$$

8। দেখাও মে, x-অছ্థ $x^{2}+y^{2}-4 x-5 y+4$
 অপর স্পর্শকের সমীকরন নির্ণয় কর।
প্রমাণ : $x^{2}+y^{2}-4 x-5 y+4=0$ বৃত্তের কেন্দ্র $\left(2, \frac{5}{2}\right)$ এবং ব্যাসাধ $=\sqrt{4+\frac{25}{4}-4}=\frac{5}{2}$ এখন x-অক্ষ থেকে বৃত্তের কেন্দ্র $\left(2, \frac{5}{2}\right)$ এর দূরত্ব
$=\mid$ কেন্দ্রের কোটি $\left|=\left|\frac{5}{2}\right|=\frac{5}{2}=\right.$ বৃত্তের ব্যাসাধ। x-অक्ष প্রদত্ত বৃত্তের একটি স্সর্শক। ২য় অশশ : ধরি মূলক্দ্দুগামী স্সর্শকের সমীকরণ $y=m x$ অर्थाৎ $m x-y=0$
(1) রেখাটি প্রদত্ত বৃত্তের একটি স্শর্শক হলে কেন্দ্র ($2, \frac{5}{2}$) থেকে এর দূরত্ব ব্যাসাধ $\frac{5}{2}$ এর সমান হবে।

$$
\left|\frac{2 m-5 / 2}{\sqrt{m^{2}+1}}\right|=\frac{5}{2}
$$

$$
\Rightarrow \frac{(4 m-5)^{2}}{4}=\frac{25}{4}\left(m^{2}+1\right)
$$

$$
\Rightarrow 16 m^{2}-40 m+25=25 m^{2}+25
$$

$$
\Rightarrow 9 \mathrm{~m}^{2}+40 \mathrm{~m}=0 \therefore \mathrm{~m}=-\frac{40}{9}
$$

নির্ণেয় স্শর্শকের সমীকরণ $y=-\frac{40}{9} x$

$$
40 x+9 y=0(\text { Ans. })
$$

©! 5 ব্যাসার্ধবিশিষ্ট দুইটি বৃচ্জের সমীক্রণ নির্ণয় কর যারা $3 x-4 y+8=0$ রেখাকে স্সপ্গ করে এবৃ

याদের ক্ল্দ্র $3 x+4 y-1=0$ রেখার উপর बदস্ছিত।
[প্র.ভ.প. b৮]
সমাধান \& ধরি, 5 ব্যাসাধবিশিষ্ট বৃত্তের সমীকরণ
$(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=5^{2}$
(1) এর কেন্দ্র $(h, k), 3 x+4 y-1=0$ রেখার উপর অবশ্থিত।

$$
\begin{equation*}
3 \mathrm{~h}+4 \mathrm{k}-1=0 \tag{2}
\end{equation*}
$$

(1) বৃত্ত $3 x-4 y+8=0$ রেখাকে স্পশ করলে কেন্দ্র (h, k) থেকে এর দূরত্ব ব্যাসাধ 5 এর সমান হবে।

$$
\frac{|3 h-4 k+8|}{\sqrt{3^{2}+4^{2}}}=5 \Rightarrow \frac{|3 h-4 k+8|}{5}=5
$$

$\Rightarrow|3 \mathrm{~h}-4 \mathrm{k}+8|=25 \Rightarrow 3 \mathrm{~h}-4 \mathrm{k}+8= \pm 25$

$$
\begin{align*}
& 3 \mathrm{~h}-4 \mathrm{k}-17=0 \cdots \quad \text { (3) এবং } \\
& 3 \mathrm{~h}-4 \mathrm{k}+33=0 \quad \cdots \text { (4) }
\end{align*}
$$

(2) $+(3) \Rightarrow 6 \mathrm{~h}-18=0 \Rightarrow \mathrm{~h}=3$
(2) হতে , $9+4 \mathrm{k}-1=0 \Rightarrow \mathrm{k}=-2$
(1) $এ \mathrm{~h}$ ও k এর মান বসিয়ে পাই,
$(x-3)^{2}+(y+2)^{2}=25$ (Ans.)
आবার, $(2)+(4) \Rightarrow 6 h+32=0 \Rightarrow h=-\frac{16}{3}$
(2) হতে, $3\left(-\frac{16}{3}\right)+4 \mathrm{k}-1=0$
$\Rightarrow-16+4 \mathrm{k}-1=0 \Rightarrow \mathrm{k}=\frac{17}{4}$
(1) এ h ও k এর মান বসিয়ে পাই,

$$
\left(x+\frac{16}{3}\right)^{2}+\left(y-\frac{17}{4}\right)^{2}=25
$$

৬। মুण<िস্দুभমম এবটি বৃজ্টের সমীকরণ নির্ণয় কর যা $3 y+x=20$ রেখাকে স্স্শ করে এবए যার এবটি ব্যাসের সমীক্রণ $y=3 x$.
সমাধান ঃ ধরি, বৃত্তের সমীকরণ
$x^{2}+y^{2}+2 g x+2 f y+c=0$
(1) বৃত্ত মূলক্দ্দুগামী । $\mathrm{c}=0$
(1) বৃন্তের কেন্দ্র $(-\mathrm{g},-\mathrm{f}), y=3 x$ ব্যাসের উপর जयभ্ছिত। $\therefore-\mathrm{f}=3(-\mathrm{g}) \Rightarrow \mathrm{f}=3 \mathrm{~g} \cdots$ (2)
आবाর, $3 y+x=20$ जबाৎ $\mathrm{x}+3 \mathrm{y}-20=0$ तেখा (1) বৃত্তকে স্পর্গ করলে কেস্দ্র ($-\mathrm{g},-\mathrm{f}$) থেকে এর मूরত্ব ব্যাসাধ $\sqrt{g^{2}+f^{2}-c}$ এর সমান হবে।

$$
\begin{aligned}
& \frac{|-g-3 f-20|}{\sqrt{1+9}}=\sqrt{g^{2}+f^{2}-c} \\
& \Rightarrow(\mathrm{~g}+3 \mathrm{f}+20)^{2}=10\left(\mathrm{~g}^{2}+\mathrm{f}^{2}\right)[\quad \mathrm{c}=0] \\
& \Rightarrow(\mathrm{g}+9 \mathrm{~g}+20)^{2}=10\left(\mathrm{~g}^{2}+9 \mathrm{~g}^{2}\right) \\
& \Rightarrow 100(\mathrm{~g}+2)^{2}=100 \mathrm{~g}^{2} \\
& \Rightarrow\left.\mathrm{~g}^{2}+4 \mathrm{~g}+4=3 \mathrm{~g}\right] \\
& \text { (2) } \text { হতে পাই, } \mathrm{f}=3 .(-1)=-3 \\
& \text { (1) } \Theta \mathrm{f}, \mathrm{~g} \text { ও c এর মান বসিয়ে পাই, }
\end{aligned}
$$

$\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-6 \mathrm{y}=0$ (Ans.)
१। $y=2 x$ রেখাটি $x^{2}+y^{2}=10 x$ বৃส্大ের এবটি ब্যা। উক্ত ঘ্যাকে ব্যাস ধরে অध্কিত বৃণ্তের $(2,4)$ বিদ্দুতে স্শর্শকের সমীক্রণ নির্ণয় কর।
$\begin{array}{ll}\text { সমাধান : } y=2 x & \text { (1) হতে } y \text { এর মান প্রদত্ত }\end{array}$ বৃত্তের সমীকরণে বসিয়ে পাই, $x^{2}+(2 \mathrm{x})^{2}=10 x$ $\Rightarrow \mathrm{x}^{2}+4 \mathrm{x}^{2}-10 \mathrm{x}=0 \Rightarrow 5 \mathrm{x}^{2}-10 \mathrm{x}=0$
$\Rightarrow 5 \mathrm{x}(\mathrm{x}-2)=0 \Rightarrow \mathrm{x}=0,2$
(1) হরে পাই, $y=2.0=0$ এবং $y=2.2=4$

প্রদত্ত বৃত্তের (1) জ্যা এর প্রান্তব্দ্দু দুইটি $(0,0)$ এবং $(2,4)$.
$(0,0)$ এবং $(2,4)$ বিন্দু দুইটির সংযোগ রেখ্গাশকে ব্যাস ধরে অজ্কিত নিণ্ণেয় বৃত্তের সমীকরণ,

$$
\begin{aligned}
& (x-0)(x-2)+(y-0)(y-4)=0 \\
& x^{2}+y^{2}-2 x-4 y=0
\end{aligned}
$$

এখন $x^{2}+y^{2}-2 x-4 y=0$ বৃত্তের $(2,4)$ ক্দিন্তে স্শর্শকের সমীকরণ,

$$
\begin{aligned}
& x .2+y .4-(x+2)-2(y+4)=0 \\
\Rightarrow & 2 x+4 y-x-2-2 y-8=0 \\
& x+2 y-10=0 \text { (Ans.) }
\end{aligned}
$$

৮। $(3,-1)$ बि्मूগামী একটি বৃख্ভ $3 x+y=10$ রেখাকে $(3,1)$ বিদ্দুতে স্প্গ করে বৃত্তটির সমীকরণ নির্ণয় কর।
সমাধান : $(3,1)$ কেন্দ্রবিশিষ্ট ক্দ্দুবৃত্তের সমীকরণ, $(x-3)^{2}+(y-1)^{2}=0 \cdots$ (1)
$(3,-1)$ बি্দ্দু দিত্রে यায় এবং (1) বৃত্ত ও $3 x+y-10=0$ রেখার ছেদব্দ্দুগামী বৃত্তের সমীকরণ,
$\frac{(x-3)^{2}+(y-1)^{2}}{(3-3)^{2}+(-1-1)^{2}}=\frac{3 x+y-10}{3 \times(3)+(-1)-10}$
$\Rightarrow \frac{x^{2}-6 x+9+y^{2}-2 y+1}{0+4}=\frac{3 x+y-10}{9-1-10}$
$\Rightarrow \frac{x^{2}-6 x+y^{2}-2 y+10}{4}=\frac{3 x+y-10}{-2}$
$\Rightarrow x^{2}-6 x+y^{2}-2 y+10=-6 x-2 y+20$ $\mathrm{x}^{2}+\mathrm{y}^{2}=10$ (Ans.)
৯। এরূপ বৃત্টের সমীকরণ নির্ণয় কর যা $x=0$, $y=0,3 x-4 y=12$ রেখা তিনটিকে স্থৰ করে এবং যার কেস্দ্র প্রপম চতুর্ভাগে অবস্ষিত।
সমাধান ः ধরি, বৃত্তের সমীকরণ
$(x-h)^{2}+(y-k)^{2}=r^{2}$
বৃত্তটি $\mathrm{x}=0$ র্রেখকে অগাৎ y-बক্ষকে এবং $y=0$ রেখোকে অর্থাৎ x -অক্ষকে স্পর্শ করে

$$
r=|k|=k \text { এবং }
$$

$r=|h|=h$
[\because কেন্দ্র প্রথম চতুর্তাগে অবস্থিত, $\therefore \mathrm{h}, \mathrm{k}>0$] $\mathrm{h}=\mathrm{k}=\mathrm{r}$
आবার, বৃত্তটি $3 x-4 y=12$ जধ্ৰাৎ $3 x-4 y-$ $12=0$ রেখাকে স্পর্শ করে। অতএব, বৃজ্তের কেন্দ্র (h, k) रতে রেখাটির লম্ষদূরত্ণ ব্যাসাধ r এর সমান रবে।

$$
\frac{|3 h-4 k-12|}{\sqrt{9+16}}=r
$$

$\Rightarrow|3 \mathrm{~h}-4 \mathrm{~h}-12|=5 \mathrm{~h}[\mathrm{~h}=\mathrm{k}=\mathrm{r}]$
$\Rightarrow|\mathrm{h}+12|=5 \mathrm{~h} \Rightarrow \mathrm{~h}+12= \pm 5 \mathrm{~h}$
$4 h=12 \Rightarrow h=3$ पथবा, $-6 h=12 \Rightarrow h=-2$
किस्ब $\mathrm{h}>0 \quad \therefore \mathrm{~h}=\mathrm{k}=\mathrm{r}=3$
नि (র্ণেয় বৃত্তের সমীকরণ,
$(x-3)^{2}+(y-3)^{2}=3^{2}$
$\Rightarrow \mathrm{x}^{2}-6 \mathrm{x}+9+\mathrm{y}^{2}-6 \mathrm{y}+9=9$
$x^{2}+y^{2}-6 x-6 y+9=0$
১০। $2 \sqrt{10}$ ব্যাসার্ববিশিষ্ট এরূপ বৃত্তের সমীকর্রণ निर्ণয় কর যা $3 x-y=6$ রেখাকে $(1,-3)$ ক্দ্দুতে স্প্র করে।
সমাধান ः ধরি, বৃত্তের সমীকরণ
$x^{2}+y^{2}+2 g x+2 f y+c=0 \cdots$
(1) বৃত্তের $(1,-3)$ ক্দিদ্দুতে স্শর্গকের সমীকরণ
$\mathrm{x} .1+\mathrm{y} \cdot(-3)+\mathrm{g}(\mathrm{x}+1)+\mathrm{f}(\mathrm{y}-3)+\mathrm{c}=0$
$\Rightarrow \mathrm{x}-3 \mathrm{y}+\mathrm{gx}+\mathrm{g}+\mathrm{fy}-3 \mathrm{f}+\mathrm{c}=0$
$\Rightarrow(\mathrm{I}+\mathrm{g}) \mathrm{x}+(-3+\mathrm{f}) \mathrm{y}+\mathrm{g}-3 \mathrm{f}+\mathrm{c}=0$
প্রশ্নমতে, এ রেখা এবং $3 x-y=6$ অভিন্ন।

$$
\frac{1+g}{3}=\frac{-3+f}{-1}=\frac{g-3 f+c}{-6}
$$

$\frac{1+g}{3}=\frac{-3+f}{-1}$ रতে পাই, $1+\mathrm{g}=9-3 \mathrm{f}$
$\Rightarrow \mathrm{g}=8-3 \mathrm{f} \cdots(2)$
$\frac{-3+f}{-1}=\frac{g-3 f+c}{-6}$ शতে পাই,
$-18+6 \mathrm{f}=\mathrm{g}-3 \mathrm{f}+\mathrm{c}$
$\Rightarrow \mathrm{c}=-18+9 \mathrm{f}-\mathrm{g}=-18+9 \mathrm{f}-8+3 \mathrm{f}$

$$
=12 \mathrm{f}-26
$$

आবার (1) বৃত্তের ব্যাসাধ $=\sqrt{g^{2}+f^{2}-c}$

$$
\begin{aligned}
& \sqrt{g^{2}+f^{2}-c}=2 \sqrt{10} \\
\Rightarrow & (8-3 \mathrm{f})^{2}+\mathrm{f}^{2}-12 \mathrm{f}+26=40 \\
\Rightarrow & 64-48 \mathrm{f}+9 \mathrm{f}^{2}+\mathrm{f}^{2}-12 \mathrm{f}-14=0 \\
\Rightarrow & 10 \mathrm{f}^{2}-60 \mathrm{f}+50=0 \\
\Rightarrow & \mathrm{f}^{2}-6 \mathrm{f}+5=0 \Rightarrow(\mathrm{f}-5)(\mathrm{f}-1)=0 \\
& \mathrm{f}=1,5
\end{aligned}
$$

$$
\mathrm{f}=1 \text { \&রে, } \mathrm{g}=8-3=5, \mathrm{c}=12-26=-14
$$

$$
\mathrm{f}=5 \text { ধরে, } \mathrm{g}=8-15=-7, \mathrm{c}=60-26=34
$$

নিিণ্ণেয় বৃত্তের সমীকরণ,

$$
\begin{aligned}
& x^{2}+y^{2}+10 x+2 y-14=0 \text { এবং } \\
& x^{2}+y^{2}-14 x+10 y-34=0
\end{aligned}
$$

বিকল্প পা্বাতি : $(1,-3)$ ক্দ্দুতে কিদ্দুবৃত্তের সমीকরণ $(x-1)^{2}+(y+3)^{2}=0$.
ধরি, এ বৃত্ত ও প্রদত্ত রেখাঁ ছেদ ব্ন্দুগামী বৃত্তের সমীকরণ $(\mathrm{x}-1)^{2}+(\mathrm{y}+3)^{2}+\mathrm{k}(3 x-y-6)=0$ $\Rightarrow \mathrm{x}^{2}-2 \mathrm{x}+1+\mathrm{y}^{2}+6 \mathrm{y}+9+3 \mathrm{kx}-\mathrm{ky}$ $-6 k=0$
$\begin{aligned} \Rightarrow & x^{2}+y^{2}+(-2+3 k) x+(6-k) y+10 \\ & -6 k=0 \cdots(1)\end{aligned}$
প্রশ্নমতে , (1) এর ব্যাসাধ $=2 \sqrt{10}$
$\Rightarrow \sqrt{\left(\frac{2-3 k}{2}\right)^{2}+\left(\frac{k-6}{2}\right)^{2}-10+6 k}=2 \sqrt{10}$
$\Rightarrow \frac{1}{4}\left(4-12 k+9 k^{2}+k-12 k+36\right)-10$

$$
+6 k=40
$$

$\Rightarrow 4-12 k+k^{2}+k^{2}-12 k+36-200+$ $24 \mathrm{k}=0$
$\Rightarrow 10 \mathrm{k}^{2}-160=0 \Rightarrow \mathrm{k}^{2}=16 \quad \therefore \mathrm{k}= \pm 4$ (1) হতে নির্ণেয় বৃত্তের সমীকরণ,
$x+y^{2}+10 x+2 y-14=0$ এ $x^{2}+y^{2}-14 x+10 y+34=0$
১১। $(-2,3)$ सिम्দू থেকে $2 x^{2}+2 y^{2}=3$
 সমাধানः $\quad(-2,3)$ बिन्मू बোক $2 x^{2}+2 y^{2}=3$
 ไৈर्घ्य $=\sqrt{(-2)^{2}+(3)^{2}-\frac{3}{2}}=\sqrt{4+9-\frac{3}{2}}$

$$
=\sqrt{13-\frac{3}{2}}=\sqrt{\frac{26-3}{2}}=\sqrt{\frac{23}{2}} \text { একক। }
$$

১२। $x^{2}+y^{2}=16$ বৃत্তের একটি ষ্যা এর সমীকরণ निর্ণয় ক্র যার মধ্যষ্দিদ্দু $(-2,3)$ বিদ্দুতে অবস্থিত। সমাধান :

[য.’০০]

ধরি, প্রদত্ত বৃত্ত $x^{2}+y^{2}=16$ এর কেন্দ্র $\mathrm{O}(0,0)$ এবং জ্যা এর মষ্যক্দি $\mathrm{P}(-2,3)$.
OP রেथाর সমীকরণ $\mathrm{y}=\frac{3}{-2} \mathrm{x} \Rightarrow-2 \mathrm{y}=3 \mathrm{x}$
$\Rightarrow 3 \mathrm{x}+2 \mathrm{y}=0$
$\mathrm{P}(-2,3$ ব্দ্দুগামী এবং $3 \mathrm{x}+2 \mathrm{y}=0$ রেখার উপর লম্ম নির্ণেয় জ্যা এর সমীকরণ,

$$
\begin{aligned}
& 2 x-3 y=2 .(-2)-3.3=-4-9=-13 \\
& 2 x-3 y+13=0 \text { (Ans.) }
\end{aligned}
$$

১৩। $x^{2}+y^{2}+4 x-2 y+3=0$ в $x^{2}+y^{2}$ $-4 x+6 y-21=0$ বৃত দুইটির সাধারণ ब্যা এর সমীকরণ এবং দৈর্ঘ্য নির্ণয় কর।

সমাধান : ধরি, $S_{1} \equiv x^{2}+y^{2}+4 x-2 y+3=0$ এবং $S_{2} \equiv x^{2}+y^{2}-4 x+6 y-21=0$ বৃত্ত দুইটির সাধারণ জ্যা এর সমীকরণ,

$$
\begin{aligned}
& S_{1}-S_{2}=0 \Rightarrow 8 x-8 y+24=0 \\
& x-y+3=0 \quad \text { (1) (Ans.) }
\end{aligned}
$$

এখন S_{1} বৃত্তের बেন্দ্রু (-211) এবং ব্যাসাধ

$$
r=\sqrt{(-2)^{2}+1^{2}-3}=\sqrt{2}
$$

কেন্দ্র $(-2,1)$ হতে $x-y+3=0$ এর লম্বদূরप্র $\mathrm{d}=\frac{|-2-1+3|}{\sqrt{1+1}}=0$

সাধারণ জ্যা এর দৈর্য্য $=2 \sqrt{r^{2}-d^{2}}$
www.boighar.com $=2 \sqrt{2-0}=2 \sqrt{2}$ একক।
28। $3 x^{2}+3 y^{2}-29 x-19 y+56=0$ বৃत্তের একটি অ্যা এর সমীকরণ $x-y+2=0$. উক্তু জ্যা এর দৈর্য্য এবং এ ঘ্যাকে ব্যাস ধরে অষ্কিত বৃচ্তের সমীকরণ নির্ণয় কর।
সমাধান ः $3 x^{2}+3 y^{2}-29 x-19 y+56=0$
जर्थाৎ $x^{2}+y^{2}-\frac{29}{3} x-\frac{19}{3} y+\frac{56}{3}=0$ বৃख্টের কেন্দ্র $\left(\frac{29}{6}, \frac{19}{6}\right)$ এবং
ব্যाসাধ $\mathrm{r}=\sqrt{\left(\frac{29}{6}\right)^{2}+\left(\frac{19}{6}\right)^{2}-\frac{56}{3}}$

$$
=\sqrt{\frac{841+361-672}{36}}=\sqrt{\frac{530}{36}}
$$

কেন্দ্র $\left(\frac{29}{6}, \frac{19}{6}\right)$ থথকে $x-y+2=0$
জ্যা এর লम্মদূরত্ব $\mathrm{d}=\frac{\left|\frac{29}{6}-\frac{19}{6}+2\right|}{\sqrt{1+1}}=\frac{11}{3 \sqrt{2}}$
জ্যা এর দৈদ্ঘ্য $=2 \sqrt{r^{2}-d^{2}}$

$$
\begin{aligned}
& =2 \sqrt{\frac{530}{36}-\frac{121}{18}}=2 \sqrt{\frac{530-242}{36}} \\
& =2 \sqrt{\frac{288}{36}}=2 \sqrt{8}=4 \sqrt{2} \text { এकক। }
\end{aligned}
$$

২য় অংশ ঃ ধরি প্রদত্ত জ্যাকে ব্যাস ধরে নির্ণেয় বৃক্তের সমীকরণ $x^{2}+y^{2}-\frac{29}{3} x-\frac{19}{3} y+\frac{56}{3}+\mathrm{k}(x-$ $y+2)=0$
$\Rightarrow x^{2}+y^{2}+\left(-\frac{29}{3}+\mathrm{k}\right) x+\left(-\frac{19}{3}-\mathrm{k}\right) y$ $+\frac{56}{3}+2 k=0 \cdots(1)$
(1) বৃত্তের কেন্দ্র $\left(\frac{29}{6}-\frac{k}{2}, \frac{19}{6}+\frac{k}{2}\right)$, या $x-2 y+7=0$ রেখার উপর অবস্থিত।
$\frac{29}{6}-\frac{k}{2}-\frac{19}{3}-k+7=0$
$\Rightarrow 29-3 \mathrm{k}-38-6 \mathrm{k}+42=0$
$\Rightarrow-9 \mathrm{k}=-33 \Rightarrow \mathrm{k}=\frac{11}{3}$
নির্ণেয় বৃত্তের সমীকরণ, $x^{2}+y^{2}-\frac{29}{3} x-$ $\frac{19}{3} y+\frac{56}{3}+\frac{11}{3}(x-y+2)=0$
$\Rightarrow 3\left(x^{2}+y^{2}\right)-29 x-19 y+56+11 x$ $-11 y+22=0$
$\Rightarrow 3\left(x^{2}+y^{2}\right)-18 x-30 y+78=0$ $x^{2}+y^{2}-6 x-10 y+26=0$ (Ans.)

অতিব্রিক্ত প্রশ্ন (সমাধানসহ)

1. $x^{2}+y^{2}-6 x+8 y+21=0$ रৃত্তে অষ্কিত স্সরক x-অক্মের সমাম্তরান। স্পশককের সমীকর্রণ নির্ণয় কর।
সমাধান ঃ $x^{2}+y^{2}-6 x+8 y+21=0$ বৃত্তের बেন্দ্র $(3,-4)$ এবং ব্যাসাধ $=\sqrt{3^{2}+4^{2}-21}=2$ ধরি, x-অক্ষের সমান্তরাল স্পর্শকের সমীকরণ $y+\mathrm{k}=0$
(1) রেখাটি প্রদত্ত বৃত্তকে স্পশ করলে কেন্দ্র $(3,-4)$ থেকে এর দূরত্ব ব্যাসার্ধের সমান হবে।

$$
\frac{|-4+k|}{\sqrt{1}}=2 \Rightarrow|-4+\mathrm{k}|=2
$$

$\Rightarrow \mathrm{k}-4= \pm 2 \therefore \mathrm{k}=6,2$
নির্ণেয় স্পর্শকের সমীকরণ $y+6=0, y+2=0$

পরীশ্ষণের নাম : $(x+3)^{2}+(y-4)^{2}=5^{2}$ সমীকর্েণে নেখচিত্র অজ্কন কর।সমীকর্জণীর নেখচিত্র অজ্কন কর।
প্রয়োজনীয় উপকরধ : (i) てেস্সিল (ii) গ্কেল্ল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার ই্ক্যাদি।

কার্যপদ্জতি:

1. প্রদৃত্ত নৃত্তের সম়ীকরণ হতে পার,
$(x+3)^{2}+(y-4)^{2}=5^{2}$
$\Rightarrow(y-4)^{2}=5^{2}-(x+3)^{2}$
$\Rightarrow y-4= \pm \sqrt{(5+x+3)(5-x-2)}$
$\Rightarrow y=4 \pm \sqrt{-(x+8)(x-3)}$
$\left(\begin{array}{ll}x & 8\end{array}\right)(x-3) \leq 0 \Rightarrow-8 \leq x \leq 3 \quad$ अर्थाR $x \in[-8,3]$ এর কয়েকটট মান নিয়ে y এর অনুরূপ মান বের করি ও নিচের ছকটট তৈত্রি করি

x	-8	-6	-6	-4	4
y	4	$8 \cdot 24$	$-\cdot 2$	9.29	$-1 \cdot 2$
			4		9
x	-2	-2	0	0	
y	$9 \cdot 4$	$-1 \cdot 4$	$8 \cdot 8$	$-0 \cdot 8$	
	8	8	9	9	

2. একটি ছক কাগজে স্থানাংকের্র অক্ষ রেখা $X^{\prime} O X$ ও YOY' আঁঁ
3. x অক্ষ $\because y$ অক্ষ বরাবর ক্ষুদ্রতম বগগগর 2 বাহুর দৈর্ঘ্য $=1$ একক ধরে তালিকাভুক্ত বিন্দুগুলি গ্রাফ পেপারে স্থাপন করি এবং সরু পেন্সিল দিয়ে মুক্তহস্তে সংযোগ করে প্রদত্ত (i) এর লেখ্িি্র অঙ্কন করি।

নেখের বৈশিষ্ট:

1. লেখচিত্রটি একটি বৃত্ত।
2. লেখচিত্রটি অবিচ্ছিন্ন।

সতर्কতা :

1. গ্রাফ পপপার সুষম বর্গক্ষেত্র বিশিষ্ট কিনা দেখে নেই।
2. শার্পনার দিয়ে পেন্সিল সরু করে নেই।

ভর্তি পরীক্ষার MCQ :

1. k এর মান কত হলে $(x-y+3)^{2}+(k x$ $+2)(y-1)=0$ সমীকরণঢি এবটি বৃত্ঠ निর্দেশ করবে? [DU 08-09, 01-02, SU 03-04]
Sol ${ }^{n}$. বৃত্তের সমীকরণে $x y$ এর সহগ শূন্য।
$-2+k=0 \Rightarrow k=2$
2. $2 x^{2}+a y^{2}=9$ একটি বৃজ্েের সমীকরণ। তাই a এর মান -
[CU 07-09]
Sol ${ }^{n} \cdot \mathrm{x}^{2}$ ও y^{2} এর সহগ সমান । তাই $\mathrm{a}=2$
3. $x^{2}+y^{2}=16$ এর বিবেেনায় $(4,-3)$ বিপ্দুটির जবস্थান কোপায় ?
[RU 06-07]
Sol ${ }^{n} \cdot 4^{2}+(-3)^{2}-16=9>0 \quad$ বৃত্জের বাইরে।
4. $x^{2}+y^{2}-24 x+10 y=0$ বৃत্তের ব্যাসার্ধ -
[DU 03-04; RU 05-06]
Sol ${ }^{n}$. ব্যাসাধ $=\sqrt{12^{2}+5^{2}-0}=13$
5. $2 x^{2}+2 y^{2}+6 x+10 y-1=0$ বৃৰ্জের ব্যাসাধ r হनে, $\mathrm{r}=$? [DU 95-96,97-98] Sol ${ }^{n}$. প্রদত্ত বৃত্ত $x^{2}+y^{2}+3 x+5 y-1 / 2=0$

$$
r=\sqrt{\left(\frac{3}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}+\frac{1}{2}}=\sqrt{\frac{9+25+2}{4}}=3
$$

6. $x^{2}+y^{2}-5 x=0$ в $x^{2}+y^{2}+3 x=0$ বৃত্ট্য়ের কেন্দ্রের দূরত্ব কত?
[DU 06-07]
Sol ${ }^{n}$. ক্ক্দ্র্, $\left(\frac{5}{2}, 0\right)$ ఆ $\left(-\frac{3}{2}, 0\right)$ এর দূরप্ব $=\left|\frac{5}{2}+\frac{3}{2}\right|$

$$
=4
$$

7. $(-9,9)$ ® $(5,5)$ বিস্দুদ্যের সरযোগ রেখাएশকে ব্যাস ধরে অপ্কিত বৃত্তের সমীকরণ-[DU 05-06, 02-03; RU 06-07;NU 02-03]

Sol ${ }^{n} .(x+9)(x-5)+(y-9)(y-5)=0$
$\Rightarrow \mathrm{V}^{2}+4 \mathrm{x}-45+\mathrm{y}^{2}-14 \mathrm{y}+45=0$
$\Rightarrow x^{2}+y^{2}+4 x-14 y=0$
8. $(4,5)$ কেন্দ্র বিশিষ্ট বৃত্ত, যা $x^{2}+y^{2}+4 x+$ 6y $-12=0$ বৃত্তের ক্সে্দ্র দিয়ে গমন করে তার সমীকরণ-
[DU 03-04; RU 05-06]
Sol ${ }^{n}$. প্রদত্ত বৃত্তের কেন্দ্র $(-2-3)$. নিক্ণেয় বৃত্তের मমীকরণ $x^{2}+y^{2}-8 x-10 y=(-2)^{2}$ $+(-3)^{2}-8(-2)-10(-3)$ $\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-8 \mathrm{x}-10 \mathrm{y}-59=0$
9. $(-1,1)$ এবং $(-7,3)$ বিস্দू দিত্যে जতিক্রমকারী এবটি বৃত্তের কেদ্দ্র $2 x+y=9$ রেথার উপর অবস্সিঢ। दৃఆটির সমীকরণ- [NU 08-09;SU 03-04]
A. $(x+1)^{2}+(y-11)^{2}=100$
B. $(x-2)^{2}+(y-1)^{2}=81$
C. $(x+3)^{2}+(y-2)^{2}=4$
D. $(x-5)^{2}+(y+1)^{2}=64$

Sol ${ }^{n}$. A. option টির কেন্দ্র $(-1,11)$, या প্রদত্ত রেখার উপর অবস্থিত।
10. (5,0) এবং $(0,5)$ ক্দ্দুটি অঞ্ষরেখাঘয়রে স্শর্শকারী বৃત্জের সমীকরণ - [DU 04-05] Sol ${ }^{n} \cdot \mathrm{x}^{2}+\mathrm{y}^{2}-2.5 \mathrm{x}-2.5 \mathrm{y}+5^{2}=0$ $\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-10 \mathrm{x}-10 \mathrm{y}+25=0$
11. निম্নের কোন সমীকরণ দারা নিদ্দেশিত বৃজ্জের স্প্রকক x बक ?
[DU 08-09]
A. $x^{2}+y^{2}-10 x-6 y+9=0$
B. $x^{2}+y^{2}-10 x+6 y+25=0$
C. $x^{2}+y^{2}+6 x-10 y+25=0$
D. $x^{2}+y^{2}+6 x+8 y+28=0$

Sol". প্রদত্ত option গুলোর মধ্যে B এর ক্ষেত্রে $\mathrm{g}^{2}=\mathrm{c}$
12. $x^{2}+y^{2}-4 x-6 y+c=0$ रृत्ठটि x অক্ষকে স্থর্গ করে । c এর মান-[DU 00-01,0102; RU 07-08; NU 05-06]
Sol ${ }^{n} . c=(x \text { এর সহগের অর্ধে })^{2}=4$
13. $x^{2}+y^{2}-4 x-6 y+4=0$ रृउढि x অঙ্ষকে স্শর্শ করে । স্শর্শকিদ্দুর স্থানাষ্ক - [NU 07-08]

Sol" ${ }^{n}$. স্শর্বিদ্দু $\equiv(-x$ এর সহগের অর্ধেক, 0$)=(2,0)$
14. $x^{2}+y^{2}=81$ বৃত্টর অ্যা $(-2,3)$ বিস্দুতে সমচিখষ্ভিত হজে জ্যা এর সমীকরণ - [JU 05-06; KU 03-04]
Sol ${ }^{n} \cdot \mathrm{x} \cdot(-2)+\mathrm{y} \cdot 3=(-2)^{2}+3^{2}$
$\Rightarrow 2 x-3 y+13=0$
15. $x^{2}+y^{2}-4 x+6 y-36=0$ এবং $x^{2}+$ $y^{2}-5 x+8 y-43=0$ বৃত্তদ্যের সাষারণ ब্যা এর সমীক্রণ [RU 07-08; KUET 05-06] Sol ${ }^{n} \cdot(-4+5) \mathrm{x}+(6-8) \mathrm{y}-36+43=0$ $\Rightarrow x-2 y+7=0$
16. $(4,3)$ বিम্দুতে কেন্দ্র ধরে কত ব্যাসার্ধ বৃত অ飞্ফন ক্রনে $x^{2}+y^{2}=4$ বৃত্তকে স্পশ করবে ?[IU07-08] Sol ${ }^{n} \cdot \mathrm{r} \pm 2=\sqrt{(4-0)^{2}+(3-0)^{2}}=5$ $r=7$ বা, 3
17. $(x-3)^{2}+(y-4)^{2}=25$ বৃত্তের কেন্দ্র হতে 3 একক দূরज্বে অবস্থিত জ্যা এর দৈर্ঘ্য - [IU 07-08]

Sol ${ }^{n}$. জ্যা এর দৈর্ঘ্য $=2 \sqrt{5^{2}-3^{2}}=8$
18. $x^{2}+y^{2}=100$ বৃত্ত घারা $x+7 y-50=0$ রেখার ছেদাহশের পরিমাণ -
[KU 07-08]
Sol n. এখान $\mathrm{r}=10, \mathrm{~d}=\frac{|0+0-50|}{\sqrt{1+49}}=\sqrt{50}$
ছেদাংশের পরিমাণ $=2 \sqrt{r^{2}-d^{2}}$
$=2 \sqrt{100-50}=2 \sqrt{50}=10 \sqrt{2}$
19. $2 x-3 y-9=0$ রেখাটি যে বৃত্তকে স্স্র করে তার কেস্দ্র $(1,2)$ এর ব্যাসার্ধ $r=\sqrt{5+c}$ । c এর মান কত?
[RU 06-07]
Sol $^{n} \cdot \mathrm{r}=\sqrt{5+c}=\frac{|2.1-3.2-9|}{\sqrt{2^{2}+3^{2}}}=\sqrt{13}$

$$
c=13-5=8
$$

20. যে বৃজ্তের কেন্দ্র মুলবিস্দুত্ এবং এবং $2 x+$ $\sqrt{5} y-1=0$ রেখাকে সাপ্স করে চাত্ন সমীকন্নণ হবে- [CU-07-08; JU 07-08]
Sol $^{n} \cdot(x-0)^{2}+(y-0)^{2}=\left(\frac{2.0+5.0-1}{\sqrt{2^{2}+(\sqrt{5})^{2}}}\right)^{2}$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=\frac{1}{9} \therefore 9\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=1$

 সমীকব্নণ-
[RU 07-08]
Sol ${ }^{n} \cdot(1,2)$ কেন্দ্র বিশিষ্ট বৃত্ত $x^{2}+y^{2}-2 x-4 y$ $+c=0$ এবং $(0,0)$ বিস্দু থেকে এ বৃজ্টে অষ্ভিত স্পর্শকের দৈর্ঘ্য $=\sqrt{c} . \quad \sqrt{c}=2 \Rightarrow c=4$ $x^{2}+y^{2}-2 x-4 y+4=0$
21. একটি বৃত্যের সমীকন্নণ হা $2 x^{2}+2 y^{2}=25$ । 5 একক पৈ效 বিশিষ্ট একটি ध্যা কেস্দ্রে কত র্রেডিয়ান কোণ তৈর্নী করবে?
[SU 06-07]
Sól ${ }^{n} \cdot 2 x^{t}+2 \mathrm{y}^{2}=25 \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=\left(\frac{.5}{\sqrt{2}}\right)^{2}$
$\cos \theta=\frac{(5 / \sqrt{2})^{2}+(5 / \sqrt{2})^{2}-5^{2}}{2 \cdot \frac{5}{\sqrt{2}} \cdot \frac{5}{\sqrt{2}}}=0$
$\theta=\frac{\pi}{2}$

1. সমাধান :

(a) नেওয়া आছে, ${ }^{n-1} P_{3}:{ }^{n+1} P_{3}=5: 12 \Rightarrow \frac{(n-1)!}{(n-1-3)!}: \frac{(n+1)!}{(n+1-3)!}=5: 12$
[রা.’o৫]
$\Rightarrow \quad \frac{(\mathrm{n}-1)!}{(\mathrm{n}-4)!} \times \frac{(\mathrm{n}-2)!}{(\mathrm{n}+1)!}=\frac{5}{12} \Rightarrow \frac{(\mathrm{n}-1)!}{(\mathrm{n}-4)!} \times \frac{(\mathrm{n}-2) \cdot(\mathrm{n}-3) \cdot(\mathrm{n}-4)!}{(\mathrm{n}+1) \mathrm{n}(\mathrm{n}-1)!}=\frac{5}{12}$
$\Rightarrow \quad \frac{(\mathrm{n}-2) \cdot(\mathrm{n}-3)}{(\mathrm{n}+1) \mathrm{n}}=\frac{5}{12} \Rightarrow 12\left(\mathrm{n}^{2}-5 \mathrm{n}+6\right)=5\left(\mathrm{n}^{2}+\mathrm{n}\right) \Rightarrow 12 \mathrm{n}^{2}-5 \mathrm{n}^{2}-60 \mathrm{n}-5 \mathrm{n}+72=0$
$\Rightarrow 7 \mathrm{n}^{2}-65 \mathrm{n}+72=0 \Rightarrow 7 \mathrm{n}^{2}-56 \mathrm{n}-9 \mathrm{n}+72=0 \Rightarrow 7 \mathrm{n}(\mathrm{n}-8)-9(\mathrm{n}-8)=0$
$\Rightarrow \quad(\mathrm{n}-8)(7 \mathrm{n}-9)=0 \Rightarrow \mathrm{n}=8, \frac{9}{7}$ কिन्गू n অझ্মাশ হতে পারেনা। $\mathrm{n}=8$
(b) फেওয়া जाছে, $4 \times{ }^{n} P_{3}=5 \times{ }^{n-1} P_{3} \Rightarrow 4 \cdot \frac{n!}{(n-3)!}=5 \frac{(n-1)!}{(n-1-3)!}$
[ฬू.'○৫]
$\Rightarrow 4 \cdot \frac{\mathrm{n} \cdot(\mathrm{n}-1)!}{(\mathrm{n}-3) \cdot(\mathrm{n}-4)!}=5 \frac{(\mathrm{n}-1)!}{(\mathrm{n}-4)!} \Rightarrow 4 \cdot \frac{\mathrm{n}}{\mathrm{n}-3}=5 \Rightarrow 5 \mathrm{n}-15=4 \mathrm{n} \quad \therefore \mathrm{n}=15$ (Ans.)

 হবে n সश্থ্যক বিভিন্ন धিনিস থেকে প্রতিবার 3 t জিনিস নিয়ে গঠিত বিন্যাস সং্খ্যার সমান ।
n সश্খ্যক জিনিসের যেকোন একটিকে বসি<়ে প্রথম শূন্যস্পানটি n সश্খ্যক উপায়ে পূরণ করা যায়। প্রথম শূন্স্পানটি n প্রকারের যেকোন এক উপায়ে পূরণ করার পর দ্তিতীয় শূন্য স্থানটি অবশিষ্ট $(n-1)$ সহ্থ্যক জিনিস দ্বারা $(n-1)$ সং্থ্যক উপা়়ে পূরণ করা যায় । যেহেতু প্রথম শূন্য স্থানটি পূরণকরার প্রত্যেক উপায়ের সজ্গে দ্বিতীয় স্থান পূরণের ($\mathrm{n}-1$) সংথ্যাক সংযোগ করা যায়, সুতরাং প্রথম দুইটি শূন্য স্থান একত্রে $n(n-1)$ সংথ্যক উপায়ে পূরণ করা याবে। जबাৎ ${ }^{n} P_{2}=n(n-1)$.
n সং্খ্যক জিনিসের় বেকোন দুইটি দারা প্রথম ও দ্বিতীয় শূন্য স্থান পূরণ করার পর তৃতীয় শূন্য স্থানটি অবশিষ্ট ($\mathrm{n}-2$) সश्খ্যক छिनिস দ্ঘারা $(\mathrm{n}-2)$ সং্খ্যক উপায়ে পূরণ করা যায়। সুতরাং, প্রথম তিনটি স্যান একত্রে মোট $n(n-1)(n-2)$ সং্খ্যক উপায়ে পূরণ করা যায় । অধ্ৰা ${ }^{n} P_{3}=n(n-1)(n-2)$.
 সমাষান 8 ‘COURAGE’ শব্দটিতে মোট 7টি বিভিন্ন অছ্ষর আছে যাদের 4টি স্ররবণ । প্রথম স্থানটি এই 4টি ভিন্ন স্বরবণণ যেকোনো একটি দ্বারা ${ }^{4} \mathrm{P}_{1}=4$ প্রকারে পূরণ করা যায় এবং অবশিষ্ট $(7-1)$ অबাৎ, 6 টি ग্চান বাকি $6 ট ি$ ভিন্ন অক্ষর ছারা $6!=720$ প্রকারে পূরণ করা যায়। সুতরাং নিণণ্ণে বিন্যাস সংথ্যা: $=4 \times 720=2880$
3. (a) সাধারণ সুত্র ব্যবशার না করে $(p+q)$ সश্খ্যক धिनिসের p সश्थ্যক धिनिস এব छাতীয় এবए বাকীগুলো সব ঠিন্ন इলে, এদের সবগুলোকে নিয্রে বিন্যাস সए্থ্যা নির্ষ্য কর।
সমাষান : মনে করি, নির্ণের্য বিন্যাস সং্খ্যা x । এই x সश্খ্যক বিন্যাসের বেকোন একটির অল্তর্গচ p সश्খ্যক এক氏াতীয় জিনিসের স্থলে p সश্খ্যক ভিন্ন ভিন্ন জিনিস বসানো হলে অন্যদের স্যান পরিবর্তন না করে কেবন তাদের সাधানো

পরিবর্তন করে মোট p ! সश্খ্যক নতুন বিন্যাস পাওয়া যায় । সুতরাং, x সং্খ্যক বিন্যাসের জন্য মোট $x \times \mathrm{p}$! সश্খ্যক বিন্যাস হবে।

উপর্যুক্ত প্রক্রিয়ার পর দেখা যায় জিনিসগুলো সবই এখন ভিন্ন ভিন্ন এবং $(p+q)$ সং্খ্যক ভিন্ন ভিন্ন জিনিসের সবুুলো
निट़ে গঠिত বিन্যাস সश्খ্যা $(\mathrm{p}+\mathrm{q})!. \quad x \times \mathrm{p}!=(\mathrm{p}+\mathrm{q})!\Rightarrow x=\frac{(\mathrm{p}+\mathrm{q})!}{\mathrm{p}!}$
 শল্গ গঠন ক্না যায়, তবে কতগুলো বর্ণ এক बাতীয়।
সমাধান : মনে করি, 10 টি বর্ণের r সश्খ্যক একজাতীয়।
এ 10টি বণ্ণের সবগুলোকে এক্ত্রে নিয়ে শশ্ গঠন করা যায় $\frac{10!}{r!}$ টি।
প্রশ্নমতে, $\frac{10!}{\mathrm{r}!}=30240 \Rightarrow \mathrm{r}!=\frac{10!}{30240}=\frac{3628800}{30240}=120=5!\quad r=5$ (Ans.)
 বबগুলো এবত্র্র নিয়ে বিন্যাস সংথ্যার 21 গুণ।
প্রমাণ ः 'AMERICA' শব্দটিতে মোট 7 টি বর্ণ আছে যাদের 2 টি A.
'AMERICA ' শদটির বণগুলো একত্রে নিয়ে বিন্যাস সংথ্যা $=\frac{7!}{2!}=2520=21 \times 120$
'CANADA' শব্দটিতে 3টি A সহ মোট 6টি ব্ণ আছে.

- CANADA' শयটির বণগুল্লো একত্রে নিয়ে বিন্যাস সংখ্যা $=\frac{6!}{3!}=120$
'AMERICA' শ4টির বণগুলো একত্রে নিয়ে বিন্যাস সং্খ্যা ‘CANADA’ শব্দটির বণগুলো একত্রে নিয়ে বিন্যাস সং্খ্যার 21 গুণ ।

4. (b) দেখাঔ যে, 'AMERICA ' শব্দটি বণুহো একত্রে নিয়ে যত প্রকারে সাধানো যায় ' CALCUTTA '

[ঢ.'০৪; রা. ’১৩] প্রমাণ \& "AMERICA ’ শব্দটিতে মোট 7টি বণ আছে যাদের 2টি A .
' AMERICA' শব্দটির বণগুলো একত্রে নিয়ে সাজানো সংখ্যা $=\frac{7!}{2!}=2520$.

'CALCUTTA' শব্দটির বগগুলো একত্রে নিয়ে সাজানো সং্খ্যা $=\frac{8!}{2!2!2!}=5040=2 \times 2520$
‘AMERICA ' শব্দটির বণগুলো একত্রে নিয়ে যত প্রকারে সাজানো যায় 'CALCUTTA' শব্দটির বণগুলো এক্তে নিয়ে তার দিগুণ উপায়ে সাজানো যায় ।
5 (a) ‘ARRANGE’ শ4্দটির অक্ষগুলো কচ প্রকারে সাজানো যায়, যাতে R দूইটি পাশাপাশি পাকবে না? সমাধান : ‘ARRANGE' শব্দটিতে মোট 7টি বর্ণ আছে যাদের 2টি A এবং 2টি R .
সবগুলো বর্ণ একত্ত্রে নিয়ে মোট সাজানো সং্খ্যা $=\frac{7!}{2!\times 2!}=1260$
2টি. R কে একটি একক বর্ণ মনে করলে মোট বর্ণের সং্খ্যা হবে $(7-2+1)$ অর্গৎ, $6 ট ি$ যাদের 2টি A .
$2 ট \mathrm{R}$ কে পাশাপাশি রেথে মোট সাজানো সং্্যা $=\frac{6!}{2!}=360$
R দूইটি পাশাপাশি না রেথে মোট সাজানো সং্খ্যা = সবগুলো বর্ণ একত্রে নিয়ে মোট সাজানো সং্থ্যা - R দুইটি भাশাপাশি রেথে মোট সাজানো সং্থ্যা $=1260-360=900$

5 (b) 'ENGINEERING ' শ্দটির্ম সব কয়টি বর্রকে কত প্রকারে সাबানো যায় তা নির্ণয় কর। তাদের
 [ব.’o২; রা:'০৩; ধू.'০৩]
 G এবर $2 \mathrm{tि} \mathrm{I}$.

সব কয়ট বর্ণকে এক্রে নিয়ে মোট সাজান্ন সং্খ্যা $=\frac{11!}{3!.3!.2!.2!}=\frac{39916800}{6 \cdot 6 \cdot 2 \cdot 2}=277200$ (Ans.)
২য় অश : যেহেতু E তিনটি একত্রে থাকে, जতএব তাদেরকে একটি একক বণ মনে করলে মোট বণগুলো হবে (EEE) , N, G, I, N, R, I, N, G. এই 9টি বর্ণের 3টি N, 2টি G এবং 2টি I.

E তিनটি একর্রে রেথে মোট সাজানো সং্থ্যা $=\frac{9!}{3!\cdot 2!.2!}=\frac{362880}{6.2 .2}=15120$

E তিনটি প্রথমে রেশ্েে মোট সাজানো সং্থ্যা $=\frac{8!}{3!.2!.2!}=\frac{40320}{6.2 .2}=1680$ (Ans.)

[य. '০৬; ব.'o৭; সি.'o৮, '১১; চ.'o৮, '১২; मि.'od; রা. '১১; ঢা.'১৩]

সবগুলো বর্ণ একত্রে নিয়ে মোট সাজানো সश्थ্যা $=\frac{8!}{2!.3!}=\frac{40320}{2.6}=3360$
 R, L, L, L.
 উপা়্যে সাজানো याয়।

স্বরব্গুুলোকে পৃথক না রেথে বfগুুোর মোট সাজানো সং্থ্যা $=120 \times 3=360$. (Ans.)
 निर्षा बस? [ঢা.'০৫; চ.’০৭; মা.বো.’০১,’১৩; ব.'১০] সমাধান : ‘TRIANGLE ’ শ্দটিতে মোট 8টি ভিন্ন বর্ণ জাছে যাদের 3টি সরর্ণ।

সবগুলো বর্ণ একত্রে নিয়ে মোট সাজানো সश্খ্যা $=8!=40320$
3টি সরবর্ণকে একটি একক বণ্ণ মনে করলে शৃথক বর্ণুুল্ো হবে (IAE), T, R, N, G এবংL . এই 6টি তিন্ন বর্রকে 6! প্রকারে এবং 3টি ভিন্ন স্বরবণকে নিজ্জেদের মধ্যে 3! প্রকারে সাজানো যায় ।

স্ররবণগুলোকে পাশাপাশি রেণ্খে মোট সাজ্জানো সং্খ্য়া $=6!\times 3!=720 \times 6=4320$
সররর্রগুলোকে পাশাপাশি না রেথে মোট সাজানো সং্খ্যা = সবগুলো বণ একত্রে নিয়ে মোট সাজানো সং্খ্যা সররবণগুলোকে পাশাপাশি রেখে মোট সাজানো সং্থ্যা $=40320-4320=36000$

[চ.'১০]
সমাধান : (i) 'DAUGHTER ' শব্দটিতে মোট 8টি ভিন্ন বণ আছ্ যাদ্দর 3টি সরববর্ণ।
সবগুলো বণ একত্রে নিয়ে মোট সাজানো সং্থ্যা $=8!=40320$
3টি সররর্ণকে একটি একক বণ মনে করলে পৃথক বণগুলো হবে (AUE), D, G, H, T এবং R . এই 6টি ভিন্ন

সররণণুদুলোকে কোন সময়ই পৃথক না রেথে মোট সাজানো সং্খ্যা $=6!\times 3!=720 \times 6=4320$
(ii) সরবধগুলোকে কোন সময়ই পাশাপাশি না রেৰে মোট সাজানো সংখ্যা $=$ সবগুলো বর্ণ একত্রে নিয়ে মোট সাজানো সং্থ্যা - স্বরবগগুলোকে কোন সময়ই পৃথক না রেথে মোট সাজানো সং্থ্যা $=40320-4320=36000$
(d) 'DIGITAL' শব্দটির বর্ণুলোার সবभুলো একত্রে নিয়ে কত প্রকারে সাधানো যায় তা নির্য় কর এবৃ এদের কতগুणিতে স্বর্বর্ণ গুলো একত্রে बাকবে?
[य. '১০]
সমাষান : ‘DIGITAL’ শব্দটিতে 2টি I সহ মোট 7টি বর জাছে।
সবগুলো বণ একত্রে নিয়ে মোট সাজানো সৃথ্য্যা $=\frac{7!}{2!}=2520$ (Ans.)
3টি স্রবধ I, I ও A কে একটি একক বণ মনে করলে পৃথক বণগুলো হবে (I I A), D, G, T এবং L . এjই 5টি ভিন্ন বর্ণকে $5!$ প্রকারে এবং 3 টি স্বরবরকে নিজ্জেদের মধ্যে $\frac{3!}{2!}=3$ প্রকারে সাজানো যায় । সরবধগুলোকে একত্রে রেথে মোট সাজানো সং্খ্যা $=5!\times 3=120 \times 3=360$ (Ans.)
7. 9 টি বলের 7 টি বল নাল, 2 tি সাদা (i) এদের উপ্ন কোন বিধি-নিষেষ জারোপ না করে এবp (ii) সাদা বল দুইটি পাণাभাশি না রেথে বলগুলোকে কত প্রকারে এক সারিতে সাधানো যায়, তা নিির় কর্木।
সমাখান 8 এখানে 9 টি বলের মধ্যে $7 ট ি$ নান এবং 2 টি সাদা।
(i) এদের উপর কোন বিধি-নিবেধ আরোপ না করে নির্ণেয় সাজানো সংখ্যা $=\frac{9!}{7!\times 2!}=36$
(ii) সাদা বল দूইটি একটি একক বল মনে করুলে মোট বলের সং্থ্যা হবে $(9-2+1)$ অধাৎ, 8টি যাদের মধ্যে 7 টি मान । অতএব, সাদা বन দুইটি পাশাপাশি রেথ্ে মোট সাজানো সश্থ্যা $=\frac{8!}{7!!}=8$

সাদা বল দুইটি পাশাপাশি না রেখে মোট সাজানো সং্থ্যা $=36-8=28$
 याয়?
[ব.'০০, ০৫; চ.'০০, ০৪; ঢা.’০১; দি.’১৩]
সমাধান : 'PERMUTATION' শপ্দটিতে মোট 11 টি বণ আছে যাদের 5টি স্বরবণ।
5 টি সরবর্ণের স্থান পরিবর্তন না করে 2টি T সহ অবশিফ ($11-5$) বা, 6 টি ব্যাজন বণকে $\frac{6!}{2!}=\frac{720}{2}=360$ উभাক্রে সাজানো যায়।

निিকৌ় পুনর্বিন্যাস করার উপায় = 360-1 = 359 (Ans.)
(b) স্বরবর্গুूোর (i) ब্রম পরিবর্ঠন না করে (ii) স্পান পর্রিবর্ঠন না করে এবং (iii) স্বরবর্ণের ও ব্যাজনবর্ণের बাপেশিক অবস্থান পর্নিবর্ঠন না করে ‘DIRECTOR' শ্দটি কত প্রকারে পুনরায় সাঘানো যায় তা নিণয় কন।

সমাধান ः (i) ‘DIRECTOR’ শব্দটিতে মোট 8টি বণ় আছে যাদের $3 ট ি$ স্বরবণ । ক্রম পরিবর্তন না করায় স্সরবণ
 ন্যায় অবস্থান করে । তাহলে, 8 টি বর্ণের মধ্যে 3 টি সররবর্ণ এক জাতীয় এবৃ 2টি R অন্য এক জাতীয় ।

সররবণগুলোর ক্রম পরিবর্তন না করে মোট সাজানো সহ্থ্যা $=\frac{8!}{3!\times 2!}=3360$
'DIRECTOR' শপ্দটি নিজেই একটি সাজানো সং্থ্যা।
নির্ণে় পুনরায় সাজানো সং্খ্যা $=3360-1=3359$

সরবরগুুলোর স্থান পরিবর্তন না করে নির্ণেয় পুনরায় সাজানো সংখ্যা $=60-1=59$
(iii) এক্ষেত্রে, সরবর্ণ 3 টি নির্দিষ 3টি (২য়, 8 ব এবং ৭ম) স্থানে নিজেরা $3!=6$ প্রকরে বিন্যস্ত হয় এবং ব্যজন বণ 5 টি নির্দিষ্ট 5 টি (১ম., ৩য়, ৫্ম ৬ষ্ঠ এবং ৮ম) স্থানে নিজেরা $\frac{5!}{2!}=60$ প্রকারে বিন্যস্ত হয়।

স্বরবর্ণের ও ব্জননবর্ণের আপেকিক অবস্পান পরিবর্তন না করে নির্ণেয় সাজানো সঙ্খ্যা $=6 \times 60-1=359$
9.(a) 'MILLENNIUM ' শব্দটির সর কয়টি বর্ণকে কত প্রকারে সা氏ানো যায় তা নির্ণয় কর। তাদের কতগুলোত্ প্রীমে ৫ শেষে M পাকবে?
[সि.,০৬, ’১২; প্র.ভ.প.'০৪]

এ শব্দটির বণগুলো একত্রে নিয়ে সাজানো যায় $\frac{10!}{2!\times 2!\times 2!\times 2!}=226800$ উপায়ে।
 8 ठि বর্ণকে 8 tि স্णानে $\frac{8!}{2!\times 2!\times 2!}=5040$ উभाয়़ সাজानো যায় ।

निর্ণেয় সাজানো সং্খ্যা 226800 ఆ 5040.
(b) 'IMMEDIATE' শদ্দটির সব কয়টি বর্ণকে কচ প্রকারে সাজানো যায় তা নির্ণয় কর। কতগুলোর প্রথমে T এবर শেষে A बাকবে ?
সমাধান : ১ম জश্ : • IMMEDIATE • শদটিতে মোট 9টি বর্ণ আছে যাদের 2টি I, 2টি M এবং 2টি E.
এ শদ্দটির বর্ণগুলো একত্রে নিয়ে সাজান্ো যায় $=\frac{9!}{2!\times 2!\times 2!}=45360$ উপায়ে।

 প্রষমে \mathbf{D} এবং শেষে \mathbf{R} बাকবে?
[ব.'०७]

সমাষান 8 ১ম জश্শ : ' DAUGHTER' শব্দটির 8 টি ভিন্ন বর্ণ আছে।

নিণ্ণেয় বিন্যাস সং্থ্যা $=8!=40320$
২য় জश্ ঃ প্রথম স্শানাটি ‘D ’ দারা নির্দিষ করে অবশিষ্ট $(8-1)$ অর্বাৎ, 7 tি বণকে 7 ! উপায়ে সাজানো যায় ।
নিণণৌ় বিন্যাস সং্খ্যা $=7!=5040$ (Ans.)
 উপায়ে সাজানো যায় ।

निিক্ণেয় সাজান্নে সং্খ্যা $=6!=720$ (Ans.)
8 - অংサ 8 প্রথমম D থাকবে কিন্তু শেবে R থাকবে না এমন সাজানো সং্খ্যা $=$ প্রথমে D থাকে এমন সাজানো স্থ্যা - প্রথমে D এবং শেষে R থাকে এমন সাজানো সং্খ্যা $=5040-720=4320$
বিক্ম পদ্মতি : যেহেতু প্রথম স্থানটি D দ্দারা পূরণ করতে হয় এবং শেষের স্শানটি R দ্মারা পূরণ করা যায় না , অতএব அশের স্থানটি $(8-2)$ বা, 6 টि বণ দ্দারা ${ }^{6} P_{1}$ ভাবে পূরণ করা यায়
आবার , মাঝ্েের $(8-2)$ বা, 6 টি স্থান অবশিফ 6 বি বণ ঘারা $6!$ উপায়ে পূরণ করা যায়।
निরেত় সাজানো সং্থ্যা $={ }^{6} \mathrm{P}_{1} \times 6!=6 \times 720=4320$
 স্থ্য্যা - শেষে ‘ R ' নিয়ে সাজানো সং্খ্যা + প্রথমে ‘ D ' এবং শেষে ' R ' নিয়ে সাজানো সংখ্যা

$$
=8!-7!-7!+6!=40320-2.5040+720=41040-10080=30960
$$

10. (a)‘ POSTAGE’ শদ্দটির সব ক্য়ট বর্ণকে কত প্রকারে সাজানো যেতে পারে যাতে সররবর্ণগুলো জোড় স্থান मयन ক্নবে? কতগুলোতে ব্যঞ্রনর্বগুলো একত্রে পাকবে?
[क.'38]

 বিজাড় স্থান (১ম, ৩য় , ৫ম এবং ৭ম) 4টি ভিন্ন ব্য়জনবর্ণ দারা 4 ! উপায়ে পূরণ করা যাবে।

সরবর্গগুলো জোড় স্যানে রেথে নির্ণেয়ে সাজানো সং্থ্যা $=3!\times 4!=6 \times 24=144$
২য় জश্ণ : 4টি ব্যজনবর্ণকে একটি একক বণ মনে করলে ভিন্ন বর্ণ হবে (PSTG), O, A, E । এই 4টি ব্ণকে $4!$ প্রকারে এবং 4টি ভিন্ন ব্যজনবর্ণকে নিজ্জেদের মধ্যে 4 ! প্রকারে সাজানো যাবে ।

ব্যাজনবণগুলোকে একত্রে রেখে মোট সাজানো সং্থ্যা $=4!\times 4!=24 \times 24=576$
(b) স্বরবর্গুলোকে কেবন (i) জোড় স্থানে (ii) বিজোড় স্থানে রেথে 'ARTICLE' শদ্দটির অক্ষরগুলোকে কত প্রबाরে সাজানো যায় তা নির্য় কন।
[ঢा. 'Jo]
 গ্থানে 7টি স্থানের মধ্ট্য 3টি জোড় স্থান (২য়, 8ব্ব এবং ৬ষ্ঠ) 3টি ভিন্ন স্ররবর্ণ দ্ঘারা 3! উপায়ে এবং অবশিফ 4টি স্যান 4টি ভিন্ন ব্যঞ্জনবর্ণ দারা 4! উপায়ে পূরণ করা যাবে।

সররबগুলোকে কেবল জোড় স্পানে রেতে নিরণ্ণে সাজানো সং্থ্যা $=3!\times 4!=6 \times 24=144$
(ii) 7টি স্থানের মধ্যে 4টি বিজোড় স্পান (১ম, ৩য়, ৫ম এবং ৭ম) এর 3টি স্পান 3 টি ভিন্ন সররব্ণ মারা ${ }^{4} P_{3}$ ঈभা়়ে এবং অবশিষ্ট 4টি স্থান 4টি ভিন্ন ব্জণবণ দারা 4! উপায়ে পূরণ করা যাবে।

স্বরবরগুলোকে কেবল বিজ্ছোড় স্থনে রেরে নির্ণেয় সাজানো সং্খ্যা $={ }^{4} \mathrm{P}_{3} \times 4!=24 \times 24=576$
10. (c) 'ALLAHABAD' শব্দটির সব কয়টি বর্ণকে কত প্রকারে সাজানো যায় তা নির্ণয় কর। এদের কচগুলোতে A চারটি একত্রে बাকবে ? এদের কতগুলোতে স্বরবর্গুুলো জোড় স্পান দখল করবে?
সমাধান ः ১ম অং্ ः ‘ALLAHABAD' শব্দঢিতে মোট 9টি বর্ণের মধ্যে 4টি A এবং 2টি L আছে।
সবগুল্েে বর্ণ একত্রে নিয়ে মোট সাজানো সং্থ্যা $=\frac{9!}{4!\times 2!}=7560$
২য় অশ্শ : A চারটিকে একটি একক বর্ণ মনে করলেে ভিন্ন বর্ণ হবে (AAAA), L, L, H, B এবং D. 2tি L সহ
এ 6টি বর্ণকে $\frac{6!}{2!}=360$ উপায়ে এবং A চারটিকে নিজ্জেদের মধ্যে $\frac{4!}{4!}=1$ উপায়ে সাজানো যাবে।
A চারটি একত্রে নিয়ে নির্ণেয় সাজানো সश্খ্যা $=360 \times 1=360$
 $2 \mathrm{~L} L$ সহ 5 টি ব্যজনবণ দ্মারা $\frac{5!}{2!}=60$ উপায়ে সাজানো যাবে।

সররবর্ণুলো জোড় স্থানে রেথে নির্ণেয় সাজানো .সং্খ্যা $=1 \times 60=60$
11 (a) দেখাও যে, দুইখানা বিশেষ পুস্তক একত্রে না রেশে n সश্খ্বథ বিভিন্ন পুস্তক যত রকমে সা氏ানো যায় তার সश्थया ($n-2)(n-1)$!
সমাষান \& n সश্থ্যক বিভিন্ন পুস্তকের সবগুলো একত্রে নিয়ে সাজানো সং্খ্যা $=n$!
দুইখানা বিশেষ পুস্তককে একটি একক পুস্তক মনে করলে সাজানোর জন্য ($\mathrm{n}-1$) সश্খ্যক পুস্তক পাই। এই $(\mathrm{n}-1)$ সश্থ্যক পুস্তক একত্রে $(\mathrm{n}-1)$! প্রকারে এবং বিশেষ পুস্তক দুইটিকে নিজ্জেদের মধ্যে $2!=2$ প্রকারে সাজানো যায়।

দুইখানা বিলেষ পুস্তক একত্রে রেথ্ে সাজানো সश্থ্যা $=(n-1)!\times 2=2(n-1)$!
দুইখানা বিশেষ পুস্তক একত্রে না রেথে নিণেয় সাজানো সংখ্য়! = n! - $2(n-1)!=n .(n-1)!-2(n-1)!$

$$
=(n-2) \cdot(n-1)!
$$

 সমাখান : বিলেষ জিনিস দুইটি সারির প্রথমে বা শেষে না থাকলে অবশিষ্ট $(n-2)$ সश্থ্যক বিভিন্ন জিনস দ্বারা প্রথম ও শেষ স্থান দুইটি ${ }^{n-2} \mathrm{P}_{2}$ উপা়্যে পূরণ করা যায় এবং অবশিষ $(\mathrm{n}-2)$ সश्थ্যক বিভিন্ন জিনস দারা মধ্যের $(\mathrm{n}-2)$ সং্থ্যক স্পান $(n-2)!$ উभায়ে পূরণ করা যায়।

निবণ্ণী সাজানো সश্খ্যা $={ }^{n-2} \mathrm{P}_{2} \times(\mathrm{n}-2)!=(\mathrm{n}-2)(\mathrm{n}-3) .(\mathrm{n}-2)$!
(c) \mathbf{n} সश্খ্যক বিভিন্ন धिনিসের \mathbf{r} সংখ্যক একবারে নিয়ে কত রকমে এক সার্রিতে সাधানো যায়, যাতে বিশেষ দুইটি धिनिস অল্তর্ভুক্ঠ बাকে কিল্ডু তারা সারির প্রুমে বা শেষে थাকে না?
সমাধান ঃ বিশেষ জিনিস দুইটি সারির প্রথমে বা শেষে না থাকলে অবশিষ্ট ($n-2$) সং্থ্যক বিভ্ত্ন্ন জিনস দ্বারা প্রথম ও শেষ স্থান দুইটি ${ }^{n-2} \mathrm{P}_{2}$ উপায়ে পূরণ করা যায় এবং অবশিষ্ট ($\mathrm{n}-2$) সश্খ্যক বিভিন্ন জিনস দ্বারা মধ্যের (r-2) সश্থ্যক স্শান ${ }^{n-2} P_{r-2}$ উপায়ে পূরণ করা যায়।

निক্ণে সাজান্যে সश्থ্যা $=\quad{ }^{n-2} P_{2} \times{ }^{n-2} P_{r-2}=$ $(\mathrm{n}-2)(\mathrm{n}-3) \frac{(n-2)!}{(n-2-r+2)!}=\frac{(n-2)!}{(n-r)!}(\mathrm{n}-2)(\mathrm{n}-3)$
 যেতে পারে, যধন সরর্বর সর্বদা মধ্যম স্থান দখল করে?
[ব.'০৩]

মধ্যম স্পানটি দুইটি ভিন্ন স্বরবর্ণ দ্যারা ${ }^{2} P_{1}=2$ উপা়়ে এবং প্রাল্ত স্থান 2টি 4টি ভিন্न ব্জন বণ ঘারা ${ }^{4} \mathrm{P}_{2}=12$ উপাভ্যে পুরণ কর্গা बেতে পারে।

निर्ণ্ণে শক্দের সश्থ্যা $=2 \times 12=24$ (Ans.)
 যায়, যাতে স্ররবর্ণটি ব্যজনবর্ণের মাঝখারে পাকবে?
 जারা ${ }^{7} \mathrm{P}_{2}=42$. উপায়ে পূরণ করা যাবে। \therefore নিণেণ্য শব্েের সং্থ্যা $=3 \times 42=126$
(c) यमि ' CAMBRIDGE ' শদ্দটির বণগুলো পেকে কেবল 5 t বর্ণ নিয়ে শদ্দ গঠন কন্মা হয় তবে কতগুণোতে প্রদষ্ শব্দটির সব কয়টি স্বরবর্ণ বর্তমান थাকবে?

 ব্যজন বণ দ্ঘারা ${ }^{6} \mathrm{P}_{2}=30$ উপায়ে পূরণ করা যাবে।

निর্ণেয় শব্দ.গঠন করার উপায় সং্থ্যা $=60 \times 30=1800$

 প্রকারে বিন্যস্ত হয়।

निর্ণেয় শব্দ গঠন করার উপায় সং্থ্যা $={ }^{6} \mathrm{C}_{2} \times 5!=15 \times 120=1800$ (Ans.)
12. (d) 'EQUATION' শদ্দটির বণ্ণুুো হতে প্রত্যেকবার 4 টি বর্ণ नিয়ে বিভিন্ন শদ্দ গঠন কর্মা इন, এদের কতगুলোতে \mathbf{Q} বर्তমান র্ৰাকবে কিল্তু N बाকবে না ?
[य.'ob]

 120 উপায়ে। Q কে বর্তমান রেণে এবং N কে বর্তমান না রেখে শদ্দ হঠন করা যাবে $4 \times 120=480$ টি।
 $(8-2)=6$ টि ব氏 হতে 3 টি বণ নিতে হবে এবং जা ${ }^{6} \mathrm{C}_{3}=20$ উপা়় নেেওয়া যায়। জাবার, $4 ট ি$ ভিন্ন ব氏 দারা শম গঠন করা যায় $4!=24$ টि।
Q কে বর্তমান রেখে এবং N কে বর্তমান না রেখে শ্দ হঠন করা যায় $20 \times 24=480$ টি।
13. (a) 10 টि বস্তুর 5 টि একবারে নিয়ে কতগুলো বিন্যাস্নে মধ্যে 2 tि বিশেষ বস্তু সর্বদা অশ্তত্ডুক্ बাকবে?
[ङ.' ’’o]
সমাধান : 5 টি একবারে নিয়ে গঠিত বিন্যাসের 5 টি স্থান $2 ট ি$ বিশেষ বস্তু ঘারা ${ }^{5} P_{2}=20$ উপায়ে পূরণ করার পর

निৰেয় বিন্যাস সং্খ্যা $=20 \times 336=6720$
বিক্প পশ্ফতি 82 টি বিশেষ বস্তুকে সর্বদা অল্তর্ডুক্ত রেথে অবশিষ্ট $(10-2)$ বা, 8 টি বস্তু হতে $3 ট ি$ বস্তু ${ }^{8} \mathrm{C}_{3}$ উপায়ে বেছে নেওয়া যাবে। আবার , 5 টি বস্তুকে $5!$ উপায়ে সাজান্যে যাবে।

निর্ণেয় বিন্যাস সश्খ্যা $={ }^{8} \mathrm{C}_{3} \times 5!=56 \times 120=6720$
 जবए L অक্ষ দুইটি অবশ্যু बাকবে ?
সমাষান \& 5টি অক্ষর নিয়ে গঠিত শব্দে 5টি স্পান A এবर L অক্ষর দ্মারা ${ }^{5} \mathrm{P}_{2}=20$ উপায়ে পূরণ করার পর অবশিষ্ট (5-

निর̛ণে সং্থ্যা $=20 \times 12144=242880$
14 (a) এৰबন नোকেন এবটি সাদা, দूইটি পান এবং তিনটি সবুজ পতাবা জাছে। একটির উপর জারেকটি সাজানো চারটি পতাবা নিয়ে সে কতগুলো বিডিন্ন সৃকেত টৈরী কন্মতে পারবে ?
[द্রা.’০২]
সমাयান 8 মোট পচাকার সश্থ্যা $=1+2+3=6$.
6 位 পতাকা হতে $4 ট$ পতাকা নির্বাচন করে সে নিম্নরূপে স সেকেত তৈরী করতে পারবে :

সমাখান 8 মোট পতাকার সং্থ্যা $=1+2+3=6$.
$6 ট ি$ পতাকা रতে 5 টি পতাকা নির্বাচন করে সে নিম্নরূপে স সরকত তৈরী করতে পারবে :

সাদা পতাকা (1)	नान পতাকা (2)	সবুজ পতাকা (3)	সৃকেত তৈরীর উপায় সং্থ্যা
1	2	2	$\frac{5!}{2!2!}=30$
1	1	3	$\frac{5!}{3!}=20$
0	2	3	$\frac{5!}{23!}=10$

निर্ণেয় সং্খ্যা $=30+20+10=60$ (Ans.)
 ছার্রকে কত ব্রকমে এঝটি নাইনে সাষানো যায়, তা নির্ণয় কন্ন।
[य.’०8]
সমাধান 814 জন I.Sc. ক্কাসের ছাত্রকে একটি নাইনে 14! রকমে সাজানো যায়। এই 14 জন I.Sc. ক্বাসের ছত্রের মাঝখানে $(14-1)=13$ টি खाँকা স্থান পাওয়া যায়। এ ছাড়া লাইনের দুই প্রন্তে জারও দুইটি ফাঁকা স্থান পাওয়া যায়।

निর্ণেয় সাজানো সং্খ্যা $=14!\times{ }^{15} \mathrm{P}_{10}$
 q) বত প্রকার্গে এব সারিতে সাबানো যায়, তা নির্ণয় কন।

সমাখান \& p-সश্খ্যক যোগবোধক চিছ্ একজাতীয় এবং q-সং্খ্যক বিয়োগবোধক চিছ্ একজাতীয়। q-সং্খ্যক বিয়োগবোধক চিহ্ৰকে এক সারিতে $\frac{q!}{q!}=1$ রকম্মে সাজানো যায়।এই q-সश্খ্যক বিয়োগবোধক চিহের মাঝখানে $(q-1)$ টি ய゙ँকা স্থান পাওয়া যায়। এ ছাড়া সারির দুই প্রাল্তে জারও দুইটি खঁঁকা স্পান পাওয়া যায়। সুতরাং, $\{(q-1)+2\}=(q+1)$ টি யौौ

निर्ণেয় সাজান্নে সश्খ্যা $=1 \times \frac{(q+1)!}{p!\times(q+1-p)!}=\frac{(q+1)!}{p!\times(q-p+1)!}$
16 (a) $3,4,5,6,7,8$ অध्धगूলোর এবটিকেষ পুनরাবৃষ্টি না করে 5000 এবং 6000 মধ্যবর্তী কতগুলো সश্భ্যা গঠন কর্রা যেতে পারে?
 रবে। এখানে 6টি বিডিন্ন অЕ্巾 जাছে। প্রপম স্থানটি 5 দ্ञाরা নির্দিফ্ট করে অবশিষ $(4-1)=3$ টি স্পান বাকি $(6-1)=5$ টि অঙ্ক দ্বারা পূরণ করা যাবে ${ }^{5} \mathrm{P}_{3}$ উপায়ে। $\quad \therefore$ নির্ণেয় মোট সश্থ্যা $={ }^{5} \mathrm{P}_{3}=60$
 4 बात্রা বিভাষ্য কতগুলো সৃ্্যা গঠন কর্মা যেতে পারে?

 দুইটি ছারা গঠিত সश্থ্যা $08,60,80,56,68,76$ হবে।
ণেষ দুইটি স্পানে 08, 60 ও 80 এর যেকোন একটি ঘারা ${ }^{3} P_{1}$ উপাঢ়ে পূরণ করে অবশিষ্ট (5-2) $=3$ টি স্থান বাকি $(5-2)=3$ টি অЕ্ক দারা 3 ! উপায়ে পূরণ করা যাবে।
জাবার, শেষ দুইটি স্পানে 56, 68 ఆ 76 এর যেকোন একটি ঘারা ${ }^{3} \mathrm{P}_{1}$ উপায়ে এবং 0 ব্যणীত অপর দুইটি অজ্কের যেকোন এবটি দ্বারা প্রথম স্সানটি ${ }^{2} \mathrm{P}_{1}$ উপায়ে পূরণ করে অবশিষ্ট $(5-3)=2$ টি স্থান 0 ও जপর একটি অЕ্ক দ্যারা 2 ! উপায়ে পৃরণ করা যাবে।

4 দ্ৰারা বিভাজ্য মোট সং্খ্যা $={ }^{3} \mathrm{P}_{1} \times 3!+{ }^{3} \mathrm{P}_{1} \times{ }^{2} \mathrm{P}_{1} \times 2!=3 \times 6+3 \times 2 \times 2=18+12=30$

নির্ণেয় মোট সং্খ্যা $=6 \times 3=18$

প্রथ্ম ও শেষ স্থান দুইটি 4টি জ্জোড় অজ্大ের যেকোন দুইটি দ্ছারা ${ }^{4} P_{2}$ উभায়ে এবৃ অবশিষ্ট（9－2）$=7$ টি স্থান বাকি $(9-2)=7$ টি জE্ক দারা $7!$ উপায়ে পূরণ করা মাবে।

প্রুমে ও শেমে জোড় অষ্ফ নিয়ে মোট সৃ্ধ্যা $={ }^{4} \mathrm{P}_{2} \times 7!=12 \times 5040=60480$
 সश्ध্যা গঠन কन्ना যায় ？

4 बE্क ঘারা গঠিত মোট সश্খ্যা $={ }^{3} \mathrm{P}_{1} \times{ }^{4} \mathrm{P}_{3}=3 \times 24=72$

4 অब্क দ্বারা গঠিত মোট সং্থ্যা $={ }^{4} \mathrm{P}_{1} \times{ }^{4} \mathrm{P}_{4}=4 \times 24=96$
নির্ণেয় মোট সৃ্থ্যা $=72+96=168$
 याয় ？
সমাধান ：এখান অঙ্ক 4 টির প্রতিটি যে কোন সং্খ্যকবার ব্যবহার করা যাবে।
\therefore এক অष्ফ বিশিফ্ট সং্থ্যা গঠন কন্小া যাবে 4 উপায়ে।
 বিশিষ্ট স্থ্থ্যা গঠন করা যাবে $4 \times 4=4^{2}$ উপায়ে।
অनুরূপভাবে，তিন ए বিশিষ্ট সং্্যা গঠন করা যাবে 4^{3} উপায়ে।
নির্ণেয় শোট সং্থ্যা $=\left(4+4^{2}+4^{3}\right)=(4+16+64)=84$
 সश्य্য গঠन করা যায়？
সমাধান ：শূন্যসহ 8টি অজ্大ের প্রতিটি যে কোন সং্খ্যকবার ব্যবহার করা यাবে। সংখ্যার শেবে $1,3,5$ বা 7 থাকলে সং্খ্যাগুলি বিজোড় হবে এবং প্রঋমে 0 থাকলে তা অধপূণ সং্থ্যা হবেনা । তাই，শেষ স্থানটি（ অধ্রাৎ একক স্থান）এ
 স্থানগুলির প্রতিটি শূন্যসহ 8 টি অজ্ক দ্বারা 8 উপাঢ়ে পৃরণ করা যাবে।
\therefore এক অ区্ক বিশিষ্ট বিজোড় সং্থ্যা গঠন করা যাবে 4 উপায়ে।

চার অЕ्ळ বিশিষ্ট বিজোড় সश্থ্যা গঠন করা যাবে $7 \times 8 \times 8 \times 4$ जब্ৰৎ 1792 উপায়ে।
निরেণ্য মোট সৃ্থ্যা $=(4+28+224+1792)=2048$
 যেতে পারে？
［य．＇o৫；జূ．＇o৯；রা．＇১০］
সমাধান ：প্রত্তেক ভোটার 3 জন প্রীীকে ভোট দিতে পারে 3 উপায়ে।
5 曰न ভোটার 3 জন প্রাথীকে ভোট দিতে পারে $3 \times 3 \times 3 \times 3 \times 3=3^{5}=243$ উপায়ে।
243 প্রকারে ডোট দেওয়া যেতে পারে ।
 মধ্যে এগুলো কত র্বক্মে বিত্রণ কর্না যেতে পারে？
সমাধান ：প্রত্যেক পুরস্কার 10 জन বানকের মধ্যে 10 উপায়ে বিতরণ করা যায়।
তিনটি পুরস্কার 10 জন বালকের মধ্যে বিতরণ করার মোট উপায় সश্থ্যা $=10 \times 10 \times 10=1000$
 সাজ্ঘানো যেতে পারে যাত্ এবই বিষয্রের পুস্তকগুলো একর্রে পাকে？
সমাধান ：যেহেতু একই বিষয়ের পুস্তকসুলো এক্র্রে थাকে，অতএব গণিতের 5 খানা পুস্তককক গণিত্তের একটি একক भুস্তক，পদার্খবিজ্ঞানের 3 খানা পুস্তককে পদার্ধবিষ্ঞানের একটি একক পুস্তক এবং রসায়নবিজ্ঞানের 2 খানা পুস্তককে রসায়নবিষ্ঞানের একটি একক পুস্তক মনে করতে হবে।

এই 3 বিষয়ের পুস্তক $3!=6$ উপায়ে এবং গণিতের 5 খানা পুস্তককে নিজ্জেের মধ্যে $5!=120$ せপয়ে， পদার্ববিজ্ঞানের 3 খানা পুস্তককে $3!=6$ উপায়ে ও রসায়নবিজ্ঞানের 2 খানা পুস্তককে $2!=2$ উপায়ে সাজানো যাবে।

একই বিষয়ের পুস্তকগুলো একত্রে রেথে নিণে়্ে সাজানো সং্থ্যা $=6 \times 120 \times 6 \times 2=8640$

সমাধান 8 প্রতিটি বিন্যাসের প্রপম স্থানটি প্রথম রিং এর $5 ট$ অক্ষর দ্বারা পূরণ করা যায় 5 উপায়ে।
প্রতিটি বিন্যাসের দিতীয় স্পানটি দ্তিতীয় রিং এর 5 টি অক্ষর দ্ঘার পূরণ করা যায় 5 উপায়ে।
প্রতিটি বিন্যাসের তৃতীয় স্পানটি তৃতীয় রিং এর 5 টি অক্ষর দ্যারা পূরণ করা যায় 5 উপায়ে।
প্রতিটি বিন্যাসের চতুর্ধ স্পানটি চতু্র রিং এর 5 টি অक্ষর ঘ্রা পূরণ করা যায় 5 উপায়ে।
চারটি রিং এর অক্ষরগুলি দ্বারা গঠিত বিন্যাসের সং্ধ্যা $=5 \times 5 \times 5 \times 5=25$
যেসব বিন্যাসের জন্য তালাঢি খোলা যাবেনা তাদের সং্থ্যা $=625-1=624$

সমাধান 81 জন মেয়েকে নির্দিষ্ট করে অবশিট্ট $(8-1)$ বা， 7 জন মেয়েকে $7!$ প্রকরে সাজানো যায় ।
$7!=5040$ ভাবে তারা বৃজাকারে দাঁড়াতে পারবে।
（b） 8 tि ভিন্ন ধরননেন্ন মুভ্যা কত র্রকমে এধটি বাডে নাগিয়ে একটি হার তৈরি করা যেতে পারে？
সমাধান ： 1 টि মুক্তা নির্দিষ্ট করে অবশিষট $(8-1)$ या， 7 টि মুক্তাকে 7 ！প্রকারে একটি ব্যাল্ডে লাগির্যে একটি হার তৈরি করা বেতে পারে । কিন্তু হারটি একটি চক্র বিন্যাস যা উপর এবৃ নিচ থেকে অথবা উন্টিয়ে দেখা যায় ।

$$
\frac{7!}{2}=\frac{5040}{2}=2520 \text { রক্মে একটি হার তৈরি করা যেতে পারে । }
$$

 ক্ত র্রকমে এবটি গোন টেৈিলের চারপাশে বসানো যায়，তা নির্ণয় কন্ন।
［বা．’১১；ঢা．’১২］

 याबে। সুত্রাए, निर्ल্য সरश্যI $=14$!

 স্থ্যকব্বার পুন্রাব্ভ হবে।

 বিশিষ্ স্থ্যার সমফি $=480 \times 1+480 \times 10+480 \times 100+480 \times 1000+480 \times 10000$

$$
=480(1+10+100+1000+10000)=480 \times 11111=5333280
$$

 $=3!\times(0+2+4+6+8) \times 1111=6 \times 20 \times 1111=133320$

निर्ঢाश সมষ্টি $=5333280-133320=5199960$

 इख1

$$
=10 \times{ }^{3} P_{1}=30
$$

$$
=10 \times{ }^{3} \mathrm{P}_{1}(10+1)=10 \times{ }^{3} \mathrm{P}_{1} \times 11=330
$$

অনুরূभভাবে, তিন অঙ্ঞ বিশিষ্ট সश्থ্যার সমষ্টি $=10 \times{ }^{3} \mathrm{P}_{2} \times 111=10 \times 6 \times 111=6660$
গার অষ্ক বিশিষ্ট সংখ্যার সমষ্টি $=10 \times{ }^{3} \mathrm{P}_{3} \times 1111=10 \times 6 \times 1111=66660$
निর্ণেয় সমষ্টি $=10+330+6660+66660=73660$
[বি.দ্র. : নিত্ণেয় সমষ্টি $=(1+2+3+4)\left(1+11 \times{ }^{3} \mathrm{P}_{1}+111 \times{ }^{3} \mathrm{P}_{2}+1111 \times{ }^{3} \mathrm{P}_{3}\right)$ যেকোন সং্থ্যকবার ব্যবহার করর $1,2,3,4$ অЕ্কগুলো দারা যততুলুলা সং্খ্যা গঠন করা যায় তাদের সমষ্টি $=(1+2+3+4)$ $\left.\left(1+11 \times 4^{1}+111 \times 4^{2}+1111 \times 4^{3}\right)=10(1+44+1776+71104)=729250\right]$

সমাধান: প্রত্যেক সং্খ্যায় 5 \#চচবার এবং 4 চারবার ব্যবহার করে 9 অজ্কের $\frac{9!}{5!4!}=126$ সংখ্যক সংখ্যা গঠিত হয়। बেরোন স্থান (একক, দশক,শতক ইত্যাদি) 5 দ্মারা নির্দিষ্ট করে অবশিষ্ট আটটি স্থান 4টি 5 ও 4টি 4 ঘারা $\frac{8!}{4!4!}=70$ উপায়ে পূরণ করা যায় অর্থাৎ ব্যেকোন স্থান্ন 70 বার 5 পুনরাবৃত্ত হয় । আবার, যেকোন স্থান 4 जারা নির্দিফ্ট बরে অবশিষ্ট আটটি স্থান 5 টि 5 ও 3টি 4 ज্ঘারা $\frac{8!}{5 B!}=56$ উপায়ে পূরণ করা यায় অর্থাৎ ব্যেকোন স্থানে 56 বার 4 পুনরাবৃত্ত হয় ।

নয় অЕ্ক বিশিষ্ট সংখ্যার প্রত্যেক স্থানের অজ্জগুলির সমফ্টি $=5 \times 70+4 \times 56=350+224=574$
প্রত্যেক সংখ্যায় 5 পাচবার এবং 4 চারবার ব্যবহার করে 9 অজ্লের গঠিত সংখ্যার সমফ্ভি
$=574 \times 1111111111=63777777714$
निर्ণেয় গড় $=63777777714 \div 126=506172839$
কাজ

১1 'EQUATION' শদ্দটির সবগুলো অক্ষর ব্যবহার করে কতটি শব্দ গঠন কন্রা যেতে পারে?

সমাধান : ‘EQUATION’ শব্দটিতে মোট 8টি বিভিন্ন অক্ষর আছে। এই 8টি অক্ষর একত্তে ব্যবহার করে গঠিত বিভিন্ন শদ্দের ' সং্খ্যা ${ }^{8} \mathrm{P}_{8}=8!=40320$

२। ‘LAUGHTER’ শদ্দি্গ সব ক্য়ী বর্ণকে কত প্রকারে সাधানো যায় তা নির্ণয় কন্ন। এদের কতগুলো \mathbf{L} ঘার়া শু হবে?

সমাধান \& 'LAUGHTER' শদ্দটিতে মোট 8টি বিভিন্ন অক্ষর আছে। এই 8টি অক্ষর একত্রে ব্য়হহার করে গঠিত বিভিন্ন শক্দের সং্খ্যা ${ }^{8} \mathrm{P}_{8}=8!=40320$
 উপায়ে সাজানো যায়। সুতরাং L দ্যারা শুরু হয় এরূপ সাজানো সং্খ্যা = 5040
৩। (a) निচের শদ্দগুলোর সবগুলো বর্ণ একবারে নিয়ে কত প্রকারে সাबানো যায় : (i) committee (ii) infinitesimal (iii) proportion?

সমাধান : (i) 'committee' শব্দটিতে মোট 9টি অক্ষর আছে, যাদের মধ্যে 2টি m, 2টি t এবং 2টি e.

निर্ণেয় সাজानনা সल्थ্যা $=\frac{9!}{2!\times 2!\times 2!}$
（ii）infinitesimal শপ্পটিতে মোট 13 অিি অক্র জাছে，यাদের মধ্যে $4 ট ি ~ i, ~ 2 ট ি ~ n . ~$
निর্ণেয় সাজানো সণ্খ্যা $=\frac{13!}{4!\times 2!}$
（iii）proportion শব্দটিতে মোট 10 টি অশ্ষর আছে，যাদের মধ্যে $2 ট ি \mathrm{p}, 2 \mathrm{tि} \mathrm{r}, 3$ টি 0 ．
नि九ণেয় সাজানো সং্খ্যা $=\frac{10!}{2!\times 2!\times 3!}$
（b）একটি লাইব্রেরীতে এক্থানা পুস্তকের 8 কপি，দूইখানা পুস্তকের প্রত্যেকের 3 কপি，তিনখানা পুস্তকের প্রত্যেকের 5 কপি এবং দশখানা পুস্তকের 1 কপি করে জাছে। সবগুল্ো একত্রে নিয়ে কত প্রকারে সাজানো যেতে পারে？

সমাধান ঃ মোট পুস্তকের সং্খ্যা $=8+2 \times 3+3 \times 5+10=8+6+15+10=39$
निর্চেয় সাজानো সश्খ্যা $=\frac{39!}{8!\times 3!\times 3!\times 5!\times 5!\times 5!}=\frac{39!}{8!\times(3!)^{2} \times(5!)^{3}}$

সমাধান 8 ＇INSURANCE＇শব্দটিতে মোট 9টি বণ আাছে যাদের 4টি ভিন্ন স্ররবর্। যেহেতু সর্রবণ 4টি একত্রে थাকে，অতএব তাদেরকে একটি একক বণ্ণ মনে করলে বণগুলো হবে（IUAE），N，S，R，N，C．
$2 ট \mathrm{~N} N$ সহ এই 6টি বর্ণকে $\frac{6!}{2!}=360$ প্রকারে সাজানো যায় । জাবার， 4 টি তিন্ন সরর্ণকে নিজ্ঞেদের মধ্যে $4!=24$ প্রকারে সাজানো যায় ।

निর্ণেয় সাজানো সश্খ্যা $=360 \times 24=8640$
 बাবে।［ए．＇০১］
সমাখান ：＇CHITTAGONG＇শব্দটিতে মোট 10টি বণ আছে যাদের 3টি সরববর্ণ।
যেহেতু সরবর্ণ তিনটি একত্রে থাকে，অতএব তাদেরকে 1 tি ব氏 মনে করে মোট বধ্ণে সং্থ্যা হবে $(10-3+1)$ অব্রাৎ，
 $3!=6$ প্রকারে সাজানো যায় ।

স্বরবণগুলো একত্রে নিয়ে বণগুলোর মোট সাজান্ো সং্ধ্যা $=10080 \times 6=60480$
 সমাধান ：‘TECHNOLOGY’ শব্দট্তিতে মোট 10টি বণ জাছ যাদের 3টি সররবণ। যেহেতু সরব্ণ তিনটি একত্রে থাকে，অতএব তাদেরকে 1 টি বর্ণ মনে করে মোট বর্ণের সং্থ্যা হবে（10－3＋1）অধাৎ， 8টি । এই 8টি ডিন্ন বর্ণকে $8!$ উभায়ে এবং $2 ট ি \mathrm{O}$ সহ 3 টি স্বরবর্ণক নিজেদের মধ্যে $\frac{3!}{2!}=3$ উभায়ে বিন্যাস করা যায়।

সররবণগুলোকে পাশাপাশি রেথে বণগুলোর মোট বিন্যাস সং্থ্যা $=8!\times 3=120960$
 बাण কাউন্টার দুইটি এক্রে পাকবে？

সমাধান : ১ম জশশ : এখানে মোট $(7+4+2)=3$ কি কাউন্টারের মধ্যে 7টি সবুজ , 4টি নীল এবং $2 ট ি$ লাল ।
সবগুলো কাউন্টার একত্রে নিয়ে মোট সাজানো সংখ্যা $=\frac{13!}{7!\times 4!\times 2!}=25740$
২য় অश্ ঃ নাল কাটন্টার দুইটিকে একটি একক কাউন্টার মনে করলে মোট কাটন্টার সং্খ্যা হবে (13-2+1) অবাৎ, $12 ট ি$ যাদের মধ্যে $7 ট$ সবুজ এবং $4 ট ি$ নীল ।

লাল কাট্টার দুইটি একত্রে রেখে মোট সাজানো সং্খ্যা $=\frac{12!}{7!\times 4!}=3960$
१। 'IDENTITY' শদ্দির সব কয়টি বর্ণকে কত প্রকারে সাজানো যায় তা নির্ণয় কর। কতগুলোর প্রধমম I এবং শ্বে I পাबবে ? কতগুলোত I দুইটি এবং T দুইটি এক্রে পাকবে ?
সমাষান ः ১ম অং্ : 'IDENTITY' শব্দটিতে মোট 8টি বণ আছে যাদের 2টি I এবং 2টি T
এ শদ্দটির বণগুলো একত্রে নিয়ে সাজানো যায় $=\frac{8!}{2!\times 2!!}=10080$ প্রকারে।
 স্শানে $\frac{5!}{2!}=60$ প্রকারে সাজানো যায় ।
৩য় অংশ 8 I দুইটিকে একটি একক বর্ণ এবং T দুইটি একটি একক বণ মনে করে মোট ভিন্ন বর্ণের সং্খ্যা হবে ($8-2$) बひাৎ, 6 টি। সুতরাং, I দুইটি এবং T দুইটি একত্রে রেvে নির্ণেয় সাজানো সং্খ্যা $=6!=720$
৮। বাअনবর্ণগুলোকে বিজ্জোড় স্যানে রেথে 'EQUATION' শ্দটির অক্ষগুলোকে কত প্রকারে সাজানো যায় তা निর্ণয় কর।
সমাধান : 'EQUATION' শদ্টটিতে মোট 8টি বর আছে যাদের 5টি ভিন্ন স্বরবর্ণ এবং $3 ট ি$ ভিন্ন ব্যজনবণ। এখানে 8টি স্থানের মধ্যে 4টি বিজোড় স্থান (১ম, ৩য়, ৫ম এবং ৭ম) এর 3 টি স্থান 3 টি ভিন্ন ব্যজনবর দ্মারা ${ }^{4} \mathrm{P}_{3}$ উপা়্যে এবং অবশিষ্ট 5টি স্থান 5টি ভিন্ন সররবণ দারা 5! উপায়ে পূরণ করা যাবে।

ব্যজজনবণ্গুলোকে বিজোড় স্মানে রেতে নির্ণেয় সাজানো সংখ্যা $={ }^{4} \mathrm{P}_{3} \times 5!=24 \times 120=2880$
১। (a) 6 টি পরীশ্কার খাতাকে কত প্রকারে সাबানো যেতে পারে, যাতে সবচেয়ে ভান ৪ সবচেয়ে খারাপ খাতা দুইটি এबত্রে না बाबে?
সমাষান : 6 টি খাতা একত্রে $6!=720$ প্রকরে সাজানো যায়। সবচেয়ে ভাল ও সবচেফ়ে খারাপ খাতা দুইটিকে একটি একক খাতা মনে করে মোট খাতার সং্খ্যা হবে (6-2+1) অব্ৰৎ 5 টি। এই 5 টি খাতা একত্রে $5!=120$ প্রকারে এবং সবচেয়ে ভাল ও সবচেয়ে খারাপ খাতা দুইটিকে নিজ্জেদের মধ্যে $2!=2$ প্রকারে সাজানো যায়।

সবচেয়ে ভাল ও সবচেয়ে খারাপ খাতা দুইটিকে একত্রে নিয়ে সাজানো সংখ্যা $=120 \times 2=240$
সবচেয়ে जান ও সবচেয়ে খারাপ খাতা দুইটি একত্রে না নিয়ে সাজানো সংখ্যা $=720-240=480$
(b) জাটটি বস্তুকে এক সারিতে কত প্রকারে সাधানো যেতে পারে , যাতে (i) দूইটি বিশেষ বস্তু একত্রে পাকে এবৃ
(ii) দूইটি বিশেষ বস্তু একত্রে না थाকে?

সমাধান : (i) দুইটি বিশেষ বস্তুকে একটি একক বস্তু মনে করলে সাজানোর জন্য $(8-2+1)$ जঠাৎ, $7 ট ি$ বস্তু পাই। এই 7টি বস্তু একত্রে $7!$ প্রকারে এবং বিশেষ বস্হু দুইটিকে নিজ্জেদের মধ্যে $2!=2$ প্রকরে সাজানো যায়।

দুইটি বিশেষ বস্তু একত্রে নিয়ে নিরেয় সাজানো সং্থ্যা $=7!\times 2=5040 \times 2=10080$
(ii) 8 t বস্তুকে এক সারিতে $8!=40320$ প্রকারে সাজানো যায়।

দুইটি বিশেষ বস্তু একত্রে না নিয়ে নিণ্ণে় সাজানো সং্থ্যা $=40320-10080=30240$

निণ্ণ্যে শপ্দের সৃ্থ্যা $=5 \times 90=450$

 यात़, णा निर्णित्र बन।

 बन्दের গসিত মোট সश্থা $={ }^{6} \mathrm{P}_{6}=6!=720$
 অस्दকে 5 ! প্রকারে সাজান্নে यায়।

5 দারা বিতাজ্য নয় এরৃপ ম্মাট সহ্থ্যা $={ }^{5} \mathrm{P}_{1} \times 5!=5 \times 120=600$

ছয় অঙ্ক বিশিষ্ট মোট সংখ্যা $=\frac{6!}{3!\times 2!}=60$
২য় অংশ : 400000 অপেক্ষা বড় সংখ্যাগুলোর প্রথম অঙ্কটি 4 দ্বারা আারম্ভ হতে হবে। প্রথম স্থানটি 4 দ্বারা নির্দিষ্ট করে অবশিষ্ট $(6-1)=5$ টি স্থান 3 টি 2 এবং $2 ট ি ~ 3$ সহ বাকি .5 টি অজ्ক घ্বারা পূরণ করা যাবে $\frac{5!}{3!\times 2!}=10$ উপায়ে।

নির্ণেয় মোট সংখ্যা $=10$
১৩। (a) 1, 2, 3 অঙ্কगুলি যে কোন সংখ্যকবার ব্যবহার করে চার অঙ্কের বেশি নয় এমন কতগুলি সংখ্যা তৈরী করা याয়?
সমাষান : এখানে অঙ্ক 3টির প্রতিটি যে কোন সংখ্যকবার ব্যবহার করা যাবে।
এক অঙ্ক বিশিষ্ট সংখ্যা গঠন করা যাবে 3 উপায়ে।
দুই অঙ্ক বিশিষ্ট সংখ্যার প্রতিটি স্থান (একক বা দশক) 3টি অঙ্ক দ্বারা 3 উপায়ে পূরণ করা যাবে। অতএব, দুই
অЕ্জ বিশিষ্ট সংখ্যা গঠন করা যাবে $3 \times 3=3^{2}$ উপায়ে।
অনুরূপভাবে, তিন एক বিশিষ্ট ও চার एক বিশিষ্ট সং্খ্যা গঠন করা যাবে ষথাক্রমে 3^{3} ও 3^{4} উপায়ে।
নিণ্ণে মোট সংখ্যা $=\left(3+3^{2}+3^{3}+3^{4}\right)=(3+9+27+81)=120$
[দ্র. 1, 2, 3, 4, 5 অঙ্কগুলি যে কোন সংখ্যকবার ব্যবহার করে চার অঙ্কের বেশি নয় এমন সং্খ্যা গঠন করা যায় $\frac{5\left(5^{4}-1\right)}{5-1}=780$ উপায়ে।]
(b) $0,1,2,3,4,5,6,7$ অ飞্কগুনো যেকোন সংখ্যকব্বার ব্যবহার করে 10000 এর ছোট কতগুলো সংখ্যা গঠন করা যায়?
সমাধান : শূন্যসহ 8টি অঙ্কের প্রতিটি যে কোন সংখ্যকবার ব্যবহার করা যাবে। সংখ্যার প্রথমে 0 থাকলে তা অর্ৰপূণ সং্খ্যা হবেনা। তাই, বাম দিক হতে সংখ্যার প্রথম স্থান 0 ব্যতীত বাকী 7 টি অ়ঙ্ক দ্মারা 7 উপায়ে এবp অন্যান্য স্থানগুলির প্রতিটি শূন্যসহ 8টি অজ্ক দ্বারা 8 উপায়ে পূরণ করা যাবে।

এক অঙ্ক বিশিষ্ট সংখ্যা গঠন করা যাবে 7 উপায়ে।
দুই অজ্ক বিশিষ্ট সংখ্যা গঠন করা যাবে 7×8 जর্ৰাৎ 56 উপায়ে।
তিন অঙ্ক বিশিষ্ট সং্খ্যা গঠন করা যাবে $7 \times 8 \times 8$ অর্থাৎ 448 উপায়ে।
ডার অক্ক. বিশিষ্ট সংখ্যা গঠন করা যাবে $7 \times 8 \times 8 \times 8$ অথ্থাৎ 3584 উপায়ে।
নির্ণেয় মোট সংখ্যা $=(7+56+448+3584)=4095$
>8। ठিনটি ফ্টটবল vেলার ফস্নায়্ন কত উপায়ে হতে পারে ?
সমাধান : প্রথম খেলার ফলাফল কোন বিশেষ দলের জন্য জয়, পরাজয় অথবা অমীমাংসিত অর্থাৎ 3 উপায়ে হতে পরে। অনূরূপ ২য় খেলার ফলাফম 3 উপায়ে এবং ৩য় খোলার ফল্নাফন্ত 3 উপায়ে হতে পারে।

निর্ণেয় সং্থ্যা $=3 \times 3 \times 3=27$
১৫। (a) প্রত্যেক অய্ষকে প্রত্যেক সংখ্যায় একবার মাত্র ব্যবহার করে $1,3,5,7,9$ অध্কগুন্ো ঘারা 10000 এর চেয়ে বড় যতগুৰ্ো সংখ্যা গঠন করা যায় তাদের সমষ্টি নির্ডয় কর।
সমাধান $\%$ প্রত্যেক অজ্জকে প্রত্যেক সংখ্যায় একবার মাত্র ব্যবহার করে 1, 3,5, 7, 9 অজ্কগুলো দ্বারা 10000 এর চয়ে বড় সংখ্যা প্ৰাচ অজ্ক বিশিষ্ট হবে।

পাচ স্থানের যেকোন একটি স্থান এ পাচটি অঙ্কের যেকোন একটি দ্বারা নির্দিষ করে অবশিষ্ট চারটি স্থান বাকী চারটি অঙ্ক দ্বারা 4! উপাযে পূরণ করা যায়। সুতরাং , প্রত্যেক অङ্ক প্রত্যেক স্পানে (একক, দশক, শতক, হাজার বা ওযুত) 4! সং্খ্যকবার পুনরাবৃত্ত হবে।

পাচ অজ্ঞ বিশিষ্ট সং্খ্যার প্রত্যেক স্মানের অষ্কগুলির সমষ্টি $=4!\times(1+3+5+7+9)=24 \times 25=$ 600
প্রত্যেক অজ্ককে প্রত্যেক সংখ্যায় একবার মাত্র ব্যবহার করে $1,3,5,7,9$ অঙ্কগুলো দ্বারা গঠিত *iচ অঙ্ক বিশিষ্ট
সং্খ্যার সমষ্টি $=600 \times 1+600 \times 10+600 \times 100+600 \times 1000+600 \times 10000$

$$
=600(1+10+100+1000+10000)=600 \times 11111=6666600 \text { (Ans.) }
$$

[বি.দ্র. : নির্ণেয় সমষ্টি $=(5-1)!\times(1+3+5+7+9) \times 11111=24 \times 25 \times 11111=6666600$]
(b) কোন অষ্ক কোন সংখ্যায় একবারের বেশি ব্যবহার না করে $1,3,5,7,9$ অষ্কগুজো চারা যতগুজো সংখ্যা গঠন করা যায় তাদের সমষ্টি নির্ণয় কন্ন।
সমাষান : এক অষ্ক বিশিষ্ট সং্খ্যার সমষ্টি $=1+3+5+7+9=25$
দুই অঙ্ক বিশিষ্ট সং্থ্যার একক বা দশক স্থান এ পাচটি অঙ্কের যেকোন একটি দ্বারা নির্দিষ্ট করে অবশিষ্ট চারটি অঙ্ক দ্বারা বাকী স্থানটি ${ }^{4} \mathrm{P}_{1}$ উপায়ে পূরণ করা যায়। সুতরাং, প্রত্যেক অজ্ক একক ও দশক স্থানে ${ }^{4} \mathrm{P}_{1}$ সংখ্যকবার পুনরাবৃত্ত इয়।

দুই অঙ্ক বিশিষ্ট সংখ্যার প্রত্যেক স্থানের (একক বা দশক) অঙ্জগুলির সমষ্টি $={ }^{4} \mathrm{P}_{1}(1+3+5+7+9)$

$$
=25 \times{ }^{4} P_{1}=100
$$

দুই অঙ্ক বিশিষ্ট সংখ্যার সমষ্টি $=25 \times{ }^{4} P_{1} \times 10+25 \times{ }^{4} P_{1} \times 1 \quad$ [যেমন $26=2 \times 10+6 \times 1$]

$$
=25 \times{ }^{4} P_{1}(10+1)=25 \times{ }^{4} P_{1} \times 11=1100
$$

অনুরূপভাবে, তিন অজ্ক বিশিষ্ট সংখ্যার সমষ্টি $=25 \times{ }^{4} \mathrm{P}_{2} \times 111=25 \times 12 \times 111=33300$
চার অঙ্ক বিশিষ্ট সং্খ্যার সমষ্টি $=25 \times{ }^{4} \mathrm{P}_{3} \times 1111=25 \times 24 \times 1111=666600$
প্চচ অঙ্ক বিশিষ্ট সং্যার সমষ্টি $=25 \times{ }^{4} \mathrm{P}_{4} \times 11111=25 \times 24 \times 11111=6666600$
নিণেয় সমষ্টি $=25+1100+33300+666600+6666600=7367625$
[বি.দ্র. नিক্ণেয় সমষ্টি $=(1+3+5+7+9)\left(1+11 \times{ }^{4} \mathrm{P}_{1}+111 \times{ }^{4} \mathrm{P}_{2}+1111 \times{ }^{4} \mathrm{P}_{3}+\right.$ $\left.11111 \times{ }^{4} \mathrm{P}_{4}\right)$]

প্রশ্নমালা VIB

1(a) Sol ${ }^{\mathrm{n}}$: 26 টि বর্ণ হতে প্রতিবার 5টি বর্ণ নিয়ে শদ্দ গঠন করা যায় ${ }^{26} \mathrm{P}_{5}=7893600$ টি । \therefore Ans. A
(b) $\mathrm{Sol}^{\mathrm{n}}$: (i) 8 জन মেয্যে পৃথক পৃথক ভাবে বৃত্তাকারে দাঁড়াতে পারবে $(8-1)!=5040$ উপায়ে।
(ii) 8 টি ভিন্ন ধরনের মুক্তা একটি ব্যান্ডে লাগিয়ে একটি হার তৈরি করা যেতে পারে $\frac{(8-1)!}{2}=2520$ উপায়ে ।
(iii) 4 টि ডাকবক্সে 5 টি চিঠि ফেলা যায় $=4^{5}=1024$ উপায়ে। Ans. A
(c) Sol $^{\mathrm{n}}: \frac{10!}{2!}=1814400$.

$$
=10 \times 6 \times 1111=66660
$$

(e) $\mathrm{Sol}^{\mathrm{n}}$: উপরের সবণলি তথ্য সত্য। \therefore Ans. D.
(f) Sol $^{n}:{ }^{n} P_{3}+{ }^{n} C_{3}=70 \Rightarrow{ }^{n} C_{3} \times 3!+{ }^{n} C_{3}=70 \Rightarrow 7 .{ }^{n} C_{3}=70 \Rightarrow{ }^{n} C_{3}=10={ }^{5} C_{3} \quad n=5$
(g) Sol ${ }^{n}:{ }^{5-2} \mathrm{C}_{3}+{ }^{5-2} \mathrm{C}_{3-1}+{ }^{5-2} \mathrm{C}_{3-2}={ }^{3} \mathrm{C}_{3}+{ }^{3} \mathrm{C}_{2}+{ }^{3} \mathrm{C}_{1}=1+3+3=7$
(h) Sol ${ }^{n}:{ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r} \therefore$ Ans. A.
(i) $\mathrm{Sol}^{\mathrm{n}}$: প্রদও্ত শব্দে 2 টি সহ ব্যজন বর্ণ আছে 6টি। নির্ণেয় উপায় সংখ্যা $=\frac{6!}{2!}-1=360-1=359$ Ans. B
(j) Sol n : সংখ্যা গঠন করা যায় $4 \times 10^{7}=40000000$ সংখ্যক Ans. D
(k) Sol ${ }^{n}:{ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r} \quad$ Ans. B
(l) Sol ${ }^{\mathrm{n}}$: 'PARALLEL' শব্দিি বর্ণগুলি থেকে অন্তত একটি বর্ণ বাছাই করা যায় $(3+1)(2+1) 2^{3}-1$ উপায়ে। Ans. B
2. (a) দেఆয়া बाছ, , ${ }^{2 n} C_{r}={ }^{2 n} C_{r+2} \Rightarrow r+r+2=2 n\left[\quad{ }^{n} C_{x}={ }^{n} C_{y}\right.$ शলে, $\left.x+y=n\right]$ $\Rightarrow \quad 2 \mathrm{r}=2(\mathrm{n}-1) \quad \therefore \mathrm{r}=\mathrm{n}-1$ (Ans.)
(b) দেఆয়া जाছে, ${ }^{n} C_{r}:{ }^{n} C_{r+1}:{ }^{n} C_{r+2}=1: 2: 3$

১ম এंबश २য় जनूপাত হতে জমরা পাই, ${ }^{n} C_{r}:{ }^{n} C_{r+1}=1: 2 \Rightarrow \frac{{ }^{n} C_{r}}{{ }^{n} C_{r+1}} \frac{1}{2} \Rightarrow 2^{n} C_{r}={ }^{n} C_{r+1}$
$\Rightarrow 2 \frac{n!}{r!(n-r)!}=\frac{n!}{(r+1)!(n-r-1)!} \Rightarrow 2 \frac{1}{r!(n-r)(n-r-1)!}=\frac{1}{(r+1) \cdot r!(n-r-1)!}$
$\Rightarrow \quad \frac{2}{n-r}=\frac{1}{r+1} \Rightarrow \mathrm{n}-\mathrm{r}=2 \mathrm{r}+2 \Rightarrow \mathrm{n}=3 \mathrm{r}+2$
২য় এবং শেষ অনুপাত হতে জমরা পা, , ${ }^{n} \mathrm{C}_{\mathrm{r}+1}::^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+2}=2: 3 \Rightarrow 3 .{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+1}=2 .{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+2}$
$\Rightarrow \quad 3 . \frac{n!}{(r+1)!(n-r-1)!}=2 \cdot \frac{n!}{(r+2)!(n-r-2)!}$
$\Rightarrow \quad 3 . \frac{1}{(r+1)!(n-r-1) \cdot(n-r-2)!}=2 \cdot \frac{1}{(r+2) \cdot(r+1)!(n-r-2)!} \Rightarrow \frac{3}{n-r-1}=\frac{2}{r+2}$
$\Rightarrow \quad 2 \mathrm{n}-2 \mathrm{r}-2=3 \mathrm{r}+6 \Rightarrow 2 \mathrm{n}=5 \mathrm{r}+8 \Rightarrow 2(3 \mathrm{r}+2)=5 \mathrm{r}+8 \quad[(1)$ जारा]
$\Rightarrow 6 r+4=5 r+8 \Rightarrow r=4$
(1) হতে আমরা পাই, $\mathrm{n}=3.4+2=14 \quad \therefore \mathrm{r}=4, \mathrm{n}=14$ (Ans.)
(c) मেখাఆ यে, ${ }^{n} C_{r}={ }^{n-2} C_{r}+2{ }^{n-2} C_{r-1}+{ }^{n-2} C_{r-2}$, यथन $n>r>2$.

প্রমাণ \& ${ }^{n-2} C_{r}+2{ }^{n-2} C_{r-1}+{ }^{n-2} C_{r-2}=\left({ }^{n-2} C_{r}+{ }^{n-2} C_{r-1}\right)+\left({ }^{n-2} C_{r-1}+{ }^{n-2} C_{r-2}\right)$

$$
\begin{aligned}
& ={ }^{n-2+1} C_{r}+{ }^{n-2+1} C_{r-1}={ }^{n-1} C_{r}+{ }^{n-1} C_{r-1} \quad\left[\quad{ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}\right] \\
& ={ }^{n-1+1} C_{r}={ }^{n} C_{r} \\
{ }^{n} C_{r} & ={ }^{n-2} C_{r}+2{ }^{n-2} C_{r-1}+{ }^{n-2} C_{r-2}
\end{aligned}
$$

(d) দেখাఆ যে, ${ }^{n+2} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}+2{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2}$, यौन $\mathrm{n}>\mathrm{r}>2$.

প্রমাণ : ${ }^{n} C_{r}+2{ }^{n} C_{r-1}+{ }^{n} C_{r-2}=\left({ }^{n} C_{r}+{ }^{n} C_{r-1}\right)+\left({ }^{n} C_{r-1}+{ }^{n} C_{r-2}\right)$

$$
\begin{aligned}
& ={ }^{n+1} C_{r}+{ }^{n+1} C_{r-1}={ }^{n+1+1} C_{r} \\
{ }^{n+2} C_{r} & ={ }^{n} C_{r}+2{ }^{n} C_{r-1}+{ }^{n} C_{r-2}
\end{aligned}
$$

 সমাধান : 'LOGARITHMS' শ্দটিতে মোট 10টি বিভিন্ন বর্ণ আছে যাদের 7টি ব্যজ্ণনবর্ণ এবং 3টি সররবর্ণ r
 উপায়ে বাছাই করা যায়। जতএব, প্রতিবারে 3টি ব্যজনবণ্ণ ও 2 টি স্ররবর্ণ বাছাই সং্থ্যা $=35 \times 3=105$
(b) 'DEGREE’ শদ্দটির বণগুুো পেকে প্রতিবারে $4 ট ি$ বণ নিয়ে কত প্রকারে বাছাই করা যেতে পারে ?
[य.'০৭,’১৩; রা.'১১]
সমাধান ः ‘DEGREE ’ শব্দটিতে 3টি E সহ মোট 6টি বর্ণ আছে ।
সবগুলোই ব্ণ ভিন্ন এরূপ বাছাই সং্থ্যা $={ }^{4} \mathrm{C}_{4}=1$
2 টি E এবং অন্য 2টি ডিন্ন এরূপ বাছাই সং্থ্যা $={ }^{3} \mathrm{C}_{2}={ }^{3} \mathrm{C}_{1}=3$
$3 \mathrm{tि} \mathrm{E}$ এবং আরেকটি অন্য বণ এরূপ বাছাই সং্থ্যা $={ }^{3} \mathrm{C}_{1}=3$
निক্ণেয় বাছাই সংখ্যা $=1+3+3=7$ (Ans.)
 অল্তত একबन জ্দ্র মহিলা পাকবে?
[य.’০২; মা.বো.’’৩]
সমা氏ান ঃ 5 জনের কমিটি নিম্মরূপে গঠন করা যায় -
उদ्र মरिला (4)
1
2
3
4

কমিটি গঠনের মোট উপায় $=60+120+60+6=246$
[বि. দ্র. কমিটি গঠনের মোট উপায় $=\sum_{\mathrm{i}=1}^{4}{ }^{4} \mathrm{C}_{\mathrm{i}} \times{ }^{6} \mathrm{C}_{5-\mathrm{i}}={ }^{4} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{4}+{ }^{4} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{3}+{ }^{4} \mathrm{C}_{3} \times{ }^{6} \mathrm{C}_{2}$ $\left.+{ }^{4} \mathrm{C}_{4} \times{ }^{6} \mathrm{C}_{1}=246\right]$
4. (b) 6 জन বিষ্ঞান ४ 4 জन কনা বিভাগের ছাত্র লেকে 6 জনের একটি কমিটি গঠন করতে হবে। বিষ্ঞানের ছাত্রদের<ে সং্ধ্যা গরিষ্ঠতা দিয়ে কত প্রকারে কমিটি গঠন করা যাবে ?
[य.'০৬,’১২; दू.’০১; ব.,চ.’’৩] সমাধান : निম্নরূপে 6 জনের কমিটি গঠন করা যেতে পারে -

বিজ্ঞে	বিভাগের ছাত্র (6)	কলা বিভাগুর ছত্র (4)	কমিটি গঠনের উপায়
6	0	${ }^{6} \mathrm{C}_{6}=1$	
5	1	${ }^{6} \mathrm{C}_{5} \times{ }^{4} \mathrm{C}_{1}$	
4	2	${ }^{6} \mathrm{C}_{4} \times{ }^{4} \mathrm{C}_{2}$	

$(1+24+90)$ অর্ণাৎ, 115 প্রকারে কমিটি গঠন করা যাবে।
(c) 5 জन বিষ্ঞান ও 3 জन কন্না বিভাগের ছার্রের মধ্য পেকে 4 बনের এবটি বমিটি গঠন করতে হবে। যमि প্রত্যেক
 থাকে, তাহলে কত প্রকারে কমিটি গঠন করা যেতে পারে?

সমাধান : (i) निম্মুরূপে 4 জनের কমিটি গঠন করা যেতে পারেবিজ্ঞেন বিভাগের ছাত্র (5) কল্না বিভাগের ছাত্র (3) কমিটি গঠনের উপায়

1	3	${ }^{5} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{3}=5 \times 1=15$
2	2	${ }^{5} \mathrm{C}_{2} \times{ }^{3} \mathrm{C}_{2}=10 \times 3=30$
1	${ }^{5} \mathrm{C}_{3} \times{ }^{3} \mathrm{C}_{1}=10 \times 3=30$	3
	4	0

নির্নেয় মোট সং্খ্যা $=5+30+30+5=70$
(ii) নিম্মরূপে 4 জনের কমিটি গঠন করা যেতে পারে -

বিজ্ঞা	বিভাগের ছাত্র (5)	কना বিতাগের ছাত্র (3) কমিটি গঠনের উপায়
1	3	${ }^{5} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{3}=5 \times 1=15$
2	2	${ }^{5} \mathrm{C}_{2} \times{ }^{3} \mathrm{C}_{2}=10 \times 3=30$

$1 \quad{ }^{5} \mathrm{C}_{3} \times{ }^{3} \mathrm{C}_{1}=10 \times 3=30$
নির্নেয় মোট সং্থ্যা $=5+30+30=65$

 बाকে?
[রা.'>8]
সমাষান : 11 জনের একটি দল निম্নরূপে বাছাই করা যায় বোলার (5) ইউকেট রহ্ষক (3) অन্যান্য (7) দল বাছাই করার উপায় সং্থ্যা

| 4 | 2 | 5 | |
| :--- | :--- | :--- | :--- | | ${ }^{5} \mathrm{C}_{4} \times{ }^{3} \mathrm{C}_{2} \times{ }^{7} \mathrm{C}_{5}=5 \times 3 \times 21=315$ |
| :--- |
| 4 |
| 5 |

নির্ণেয় মোট সং্থ্যা $=315+175+105+35=630$
 হবে এবए তাকে কোন গ্রৃপ পেকে 4 টির বেশি উত্তর দিতে দেয়া হবে না । সে কত প্রকারে প্রশ্নুুলো বাছাই করতে পারবে?
[य.’०७]
সমাধান : একজন পরীক্ষার্থী 6টি প্রশ্ন নিম্নরূপে বাছাই করতে পারবে
১ম গ্রেপ (5) ২য় গ্রুপ (5) প্রশু বাছাই করার উপায়

১৯০ উচতর গণিজংঘ্ম্প্র্রের সমাধান

$$
\begin{array}{lll}
2 & 4 & { }^{5} \mathrm{C}_{2} \times{ }^{5} \mathrm{C}_{4}=10 \times 5=50 \\
3 & 3 & { }^{5} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{3}=10 \times 10=100 \\
4 & 2 & { }^{5} \mathrm{C}_{4} \times{ }^{5} \mathrm{C}_{2}=5 \times 10=50
\end{array}
$$

নিবণৌ় মোট সংখ্যা $=50+100+50=200$
 করতে হবে। সে কত প্রকারে প্র্ন্ুলো বাঘাই করতে পারবে?
[ব.'০২, '০৬, '০৭]
সমাখান : সে প্রথম 5 টি প্রশ্ন হতে $4 ট ি{ }^{5} \mathrm{C}_{4}=5$ উপায়ে এবং অবশিষ্ট 7টি প্রশ্ন থেকে $2 ট ি{ }^{7} \mathrm{C}_{2}=21$ উপায়ে বাছাই করতে পারবে।

নির্ণেয় মোট সং্খ্যা $=5 \times 21=105$ (Ans.)
 চারটি প্রশ্ন বাছাই ক্নতে হবে। সে বত প্রকারে 7 টি প্রশ্ন বাছাই করতে পার্রবে?
[मि.'o১] সমাখান : পরীষাপी প্রথম 5টি প্রশ্ন হতে $4 \mathrm{tि} \quad{ }^{5} \mathrm{C}_{4}=5$ প্রকারে এবং শেষের 7টি প্রশ্ন হতে 3টি ${ }^{7} \mathrm{C}_{3}=35$ প্রকারে বাছাই করতে পারবে।

সে $5 \times 35=175$ প্রকারে 7 ঢি প্রশ্ন বাছাই করতে পারবে।
凶ন্য চারটি সর্র র্রেখা यত প্রকারে বাছাই করা যায় তার সश্যা 32.

সমাধান : 7টি সরল রেथা হতে 4টি সরল রেখা বাছাই করার উপায় $={ }^{7} \mathrm{C}_{4}=35$
কিন্তু বাছাই করা 4টি সরল রেখার বৈর্ঘ্যের সেট $\{1,2,3,6\},\{1,2,3,7\}$ এবং $\{1,2,4,7\}$
 কোন চতুর্ভুজ গঠন করা সম্টব নয় । \therefore निর্ণয় চতুর্ভুর সং্য্যা $=35-3=32$

 সরলরেখা উৎপন্ন হয়। $\therefore \mathrm{n}$ টি কৌণিক ক্দিদু দারা গঠিত সরল রেথার সং্থ্যা $={ }^{\mathrm{n}} \mathrm{C}_{2}=\frac{\mathrm{n}(\mathrm{n}-\mathrm{l})}{2}$ কিন্তু এদের মধ্যে, বহুভুজের nটি সীমাল্ত বাহू কণ নয়।

কর্ণের সशথ্যা $=\frac{n(n-1)}{2}-n=\frac{1}{2} n(n-1-2)=\frac{1}{2} n(n-3)$
বিতীয় অश্ 8 অসমরেখ তিনটি বিদ্দুর স?বোগ রেখা দারা একটি ত্রিভূজ গঠিত হয় ।
n nu কৌিক বিন্দু দারা গঠিত ত্রিভूজ্জের সং্খ্যা $={ }^{\mathrm{n}} \mathrm{C}_{3}=\frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)}{3!}=\frac{1}{6} \mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)$
n বাহू বিশিষ্ট একটি বহ্হুজ্েের $\frac{1}{2} n(n-3)$ সश্খ্যক কণ আছে এবং $\frac{1}{6} n(n-1)(n-2)$ সश्খ্যক সश्খ্যক ত্রিভুজ গঠন করা যেতে পারে।
 বিনিময় করতে পারবে?
সমাধান : 10 খানা বই এর মালিক দুইখানা বই ${ }^{10} \mathrm{C}_{2}$ উপায়ে 12 খানা বই এর মালিককে দিতে পারবে এবং 12 খানা বই এর মালিক দুইখানা বই ${ }^{12} \mathrm{C}_{2}$ উপায়ে 10 খানা বই এর মালিককে দিতে পারবে।

তারা ${ }^{10} \mathrm{C}_{2} \times{ }^{12} \mathrm{C}_{2}=2970$ উপায়ে দুইখানার পরিবচ্চে দুইখানা বই পরসরেরে মধ্যে বিনিময় করতে পারবে।
(b) 12 थाना পুস্তকেে মধ্যে 5 খানা কত প্রকারে বাছাই করা যায় (i) याত্ত দूইখানা নির্দিষ পুস্তক সর্বদাई बাকবে এবए (ii) यাত্ত দুইখানা নির্দিফ পুস্তক সর্বদাই বাদ পাকবে?
সমাধান : (i) দুইখানা নির্দিষ্ট পুস্তক সর্বদাই অন্তর্ভুক্ত রেণ্েে অবশিষ্ট (12-2) অর্বাৎ, 10 খানা পুস্তক হতে বাকি (5-2) অ依, 3 খানা পুস্তক বাছাই করা যাবে ${ }^{10} \mathrm{C}_{3}=120$ উপায়ে। সুতরাং, নিণৌয় সश्থ্যা $=120$
(ii) দুইখানা নির্দিষঁ" পুস্তক সর্বদাই বাদ দিয়ে অবশিষ্ট $(12-2)$ অर্बাৎ, 10 খানা পুস্তক হতে 5 খানা পুস্তক বাছাই করা যাবে ${ }^{10} \mathrm{C}_{5}=252$ উপায়ে। সুতরাং, নির্ণেয় স্খ্যা $=252$
 সমাধান : বিশশষ দুইজনের কাউকে না নিয়ে 5 জনকে একত্রে বাছাই করার উপায় $={ }^{9-2} \mathrm{C}_{5}={ }^{7} \mathrm{C}_{5}=21$ বিশেষ দুইজনের এক জন এবং অন্য 7 জনের 4 জনকে निয়ে বাছাই করার উপায় $={ }^{2} \mathrm{C}_{1} \times{ }^{7} \mathrm{C}_{4}=2 \times 35=70$

নির্ণেয় সং্থ্যা $=21+70=91$
8. (a) 1 रতে 30 সश्थ্যাগুলোর শে তিনটির সমষ্টি জোড় তাদেরকে কত ভাবে বাছাই করা যায়?

সমাধান : 1 হনে 30 পর্যন্ত সং্থ্যাগুলোর 15 টি জোড় এবং 15 বি বিজোড় । তিনটি জোড় সং্থ্যার যোগফল্ন একটি জোড় সং্খ্যা এবং দুইটি বিজোড় ও এবটট জোড় সং্্যার যোগফ্প একটি জোড় সংথ্যা।

15 টি बোড় সश্থ্যা হতে 3 जि জোড় সংথ্থ্যা ${ }^{15} \mathrm{C}_{3}=455$ উপার়ে বাছাই করা যায় যাদ্রে সমষি একটি জোড় সং্খ্যা
आাবার , 15 টि বিজোড় সং্থ্যা হতে 2টি বিজোড় সংখ্যা ${ }^{15} \mathrm{C}_{2}=105$ ঊপায়ে এবং 15 টি জোড় সং্খ্যা হতে 1 টি জোড় সং্খ্যা ${ }^{15} \mathrm{C}_{1}=15$ উপায়ে বাছাই করা যায়

1 रাত 30 পর্যল্ত সং্খ্যাগুলোর দুইটি বিজোড় ও একটি জোড় সং্খ্যা $105 \times 15=1575$ টপায়ে বাছাই করা যায় যাদের সমষ্টি একটি জোড় সং্খ্যা ।
$(455+1575)$ বा, 2030 উপায়ে বাছাই করা যায়।
 পারেন?
[ঢा.'০১]
সমাধান ः একজন নির্বাচক নিম্নরূপে নির্বাচন করতে পারেন-
তিनि 3 জन প্রাঝ্थीকে নির্বাচন করতে পারেন ${ }^{10} \mathrm{C}_{3}$ বा, 120 উপায়ে।
তিनि 2 बन প্রাबीকে নির্বাচন করতে পারেন ${ }^{10} \mathrm{C}_{2}$ বা, 45 উপায়ে।
তিनि 1 জन প্রাथী<ে নির্বাচন করতে পারেন ${ }^{10} \mathrm{C}_{1}$ বা, 10 উপায়ে ।
নির্ণেয় সং্য্যা $=120+45+10=175$ (Ans)
 भারেন, কিল্তু যতজন নির্বাচিত হবেন তার চেয্যে বেশি ভোট দিত্তে পারবেন না। তিনি মোট কতভাবে ভোট मिত্তে পাররেন ?
সমাধান : এক্জন ভোটার নিম্নরূপে ভোট দিতে পারেন-
তিनि 1 जन প্রাপীকে ভোট দিতে পারেন ${ }^{5} \mathrm{C}_{1}$ या, 5 উপায়ে ।
তিनि 2 জन প্রাপীকে ডোট দিতে পারেন ${ }^{5} \mathrm{C}_{2}$ বा, 10 উপার্যে ।
উ. গ. (১ম পঅ্র) সমাধান-২৫

তিনি 3 জন প্রাঝীকে ভোট দিতত পারেন ${ }^{5} \mathrm{C}_{3}$ বা, 10 উপায়ে ।
निर্ণেয় সংখ্যা $=5+10+10=25$ (Ans)
9. (a) 277200 সश্থ্যাটির উৎপাদকের্র সংখ্যা নিণ্ণয় কর।

সমাধান : $277200=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5 \times 7 \times 11=2^{4} \times 3^{2} \times 5^{2} \times 7^{1} \times 11^{1}$
277200 এর উৎপাদকের সং্থ্যা $=(4+1)(2+1)(2+1) 2^{2}-1=179$ (Ans.)
(b) "Daddy did a deadly deed" বাক্যাটির বণুুলো হচে যতুুলো সমাবেশ গঠন করা যাবে তার সহ্থ্যা নির্কয় কর।

সমাধান ঃ. "Daddy did a deadly deed" এ आছছ 9 টি d, 3 টি a, 3 টি e, 2 টি y, 1 টি l এবং 1 টি i
निఁণেয় সমাবেশ সং্থ্যা $=(9+1)(3+1)(3+1)(2+1) 2^{2}-1=1920-1=1919$
(c) কোন পরীষায় কৃত্কার্য হতে হলে $6 ট ি$ বিষয়ের প্রতিটিতে ন্যুনতম নম্যর পেতে হয়। একজন ছাত্র কত রকমে অকৃত্বা্য হতে পারে?
সমাধান ঃ একজন ছাত্র এক, দুই, জ্তিন , চার, পঁচচ বা ছয় বিষয়ে অকৃতকার্য হতে পারে ।
ছাত্রটির মোট অকৃতকার্য হওয়ার উপায় $={ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3}+{ }^{6} \mathrm{C}_{4}+{ }^{6} \mathrm{C}_{5}+{ }^{6} \mathrm{C}_{6}$

$$
=6+15+20+15+6+1=63
$$

 ক্রতে পারে।
প্রমাণ ঃ যেহেতু প্রতিটি প্রশ্নের বিকল্প প্রশ্ন দেওয়া আছে, প্রতিটি প্রশ্নকে তিন উপাত্যে নিষ্পতি করা যায়- প্রশ্নটিকে গ্রহণ করে, এর বিকম্প প্রশ্নকে গ্রহণ করে অথবা উভয় প্রশ্নকে গ্রহণ না করে। অতএব, প্রদত্ত 8 টি প্রশ্ন নিষ্পত্তি করা যায় 3^{8} উপায়ে। কিন্তু এর ভিতর বিকক্পসহ 8টি প্রশ্নের একটিও না নেয়ার উপায়ও অন্তর্ভুক্ত ।

নির্ণেয় মোট সংখ্যা $=3^{8}-1$
10. একটি OMR সীটের একটি সারিতে 20 ঢि ছোট বৃষ্ট জাছ্ছ। পেলিল দারা কমপঢ্巾 একটি বৃত্ত কতভাবে ভরাট করা যায় ?
সমাধান : 20টি ছোট বৃত্তের কমপক্ষে একটি বৃত্ত ভরাট করার উপায় $=2^{20}-1=1048575$,[2 $2^{n}-1$ সূত্রের সাহাব্যে]
 কতভাবে বাঘাই কর্রা যায়?
সমাধান : 21 টি ভিন্ন ব্যাজ্জন বণ হতে কমপক্ষে 1 টি বাছাই করা যায় $\left(2^{21}-1\right)=2097151$ উপায়ে।
5 টि डিন্ন বাজন বর্ণ হতে কমপক্ষে 2টি বাছাই করা যায় $\sum_{\mathrm{r}=2}^{5}{ }^{5} \mathrm{C}_{\mathrm{r}}={ }^{5} \mathrm{C}_{2}+{ }^{5} \mathrm{C}_{3}+{ }^{5} \mathrm{C}_{4}+{ }^{5} \mathrm{C}_{5}=26$ উপায়ে।
নির্ণেয় বাছাই সং্খ্যা $=2097151 \times 26=54525926$
 क्্রা যায়?
সমাষান : 3টি নারিকেনের কমপক্ষে একটি $\left(2^{3}-1\right)$ উপা়়ে, 4টি আপেলের কমপক্ষে একটি $\left(2^{4}-1\right)$ উপায়ে এবং 2টি কমনা লেবুর কমপক্ষে একটি $\left(2^{2}-1\right)$ উপায়ে বাছাই করা যায় ।

তিন প্রকরের কমপক্ষে একটি করে ফল বাছাই করার উপায় $=\left(2^{3}-1\right)\left(2^{4}-1\right)\left(2^{2}-1\right)=315$
 বেশি ধরে না। দणটি বচ প্রকারে র্রমণ কন্নতে পারবে?
[চ.'০৯; ঢা.'১১,'১৪; রা.'০৭; সি.'১০,'১৪; ব.'০৯;কু.'১০; য.'১১; দি.'১৪] সমাধান ঃ নিম্নরূপে দলটি ভ্রমণ করতে পারবে -
$\frac{\text { ১ম যানবাহন }}{7}$

6
5

২য় যানবাহন
2
3
4

ভ্রমণ করার উপায়
${ }^{9} \mathrm{C}_{7} \times{ }^{2} \mathrm{C}_{2}=36 \times 1=36$
${ }^{9} \mathrm{C}_{6} \times{ }^{3} \mathrm{C}_{3}=6 \times 1=84$
${ }^{9} \mathrm{C}_{5} \times{ }^{4} \mathrm{C}_{4}=15 \times 1=126$
$(36+84+126)$ বা , 246 উপায়ে দলটি ভ্রমণ করতে পারবে ।
[বি. দ্র.: ভ্রমণ করার উপায় সংখ্যা $\left({ }^{9} \mathrm{C}_{7}+{ }^{9} \mathrm{C}_{6}+{ }^{9} \mathrm{C}_{5}\right)$ বা, $\left({ }^{9} \mathrm{C}_{4}+{ }^{9} \mathrm{C}_{3}+{ }^{9} \mathrm{C}_{2}\right)$]
(b) 20 ব্যক্তির একটি দন দুইটি যানবাহনে ভ্রমন করবে । প্রতিটি যানবাহনের ধারণ жমতা 201 দলটি কত প্রকারে ভ্রমণ কর্রতে পারবে?
সমাধান ঃ দলটির দুইটি যানবাহনে ভ্রমণ করার উপায় : $=\sum_{\mathrm{r}=0}^{20}{ }^{20} \mathrm{C}_{\mathrm{r}} \times{ }^{20-\mathrm{r}} \mathrm{C}_{20-\mathrm{r}} \quad\left[\quad{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=1\right]$

$$
=\sum_{\mathrm{r}=0}^{20}{ }^{20} \mathrm{C}_{\mathrm{r}}=2^{20}=1048576
$$

বিকক্প পপ্ফতি : প্রতিজন দুইটি যানবাহনের যেকোন একটিতে ভ্রমণ করতে পারবে।
প্রতিজনের ভ্রমণ করার উপায় = 2
20 ব্যক্তির দলটি দুইটি যানবাহনে ভ্রমণ করতে পারবে 2^{20} বা, 1048576 উপায়ে।
(c) 10 জন নোক দুইটি শয়ন কঙ্মে কত রকমভাবে রাত্রি যাপন করতে পারবে তা নিণ্ণ কর।

সমাধান 8 প্রতিজন লোক দুইটি শয়ন কক্ষের যেকোন একটিতে রাত্রি যাপন করতে পারবে।
প্রতিজনের রাত্রি যাপনের উপায় = 2
10 জন লোক দুইটি শয়ন কক্ষে রাত্রি যাপন করতে পারবে 2^{10} বা, 1024 উপায়ে।
(d) A , B © C কে কতভাবে 12 খানা বই দেয়া যাবে যেন A B B একত্রে C এর দ্রিগুণ পায় ?

সমাধান ঃ মনে করি, C বই পায় x টি । তাহলে, A ও B একত্রে বই পায় $2 x$ টি
$x+2 x=12 \Rightarrow x=4$
4 খানা বই C পাবে এবং অবশিষ্ট $(12-4)$ বা, 8 খানা বই A ও B পাবে।
12 খানা বই হতে 4 খানা C কে দেওয়া যায় ${ }^{12} C_{4}=495$ উপায়ে এবং অবশিষ্ট 8 খানা বই A ও B কে দেওয়া याয় $\sum_{\mathrm{r}=0}^{8}{ }^{8} \mathrm{C}_{\mathrm{r}} \times{ }^{8-\mathrm{r}} \mathrm{C}_{8-\mathrm{r}}=\sum_{\mathrm{r}=0}^{8}{ }^{8} \mathrm{C}_{\mathrm{r}}=2^{8}=256$. -পाয়ে, $\left[\quad{ }^{n} C_{n}=1\right]$ ।

A , B ও C কে 12 খানা বই দেয়া যাবে 495×256 বা 126720 উপায়ে।
13. (a) 15 জन ছাত্রের মধ্য থেকে প্রতি কমিটিতে 5 জন হিসাবে মোট 3 টি কমিটি গঠন করতে হবে। কত উপায়ে কমিটিগুনো গঠন করা যাবে?
[প্র.ভ.প.'०৫]
সমাধান ঃ 15 জন ছাত্রের মধ্য থেকে প্রতি কমিটিতে 5 জন হিসাবে $3 ট ি ~ ক ম ি ট ি ~ গ ঠ ন ~ ক র া ~ য া য ় ~ \frac{15!}{3!(5!)^{3}}$ উপায়ে।
(b) কত প্রকারে 52 খানা তাস 4 ব্যক্তির মধ্যে সমানভাবে ভাগ করা যেতে পারে?

সমাধান : 52 খানা তাস 4 ব্যক্তির মধ্যে সমানভাবে ভাগ করা যায় $\frac{52!}{(13!)^{4}}$ উপায়ে ।
[সূত্র প্রয়োগ করে।]
[চ.'০৯; ঢা.'১১,'১৪; রা.'০৭; সি.'১০,’১৪; ব.'০৯;কু.'১০; য.'১১; দি.'১৪]
সমাধান : নিম্নরূপে দলটি ভ্রমণ করতে পারবে-

১ম যানবাহন	২য় যানবাহন	ভ্রমণ করার উপায়
7	2	${ }^{9} \mathrm{C}_{7} \times{ }^{2} \mathrm{C}_{2}=36 \times 1=36$
6	3	${ }^{9} \mathrm{C}_{6} \times{ }^{3} \mathrm{C}_{3}=6 \times 1=84$
5	4	${ }^{9} \mathrm{C}_{5} \times{ }^{4} \mathrm{C}_{4}=15 \times 1=126$

$(36+84+126)$ বা , 246 উপায়ে দলটি ভ্রমণ করতে পারবে ।
[বি. দ্র.: ভ্রমণ করার উপায় সং্খ্যা ($\left.{ }^{9} \mathrm{C}_{7}+{ }^{9} \mathrm{C}_{6}+{ }^{9} \mathrm{C}_{5}\right)$ বা, $\left({ }^{9} \mathrm{C}_{4}+{ }^{9} \mathrm{C}_{3}+{ }^{9} \mathrm{C}_{2}\right)$]
(b) 20 ব্যক্তির একটি দল দুইটি যানবাহনে ভ্রমন করবে । প্রতিটি যানবাহনের ধারণ ぁমতা 20 । দলটি কত প্রকারে ভ্রমণ কর্নতে পারবে?
সমাধান ঃ দলটির দুইটি যানবাহনে ভ্রমণ করার উপায় $=\sum_{r=0}^{20}{ }^{20} C_{r} \times{ }^{20-r} C_{20-r} \quad\left[\quad{ }^{n} C_{n}=1\right]$

$$
=\sum_{r=0}^{20}{ }^{20} C_{r}=2^{20}=1048576
$$

বিক্শ্প পপ্রতি : প্রতিজন দুইটি যানবাহনের যেকোন একটিতে ভ্রমণ করতে পারবে।
প্রতিজনের ভ্রমণ করার উপায় = 2
20 ব্যক্তির দলটি দুইটি যানবাহনে ভ্রমণ করতে পারবে 2^{20} বা, 1048576 উপায়ে।
(c) 10 बन बোক দুইটি শয়ন কঙ্ছে কত রকমভাবে রাত্রি যাপন করতে পারবে তা নিণয় কর।

সমাধান 8 প্রতিজন লোক দুইটি শয়ন কক্ষের যেকোন একটিতে রাত্রি যাপন করতে পারবে।
প্রতিজনের রাত্রি যাপনের উপায় = 2
10 জন লোক দুইটি শয়ন কক্ষে রাত্রি যাপন করতে পারবে 2^{10} বা, 1024 উপায়ে।
(d) A , B в C কে কতভাবে 12 খানা বই দেয়া যাবে যেন A ৫ B একত্রে C এর দিগুণ পায় ?

সমাষান ঃ মনে করি, C বই পায় x টি । তাহলে, A ও B একত্রে বই পায় $2 x$ টি

$$
x+2 x=12 \Rightarrow x=4
$$

4 খানা বই C পাবে এবং অবশিষ্ট $(12-4)$ বা, 8 খানা বই A ও B পাবে।
12 খানা বই হতে 4 খানা C কে দেওয়া যায় ${ }^{12} C_{4}=495$ উপায়ে এবং অবশিষ্ট 8 খানা বই A ও B কে দেওয়া याয় $\sum_{\mathrm{r}=0}^{8}{ }^{8} \mathrm{C}_{\mathrm{r}} \times{ }^{8-\mathrm{r}} \mathrm{C}_{8-\mathrm{r}}=\sum_{\mathrm{r}=0}^{8}{ }^{8} \mathrm{C}_{\mathrm{r}}=2^{8}=256$. টপায়ে, $\left[\quad{ }^{n} C_{n}=1\right]$ ।

A , B ও C কে 12 খানা বই দেয়া যাবে 495×256 বা 126720 উপায়ে।
13. (a) 15 बन ছাত্রের মধ্য থেকে প্রতি কমিটিতে 5 बন হিসাবে মোট 3 টি কমিটি গঠন করতে হবে। কত টপায়ে কমিটিগুচো গঠন করা যাবে?
[প্র.ভ.প.'०৫]
সমাধান ঃ 15 জন ছাত্রের মধ্য থেকে প্রতি কমিটিতে 5 জন হিসাবে 3 টি কমিটি গঠন করা যায় $\frac{15!}{3!(5!)^{3}}$ উপায়ে।
(b) কত প্রকারে 52 খানা তাস 4 ব্যক্কির মধ্যে সমানভাবে ভাগ করা যেতে পারে?

সমাধান : 52 খানা তাস 4 ব্যক্তির মধ্যে সমানভাবে ভাগ করা যায় $\frac{52!}{(13!)^{4}}$ উপায়ে । [সূত্র প্রয়োগ করে।]

সমাধাन : ১ম জश्भ : 23 জन খেলোয়াড় হতে 22 बनকে ${ }^{23} \mathrm{C}_{22}$ উপায়ে বাছাই করা যায়। আবার 22 জনকে 11 জन করে সমান দুইটি দলে বিডক্ত করা যায় $\frac{22!}{2!(11!)^{2}}$ উপায়ে ।

पूইটি ক্রিকেট টিম গঠন করার উপায়= $={ }^{23} \mathrm{C}_{22} \times \frac{22!}{2!(11!)^{2}}=23 \times \frac{22!}{2!(1!!)^{2}}=\frac{23!}{2!(11!)^{2}}$
২য় জংサ 821 জন इতে 20 জনকে বাছাই করা যায় ${ }^{21} \mathrm{C}_{20}$ উপায়ে । आাবার, দুইজন ইউকেট রহককে দूইটি টিক্ম নিদিষ্ট করে 20 জনকে দুইটি সমান ভাগে সেই নির্দিষ্ট টিমে বিতক্ত করা यায় $\frac{20!}{(10!)^{2}}$ উপায়ে ।

দूইটি ক্রিকেটট টিম গঠন করার উপায় $={ }^{21} \mathrm{C}_{20} \times \frac{20!}{(10!)^{2}}=\frac{21!}{20!} \times \frac{20!}{(10!)^{2}}=\frac{21!}{(10!)^{2}}$
 क्विखেট দन কতভাবে গঠন কন্গা যায় ?
সমাষান B দूইজন উইকেট রককককে A ও B দলে অन্তর্ট্রুক্ত করা যাবে $2!=2$ উপায়ে।
 হতে B -দলের बন্য 10 बनকে বাছাই করা যায় ${ }^{11} \mathrm{C}_{10}=11$ উপায়ে ।

A उ B দল नाমে দুইটি ক্রিকেট টিম গঠন করার উপায় $=2 \times{ }^{21} \mathrm{C}_{10} \times 11=2 \times \frac{21!}{10!11!} \times 11$

$$
=2 \times \frac{21!}{(10!)^{2}}
$$

 অनকে কতভাবে निয়োগ ศেఆ্যা याয় তা निর্ণয় কন্ন।
 জनকে অপর ফ্যাi্ঠরিতে ${ }^{10} \mathrm{C}_{10}$ টপায়ে নিয়োগ দেওয়া যাবে।

निर्̛েয় উপায় সश্খ্যা $={ }^{15} \mathrm{C}_{5} \times{ }^{10} \mathrm{C}_{10}=\frac{15!}{5 \times 10!} \times 1=\frac{15!}{5 \times 10!}$
 টি দワ পেকে দूইটি দন নিয়ে 4 দলের 4 টি গ্রুপ কতভাবে গঠন কন্না যায় তা নির্ণয় কর।
 भুনরায়, অপর 8 টি দলকে $2 \mathrm{tि}$ করে সমান 4 টि দলে বিভক্ত কর্া যায় $\frac{8!}{4!(2!)^{4}}=105$ উপায়ে ।

4 मলের 4টি গ্রুপ গঠন করার উপায় $=105 \times 105=11025$

অপর 8 tि দলকে 2 たি করে A ，B，C，D নামে 4টি দলে বিভক্ত কর্木া যায় $\frac{8!}{(2!)^{4}}=2520$ উপায়ে ।
A B ，C ，D নাম্ম 4 দলের 4 টি গ্রু গঠন করার উপায় $=2520 \times 2520=6350400$
（g）এক ব্যট্তিন 5 টि সিম কাঁ এবং দूইটি করে সিম কাড্ড ব্যবহার উপযোগী দুইটি মোবাইল সেট জাছে। তিনি তাঁর মোবাইন সেট দুইটিতেে কতভাবে 2 টি করে 4 টि সিম কার্ড সৃ্রক্চিত রাখত্ত পারেন এবং কতভাবে 1 টি করে 2 টি সিম কার্ড চালু র্যাখতে পার্রেন ？
সমাধান ： 5 টि সিম কার্ড হতে 4 টि সিম কার্ড ${ }^{5} \mathrm{C}_{4}=5$ উপায়ে বেছে নেওয়া যায়í এই বেছে নেওয়া 4 টি সিম কার্ড দুইটি মোবাইল সেটে সমান দুইভাগে ভাগ করা যায় $\frac{4!}{(2!)^{2}}=\frac{24}{4}=6$ উপায়ে।

4 টি সিম কার্ড মোবাইল সেট দুইটিতে সপ্রক্ষিত রাখা যায় $=5 \times 6=30$ উপায়ে।
এখन，একটি মোবাইল সেটের সপ্ধক্ষিত সিম কার্ড দুইটির একটি চালু রাখা যায় $2!$ উপায়ে এবং जপর মাবাইল সেটের সধ্রক্ষিত সিম কার্ড দুইটির একটি চালু রাখা যায় $2!$ উপায়ে।

2 টি সিম কার্ড দুইটি সেটে চালু রাখা যায় $30 \times 2!\times 2!=120$ উপায়ে।
14．দেওয়া জাছে，${ }^{n} \mathrm{P}_{\mathrm{r}}=240 \cdots \cdots$（1）এবश ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=120$
［চ．＇১s］
（1）$\div(2) \Rightarrow{ }^{n} P_{r} \div{ }^{n} C_{r}=240 \div 120=2 \Rightarrow{ }^{n} P_{r}=2 .{ }^{n} C_{r}$
$\Rightarrow \quad r!.{ }^{n} C_{r}=2 .{ }^{n} C_{r} \Rightarrow r!=2 \quad \therefore r=2 \quad\left[\quad{ }^{n} P_{r}=r!.{ }^{n} C_{r}\right]$
এथन，${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=120 \Rightarrow{ }^{\mathrm{n}} \mathrm{C}_{2}=120 \Rightarrow \frac{n(n-1)}{1.2}=120 \Rightarrow \mathrm{n}^{2}-\mathrm{n}=420 \Rightarrow \mathrm{n}^{2}-\mathrm{n}-420=0$
$\Rightarrow \quad(\mathrm{n}-16)(\mathrm{n}+15)=0 \Rightarrow \mathrm{n}=16,-15$ ．
কিন্তু n－এর মান ঋণাঅক হতে পারেনা। $n=16$（Ans．）
 গ户न बन्ता याয় ？
 বেছে নেওয়া যায় । এ বেছে নেওয়া 5টি ভিন্ন বণ（ 2 টি ব্যজন বণ ও 3টি সরবণ ）দ্মারা $5!=120$ টি শব্দ গঠন
करा যায়। $\therefore 210 \times 10 \times 120=252000$ টি শব্দ গঠন করা যায়।
 बम গঠन ক্না यায়？
［动 Jo ］
 ববছে নেওয়া যায় । এ বেছে নেওয়া 5 টি ভিন্ন বণ（ 2 টি ব্যাজন বণ ও 3 টি সররবণ ）দ্রারা $5!=120$ টি শব্দ গঠন করা याয়। $\therefore 220 \times 10 \times 120=264000$ টि শদ্দ গঠন করা যায়।

সমাষান 8 निম্নরূপ তিন অঙ্গের কতগুলো সश্থ্যা গঠন করা যায়－
6 দুইবার ব্যবহার করা হলে，অন্য 4টি অঞ্জের 1 টি ব্যবহার করতে হবে এবং তা ${ }^{4} \mathrm{C}_{1}$ উপায়ে ব্যবহার করা যাবে।
6 দুইবার ব্যবহার করে সश্ষ্যা গঠন করা যায় ${ }^{4} \mathrm{C}_{1} \times \frac{3!}{2!}=4 \times 3=12$ টি
গনুরূপভাবে， 6 একবার ব্যবহার করে সংথ্যা গঠন করা যায় ${ }^{4} \mathrm{C}_{2} \times 3!=36$ টি এবং

6 ব্যবহার না করে সং্খ্যা গঠন করা যায় ${ }^{4} \mathrm{C}_{3} \times 3!=24$ টि
সর্বমোট শব্দ সং্খ্যা $=12+36+24=72$
 সমাখান ：ALGEBRA＇শব্দটিতে $2 ট ি \mathrm{~A}$ সহ মোট 7টি বণ আছে।
7টি বর্ণ হতে 3টি নিয়ে নিম্নরূূপে শদ্দ গঠন করা যায়－

2টি A এবং অপর 5 ঢি ভিন্ন বণ $\mathrm{L}, \mathrm{G}, \mathrm{E}, \mathrm{B}$ ও R হতে 1 টি নিয়ে শব্দ গঠন করা $={ }^{2} \mathrm{C}_{2} \times{ }^{5} \mathrm{C}_{1} \times \frac{3!}{2!}$
$=1 \times 5 \times 3=15$ উপার্যে। \therefore সর্বমোট শব্দ সo্থ্যা $=120+15=135$
（b）＇EXAMINATION＇শ4টির বণ্ণুলো হতে প্রত্যেকবার 4টি বণ নিত্যে বিডিন্ন শব্দ গঠন করা হন，এদের কতगুলোতে এক প্রান্ডে N এবং অन্য প্রান্তে A बাকবে ？
［প্র．ভ．9．b৮］
সমাধান ：＇EXAMINATION＇＇শ্বটিতে 2টি A，2টি I ও $2 ট ি \mathrm{~N}$ সহ মোট 11 টি বর্গ আছে।
এক প্রান্তে N এবং অন্য প্রান্তে A রেঢে 4টি বর্ণ নিয়ে বিভিন্ন শব্দ গঠন করা হলে，মধ্যের স্থান দুইটি অবশিষ্ট $(11-2)=9$ টি বর্ণের 2 টি দ্মারা পৃরণ করতে হবে।
2টি I দ্মার মধ্যের স্শান দুইটি পূরণ করা যায় $\frac{2!}{2!}=1$ উপায়ে।
 आবার， N ® A দারা প্রান্তের স্থান দুইটি পূরণ করা যায় $2!=2$ উপায়ে।

निণศ⿵冂⿰㇇⿰亅⿱丿丶丶 স স্থ্যা $=(1+56) \times 2=114$
（c）＇MATHEMATICS＇শদ্দটিতে 2টি M，2টি A＊ $2 ট ি T$ সহ মোট 11 টি বর্ণ জাছে यাদের 4টি সরর্র্ণ ৫ 7টি ব্যাজন বর্ণ।
সমাধান ：3টি ভিন্ন স্ররণণ A，E ওI হতে 1টি সররবর্ণ এবং 5টি ভিন্ন ব্যঞন বর্ণ M，T，H，C ও S হতে 2 दि ব্যাজন বণ নিয়ে বিन্যাস সश्थ্যা $={ }^{3} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{2} \times 3!=3 \times \frac{5 \times 4}{2} \times 3 \times 2 \times 1=180$
 $={ }^{3} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{1} \times \frac{3!}{2!}=3 \times 2 \times 3=18 . \therefore$ निष্ণেয় বিন্যাস সश्थ্যা $=180+18=198$
（d）＇EXPRESSION＇শব্দটির্র বণগুলো হতে প্রত্যেকবার 4 টি বর্ণ নিয়ে সমাবেশ ৫ বিন্যাস সং্থা নিণয় কর । সমাধান ः＇EXPRESSION＇শব্দট্তি মোট 10টি বর্ণ আছে যাদের 2টি E এবং 2টি S
10টি বণ হতে 4টি বণ নিয়ে নিম্মরূপে সমাবেশ ও বিন্যাস সংখ্যা নির্ণয় করা যায়－
8 টि ভিন্ন বর্ণ $\mathrm{E}, \mathrm{X}, \mathrm{P}, \mathrm{R}, \mathrm{S}, \mathrm{I}, \mathrm{O}$ ও N হতে 4টি निর়ে সমাবেশ সংখ্যা $={ }^{8} \mathrm{C}_{4}=70$ এবং বিন্যাস সংখখ্যা $=$ ${ }^{8} \mathrm{P}_{4}=1680$
2টि E এবং অপর 7টি ভিন্ন বণ $\mathrm{X}, \mathrm{P}, \mathrm{R}, \mathrm{S}, \mathrm{I}, \mathrm{O}$ ও N হতে 2টি নিয়ে সমাবেশ সং্খ্যা $={ }^{2} \mathrm{C}_{2} \times{ }^{7} \mathrm{C}_{2}$
$=1 \times 21=21$ এবং বিन্যाস সংখ্যা $=21 \times \frac{4!}{2!}=21 \times 12=252$

जনুরূপভাবে, 2টি S এবং অপর 7টি ভিন্ন বণ $\mathrm{E}, \mathrm{X}, \mathrm{P}, \mathrm{R}, \mathrm{I}, \mathrm{O}$ ও N रতে 2টি নিয়ে সমাবেশ সং্খ্যা $=21$ এবং বিন্যাস সংখ্যা $=252$
2 টि E এবং 2টি S निয়ে সমাবেশ সং্খ্যা $={ }^{2} \mathrm{C}_{2} \times{ }^{2} \mathrm{C}_{2}=1$ এবং বিন্যাস সং্থ্যা $=1 \times \frac{4!}{2!2!}=6$
নির্ণেয় সমাবেশ সং্খ্যা $=70+42+1=113$ এবং বিন্যাস সংখ্যা $=1680+504+6=2190$
(e) 'ENGINEERING’ শব্দটির বগগুমো পেকে প্রতিবারে 3 টি বণ নিয়ে শম্দ গঠন করা হল, এদের ক্তগুলোত অল্তত এবটি স্ররবর্ণ বর্তমান ৫াকবে।
[RU 06-07]
সমাধান ः ‘ENGINEERING ’ শব্দটিতে ব্জঞন বর জাছে 3টি N, 2 টি G ও 1 টि R এবং স্বরর্ণ আছে 3 টি E ও 2 ढि I.

 निয়ে গঠिত শব্দ সशথ্যা $={ }^{5} \mathrm{P}_{3}+{ }^{4} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{1} \times \frac{3!}{2!}+{ }^{2} \mathrm{C}_{1} \times \frac{3!}{3!}=60+4 \times 4 \times 3+2 \times 1$

$$
=60+48+2=110 \quad \text { www.boighar.com }
$$

$$
=3!+{ }^{2} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{1} \times \frac{3!}{2!}+\frac{3!}{3!}=6+2 \times 2 \times 3+1=6+12+1=19
$$

অन্তত 1 টি সররবর্ণ নিয়ে 3টি ব氏 দ্মারা গঠিত শব্দ সং্খ্যা = যেকোন 3 টি বণ নিয়ে গঠিত শব্দ সং্থ্যা - কোন

17. (a) n সংখ্যক বিভিন্ন छিনিসের $r(n>r)$ সश্খ্যক একবারে নিয়ে গঠিত বিন্যাসের যেগুলোতে একটি বিশেষ জিনিস অन্তর্ডূক্ট পাকে তাদের সংখ্যা এবং যেগুলোতে উহা অল্তর্ভুক্ট থাকেনা তাদের সং্থ্যা সমান হলে দেখাও যে, $n=2 r$.
সমাধান : n সश্খ্যক বিভিন্ন জিনিসের একটি বিশেষ জিনিস অন্তর্ভুক্ত থাকলে অবশিফ $(n-1)$ সংখ্যকক জিনিস হতে বাকি $(\mathrm{r}-1)$ সং্খ্যক জিনিসকে ${ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}-1}$ উপায়ে অन्তর্ভুক্ত করা যাবে। এক্ষেত্রে গচিত বিন্যাস সংখ্যা $={ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}-1} \times \mathrm{r}$! এবটি বিলেষ জিনিস অল্তর্ভুক্ত না থাকলে অবশিফ্ট $(\mathrm{n}-1)$ সং্খ্যক জিনিস হতে r সং্খ্যক জিনিসকে ${ }^{n-1} \mathrm{C}_{\mathrm{r}}$ উপা়্যে অন্তর্ভুক্ত করা যাবে। এক্ষেত্রে গঠিত বিন্যাস সং্থ্যা $={ }^{n-1} \mathrm{C}_{\mathrm{r}} \times \mathrm{r}$!
প্নমমে,${ }^{n-1} C_{r-1} \times r!={ }^{n-1} C_{r} \times r!\Rightarrow \frac{(n-1)!}{(r-1)!(n-1-r+1)!}=\frac{(n-1)!}{r!(n-1-r)!}$
$\Rightarrow \quad \frac{1}{(r-1)!(n-r) \cdot(n-r-1)!}=\frac{1}{r .(r-1)!(n-1-r)!} \Rightarrow \frac{1}{n-r}=\frac{1}{r}$
$\Rightarrow n-r=r \Rightarrow n=2 r$ (Showed)
 লাকে তাদের সখ্খা নির্য কর। এদের কতগুলোতে বিশেষ बিনিস দুইটি পাশাপাশি থাকবে।
স্মাধান : ১ম অश্ : n সश्থ্যক বিভিন্ন জিনিসের দুইটি বিলেষ জিনিস অN্তর্ভুক্ত থাকলে অবশিষ্ট ($\mathrm{n}-2$) সश्থ্যক

n সং্খ্যক বিভিন্ন জিনিসের r সং্থ্যক একবারে নিয়ে গitিত বিন্যাসের বেগুলোতে দুইটি বিশেষ জিনিস অন্তর্ভুক্ত থাকে তাদের সং্খ্যা $={ }^{n-2} C_{r-2} \times r!=\frac{(n-2)!r!}{(r-2)!(n-2-r+2)!}=\frac{(n-2)!r!}{(r-2)!(n-r)!}$
২য় জशশ : এই দুইটি বিশেষ জিনিসকে একটি একক জিনিস বিবেচনা করলে $(r-1)$ সং্খ্যক ভিন্ন জিনিস $(r-1)!$ ভাবে বিন্যস্ত হবে এবং বিশেষ জিনিস দুইটি 2 ! ভাবে বিন্যস্ত হবে।

$$
\begin{aligned}
\text { निরেণ়্ বিন্যাস সश्থ্যা } & ={ }^{n-2} \mathrm{C}_{\mathrm{r}-2} \times(\mathrm{r}-1)!\times 2!=\frac{(\mathrm{n}-2)!}{(\mathrm{r}-2)!(\mathrm{n}-2-\mathrm{r}+2)!} 2 \cdot(\mathrm{r}-1)! \\
& =\frac{(\mathrm{n}-2)!}{(\mathrm{r}-2)!(\mathrm{n}-\mathrm{r})!} 2 \cdot(\mathrm{r}-1) \cdot(\mathrm{r}-2)!=\frac{2(\mathrm{r}-1) \cdot(\mathrm{n}-2)!}{(\mathrm{n}-\mathrm{r})!} \quad \text { (Ans.) }
\end{aligned}
$$

সমাধান 8 n সश্খ্যক বিভিন্ন জিনিসের দুইটি বিপেষ জিনিস অস্তর্ভুক্ত থাকলে অবশিষ্ট $(\mathrm{n}-2)$ সং্থ্যক জিনিস হতে বাকি $(r-2)$ সश्থ্যক জিনিসকে ${ }^{n-2} C_{r-2}$ উপায়ে অন্তর্ভুক্ত করা যাবে। এক্ষেত্রে বিন্যাস সং্খ্যা $={ }^{n-2} C_{r-2} \times r!$ n সং্খ্যক বিভিন্ন জিনিসের দুইটি বিশেষ জিনিসের কোনটি অন্তর্ভুক্ত না থাকলে অবশিষ্ট $(n-2)$ সश্খ্যক জিনিস হতে r সश্খ্যক জিনিসকে ${ }^{n-2} C_{r}$ উপায়ে অন্তর্ভুক্ত করা যাবে। এক্ষেত্রে বিন্যাস সং্থ্যা $={ }^{n-2} C_{r} \times r!$ निर्̛েয় বিন্যাস সং্খ্যা $={ }^{n-2} C_{r-2} \times r!+{ }^{n-2} C_{r} \times r!=\frac{(n-2)!. r!}{(r-2)!(n-2-r+2)!}+\frac{(n-2)!r!}{r!(n-2-r)!}$

$$
\begin{aligned}
& =\frac{(n-2)!\cdot r(r-1) \cdot(r-2)!}{(r-2)!(n-r)!}+\frac{(n-2)!.}{(n-2-r)!}=\frac{(n-2)!\cdot r(r-1)}{(n-r)(n-r-1)(n-r-2)!}+\frac{(n-2)!.}{(n-2-r)!} \\
& =\frac{(n-2)!\{r(r-1)+(n-r)(n-r-1)\}}{(n-r)(n-r-1)(n-r-2)!}=\frac{(n-2)!\left(r^{2}-r+n^{2}-2 n r+r^{2}-n+r\right)}{(n-r)!} \\
& =\frac{(n-2)!}{(n-r)!}\left(2 r^{2}+n^{2}-2 n r-n\right) \text { (Ans.) }
\end{aligned}
$$

(d) এধটি সয়েত তৈরি করতে তিনটি পতাকার প্রয়োজন হয়। 6টি বিভিন্ন রু-এর প্রত্যেটির $4 ট ি$ করে $24 ট ি$ পতাকা দারা কতগুলো সৃরেত দেয়া যেতে পারে?
সমাষান ঃ সবগুলো পতাকা ভিন্ন ভিন্ন রঙের নিয়ে সংকেত দেয়ার সংখ্যা $={ }^{6} \mathrm{P}_{3}=120$
$6 ট ি$ বিভিন্ন রঙের পতাকা হতে এক রঙের $2 ট ি$ পতাকা বাছাই করা যায় ${ }^{6} \mathrm{C}_{1}$ উপায়ে। জাবার অবশিষ্ট 5টি বিভিন্ন রঙের পতাকা হতে এক রঙের 1 টি পতাকা বাছাই করা যায় ${ }^{5} C_{1}$ উপা়ে। এই বেছে নেয়া এক রঙের 2টি ও অন্য রঙের $1 ট ি$ পতাকাকে $\frac{3!}{2!}=3$ উभाয়ে সাজানো যায়।

2টি এক রূের এবং অপরটি অন্য এক রঙের নিয়ে সংকেত দেয়ার সং্থ্যা $={ }^{6} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{1} \times 3=6 \times 5 \times 3=90$ সবগুলো পতাকা একই রঙের নিয়ে সংকেত দেয়ার সং্খ্যা $={ }^{6} \mathrm{C}_{1} \times \frac{3!}{3!}=6$

नির্ণে়্ মোট সং্থ্যা $=120+90+6=216$

(b) প্রমাণ কর যে, ${ }^{n} \mathrm{C}_{\mathrm{r}}+{ }^{n} \mathrm{C}_{\mathrm{r}-1}={ }^{\mathrm{n+1}} \mathrm{C}_{\mathrm{r}}$

(c) ‘Combination’ শব্দটির বর্ণগুলি থেকে অত্তত একটি বর্ণ কত' উপায়ে বাছাই করা যায় এবং স্বরবন্ণগুলির স্থান পরিবর্তন না করে ‘ Permutation’’ শদ্দটির বর্ণগুলি কত উপায়ে পুনর্বিন্যাস করা যায়?
[ব.০৫ ; চ.'০৪; ঢा. '০৯; मि.'১৩]
সমाधान ः (a) ${ }^{n+1} \mathrm{P}_{3}+{ }^{n} \mathrm{C}_{3}+{ }^{n} \mathrm{C}_{2}=392 \Rightarrow{ }^{n+1} \mathrm{P}_{3}+\left({ }^{n} \mathrm{C}_{3}+{ }^{n} \mathrm{C}_{3-1}\right)={ }^{292}$
$\Rightarrow{ }^{n+1} C_{3} \times 3!+{ }^{n+1} C_{3}=392 \Rightarrow 7 \times{ }^{n+1} C_{3}=392 \Rightarrow{ }^{n+1} C_{3}=56={ }^{8} C_{3} \Rightarrow n+1=8 \therefore n=7$
(b) মৃন বইয্যের ১৩৮ পৃষ্ঠা দ্রষ্টব্য।

অন্তত একটি বর্ণ বাছাই করা যাই $(2+1)(2+1)(2+1) 2^{5}-1=863$ উপায়ে।
'PERMUTATION' শব্দটিতে মোট 11 টি বণ আছে যাদের 5 টি ग্বরবণ্ণ।
 সাজানো যায় ।

নির্ণেয় পুনর্বিন্যাস করার উপায়=360-1=359 (Ans.)
19. সাতটি সরল রেথার দৈর্ঘ্য যथাত্রমে $1,2,3,4,5,6,7$ সে.মি. ।
(a) 1234567 সং্থ্যাটির অঙ্কগুলি থেকে অষ্তত একটি জোড় অঙ্ক ও অন্তত একটি বিজোড় অঙ্ক কতভাবে বাছাই করা याয়?

૬: 105
(b) ${ }^{n} \mathrm{P}_{\mathrm{r}}$ এর মান নির্ণয় কর;
[ক.'’০৮;ব.’০৯ ; চ.'০৬,'০ぇ,'১৩;য.'০৭,'১১; দি.'১৪]
(c) দেখাও বে, একটি চতুর্ভুজ গঠন করার জন্য চারটি সরল রেখা যত প্রকারে বাছাই করা যায় তার সং্খায 32.
[চ.'০৮,’১২;সি.'০৮,'১২; দি.'০৯;य.'০৯;ব.'০৮,'১০]
সমাধানः (a) 1234567 সংখ্যাটির তিনটি জোড় অক্ক ও চারটি বিজোড় অঙ্ক আছে।
অন্তত একটি জোড় অঙ্ক ও অন্তত একটি বিজোড় অক্ক বাছাই করা যায় $\left(2^{3}-1\right)\left(2^{4}-1\right)=105$ উপায়ে।

(c) «্রশ্মমালা VB এর্গ 6(a) দ্রষ্ব্য।
20. যেকেনো সংখ্যা গঠনে $0,1,2,3,4,5,6,7,8,9$ অজ্কগুলি ব্যবহার করা হয়।
(a) প্রত্যেক সং্খ্যায় প্রত্যেক অজ্ক কেবল একবার ব্যবহার করে 10 অક्कের কতগুলি অభপূণ সংখ্যা গঠন করা यায়•।

(c) প্রত্যেক সং্খ্যয় 1 নয়বার ও 9 একবার ব্যবহার কতে 10 অस्تের যতগুলি সং্খ্যা গঠ১ন করা যায় তাদদর গড় নির্ণয় কর। •
 चश्शंखć সश्খ্যা नয়।

গ. (১ম পত্র) সমাধান-২৬

निर्ণেয় जথপূর্ণ সং্খ্যা $=10!-9!=3265920$
(b) সং্খ্যাগুলির শেষে $0,2,4,6$ অথবা 8 থাকলে সংখ্যাগুলি জোড় হবে । জাবার, সং্খ্যার প্রথম্ 0 থাকলে তা অব্থপৃর সং্থ্যা হবেনা।

0 শেষে রেথে প্রথম স্শানটি $1,2,3,4,5,6,7,8$ বা 9 দ্দারা 9 উপায়ে পূরণ করা যায়। অবশিষ্ট মবের 8 টি স্থান বাকী 8 টি অङ্ক দ্বারা $8!=40320$ উপায়ে পূরণ করা যায়।

0 শেমে রেখে অপ্পপূণ জোড় সং্খ্যা গঠন করার উপায় সং্খ্যা $=9 \times 40320=362880$
 স্ाান বাকী 8 টি অe্ন ज্বারা $8!=40320$ উপাट়ে পূরণ করা যায়।

2 लেমে রেথে অশপৃণ জোড় সং্খ্যা গঠন করার উপায় সং্থ্যা $=8 \times 40320=322560$ অনুরূপভাবে, 4,6 অথবা 8 শেষে রেথে অথপূণ বিজোড় সং্থ্যা গঠন করার উপায় সং্খ্যা $=322560$

निণেক্য অबপূণ বিজোড় সং্খ্যা $=362880+4 \times 322560=1653120$ সংখখ্যক ।
(c) প্রত্যেক সং্থ্যায়া 1 নয়বার ও 9 একবার ব্যবহার করে যতগুলি সং্খ্যা গঠন করা যায় তাদের সং্খ্যা $=\frac{10!}{9!}=10$

প্রত্যেক স্থানে (একক, দশক, শতক ইত্যাদি) 9 একবার ও 1 নয়বার পুনরাবৃত হয়।
দশ অজ্ক বিশিষ্ট সং্খ্যার প্রত্যেক স্থানের অজ্জগুলির সমফ্টি $=9+1 \times 9=18$
প্রত্যেক সং্খ্যায় 1 নয়বার ও 9 একবার ব্যবशার করে 10 অজ্কের গঠিত সং্খ্যার সমষ্টি
$=18 \times 11111111111=19999999998$
निर्ণেয় গড় $=19999999998 \div 10=1999999999 \cdot 8$

অथবা.

গঠিত সং্থ্যার সমষ্টি $=9111111111+1911111111+1191111111+1119111111+$ $1111911111+1111191111+1111119111+1111111911+1111111191+1111111119$ $=19999999998$

निর্ণেয় গড় $=19999999998 \div 10=1999999999 \cdot 8$

কাজ:

 নিয়ে কত প্রকারে বাছাই করা যায়?
সমাধান ঃ সবগুলোই ভিনিস ভিন্ন ভিন্ন এরূপ বাছাই সংখ্যা $=(10-2+1)$ অধ্ৰাৎ 9 টি বিভিন্ন জিনিস থেকে প্রতিবারে 5 টि নিয়ে বাছাই সo্থ্যা $={ }^{9} \mathrm{C}_{5}=126$
2টি জিনিস এক জাতীয় এবং অপর 3টি জিনিস ভিন্ন ভিন্ন এরূপ বাছাই সং্খ্যা $={ }^{2} \mathrm{C}_{2} \times{ }^{8} \mathrm{C}_{3}=1 \times 56=56$
নির্ণেয় মোট বাছাই সংখ্যা $=126+56=182$
२। 13 জन বালরেক্র একটি দহে 5 জन বাनক সেনা জাছে। বত প্রকারে 7 জন বাनক বাছাই করা যায় যাতে (i) ঠিক 3 জन বাणক সেনা बাকে, (ii) অল্তত 3 बन বাणক সেনা बাকে?
(i) সমাধান 85 জন বালক সেনা থেকে প্রতিবারে ঠিক 3 জনকে ${ }^{5} \mathrm{C}_{3}=10$ উপায়ে এবং অন্যান্য ($13-5$) অধ্রাৎ, 8 জন বলক থেকে প্রতিবারে বাকি $(7-3)$ অর্ৰৎ, 4 জনকক ${ }^{8} \mathrm{C}_{4}=70$ উপায়ে বাছাই করা যায়।

7 জনের দল গঠন করা যাবে $=10 \times 70=700$ উপায়ে।
(ii) : निম্নরূপে 7 জनের একটি দল গঠন করা যেতে পারে -

বালক সেনা (5)

অन্যান্য বালক (8)

কমিটি গঠনের উপায়

34
43
$5 \quad 2$
$(700+280+28)$ অ析ৎ,
৩। $1,2,3,4,5,6,7,8$ চিহ্ছিত আটটি কাউন্টার ハেকে অন্যন একটি বিজ্েোড় ও একটি জোড় কাটট্টার নিয়ে চারটি কাউট্টারের কতগুলো সমাবেশ গঠন ঝর্রা যেতে পারে?
সমাধান ঃ নিম্নরূপে 4টি কাটন্টারের সমারেশ গঠন কনা যেতে পারে --

জৈোড কাটন্টার (4)	বিজোড় কাট্ট্টর (4)	সমাবেশ গঠনের উপায়
1	3	${ }^{4} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{3}=4 \times 4=16$
2	2	${ }^{4} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{2}=6 \times 6=36$
3	1	${ }^{4} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{1}=4 \times 4=16$

নিণণেয় মোট সং্থ্যা $=16+316+16:=68$

অতিব্রিক্ প্রশ্ন (সমাধানসহ)

সমাধান : দুইটি অসমান্তরান সরগর্রখা একটি ব্দ্দুতে ত্ছে্দ করে।
যেকোন দুইটি সমান্তরান ন্য় এরূপ n - সংখ্যক সরলররেখা ছেদ করবে ${ }^{n} C_{2}=\frac{1}{2} n(n-1)$ সংখ্যক ব্দ্দুতে।

প্রশ্নমতে, ${ }^{n} C_{3}={ }^{n} C_{2} \Rightarrow \frac{1}{6} n(n-1)(n-2)=\frac{1}{2} n(n-1) \Rightarrow n-2=3 \therefore n=5$

সমাধান ঃ একটি সমতল গঠন কর্তে তিনটি বিদ্দুর প্রয়োজন।

কিন্তু যেহেতু p- সংখ্যক ক্সিদ্দু ৬কসমতনে অবস্থিত; সুতরাং তারা ${ }^{p} \mathrm{C}_{3}$ সং্খ্যক সমতলের পরিবর্তে কেবল একটি সমতন গঠন করে।

$$
\text { नि, ক্য় সমতলের সश্খ্যা := }{ }^{n} C_{3}-{ }^{p} C_{3}+1=\frac{1}{6} n(n-1)(n-2)-\frac{1}{6} p(p-1)(p-2)+1
$$

निर্ণেয় রেथার সং্ধ্যা $={ }^{n} \mathrm{C}_{2}-{ }^{\mathrm{P}} \mathrm{C}_{2}+1=\frac{1}{2} \mathrm{n}(\mathrm{n}-1)-\frac{1}{2} \mathrm{p}(\mathrm{p}-1)+1$
दिতীয় অश 8 जসমরেখ তিনটি বিদ্দুর সংনোগ রেখা দ্যারা একটি ত্রিভুজগঠিত হয় ।

$$
=\frac{n(n-1)(n-2)}{6}-\frac{p(p-1)(p-2)}{6}
$$

কিন্তু শীর্ব आটে নিজ গ্রুপের দল দুইটি পরস্পরের সালে থেলেনি বলে $4 ট ি ~ গ ্ র ু প ্ প র ~ 4 ট ি ~ খ ে ল া ~ অ ন ু ষ ্ ঠ ি ত ~ হ য ় ন ি । ~$
শীর্ষ জটে মোট খেলা অনুষ্ঠিত হয় (28-4) বা, 24 টি

 जब্লের গঠিত মোট সং্থ্য়া $={ }^{7} \mathrm{P}_{4}=840$

 $5 \times 24=120$

 बঙ্大ের গঠিত মোট সং্থ্যা $={ }^{5} \mathrm{P}_{2}-{ }^{4} \mathrm{P}_{1}=20-4=16$
जनুরূপডাবে, তিন অক্কের গঠিত মোট সং্থ্যা $={ }^{5} \mathrm{P}_{3}-{ }^{4} \mathrm{P}_{2}=60-12=48$

নিণেণ্য মোট সং্থ্যা $=16+48=64$
[MCQ এর জন্য : নিক্ণেয় মোট সং্থ্যা $=4\left({ }^{4} \mathrm{P}_{1}+{ }^{4} \mathrm{P}_{2}\right)=64$]
 ज্পারা 10000 এর ছোট কতগুলো সश्थ্যা গঠন কন্না যায় ?
 সং্থ্যা নিম্নরূপে গঠন করা যায় :
শূন্য ব্যতীত বাকী 7টি অজ্ক দ্রারা এক অङ্ক বিশিষ্ট মোট সং্খ্যা $={ }^{7} \mathrm{P}_{1}=7$
 অজ্ধ বিশিফট মোট সश्খ্যা $={ }^{8} \mathrm{P}_{2}-{ }^{7} \mathrm{P}_{1}=49$
जनুরূপভাবে, তিন অঙ্ণ বিশিষ্ট মোট সং্খ্যা $={ }^{8} \mathrm{P}_{3}-{ }^{7} \mathrm{P}_{2}=294$
এবং চার অঙ্ফ বিশিষ্ট মোট সং্থ্যা $={ }^{8} \mathrm{P}_{4}-{ }^{7} \mathrm{P}_{3}=1470$
10000 এর ছোট মোট সश্খ্যা $=(7+49+294+1470)=1820$
[MCQ এর জন্য : নির্ণেয় মোট সश্খ্যা $={ }^{7} \mathrm{P}_{1}\left(1+{ }^{7} \mathrm{P}_{1}+{ }^{7} \mathrm{P}_{2}+{ }^{7} \mathrm{P}_{3}\right)=1820$]
(b) প্রত্যেক অষ্ককে প্রত্যেক সং্্যায় একবারের বেশি ব্যবহার না করে $0,1,2,3,4,5,6,7,8,9$ অৰ্ধ্কগুলো ঢারা 1000-এর চেয়ে ছোট এবং 5 घারা বিভাষ্য কতগুলো সश্থ্যা গঠন কর্যা যায় ?
সমাধান : এখানে শূন্যসহ মোট 10টি ভিন্ন অজ্ক আছে । সং্খ্যার প্রথমে 0 থাকলে তা অশপূণ সংথ্যা হবেনা। 5 দ্যারা সश্থ্যাগুলোর লেষে 0 বা 5 থাকতে হবে।
1000-এর চেয়ে ছোট এবং 5 দারা বিভাজ্য সং্খ্যা নিম্নরূপে গঠন করা যায় :
এক অজ্ক বিশিষ্ট মোট সং্খ্যা $=1$
দুই অঙ্ক বিশিষটট মোট সং্থ্যা $=$ শেষে 0 থাকে এরূপ মোট সং্থ্যা + শেষে 5 থাকে এরৃপ মোট সং্থ্যা

$$
={ }^{9} \mathrm{P}_{1}+{ }^{8} \mathrm{P}_{1}=9+8=17
$$

তিন जষ্ক বিশিষ্ট মোট সং্থ্যা $=$ শেমে 0 থাকে এরূপ মোট সং্থ্যা + শেমে 5 থাকে এরূপ মোট সং্থ্যা

$$
={ }^{9} \mathrm{P}_{2}+\left({ }^{9} \mathrm{P}_{2}-{ }^{8} \mathrm{P}_{1}\right)=72+72-8=136
$$

নির্ণেয় মোট সং্থ্যা $=1+17+136=154$
 বেশি नंয় , এরূপ কতগুলো সংৃ্যা গঠন ক্র্যা यায় ?
 বেশি নয় এরূপ সং্খ্যা নিম্নরূ<প গঠন করা যায় :
এক অজ্ক বিশিফ মোট সংখ্যা $={ }^{4} \mathrm{P}_{1}=4$
দুই অজ্ক বিশিষ্ট মোট সং্থ্যা $={ }^{5} \mathrm{P}_{2}-{ }^{4} \mathrm{P}_{1}=20-4=16$
তিন অজ্ক বিশিফ্ট মোট সश্থ্যা $={ }^{5} \mathrm{P}_{3}-{ }^{4} \mathrm{P}_{2}=60 \div 12=48$
নির্ণেয় মোট সং্খ্যা $=4+16+48=68$

প্রদত্ত অঙ্জগুলি যে কোন সং্খ্যকবার ব্যবহার করে চার অঙ্কববশিষ্ট সংখ্যা গঠন করা যায় $5^{4}=625$ উপায়ে। आবার, প্রদত্ত অঙ্কগুলি প্রত্যেক সং্খ্যায় একবারের বেশি ব্যবহার না করে চার অঙ্কবিশিষ্ট সং্খ্যা গঠন করা যায় ${ }^{5} \mathrm{P}_{4}=120$ উপায়ে।
$625-120=505$ টি সং্খ্যায় একই অজ্ক একাধিকবার থাকবে।
6. কোনো পরী ক্মায় তিনটি বিষয়ের প্রতিটির পুর্ণমাণ-100 । একজন ছাত্র কতভাবে 200 নম্যর পেতে পারে?

সমাধান : একজন ছাত্রকে 200 নম্যর পেতে হলে প্রতিটি বিষয়ে 0 হতে 100 নম্মর পেতে হবে।
ছাত্রটি নিম্নরূপে পরীক্ষায় 200 নम্যর পেতে পারে -
১ম বিষয়ে প্রাপত নম্মর ২য় বিষয়ে প্রাপত নম্মর ৩য় বিষয়ে প্রাপত নম্মর মোট প্রাণ্ত নম্মর

0	100	100	200
1	100	99	200
1	99	100	200
2	100	88	200
2	99	99	200
2	88	100	200

ศক্যুनীয় শে, ১ম বিষয়ে 0 পাওয়া যায় 1 উপায়ে, 1 পাওয়া যায় 2 উপায়ে, 2 পাওয়া যায় 3 উপায়ে। অনুরূপডাবে, ১ম বিষয়ে 3 পাওয়া যায় 4 উপায়ে, 4 পাওয়া যায় 5 উপায়ে, 5 পাওয়া যায় 6 উপায়ে পাওয়া যায় 101 উभায়ে!

निर्ণেয় সश्थ্যা $=1+2+3+\cdots \quad+101=\frac{101(101+1)}{2}=\frac{101 \times 102}{2}=5151$
7 (a) $n(A)=4$ হলে, $P(A)$ সেটের কমপক্巾 একটি উপাদান কতভাবে বাছাই কর্মা যায়? সমাধান $\%$ দেওয়া জারছে , $n(A)=4 \quad P(A)$ সেটের উপাদান সংখ্যা $=2^{4}=16$
$\mathrm{P}(\mathrm{A})$ সেটের কমপক্ষে একটি উপাদান বাছাই করা যায় $\left(2^{16}-1\right)$ বা 65535 উপায়ে।
(b) $n(A)=2, n(B)=3$ হबে, $P(A \times B)$ সেটের্র কমপc্ম একটি উপাদান কতভাবে বাছাই করা যায়?

সমাধান : দেওয়া জারছে , $\mathrm{n}(\mathrm{A})=2, \mathrm{n}(\mathrm{B})=3 \quad \mathrm{n}(\mathrm{A} \times \mathrm{B})=2 \times 3=6$
$P(A \times B)$ সেটের উপাদান সং্খ্যা $=2^{6}=64$
$\mathrm{P}(\mathrm{A} \times \mathrm{B})$ সেটের কমপক্ষে একটি উপাদান বাছাই করা যায় $\left(2^{64}-1\right)$ উপায়ে।
8. $n(A)=3, n(B)=4$ इলে A, B ৩. J_{5} প্রত্যেক ঢেটের কমপক্巾 একটি উপাদান কতভাবে বাঘাই কর্না যায়? সমাধান : $n\left(J_{5}\right)=5$.

প্রত্যেক সেটের কমপক্ষে একটি উপাদান বাছাই করার উপায় $=\left(2^{3}-1\right)\left(2^{4}-1\right)\left(2^{5}-1\right)=3255$
9. 'EQUATION' শব্দটির সবभুলো $\mathbf{~}$ প্রম্নমানা $V(\mathbf{A}+\mathrm{B})$ কারে দুইটি শব্দ গঠন করা যেতে পারে, যেন $\mathbf{E}, \mathbf{Q}, \mathbf{U}$ অक्षর তিনটি এক শব্দে এবৃ \mathbf{C}, -

গক্ষরকে ১ম শব্দে 1 টি ও ২য় শব্দে 2 বি অন্তর্ভুক্ত করা যায় $\frac{3!}{1!\times 2!}$ উপায়ে!
A, T, I অক্ষর তিনটি নিম্নরূপে অন্তর্ভুক্ত করে দুইটি শ্দ গঠন করা যায় -
E, Q, U बन्তर्डूক্ত শপ্দ

O, N অनতত্ভুক্ত শদ্দ

$2+3=5$
$2+2=4$
$2+1=3$
$2+0=6$

দুইটি শদ্দ গঠন করার টপায়

$$
\frac{3!}{0!\times 3!} \times 3!\times 5!=720
$$

$$
\frac{3!}{1!\times 2!} \times 4!\times 4!=1728
$$

$$
\frac{3!}{2!\times 1!} \times 5!\times 3!=2160
$$

$3+3=6$

নিকেণ্যে মোট স্থ্খ্যা $=720+1728+2160+1440=6048$
10. (a) 11 ডিधिট বিশিষ্ট গ্রমীণফোন মোবাইল নম্যরে বাম দিক হতে প্রুম চারটি 0171 ঢারা নিধ্বারিত। গ্রামীণফোন
 .Ш্যর তিনটি ডিভিট এক রকম হবে তাও নির্ণয় কর ।
त्वाथान : ১ম জংサ : 0 रुত 9 পর্यन्ত মোট 10 जि অঙ্ক $(0,1,2,3,4,5,6,7,8,9)$ आছে। বাম
 Ese দ্বারা 10 উপায়ে পূরণ করা যাবে।

निর্ণেয় টেলিফোন সৃযোগ সংখ্যা $=10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10=10^{7}$
$-弓$ জश্ণ : 5 দ্মারা বিভাজ্য বলে শেষের ডিজিট 0 অথবা 5 হবে এবং তা ${ }^{2} \mathrm{C}_{1}=2$ উপায়ে পূরণ করা যাবে এবং

निব্ণেয় টেলিযোন সংযোগ সश্খ্যা $=10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 2=2 \times 10^{6}$
5 অश : শেষের তিনটি ডিজিট 10 অি অক্কের যেকোন একটির তিনটি দ্ঘারা 10 উপায়ে পৃরণ করা যাবে। শেষের
 =క्ञ র যেকেন একটি দ্বারা 9 উপায়ে পূরণ করা যাবে। অবশিষ্ট (7-3-1) বা, 3 ঢি ডিজিট প্রত্যেকটি 10টি ¥্x ঘারা 10 উপায়ে পূরণ করা যাবে।

শেষের তিনটি ডিজিট ঠিক এক রকম এমন টেলিফোন সংযোগ সং্থ্যা $=10 \times 9 \times 10 \times 10 \times 10=9 \times 10^{4}$

ग्रन्न : 0 रতে. 9 পর্যग्ত মোট 4টি অঙ্জ $(2,4,6,8)$ জোড় । বাম দিক रতে ৫ম ডিজিট 4টি অঙ্ক
 - মোট সংযোগ সংখ্যা $={ }^{4} \mathrm{C}_{1} \times 10 \times 10 \times 10 \times 10 \times 10 \times 10=4 \times 10^{6}$

डিन অक বিশিষ্ট একটি সংখ্যার্র বাম দিক থেকে ब্রথম দুইটি অক্কের সমষ্টি 4 , ब্রত্যেক অक्कকে প্রত্যেক সংখ্যায়

>द्रन ঃ মনে করি, সংখ্যাणি $(100 a+10 b+c)$.
——.s, $\mathrm{a}+\mathrm{b}=4$
$(3-1)!\times(a+b+c) \times 111=1998 \Rightarrow a+b+c=\frac{1994}{222}=9 \Rightarrow 4+c=9 \Rightarrow c=5$
(i) হতে পাই, $(\mathrm{a}, \mathrm{b})=(4,0),(2,2),(3,1)$ অথবা, $(1,3)$.

নির্ণেয় সংখ্যাটি হবে 405, 225, 315 অথবা, 135.
এখन, $405=3^{4} \times 5$. 405 এর উৎপাদকের সংখ্যা $=(4+1)(1+1)=10$
$225=3^{2} \times 5^{2} \quad 225$ এর উৎপাদকের সংথ্যা $=(2+1)(2+1)=9$
$315=3^{2} \times 5 \times 7 \quad 315$ এর উৎপাদকের সংথ্যা $=(2+1)(1+1)(1+1)=12$
$135=3^{3} \times 5 \quad 135$ এর উৎপাদকের সংখ্যা $=(3+1)(1+1)=8$
নির্ণেয় সংখ্যা 135 .

ভর্তি পরীশারার MCQ:

1. यদি TIME শব্দটির অক্ষরগুলি পুনর্বিন্যাস ক্রা হয় তবে কতগুলো বিন্যাস স্ররর্ণ ঘারা শুরু হবে ? [DU 88-99] Sol ${ }^{n}$: নিণ্ণে় সাজানো সश্থ্যা $={ }^{2} \mathrm{P}_{1} \times 3!=12$
2. SCIENCE শপ্রির সরবর্ণগুলোকে একর্রে রেথে সবকয়টি বর্ণবে যত উপায়ে সাজানো যায় তাদের সং্খ্যা কত?
[DU 97-98]
Sol ${ }^{n}$: निর্ণেয় সাজानো স尺্খ্যা $=\frac{5!}{2!} \times \frac{3!}{2!}=180$
 Sol ${ }^{n}$: নির্ণেয়া উপায় $=6!-5!=600$
3. SCHOOL শব্দটি হতে তিনটি অক্ষর বাছাই কন্মা যায় ?
[DU 07-08]
Sol ${ }^{n}$: নির্ণেয় উপায় $={ }^{5} \mathrm{C}_{3}+{ }^{4} \mathrm{C}_{1}=14$
 একछन ছाত্রী অम्उর্ভूত্ঠ dাকে ?
[DU 05-06; Jt.U 06-07]
Sol ${ }^{n}$: निণেে় সং্খ্যা $={ }^{5} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{4}+{ }^{5} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{3}+{ }^{5} \mathrm{C}_{3} \times{ }^{6} \mathrm{C}_{2}+{ }^{5} \mathrm{C}_{4} \times{ }^{6} \mathrm{C}_{1}=455$

[DU 97-98]
Sol ${ }^{n}$: কমিটি গঠনের উপায় সং্খ্যা $={ }^{3} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{4}+{ }^{3} \mathrm{C}_{0} \times{ }^{5} \mathrm{C}_{5}=16$

[SU 07-08]
Soln निर्ণ্য় সংখ্যা $={ }^{8} \mathrm{C}_{2}=28[\because$ করমর্দনে দুইজন ব্যক্তি নাগে।]
 নেয়। ট্রুনামেল্টে কতটি ম্যাচ খ্লো হয়েছে?
[SU 06-07]
Sol" টুনামেন্টে একজন বিজায়ী হয় এবং অবশিষ্ট (150-1) = 149 জন থেলোয়াড় 149টি ম্যাচে পরাজিত হয়ে টুনামেন্ট থেকে বিদ্যায় নেয়।অতএ্ব, নির্ণেয় ম্যাচ সংখ্যা $=149$.
4. ${ }^{n} P_{5}=84 \times{ }^{n-1} P_{2}$ रजে n जर মাन কण ?

5. 致 0
6. প্রমাণ কন যে,
(a) $(\tan \theta+\sec \theta)^{2}=\frac{1+\sin \theta}{1-\sin \theta}$ भ्रयाण : L.H.S. $=(\tan \theta+\sec \theta)^{2}$

$$
\begin{aligned}
& =\left\{\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}\right\}^{2}=\left\{\frac{\sin \theta+1}{\cos \theta}\right\}^{2} \\
& =\frac{(1+\sin \theta)^{2}}{\cos ^{2} \theta}=\frac{(1+\sin \theta)^{2}}{1-\sin ^{2} \theta} \\
& =\frac{(1+\sin \theta)^{2}}{(1-\sin \theta)(1+\sin \theta)}=\frac{1+\sin \theta}{1-\sin \theta}=\text { R.H.S. }
\end{aligned}
$$

1(b) $\frac{\sec \theta \cdot \operatorname{cosec} \theta-2}{\sec \theta \cdot \operatorname{cosec} \theta+2}=\left(\frac{1-\tan \theta}{1+\tan \theta}\right)^{2}$
L.H.S. $=\frac{\sec \theta \cdot \operatorname{cosec} \theta-2}{\sec \theta \cdot \operatorname{cosec} \theta+2}$
$=\frac{\frac{1}{\cos \theta} \frac{1}{\sin \theta}-2}{\frac{1}{\cos \theta} \frac{1}{\sin \theta}+2}=\frac{1-2 \sin \theta \cos \theta}{1+2 \sin \theta \cos \theta}$
$=\frac{\sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta \cos \theta}{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta}$
$=\frac{(\sin \theta-\cos \theta)^{2}}{(\sin \theta+\cos \theta)^{2}}=\frac{\cos ^{2} \theta\left(\frac{\sin \theta}{\cos \theta}-1\right)^{2}}{\cos ^{2} \theta\left(\frac{\sin \theta}{\cos \theta}+1\right)^{2}}$
$=\frac{(\tan \theta-1)^{2}}{(\tan \theta+1)^{2}}=\frac{(1-\tan \theta)^{2}}{(1+\tan \theta)^{2}}=\left(\frac{1-\tan \theta}{1+\tan \theta}\right)^{2}$
$=$ R.H.S. (Proved)
1(c) $1-4 \sin ^{2} \theta \cos ^{2} \theta=\sin ^{4} \theta\left(1-\cot ^{2} \theta\right)^{2}$
L.H.S. $=1-4 \sin ^{2} \theta \cos ^{2} \theta$
$=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-4 \sin ^{2} \theta \cos ^{2} \theta$
$=\sin ^{4} \theta+\cos ^{4} \theta+2 \sin ^{2} \theta \cos ^{2} \theta-4 \sin ^{2} \theta \cos ^{2} \theta$
$=\left(\sin ^{2} \theta\right)^{2}+\left(\cos ^{2} \theta\right)^{2}-2\left(\sin ^{2} \theta\right)\left(\cos ^{2} \theta\right)$
$=\left(\sin ^{2} \theta-\cos ^{2} \theta\right)^{2}=\left\{\sin ^{2} \theta\left(1-\frac{\cos ^{2} \theta}{\sin ^{2} \theta}\right)^{2}\right\}$
$=\sin ^{4}\left(1-\cot ^{2} \theta\right)^{2}=$ R.H.S. (Proved)
1(d) $\sin \theta+\sec \theta)^{2}+(\cos \theta+\operatorname{cosec} \theta)^{2}$ $=(1+\sec \theta \operatorname{cosec} \theta)^{2}$
L.H.S. $=(\sin \theta+\sec \theta)^{2}+(\cos \theta+\operatorname{cosec} \theta)^{2}$
$=\sin ^{2} \theta\left(1+\frac{\sec \theta}{\sin \theta}\right)^{2}+\cos ^{2} \theta\left(1+\frac{\operatorname{cosec} \theta}{\cos \theta}\right)^{2}$
$=(1+\sec \theta \operatorname{cosec} \theta)^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$
$=(1+\sec \theta \operatorname{cosec} \theta)^{2} .1$
$=(1+\sec \theta \operatorname{cosec} \theta)^{2}=$ R.H.S. (Proved)
1(e) $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\operatorname{cosec} \theta+\cot \theta$
L.H.S. $=\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}$
$=\frac{\sqrt{1+\cos \theta}}{\sqrt{1-\cos \theta}}=\frac{\sqrt{1+\cos \theta} \sqrt{1+\cos \theta}}{\sqrt{1-\cos \theta} \sqrt{1+\cos \theta}}$
$=\frac{1+\cos \theta}{\sqrt{1-\cos ^{2} \theta}}=\frac{1+\cos \theta}{\sqrt{\sin ^{2} \theta}}=\frac{1+\cos \theta}{\sin \theta}$
$=\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta}=\operatorname{cosec} \theta+\cot \theta$
$=$ R.H.S. (proved)
1(f) $\sin ^{2} \theta\left(1+\cot ^{2} \theta\right)+\cos ^{2} \theta\left(1+\tan ^{2} \theta\right)$
$=2$
L.H.S. $=\sin ^{2} \theta\left(1+\cot ^{2} \theta\right)+\cos ^{2} \theta\left(1+\tan ^{2} \theta\right)$
$=\sin ^{2} \theta+\sin ^{2} \theta \cot ^{2} \theta+\cos ^{2} \theta+\cos ^{2} \theta \tan ^{2} \theta$
$=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\sin ^{2} \theta \frac{\cos ^{2} \theta}{\sin ^{2} \theta}$
$+\cos ^{2} \theta \cdot \frac{\sin ^{2} \theta}{\cos ^{2} \theta}$
$=1+\cos ^{2} \theta+\sin ^{2} \theta=1+1=2=$ R.H.S.
$1(\mathrm{~g}) \frac{1+2 \sin \theta \cos \theta}{(\sin \theta+\cos \theta)(\cot \theta+\tan \theta)}$
$=\sin \theta \cos \theta(\sin \theta+\cos \theta)$

$$
\text { L.H.S. }=\frac{1+2 \sin \theta \cos \theta}{(\sin \theta+\cos \theta)(\cot \theta+\tan \theta)}
$$

$$
=\frac{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta}{(\sin \theta+\cos \theta)\left(\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}\right)}
$$

$$
=\frac{(\sin \theta+\cos \theta)^{2}}{(\sin \theta+\cos \theta)\left(\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta \cos \theta}\right)}
$$

$$
=\frac{\sin \theta \cos \theta(\sin \theta+\cos \theta)}{\cos ^{2} \theta+\sin ^{2} \theta}
$$

$$
=\sin \theta \cos \theta(\sin \theta+\cos \theta)=\text { R.H.S. }
$$

(Proved)
1.(h) $3(\sin \theta+\cos \theta)-2\left(\sin ^{3} \theta+\cos ^{3} \theta\right)$

$$
=(\sin \theta+\cos \theta)^{3}
$$

L.H.S.

$=3(\sin \theta+\cos \theta)-2\left(\sin ^{3} \theta+\cos ^{3} \theta\right)$
$=3(\sin \theta+\cos \theta)-2(\sin \theta+\cos \theta)$
$\left(\sin ^{2} \theta+\cos ^{2} \theta-\sin \theta \cos \theta\right)$
$=(\sin \theta+\cos \theta)\{3-2(1-\sin \theta \cos \theta)\}$
$=(\sin \theta+\cos \theta)(1+2 \sin \theta \cos \theta)$
$=(\sin \theta+\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta\right)$
$=(\sin \theta+\cos \theta)(\sin \theta+\cos \theta)^{2}$
$=(\sin \theta+\cos \theta)^{3}=$ L.H.S. (Proved)
1(i) $1+\tan \theta+\sec \theta=\frac{2}{1+\cot \theta-\operatorname{cosec} \theta}$
L.H.S. $=1+\tan \theta+\sec \theta$
$=1+\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}=\frac{\cos \theta+\sin \theta+1}{\cos \theta}$
$=\frac{(\cos \theta+\sin \theta+1)(\cos \theta+\sin \theta-1)}{\cos \theta(\cos \theta+\sin \theta-1)}$
$=\frac{(\cos \theta+\sin \theta)^{2}-1}{\cos \theta(\cos \theta+\sin \theta-1)}$
$=\frac{\cos ^{2} \theta+\sin ^{2} \theta+2 \sin \theta \cos \theta-1}{\cos \theta(\cos \theta+\sin \theta-1)}$
$=\frac{1+2 \sin \theta \cos \theta-1}{\cos \theta(\sin \theta+\cos \theta-1)}$

$$
\begin{aligned}
& =\frac{2 \sin \theta \cos \theta}{\cos \theta(\sin \theta+\cos \theta-1)} \\
& =\frac{2}{\frac{1}{\sin \theta}(\sin \theta+\cos \theta-1)} \\
& =\frac{2}{1+\cot \theta-\operatorname{cosec} \theta}=\text { R.H.S. (Proved) }
\end{aligned}
$$

2. (a) $a \cos \theta-b \sin \theta=c$ रनে দেখাও বে, $a \sin \theta+b \cos \theta= \pm \sqrt{a^{2}+b^{2}-c^{2}}$

প্রমাণ \& দেওয়া জছে , $\mathrm{a} \cos \theta-\mathrm{b} \sin \theta=\mathrm{c}$
$\Rightarrow a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta-2 a b \sin \theta \cos \theta=c^{2}$
$\Rightarrow \mathrm{a}^{2}\left(1-\sin ^{2} \theta\right)+\mathrm{b}^{2}\left(1-\cos ^{2} \theta\right)$
$-2 a b \sin \theta \cos \theta=c^{2}$
$\Rightarrow a^{2}-a^{2} \sin ^{2} \theta+b^{2}-b^{2} \cos ^{2} \theta$
$-2 a b \sin \theta \cos \theta=c^{2}$
$\Rightarrow-\left\{(a \sin \theta)^{2}+(b \cos)^{2} \theta+2 \cdot \operatorname{asin} \theta \cdot b \cos \theta\right\}$

$$
=c^{2}-a^{2}-b^{2}
$$

$\Rightarrow(a \sin \theta+b \cos \theta)^{2}=a^{2}+b^{2}-c^{2}$
$\mathrm{a} \sin \theta+\mathrm{b} \cos \theta= \pm \sqrt{a^{2}+b^{2}-c^{2}}$
(Proved)
2(b) $\sin \theta+\operatorname{cosec} \theta=2$ হনে প্রমাণ কর যে, $\sin ^{n} \theta+\operatorname{cosec}^{n} \theta=2$

প্রমাণ ঃ দেওয়া আছে, $\sin \theta+\operatorname{cosec} \theta=2$
$\Rightarrow \sin \theta+\frac{1}{\sin \theta}=2 \Rightarrow \sin ^{2} \theta-2 \sin \theta+1=0$
$\Rightarrow(\sin \theta-1)^{2}=0 \Rightarrow \sin \theta-1=0 \therefore \sin \theta=1$ এখन , L.H.S. $=\sin ^{\mathrm{n}} \theta+\operatorname{cosec}^{\mathrm{n}} \theta$
$=\sin ^{\mathrm{n}} \theta+\frac{1}{\sin ^{n} \theta}=1^{\mathrm{n}}+\frac{1}{1^{n}}=1+1=2=$ R.H.S. (Proved)

2(c) $x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$ जबए $x \sin \theta-y \cos \theta=0$ रनে দেখাও যে, $x^{2}+y^{2}=1$ প্রমাণ ঃ দেওয়া জাছে ,
$x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta \cdots \cdots$ (1) এবং $\mathrm{x} \sin \theta-\mathrm{y} \cos \theta=0 \Rightarrow \mathrm{x} \sin \theta=\mathrm{y} \cos \theta$
$\therefore \mathrm{x}=\mathrm{y} \frac{\cos \theta}{\sin \theta}$.
(1) $এ x=y \frac{\cos \theta}{\sin \theta}$ বসি<़ে পাই
$\mathrm{y} \frac{\cos \theta}{\sin \theta} \cdot \sin ^{3} \theta+\mathrm{y} \cos ^{3} \theta=\sin \theta \cos \theta$
$\Rightarrow \mathrm{y} \sin ^{2} \theta \cos \theta+\mathrm{y} \cos ^{3} \theta=\sin \theta \cos \theta$
$\Rightarrow y \cos \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=\sin \theta \cos \theta$
$\Rightarrow \mathrm{y} \cos \theta .1=\sin \theta \cos \theta$
$y=\sin \theta$
(2) হতে পাই , $\mathrm{x}=\sin \theta \frac{\cos \theta}{\sin \theta}=\cos \theta$ এখन , $x^{2}+y^{2}=\cos ^{2} \theta+\sin ^{2} \theta=1$ $x^{2}+y^{2}=1 \quad$ (Showed)
2. (d) $k \tan \theta=\tan k \theta$ रলে দেখাও শে, $\frac{\sin ^{2} k \theta}{\sin ^{2} \theta}=\frac{k^{2}}{1+\left(k^{2}-1\right) \sin ^{2} \theta}$
প্রমাণ ঃ দেওয়া আছে , $\mathrm{k} \tan \theta=\operatorname{tank} \theta$
$\Rightarrow \mathrm{k} \frac{1}{\cot \theta}=\frac{1}{\cot k \theta} \Rightarrow \mathrm{k} \cot \mathrm{k} \theta=\cot \theta$
$\Rightarrow \mathrm{k}^{2}\left(\cot ^{2} \mathrm{k} \theta\right)=\cot ^{2} \theta$
$\Rightarrow \mathrm{k}^{2}\left(\operatorname{cosec}^{2} \mathrm{k} \theta-1\right)=\operatorname{cosec}^{2} \theta-1$
$\Rightarrow \mathrm{k}^{2} \operatorname{cosec}^{2} \mathrm{k} \theta=\operatorname{cosec}^{2} \theta+\mathrm{k}^{2}-1$
$\Rightarrow \mathrm{k}^{2} \frac{1}{\sin ^{2} k \theta}=\frac{1}{\sin ^{2} \theta}+\mathrm{k}^{2}-1=$ $\frac{1+\left(k^{2}-1\right) \sin ^{2} \theta}{\sin ^{2} \theta}$

$$
\begin{aligned}
\Rightarrow & \frac{k^{2}}{1+\left(k^{2}-1\right) \sin ^{2} \theta}=\frac{\sin ^{2} k \theta}{\sin ^{2} \theta} \\
& \frac{\sin ^{2} k \theta}{\sin ^{2} \theta}=\frac{k^{2}}{1+\left(k^{2}-1\right) \sin ^{2} \theta} \quad \text { (Proved) }
\end{aligned}
$$

2(e) $3 \sec ^{4} \theta+8=10 \sec ^{2} \theta$ रूে , $\tan \theta$ এর মান निর্য় কর।

প্রমাণ ः দেওয়া জাছ., $3 \sec ^{4} \theta+8=10 \sec ^{2} \theta$
$\Rightarrow 3 \sec ^{4} \theta-10 \sec ^{2} \theta+8=0$
$\Rightarrow 3 \sec ^{4} \theta-6 \sec ^{2} \theta-4 \sec ^{2} \theta+8=0$
$\Rightarrow 3 \sec ^{2} \theta\left(\sec ^{2} \theta-2\right)-4\left(\sec ^{2} \theta-2\right)=0$
$\Rightarrow\left(\sec ^{2} \theta-2\right)\left(3 \sec ^{2} \theta-4\right)=0 \Rightarrow \sec ^{2} \theta=2$
$\Rightarrow 1+\tan ^{2} \theta=2 \Rightarrow \tan ^{2} \theta=1 \quad \therefore \tan \theta= \pm 1$
जथবा , $\sec ^{2} \theta=\frac{4}{3} \Rightarrow 1+\tan ^{2} \theta=\frac{4}{3}$
$\Rightarrow \tan ^{2} \theta=\frac{4}{3}-1=\frac{1}{3} \quad \therefore \tan \theta= \pm \frac{1}{\sqrt{3}}$
$\tan \theta= \pm 1, \pm \frac{1}{\sqrt{3}}$.
2(f) $\left(a^{2}-b^{2}\right) \sin \theta+2 a b \cos \theta=a^{2}+b^{2}$
 $\operatorname{cosec} \theta$ এর মান নির্ণয় কর।
প্রমাণ \& $\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \sin \theta+2 \mathrm{ab} \cos \theta=\mathrm{a}^{2}+\mathrm{b}^{2}$ $\Rightarrow\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \tan \theta+2 \mathrm{ab}=\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \sec \theta$
$\Rightarrow\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)^{2} \tan ^{2} \theta+2 \cdot\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \tan \theta \cdot 2 \mathrm{ab}+$ $4 a^{2} b^{2}=\left(a^{2}+b^{2}\right)^{2} \sec ^{2} \theta$ [উভয় পক্ষকে বর্গ করে] $\Rightarrow\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)^{2} \tan ^{2} \theta+2 .\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \tan \theta \cdot 2 \mathrm{ab}+$ $4 a^{2} b^{2}=\left(a^{2}+b^{2}\right)^{2}\left(1+\tan ^{2} \theta\right)$ $\Rightarrow\left(a^{2}-b^{2}\right)^{2} \tan ^{2} \theta+4 a b\left(a^{2}-b^{2}\right) \tan \theta+4 a^{2} b^{2}$

$$
=\left(a^{2}+2 a b+b^{2}\right)+\left(a^{2}+b^{2}\right)^{2} \tan ^{2} \theta
$$

$\Rightarrow\left\{\left(a^{2}-b^{2}\right)^{2}-\left(a^{2}+b^{2}\right)^{2}\right\} \tan ^{2} \theta+$
$4 a b\left(a^{2}-b^{2}\right) \tan \theta+4 a^{2} b^{2}-a^{4}-2 a^{2} b^{2}-b^{4}=0$
$\Rightarrow-4 a^{2} b^{2} \tan ^{2} \theta+4 a b\left(a^{2}-b^{2}\right) \tan \theta$

$$
-\left(a^{4}-2 a^{2} b^{2}+b^{4}\right)=0
$$

$\Rightarrow 4 a^{2} b^{2} \tan ^{2} \theta-4 a b\left(a^{2}-b^{2}\right) \tan \theta+$

$$
\left(a^{2}-b^{2}\right)^{2}=0
$$

$\Rightarrow\left\{2 a b \tan \theta-\left(a^{2}-b^{2}\right)\right\}^{2}=0$
$\Rightarrow 2 a b \tan \theta-\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)=0$
$\Rightarrow 2 \mathrm{ab} \tan \theta=\mathrm{a}^{2}-\mathrm{b}^{2}$

$$
\tan \theta=\frac{a^{2}-b^{2}}{2 a b} \text { (Ans.) }
$$

এখन, $\operatorname{cosec} \theta=\sqrt{1-\cot ^{2} \theta}$
$[\because \theta$ ধনাত্যক সূক্ম কোণ ।]
$=\sqrt{1-\left(\frac{2 a b}{a^{2}-b^{2}}\right)^{2}}=\sqrt{\frac{\left(a^{2}-b^{2}\right)^{2}+4 a^{2} b^{2}}{\left(a^{2}-b^{2}\right)^{2}}}$
$=\sqrt{\frac{\left(a^{2}+b^{2}\right)^{2}}{\left(a^{2}-b^{2}\right)^{2}}}=\frac{a^{2}+b^{2}}{a^{2}-b^{2}} \quad$ (Ans.)
$2(\mathrm{~g}) \cot \mathrm{A}+\cot \mathrm{B}+\cot \mathrm{C}=0$ হলে প্রমা巾 बन बে ，$(\Sigma \tan A)^{2}=\Sigma \tan ^{2} A$

প্রমাণ \＆দেওয়া জাছে ， $\cot \mathrm{A}+\cot \mathrm{B}+\cot \mathrm{C}=0$
$\Rightarrow \frac{1}{\tan A}+\frac{1}{\tan B}+\frac{1}{\tan C}=0$
$\Rightarrow \frac{\tan B \tan C+\tan C \tan A+\tan A \tan B}{\tan A \tan B \tan C}=0$
$\Rightarrow \tan \mathrm{A} \tan \mathrm{B}+\tan \mathrm{B} \tan \mathrm{C}+\tan \mathrm{C} \tan \mathrm{A}=0$
$\Rightarrow 2(\tan \mathrm{~A} \tan \mathrm{~B}+\tan \mathrm{B} \tan \mathrm{C}+\tan \mathrm{C} \tan \mathrm{A})=0$
$\Rightarrow \tan ^{2} A+\tan ^{2} B+\tan ^{2} C+2(\tan A \tan B+$ $\tan \mathrm{B} \tan \mathrm{C}+\tan \mathrm{C} \tan \mathrm{A})=\tan ^{2} \mathrm{~A}+$ $\tan ^{2} B+\tan ^{2} C$
$\Rightarrow(\tan A+\tan B+\tan C)^{2}=\tan ^{2} A+\tan ^{2} B$ $+\tan ^{2} \mathrm{C}$
$\left(\sum \tan A\right)^{2}=\sum \tan ^{2} A \quad$（Showed）
2（h） $\cos \theta+\sec \theta=\frac{5}{2}$ राে প্রমাণ बत्र यে，
$\cos ^{n} \theta+\sec ^{n} \theta=2^{n}+2^{-n}$
প্রयাण B দেӨয়া জाছে ， $\cos \theta+\sec \theta=\frac{5}{2}$
$\Rightarrow \cos \theta+\frac{1}{\cos \theta}=\frac{5}{2}$
$\Rightarrow \cos ^{2} \theta+1=\frac{5}{2} \cos \theta$
$\Rightarrow 2 \cos ^{2} \theta+2=5 \cos \theta$
$\Rightarrow 2 \cos \theta-5 \cos \theta+2=0$
$\Rightarrow 2 \cos ^{2} \theta-4 \cos \theta-\cos \theta+2=0$
$\Rightarrow 2 \cos \theta(\cos \theta-2)-1(\cos \theta-2)=0$
$\Rightarrow(\cos \theta-2)(2 \cos \theta-1)=0$
$\cos \theta-2=0$ जथবा ， $2 \cos \theta-1=0$
কিল্ডু $\cos \theta-2 \neq 0 \quad[\because-1 \leq \cos \theta \leq 1]$
$2 \cos \theta-1=0 \Rightarrow \cos \theta=\frac{1}{2} \therefore \sec \theta=2$
এथन ，L．H．S．$=\cos ^{n} \theta+\sec ^{n} \theta$

$$
\begin{aligned}
& =\left(\frac{1}{2}\right)^{n}+(2)^{n} \\
& =2^{n}+2^{-n}=\text { R.H.S. }
\end{aligned}
$$

L．H．S．＝R．H．S．（ প্রমাণিত）

2（i）$a_{1} \sin \theta+b_{1} \cos \theta+c_{1}=0$ जदर
$a_{2} \sin \theta+b_{2} \cos \theta+c_{2}=0$ সমीক্বणচয় रতে θ অপসারণ কন।
সমাধান ः দেওয়া জাছ，$a_{1} \sin \theta+b_{1} \cos \theta+c_{1}=0$

$$
a_{2} \sin \theta+b_{2} \cos \theta+c_{2}=0
$$

বজ্র্যুুন প্রণালীর সাহাব্যে পাই，

$$
\begin{aligned}
& \frac{\sin \theta}{b_{1} c_{2}-b_{2} c_{1}}=\frac{\cos \theta}{a_{2} c_{1}-a_{1} c_{2}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}} \\
& \sin \theta=\frac{b_{1} c_{2}-b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}, \cos \theta=\frac{a_{2} c_{1}-a_{1} c_{2}}{a_{1} b_{2}-a_{2} b_{1}}
\end{aligned}
$$

এখন， $\sin ^{2} \theta+\cos ^{2} \theta=1$
$\Rightarrow\left(\frac{b_{1} c_{2}-b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\right)^{2}+\left(\frac{a_{2} c_{1}-a_{1} c_{2}}{a_{1} b_{2}-a_{2} b_{1}}\right)^{2}=1$
$\Rightarrow\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(a_{2} c_{1}-a_{1} c_{2}\right)^{2}$

$$
=a_{1} b_{2}-a_{2} b_{1}
$$

3．সমাষান ：

$\mathrm{DE}=\mathrm{s}=\mathrm{r} \theta=8 \times \frac{30 \pi}{180}$
$=4.189$ মিটার（ প্রায়）।
ABCDE সম্মূள কৈত্রের কেত্রফন

ADE বৃछ্তকন্লার কেত্রফ户 $=8 \times 7+\frac{r^{2} \theta}{2}$
$=56+\frac{8^{2}}{2} \times \frac{30 \pi}{180}$
$=56+16.755=80.755$ ব爪 মিটার（প্রায়）।
4．সমাধান ः এখানে $\mathrm{AD}=\mathrm{BC}=3$ মিটার।
$\mathrm{DC}=\mathrm{AB}=4$ মিটার।
$\tan \mathrm{CAD}=\frac{D C}{A D}=\frac{4}{3}$

$=\tan (0.927)$
ধরি，$\theta=\angle C A D=0.927$ রেডিয়ান।
$r=A C=\sqrt{4^{2}+3^{2}}=5$ মিটার।
বৃछाथ $C E$ এর দৈर्घ्य $=r \theta=5 \times 0.927$
$=4.635$ মিটার（প্রায়）

ত্রিভুজ ক্ষেত্র ACD এর ক্ষেত্রফল
$=\frac{1}{2}(\mathrm{AD} \times \mathrm{CD})=\frac{1}{2}(3 \times 4)=6$ ব斤 মিটার।
ACE বৃত্তকলার ক্ষেত্রশ্ন $=\frac{r^{2} \theta}{2}=\frac{25 \times 0.927}{2}$
$=11 \cdot 5875$ ব斤 মিটার।
CDE क्षেত্রের ক্মেত্রশ্न $=(11 \cdot 5875-6)$
$=5.5875$ বর্গ মিটার（প্রায়）।

5．সমাধান ः AECB একটি বৃষ্টল্না বলে

$\mathrm{AB}=\mathrm{BC}=4$ মিটার।

$\mathrm{AC}=\sqrt{4^{2}+4^{2}}=4 \sqrt{2}$ মিটার
ADC অর্ধ্রবৃচ্টের ব্যাসাধ $\mathrm{r}=\frac{1}{2} \times 4 \sqrt{2}$
$=2 \sqrt{2}$ মিটার
ADC बर्ধ্ববৃজ্জের ক্ষেত্রক্ন $=\frac{1}{2} \pi \mathrm{r}^{2}=\frac{1}{2} \pi \times 8$

$$
=4 \pi \text { বর্গ মিটার। }
$$

বৃষাশ AEC এর দৈ匂 $=r \theta=4 \times \frac{\pi}{2}$

$$
=2 \times 3 \cdot 1416=6 \cdot 2832 \text { মিটার। }
$$

AECB বৃষ্বबनाর क্শেख্লশ $=\frac{r^{2} \theta}{2}=\frac{4^{2}}{2} \times \frac{\pi}{2}$
$=4 \pi$ ব爪 মিটার।
ABC ত্রিজूজ্জের কেন্রख্न $=\frac{1}{2} \times \mathrm{a}^{2}=\frac{1}{2} \times 4^{2}$
$=8$ বর্গ মিটার।
AECD ক্ষেত্রের ক্থত্রশ্न $=\mathrm{ADC}$ बर्ধ্ববৃত্জের

$=\mathrm{ADC}$ অर्4্4বृत্তের ক্ষেত্রশ্ল－（AECB

$$
=4 \pi-4 \pi+8=8 \text { বর্গ মিটার }
$$

6．সমাধান ： $\mathrm{A}, \mathrm{P} ; \mathrm{P}, \mathrm{Q} ; \mathrm{A}, \mathrm{Q}$ যোগ করি। তাহলে APQ একটি সমবাহ্ ত্রিভুজ।

APQ ত্রিভूজ্জের ক্রেশ্ন $=\frac{\sqrt{3}}{4}(1)^{2}=\frac{\sqrt{3}}{4}$ ব斤 একক। APQ বৃত্তকनाর क्भেত্রফन $=\frac{r^{2} \theta}{2}=\frac{1^{2}}{2} \times \frac{6() \pi}{180}=\frac{\pi}{6}$ বর্গ একক।

APBQ శ্ষেত্রের ক্小েত্রষ্ন $=4\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right)$
$=4 \times \frac{2 \pi-3 \sqrt{3}}{12}=\frac{2 \pi-3 \sqrt{3}}{3}$ व্গ একক।
অতির্রিফ্ ধশ্ৰ（সমাধানসহ）
 $\mathrm{A}=60^{\circ}$ । ABPD একটি বৃষ্কলা । दৃত্তাए্ BPD

সমাধানः এখানে，ABPD বৃত্তকলার BPD दृতiশশ ঘারা কেন্দ্রে উৎপন্ন কোণ $\theta=\angle \mathrm{BAD}=60^{\circ}=\frac{\pi}{3}$ ， বৃত্তের ব্যাসার্ধ $r=$ রম্মসের বাহ্র দৈর্ঘ্য $=2$ স．সি．ি．

বৃত্তাংশ BPD এর দৈর্ঘ্য $=r \theta=2 \times \frac{\pi}{3}=2 \cdot 1$ সে. মি. (প্রায়)।

ABPD ক্ষেত্রের ক্ষেত্রফল $=\frac{1}{2} \theta r^{2}=\frac{1}{2} \times \frac{\pi}{3} \times 2^{2}$ $=\frac{1}{2} \times \frac{\pi}{3} \times 2^{2}=2 \cdot 1$ বর্গ সে.মি. (প্রায়)
$\mathrm{DE} \perp \mathrm{AB}$ ও $\mathrm{AF} \perp \mathrm{CD}$ অঙ্কन করি যা AB কে F বিন্দুতেে ও CD এর বর্ধিতাংশকে F বিন্দুতে ছেদ করে।
$\triangle \mathrm{ABD}$ এ, $\angle \mathrm{A}=60^{\circ}$ (সূক্ষক্কাণ)

$$
\begin{aligned}
& \mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{AD}^{2}-2 \cdot \mathrm{AB} \cdot \mathrm{AE} \\
& =\mathrm{AB}^{2}+\mathrm{AD}^{2}-2 \cdot \mathrm{AB} \cdot \mathrm{AD} \cos \mathrm{~A} \\
& =2^{2}+2^{2}-2 \times 2 \times 2 \times \cos 60^{\circ} \\
& =8-8 \times \frac{1}{2}=4 \\
& \mathrm{BD}=2 \text { সে.मि. । }
\end{aligned}
$$

আবার, $\triangle \mathrm{ACD}, \angle \mathrm{ADC}=120^{\circ}$ (স্তুলকোণ)

$$
\begin{aligned}
& \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}+2 \mathrm{CD} \times \mathrm{DF} \\
& =\mathrm{AD}^{2}+\mathrm{DC}^{2}+2 \mathrm{CD} \times \mathrm{AD} \cos \mathrm{ADF} \\
& =\mathrm{AD}^{2}+\mathrm{DC}^{2}+2 \mathrm{CD} \times \mathrm{AD} \cos 60^{\circ} \\
& =2^{2}+2^{2}+2 \times 2 \times 2 \times\left(\frac{1}{2}\right)=12 \\
& \mathrm{AC}=2 \sqrt{3}
\end{aligned}
$$

এখন, ABCD রম্বসের ক্ষেত্রফল $=\frac{1}{2}(\mathrm{AC} \times \mathrm{BD})$

$$
=\frac{1}{2}(2 \sqrt{3} \times 2)=2 \sqrt{3} \text { বর্গ সে.মে. । }
$$

BPDC ক্ষেত্রের ক্ষেত্রফল $=\mathrm{ABCD}$ রম্বসের ক্ষেত্রফল - ABPD ক্ষেত্রের ক্ষেত্রফল

$$
=2 \sqrt{3}-\frac{2 \pi}{3}=1.37 \text { বর্গ সে.मि..(প্রায়) । }
$$

 5 সেকেন্ডে কতটূকু বৃতাকার পথ অতিক্রম কর্মবে? সমাধান: ঘড়ির সেকেন্ডের কাঁটা

60 সেকেলে 360° কোণ উৎপন্ন করে
20 小েরেেে 30° কোণ উৎপন্ন কর্র। এখানে, উৎপন্ন কোণ $\theta=30^{\circ}=\frac{\pi}{6}$ রেডিয়ান, $r=6$ মি. । ধরি, সেকেন্ডের কাঁটাটি S মি. বৃত্তাকার পথ অতিক্রম করবে।

$$
s=r \theta=6 \times \frac{\pi}{6}=\pi=3 \cdot 1416
$$

নির্ণেয় বৃত্তাকার পথ $=3 \cdot 1416$ মি. ।
3. O কেন্দ্র বিশিষ্ট বৃত্তের ব্যাসার্ধ 5 সে.মে.। বৃত্তাংশ APB এর দৈর্ঘ্য 6 সে.মি. ।

(a) $\theta=\angle \mathrm{AOB}$ নির্ণয় কর। \quad উ: $1 \cdot 2$ রেডিয়ান
(b) OAB বৃত্তকলার ক্ষেত্রফল নির্ণয় কর। উ: 15 বর্গ সে.মি.
(c) A বিন্দুতে অস্কিত বৃত্তের স্পর্শক OB এর বর্ধিতাংশকে C বিন্দুতে ছেদ করে। APBC ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। উ: $17 \cdot 15$ বর্গ সে.মি. ।

ভর্তি পরীপ্মার MCQ প্রশ্ন উত্তরসহ 8

1. $\frac{3 \pi}{8}$ রেডিয়ান কোণের ষাটমূলক পদ্ধতিতে মান কত?
[CU 07-08]
Sol ${ }^{n}$. : $\frac{3 \pi}{8}$ রেডিয়ান $=\frac{3 \times 180^{\circ}}{8}=67^{\circ} 30^{\prime}$ ক্যালক্ুেেটরের সাহায্যে,
$3 \times 180 \div 8=67.50,07030^{\circ}$
2. $50^{0} 37^{\prime} 30^{\prime \prime}=$ কত রেডিয়ান ? [CU 05-06]

Sol $^{n} \cdot: 50^{\circ} 37^{\prime} 30^{\prime \prime}=\frac{50.625 \times \pi}{180}=\frac{9 \pi}{32}$

1(a) Sol $^{\mathrm{n}}$: জ্যামিতিক কোণ ধনাত্থক এবং 360° এর ছোট হয় : \therefore Ans. B
(b) Sol $^{n}: \frac{\text { बुढ তुর পরিধি }}{2 \mathrm{r}}=\pi$
Ans. C
(c) \quad Sol $^{\mathrm{n}}: \sec \theta=\frac{\mathrm{OB}}{\mathrm{OP}} \therefore$ Ans. A
(d) Sol $^{\mathrm{n}}: \tan ^{2} \theta=\sec ^{2} \theta-1 \quad$ Ans. C
(e) $\mathrm{Sol}^{\mathrm{I}}$: সবগুলি তথ্য সত্য । Ans. D
(f) Sol $^{\mathrm{n}}: \sin \theta$ ও $\cos \theta$ এর মান সবসময় -1 থেকে $+1 \quad$ Ans. C
(g) $\mathbf{S o l}^{\mathrm{n}}$: কোণ 90° থেকে বেড়ে 180° হলে $\cos \theta$ এর মান 0 থেকে কমে -1 হবে। Ans. A
(h) Sol ${ }^{\mathrm{n}}:$ সर्বেषচ মান $=1+\sqrt{(\pm 1)^{2}+1}=1+\sqrt{2} \quad$ Ans. C
2. निম্মের ফাशশনগুলোর जেখচিত্র অষ্কন কন :
(a) $y=\cos 2 x$, यখन $0 \leq x \leq 2 \pi$
[ঢা.’১০,’১8; চ.'০৯;'১৩]
সমাধান ः निচের তালিকায় $x \in[0,2 \pi]$ এর জন্য $y=\cos 2 x$ এর প্রতিরূপী মান निণ্ণয় করি ঃ

x	0	$\frac{\pi}{18}$	2. $\frac{\pi}{18}$	3. $\frac{\pi}{18}$	4. $\frac{\pi}{18}$	$4.5 \times \frac{\pi}{18}$	5. $\frac{\pi}{18}$	6. $\frac{\pi}{18}$
$\mathrm{y}=\cos 2 \mathrm{x}$	1	0.94	0.77	0.5	0.17	0	-0.17	-0.5
x	7. $\frac{\pi}{18}$	8. $\frac{\pi}{18}$	9. $\frac{\pi}{18}$	12. $\frac{\pi}{18}$	17. $\frac{\pi}{18}$	$22 . \frac{\pi}{18}$	28. $\frac{\pi}{18}$	36. $\frac{\pi}{18}$
$\mathrm{y}=\cos 2 \mathrm{x}$	-0.77	-0.93	-1.	-0.5	0.94	-0.17	0.94	1

sকটি ছক কাগজে স্থানাজ্কের অক্ষরেथা $\mathrm{X}^{\prime} \mathrm{OX}$ ও YOY' আঁকি ।

$y=\cos 2 x$ এর লেখচিত্র ।

স্কেন নিধারণ : x-Чক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাছू $=\frac{\pi c^{c}}{18}$ এবং y - অক্ষ বরাবর ছোট বর্গক্ষেত্রের 10 বাহू $=1$ এখন নিধারিত স্কেল অनুযায়ী তালিকাভুক্ত ক্স্দুগুলো ছক কাগজ্জ স্সাপন করি। স্থাপিত ক্ন্দুগুলো মুক্ত হস্তে বক্বাকারে যোগ করে প্রদত্ত সীমা অনুযায়ী $\mathrm{y}=\cos 2 \mathrm{x}$ এর লেখ অঙ্কন করা হল।
(b) $y=\sin 3 x, \quad$ यथन $0 \leq x \leq \pi$
[ङ. '০৯,'১২; «া.’’৪; দি.'১৩]
সমাধান : নিচের তালিকায় $\mathrm{x} \in[0, \pi]$ এর জন্য $\mathrm{y}=\sin 3 \mathrm{x}$ এর প্রতিরূপী মান নির্ণয় করি :

x	0	$\frac{\pi}{36}$	2. $\frac{\pi}{36}$	3. $\frac{\pi}{36}$	4. $\frac{\pi}{36}$	5. $\frac{\pi}{36}$	6. $\frac{\pi}{36}$	7. $\frac{\pi}{36}$
$\mathrm{y}=\sin 3 \mathrm{x}$	0	0.26	0.5	0.71	0.87	0.97	1	0.97
x	$8 . \frac{\pi}{36}$	9. $\frac{\pi}{36}$	10. $\frac{\pi}{36}$	12. $\frac{\pi}{36}$	17. $\frac{\pi}{36}$	22. $\frac{\pi}{36}$	28. $\frac{\pi}{36}$	36. $\frac{\pi}{36}$
$\mathrm{y}=\sin 3 \mathrm{x}$	0.87	0.71	0.5	0	-0.97	-0.5	0.87	0

একটি ছক কাগজে স্যানাজ্কের অক্ষরেখা X'OX B YOY' আiকি।

$y=\sin 3 x$ এর নেখচিত্রে
এখन নিধারিত স্কেল অনুयায়ী ঢালিকাভুক্ত ক্দিগুগো ছক কাগজে স্থাপন করি। স্থাপিত ক্ন্দুগুলো মুক্ত হস্তে বক্রাকারে যোগ করে প্রদা্তু সীমা অনুযায়ী $\mathrm{y}=\sin 3 \mathrm{x}$ এর লেখ অঙ্কন করা হল ।
2. (c) $y=\cos 3 x$, गथन $0 \leq x \leq \pi$
[চ.’০১,’০৪; ঢা.’৩৩ ; य.'০৫]
সমাখান \& निচের তালিকায় $\mathrm{x} \in[0, \pi]$ এর জন্য $\mathrm{y}=\cos 3 \mathrm{x}$ এর প্রতিরূপী মান निর্ণয় করি ঃ

x	0	$\frac{\pi}{36}$	2. $\frac{\pi}{36}$	3. $\frac{\pi}{36}$	4. $\frac{\pi}{36}$	5. $\frac{\pi}{36}$	6. $\frac{\pi}{36}$	7. $\frac{\pi}{36}$
$\mathrm{y}=\cos 3 \mathrm{x}$	1	0.97	0.87	0.71	0.5	0.26	0	-0.26
x	8. $\frac{\pi}{36}$	9. $\frac{\pi}{36}$	10. $\frac{\pi}{36}$	12. $\frac{\pi}{36}$	17. $\frac{\pi}{36}$	22. $\frac{\pi}{36}$	28. $\frac{\pi}{36}$	36. $\frac{\pi}{36}$
$\mathrm{y}=\cos 3 \mathrm{x}$	-0.5	-0.71	-0.87	-1	-0.26	-0.5	0.5	-1

$\mathbf{y}=\cos 3 \mathrm{x}$ এর নেখচিত্র ।
এখন নিধারিত স্কেল অনুযায়ী তালিকাভুক্ত বিন্দুগুলো ছক কাগজে স্থাপন করি। স্থাপিত বিম্দুগুল্ো মুক্ত হস্তে বক্রাকারে যোগ করে প্রদত্ত সীমা অনুযায়ী $\mathrm{y}=\cos 3 \mathrm{x}$ এর লেখ অঙ্কন করা হল ।
2. (d) $y=\sin ^{2} x$ घथन $-\pi \leq x \leq \pi$
[ব.'০১;সি.'১,’১০; ঢা.'০৪; ক্.'১৩; চ.'১৩]
সমাধান ঃ নিচের তালিকায় $x \in[-\pi, \pi]$ এর জন্য $y=\sin ^{2} x$ এর প্রতিরূপী মান নির্ণয় করি :

x	0	$\pm \frac{\pi}{18}$	$\pm 2 \cdot \frac{\pi}{18}$	$\pm 3 \cdot \frac{\pi}{18}$	$\pm 4 \cdot \frac{\pi}{18}$	$\pm 5 \cdot \frac{\pi}{18}$	$\pm 6 . \frac{\pi}{18}$
$\mathrm{y}=\sin ^{2} \mathrm{x}$	0	0.03	0.117	0.25	0.41	0.59	0.75
x	$\pm 7, \frac{\pi}{18}$	$\pm \pm . \frac{\pi}{18}$	$\pm 9 \cdot \frac{\pi}{18}$	$\pm 12 . \frac{\pi}{18}$	$\pm 14 \cdot \frac{\pi}{18}$	$\pm 16 \cdot \frac{\pi}{18}$	$\pm 18 \cdot \frac{\pi}{18}$
$\mathrm{y}=\sin ^{2} \mathrm{x}$	0.88	0.97	1	0.75	0.41	0.117	0

একটি ছক কাগজ্জ স্থানাজ্কের অক্ষরেথা $\mathrm{X}^{\prime} \mathrm{OX}$ ও 'YOY' জঁকি।

$\mathbf{y}=\sin ^{2} \mathbf{x}$ এর নেখচিত্র ।

এখন নির্ধারিত স্কেল জনুযায়ী তালিকাভুক্ত ক্দিগুলো ছক কাগজে স্সাপন করি। স্সাপিত ক্দ্দুগুল্লে মুক্ত হল্তে বক্রাকারে যোগ করে প্রদত্ত সীমা जনুयায়ী $y=\sin ^{2} x$ এর লেখ অঙ্কन করা হन।
(e) $y=\cos ^{2} x$, যथन $-\pi \leq x \leq \pi \quad$ [রা.'০৩, '০৬,'০৯; ব.'০৫; চ.'০৫,'১১; য.'০৯,’১৩; ব.,দি:'১৩] সমাধান ঃ নিচের তালিকায় $x \in[-\pi, \pi]$ এর জ়ন্য $y=\cos ^{2} x$ এর প্রতিরূপী মান নিণ্ৰয় করি :

x	0	$\pm \frac{\pi}{18}$	$\pm 2 \cdot \frac{\pi}{18}$	$\pm 3 \cdot \frac{\pi}{18}$	$\pm 4 \cdot \frac{\pi}{18}$	$\pm 5 \cdot \frac{\pi}{18}$	$\pm 6 \cdot \frac{\pi}{18}$
$\mathrm{y}=\cos ^{2} \mathrm{x}$	1	0.97	0.88	0.75	0.59	0.41	0.25
x	$\pm 7 \cdot \frac{\pi}{18}$	$\pm 8 \cdot \frac{\pi}{18}$	$\pm 9 \cdot \frac{\pi}{18}$	$\pm 10 \frac{\pi}{18}$	$\pm 12 \cdot \frac{\pi}{18}$	$\pm 15 \cdot \frac{\pi}{18}$	$\pm 18 \cdot \frac{\pi}{18}$
$\mathrm{y}=\cos ^{2} \mathrm{x}$	0.12	0.03	0	0.97	0.25	0.75	1

একটি ছক কাগজে স্যানাংকেরু অক্কেরো X'OX ও YOY' आঁকি।

$y=\cos ^{2} x$ এর লেখচিত্র ।
এখন নিধারিত স্কেল অনুযায়ী তালিকাভুক্ত ক্দিগুলো ছক কাগজ্জ স্থাপন করি। স্থাপিত ক্ন্দুগুলো মুক্ত হল্তে বক্াকারে যোগ করে প্রদত্ত সীমা অনুযায়ী $y=\cos ^{2} \mathbf{x}$ এর লেখ অঙ্রস করা হল।

2. (f) $y=\sin ^{3} x$, यथन $0 \leq x \leq \pi$

[य. ’০০;চ..’০২]
সমাধাम ः নিচের তালিকায় $x \in[0, \pi]$ এর জন্য $\mathrm{y}=\sin ^{3} \mathrm{x}$ এর প্রতিরূপী মান নির্ণয় করি :

x	0	$\frac{\pi}{18}$	2. $\frac{\pi}{18}$	3. $\frac{\pi}{18}$	4. $\frac{\pi}{18}$	5. $\frac{\pi}{18}$	6. $\frac{\pi}{18}$
$\mathrm{y}=\sin ^{3} \mathrm{x}$	0	0.005	0.04	0.13	0.27	0.45	0.65
x	7. $\frac{\pi}{18}$	8. $\frac{\pi}{18}$	9. $\frac{\pi}{18}$	12. $\frac{\pi}{18}$	14. $\frac{\pi}{18}$	16. $\frac{\pi}{18}$	18. $\frac{\pi}{18}$
$\mathrm{y}=\sin ^{3} \mathrm{x}$	0.83	0.96	1	0.65	0.27	0.04	0

একটি ছক কাগজ্জ স্মানাজ্কের অক্রেরা X'OX ও YOY' আíকি।

এখন নিধরিত স্কেল অনুযায়ী তালিকাভুক্ত ক্ন্দুগুলো ছক কাগজ্েে স্থাপন করি। স্ধাপিত ষিন্দুগুলো মুক্তু হল্তে বক্রাকারে যোগে করে প্রদত্ত সীমা অনুযায়ী $\mathrm{y}=\sin ^{3} x$ এর লেখ অঙ্ফन করা হল।
2. (g) $y=\sin x \cos x$, यখन $-\pi \leq x \leq \pi$

সমাধান : $y=\sin x \cos x \Rightarrow y=\frac{1}{2} \sin 2 x$
নিচের তালিকায় $x \in[-\pi, \pi]$ এর জন্য $y=\frac{1}{2} \sin 2 x$ এর প্রতিরূপী মান নির্ণয় করি

x	0	$\pm \frac{\pi}{18}$	$\pm 2 \cdot \frac{\pi}{18}$	$\pm 3 \cdot \frac{\pi}{18}$	$\pm 4 \cdot \frac{\pi}{18}$	$\pm \frac{\pi}{4}$	$\pm 5 \cdot \frac{\pi}{18}$
$\mathrm{y}=\frac{1}{2} \sin 2 \mathrm{x}$	0	$\pm 0 \cdot 17$	± 0.32	± 0.43	± 0.49	± 0.5	± 0.49
x	$\pm 6 . \frac{\pi}{18}$	$\pm 7 \frac{\pi}{18}$	$\pm 8 \cdot \frac{\pi}{18}$	$\pm 9 \cdot \frac{\pi}{18}$	$\pm 14 \cdot \frac{\pi}{18}$	$\pm 15 \cdot \frac{\pi}{18}$	$\pm 18 \cdot \frac{\pi}{18}$
$\mathrm{y}=\frac{1}{2} \sin 2 \mathrm{x}$	± 0.43	± 0.32	± 0.17	0	∓ 0.49	∓ 0.43	0

$y=\sin x \cos x$ এর নেখচিত্র ।

 এখন নিধরিত স্কেল অনুযায়ী তালিকাভুক্ত ক্দ্দুগুলো ছক কাগজে স্থাপন করি। স্থাপিত ক্দ্দুগুলো মুক্তু হল্তে বক্লাকরে যোগ করে প্রদख সীমা जনুযায়ী $\mathrm{y}=\sin \mathrm{x} \cos \mathrm{x}$ जর নেখ অঙ্কन করা হল।
3. जেখচিট্রে সাহাব্য স সাষান কন্ন 8
(a) $\sin x-\cos x=0,0 \leq x \leq \frac{\pi}{2}$

সমাथান 8 फেওয়া जाছে $\sin x-\cos x=0 \Rightarrow \sin x=\cos x$
মনে করি, $\mathrm{y}=\sin \mathrm{x}=\cos \mathrm{x} \quad \therefore \mathrm{y}=\sin \mathrm{x}$ এবए $\mathrm{y}=\cos \mathrm{x}$
নিচের जालिকায় $x \in\left[0, \frac{\pi}{2}\right]$ এর बन्য $y=\sin x$ ® $y=\cos x$ এর প্রতিরূभী মান নিণ্য করি :

x	0	$\frac{\pi}{18}$	2. $\frac{\pi}{18}$	3. $\frac{\pi}{18}$	4. $\frac{\pi}{18}$	$\frac{\pi}{4}$	5. $\frac{\pi}{18}$
$y=\sin x$	0	0.17	0.34	0.5	0.64	0.71	0.77
$y=\cos x$	1	0.98	0.94	0.87	0.77	0.71	0.64
x	6. $\frac{\pi}{18}$	7. $\frac{\pi}{18}$	8. $\frac{\pi}{18}$	9. $\frac{\pi}{18}$			
$y=\sin x$	0.87	0.94	0.98	1			
$y=\cos x$	0.5	0.34	0.17	0			

একটি ছক কাগজ্ স্থানাজ্কের অকরেখা $\mathrm{X}^{\prime} \mathrm{OX}$ ও YOY' औiকি।

 यাशনদ্যের লেখচিত্র দুইটি অঙ্গন করি। লেখচিত্র থেকে দেখা যাচ্ছে থে প্রদত সীমার মধ্যে ছেদ ব্দ্দুর ভূজ

रচ্ছে $\frac{\pi}{4}$. সুতরাং निর্ৰে সমাধান , $x=\frac{\pi}{4}$.
3. (b) $2 \sin ^{2} x=\cos 2 x,-\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$
[य.'ov,’ob,'o১]
স্মাধান ः মনে করি, $y=2 \sin ^{2} x=\cos 2 x \quad y=2 \sin ^{2} x$ এবং $y=\cos 2 x$
নিচের তালিকায় $x \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]$ এর জন্য $y=2 \sin ^{2} x$ ® $y=\cos 2 x$ এর প্রতিরূপী মান নিণয় করি :

x	0	$\pm \frac{\pi}{18}$	$\pm 2 \cdot \frac{\pi}{18}$	$\pm 3 \cdot \frac{\pi}{18}$	$\pm 4 \cdot \frac{\pi}{18}$	$\pm \cdot \frac{\pi}{4}$	$\pm 5 \cdot \frac{\pi}{18}$
$\mathrm{y}=2 \sin ^{2} \mathrm{x}$	0	0.06	0.23	0.5	0.83	1	1.17
$\mathrm{y}=\cos 2 \mathrm{x}$	1	0.94	0.77	0.5	0.17	0	-0.17
x	$\pm 6 \cdot \frac{\pi}{18}$	$\pm 7 \cdot \frac{\pi}{18}$	$\pm 8 . \frac{\pi}{18}$	$\pm 9 \cdot \frac{\pi}{18}$	$15 \cdot \frac{\pi}{18}$	$21 . \frac{\pi}{18}$	$27 \cdot \frac{\pi}{18}$
$\mathrm{y}=2 \sin ^{2} \mathrm{x}$	1.5	1.77	1.94	2	0.5	0.5	2
$\mathrm{y}=\cos 2 \mathrm{x}$	-0.5	-0.77	0.94	-1	0.5	0.5	-1

sকটি ছক কাগজ্জ স্পানাজ্কের জক্ষরেখা X'OX ও YOY' জাঁকি।

=ইন নিধারিত ক্কেম অনুযায়ী তালিকাভুক্ত বিন্দুগুল্ো ছক কাগজে স্থাপন করে $y=2 \sin ^{2} x$ ও $y=\cos 2 x$ క্থ্শনদ্দয়ের লেখচিত্র দুইটি অঙ্কন করি। লেখচিত্র থেকে দেখা যাচ্ছে যে প্রদত সীমার মধ্যে ছেদ ব্দ্দুর

3. (c) $5 \sin x+2 \cos x=5,0 \leq x \leq \frac{3 \pi}{2}$
[य.'০8; চ.'১০; दা.,ব.'১8]
न्वाथान : দেఆয়া জাছে , $5 \sin x+2 \cos x=5 \Rightarrow 2 \cos x=5(1-\sin x)$

সমাধান ः निচের जালিকায় $x \in\left[0, \frac{3 \pi}{2}\right]$ এর জন্য, $y=2 \sin ^{2} x$ ও $y=\cos 2 x$ এর প্রতিরূभী মান নিণ্য় করি:

x	0	$\frac{\pi}{18}$	$2 \cdot \frac{\pi}{18}$	$3 \cdot \frac{\pi}{18}$	$4 \cdot \frac{\pi}{18}$	$5 \cdot \frac{\pi}{18}$	6. $\cdot \frac{\pi}{18}$
$\mathrm{y}=5(1-\sin \mathrm{x})$	5	$4 \cdot 13$	$3 \cdot 29$	$2 \cdot 5$	1.79	1.17	0.67
$\mathrm{y}=2 \cos \mathrm{x}$	2	$1 \cdot 97$	$1 \cdot 88$	1.73	1.53	$1 \cdot 29$	1
x	$7 \cdot \frac{\pi}{18}$	$8 \cdot \frac{\pi}{18}$	$9 \cdot \frac{\pi}{18}$	$11 \cdot \frac{\pi}{18}$	$15 \cdot \frac{\pi}{18}$	$19 \cdot \frac{\pi}{18}$	$20 \cdot \frac{\pi}{18}$
$\mathrm{y}=5(1-\sin \mathrm{x})$	$0 \cdot 3$	$0 \cdot 08$	0	0.3	2.5	5.89	6.7
$\mathrm{y}=2 \cos \mathrm{x}$.68	$0 \cdot 35$	0	-0.68	-1.73	-1.97	-1.88
x	$21 \cdot \frac{\pi}{18}$	$22 \cdot \frac{\pi}{18}$	$23 \cdot \frac{\pi}{18}$	$24 \cdot \frac{\pi}{18}$	$25 \cdot \frac{\pi}{18}$	$26 \cdot \frac{\pi}{18}$	$27 \cdot \frac{\pi}{18}$
$\mathrm{y}=5(1-\sin \mathrm{x})$	7.5	8.2	8.83	9.93	9.7	9.9	10
$\mathrm{y}=2 \cos \mathrm{x}$	-.73	1.53	-1.29	-1	-0.68	-0.35	0

এ‘টটি ছক কাগজে স্থানাজ্কের অক্ষরেখা X'OX ఆ YOY' আঁকি।
স্কেন নিরারণ : x-অক্ষ বরাবর ছোট বগক্ষের্রের এক বাহू $=\frac{\pi^{c}}{18}$ এবং y - অক্ষ বরাবর ছোট বগক্ষেত্রের 1 বাহू = 1

এখন নিধারিত স্কেল অনুযায়ী তালিকাভুক্ত বিন্দুগুলো ছক কাগজে স্মাপন্ করে y=5(1-sinx) ও $y=2 \cos x$. ফাঁশনদয়ের লেখচিত্র দুইটি অঙ্কন করি। লেখচিত্র থেকে দেখা যাচ্ছে মে প্রদত্ত সীমার মধ্যে ছেদ ব্দিরু ভূজসমূহ হচ্ছে $46.4^{\circ}=\frac{232}{9} \pi, 90^{\circ}=\frac{\pi}{2}$. সুতরাং, निरণণেয় সমাধান, $x=46.4^{\circ}=\frac{232}{9} \pi, 90^{\circ}=\frac{\pi}{2}$
3. (d) $x-\tan x=0,0 \leq x \leq \frac{\pi}{2}$
[রা.’০৪,’০১; ব.’০৪,’১১,’১৩.'০৫,’১০,’১২; கূ.. ’০৭,’১০; দি.'১০,’১২; চ.’১১; ঢা.’১১; য.’১২]

সমাభান : দেওয়া আছে , $x-\tan x=0 \Rightarrow x=\tan x$
মনে করি $y=x=\tan x \quad \therefore y=x$ এবং $y=\tan x$
নিচের তাল্লিকায় $x \in\left[0, \frac{\pi}{2}\right]$ এর জন্য $y=x$ ও $y=\tan x$ এর প্রতিরূপী মান নিঁণয় করি :

x $y=x$	0 0	$\begin{aligned} & \frac{\pi}{18} \\ & 0.18 \end{aligned}$	$\begin{aligned} & \text { 3. } \frac{\pi}{18} \\ & 0.52 \end{aligned}$	$\begin{aligned} & \frac{\pi}{2} \\ & 1.57 \end{aligned}$			
X	0	$\frac{\pi}{18}$	2. $\frac{\pi}{18}$	3. $\frac{\pi}{18}$	4. $\frac{\pi}{18}$	5. $\frac{\pi}{18}$	6. $\frac{\pi}{18}$
$y=\tan x$	0	0.18	0.36	0.58	0.84	$1 \cdot 19$	1.73
x	$7 \frac{\pi}{18}$	$7.5 \times \frac{\pi}{18}$	8. $\frac{\pi}{18}$	$8.5 \times \frac{\pi}{18}$	9. $\frac{\pi}{18}$		
$y=\tan x$	2.75	3.73	5.67	11.43	অসशজ্ঞाয়িত		

একটি ছক কাগজে স্থানাঙ্কের অক্ষরেখা X'OX ও YOY' আঁকি।
স্কু নিধারণ ঃ. x-অক্ষ বরাবর ছোট বর্গক্ষেত্রের এক বাহু $=\frac{\pi^{*}}{18}$ এবংং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 1 বাহু $=1$

এখন নিধারিত স্কেল অনুযায়ী তালিকাভুক্ত বিন্দুগুলো ছক কাগজে স্থাপন করে $y=x$ ও $y=\tan x$ ফংশনদ্দয়ের লেখচিত্র দুইটি অঙ্কন করি। লেখচিত্র থেকে দেখা যাচ্ছে যে প্রদত্ত সীমার মধ্যে ছেদ বিন্দুর इজসমূহ रচ্ছে $0, \frac{\pi}{18}$. সুতরাং निর্ণেয় সমাধান $x=0, \frac{\pi}{18}$
3
(e) $2 x=\tan x, \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
[চ.’০২]
স্মাধান \& মনে করি $y=2 x=\tan x \quad \therefore y=2 x$ এবং $y=\tan x$
ন্তর তালিকায় $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ এর জন্য $y=2 x$ ও $y=\tan x$ এর প্রতিরূপী মান নিণয় করি :

x	0	$\pm \frac{\pi}{18}$	$\pm 3 \cdot \frac{\pi}{18}$	$\pm \frac{\pi}{2}$
$\mathrm{y}=2 \mathrm{x}$	0	± 0.35	± 1.05	± 3.14

x	0	$\pm \frac{\pi}{18}$	$\pm 2 . \frac{\pi}{18}$	$\pm 3 . \frac{\pi}{18}$	$\pm 4 . \frac{\pi}{18}$	$\pm 5 \cdot \frac{\pi}{18}$	$\pm 6 . \frac{\pi}{18}$
$y=\tan x$	0	± 0.18	± 0.36	± 0.58	± 0.84	± 1.19	± 1.73
x	$\pm 7 \frac{\pi}{18}$	$\pm 7 \cdot 5 \times \frac{\pi}{18}$	$\pm 8 . \frac{\pi}{18}$	$\pm .5 \times \frac{\pi}{18}$	$\pm 9 . \frac{\pi}{18}$		
$y=\tan x$	± 2.75	± 3.73	± 5.67	± 11.43	অসरख্য়য়্যিত		

একটি ছক কাগজে স্থানাজ্কের অক্ষরেখা X'OX ও YOY' জাঁকি।
স্কেল নিধারণ : x-অক্ষ বরাবর ছোট ব্গক্ষেত্রের এক বাহू $=\frac{\pi^{c}}{18}$ এবং y- অক্ষ বরাবর ছোট বর্গক্ষেত্রের 1 বাহू $=1$

এখন নিধ্রারিত স্কেল অনুযায়ী তালিকাভুক্ত বিন্দুগুলো ছক কাগজে স্থাপন কঁরে $y=2 x$ ও $y=\tan x$ ফাংশনদ্দয়ের ল্খেচিত্র দুইটি অঙ্ধন করি। লেখচিত্র থেকে দেখা যাচ্ছে যে প্রদত্ত সীমার মধ্যে ছেদ কিন্দুর ভূজসমূহ रक्ছে $0,-66^{\circ}=-\frac{11 \pi}{30}, 66^{\circ}=\frac{11 \pi}{30}$. সুতরাং, निর্ণেয় সমাধাन, $x=0,-\frac{11 \pi}{30}, \frac{11 \pi}{30}$
3.
(f) $\cot x-\tan x=2, \quad 0 \leq x \leq \pi$
[য. '০৫ ; চ.'০২; সি.'০৩,'১১ ; ঢা.'০৬; রা.'১০,’১২;ক.'১১

সমাধান ঃ দেওয়া আছে , $\cot \mathrm{x}-\tan \mathrm{x}=2 \Rightarrow \frac{\cos x}{\sin x}-\frac{\sin x}{\cos x}=2 \Rightarrow \cos ^{2} \mathrm{x}-\sin ^{2} \mathrm{x}=2 \sin \mathrm{x} \cos \mathrm{x}$

$$
\Rightarrow \cos 2 x=\sin 2 x
$$

মনে করি, $y=\sin 2 x=\cos 2 x \quad \therefore y=\sin 2 x, y=\cos 2 x$
निচের তালিকায় $x \in[0, \pi]$ এর জন্য $y=\dot{\sin } 2 x \in y=\cos 2 x$ এর প্রতিরূপী মান নিণয় করি :
X
$\frac{\pi}{36}$
2. $\frac{\pi}{36}$
3. $\frac{\pi}{36}$
4. $\frac{\pi}{36}$
5. $\frac{\pi}{36}$
6. $\frac{\pi}{36}$

$y=\sin 2 x$	0	0.17	0.34	0.5	0.64	0.77	0.87
$y=\cos 2 x$	1	0.98	0.94	0.87	0.77	0.64	0.5
x	7. $\frac{\pi}{36}$	8. $\frac{\pi}{36}$	9. $\frac{\pi}{36}$	10. $\frac{\pi}{36}$	24. $\frac{\pi}{36}$	32. $\frac{\pi}{36}$	36. $\frac{\pi}{36}$
$y=\sin 2 x$	0.94	0.98	1	0.98	-0.87	-0.64	0
$y=\cos 2 x$	0.34	0.17	0	-0.17	-0.5	0.77	1

একটি ছক কাগজে স্থানাংকের অকরেখা $\mathrm{X}^{\prime} \mathrm{OX}$ ও YOY' औঁকি।

এখন নির্ধারিত স্কেল অনুযায়ী ঢালিকাভুক্ত বি্দুগুলো ছক কাগজ্জ স্থাপন করে $y=\sin 2 x$ ও $y=\cos 2 x$
 ভূজ्बमমূহ হচ্ছে $\frac{\pi}{8}, \frac{5 \pi}{8}$. সूতরাং निर्ণেয় সমাধাन $x=\frac{\pi}{8}, \frac{5 \pi}{8}$.
4. (a) প্রমাণ : $\mathrm{OA} \perp \mathrm{OC}$ টানি।

\Rightarrow বৃত্তকना AOB এর ক্ষেত্রফল $=\frac{\theta}{\pi / 2} \times$ বৃত্তকना AOC এর ক্ষেত্রক্ল

$$
=\frac{2 \theta}{\pi} \times \frac{1}{4} \times \text { বৃত্তের ক্ষেত্রফল }=\frac{\theta}{2 \pi} \times \pi r^{2}=\frac{r^{2} \theta}{2}
$$

(b) সমাধানः OBP ब্রিভুজের ক্ষেজ্রে, $\sin \theta=\frac{\mathrm{BP}}{\mathrm{OB}}=\frac{\mathrm{BP}}{\mathrm{r}}$ उ $\cos \theta=\frac{\mathrm{OP}}{\mathrm{OB}}=\frac{\mathrm{OP}}{\mathrm{r}}$
(c) সমাধাनः দhওয়া आছू, $\theta=60^{\circ}=\frac{\pi}{3}, \mathrm{r}=5$ मु.मि., $\mathrm{BP}=4$ मु.मि.
$\mathrm{OP}=\sqrt{\mathrm{OB}^{2}-\mathrm{BP}^{2}}=\sqrt{5^{2}-4^{2}}=\sqrt{25-16}=\sqrt{9}=3$ 万ु.मि.
বৃखाशশ s এর দৈर्य্য. $=\mathrm{r} \theta=5 \times \frac{\pi}{3}=\frac{5 \pi}{3}$ 万ে.মि.

$$
\begin{aligned}
& =\frac{r^{2} \theta}{2}-\frac{1}{2}(\mathrm{OP} \times \mathrm{BP})=\frac{1}{2} \times 5^{2} \times \frac{\pi}{3}-\frac{1}{2}(3 \times 4) \\
& =\frac{25 \pi}{6}-6=\frac{25 \pi-36}{6} \text { বर्গ मে.মि. । }
\end{aligned}
$$

(a) সমাষান: ADC এबढि বৃडाशশ বनে $\mathrm{AB}=\mathrm{BC}=5$ মিটার ।

বৃজাश् ADC এর দৈर्य্য $=\mathrm{AB} \times \angle \mathrm{ABC}=5 \times \frac{\pi}{2}=\frac{5 \pi}{2}$ মিটার ।
(b) थপ্নমালা VI B এর্গ উদাহ্রণ-1 দ্রষ্ব। ।

(c) $\mathrm{AC}=\sqrt{4^{2}+4^{2}}=4 \sqrt{2}$ মিটার । সুण্না, ABC একটি অর্ধ্ববৃত্তের ব্যাসাস্ব $=\frac{\mathrm{AC}}{2}=2 \sqrt{2}$ মিটার ।

$$
\begin{aligned}
& =\frac{1}{2} \pi \times(2 \sqrt{2})^{2}+\left(\frac{1}{2} \times 5^{2} \times \frac{\pi}{2}-\frac{1}{2} \times 5 \times 5\right) \\
& =4 \pi+\left(\frac{25 \pi}{4}-\frac{25}{2}\right)=\frac{16 \pi+25 \pi-50}{4}=\frac{41 \pi-50}{4} \text { বर्গ মিটার । }
\end{aligned}
$$

उर्कि भी भी MCQ :

1. $\sin (4 x+1)$ এর পर्याয় खШ ?
[RU 06-07;BUET 00-011]
Sol ${ }^{n}$.: $4 x=2 \pi \Rightarrow x=\frac{\pi}{2} \therefore$ भर्याয়কान $=\frac{\pi}{2}$
निस्रम \& $\sin x, \cos x, \sec x, \operatorname{cosec} x$ बत्र भर्याग्र $=$ 2π बदर $\tan x, \cot x$ बत्र भर्याग्र $=\pi$.
2. $\sqrt{3} \sin \theta+\cos \theta$ जর সর্বোচ মান- [SU 08-09] Sol ${ }^{n}$.: সर्ব্যেচ মান $=\sqrt{1+3}=2$
বि.प्र. $: a \cos x+b \sin x$

$$
=\sqrt{a^{2}+b^{2}} \sin \left(x+\tan ^{-1} \frac{b}{a}\right)
$$

$a \cos \theta+b \sin \theta$ সर्বোচ रবে यमि $\sin \left(x+\tan ^{-1} \frac{b}{a}\right)$ সर्बেाष इश जब্ৰৎ $\sin \left(x+\tan ^{-1} \frac{b}{a}\right)=1$ इड़।
$\therefore x=90^{\circ}-\tan ^{-1} \frac{b}{a}$ এर बन्य $a \cos x+b \sin x$ এর্ন সर्बোচ মান $=\sqrt{a^{2}+b^{2}}$
3. $f(x)=1+\sqrt{\sin ^{2} x+1}$ घाएানের সर्বোচ মাन হবে-
[CU 07-08]
Sol n. : সर्বোচ মান $=1+\sqrt{(\pm 1)^{2}+1}=1+\sqrt{2}$
4. $f(x)=2 \cos |x|$ जतु সীমा - [RU 03-04]

Sol ${ }^{n} .: \cos |x|$ जর दिস্তান্ন $=[-1,1]$
$\therefore-2 \leq f(x) \leq 2$
5. $\cos ^{2} x \quad(x \in \mathbb{R})$ जर्र <ुरख्य जरह सप्रण्य मान र昰-
[CU 03-04]

6. $\sin 2 x-\cos x$ बर्ब সर्यमिम्म घान - [IU 07-08]
 भाध्या याয় $-\sqrt{3}$.

1(a) $\sin \left(-1230^{\circ}\right)-\cos \left\{(2 n+1) \pi+\frac{\pi}{3}\right\}$ $=-\sin 1230^{\circ}-\cos \left\{2 n \pi+\left(\pi+\frac{\pi}{3}\right)\right\}$ $=-\sin \left(3.360^{\circ}+150^{\circ}\right)-\cos \left(\pi+\frac{\pi}{3}\right)$
$=-\sin 150^{\circ}-\left(-\cos \frac{\pi}{3}\right)$
$=-\sin \left(180^{\circ}-30^{\circ}\right)+\cos \frac{\pi}{3}$
$=-\sin 30^{\circ}+\cos \frac{\pi}{3}=-\frac{1}{2}+\frac{1}{2}=0$ (Ans.)
1(b) $\sin 780^{\circ} \cos 390^{\circ}+$
$\sin \left(-330^{\circ}\right) \cos \left(-300^{\circ}\right)$
[b.'o১]
$=\sin 780^{\circ} \cos 390^{\circ}-\sin 330^{\circ} \cos 300^{\circ}$
$=\sin \left(2.360^{\circ}+60^{\circ}\right) \cos \left(360^{\circ}+30^{\circ}\right)-$ $\sin \left(360^{\circ}-30^{\circ}\right) \cos \left(360^{\circ}-60^{\circ}\right)$
$=\sin 60^{\circ} \cos 30^{\circ}-\left(-\sin 30^{\circ}\right) \cos 60^{\circ}$
$=\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{1}{2} \cdot \frac{1}{2}=\frac{3}{4}+\frac{1}{4}=\frac{4}{4}=1$ (Ans.)
2. मान निर्षग्र क्न 8
(a) $\sin ^{2} \frac{\pi}{7}+\sin ^{2} \frac{5 \pi}{14}+\sin ^{2} \frac{8 \pi}{7}+\sin ^{2} \frac{9 \pi}{14}$
[ঢ.. '০২; সি: '০৯; মা.বো.'০৯; ব.'’০; य.'ग১]
$=\sin ^{2} \frac{\pi}{7}+\sin ^{2}\left(\frac{\pi}{2}-\frac{\pi}{7}\right)+\sin ^{2}\left(\pi+\frac{\pi}{7}\right)+$ $\sin ^{2}\left(\frac{\pi}{2}+\frac{\pi}{7}\right)$
$=\sin ^{2} \frac{\pi}{7}+\cos ^{2} \frac{\pi}{7}+\sin ^{2} \frac{\pi}{7}+\cos ^{2} \frac{\pi}{7}$
$=2\left(\sin ^{2} \frac{\pi}{7}+\cos ^{2} \frac{\pi}{7}\right)=2.1=2$ (Ans.)
2(b) $\sin ^{2} \frac{\pi}{12}+\sin ^{2} \frac{3 \pi}{12}+\sin ^{2} \frac{5 \pi}{12}+\sin ^{2} \frac{7 \pi}{12}+$ $\sin ^{2} \frac{9 \pi}{12}+\sin ^{2} \frac{11 \pi}{12}$
$=\sin ^{2} \frac{\pi}{12}+\sin ^{2} \frac{3 \pi}{12}+\sin ^{2} \frac{5 \pi}{12}+\sin ^{2}\left(\frac{\pi}{2}+\frac{\pi}{12}\right)$
$+\sin ^{2}\left(\frac{\pi}{2}+\frac{3 \pi}{12}\right)+\sin ^{2}\left(\frac{\pi}{2}+\frac{5 \pi}{12}\right)$
$=\sin ^{2} \frac{\pi}{12}+\sin ^{2} \frac{3 \pi}{12}+\sin ^{2} \frac{5 \pi}{12}+\cos ^{2} \frac{\pi}{12}$
$+\cos ^{2} \frac{3 \pi}{12}+\cos ^{2} \frac{5 \pi}{12}$
$=\left(\sin ^{2} \frac{\pi}{12}+\cos ^{2} \frac{\pi}{12}\right)+\left(\sin ^{2} \frac{3 \pi}{12}+\cos ^{2} \frac{3 \pi}{12}\right)$
$+\left(\sin ^{2} \frac{5 \pi}{12}+\cos ^{2} \frac{5 \pi}{12}\right)$
$=1+1+1=3$ (Ans.)
2.(c) $\sin ^{2} \frac{17 \pi}{18}+\sin ^{2} \frac{5 \pi}{8}+\cos ^{2} \frac{37 \pi}{18}+\cos ^{2} \frac{3 \pi}{8}$
$=\sin ^{2}\left(\pi-\frac{\pi}{18}\right)+\sin ^{2}\left(\pi-\frac{3 \pi}{8}\right)+$
$\cos ^{2}\left(2 \pi+\frac{\pi}{18}\right)+\cos ^{2} \frac{3 \pi}{8}$
$=\sin ^{2} \frac{\pi}{18}+\sin ^{2} \frac{3 \pi}{8}+\cos ^{2} \frac{\pi}{18}+\cos ^{2} \frac{3 \pi}{8}$
$=\left(\sin ^{2} \frac{\pi}{18}+\cos ^{2} \frac{\pi}{18}\right)+\left(\sin ^{2} \frac{3 \pi}{8}+\cos ^{2} \frac{3 \pi}{8}\right)$
$=1+1=2$ (Ans.)
3.(a) $\sec ^{2} \frac{14 \pi}{17}-\sec ^{2} \frac{39 \pi}{17}+\cot ^{2} \frac{41 \pi}{34}-\cot ^{2} \frac{23 \pi}{34}$
$=\sec ^{2}\left(\pi-\frac{3 \pi}{17}\right)-\sec ^{2}\left(2 \pi+\frac{5 \pi}{17}\right)+$
$\cot ^{2}\left(\pi+\frac{7 \pi}{34}\right)-\cot ^{2}\left(\pi-\frac{11 \pi}{34}\right)$
$=\sec ^{2} \frac{3 \pi}{17}-\sec ^{2} \frac{5 \pi}{17}+\cot ^{2} \frac{7 \pi}{34}-\cot ^{2} \frac{11 \pi}{34}$
$=\sec ^{2} \frac{3 \pi}{17}-\sec ^{2} \frac{5 \pi}{17}+\cot ^{2}\left(\frac{\pi}{2}-\frac{5 \pi}{17}\right)-$
$\cot ^{2}\left(\frac{\pi}{2}-\frac{3 \pi}{17}\right)$
$=\sec ^{2} \frac{3 \pi}{17}-\sec ^{2} \frac{5 \pi}{17}+\tan ^{2} \frac{5 \pi}{17}-\tan ^{2} \frac{3 \pi}{17}$
$=\left(\sec ^{2} \frac{3 \pi}{17}-\tan ^{2} \frac{3 \pi}{17}\right)-\left(\sec ^{2} \frac{5 \pi}{17}-\tan ^{2} \frac{5 \pi}{17}\right)$

$=1-1=0$ (Ans.)
3(b) $\tan 15^{\circ}+\tan 45^{\circ}+\tan 75^{\circ}+\cdots+\tan 165^{\circ}$
$=\tan 15^{\circ}+\tan 45^{\circ}+\tan 75^{\circ}+\tan 105^{\circ}+$ $\tan 135^{\circ}+\tan 165^{\circ}$
$=\tan 15^{\circ}+\tan 45^{\circ}+\tan \left(90^{\circ}-15^{\circ}\right)+$ $\tan \left(90^{\circ}+15^{\circ}\right)+\tan \left(180-45^{\circ}\right)+$ $\tan \left(180^{\circ}-15^{\circ}\right)$
$=\tan 15^{\circ}+\tan 45^{\circ}+\cot 15^{\circ}-\cot 15^{\circ}-$ $\tan 45^{\circ}-\tan 15^{\circ}=0$ (Ans.)
3(c) $\cos ^{2} 15^{\circ}+\cos ^{2} 25^{\circ}+$ $\cos ^{2} 35^{\circ}+\cdots \cdots+\cos ^{2} 75^{\circ}$
$=\cos ^{2} 15^{\circ}+\cos ^{2} 25^{\circ}+\cos ^{2} 35^{\circ}+\cos ^{2} 45^{\circ}$ $+\cos ^{2} 55^{\circ}+\cos ^{2} 65^{\circ}+\cos ^{2} 75^{\circ}$
$=\cos ^{2} 15^{\circ}+\cos ^{2} 25^{\circ}+\cos ^{2} 35^{\circ}+\left(\frac{1}{\sqrt{2}}\right)^{2}$
$+\cos ^{2}\left(90^{\circ}-35^{\circ}\right)+$
$\cos ^{2}\left(90^{\circ}-25^{\circ}\right)+\cos ^{2}\left(90^{\circ}-15^{\circ}\right)$
$=\cos ^{2} 15^{\circ}+\cos ^{2} 25^{\circ}+\cos ^{2} 35^{\circ}+\frac{1}{2}+$
$\sin ^{2} 35^{\circ}+\sin ^{2} 25^{\circ}+\sin ^{2} 15^{\circ}$
$\left.=\sin ^{2} 5^{\circ}+\cos ^{2} 5^{\circ}\right)+\left(\sin ^{2} 25^{\circ}+\cos ^{2} 25^{\circ}\right)$
$+\left(\sin ^{2} 35^{\circ}+\cos ^{2} 35^{\circ}\right)+\frac{1}{2}$
$=1+1+1+\frac{1}{2}=3+\frac{1}{2}=\frac{7}{2}$ (Ans.)
 $\sin \theta=\frac{5}{13}$ जदर $\frac{\pi}{2}<\theta<\pi$

$$
\operatorname{cosec} \theta=\frac{13}{5}, \cos \theta=-\sqrt{1-\sin ^{2} \theta}
$$

$$
=-\sqrt{1-\frac{25}{169}}=-\sqrt{\frac{144}{169}}=-\frac{12}{13}
$$

$\sec \theta=-\frac{13}{12}$ बवर
$\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{5}{13} \times\left(-\frac{13}{12}\right)=-\frac{5}{12}$
$\Rightarrow \cot \theta=-\frac{12}{5}$
जখन , $\frac{\tan \theta+\sec (-\theta)}{\cot \theta+\operatorname{cosec}(-\theta)}=\frac{\tan \theta+\sec \theta}{\cot \theta-\operatorname{cosec} \theta}$
$=\frac{\frac{-5}{12}+\frac{-13}{12}}{\frac{-12}{5}-\frac{13}{5}}=\frac{\frac{-5-13}{12}}{\frac{-12-13}{5}}$
$=\left(-\frac{18}{12}\right) \times\left(-\frac{5}{25}\right)=\frac{3}{2} \times \frac{1}{5}=\frac{3}{10}$
$\therefore \frac{\tan \theta+\sec (-\theta)}{\cot \theta+\operatorname{cosec}(-\theta)}=\frac{3}{10}$
4.(b) गেহেতू $\cot \theta=\frac{3}{4} \Rightarrow \tan \theta=\frac{4}{3}$ এবर $\cos \theta$

অণা|্র
$\therefore \sec \theta=-\sqrt{1+\tan ^{2} \theta}=-\sqrt{1+\frac{16}{9}}$

$$
=-\sqrt{\frac{25}{9}}=-\frac{5}{3}
$$

$\therefore \quad \cos \theta=-\frac{3}{5}$ এবR

$$
\sin \theta=\tan \theta \cos \theta=\frac{4}{3} \times\left(-\frac{3}{5}\right)=-\frac{4}{5}
$$

$\therefore \operatorname{cosec} \theta=-\frac{5}{4}$
बथन , $\frac{\cot (-\theta)+\operatorname{cosec} \theta}{\cos \theta+\sin (-\theta)}=\frac{-\cot \theta+\operatorname{cosec} \theta}{\cos \theta-\sin \theta}$

$$
\begin{aligned}
& =\frac{-\frac{3}{4}+\left(-\frac{5}{4}\right)}{-\frac{3}{5}-\frac{-4}{5}}=\frac{-3-5}{4} \times \frac{5}{-3+4} \\
& =-\frac{40}{4}=-10 \text { (Ans.) }
\end{aligned}
$$

5. সमाथानः

(a) $\sin x+\sin (\pi+x)+\sin (2 \pi+x)+\cdots \cdots$ ($\mathrm{n}+\mathrm{l}$)তম পम পर्यब्ত
$=\sin x-\sin x+\sin x-\sin x+\cdots \cdots$
($\mathrm{n}+1$) उম পদ পर्यब्ত
$n=1$ रলে , $(1+1)$ বা ২য় পদ পर্যশ্ত যোগयলन
$=\sin x-\sin x=0$
$\mathrm{n}=3$ शनে, $(3+1)$ বा 8 ब পদ পर्यम्ত
যোগফল $=\sin x-\sin x+\sin x-\sin x=0$
তদ্রু, n यেকোন বিজোড় সং্খ্যা হলে নির্ণেয় যোগফ্ন $=0$ জাবার, $\mathrm{n}=2$ হলে $(2+1)$ বা ৩য় পদ পর্যল্ত যোগফল্ল

$$
=\sin x-\sin x+\sin x=\sin x
$$

$\mathrm{n}=4$ হলে , $(4+1)$ বা बম পদ পর্यশ্ত যোগফল্ন
$=\sin x-\sin x+\sin x-\sin x+\sin x$ $=\sin x$
তদ্দুপ,nযেকোন জোড় সং্থ্যা হলে নির্ণেয় যোগফ্ল $=\sin x$
5(b) $\tan \theta+\tan (\pi+\theta)+\tan (2 \pi+\theta)+$ $+\quad \tan (\mathrm{n} \pi+\theta)$
$=\tan \theta+\tan \theta+\tan \theta+\cdots n$ उम व斤 वर्यम्ण $=(\mathrm{n}+1) \tan \theta$ (Ans.)

6(a) দেওয়া আছে, $\theta=\frac{\pi}{20} \Rightarrow \frac{\pi}{2}=10 \theta$
L.H.S. $=\cot \theta \cot 3 \theta \cot 5 \theta \cot 7 \theta$
$\cot 9 \theta \cot 11 \theta \cot 13 \theta \cot 15 \theta \cot 17 \theta$

$\cot 19 \theta$

$=\cot \theta \cot 3 \theta \cot 5 \theta \cot 7 \theta \cot 9 \theta$
$\cot (10 \theta+\theta) \cot (10 \theta+3 \theta)$
$\cot (10 \theta+5 \theta) \cot (10 \theta+7 \theta)$
$\cot (10 \theta+9 \theta)$
$=\cot \theta \cot 3 \theta \cot 5 \theta \cot 7 \theta \cot 9 \theta$
$\cot \left(\frac{\pi}{2}+\theta\right) \cot \left(\frac{\pi}{2}+3 \theta\right) \cot \left(\frac{\pi}{2}+5 \theta\right)$
$\cot \left(\frac{\pi}{2}+7 \theta\right) \cot \left(\frac{\pi}{2}+9 \theta\right)$
$=\frac{1}{\tan \theta \tan 3 \theta \tan 5 \theta \tan 7 \theta \tan 9 \theta}(-\tan \theta)$
$(-\tan 3 \theta)(-\tan 5 \theta)(-\tan 7 \theta)(-\tan 9 \theta)$
$=-1=$ R.H.S.
6. (b) দেওয়া জाছ,, $\theta=\frac{\pi}{28} \Rightarrow \frac{\pi}{2}=14 \theta$
L.H.S $=\tan \theta \tan 3 \theta \tan 5 \theta \tan 7 \theta$
$\tan 9 \theta \tan 11 \theta \tan 13 \theta$
$=\tan \theta \tan 3 \theta \tan 5 \theta \tan 7 \theta$

$$
\begin{aligned}
& \tan (14 \theta-5 \theta) \tan (14 \theta-3 \theta) \\
& \tan (14 \theta-\theta) \\
&= \frac{1}{\tan \theta \tan 3 \theta \tan 5 \theta} \tan \frac{\pi}{4} \\
& \tan \left(\frac{\pi}{2}-5 \theta\right) \tan \left(\frac{\pi}{2}-3 \theta\right) \tan \left(\frac{\pi}{2}-\theta\right) \\
&= \frac{1}{\tan \theta \tan 3 \theta \tan 5 \theta} \cdot 1 \cdot \tan 5 \theta \cdot \tan 3 \theta \cdot \tan \theta \\
&= 1=\text { R.H.S. }
\end{aligned}
$$

6(c) $\tan \theta \cdot \tan 2 \theta \cdot \tan 3 \theta . \quad \tan (2 n-1) \theta$
এখানে , পদসং্থ্যা $=2 n-1$, या বিজোড় সश্খ্যা।
$\frac{2 n-1+1}{2}$ जब্ৰৎ n 丁ম পদ মধ্যপদ।
\therefore মধ্যপদ $=\tan n \theta=\tan \frac{\pi}{4}=1[\because 4 \mathrm{n} \theta=\pi]$
$\tan \theta \cdot \tan (2 n-1) \theta=\tan \theta \cdot \tan (2 n \theta-\theta)$

$$
=\tan \theta \cdot \tan \left(\frac{\pi}{2}-\theta\right)[\because 4 n \theta=\pi]
$$

$$
=\tan \theta \cdot \cot \theta=1
$$

$\tan 2 \theta \cdot \tan (2 n-2) \theta=\tan 2 \theta \cdot \tan (2 n \theta-2 \theta)$

$$
\begin{aligned}
& =\tan 2 \theta \cdot \tan \left(\frac{\pi}{2}-2 \theta\right) . \\
& =\tan 2 \theta \cdot \cot 2 \theta=1
\end{aligned}
$$

অनूबृপভাবে, $\tan 3 \theta \cdot \tan (2 n-3) \theta=1$
$\tan 4 \theta \cdot \tan (2 n-4) \theta=1, \cdots$ ইण्गामि।
जর্বাৎ, মধ্যপদ হতে সমদূরবণ্তী পদ দুইটির গুগফ্ন = 1
$\therefore \tan \theta \cdot \tan 2 \theta \cdot \tan 3 \theta \cdot \cdots \cdots \tan (2 n-1) \theta=1$

অতিব্রিক্ঠ প্রশ্ন (সমাধানসহ)

1. घान निर्ना क्र 8

(a) $\tan \left(-1590^{\circ}\right)=-\tan \left(1590^{\circ}\right)$
$=-\tan \left(4.360^{\circ}+150^{\circ}\right)=-\tan 150^{\circ}$
$=-\tan \left(180^{\circ}-30^{\circ}\right)=+\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
(b) $\cos 420^{\circ} \sin \left(-300^{\circ}\right)-\sin 870^{\circ} \cos 570^{\circ}$
$=\cos 420^{\circ}\left(-\sin 300^{\circ}\right)-\sin 870^{\circ} \cos 570^{\circ}$
$=-\cos \left(360^{\circ}+60^{\circ}\right) \sin \left(360^{\circ}-60^{\circ}\right)$
$-\sin \left(2.360^{\circ}+150^{\circ}\right) \cos \left(2.360^{\circ}-150^{\circ}\right)$ $=-\cos 60^{\circ}\left(-\sin 60^{\circ}\right)-\sin 150^{\circ} \cos 150^{\circ}$ $=\cos 60^{\circ} \sin 60^{\circ}-\sin \left(180^{\circ}-30^{\circ}\right)$

$$
\cos \left(180^{\circ}-30^{\circ}\right)
$$

$=\cos 60^{\circ} \sin 60^{\circ}-\sin 30^{\circ}\left(-\cos 30^{\circ}\right)$
$=\frac{1}{2} \cdot \frac{\sqrt{3}}{2}+\frac{1}{2} \cdot \frac{\sqrt{3}}{2}=2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}$ (Ans.)
2. $\cos ^{2} \frac{\pi}{24}+\cos ^{2} \frac{19 \pi}{24}+\cos ^{2} \frac{31 \pi}{24}+\cos ^{2} \frac{37 \pi}{24}$
$=\cos ^{2} \frac{\pi}{24}+\cos ^{2} \frac{19 \pi}{24}+\cos ^{2}\left(\frac{\pi}{2}+\frac{19 \pi}{24}\right)$

$$
+\cos ^{2}\left(3 \cdot \frac{\pi}{2}+\frac{\pi}{24}\right)
$$

$=\cos ^{2} \frac{\pi}{24}+\cos ^{2} \frac{19 \pi}{24}+\sin ^{2} \frac{\pi}{24}+\sin ^{2} \frac{19 \pi}{24}$
$=\left(\sin ^{2} \frac{\pi}{24}+\cos ^{2} \frac{\pi}{24}\right)+\left(\sin ^{2} \frac{19 \pi}{24}+\cos ^{2} \frac{19 \pi}{24}\right)$
$=1+1=2$ (Ans.)
3(a) $\cos ^{2} 25^{\circ}+\cos ^{2} 35^{\circ}+\cos ^{2} 45^{\circ}+$ $\cos ^{2} 55^{\circ}+\cos ^{2} 65^{\circ}$
$=\cos ^{2} 25^{\circ}+\cos ^{2} 35^{\circ}+\left(\frac{1}{\sqrt{2}}\right)^{2}+$ $\cos ^{2}\left(90^{\circ}-35^{\circ}\right)+\cos ^{2}\left(90^{\circ}-25^{\circ}\right)$
$=\cos ^{2} 25^{\circ}+\cos ^{2} 35^{\circ}+\frac{1}{2}+\sin ^{2} 35^{\circ}$ $+\sin ^{2} 25^{\circ}$
$=\left(\sin ^{2} 25^{\circ}+\cos ^{2} 25^{\circ}\right)+\frac{1}{2}+$
$\left(\sin ^{2} 25^{\circ}+\cos ^{2} 25^{\circ}\right)$
$=1+\frac{1}{2}+1=\frac{5}{2}$ (Ans.)
Bb) $\sin ^{2} 10^{\circ}+\sin ^{2} 20^{\circ}+$
$\sin ^{2} 30^{\circ}+\cdot \quad \cdot+\sin ^{2} 80^{\circ}$
$=\sin ^{2} 10^{\circ}+\sin ^{2} 20^{\circ}+\sin ^{2} 30^{\circ}$
$+\sin ^{2} 40^{\circ}+\sin ^{2} 50^{\circ}+\sin ^{2} 60^{\circ}$
$+\sin ^{2} 70^{\circ}+\sin ^{2} 80^{\circ}$
$\sin ^{2} 10^{\circ}+\sin ^{2} 20^{\circ}+\sin ^{2} 30^{\circ}+$

$$
\begin{aligned}
& \sin ^{2} 40^{\circ}+\sin ^{2}\left(90^{\circ}-40^{\circ}\right)+ \\
& \sin ^{2}\left(90^{\circ}-30^{\circ}\right)+\sin ^{2}\left(90^{\circ}-20^{\circ}\right) \\
& +\sin ^{2}\left(90^{\circ}-10^{\circ}\right) \\
= & \sin ^{2} 10^{\circ}+\sin ^{2} 20^{\circ}+\sin ^{2} 30^{\circ} \\
& +\sin ^{2} 40^{\circ}+\cos ^{2} 40^{\circ}+\cos ^{2} 30^{\circ} \\
+ & \cos ^{2} 20^{\circ}+\cos ^{2} 10^{\circ} \\
= & \left(\sin ^{2} 10^{\circ}+\cos ^{2} 10^{\circ}\right)+\left(\sin ^{2} 20^{\circ}+\cos ^{2} 20^{\circ}\right) \\
+ & \left(\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}\right)+\left(\sin ^{2} 40^{\circ}+\cos ^{2} 40^{\circ}\right) \\
= & 1+1+1+1=4(\text { Ans. })
\end{aligned}
$$

4. $\tan \theta=\frac{3}{4}$ এবং $\cos \theta$ ঋণाण্चक रলে, $\frac{\sin \theta+\cos \theta}{\sec \theta+\tan \theta}$ এর মান निर्ণয় কর ।

সমাষান ঃ দেওয়া আছে,
$\tan \theta=\frac{3}{4}$ এবং $\cos \theta$ ঋণাত্ক
$\therefore \sec \theta=-\sqrt{1+\tan ^{2} \theta}=-\sqrt{1+\frac{9}{16}}$
$=-\sqrt{\frac{25}{16}}=-\frac{5}{4} \quad \therefore \cos \theta=-\frac{4}{5}$ এबং
$\sin \theta=\tan \theta \cos \theta=\frac{3}{4}\left(-\frac{4}{5}\right)=-\frac{3}{5}$
এখन $\frac{\sin \theta+\cos \theta}{\sec \theta+\tan \theta}=\frac{-\frac{3}{5}-\frac{4}{5}}{-\frac{5}{4}+\frac{3}{4}}$
$=-\frac{3+4}{5} \times \frac{4}{-5+3}=-\frac{7}{5} \times \frac{4}{-2}=\frac{14}{5}$, (Ans.)
5. $\sin \theta=\frac{12}{13}$ এবং $90^{\circ}<\theta<180^{\circ}$ रलि দেখাও यে, $\frac{\tan \theta+\sec (-\theta)}{\cot \theta+\operatorname{cosec}(-\theta)}=\frac{10}{3}$

প্रমাণ : যেহেত $\sin \theta=\frac{12}{13} \Rightarrow \operatorname{cosec} \theta=\frac{13}{12}$ এヌং $90^{\circ}<\theta<180^{\circ}$,
$\therefore \cos \theta=-\sqrt{1-\sin ^{2} \theta}$.

$$
\begin{aligned}
& =-\sqrt{1-\frac{144}{169}}=-\sqrt{\frac{25}{169}}=-\frac{5}{13} \\
& \sec \theta=-\frac{13}{5} \\
& \tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{12}{13} \times\left(-\frac{13}{5}\right)=-\frac{12}{5} \\
& \Rightarrow \cot \theta=-\frac{5}{12} \\
& \text { এখन }, \frac{\tan \theta+\sec (-\theta)}{\cot \theta+\operatorname{cosec}(-\theta)}=\frac{\tan \theta+\sec \theta}{\cot \theta-\operatorname{cosec} \theta} \\
& \\
& =\frac{-\frac{12}{5}-\frac{13}{5}}{} \begin{array}{l}
-\frac{5}{12}-\frac{-25}{12} \\
=
\end{array} \\
& =5 \times \frac{12}{18}=\frac{10}{3}
\end{aligned}
$$

6. यোগষ্প निर्षयत्र बन्र $8 \cos \theta+\cos (\pi+\theta)+$ $\cos (2 \pi+\theta)+\cdots \quad+\cos (n \pi+\theta)$
সমাধান: $\cos \theta+\cos (\pi+\theta)+\cos (2 \pi+\theta)+$
$+\cos (n \pi+\theta)$
$=\cos \theta+\{-\cos \theta+\cos \theta-\cos \theta+\cdots$
$\left.+(-1)^{n} \cos \theta\right\}$
$\mathrm{n}=2$ হजে যোগফল $=\cos \theta+\{-\cos \theta+\cos \theta\}$

$$
=\cos \theta
$$

$\mathrm{n}=4$ इলে যোগফম $=\cos \theta+\{-\cos \theta+\cos \theta-$

$$
\cos \theta+\cos \theta\}=\cos \theta
$$

তদ্রুপ, n যেকোন জ্েোড় হলে নির্ণেয় যোগফস্ন $=\cos x$
$\mathrm{n}=1$ হলে যোগফল $=\cos \theta+(-\cos \theta)=0$
$\mathrm{n}=3$ হন্লে যোগফল $=\cos \theta+\{-\cos \theta+\cos \theta-$

$$
\cos \theta\}=0
$$

চদ্রুপ, n যেকোন বিজোড় হলে নির্ণেয় যোগফম $=0$
7. $n \in \mathbb{Z}$ হলে, $\sin \left\{n \pi+(-1)^{n} \frac{\pi}{4}\right\}$ এর মান নিণয় কর ।

সমাষান 8 (a) $\sin \left\{n \pi+(-1)^{n} \frac{\pi}{4}\right\}$

Ii জোড় সং্থ্যা হলে মনে করি, $n=2 m$, বেষানে $m \in \mathbb{N}$.
$\therefore \sin \left\{n \pi+(-1)^{n} \frac{\pi}{4}\right\}$
$=\sin \left\{2 m \pi+(-1)^{2 m} \frac{\pi}{4}\right\}$
$=\sin \left(2 m \pi+\frac{\pi}{4}\right)=\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}$
n বিজ্জোড় সং্য্যা হলে মনে করি , $\mathrm{n}=2 \mathrm{~m}+1 ; \mathrm{m} \in \mathbb{N}$.
$\therefore \sin \left\{n \pi+(-1)^{n} \frac{\pi}{4}\right\}$
$=\sin \left\{(2 m+1) \pi+(-1)^{2 m+1} \frac{\pi}{4}\right\}$
$=\sin \left\{2 m \pi+\left(\pi-\frac{\pi}{4}\right)\right\}$
$=\sin \left(\pi-\frac{\pi}{4}\right)=\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}$ (Ans.)
8. দেখাও যে , $\tan \frac{\pi}{12} \tan \frac{5 \pi}{12} \tan \frac{7 \pi}{12} \tan \frac{11 \pi}{12}=1$

बयाণ: $\tan \frac{\pi}{12} \tan \frac{5 \pi}{12} \tan \frac{7 \pi}{12} \tan \frac{11 \pi}{12}$
$=\tan \frac{\pi}{12} \tan \frac{5 \pi}{12} \tan \left(\frac{\pi}{2}-\frac{\pi}{12}\right) \tan \left(\frac{\pi}{2}-\frac{5 \pi}{12}\right)$
$=\tan \frac{\pi}{12} \tan \frac{5 \pi}{12} \cot \frac{\pi}{12} \cot \frac{5 \pi}{12}$
$=\left(\tan \frac{\pi}{12} \cdot \cot \frac{\pi}{12}\right)\left(\tan \frac{5 \pi}{12} \cdot \cot \frac{5 \pi}{12}\right)$
$=1.1=1 \quad[\because \tan \theta \cdot \cot \theta=1]$

প্রশ্নমামা VII B

1. মাन निर्ণয় কর 8 (a) $\tan 105^{\circ}$ (b) $\cot 165^{\circ}$
(c) $\operatorname{cosec} 165^{\circ}$
(a) $\tan 105^{\circ}=\tan \left(60^{\circ}+45^{\circ}\right)$

$$
\begin{aligned}
& =\frac{\tan 60^{\circ}+\tan 45^{\circ}}{1-\tan 60^{\circ} \tan 45^{\circ}}=\frac{\sqrt{3}+1}{1-\sqrt{3} \cdot 1} \\
& =\frac{(1+\sqrt{3})^{2}}{(1-\sqrt{3})(1+\sqrt{3})}=\frac{1+2 \sqrt{3}+3}{1-3} \\
& =\frac{2(\sqrt{3}+2)}{-2}=-(\sqrt{3}+2)
\end{aligned}
$$

1(b) $\cot 165^{\circ}=\cot \left(90^{\circ}+75^{\circ}\right)=-\tan 75^{\circ}$ $=-\tan \left(30^{\circ}+45^{\circ}\right)=-\frac{\tan 30^{\circ}+\tan 45^{\circ}}{1-\tan 30^{\circ} \tan 45^{\circ}}$ $=-\frac{\frac{1}{\sqrt{3}}+1}{1-\frac{1}{\sqrt{3}} \cdot 1}=-\frac{1+\sqrt{3}}{\sqrt{3}-1}=-\frac{(\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}$ $=-\frac{3+2 \sqrt{3}+1}{3-1}=-\frac{2(\sqrt{3}+2)}{2}=-(\sqrt{3}+2)$

1(c) $\operatorname{cosec} 165^{\circ}=\operatorname{cosec}\left(90^{\circ}+75^{\circ}\right)$

$$
=\sec 75^{\circ}=\frac{1}{\cos 75^{\circ}}=\frac{1}{\cos \left(45^{\circ}+30^{\circ}\right)}
$$

$$
=\frac{1}{\cos 45^{\circ} \cos 30^{\circ}-\sin 45^{\circ} \sin 30^{\circ}}
$$

$$
=\frac{1}{\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \cdot \frac{1}{2}}=\frac{2 \sqrt{2}}{\sqrt{3}-1}
$$

$$
=\frac{2 \sqrt{2}(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}=\frac{2(\sqrt{6}+\sqrt{3})}{3-1}
$$

$$
=\frac{2(\sqrt{6}+\sqrt{3})}{2}=\sqrt{6}+\sqrt{3}
$$

2. মান निर्षয় কর :
(a) $\cos 38^{\circ} 15^{\prime} \sin 68^{\circ} 15^{\prime}-$ $\cos 51^{\circ} 45^{\prime} \sin 21^{\circ} 45^{\prime}$
$=\cos 38^{\circ} 15^{\prime} \sin 68^{\circ} 15^{\prime}-$ $\cos \left(90^{\circ}-38^{\circ} 15^{\prime}\right) \sin \left(90^{\circ}-68^{\circ} 15^{\circ}\right)$
$=\cos 38^{\circ} 15^{\prime} \sin 68^{\circ} 15^{\prime}-$
$\sin 38^{\circ} 15^{\prime} \cos 68^{\circ} 15^{\prime}$
$=\sin \left(68^{\circ} 15^{\circ}-38^{\circ} 15^{\prime}\right)=\sin 30^{\circ}=\frac{1}{2}$
2(b) $\cos 69^{\circ} 22^{\circ} \cos 9^{\circ} 22^{\prime}+$ $\cos 80^{\circ} 38^{\prime} \cos 20^{\circ} 38^{\prime}$
$=\cos 69^{\circ} 22^{\circ} \cos 9^{\circ} 22^{\prime}+$ $\cos \left(90^{\circ}-9^{\circ} 22^{\circ}\right) \cos \left(90^{\circ}-69^{\circ} 22^{\prime}\right)$ $=\cos 69^{\circ} 22^{\prime} \cos 9^{\circ} 22^{\circ}+$
$\sin 9^{\circ} 22^{\prime} \sin 69^{\circ} 22^{\prime}$

$$
=\cos \left(69^{\circ} 22^{\circ}-9^{\circ} 22^{\circ}\right)=\cos 60^{\circ}=\frac{1}{2}
$$

3. প্রমা क্ব यে,
(a) L.H.S. $=\sin \left(25^{\circ}+\right.$ A $) \cos \left(25^{\circ}-\mathrm{A}\right)+$ $\cos \left(25^{\circ}+\mathrm{A}\right) \cos \left(115^{\circ}-\mathrm{A}\right)$
$=\sin \left(25^{\circ}+\mathrm{A}\right) \cos \left(25^{\circ}-\mathrm{A}\right)+$ $\cos \left(25^{\circ}+\mathrm{A}\right) \cos \left\{90^{\circ}+\left(25^{\circ}-\mathrm{A}\right)\right\}$
$=\sin \left(25^{\circ}+\mathrm{A}\right) \cos \left(25^{\circ}-\mathrm{A}\right)-$
$\cos \left(25^{\circ}+\mathrm{A}\right) \sin \left(25^{\circ}-\mathrm{A}\right)$
$=\sin \left\{\left(25^{\circ}+\mathrm{A}\right)-\left(25^{\circ}-\mathrm{A}\right)\right\}$
$=\sin \left(25^{\circ}+\mathrm{A}-25^{\circ}+\mathrm{A}\right)$
$=\sin 2 \mathrm{~A}=$ R.H.S. (Proved)
3(b) $\cos \left(\frac{\pi}{3}-\alpha\right) \cos \left(\frac{\pi}{6}-\beta\right)-$

$$
\sin \left(\frac{\pi}{3}-\alpha\right) \sin \left(\frac{\pi}{6}-\beta\right)
$$

$=\cos \left\{\left(\frac{\pi}{3}-\alpha\right)+\left(\frac{\pi}{6}-\beta\right)\right\}$
$=\cos \left\{\left(\frac{\pi}{3}+\frac{\pi}{6}\right)-(\alpha+\beta)\right\}$
$=\cos \left\{\frac{\pi}{2}-(\alpha+\beta)\right\}$
$=\sin (\alpha+\beta)=$ R.H.S. (Proved)
3(c) L.H.S. $=\sin (n+1) x \cos (n-1) x$ $-\cos (n+1) x \sin (n-1) x$
$=\sin \{(n+1) x-(n-1) x\}$
$=\sin (n x+x-n x+x)$
$=\sin 2 x=$ R.H.S. (Proved)
4. প্রমাण ক্ন बে,
(a) L.H.S $=\sin \mathrm{A} \sin (\mathrm{B}-\mathrm{C})+$ $\sin B \sin (C-A)+\sin C \sin (A-B)$ $=\sin A(\sin B \cos C-\sin C \cos B)+$ $\sin B(\sin C \cos A-\sin A \cos C)+$ $\sin C(\sin A \cos B-\sin B \cos A)$ $=\sin A \sin B \cos C-\sin A \cos B \sin C$ $+\cos A \sin B \sin C-\sin A \sin B \cos C$ $+\sin A \cos B \sin C-\cos A \sin B \sin C$ $=0=$ R.H.S. (Proved).

$$
\begin{aligned}
& \text { 4(b) L.H.S. }=\sin (\mathrm{B}+\mathrm{C}) \sin (\mathrm{B}-\mathrm{C})+ \\
& \sin (\mathrm{C}+\mathrm{A}) \sin (\mathrm{C}-\mathrm{A})+ \\
& \sin (\mathrm{A}+\mathrm{B}) \sin (\mathrm{A}-\mathrm{B}) \\
& =\sin ^{2} \mathrm{~B}-\sin ^{2} \mathrm{C}+\sin ^{2} \mathrm{C}-\sin ^{2} \mathrm{~A}+ \\
& \sin ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~B} \\
& =0=\text { R.H.S. (Proved }) \\
& \text { 4(c) } \text { L.H.S. }=\sin \left(135^{\circ}-\mathrm{A}\right)+ \\
& \cos \left(135^{\circ}+\mathrm{A}\right) \\
& =\sin \left\{180^{\circ}-\left(45^{\circ}+\mathrm{A}\right)\right\}+ \\
& \quad \cos \left\{180^{\circ}-\left(45^{\circ}-\mathrm{A}\right)\right\} \\
& =\sin \left(45^{\circ}+\mathrm{A}\right)-\cos \left(45^{\circ}-\mathrm{A}\right) \\
& =\sin \left(45^{\circ}+\mathrm{A}\right)-\cos \left\{90^{\circ}-\left(45^{\circ}+\mathrm{A}\right)\right\} \\
& =\sin \left(45^{\circ}+\mathrm{A}\right)-\sin \left(45^{\circ}+\mathrm{A}\right) \\
& =0=\text { R.H.S. (Proved })
\end{aligned}
$$

5. প্রभाष बন্ম यে,

(a) L.H.S. $=\frac{\cos 15^{\circ}+\sin 15^{\circ}}{\cos 15^{\circ}-\sin 15^{\circ}}$
$=\frac{\cos 15^{\circ}\left(1+\frac{\sin 15^{\circ}}{\cos 15^{\circ}}\right)}{\cos 15^{\circ}\left(1-\frac{\sin 15^{\circ}}{\cos 15^{\circ}}\right)}=\frac{1+\tan 15^{\circ}}{1-\tan 15^{\circ}}$
$=\frac{\tan 45^{\circ}+\tan 15^{\circ}}{1-\tan 45^{\circ} \tan 15^{\circ}}=\tan \left(45^{\circ}+15^{\circ}\right)$
$=\tan 60^{\circ}=\sqrt{3}=$ R.H.S. (Proved)
5(b) L.H.S. $=\frac{\cos 25^{\circ}-\sin 25^{\circ}}{\cos 25^{\circ}+\sin 25^{\circ}}$
$=\frac{\cos 25^{\circ}\left(1-\frac{\sin 25^{\circ}}{\cos 25^{\circ}}\right)}{\cos 25^{\circ}\left(1+\frac{\sin 25^{\circ}}{\cos 25^{\circ}}\right)}=\frac{1-\tan 25^{\circ}}{1-\tan 25^{\circ}}$
$=\frac{\tan 45^{\circ}-\tan 25^{\circ}}{1+\tan 45^{\circ} \tan 25^{\circ}}=\tan \left(45^{\circ}-25^{\circ}\right)$
$=\tan 20^{\circ}=$ R.H.S. (proved)
5(c) L.H.S. $=\frac{\sin 75^{\circ}+\sin 15^{\circ}}{\sin 75^{\circ}-\sin 15^{\circ}}$
$=\frac{\sin \left(90^{\circ}-15^{\circ}\right)+\sin 15^{0}}{\sin \left(90^{\circ}-15^{\circ}\right)-\sin 15^{0}}$
$=\frac{\cos 15^{\circ}+\sin 15^{\circ}}{\cos 15^{\circ}-\sin 15^{\circ}}=\frac{\cos 15^{\circ}\left(1+\frac{\sin 15^{\circ}}{\cos 15^{\circ}}\right)}{\cos 15^{\circ}\left(1-\frac{\sin 15^{\circ}}{\cos 15^{\circ}}\right)}$
$=\frac{1+\tan 15^{\circ}}{1-\tan 15^{\circ}}=\frac{\tan 45^{\circ}+\tan 15^{\circ}}{1-\tan 45^{\circ} \tan 15^{\circ}}$
$=\tan \left(45^{\circ}+15^{\circ}\right)=\tan 60^{\circ}=\sqrt{3}$

(a) $\tan \frac{\pi}{4}=\tan \left(\frac{\pi}{20}+\frac{\pi}{5}\right)$
$\Rightarrow 1=\frac{\tan \frac{\pi}{20}+\tan \frac{\pi}{5}}{1-\tan \frac{\pi}{20} \tan \frac{\pi}{5}}$
$\Rightarrow \tan \frac{\pi}{20}+\tan \frac{\pi}{5}=1-\tan \frac{\pi}{20} \tan \frac{\pi}{5}$
$\therefore \tan \frac{\pi}{20}+\tan \frac{\pi}{5}+\tan \frac{\pi}{20} \tan \frac{\pi}{5}=1$
6(b) $\tan 70^{\circ}=\tan \left(50^{\circ}+20^{\circ}\right)$

$\Rightarrow \tan 70^{\circ}=\frac{\tan 50^{\circ}+\tan 20^{\circ}}{1-\tan 50^{\circ} \tan 20^{\circ}}$
$\Rightarrow \tan 70^{\circ}-\tan 70^{\circ} \tan 50^{\circ} \tan 20^{\circ}$

$$
=\tan 50^{\circ}+\tan 20^{\circ}
$$

$\Rightarrow \tan 70^{\circ}-\tan \left(90^{\circ}-20^{\circ}\right) \tan 50^{\circ} \tan 20^{\circ}$

$$
=\tan 50^{\circ}+\tan 20^{\circ}
$$

$\Rightarrow \tan 70^{\circ}-\cot 20^{\circ} \tan 50^{\circ} \tan 20^{\circ}$

$$
=\tan 50^{\circ}+\tan 20^{\circ}
$$

$\Rightarrow \tan 70^{\circ}-\tan 50^{\circ}=\tan 50^{\circ}+\tan 20^{\circ}$
$\therefore \tan 70^{\circ}=\tan 20^{\circ}+2 \tan 50^{\circ}$
6(c) $\tan (A-B)=-\tan (B-A)$

$$
\begin{aligned}
& =-\tan \{(\mathrm{B}-\mathrm{C})+(\mathrm{C}-\mathrm{A})\} \\
& =-\frac{\tan (B-C)+\tan (C-A)}{1-\tan (B-C) \tan (C-A)} \\
\Rightarrow \tan (\mathrm{A}-\mathrm{B}) & -\tan (\mathrm{A}-\mathrm{B}) \tan (\mathrm{B}-\mathrm{C})
\end{aligned}
$$

$$
\begin{aligned}
& \tan (C-A)=-\tan (B-C)-\tan (C-A) \\
& \tan (B-C)+\tan (C-A)+\tan (A-B) \\
& =\tan (B-C) \tan (C-A) \tan (A-B)
\end{aligned}
$$

7(a) L.H.S. $=2 \sin \left(\theta+\frac{\pi}{4}\right) \sin \left(\theta-\frac{\pi}{4}\right)$
$=2\left(\sin \theta \cos \frac{\pi}{4}+\sin \frac{\pi}{4} \cos \theta\right)$
$\left(\sin \theta \cos \frac{\pi}{4}-\sin \frac{\pi}{4} \cos \theta\right)$
$=2\left(\sin \theta \cdot \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \cos \theta\right)$
$\left(\sin \theta \cdot \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} \cos \theta\right)$
=2. $\frac{1}{2}(\sin \theta+\cos \theta)(\sin \theta-\cos \theta)$
$=\sin ^{2} \theta-\cos ^{2} \theta=$ R.H.S. (Proved)
বिक्न शभ्युण: L.H.S. $=2 \sin \left(\theta+\frac{\pi}{4}\right) \sin \left(\theta-\frac{\pi}{4}\right)$ $=2\left(\sin ^{2} \theta-\sin ^{2} \frac{\pi}{4}\right)$
$\left[\therefore \sin (A+B) \sin (A-B)=\sin ^{2} A-\sin ^{2} B\right]$
$=2\left(\sin ^{2} \theta-\frac{1}{2}\right)=2 \sin ^{2} \theta-1$
$=2 \sin ^{2} \theta-\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$
$=\sin ^{2} \theta-\cos ^{2} \theta=$ R.H.S. (Proved)
7(b) L.H.S. $=\tan (A+B) \tan (A-B)$
$=\frac{\sin (A+B) \sin (A-B)}{\cos (A+B) \cos (A-B)}$
$=\frac{\sin ^{2} A-\sin ^{2} B}{\cos ^{2} A-\sin ^{2} B}=$ R.H.S.
7.(c) L.H.S. $=\frac{\tan \left(\frac{\pi}{4}+\theta\right)-\tan \left(\frac{\pi}{4}-\theta\right)}{\tan \left(\frac{\pi}{4}+\theta\right)+\tan \left(\frac{\pi}{4}-\theta\right)}$
$=\left\{\frac{\sin \left(\frac{\pi}{4}+\theta\right)}{\cos \left(\frac{\pi}{4}+\theta\right)}-\frac{\sin \left(\frac{\pi}{4}-\theta\right)}{\cos \left(\frac{\pi}{4}-\theta\right)}\right\} \div$

$$
\left\{\frac{\sin \left(\frac{\pi}{4}+\theta\right)}{\cos \left(\frac{\pi}{4}+\theta\right)}+\frac{\sin \left(\frac{\pi}{4}-\theta\right)}{\cos \left(\frac{\pi}{4}-\theta\right)}\right\}
$$

$=\frac{\sin \left(\frac{\pi}{4}+\theta\right) \cos \left(\frac{\pi}{4}-\theta\right)-\cos \left(\frac{\pi}{4}+\theta\right) \sin \left(\frac{\pi}{4}-\theta\right)}{\cos \left(\frac{\pi}{4}+\theta\right) \cos \left(\frac{\pi}{4}-\theta\right)} \times$

$$
\sin \left(\frac{\pi}{4}+\theta\right) \cos \left(\frac{\pi}{4}-\theta\right)+\cos \left(\frac{\pi}{4}+\theta\right) \sin \left(\frac{\pi}{4}-\theta\right)
$$

$$
\cos \left(\frac{\pi}{4}+\theta\right) \cos \left(\frac{\pi}{4}-\theta\right)
$$

$=\frac{\sin \left(\frac{\pi}{4}+\theta-\frac{\pi}{4}+\theta\right)}{\sin \left(\frac{\pi}{4}+\theta+\frac{\pi}{4}-\theta\right)}=\frac{\sin 2 \theta}{\sin \frac{\pi}{2}}$
$=\sin 2 \theta=$ R.H.S. (Proved)
8. (a) $a \cos (x+\alpha)=b \cos (x-\alpha)$ इजে मেখা बে, $(a+b) \tan x=(a-b) \cot \alpha$ [ঢा.'०৫] প্রমাण 8 मে®য়া জাছ, $\operatorname{acos}(x+\alpha)=b \cos (x-\alpha)$ $\Rightarrow \mathrm{a}(\cos x \cos \alpha-\sin x \sin \alpha)$

$$
=\mathrm{b}(\cos x \cos \alpha+\sin x \sin \alpha)
$$

$\Rightarrow(a-b) \cos x \cos \alpha=(a+b) \sin x \sin \alpha$
$\Rightarrow(a+b) \frac{\sin x}{\cos x}=(a-b) \frac{\cos \alpha}{\sin \alpha}$
$\therefore(\mathrm{a}+\mathrm{b}) \tan x=(\mathrm{a}-\mathrm{b}) \cot \alpha$
8(b) $a \sin (x+\theta)=b \sin (x-\theta)$ इल ศৌী बে, $(a+b) \tan \theta+(a-b) \tan x=0$

প্रমাण 8 मেधয়া জाश्, $\mathrm{a} \sin (x+\theta)=\mathrm{b} \sin (x-\theta)$
$\Rightarrow \mathrm{a}(\sin x \cos \theta+\sin \theta \cos x)$

$$
=\mathrm{b}(\sin x \cos \theta-\sin \theta \cos x)
$$

$\Rightarrow(\mathrm{a}-\mathrm{b}) \sin x \cos \theta=-(\mathrm{a}+\mathrm{b}) \sin \theta \cos x$
$\Rightarrow(\mathrm{a}-\mathrm{b}) \frac{\sin x}{\cos x}=-(\mathrm{a}+\mathrm{b}) \frac{\sin \theta}{\cos \theta}$
$\Rightarrow(a-b) \tan x=-(a+b) \tan \theta$
$\therefore(a+b) \tan \theta+(a-b) \tan x=0$
8.(c) θ बোশকে α जবर β এই मूই জरক্小ে এমন ভাবে বिङ्ड बन्बा इ্N यেन, $\tan \alpha: \tan \beta=x: y$ इয় ।

कেषाध ब, $\sin (\alpha-\beta)=\frac{x-y}{x+y} \sin \theta$
প্রমাণ 8 দেওয়া आছে , $\theta=\alpha+\beta$ এবং
$\tan \alpha \tan \beta=\mathrm{x}: \mathrm{y}$
$\Rightarrow \frac{\tan \alpha}{\tan \beta}=\frac{x}{y} \Rightarrow \frac{\tan \alpha+\tan \beta}{\tan \alpha-\tan \beta}=\frac{x+y}{x-y}$
$\Rightarrow \tan \alpha+\tan \beta=\frac{x+y}{x-y}(\tan \alpha-\tan \beta)$
$\Rightarrow \frac{\sin \alpha}{\cos \alpha}+\frac{\sin \beta}{\cos \beta}=\frac{x+y}{x-y}\left(\frac{\sin \alpha}{\cos \alpha}-\frac{\sin \beta}{\cos \beta}\right)$
$\Rightarrow \frac{\sin \alpha \cos \beta+\sin \beta \cos \alpha}{\cos \alpha \cos \beta}$

$$
=\frac{x+y}{x-y}\left(\frac{\sin \alpha \cos \beta-\sin \beta \cos \alpha}{\cos \alpha \cos \beta}\right)
$$

$\Rightarrow \sin (\alpha+\beta)=\frac{x+y}{x-y} \sin (\alpha-\beta)$
$\Rightarrow \sin \theta=\frac{x+y}{x-y} \sin (\alpha-\beta)$
$\sin (\alpha-\beta)=\frac{x-y}{x+y} \sin \theta$
$8(d) \tan \theta+\sec \theta=\frac{x}{y}$ रून जেथाब यে,

$$
\sin \theta=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

ब্রমাল : দেওয়া आাছ, $\tan \theta+\sec \theta=\frac{x}{y}$
$\Rightarrow \frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}=\frac{x}{y} \Rightarrow \frac{1+\sin \theta}{\cos \theta}=\frac{x}{y}$
$\Rightarrow \frac{1+2 \sin \theta+\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{x^{2}}{y^{2}}$ [টভয় পাককে বর্গ করে।]
$\Rightarrow \frac{1+2 \sin \theta+\sin ^{2} \theta+\cos ^{2} \theta}{1+2 \sin \theta+\sin ^{2} \theta-\cos ^{2} \theta}=\frac{x^{2}+y^{2}}{x^{2}-y^{2}}$
[যোজন-বিয়োজন করে।]
$\Rightarrow \frac{1+2 \sin \theta+\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}{\left(1-\cos ^{2} \theta\right)+2 \sin \theta+\sin ^{2} \theta}=\frac{x^{2}+y^{2}}{x^{2}-y^{2}}$
$\Rightarrow \frac{1+2 \sin \theta+1}{\sin ^{2} \theta+2 \sin \theta+\sin ^{2} \theta}=\frac{x^{2}+y^{2}}{x^{2}-y^{2}}$
$\Rightarrow \frac{2(1+\sin \theta)}{2 \sin \theta(1+\sin \theta)}=\frac{x^{2}+y^{2}}{x^{2}-y^{2}}$
$\Rightarrow \frac{1}{\sin \theta}=\frac{x^{2}+y^{2}}{x^{2}-y^{2}}$
$\therefore \sin \theta=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ (Showed)
8.(e) $\sin (A+B)=n \sin (A-B)$ बবर $n \neq 1$

হনে দেখাs যে, $\cot A=\frac{n-1}{n+1} \cot B$
প্রমাণ 8 দেওয়া আছে , $\sin (\mathrm{A}+\mathrm{B})=\mathrm{n} \sin (\mathrm{A}-\mathrm{B})$
$\Rightarrow \frac{\sin (A+B)}{\sin (A-B)}=n$
$\Rightarrow \frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}=\frac{n+1}{n-1}$
[যোজন-বিয়োজন করে।]
$\Rightarrow \frac{2 \sin A \cos B}{2 \sin B \cos A}=\frac{n+1}{n-1}$
$\Rightarrow \frac{\cot B}{\cot A}=\frac{n+1}{n-1}$
$\therefore \cot \mathrm{A}=\frac{n-1}{n+1} \cot \mathrm{~B}$
9. (a) $a \sin (\theta+\alpha)=b \sin (\theta+\beta)$ शबে

मেখা যে, $\cot \theta=\frac{a \cos \alpha-b \cos \beta}{b \sin \beta-a \sin \alpha}$ [য.'০৫]
প্রমাণ: দেওয়া আছে, $\mathrm{a} \sin (\theta+\alpha)=\mathrm{b} \sin (\theta+\beta)$
$\Rightarrow \mathrm{a}(\sin \theta \cos \alpha+\sin \alpha \cos \theta)$

$$
=\mathrm{b}(\sin \theta \cos \beta+\sin \beta \cos \theta)
$$

$\Rightarrow a \sin \theta \cos \alpha-b \sin \theta \cos \beta$
$=b \sin \beta \cos \theta-a \sin \alpha \cos \theta$
$\Rightarrow(\mathrm{a} \cos \alpha-\mathrm{b} \cos \beta) \sin \theta$

$$
=(b \sin \beta-a \sin \alpha) \cos \theta
$$

$\therefore \cot \theta=\frac{a \cos \alpha-b \cos \beta}{b \sin \beta-a \sin \alpha}$ (Showed)
9.(b) $\sin \theta=k \cos (\theta-\alpha)$ হলে দেখাও যে,
$\cot \theta=\frac{1+\mathrm{k} \sin \alpha}{\mathrm{k} \cos \alpha}$
[ङ.'১২]
প্রমাণ ঃ দেওয়া জাছে , $\sin \theta=k \cos (\theta-\alpha)$
$\Rightarrow \sin \theta=\mathrm{k}(\cos \theta \cos \alpha-\sin \theta \sin \alpha)$
$\Rightarrow \sin \theta+\mathrm{k} \sin \theta \sin \alpha=\mathrm{k} \cos \theta \cos \alpha$
$\Rightarrow(1+\mathrm{k} \sin \alpha) \sin \theta=\mathrm{k} \cos \theta \cos \alpha$
$\Rightarrow \frac{1+k \sin \alpha}{k \cos \alpha}=\frac{\cos \theta}{\sin \theta}$
$\cot \theta=\frac{1+k \sin \alpha}{k \cos \alpha}$
9(c) $\cot \alpha+\cot \beta=a, \tan \alpha+\tan \beta=b$
जবर $\alpha+\beta=\theta$ হনে मেখাఆ যে, $(a-b) \tan \theta=a b$ [ঢ.'o১,'১১; य.'o১; ব.'ob]
প্রমাণ. 8 দেওয়া জাছে",
$\cot \alpha+\cot \beta=\mathrm{a} \cdots(1), \tan \alpha+\tan \beta=\mathrm{b} \cdots(2)$
जবश $\alpha+\beta=\theta \cdots \cdots$ (3)
(1) হতে জামরা পাই , $\frac{1}{\tan \alpha}+\frac{1}{\tan \beta}=a$
$\Rightarrow \frac{\tan \beta+\tan \alpha}{\tan \alpha \tan \beta}=a$
$\Rightarrow \frac{b}{\tan \alpha \tan \beta}=a \Rightarrow \tan \alpha \tan \beta=\frac{b}{a}$
งथन, $\theta=\alpha+\beta$
$\Rightarrow \tan \theta=\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$

$$
=\frac{b}{1-\frac{b}{a}}=\frac{a b}{a-b}
$$

$\therefore(a-\mathrm{b}) \tan \theta=a \mathrm{~b}$
9(d) $\frac{\sin (\alpha+\theta)}{\sin \alpha}=\frac{2 \sin (\beta+\theta)}{\sin \beta}$ इलে मেچা
.₹, $\cot \alpha-\cot \theta=2 \cot \beta$
द्याज ः जেधয়া जाएে , $\frac{\sin (\alpha+\theta)}{\sin \alpha}=\frac{2 \sin (\beta+\theta)}{\sin \beta}$
$\Rightarrow \sin \beta \cdot \sin (\alpha+\theta)=2 \sin \alpha \cdot \sin (\beta+\theta)$
$\Rightarrow(\sin \alpha \cos \theta+\cos \alpha \sin \theta) \sin \beta$
$=2 \sin \alpha(\sin \beta \cos \theta+\sin \theta \cos \beta)$
$\Rightarrow \sin \alpha \cos \theta \sin \beta+\cos \alpha \sin \theta \sin \beta$
$=2 \sin \alpha \sin \beta \cos \theta+2 \sin \alpha \sin \theta \cos \beta$
$\Rightarrow \cos \alpha \sin \theta \sin \beta-\sin \alpha \sin \beta \cos \theta$

$$
=2 \sin \alpha \sin \theta \cos \beta
$$

ধরি , $\sin \theta \sin \alpha \sin \beta \neq 0$ এবং উভয় পক্ষকে $\sin \theta \sin \alpha \sin \beta$ দ্দারা जাগ করে আমরা পাই ,
$\frac{\cos \alpha}{\sin \alpha}-\frac{\cos \theta}{\sin \theta}=2 \frac{\cos \beta}{\sin \beta}$
$\therefore \cot \alpha-\cot \theta=2 \cot \beta$
10. $A+B=\frac{\pi}{4}$ इলে দেখা यে,

$$
(1+\tan A)(1+\tan B)=2
$$

প্রমাণ : দেওয়া आছে, $\mathrm{A}+\mathrm{B}=\frac{\pi}{4}$
$\Rightarrow \tan (\mathrm{A}+\mathrm{B})=\tan \frac{\pi}{4} \Rightarrow \frac{\tan A+\tan B}{1-\tan A \tan B}=1$
$\Rightarrow \tan \mathrm{A}+\tan \mathrm{B}=1-\tan \mathrm{A} \tan \mathrm{B}$
$\Rightarrow \tan A+\tan B+\tan A \tan B+1=2$
$\Rightarrow 1(1+\tan A)+\tan B(1+\tan A)=2$
$\therefore(1+\tan A)(1+\tan B)=2$ (Showed)
11.(a) $\sin \alpha \sin \beta-\cos \alpha \cos \beta+1=0$ राে প্রমাण কর যে, $1+\cot \alpha \tan \beta=0$
[य.’०१]
প্রমাण \& দেওয়া আছে ,
$\sin \alpha \sin \beta-\cos \alpha \cos \beta+1=0$
$\Rightarrow \cos \alpha \cos \beta-\sin \alpha \sin \beta=1$
$\Rightarrow \cos (\alpha+\beta)=1 \Rightarrow \cos (\alpha+\beta) \cong \cos 0$
$\therefore \alpha+\beta=0 \Rightarrow \beta=-\alpha$
এথन , L.H.S. $=1+\cot \alpha \tan (-\alpha)$
$=1+\frac{1}{\tan \alpha}(-\tan \alpha)=1-1=0=$ R.H.S.
11. (b) $\tan \beta=\frac{2 \sin \alpha \sin \gamma}{\sin (\alpha+\gamma)}$ रणে দেथাও बে ,
$\frac{1}{\tan \alpha}+\frac{1}{\tan \gamma}=\frac{2}{\tan \beta}$.
প্রমাণ ः দেఆয়া আছে, $\tan \beta=\frac{2 \sin \alpha \sin \gamma}{\sin (\alpha+\gamma)}$
$\Rightarrow \frac{\sin \beta}{\cos \beta}=\frac{2 \sin \alpha \sin \gamma}{\sin (\alpha+\gamma)}$
$\Rightarrow \sin \beta(\sin \alpha \cos \gamma+\sin \gamma \cos \alpha)$

$$
=2 \sin \alpha \cos \beta \sin \gamma
$$

$\Rightarrow \sin \alpha \sin \beta \cos \gamma+\cos \alpha \sin \beta \sin \gamma$
$=2 \sin \alpha \cos \beta \sin \gamma$
«রি , $\sin \alpha \sin \beta \sin \gamma \neq 0$ এবং উভয় পককেে $\sin \alpha \sin \beta \sin \gamma$ দ্যারা ভাগ করে আমরা পাই,

$$
\frac{\cos \gamma}{\sin \gamma}+\frac{\cos \alpha}{\sin \alpha}=2 \frac{\cos \beta}{\sin \beta}
$$

$\Rightarrow \cot \gamma+\cot \alpha=2 \cot \beta$
$\therefore \frac{1}{\tan \alpha}+\frac{1}{\tan \gamma}=\frac{2}{\tan \beta}$ (Showed)
11(c) $\tan \beta=\frac{n \sin \alpha \cos \alpha}{1-n \sin ^{2} \alpha}$ इলে লেখাও यে , $\boldsymbol{\operatorname { t a n }}(\alpha-\beta)=(1-n) \boldsymbol{\operatorname { t a n }} \alpha$
প্রমাণ : $\tan \beta=\frac{n \sin \alpha \cos \alpha}{1-n \sin ^{2} \alpha} \ldots \ldots \ldots$
जथन, $\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$

$$
\begin{aligned}
& =\frac{\frac{\sin \alpha}{\cos \alpha}-\frac{n \sin \alpha \cos \alpha}{1-n \sin ^{2} \alpha}}{1+\frac{\sin \alpha}{\cos \alpha} \cdot \frac{n \sin \alpha \cos \alpha}{1-n \sin ^{2} \alpha}} \\
& =\frac{\frac{\sin \alpha}{\cos \alpha}\left(1-\frac{n \cos ^{2} \alpha}{1-n \sin ^{2} \alpha}\right)}{1+\frac{n \sin ^{2} \alpha}{1-n \sin ^{2} \alpha}}
\end{aligned}
$$

$$
=\tan \alpha\left(\frac{1-n \sin ^{2} \alpha-n \cos ^{2} \alpha}{1-n \sin ^{2} \alpha}\right) \times
$$

$$
\frac{1-n \sin ^{2} \alpha}{1-n \sin ^{2} \alpha+n \sin ^{2} \alpha}
$$

$=\tan \alpha \frac{1-\mathrm{n}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)}{1}$
$\therefore \tan (\alpha-\beta)=(1-n) \tan \alpha \quad$ (Showed)
12(a) $\tan \alpha-\tan \beta=x$ जदर $\cot \beta-\cot \alpha=y$
হনে मেখাఆ यে, $\cot (\alpha-\beta)=\frac{1}{x}+\frac{1}{y}$.
প্রমাণ \& দেওয়া আছে , $\tan \alpha-\tan \beta=x$ এবर

$$
\cot \beta-\cot \alpha=y
$$

$$
\text { এখन, } \begin{aligned}
\frac{1}{x}+\frac{1}{y} & =\frac{1}{\tan \alpha-\tan \beta}+\frac{1}{\cot \beta-\cot \alpha} \\
& =\frac{1}{\frac{1}{\cot \alpha}-\frac{1}{\cot \beta}}+\frac{1}{\cot \beta-\cot \alpha} \\
& =\frac{\cot \alpha \cot \beta}{\cot \beta-\cot \alpha}+\frac{1}{\cot \beta-\cot \alpha} \\
& =\frac{\cot \alpha \cot \beta+1}{\cot \beta-\cot \alpha}=\cot (\alpha-\beta)
\end{aligned}
$$

$\therefore \quad \cot (\alpha-\beta)=\frac{1}{x}+\frac{1}{y}$ (Showed)
(b) $\tan \theta=\frac{x \sin \varphi}{1-x \cos \varphi}$ जदर $\tan \varphi=\frac{y \sin \theta}{1-y \cos \theta}$ হजে লেथা बে, $\frac{\sin \theta}{\sin \varphi}=\frac{x}{y}$.
প্रমাণ \& দেওয়া জाছে, $\tan \theta=\frac{x \sin \varphi}{1-x \cos \varphi}$
$\Rightarrow \frac{\sin \theta}{\cos \theta}=\frac{x \sin \varphi}{1-x \cos \varphi}$
$\Rightarrow x \cos \theta \sin \varphi=\sin \theta-x \sin \theta \cos \varphi$
$\Rightarrow x(\cos \theta \sin \varphi+\sin \theta \cos \varphi)=\sin \theta$
$\Rightarrow x \cos (\theta+\varphi)=\sin \theta \Rightarrow x=\frac{\sin \theta}{\sin (\theta+\varphi)}$
जदर $\tan \varphi=\frac{y \sin \theta}{1-y \cos \theta} \Rightarrow \frac{\sin \varphi}{\cos \varphi}=\frac{y \sin \theta}{1-y \cos \theta}$
$\Rightarrow y(\sin \theta \cos \varphi+\sin \varphi \cos \theta)=\sin \varphi$
$\Rightarrow y=\frac{\sin \varphi}{\sin (\theta+\varphi)}$
जॠन, $\frac{x}{y}=\frac{\sin \theta}{\sin (\theta+\varphi)} \times \frac{\sin (\theta+\varphi)}{\sin \varphi}=\frac{\sin \theta}{\sin \varphi}$
$\therefore \quad \frac{\sin \theta}{\sin \varphi}=\frac{x}{y} \quad$ (Showed)
13.(a) $\sin x+\sin y=a$ जदर $\cos x+\cos y=b$ रলে भ্রমা কন बে, $\sin \frac{1}{2}(x-y)= \pm \frac{1}{2} \sqrt{4-a^{2}-b^{2}}$ প্রমাণ 8 দেওয়া জাছে , $\sin x+\sin y=\mathrm{a}$
$\Rightarrow \sin ^{2} x+\sin ^{2} y+2 \sin x \sin y=a^{2} \cdots$ (1) এবং $\cos x+\cos y=\mathrm{b}$
$\Rightarrow \cos ^{2} x+\cos ^{2} y+2 \cos x \cos y=b^{2} \cdots$
(1) ఆ (2) যোগ করে পাই,
$\left(\sin ^{2} x+\cos ^{2} x\right)+\left(\sin ^{2} y+\cos ^{2} y\right)+$
$2(\cos x \cos y+\sin x \sin y)=a^{2}+b^{2}$
$\Rightarrow 1+1+2 \cos (x-y)=a^{2}+b^{2}$
$\Rightarrow 2\{1+\cos (x-y)\}=a^{2}+b^{2}$
$\Rightarrow 2\left\{2 \cos ^{2} \frac{1}{2}(x-y)\right\}=a^{2}+b^{2}$
$\Rightarrow 4\left\{1-\sin ^{2} \frac{1}{2}(x-y)\right\}=a^{2}+b^{2}$
$\Rightarrow 4 \sin ^{2} \frac{1}{2}(x-y)=4-a^{2}+b^{2}$
$\Rightarrow \sin ^{2} \frac{1}{2}(x-y)=\frac{1}{4}\left(4-a^{2}-b^{2}\right)$
$\sin \frac{1}{2}(x-y)= \pm \frac{1}{2} \sqrt{4-a^{2}-b^{2}}$
13(b) $\cos (\alpha-\beta) \cos \gamma=\cos (\alpha-\gamma+\beta)$ रणে দেथাఆ যে, $\cot \alpha, \cot \gamma$ এবर $\cot \beta$ সমান্তন্ন

गयाष \& $\cos (\alpha-\beta) \cos \gamma=\cos (\alpha-\gamma+\beta)$
$\Rightarrow \cos (\alpha-\beta) \cos \gamma-\cos \{(\alpha+\beta)-\gamma\}=0$
$\Rightarrow \cos (\alpha-\beta) \cos \gamma-\{\cos (\alpha+\beta) \cos \gamma+$ $\sin (\alpha+\beta) \sin \gamma\}=0$
$\Rightarrow\{\cos (\alpha-\beta)-\cos (\alpha+\beta)\} \cos \gamma$ $-\sin (\alpha+\beta) \sin \gamma\}=0$
$\Rightarrow 2 \sin \alpha \sin \beta \cos \gamma-(\sin \alpha \cos \beta+$ $\sin \beta \cos \alpha) \sin \gamma=0$
$\Rightarrow 2 \sin \alpha \sin \beta \cos \gamma-\sin \alpha \cos \beta \sin \gamma$

$$
-\sin \beta \cos \alpha \sin \gamma=0
$$

$\Rightarrow 2 \cot \gamma-\cos \beta-\cot \alpha=0$
[উडয় পককে $\sin \alpha \sin \beta \sin \gamma$ चाারা ভাগ করে]
$\Rightarrow \cot \gamma-\cos \beta=\cot \alpha-\cot \gamma$
$\Rightarrow \cot \alpha-\cot \gamma=\cot \gamma-\cos \beta$ $\cot \alpha, \cot \gamma$ একर $\cot \beta$ সমाশ্তর প্রামন डूক্ত।

13(c) $\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)$ $=-\frac{3}{2}$ शबে ศেयাও बে, $\Sigma \cos \alpha=0$ जबर $\Sigma \sin \alpha=0$ প্রমাণ ঃ দেওয়া আাছ ,
$\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)=-\frac{3}{2}$
$\Rightarrow 2(\cos \beta \cos \gamma+\sin \beta \sin \gamma+\cos \gamma \cos \alpha+$ $\sin \gamma \sin \alpha+\cos \alpha \cos \beta+\sin \alpha \sin \beta)=-3$
$\Rightarrow 2(\cos \alpha \cos \beta+\cos \beta \cos \gamma+\cos \gamma \cos \alpha)$
$+2(\sin \alpha \sin \beta+\sin \beta \sin \gamma+\sin \gamma \sin \alpha)$
$+1+1+1=0$
$\Rightarrow 2(\cos \alpha \cos \beta+\cos \beta \cos \gamma+\cos \gamma \cos \alpha)$
$+2(\sin \alpha \sin \beta+\sin \beta \sin \gamma+\sin \gamma \sin \alpha)$
$+\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)+\left(\sin ^{2} \beta+\cos ^{2} \beta\right)+$ $\left(\sin ^{2} \gamma+\cos ^{2} \gamma\right)=0$
$\Rightarrow\left\{\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+2(\cos \alpha \cos \beta+\right.$ $\cos \beta \cos \gamma+\cos \gamma \cos \alpha)\}+\left\{\sin ^{2} \alpha+\right.$ $\sin ^{2} \beta+\sin ^{2} \gamma+2(\sin \alpha \sin \beta+\sin \beta \sin \gamma$ $+\sin \gamma \sin \alpha)\}=0$
$\Rightarrow(\cos \alpha+\cos \beta+\cos \gamma)^{2}+(\sin \alpha+\sin \beta+\sin \gamma)^{2}=0$
$\therefore \cos \alpha+\cos \beta+\cos \gamma=0$ এবश
$\sin \alpha+\sin \beta+\sin \gamma=0$
[\because দूইটি সং্খ্যার বर্গের সমষ্টি শूন্য হলে সৃ্থ্যা
দুইটি शৃথক পৃথক ভাবে শून্য হয় ।]
$\therefore \quad \sum \cos \alpha=0$ এবए $\quad \sum \sin \alpha=0$ অতিব্রিক্ঠ প্ৰশ্ন (সমাধানসহ)

1. মান निर्भग्र কर्र :

(a) $\sin 76^{\circ} 40^{\prime} \cos 16^{\circ} 40^{\circ}-$
$\cos 73^{\circ} 20^{\prime} \sin 13^{\circ} 20^{\circ}$
$=\sin 76^{\circ} 40^{\prime} \cos 16^{\circ} 40^{\prime}-\cos \left(90^{\circ}-16^{\circ} 40^{\circ}\right)$ $\sin \left(90^{\circ}-76^{\circ} 40^{\circ}\right)$
$=\sin 76^{\circ} 40^{\circ} \cos 16^{\circ} 40^{\circ}-$
$\sin 16^{\circ} 40^{\circ} \cos 76^{\circ} 40^{\prime}$
$=\sin \left(76^{\circ} 40^{\prime}-16^{\circ} 40^{\prime}\right)=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
(b) $\cos 17^{\circ} 40^{\prime} \sin 77^{\circ} 40^{\prime}+$ $\cos 107^{\circ} 40^{\prime} \sin 12^{\circ} 20^{\prime}$
$=\cos 17^{\circ} 40^{\prime} \sin 77^{\circ} 40^{\prime}+$
$\cos \left(90^{\circ}+17^{\circ} 40^{\circ}\right) \sin \left(90^{\circ}-77^{\circ} 40^{\circ}\right)$ $=\cos 17^{\circ} 40^{\prime} \sin 77^{\circ} 40^{\circ}-$
$\sin 17^{\circ} 40^{\prime} \cos 77^{\circ} 40^{\prime}$
$=\sin \left(77^{\circ} 40^{\prime}-17^{\circ} 40^{\prime}\right)=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
(c) $\frac{\tan 68^{\circ} 35^{\prime}-\cot 66^{\circ} 25^{\prime}}{1+\tan 68^{\circ} 35^{\prime} \cot 66^{\circ} 25^{\prime}}$
$=\frac{\tan 68^{\circ} 35^{\prime}-\cot \left(90^{\circ}-23^{\circ} 35^{\prime}\right)}{1+\tan 68^{\circ} 35^{\prime} \cot \left(90^{\circ}-23^{\circ} 35^{\prime}\right)}$
$=\frac{\tan 68^{\circ} 35^{\prime}-\tan 23^{\circ} 35^{\prime}}{1+\tan 68^{\circ} 35^{\prime} \tan 23^{\circ} 35^{\prime}}$
$=\tan \left(68^{\circ} 35^{\prime}-23^{\circ} 35^{\prime}\right)=\tan 45^{\circ}=1$ (Ans.) প্রমাণ কন্ন যে,
2. $\cos (A-B) \cos (A-C)+\sin (A-B)$ $\sin (A-C)=\cos (B-C)$
L.H.S. $=\cos (\mathrm{A}-\mathrm{B}) \cos (\mathrm{A}-\mathrm{C})+$ $\sin (A-B) \sin (A-C)$
$=\cos \{(A-B)-(A-C)\}$
$=\cos (A-B-A+C)=\cos (-B+C)$
$=\cos (B-C)=$ R.H.S. (Proved)
3. $\frac{\cot (3 \mathrm{~A}-\mathrm{B}) \cot \mathrm{B} \cdot-1}{-\cot \mathrm{B}-\cot (3 \mathrm{~A}-\mathrm{B})}=-\cot 3 \mathrm{~A}$
L.H.S. $=\frac{\cot (3 A-B) \cot B-1}{-\cot B-\cot (3 A-B)}$
$=\frac{\cot (3 A-B) \cot B-1}{-\{\cot B+\cot (3 A \cdot B)\}}$
$=-\frac{\cot (3 A-B) \cot B-1}{\cot B+\cot (3 A-B)}$
$=-\cot (3 A-B+B) \xlongequal{\circ}-\cot 3 A$
$=$ R.H.S. (Proved)
4. $\cos \mathrm{A}+\cos \left(\frac{2 \pi}{3}-\mathrm{A}\right)+\cos \left(\frac{2 \pi}{3}+\mathrm{A}\right)=0$
L.H.S. $=\cos \mathrm{A}+\cos \left(\frac{2 \pi}{3}-\mathrm{A}\right)+$

$$
\cos \left(\frac{2 \dot{\pi}}{3}+\mathrm{A}\right)
$$

$=\cos \mathrm{A}+2 \cos \frac{2 \pi}{3} \cos \mathrm{~A}$
$=\cos \mathrm{A}+2 .\left(-\frac{1}{2}\right) \cos \mathrm{A}$

$$
=\cos \mathrm{A}-\cos \mathrm{A}=0=\text { R.H.S. }
$$

(Proved)
5. $\frac{\sin 75^{\circ}-\sin 15^{\circ}}{\sin 75^{\circ}+\sin 15^{\circ}}=\frac{1}{\sqrt{3}}$
L.H.S. $=\frac{\sin 75^{\circ}-\sin 15^{\circ}}{\sin 75^{\circ}+\sin 15^{\circ}}$
$=\frac{\sin \left(90^{\circ}-15^{\circ}\right)-\sin 15^{\circ}}{\sin \left(90^{\circ}-15^{\circ}\right)+\sin 15^{\circ}}$
$=\frac{\cos 15^{\circ}-\sin 15^{\circ}}{\cos 15^{\circ}+\sin 15^{\circ}}=\frac{\cos 15^{\circ}\left(1-\frac{\sin 15^{\circ}}{\cos 15^{\circ}}\right)}{\cos 15^{\circ}\left(1+\frac{\sin 15^{\circ}}{\cos 15^{\circ}}\right)}$
$=\frac{1-\tan 15^{\circ}}{1+\tan 15^{\circ}}=\frac{\tan 45^{\circ}-\tan 15^{\circ}}{1+\tan 45^{\circ} \tan 15^{\circ}}$
$=\tan \left(45^{\circ}-15^{\circ}\right)=\tan 30^{\circ}$
$=\frac{1}{\sqrt{3}}=$ R.H.S. (proved)
6. (a) $\tan 5 \mathrm{~A} \tan 3 \mathrm{~A} \tan 2 \mathrm{~A}=\tan 5 \mathrm{~A}-$ $\tan 3 \mathrm{~A}-\tan 2 \mathrm{~A}$
(b) $\tan 32^{\circ}+\tan 13^{\circ}+\tan 32^{\circ} \tan 13^{\circ}=1$
(c) $\tan \frac{\pi}{20}+\tan \frac{\pi}{5}+\tan \frac{\pi}{20} \tan \frac{\pi}{5}=1$

প্রমাণ: (a) $\tan 5 \mathrm{~A}=\tan (3 \mathrm{~A}+2 \mathrm{~A})$
$\Rightarrow \tan 5 A=\frac{\tan 3 A+\tan 2 A}{1-\tan 3 A \tan 2 A}$
$\Rightarrow \tan 3 \mathrm{~A}+\tan 2 \mathrm{~A}=\tan 5 \mathrm{~A}-$ $\tan 5 \mathrm{~A} \tan 3 \mathrm{~A} \tan 2 \mathrm{~A}$
$\therefore \tan 5 \mathrm{~A} \tan 3 \mathrm{~A} \tan 2 \mathrm{~A}=\tan 5 \mathrm{~A}-$
$\tan 3 \mathrm{~A}-\tan 2 \mathrm{~A}$
(b) $\tan 45^{\circ}=\tan \left(32^{\circ}+13^{\circ}\right)$
$\Rightarrow 1=\frac{\tan 32^{\circ}+\tan 13^{\circ}}{1-\tan 32^{\circ} \tan 13^{\circ}}$
$\Rightarrow \tan 32^{\circ}+\tan 13^{\circ}=1-\tan 32^{\circ} \tan 13^{\circ}$
$\therefore \tan 32^{\circ}+\tan 13^{\circ}+\tan 32^{\circ} \tan 13^{\circ}=1$
(c) $\left.\tan 50^{\circ}=\tan 40^{\circ}+10^{\circ}\right)$
$\Rightarrow \tan 50^{\circ}=\frac{\tan 40^{\circ}+\tan 10^{\circ}}{1-\tan 40^{\circ} \tan 10^{\circ}}$
$\Rightarrow \tan 50^{\circ}-\tan 50^{\circ} \tan 40^{\circ} \tan 10^{\circ}$

$$
=\tan 40^{\circ}+\tan 10^{\circ}
$$

$\Rightarrow \tan 50^{\circ}-\tan \left(90^{\circ}-40^{\circ}\right) \tan 40^{\circ}$ $\tan 10^{\circ}=\tan 40^{\circ}+\tan 10^{\circ}$
$\Rightarrow \tan 50^{\circ}-\cot 40^{\circ} \tan 40^{\circ} \tan 10^{\circ}$ $=\tan 40^{\circ}+\tan 10^{\circ}$
$\Rightarrow \tan 50^{\circ}-\tan 10^{\circ}=\tan 40^{\circ}+\tan 10^{\circ}$ $\tan 50^{\circ}=\tan 40^{\circ}+2 \tan 10^{\circ}$
7. (a) $\tan \left(45^{\circ}+\mathrm{A}\right) \tan \left(45^{\circ}-\mathrm{A}\right)=1$
(b) $\cos ^{2}(\mathrm{~A}-\mathrm{B})-\sin ^{2}(\mathrm{~A}+\mathrm{B})=\cos 2 \mathrm{~A}$ $\cos 2 \mathrm{~B}$.
(a) L.H.S. $=\tan \left(45^{\circ}+\right.$ A) $\tan \left(45^{\circ}-\mathrm{A}\right)$ $=\tan \left(45^{\circ}+\mathrm{A}\right) \tan \left\{90^{\circ}-\left(45^{\circ}+\mathrm{A}\right)\right\}$
$=\tan \left(45^{\circ}+\mathrm{A}\right) \cdot \cot \left(45^{\circ}+\mathrm{A}\right)$ $=1=$ R.H.S. (Proved)
(b) L.H.S. $=\cos ^{2}(A-B)-\sin ^{2}(A+B)$
$=\cos \{(\mathrm{A}-\mathrm{B})+(\mathrm{A}+\mathrm{B})\}$
$\cos \{(\mathrm{A}-\mathrm{B})-(\mathrm{A}+\mathrm{B})\}$
$=\cos (\mathrm{A}-\mathrm{B}+\mathrm{A}+\mathrm{B}) \cos (\mathrm{A}-\mathrm{B}-\mathrm{A}-\mathrm{B})$
$=\cos 2 A \cos (-2 B)=\cos 2 A \cos 2 B=$ R.H.S .
11.(a) $\sin \alpha=k \sin (\alpha+\beta)$ হলে দেখাও বে, $\tan (\alpha+\beta)=\frac{\sin \beta}{\cos \beta-k}$.
প্রমাণ ঃ দেওয়া আছে, $\sin \alpha=\mathrm{k} \sin (\alpha+\beta)$
$\Rightarrow \sin \alpha=\mathrm{k}(\sin \alpha \cos \beta+\sin \beta \cos \alpha)$
$\Rightarrow \sin \alpha=\mathrm{k} \sin \alpha \cos \beta+\mathrm{k} \sin \beta \cos \alpha$
$\Rightarrow \sin \alpha(1-\mathrm{k} \cos \beta)=\mathrm{k} \sin \beta \cos \alpha$
$\Rightarrow \tan \alpha=\frac{k \sin \beta}{1-k \cos \beta}$
\therefore बन, $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$

$$
=\frac{\frac{k \sin \beta}{1-k \cos \beta}+\frac{\sin \beta}{\cos \beta}}{1-\frac{k \sin \beta}{1-k \cos \beta} \frac{\sin \beta}{\cos \beta}}
$$

$$
\left\lvert\, \begin{aligned}
& =\frac{\frac{k \sin \beta \cos \beta+\sin \beta-k \sin \beta \cos \beta}{(1-k \cos \beta) \cos \beta}}{\frac{\cos \beta-k \cos ^{2} \beta-k \sin ^{2} \beta}{(1-k \cos \beta) \cos \beta}} \\
& =\frac{\sin \beta}{\cos \beta-k\left(\cos ^{2} \beta+\sin ^{2} \beta\right)} \\
& \tan (\alpha+\beta)=\frac{\sin \beta}{\cos \beta-k} \text { (Showed) }
\end{aligned}\right.
$$

(b) $\tan \alpha=\frac{b}{a}$ राে দেখা® यে, $a \cos \theta+b \sin \theta=\sqrt{a^{2}+b^{2}} \cos (\theta-\alpha)$. প্রমাণ ঃ त্দওয়া আছে, $\tan \alpha=\frac{b}{a}$

$$
\begin{aligned}
& \text { এখन, } \sqrt{a^{2}+b^{2}} \cos (\theta-\alpha) \\
& =\sqrt{a^{2}\left(1+\frac{b^{2}}{a^{2}}\right)} \cos (\theta-\alpha) \\
& =a \sqrt{1+\tan ^{2} \alpha} \cos (\theta-\alpha) \\
& =a \sqrt{\sec ^{2} \alpha} \cos (\theta-\alpha)=a \sec \alpha \cos (\theta-\alpha) \\
& = \\
& \frac{a}{\cos \alpha}(\cos \alpha \cos \theta+\sin \alpha \sin \theta) \\
& = \\
& a \cos \theta+a \sin \theta \tan \alpha \\
& = \\
& a \cos \theta+a \sin \theta \frac{b}{a} \\
& = \\
& =a \cos \theta+b \sin \theta \\
& \\
& \quad a \cos \theta+b \sin \theta=\sqrt{a^{2}+b^{2}} \cos (\theta-\alpha)
\end{aligned}
$$

বিকক্প পদ্ধতি: দেওয়া আছে, $\tan \alpha=\frac{b}{a} \Rightarrow \frac{\sin \alpha}{\cos \alpha}=\frac{b}{a}$

$$
\Rightarrow \frac{\sin \alpha}{b}=\frac{\cos \alpha}{a}=\frac{\sqrt{\sin ^{2} \alpha+\cos ^{2} \alpha}}{\sqrt{b^{2}+a^{2}}}=\frac{\sqrt{1}}{\sqrt{a^{2}+b^{2}}}
$$

$$
\mathrm{b}=\sqrt{a^{2}+b^{2}} \sin \alpha, \mathrm{a}=\sqrt{a^{2}+b^{2}} \cos \alpha
$$

এখन , $\mathrm{a} \cos \theta+\mathrm{b} \sin \theta$
$=\sqrt{a^{2}+b^{2}}(\cos \alpha \cos \theta+\sin \alpha \sin \theta)$
$\therefore \mathrm{a} \cos \theta+\mathrm{b} \sin \theta=\sqrt{a^{2}+b^{2}} \cos (\theta-\alpha)$ (showed)
12.(a) $\cos \alpha+\cos \beta=a$ এবश $\sin \alpha+\sin \beta=b$ रনে দ্খোও যে, $\cos (\alpha-\beta)=\frac{1}{2}\left(a^{2}+b^{2}-2\right)$ প্রমাণ ঃ দেওয়া আছে , $\cos \alpha+\cos \beta=a$
$\Rightarrow \cos ^{2} \alpha+\cos ^{2} \beta+2 \cos \alpha \cos \beta=a^{2}$
এবং $\sin \alpha+\sin \beta=b$
$\Rightarrow \sin ^{2} \alpha+\sin ^{2} \beta+2 \sin \alpha \sin \beta=b^{2}$
(1) ও (2) যোগ কার পাই,
$\left(\sin ^{2} \alpha+\cos ^{-} \alpha\right)+\left(\sin ^{2} \beta+\cos ^{2} \beta\right)+$
$2(\cos \alpha \cos \beta+\sin \alpha \sin \beta)=a^{2}+b^{2}$
$\Rightarrow 1+1+2 \cos (\alpha-\beta)=a^{2}+b^{2}$
$\Rightarrow 2 \cos (\alpha-\beta)=a^{2}+b^{2}-2$

$$
\cos (\alpha-\beta)=\frac{1}{2}\left(a^{2}+b^{2}-2\right)(\text { Showed })
$$

(b) $\tan \theta=\frac{a \sin x+b \sin y}{a \cos x+b \cos y}$ হলে দেখাও যে, a $\sin (\theta-x)+b \sin (\theta-y)=0$.

প্রমাণ ঃ দেওয়া আহছ, $\tan \ni=\frac{a \sin x+b \sin y}{a \cos x+b \cos y}$
$\Rightarrow \frac{\sin \theta}{\cos \theta}=\frac{a \sin x+b \sin y}{a \cos x+b \cos y}$
$\Rightarrow \mathrm{a} \sin \theta \cos x+\mathrm{b} \sin \theta \cos y=$ $\mathrm{a} \sin x \cos \theta+\mathrm{b} \cos \theta \sin y$
$\Rightarrow \mathrm{a}(\sin \theta \cos x-\sin x \cos \theta)+$ $\mathrm{b}(\sin \theta \cos y-\cos \theta \sin y)=0$
$a \sin (\theta-x)+b \sin (\theta-y)=0$
(Showed)
(c) $\tan \beta=\frac{\sin 2 \alpha}{5+\cos 2 \alpha}$ रूে দেখাও যে, $3 \tan (\alpha-\beta)=2 \tan \alpha$.
প্রমাণ : দেওয়া আছে , $\tan \beta=\frac{\sin 2 \alpha}{5+\cos 2 \alpha}$
$\Rightarrow \tan \beta=\frac{\frac{2 \tan \alpha}{1+\tan ^{2} \alpha}}{5+\frac{1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha}}$

$$
\begin{aligned}
& =\frac{\frac{2 \tan \alpha}{1+\tan ^{2} \alpha}}{\frac{5+5 \tan ^{2} \alpha+1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha}}=\frac{2 \tan \alpha}{6+4 \tan ^{2} \alpha} \\
& =\frac{\tan \alpha}{3+2 \tan ^{2} \alpha}
\end{aligned}
$$

बVन, $3 \tan (\alpha-\beta)=3 \frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$

$$
=3 \frac{\tan \alpha-\frac{\tan \alpha}{3+2 \tan ^{2} \alpha}}{1+\tan \alpha \cdot \frac{\tan \alpha}{3+2 \tan ^{2} \alpha}}
$$

$$
=3 \frac{3 \tan \alpha+2 \tan ^{3} \alpha-\tan \alpha}{3+2 \tan ^{2} \alpha+\tan ^{2} \alpha}
$$

$$
=3 \frac{2 \tan \alpha+2 \tan ^{3} \alpha}{3+3 \tan ^{2} \alpha}
$$

$$
=3 \frac{2 \tan \alpha\left(1+\tan ^{3} \alpha\right)}{3\left(1+\tan ^{2} \alpha\right)}=2 \tan \alpha
$$

$\therefore 3 \tan (\alpha-\beta)=2 \tan \alpha$
13. (a) $\cos (\alpha+\beta) \sin (\gamma+\theta)=\cos (\alpha-\beta$!
$\sin (\gamma-\theta)$ रজে দেখাও যে, $\tan \theta=\tan \alpha \tan \beta$ $\tan \gamma$

প্রমাণ : দেওয়া आছে , $\cos (\alpha+\beta) \sin (\gamma+\theta)=$

$$
\cos (\alpha-\beta) \sin (\gamma-\theta)
$$

$\Rightarrow \frac{\cos (\alpha+\beta)}{\cos (\alpha-\beta)}=\frac{\sin (\gamma-\theta)}{\sin (\gamma+\theta)}$
$\Rightarrow \frac{\cos (\alpha+\beta)+\cos (\alpha-\beta)}{\cos (\alpha+\beta)-\cos (\alpha-\beta))}=\frac{\sin (\gamma-\theta)+\sin (\gamma+\theta}{\sin (\gamma-\theta)-\sin \left(\gamma+\theta_{i}\right.}$
$\Rightarrow \frac{2 \cos \alpha \cos \beta}{-2 \sin \alpha \sin \beta}=\frac{2 \sin \gamma \cos \theta}{-2 \sin \theta \cos \gamma}$
$\Rightarrow \frac{1}{\tan (\ell \tan \beta}=\frac{\tan \gamma}{\tan \theta}$
$\tan \theta=\tan \alpha \tan \beta \tan \gamma \quad$ (Showed)
(b) $\quad(\theta-\varphi)$ সूक्ष্মকোণ এবং $\sin \theta+\sin \varphi=$ $\sqrt{3}(\cos \varphi-\cos \theta)$ रলে দেখাও যে, $\sin 3 \theta+\sin$ $3 \varphi=0$
প্রমাণ : $\sin \theta+\sin \varphi=\sqrt{3}(\cos \varphi-\sin \theta)$

$$
\begin{aligned}
& \Rightarrow 2 \sin \frac{1}{2}(\theta+\varphi) \cos \frac{1}{2}(\theta-\varphi)= \\
& \sqrt{3}\left\{2 \sin \frac{1}{2}(\theta+\varphi) \sin \frac{1}{2}(\theta-\varphi)\right\} \\
& \Rightarrow \cos \frac{1}{2}(\theta-\varphi)=\sqrt{3} \sin \frac{1}{2}(\theta-\varphi) \\
& \Rightarrow \cot \frac{1}{2}(\theta-\varphi)=\sqrt{3}=\cot 30^{\circ} \\
& \frac{1}{2}(\theta-\varphi)=30^{\circ} \text { যেহেতু }(\theta-\varphi) \text { সূক্মকোণ । } \\
& \Rightarrow \theta-\varphi=.60^{\circ} \\
& \text { এখন, } \sin 3 \theta+\sin 3 \varphi \\
& =2 \sin \frac{3}{2}(\theta+\varphi) \cos \frac{3}{2}(\theta-\varphi) \\
& =2 \sin \frac{3}{2}(\theta+\varphi) \cos \frac{3}{2}\left(60^{\circ}\right) \\
& =2 \sin \frac{3}{2}(\theta+\varphi) \cos 90^{\circ} \\
& =2 \sin \frac{3}{2}(\theta+\varphi) \times 0 \\
& \therefore \sin 3 \theta+\sin 3 \varphi=0 \\
& =\frac{1}{8} \cdot \frac{1}{2}=\frac{1}{16}=\text { R.H.S. (Proved) } \\
& \text { 1(b) } \cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}=\frac{1}{16} \\
& \text { L.H.S. }=\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} \\
& =\frac{1}{2}\left\{\cos \left(40^{\circ}+20^{\circ}\right)+\right. \\
& \left.\cos \left(40^{\circ}-20^{\circ}\right)\right\} \frac{1}{2} \cdot \cos 80^{\circ} \\
& =\frac{1}{4}\left\{\cos 60^{\circ}+\cos 20^{\circ}\right\} \cos \left(90^{\circ}-10^{\circ}\right) \\
& =\frac{1}{4}\left(\frac{1}{2}+\cos 20^{\circ}\right) \sin 10^{\circ} \\
& =\frac{1}{8} \sin 10^{\circ}+\frac{1}{4} \cos 20^{\circ} \sin 10^{\circ} \\
& =\frac{1}{8} \sin 10^{\circ}+\frac{1}{8}\left\{\sin \left(20^{\circ}+10^{\circ}\right)\right. \\
& \left.-\sin \left(20^{\circ}-10^{\circ}\right)\right\} \\
& =\frac{1}{8} \sin 10^{\circ}+\frac{1}{8} \sin 30^{\circ}-\frac{1}{8} \sin 10^{\circ} \\
& =\frac{1}{8} \cdot \frac{1}{2}=\frac{1}{16}=\text { R.H.S. (Proved) }
\end{aligned}
$$

1. প্র্রাণ ক্র बে,

(a) $\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}=\frac{1}{16}$
L.H.S. $=\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}$
$=\sin 10^{\circ} \cdot \frac{1}{2} \cdot \frac{1}{2}\left\{\cos \left(70^{\circ}-50^{\circ}\right)-\right.$ $\left.\cos \left(70^{\circ}+50^{\circ}\right)\right\}$
$=\frac{1}{4} \sin 10^{\circ}\left(\cos 20^{\circ}-\cos 120^{\circ}\right)$
$=\frac{1}{4} \sin 10^{\circ} \cos 20^{\circ}-\frac{1}{4}\left(-\frac{1}{2}\right) \sin 10^{\circ}$
$=\frac{1}{4} \cdot \frac{1}{2}\left\{\sin \left(20^{\circ}+10^{\circ}\right)-\right.$

$$
\left.\sin \left(20^{\circ}-10^{\circ}\right)\right\}+\frac{1}{8} \sin 10^{\circ}
$$

$=\frac{1}{8} \sin 30^{\circ}-\frac{1}{8} \sin 10^{\circ}+\frac{1}{8} \sin 10^{\circ}$

1(c) $\boldsymbol{\operatorname { t a n }} 20^{\circ} \boldsymbol{\operatorname { t a n }} 40^{\circ} \tan 60^{\circ} \tan 80^{\circ}=3$
L.H.S. $=\tan 20^{\circ} \tan 40^{\circ} \tan 60^{\circ} \tan 80^{\circ}$
$=\tan 20^{\circ} \tan 40^{\circ} \cdot \sqrt{3} \cdot \tan 80^{\circ}$
$=\sqrt{3} \tan 20^{\circ} \tan 40^{\circ} \tan 60^{\circ}$
$=\sqrt{3} \cdot \frac{2 \sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ}}{2 \cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}}$
$=\frac{\sqrt{3}\left\{\cos \left(40^{\circ}-20^{\circ}\right)-\cos \left(40^{\circ}+20^{\circ}\right)\right\} \sin \left(90^{\circ}-10^{\circ}\right)}{\left\{\cos \left(40^{\circ}+20^{\circ}\right)+\cos \left(40^{\circ}-20^{\circ}\right)\right\} \cos \left(90^{\circ}-10^{\circ}\right)}$
$=\sqrt{3} \frac{\left(\cos 20^{\circ}-\cos 60^{\circ}\right) \cos 10^{\circ}}{\left(\cos 60^{\circ}+\cos 20^{\circ}\right) \sin 10^{\circ}}$
$=\sqrt{3} \frac{\cos 20^{\circ} \cos 10^{\circ}-\frac{1}{2} \cos 10^{\circ}}{\frac{1}{2} \sin 10^{\circ}+\cos 20^{\circ} \sin 10^{\circ}}$

$$
\begin{aligned}
& =\sqrt{3} \frac{\frac{1}{2}\left\{\cos \left(20^{\circ}+10^{\circ}\right)+\cos \left(20^{\circ}-10^{\circ}\right)\right\}-\frac{1}{2} \cos 10^{\circ}}{\frac{1}{2} \sin 10^{\circ}+\frac{1}{2}\left\{\sin \left(20^{\circ}+10^{\circ}\right)-\sin \left(20^{\circ}-10^{\circ}\right)\right\}} \\
& =\sqrt{3} \cdot \frac{\frac{1}{2} \cos 30^{\circ}+\frac{1}{2} \cos 10^{\circ}-\frac{1}{2} \cos 10^{0}}{\frac{1}{2} \sin 10^{\circ}+\frac{1}{2} \sin 30^{\circ}-\frac{1}{2} \sin 10^{0}} \\
& =\sqrt{3} \cdot \frac{\frac{1}{2} \cdot \frac{\sqrt{3}}{2}}{\frac{1}{2}} \cdot \frac{1}{2} \\
& =\sqrt{3} \cdot \frac{\sqrt{3}}{4} \times 4 \\
& =\sqrt{3}=3=\text { R.H.S. }
\end{aligned}
$$

2.(a) $\cos \theta \cos \left(60^{\circ}-\theta\right) \cos \left(60^{\circ}+\theta\right)=\frac{1}{4} \cos 3 \theta$

$$
\text { L.H.S. }=\cos \theta \cos \left(60^{\circ}-\theta\right) \cos \left(60^{\circ}+\theta\right)
$$

$$
=\cos \theta \cdot \frac{1}{2}\left\{\cos \left(60^{\circ}+\theta+60^{\circ}-\theta\right)\right.
$$

$$
\left.+\cos \left(60^{\circ}+\theta-60^{\circ}+\theta\right)\right\}
$$

$$
=\frac{1}{2} \cos \theta\left(\cos 120^{\circ}+\cos 2 \theta\right)
$$

$$
=\frac{1}{2} \cos \theta\left(-\frac{1}{2}\right)+\frac{1}{2} \cos \theta \cos 2 \theta
$$

$$
=-\frac{1}{4} \cos \theta+\frac{1}{2} \cdot \frac{1}{2}\{\cos (2 \theta+\theta)+\cos (2 \theta-\theta)\}
$$

$$
=-\frac{1}{4} \cos \theta+\frac{1}{4} \cos 3 \theta+\frac{1}{4} \cos \theta
$$

$$
=\frac{1}{4} \cos 3 \theta=\text { R.H.S. (Proved) }
$$

2(b) $\cos \left(36^{\circ}-\theta\right) \cos \left(36^{\circ}+\theta\right)+$ $\cos \left(54^{\circ}+\theta\right) \cos \left(54^{\circ}-\theta\right)=\cos 2 \theta$ L.H.S. $=\cos \left(36^{\circ}-\theta\right) \cos \left(36^{\circ}+\theta\right)+$ $\cos \left(54^{\circ}+\theta\right) \cos \left(54^{\circ}-\theta\right)$
$=\frac{1}{2}\left(\cos 72^{\circ}+\cos 2 \theta\right) \cdot+\frac{1}{2}\left(\cos 108^{\circ}+\cos 2 \theta\right)$
$=\frac{1}{2}\left\{\cos \left(90^{\circ}-18^{\circ}\right)+\cos 2 \theta\right\}+$

$$
\frac{1}{2}\left\{\cos \left(90^{\circ}+18^{\circ}\right)+\cos 2 \theta\right\}
$$

$=\frac{1}{2}\left(\cos 2 \theta+\cos 18^{\circ}\right)+\frac{1}{2}\left(\cos 2 \theta-\cos 18^{\circ}\right)$
$=\frac{1}{2}\left(\cos 2 \theta+\cos 18^{\circ}+\cos 2 \theta-\cos 18^{\circ}\right)$
$=\frac{1}{2} \cdot 2 \cos 2 \theta=\cos 2 \theta=$ R.H.S. (Proved)

3. প্রমাণ কর যে,

(a) $\cos \left(60^{\circ}-\theta\right)+\cos \left(60^{\circ}+\theta\right)-\cos \theta=0$
L.H.S. $=\cos \left(60^{\circ}-\theta\right)+\cos \left(60^{\circ}+\theta\right)-\cos \theta$
$=2 \cos 60^{\circ} \cos \theta-\cos \theta$
=2. $\frac{1}{2} \cos \theta-\cos \theta$
$=\cos \theta-\cos \theta=0=$ R.H.S. (Proved)
(b) $\sin \theta+\sin \left(120^{\circ}+\theta\right)+\sin \left(240^{\circ}+\theta\right)=0$
[ঢ.'১২]
L.H.S. $=\sin \theta+\sin \left(120^{\circ}+\theta\right)+\sin \left(240^{\circ}+\theta\right)$
$=\sin \theta+\sin \left\{180^{\circ}-\left(60^{\circ}-\theta\right)\right\}+$
$\sin \left\{180^{\circ}+\left(60^{\circ}+\theta\right)\right\}$
$=\sin \theta+\sin \left(60^{\circ}-\theta\right)-\sin \left(60^{\circ}+\theta\right)$
$=\sin \theta-\left\{\sin \left(60^{\circ}+\theta\right)-\sin \left(60^{\circ}-\theta\right)\right\}$
$=\sin \theta-2 \cos 60^{\circ} \sin \theta=\sin \theta-2 \cdot \frac{1}{2} \sin \theta$
$=\sin \theta-\sin \theta=0=$ R.H.S. (Proved)
3 (c) $\cos 70^{\circ}-\cos 10^{\circ}+\sin 40^{\circ}=0$
L.H.S. $=\cos 70^{\circ}-\cos 10^{\circ}+\sin 40^{\circ}$
$=2 \sin \frac{1}{2}\left(70^{\circ}+10^{\circ}\right) \sin \frac{1}{2}\left(10^{\circ}-70^{\circ}\right)+\sin 40^{\circ}$
$=2 \sin 40^{\circ} \sin \left(-30^{\circ}\right)+\sin 40^{\circ}$
$=-2 \sin 40^{\circ} .\left(\frac{1}{2}\right)+\sin 40^{\circ}$
$=-\sin 40^{\circ}+\sin 40^{\circ}=0=$ R.H.S.
4(a) $\sin 18^{\circ}+\cos 18^{\circ}=\sqrt{2} \cos 27^{\circ} \quad$ [ব’১১]
L.H.S. $=\sin 18^{\circ}+\cos 18^{\circ}$
$=\sin \left(90^{\circ}-72^{\circ}\right)+\cos 18^{\circ}$
$=\cos 72^{\circ}+\cos 18^{\circ}$
$=2 \cos \frac{1}{2}\left(72^{\circ}+18^{\circ}\right) \cos \frac{1}{2}\left(72^{\circ}-18^{\circ}\right)$
$=2 \cos 45^{\circ} \cos 27^{\circ}=2 \cdot \frac{1}{\sqrt{2}} \cos 27^{\circ}$ $=\sqrt{ } 2 \cos 27^{\circ}$
4.(b) $\frac{\cos 10^{\circ}-\sin 10^{\circ}}{\cos 10^{\circ}+\sin 10^{\circ}}=\tan 35^{\circ}$
L.H.S. $=\frac{\cos 10^{\circ}-\sin 10^{\circ}}{\cos 10^{\circ}+\sin 10^{\circ}}$
$=\frac{\cos 10^{\circ}\left(1-\tan 10^{\circ}\right)}{\cos 10^{\circ}\left(1+\tan 10^{\circ}\right)}=\frac{\tan 45^{\circ}-\tan 10^{\circ}}{1+\tan 45^{\circ} \tan 10^{\circ}}$
$=\tan \left(45^{\circ}-10^{\circ}\right)=\tan 35^{\circ}=$ R.H.S. (Proved)
5.(a) $\cot \left(\mathrm{A}+15^{\circ}\right)-\tan \left(\mathrm{A}-15^{\circ}\right)$

$$
=\frac{4 \cos 2 A}{2 \sin 2 A+1}
$$

L.H.S. $=\cot \left(\mathrm{A}+15^{\circ}\right)-\tan \left(\mathrm{A}-15^{\circ}\right)$
$=\frac{\cos \left(A+15^{0}\right)}{\sin \left(A+15^{\circ}\right)}-\frac{\sin \left(A-15^{\circ}\right)}{\cos \left(A-15^{\circ}\right)}$
$=\frac{\cos \left(A+15^{0}\right) \cos \left(A-15^{0}\right)-\sin \left(A+15^{0}\right) \sin \left(A-15^{0}\right)}{\sin \left(A+15^{0}\right) \cos \left(A-15^{0}\right)}$
$=\frac{\cos \left(A+15^{\circ}+A-15^{\circ}\right)}{\frac{1}{2}\left(\sin 2 A+\sin 30^{\circ}\right)}=\frac{2 \cos 2 A}{\sin 2 A+\frac{1}{2}}$
$=\frac{4 \cos 2 A}{2 \sin 2 A+1}=$ R.H.S. (Proved)
$5(b)(\cos \alpha+\cos \beta)^{2}+(\sin \alpha-\sin \beta)^{2}$
$=4 \cos ^{2} \frac{1}{2}(\alpha+\beta)$
[য.'১২]
L.H.S. $=(\cos \alpha+\cos \beta)^{2}+(\sin \alpha-\sin \beta)^{2}$
$=\cos ^{2} \alpha+\cos ^{2} \beta+2 \cos \alpha \cos \beta+$

$$
\sin ^{2} \alpha+\sin ^{2} \beta-2 \sin ^{2} \alpha \sin \beta
$$

$=1+1+2(\cos \alpha \cos \beta-\sin \alpha \sin \beta)$
$=2\{1+\cos (\alpha+\beta)\}$
$=2.2 \cos ^{2} \frac{1}{2}(\alpha+\beta)$
$=4 \cos ^{2} \frac{1}{2}(\alpha+\beta)=$ R.H.S. (Prived)
E(c) $2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}=0$
L.H.S. $=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}$
$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{1}{2}\left(\frac{5 \pi}{13}+\frac{3 \pi}{13}\right)$

$$
\cos \frac{1}{2}\left(\frac{5 \pi}{13}-\frac{3 \pi}{13}\right)
$$

$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \frac{\pi}{13}$
$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \left(\pi-\frac{9 \pi}{13}\right) \cos \frac{\pi}{13}$
$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}-2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}$
$=0=$ R.H.S. (Proved)
6. $\left(\frac{\cos A+\cos B}{\sin A-\sin B}\right)^{n}+\left(\frac{\sin A+\sin B}{\cos A-\cos B}\right)^{n}$
$=2 \cot ^{n} \frac{1}{2}(A-B)$ जथ্या 0 यथन n यथाब्कম बোড়
অथ্য বিজোড় সৃ্য্যা।
$\left(\frac{\cos A+\cos B}{\sin A-\sin B}\right)^{n}+\left(\frac{\sin A+\sin B}{\cos A-\cos B}\right)^{n}$
$=\left(\frac{2 \cos \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)}{2 \cos \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B)}\right)^{n}+$

$$
\left(\frac{2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)}{2 \sin \frac{1}{2}(A+B) \sin \frac{1}{2}(B-A)}\right)^{n}
$$

$=\left(\cot \frac{1}{2}(A-B)\right)^{n}+\left(\frac{\cos \frac{1}{2}(A-B)}{-\sin \frac{1}{2}(A-B)}\right)^{n}$
$=\cot ^{n} \frac{1}{2}(A-B)+\left(-\cot \frac{1}{2}(A-B)\right)^{n}$
$=\cot ^{n} \frac{1}{2}(A-B)+(-1)^{n} \cot ^{n} \frac{1}{2}(A-B)$
যখন n বিজোড় সংখ্যা,
$\cot ^{n} \frac{1}{2}(A-B)+(-1)^{n} \cot ^{n} \frac{1}{2}(A-B)$
$=\cot ^{n} \frac{1}{2}(A-B)-\cot ^{n} \frac{1}{2}(A-B)=0$,
যখन n জোড় সং্খ্যা,

$$
\begin{aligned}
& \cot ^{n} \frac{1}{2}(A-B)+(-1)^{n} \cot ^{n} \frac{1}{2}(A-B) \\
& =\cot ^{n} \frac{1}{2}(A-B)+\cot ^{n} \frac{1}{2}(A-B) \\
& =2 \cot ^{n} \frac{1}{2}(A-B) \\
& \quad\left(\frac{\cos A+\cos B}{\sin A-\sin B}\right)^{n}+\left(\frac{\sin A+\sin B}{\cos A-\cos B}\right)^{n}=
\end{aligned}
$$

$2 \cot ^{n} \frac{1}{2}(A-B)$ जथবा ○ যখन যথাক্রমে জোড় অথবা বিজোড় সং্থ্যা।
7. (a) $a \cos \alpha+b \sin \alpha=a \cos \beta+b \sin \beta$ হলে দেখাও यে, $\cos ^{2} \frac{\alpha+\beta}{2}-\sin ^{2} \frac{\alpha+\beta}{2}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$ দেওয়া আছে ,
$a \cos \alpha+b \sin \alpha=a \cos \beta+b \sin \beta$
$\Rightarrow \mathrm{a}(\cos \alpha-\cos \beta)=\mathrm{b}(\sin \beta-\sin \alpha)$
$\Rightarrow \mathrm{a} .2 \sin \frac{\alpha+\beta}{2} \sin \frac{\beta-\alpha}{2}$

$$
=\mathrm{b} .2 \sin \frac{\beta-\alpha}{2} \cos \frac{\alpha+\beta}{2}
$$

$\Rightarrow \frac{\cos \frac{\alpha+\beta}{2}}{\sin \frac{\alpha+\beta}{2}}=\frac{a}{b} \Rightarrow \frac{\cos ^{2} \frac{\alpha+\beta}{2}}{\sin ^{2} \frac{\alpha+\beta}{2}}=\frac{a^{2}}{b^{2}}$
$\Rightarrow \frac{\cos ^{2} \frac{\alpha+\beta}{2}+\sin ^{2} \frac{\alpha+\beta}{2}}{\cos ^{2} \frac{\alpha+\beta}{2}-\sin ^{2} \frac{\alpha+\beta}{2}}=\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$
[যোজন-বিয়োজন করে ।]
$\Rightarrow \frac{1}{\cos ^{2} \frac{\alpha+\beta}{2}-\sin ^{2} \frac{\alpha+\beta}{2}}=\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$
$\cos ^{2}\left(\frac{\alpha+\beta}{2}\right)-\sin ^{2}\left(\frac{\alpha+\beta}{2}\right)=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
7.(b) $\cos x=\mathrm{k} \cos y$ रলে দেখাও বে, $\boldsymbol{\operatorname { t a n }} \frac{x+y}{2}=\frac{k-1}{k+1} \cot \frac{y-x}{2}$
প্রমাণ ঃ দেওয়া আছে , $\cos x=\mathrm{k} \cos y$

$$
\begin{aligned}
& \Rightarrow \frac{\cos x}{\cos y}=\frac{k}{1} \Rightarrow \frac{\cos x+\cos y}{\cos x-\cos y}=\frac{k+1}{k-1} \\
& \Rightarrow \frac{2 \cos \frac{x+y}{2} \cos \frac{y-x}{2}}{2 \sin \frac{y-x}{2} \sin \frac{x+y}{2}}=\frac{k+1}{k-1} \\
& \Rightarrow \frac{\cot \frac{y-x}{2}}{\tan \frac{x+y}{2}}=\frac{k+1}{k-1} \\
& \tan \frac{x+y}{2}=\frac{k-1}{k+1} \cot \frac{x+y}{2}
\end{aligned}
$$

$\tan \left(\theta-\frac{\alpha}{2}\right)=\frac{k-1}{k+1} \tan \frac{\alpha}{2}$
প্রমাণ : দেওয়া আাছ, $\sin \theta=\mathrm{k} \sin (\alpha-\theta)$

$$
\begin{aligned}
& \Rightarrow \frac{\sin \theta}{\sin (\alpha-\theta)}=\frac{k}{1} \\
& \Rightarrow \frac{\sin \theta+\sin (\alpha-\theta)}{\sin \theta-\sin (\alpha-\theta)}=\frac{k+1}{k-1} \\
& \Rightarrow \frac{2 \sin \frac{\theta+\alpha-\theta}{2} \cos \frac{\theta-\alpha+\theta}{2}}{2 \cos \frac{\theta+\alpha-\theta}{2}} \sin \frac{\theta-\alpha+\theta}{2}=\frac{k+1}{k-1}
\end{aligned}
$$

$$
\Rightarrow \frac{\tan \frac{\alpha}{2}}{\tan \left(\theta-\frac{\alpha}{2}\right)}=\frac{k+1}{k-1}
$$

$\tan \left(\theta-\frac{\alpha}{2}\right)=\frac{k-1}{k+1} \tan \frac{\alpha}{2}$ (Showed).
7(d) $\frac{\tan (\theta+\alpha)}{\tan (\theta+\beta)}=\frac{a}{b}$ হলে দেখাও যে, $\frac{a+b}{a-b} \sin ^{2}$ $(\alpha-\beta)=\sin ^{2}(\theta+\alpha)-\sin ^{2}(\theta+\beta)$
প্রমাণ ঃ দেওয়া জাছে, $\frac{\tan (\theta+\alpha)}{\tan (\theta+\beta)}=\frac{a}{b}$
$\Rightarrow \frac{\tan (\theta+\alpha)+\tan (\theta+\beta)}{\tan (\theta+\alpha)-\tan (\theta+\beta)}=\frac{a+b}{a-b}$
[যোজন - বিয়োজন করে ।]
$\Rightarrow \frac{\frac{\sin (\theta+\alpha)}{\cos (\theta+\alpha)}+\frac{\sin (\theta+\beta)}{\cos (\theta+\beta)}}{\frac{\sin (\theta+\alpha)}{\cos (\theta+\alpha)}-\frac{\sin (\theta+\beta)}{\cos (\theta+\beta)}}=\frac{a+b}{a-b}$
$\Rightarrow \frac{\sin (\theta+\alpha) \cos (\theta+\beta)+\sin (\theta+\beta) \cos (\theta+\alpha)}{\sin (\theta+\alpha) \cos (\theta+\beta)-\sin (\theta+\beta) \cos (\theta+\alpha)}$

$$
=\frac{a+b}{a-b}
$$

$\Rightarrow \frac{\sin \{(\theta+\alpha)+(\theta+\beta)\}}{\sin \{(\theta+\alpha)-(\theta+\beta)\}}=\frac{a+b}{a-b}$
$\Rightarrow \frac{a+b}{a-b} \sin (\alpha-\beta)=\sin \{(\theta+\alpha)+(\theta+\beta)\}$
$\Rightarrow \frac{a+b}{a-b} \sin ^{2}(\alpha-\beta)=$
$\sin \{(\theta+\alpha)+(\theta+\beta)\} \sin \{(\theta+\alpha)-(\theta+\beta)\}$
$\therefore \frac{a+b}{a-b} \sin ^{2}(\alpha-\beta)=\sin ^{2}(\theta+\alpha)-\sin ^{2}(\theta+\beta)$
$\left[\because \sin (A+B) \sin (A-B)=\sin ^{2} A-\sin ^{2} B\right]$
8. $\frac{x}{\tan (\theta+\alpha)}=\frac{y}{\tan (\theta+\beta)}=-\frac{z}{\tan (\theta+\gamma)}$ रुज़ দেখাও যে, $\frac{x+y}{x-y} \sin ^{2}(\alpha-\beta)+$

$$
\frac{y+z}{y-z} \sin ^{2}(\beta-\gamma)+\frac{z+x}{z-x} \sin ^{2}(\gamma-\alpha)=0
$$

প্রমাণ : দেওয়া আছে,

$$
\frac{x}{\tan (\theta+\alpha)}=\frac{y}{\tan (\theta+\beta)}=\frac{z}{\tan (\theta+\gamma)}
$$

১ম ও ২য় অনুপাত হতে পাই,

$$
\begin{aligned}
& \tan (\theta+\alpha) \\
& \Rightarrow \frac{\tan (\theta+\alpha)}{\tan (0+\beta)}=\frac{x}{y} \\
& \Rightarrow \frac{\tan (\theta+\alpha)+\tan (\theta+\beta)}{\tan (\theta+\alpha)-\tan (\theta+\beta)}=\frac{x+y}{x-y}
\end{aligned}
$$

[যোজন - বিয়োজন করে ।]

$$
\begin{aligned}
& \Rightarrow \frac{\frac{\sin (\theta+\alpha)}{\cos (\theta+\alpha)}+\frac{\sin (\theta+\beta)}{\cos (\theta+\beta)}}{\frac{\sin (\theta+\alpha)}{\cos (\theta+\alpha)}-\frac{\sin (\theta+\beta)}{\cos (\theta+\beta)}}=\frac{x+y}{x-y} \\
& \Rightarrow \frac{\sin (\theta+\alpha) \cos (\theta+\beta)+\sin (\theta+\beta) \cos (\theta+\alpha)}{\sin (\theta+\alpha) \cos (\theta+\beta)-\sin (\theta+\beta) \cos (\theta+\alpha)} \\
& \qquad=\frac{x+y}{x-y} \\
& \Rightarrow \frac{\sin \{(\theta+\alpha)+(\theta+\beta)\}}{\sin \{(0+(\ell)-(0+\beta)\}}=\frac{x+y}{x-y} \\
& \Rightarrow \\
& \frac{x+y}{x-y} \sin (\alpha-\beta)=\sin \{(\theta+\alpha)+(\theta+\beta)\} \\
& \Rightarrow \\
& \frac{x+y}{x-y} \sin ^{2}(\alpha-\beta)=
\end{aligned}
$$

$$
\sin \{(\theta+\alpha)+(\theta+\beta)\} \sin \{(\theta+\alpha)-(\theta+\beta)\}
$$

$$
\therefore \frac{x+y}{x-y} \sin ^{2}(\alpha-\beta)=\sin ^{2}(\theta+\alpha)-\sin ^{2}(\theta+\beta)
$$

$$
\text { অনুরূপভাবে, } \frac{y}{\tan (\theta+\beta)}=\frac{=}{\tan (\theta+\gamma)}
$$

$$
\Rightarrow \frac{y+z}{y-z} \sin ^{2}(\beta-\gamma)=\sin ^{2}(\theta+\beta)-\sin ^{2}(\theta+\gamma)
$$

$$
\text { এ<: } \frac{z}{\tan (\theta+\gamma)}=\frac{x}{\tan (\theta+\alpha)}
$$

$$
\Rightarrow \frac{z+x}{z-x} \sin ^{2}(\gamma-\alpha)=\sin ^{2}(\theta+\gamma)-\sin ^{2}(\theta+\alpha)
$$

$$
\frac{x+y}{x-y} \sin ^{2}(\alpha-\beta)+\frac{y+z}{y-z} \sin ^{2}(\beta-\gamma)+
$$

$$
\frac{z+x}{z-x} \sin ^{2}(\gamma-\alpha)=\sin ^{2}(\theta+\alpha)-\sin ^{2}(\theta+\beta)+
$$

$$
\sin ^{2}(\theta+\beta)-\sin ^{2}(\theta+\gamma)+\sin ^{2}(\theta+\gamma)
$$

$$
-\sin ^{2}(\theta+\alpha)=0
$$

) (a) $\sin 1+\cos A=\sin B+\cos B$ হनে দেখাও যে, $\mathbf{A}+\mathbf{B}=\frac{\pi}{2}$ [সि.’০১; চ., াদ.'১০; ষু.'১২] প্রমাণঃ দেওয়া আছে, $\sin \mathrm{A}+\cos \mathrm{A}=\sin \mathrm{B}+\cos \mathrm{B}$ $\Rightarrow \sin \mathrm{A}-\sin \mathrm{B}=\cos \mathrm{B}-\cos \mathrm{A}$
$\Rightarrow 2 \cos \frac{1}{2}(\mathrm{~A}+\mathrm{B}) \sin \frac{1}{2}(\mathrm{~A}-\mathrm{B})$

$$
\left.=2 \sin \frac{1}{2}(\mathrm{~A}+\mathrm{B}) \sin \frac{1}{2}(\mathrm{~A}-\mathrm{B}) \right\rvert\, \therefore \tan \frac{1}{2}(\theta-\varphi)= \pm \sqrt{\frac{4-a^{2}-b^{2}}{a^{2}+b^{2}}}
$$

$\Rightarrow \frac{\sin \frac{1}{2}(A+B)}{\cos \frac{1}{2}(A+B)}=1$
$\Rightarrow \tan \frac{1}{2}(\mathrm{~A}+\mathrm{B})=\tan \frac{\pi}{4} \Rightarrow \frac{1}{2}(\mathrm{~A}+\mathrm{B})=\frac{\pi}{4}$
$\therefore \mathrm{A}+\mathrm{B}=\frac{\pi}{2}$
9(b) $\sin \theta+\sin \varphi=a$ এবং $\cos \theta+\cos \varphi=b$
रनে দেখাও यে, $\tan \frac{\theta-\varphi}{2}= \pm \sqrt{\frac{4-a^{2}-b^{2}}{a^{2}+b^{2}}}$
প্রমাণ : দেওয়া আছে , $\sin \theta+\sin \varphi=a$
$\Rightarrow 2 \sin \frac{1}{2}(\theta+\varphi) \cos \frac{1}{2}(\theta-\varphi)=\mathrm{a}$
উভয় পক্ষকে বর্গ করে আমরা পাই,

$$
\begin{equation*}
4 \sin ^{2} \frac{1}{2}(\theta+\varphi) \cos ^{-} \frac{1}{2}(\Theta-\varphi)=\mathrm{a}^{2} \ldots \tag{1}
\end{equation*}
$$

এবং $\cos \theta+\cos \varphi=b$
$\Rightarrow 2 \cos \frac{1}{2}(\Theta+\varphi) \cos \frac{1}{2}(\theta-\varphi)=\mathrm{b}$
উভয় পক্ষকে বগ্গ করে আমরা পাই,
$4 \cos ^{2} \frac{1}{2}(\theta+\varphi) \cos ^{2} \frac{1}{2}(\theta-\varphi)=b^{2} \cdots(2)$.
(1) ও (2) যোগ করে আমরা পাই ,

$$
\begin{equation*}
4 \cos ^{2} \frac{1}{2}(\theta-\varphi)\left\{\sin ^{2} \frac{1}{2}(\theta+\varphi)+\right. \tag{1}
\end{equation*}
$$

9.(c) $\operatorname{cosec} A+\sec A=\operatorname{cosec} B+\sec B$ হলে দেখাও বে, $\tan \mathrm{A} \tan \mathrm{B}=\cot \frac{A+B}{2}$
প্রমাণ : দেওয়া আছে ,
$\operatorname{cosec} A+\sec A=\operatorname{cosec} B+\sec B$
$\Rightarrow \operatorname{cosec} A-\operatorname{cosec} B=\sec B-\sec A$
$\Rightarrow \frac{1}{\sin A}-\frac{1}{\sin B}=\frac{1}{\cos B}-\frac{1}{\cos A}$
$\Rightarrow \frac{\sin B-\sin A}{\sin A \sin B}=\frac{\cos A-\cos B}{\cos A \cos B}$
$\Rightarrow \frac{\sin B-\sin A}{\cos A-\cos B}=\frac{\sin A \sin B}{\cos A \cos B}$
$\Rightarrow \frac{2 \cos \frac{A+B}{2} \sin \frac{B-A}{2}}{2 \sin \frac{A+B}{2} \sin \frac{B-A}{2}}=\tan A \tan B$
$\tan \mathrm{A} \tan \mathrm{B}=\cot \left(\frac{A+B}{2}\right)$
10. $x \cos \alpha+y \sin \alpha=k=x \cos \beta+$ $y \sin \beta$ হলে দেখাও যে,
$\frac{x}{\cos \frac{1}{2}(\alpha+\beta)}=\frac{y}{\sin \frac{1}{2}(\alpha+\beta)}=\frac{k}{\cos \frac{1}{2}(\alpha-\beta)}$
প্রমাণ ঃ দেওয়া আছে,
$x \cos \alpha+y \sin \alpha-\mathrm{k}=0$
$x \cos \beta+y \sin \beta-\mathrm{k}=0$.

$$
\begin{equation*}
\left.\cos ^{2} \frac{1}{2}(\theta+\varphi)\right\}=\mathrm{a}^{2}+\mathrm{b}^{2} \tag{2}
\end{equation*}
$$

বজ্রগুণন প্রক্রিয়ায সাহায়্যে (1) ও (2) হতে আমরা পাই

$$
\Rightarrow \cos ^{2} \frac{1}{2}(\epsilon-\varphi)=\frac{a^{2}+b^{2}}{4}
$$

$$
\Rightarrow \sin \quad 2^{-}(\theta-\varphi)=\frac{4}{a^{2}+b^{2}}
$$

$$
\Rightarrow 1+\tan ^{2} \frac{1}{2}(\theta-\varphi)=\frac{4}{a^{2}+b^{2}}
$$

$$
\Rightarrow \tan ^{2} \frac{1}{2}(\theta-\varphi)=\frac{4}{a^{2}+b^{2}}-1
$$

$$
=\frac{4-a^{2}-b^{2}}{a^{2}+b^{2}}
$$

$$
\begin{aligned}
\frac{x}{\sin \alpha+\sin \beta} & =\frac{y}{-\cos \beta+\cos \alpha} \\
& =\frac{x}{\cos \alpha \sin \beta-\sin \alpha \cos \beta} \\
\Rightarrow & \frac{x}{2 \cos \frac{1}{2}(\alpha+\beta) \sin \frac{1}{2}(\beta-\alpha)} \\
= & \frac{y}{2 \sin \frac{1}{2}(\alpha+\beta) \sin \frac{1}{2}(\beta-\alpha)}=\frac{k}{\sin (\beta-\alpha)}
\end{aligned}
$$

$\Rightarrow \frac{x}{2 \cos \frac{1}{2}(\alpha+\beta) \sin \frac{1}{2}(\beta-\alpha)}$

$$
\begin{gathered}
=\frac{y}{2 \sin \frac{1}{2}(\alpha+\beta) \sin \frac{1}{2}(\beta-\alpha)} \\
=\frac{k}{2 \sin \frac{1}{2}(\beta-\alpha) \cos \frac{1}{2}(\beta-\alpha)}
\end{gathered}
$$

$\therefore \frac{x}{\cos \frac{1}{2}(\alpha+\beta)}=\frac{y}{\sin \frac{1}{2}(\alpha+\beta)}=\frac{k}{\cos \frac{1}{2}(\alpha-\beta)}$
11. $\sin \frac{\pi}{16} \cdot \sin \frac{3 \pi}{16} \cdot \sin \frac{5 \pi}{16} \cdot \sin \frac{7 \pi}{16}$ এর মাन निर्ণয় কর।
সমাধান: $\sin \frac{\pi}{16} \sin \frac{3 \pi}{16} \sin \frac{5 \pi}{16} \sin \frac{7 \pi}{16}$
$=\frac{1}{4}\left(2 \sin \frac{7 \pi}{16} \sin \frac{\pi}{16}\right)\left(2 \sin \frac{5 \pi}{16} \sin \frac{3 \pi}{16}\right)$
$=\frac{1}{4}\left\{\cos \left(\frac{7 \pi}{16}-\frac{\pi}{16}\right)-\cos \left(\frac{7 \pi}{16}+\frac{\pi}{16}\right)\right\}$
$\left\{\cos \left(\frac{5 \pi}{16}-\frac{3 \pi}{16}\right)-\cos \left(\frac{5 \pi}{16}+\frac{3 \pi}{16}\right)\right\}$
$=\frac{1}{4}\left(\cos \frac{3 \pi}{8}-\cos \frac{\pi}{2}\right)\left(\cos \frac{\pi}{8}-\cos \frac{\pi}{2}\right)$
$=\frac{1}{4}\left\{\cos \left(\frac{\pi}{2}-\frac{\pi}{8}\right)-0\right\}\left(\cos \frac{\pi}{8}-0\right)$
$=\frac{1}{4} \sin \frac{\pi}{8} \cos \frac{\pi}{8}=\frac{1}{8} \sin 2 \cdot \frac{\pi}{8}$
$=\frac{1}{8} \sin \frac{\pi}{4}=\frac{1}{8} \cdot \frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{16}$ (Ans.)
অতিব্সিক্ত প্রশ্ন (সমাধানসহ)

প্রমাণ কর যে,

1(a) $\cos 10^{\circ} \cos 50^{\circ} \cos 70^{\circ}=\frac{\sqrt{3}}{8}$ [প্র.ভ.প.'১৩]
L.H.S $=\cos 10^{\circ} \cos 50^{\circ} \cos 70^{\circ}$
$=\frac{1}{2}\left\{\cos \left(50^{\circ}+10^{\circ}\right)+\cos \left(50^{\circ}-10^{\circ}\right)\right\}$ $\cos \left(90^{\circ}-20^{\circ}\right)$
$\stackrel{\text { বইঘ巾. बম }}{=} \frac{1}{2}\left(\cos 60^{\circ}+\cos 40^{\circ}\right) \sin 20^{\circ}$
$=\frac{1}{2} \cdot \frac{1}{2} \sin 20^{\circ}+\frac{1}{2} \cos 40^{\circ} \sin 20^{\circ}$
$=\frac{1}{4} \sin 20^{\circ}+\frac{1}{2} \cdot \frac{1}{2}\left\{\sin \left(40^{\circ}+20^{\circ}\right)-\right.$
$\left.\sin \left(40^{\circ}-20^{\circ}\right)\right\}$
$=\frac{1}{4} \sin 20^{\circ}+\frac{1}{4} \sin 60^{\circ}-\frac{1}{4} \sin 20^{\circ}$
$=\frac{1}{4} \cdot \frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{8}=$ R.H.S. (Proved)
1.(b) $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}=\frac{3}{16}$
L.H.S $=\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}$ $=\frac{1}{2}\left\{\cos \left(40^{\circ}-20^{\circ}\right)-\right.$
$\left.\cos \left(40^{\circ}+20^{\circ}\right)\right\} \cdot \frac{\sqrt{3}}{2} \cdot \sin 80^{\circ}$
$=\frac{\sqrt{3}}{4}\left(\cos 20^{\circ}-\cos 60^{\circ}\right) \sin \left(90^{\circ}-10^{\circ}\right)$
$=\frac{\sqrt{3}}{4}\left(\cos 20^{\circ}-\frac{1}{2}\right) \cos 10^{\circ}$
$=\frac{\sqrt{3}}{4} \cos 20^{\circ} \cos 10^{\circ}-\frac{\sqrt{3}}{8} \cos 10^{\circ}$
$=\frac{\sqrt{3}}{4} \frac{1}{2}\left\{\cos \left(20^{\circ}-10^{\circ}\right)+\cos \left(20^{\circ}+10^{\circ}\right)\right\}$
$-\frac{\sqrt{3}}{8} \cos 10^{\circ}$
$=\frac{\sqrt{3}}{8} \cos 10^{\circ}+\frac{\sqrt{3}}{8} \cos 30^{\circ}-\frac{\sqrt{3}}{8} \cos 10^{\circ}$
$=\frac{\sqrt{3}}{8} \cdot \frac{\sqrt{3}}{2}=\frac{3}{16}=$ R.H.S. (Proved)
1(c) $\cos 10^{\circ} \cos 30^{\circ} \cos 50^{\circ} \cos 70^{\circ}=\frac{3}{16}$
L.H.S. $=\cos 10^{\circ} \cos 30^{\circ} \cos 50^{\circ} \cos 70^{\circ}$
$=\cos 10^{\circ} \cdot \frac{\sqrt{3}}{2} \frac{1}{2}\left\{\cos \left(70^{\circ}+50^{\circ}\right)+\right.$

$$
\begin{aligned}
&\left.\cos \left(70^{\circ}-50^{\circ}\right)\right\} \\
&= \frac{\sqrt{3}}{4} \cdot \cos 10^{\circ} \cos 120^{\circ}+\frac{\sqrt{3}}{4} \cos 20^{\circ} \cos 10^{\circ} \\
&= \frac{\sqrt{3}}{4} \cos 10^{\circ} \cdot\left(-\frac{1}{2}\right)+\frac{\sqrt{3}}{4} \cdot \frac{1}{2}\left\{\cos \left(20^{\circ}+10^{\circ}\right)\right. \\
&\left.+\cos \left(20^{\circ}-10^{\circ}\right)\right\} \\
&=-\frac{\sqrt{3}}{8} \cos 10^{\circ}+\frac{\sqrt{3}}{8} \cos 30^{\circ}+\frac{\sqrt{3}}{8} \cos 10^{\circ} \\
&= \frac{\sqrt{3}}{8} \cdot \frac{\sqrt{3}}{2}=\frac{3}{16}=\text { R.H.S. (Proved) }
\end{aligned}
$$

$2(a) 4 \cos \theta \cos \left(\frac{2 \pi}{3}+\theta\right) \cos \left(\frac{4 \pi}{3}+\theta\right)=\cos 3 \theta$ LH.S. $=4 \cos \theta \cos \left(\frac{2 \pi}{3}+\theta\right) \cos \left(\frac{4 \pi}{3}+\theta\right)$ $=4 \cos \theta \cdot \frac{1}{2}\left\{\cos \left(\frac{4 \pi}{3}+\frac{2 \pi}{3}+2 \theta\right)+\right.$

$$
\left.\cos \left(\frac{4 \pi}{3}-\frac{2 \pi}{3}\right)\right\}
$$

$=2 \cos \theta\left\{\cos (2 \pi+2 \theta)+\cos \frac{2 \pi}{3}\right\}$
$=2 \cos \theta \cos 2 \theta+2 \cos \theta\left(-\frac{1}{2}\right)$
$=\cos (2 \theta+\theta)+\cos (2 \theta-\theta)-\cos \theta$
$=\cos 3 \theta+\cos \theta-\cos \theta$
$=\cos 3 \theta=$ R.H.S. (Proved)
2(b) $\sin \left(45^{\circ}+A\right) \sin \left(45^{\circ}-A\right)=\frac{1}{2} \cos 2 A$
L.H.S. $=\sin \left(45^{\circ}+\mathrm{A}\right) \sin \left(45^{\circ}-\mathrm{A}\right)$
$=\frac{1}{2}\left\{\cos \left(45^{\circ}+\mathrm{A}-45^{\circ}+\mathrm{A}\right)-\right.$ $\left.\cos \left(45^{\circ}+\mathrm{A}+45^{\circ}-\mathrm{A}\right)\right\}$
$=\frac{1}{2}\left(\cos 2 \mathrm{~A}-\cos 90^{\circ}\right)=\frac{1}{2}(\cos 2 \mathrm{~A}-0)$
$=\frac{1}{2} \cos 2 \mathrm{~A}=$ R.H.S. (Proved)
2(c) $4 \cos \frac{B+C}{2} \cos \frac{C+A}{2} \cos \frac{A+B}{2}$
$=\cos A+\cos B+\cos C+\cos (A+B+C)$
L.H.S. $=4 \cos \frac{B+C}{2} \cos \frac{C+A}{2} \cos \frac{A+B}{2}$ $=2\left\{\cos \frac{1}{2}(\mathrm{~B}+\mathrm{C}+\mathrm{C}+\mathrm{A})+\right.$ $\left.\cos \frac{1}{2}(\mathrm{~B}+\mathrm{C}-\mathrm{C}-\mathrm{A})\right\} \cos \frac{A+B}{2}$
$=2 \cos \frac{1}{2}(\mathrm{~B}+2 \mathrm{C}+\mathrm{A}) \cos \frac{A+B}{2}+$

$$
2 \cos \frac{1}{2}(\mathrm{~B}-\mathrm{A}) \cos \frac{A+B}{2}
$$

$=\cos \frac{1}{2}(\mathrm{~A}+\mathrm{B}+2 \mathrm{C}+\mathrm{A}+\mathrm{B})+$

$$
\cos \frac{1}{2}(\mathrm{~A}+\mathrm{B}+2 \mathrm{C}-\mathrm{A}-\mathrm{B})+
$$

$$
\cos \frac{1}{2}(B-A+A+B)+
$$

$$
\cos \frac{1}{2}(\mathrm{~B}-\mathrm{A}-\mathrm{A}-\mathrm{B})
$$

$=\cos (A+B+C)+\cos C+\cos B$ $+\cos (-A)$
$=\cos A+\cos B+\cos C+\cos (A+B+C)$
$=$ R.H.S. (Proved)
3(a) $\sin \theta+\sin \left(60^{\circ}-\theta\right)-\sin \left(60^{\circ}+\theta\right)=0$
L.H.S. $=\sin \theta+\sin \left(60^{\circ}-\theta\right)-\sin \left(60^{\circ}+\theta\right)$
$=\sin \theta-\left\{\sin \left(60^{\circ}+\theta\right)-\sin \left(60^{\circ}-\theta\right)\right\}$
$=\sin \theta-2 \sin \theta \cos 60^{\circ}=\sin \theta-2\left(\frac{1}{2}\right) \sin \theta$
$=\sin \theta-\sin \theta=0=$ R.H.S. (Proved)
(b) $\cos 40^{\circ}+\cos 80^{\circ}+\cos 160^{\circ}=0$
L.H.S. $=\cos 40^{\circ}+\cos 80^{\circ}+\cos 160^{\circ}$
$=\cos 40^{\circ}+2 \cos \frac{1}{2}\left(160^{\circ}+80^{\circ}\right)$

$$
\cos \frac{1}{2}\left(160^{\circ}-80^{\circ}\right)
$$

$=\cos 40^{\circ}+2 \cos 120^{\circ} \cos 40^{\circ}$
$=\cos 40^{\circ}+2\left(-\frac{1}{2}\right) \cos 40^{\circ}$
$=\cos 40^{\circ}-\cos 40^{\circ}=0=$ R.H.S
4. $\sin 65^{\circ}+\cos 65^{\circ}=\sqrt{ } 2 \cos 20^{\circ}$
L.H.S. $=\sin 65^{\circ}+\cos 65^{\circ}$
$=\sin 65^{\circ}+\cos \left(90^{\circ}-25^{\circ}\right)$
$=\sin 65^{\circ}+\sin 25^{\circ}$
$=2 \sin \frac{1}{2}\left(65^{\circ}+25^{\circ}\right) \cos \left(65^{\circ}-25^{\circ}\right)$
$=2 \sin 45^{\circ} \cos 20^{\circ}=2 \cdot \frac{1}{\sqrt{2}} \cos 20^{\circ}$
$=\sqrt{ } 2 \cos 20^{\circ}=$ R.H.S. (Proved)
5.(a) $\tan \left(\frac{\pi}{6}+\theta\right) \tan \left(\frac{\pi}{6}-\theta\right)=\frac{2 \cos 2 \theta-1}{2 \cos 2 \theta+1}$
L.H.S. $=\tan \left(\frac{\pi}{6}+\theta\right) \tan \left(\frac{\pi}{6}-\theta\right)$
$=\frac{\sin \left(\frac{\pi}{6}+\theta\right) \sin \left(\frac{\pi}{6}-\theta\right)}{\cos \left(\frac{\pi}{6}+\theta\right) \cos \left(\frac{\pi}{6}-\theta\right)}$
$=\frac{2 \sin \left(\frac{\pi}{6}+\theta\right) \sin \left(\frac{\pi}{6}-\theta\right)}{2 \cos \left(\frac{\pi}{6}+\theta\right) \cos \left(\frac{\pi}{6}-\theta\right)}$
$=\frac{\cos \left(\frac{\pi}{6}+\theta-\frac{\pi}{6}+\theta\right)-\cos \left(\frac{\pi}{6}+\theta+\frac{\pi}{6}-\theta\right)}{\cos \left(\frac{\pi}{6}+\theta-\frac{\pi}{6}+\theta\right)+\cos \left(\frac{\pi}{6}+\theta+\frac{\pi}{6}-\theta\right)}$
$=\frac{\cos 2 \theta-\cos \frac{\pi}{3}}{\cos 2 \theta+\cos \frac{\pi}{3}}=\frac{\cos 2 \theta-\frac{1}{2}}{\cos 2 \theta+\frac{1}{2}}$
$=\frac{2 \cos 2 \theta-1}{2 \cos 2 \theta+1}=$ R.H.S. (Proved)
5.(b) $\sin (\alpha+\beta+\gamma)+\sin (\alpha-\beta-\gamma)+\sin (\alpha+\beta$
$-\gamma)+\sin (\alpha-\beta+\gamma)=4 \sin \alpha \cos \beta \cos \gamma$
L.H.S. $=\sin (\alpha+\beta+\gamma)+\sin (\alpha-\beta-\gamma)$ $+\sin (\alpha+\beta-\gamma)+\sin (\alpha-\beta+\gamma)$
$=\sin \{\alpha+(\beta+\gamma)\}+\sin \{\alpha-(\beta+\gamma)\}+$ $\sin \{\alpha+(\beta-\gamma)\}+\sin \{\alpha-(\beta-\gamma)\}$
$=2 \sin \alpha \cos (\beta+\gamma)+2 \sin \alpha \cos (\beta-\gamma)$
$=2 \sin \alpha\{\cos (\beta+\gamma)+\cos (\beta-\gamma)\}$
$=2 \sin \alpha .2 \cos \beta \cos \gamma$
$=4 \sin \alpha \cos \beta \cos \gamma=$ R.H.S. (Prived)
$6 \sin x=k \sin y$ হলে দেখাও বে,
$\tan \frac{x-y}{2}=\frac{k-1}{k+1} \tan \frac{x+y}{2} \quad$ [প्र.ड.भ.'১৭]
প্রমাণ ঃ দেওয়া জাছে, $\sin x=\mathrm{k} \sin y$
$\Rightarrow \frac{\sin x}{\sin y}=\frac{k}{1} \Rightarrow \frac{\sin x+\sin y}{\sin x-\sin y}=\frac{k+1}{k-1}$
$\Rightarrow \frac{2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}}{2 \sin \frac{x-y}{2} \cos \frac{x+y}{2}}=\frac{k+1}{k-1}$
$\Rightarrow \frac{\tan \frac{x+y}{2}}{\tan \frac{x-y}{2}}=\frac{k+1}{k-1}$
$\therefore \tan \frac{x-y}{2}=\frac{k-1}{k+1} \tan \frac{x+y}{2}$
7. $x \sin \varphi=y \sin (2 \theta+\varphi)$ रनে मেथাও যে, $\boldsymbol{\operatorname { c o t }}(\theta+\varphi)=\frac{x-y}{x+y} \cot \theta$
প্রমাণ 8 দেওয়া जाছে , $x \sin \varphi=y \sin (2 \theta+\varphi)$
$\Rightarrow \frac{\sin (2 \theta+\varphi)}{\sin \varphi}=\frac{x}{y}$
$\Rightarrow \frac{\sin (2 \theta+\varphi)-\sin \varphi}{\sin (2 \theta+\varphi)+\sin \varphi}=\frac{x-y}{x+y}$
$\Rightarrow \frac{2 \cos \frac{2 \theta+\varphi+\varphi}{2} \sin \frac{2 \theta+\varphi-\varphi}{2}}{2 \sin \frac{2 \theta+\varphi+\varphi}{2} \cos \frac{2 \theta+\varphi-\varphi}{2}}=\frac{x-y}{x+y}$
$\Rightarrow \frac{\cot (\theta+\varphi)}{\cot \theta}=\frac{x-y}{x+y}$
$\therefore \cot (\theta+\varphi)=\frac{x-y}{x+y} \cot \theta$ (Showed)

প্রশ্নমাণা -VII D

প্রমাণ কর যে,

1. (a) $\frac{1+\cos 2 \theta}{\sin 2 \theta}=\cot \theta$
L.H.S. $=\frac{1+\cos 2 \theta}{\sin 2 \theta}=\frac{2 \cos ^{2} \theta}{2 \sin \theta \cos \theta}=\frac{\cos \theta}{\sin \theta}$ $=\cot \theta=$ R.H.S. (proved)
1(b) $\sin 2 x \tan 2 x=\frac{4 \tan ^{2} x}{1-\tan ^{4} x}$
L.H.S. $=\sin 2 x \tan 2 x$
$=\frac{2 \tan x}{1+\tan ^{2} x} \times \frac{2 \tan x}{1-\tan ^{2} x}$
$=\frac{4 \tan ^{2} x}{1-\tan ^{4} x}=$ R.H.S. (proved)
1(c) $\tan \theta+2 \tan 2 \theta+4 \tan 4 \theta+$ $8 \cot 8 \theta=\cot \theta$
[य.'০२; সि.'ot]
প্রমাণ : $4 \tan 4 \theta+8 \cot 8 \theta$
$=4\left(\frac{\sin 4 \theta}{\cos 4 \theta}+2 \frac{\cos 8 \theta}{\sin 8 \theta}\right)$
$=4\left(\frac{\sin 4 \theta}{\cos 4 \theta}+\frac{2 \cos 8 \theta}{2 \sin 4 \theta \cos 4 \theta}\right)$
$=4\left(\frac{\sin ^{2} 4 \theta+1-2 \sin ^{2} 4 \theta}{\sin 4 \theta \cos 4 \theta}\right)$
$\left.=4 \frac{1-\sin ^{2} 4 \theta}{\sin 4 \theta \cos 4 \theta}\right)=4\left(\frac{\cos ^{2} 4 \theta}{\sin 4 \theta \cos 4 \theta}\right)$
$=4 \cot 4 \theta$
जনুরূণতাবে প্রমাণ করা যায় ,
$2 \tan 2 \theta+4 \cot 4 \theta=2 \cot 2 \theta$ जदर $\boldsymbol{\operatorname { t a n }} \theta+2 \cot 2 \theta=\boldsymbol{\operatorname { c o t }} \theta$
L.H.S. $=\tan \theta+2 \tan 2 \theta+4 \tan 4 \theta+8 \cot 8 \theta$
$=\tan \theta+2 \tan 2 \theta+4 \cot 4 \theta$
$=\tan \theta+2 \cot 2 \theta=\cot \theta=$ R.H.S. (Proved)
2.(a) $4\left(\sin ^{3} 10^{\circ}+\cos ^{3} 20^{\circ}\right)$
$=3\left(\sin 10^{\circ}+\cos 20^{\circ}\right)$
L.H.S. $=4\left(\sin ^{3} 10^{\circ}+\cos ^{3} 20^{\circ}\right)$
$=4 \sin ^{3} 10^{\circ}+4 \cos ^{3} 20^{\circ}$
$=3 \sin 10^{\circ}-\sin \left(3.10^{\circ}\right)+\cos \left(3.20^{\circ}\right)$
$+3 \cos 20^{\circ}$
$=3\left(\sin 10^{\circ}+\cos 20^{\circ}\right)-\sin 30^{\circ}+\cos 60^{\circ}$
$=3\left(\sin 10^{\circ}+\sin 20^{\circ}\right)-\frac{1}{2}+\frac{1}{2}$
$=3\left(\sin 10^{\circ}+\cos 20^{\circ}\right)=$ R.H.S. (Proved)
(b) $\sin ^{2}\left(60^{\circ}+A\right)+\sin ^{2} A+\sin ^{2}\left(60^{\circ}-A\right)=\frac{3}{2}$
L.H.S. $=\sin ^{2}\left(60^{\circ}+\mathrm{A}\right)+\sin ^{2} \mathrm{~A}+$ $\sin ^{2}(60-A)$
$=\frac{1}{2}\left\{1-\cos 2\left(60^{\circ}+A\right)+1-\cos 2 \mathrm{~A}+1\right.$
$\left.-\cos 2\left(60^{\circ}-\mathrm{A}\right)\right\}$
$=\frac{1}{2}\left\{3-\cos \left(120^{\circ}+2 \mathrm{~A}\right)-\cos \left(120^{\circ}-2 \mathrm{~A}\right)\right.$
$-\cos 2 \mathrm{~A}\}$
$=\frac{1}{2}\left[3-\left\{\cos \left(120^{\circ}+2 \mathrm{~A}\right)+\right.\right.$

$$
\left.\left.\cos \left(120^{\circ}-2 \mathrm{~A}\right)\right\}-\cos 2 \mathrm{~A}\right]
$$

$=\frac{1}{2}\left\{3-2 \cdot \cos 120^{\circ} \cos 2 \mathrm{~A}-\cos 2 \mathrm{~A}\right\}$
$=\frac{1}{2}\left\{3-2\left(-\frac{1}{2}\right) \cos 2 \mathrm{~A}-\cos 2 \mathrm{~A}\right\}$
$=\frac{1}{2}\{3+\cos 2 \mathrm{~A}-\cos 2 \mathrm{~A}\}=\frac{3}{2}=$ R.H.S.
2(c) $\sin ^{2}\left(\frac{\pi}{8}+\frac{\theta}{2}\right)-\sin ^{2}\left(\frac{\pi}{8}-\frac{\theta}{2}\right)=\frac{1}{\sqrt{2}} \sin \theta$
[রা.'১১]
L.H.S. $=\sin ^{2}\left(\frac{\pi}{8}+\frac{\theta}{2}\right)-\sin ^{2}\left(\frac{\pi}{8}-\frac{\theta}{2}\right)$
$=\frac{1}{2}\left\{1-\cos 2\left(\frac{\pi}{8}+\frac{\theta}{2}\right)\right\}-\frac{1}{2}\left\{1-\cos 2\left(\frac{\pi}{8}-\frac{\theta}{2}\right)\right\}$
$=\frac{1}{2}\left\{1-\cos \left(\frac{\pi}{4}+\theta\right)-1+\cos \left(\frac{\pi}{4}-\theta\right)\right\}$
$=\frac{1}{2}\left\{\cos \left(\frac{\pi}{4}-\theta\right)-\cos \left(\frac{\pi}{4}+\theta\right)\right\}$
$=\frac{1}{2} .2 \sin \frac{\pi}{4} \sin \theta=\frac{1}{\sqrt{2}} \sin \theta=$ R.H.S.
2. (d) $\cos ^{2}\left(\mathrm{~A}-120^{\circ}\right)+\cos ^{2} \mathrm{~A}+\cos ^{2}(\mathrm{~A}$ $+120^{\circ}$) $=3 / 2$ [ঢ.'০৩; జূ.'০৭; य.'০৮]
L.H.S. $=\cos ^{2}\left(\mathrm{~A}-120^{\circ}\right)+\cos ^{2} \mathrm{~A}$ $+\cos ^{2}\left(\mathrm{~A}+120^{\circ}\right)$
$=\frac{1}{2}\left\{1+\cos 2\left(\mathrm{~A}-120^{\circ}\right)+1+\cos 2 \mathrm{~A}+1\right.$ $\left.+\cos 2\left(\mathrm{~A}+120^{\circ}\right)\right\}$

$$
\begin{aligned}
= & \frac{1}{2}\left\{3+\cos \left(2 \mathrm{~A}-240^{\circ}\right)+\cos \left(2 \mathrm{~A}+240^{\circ}\right.\right. \\
& +\cos 2 \mathrm{~A}\} \\
= & \frac{1}{2}\left\{3+2 \cos 2 \mathrm{~A} \cos 240^{\circ}+\cos 2 \mathrm{~A}\right\} \\
= & \frac{1}{2}\left\{3+2 \cos 2 \mathrm{~A} \cos \left(180^{\circ}+60^{\circ}\right)+\cos 2 \mathrm{~A}\right\} \\
= & \frac{1}{2}\left\{3+2 \cos 2 \mathrm{~A}\left(-\cos 60^{\circ}\right)+\cos 2 \mathrm{~A}\right\} \\
= & \frac{1}{2}\left\{3+2 \cdot \cos 2 \mathrm{~A}\left(-\frac{1}{2}\right)+\cos 2 \mathrm{~A}\right\} \\
= & \frac{1}{2}(3-\cos 2 \mathrm{~A}+\cos 2 \mathrm{~A})=\frac{3}{2}=\text { R.H.S. }
\end{aligned}
$$

2(e) $\cos ^{2} \frac{A}{2}+\cos ^{2}\left(\frac{\pi}{3}+\frac{A}{2}\right)+$ $\cos ^{2}\left(\frac{A}{2}-\frac{\pi}{3}\right)=\frac{3}{2}$
L.H.S. $=\cos ^{2} \frac{A}{2}+\cos ^{2}\left(\frac{\pi}{3}+\frac{A}{2}\right)+\cos ^{2}\left(\frac{A}{2}-\frac{\pi}{3}\right)$ $=\frac{1}{2}\left\{1+\cos 2 \cdot \frac{A}{2}+1+\cos 2\left(\frac{\pi}{3}+\frac{A}{2}\right)+1\right.$ $\left.+\cos 2\left(\frac{\pi}{3}-\frac{A}{2}\right)\right\}$ $=\frac{1}{2}\left\{3+\cos A+\cos \left(\frac{2 \pi}{3}+4\right)+\right.$ $\left.\cos \left(\frac{2 \pi}{3}-A\right)\right\}$
$=\frac{1}{2}\left\{3+\cos A+2 \cos \frac{2 \pi}{3} \cos A\right\}$
$=\frac{1}{2}\left\{3+\cos A+2\left(-\frac{1}{2}\right) \cos A\right\}$
$=\frac{1}{2}\{3+\cos A-\cos A\}=\frac{3}{2}=$ R.H.S.
fitan $\left(\alpha+\frac{\pi}{3}\right)+\tan \left(\alpha-\frac{\pi}{3}\right)=\frac{4 \sin 2 \alpha}{1-4 \sin ^{2} \alpha}$
L.H.S. $=\tan \left(\alpha+\frac{\pi}{3}\right)+\tan \left(\alpha-\frac{\pi}{3}\right)$
$=\frac{\sin \left(\alpha+\frac{\pi}{3}\right)}{\cos \left(\alpha+\frac{\pi}{3}\right)}+\frac{\sin \left(\alpha-\frac{\pi}{3}\right)}{\cos \left(\alpha-\frac{\pi}{3}\right)}$
$=\frac{\sin \left(\alpha+\frac{\pi}{3}\right) \cos \left(\alpha-\frac{\pi}{3}\right)+\cos \left(\alpha+\frac{\pi}{3}\right) \sin \left(\alpha-\frac{\pi}{3}\right)}{\cos \left(\alpha+\frac{\pi}{3}\right) \cos \left(\alpha-\frac{\pi}{3}\right)}$
$=\frac{\sin \left(\alpha+\frac{\pi}{3}+\alpha-\frac{\pi}{3}\right)}{\frac{1}{2}\left(\cos 2 \alpha+\cos 2 \frac{\pi}{3}\right)}=\frac{2 \sin 2 \alpha}{\cos 2 \alpha+\left(-\frac{1}{2}\right)}$
$=\frac{4 \sin 2 \alpha}{2 \cos 2 \alpha-1}=\frac{4 \sin 2 \alpha}{2\left(1-2 \sin ^{2} \alpha\right)-1}$
$=\frac{4 \sin 2 \alpha}{1-4 \sin ^{2} \alpha}=$ R.H.S. (Proved)
3.(a) $\cos ^{3} x+\cos ^{3}\left(60^{\circ}-x\right)+$ $\cos ^{3}\left(60^{\circ}+x\right)=\frac{1}{4}(6 \cos x-\cos 3 x)$ L.H.S. $=\cos ^{3} x+\cos ^{3}\left(60^{\circ}-x\right)+\cos ^{3}\left(60^{\circ}+x\right)$ $=\frac{1}{4}\left\{3 \cos x+\cos 3 x+3 \cos \left(60^{\circ}-x\right)+\right.$ $\left.\cos 3\left(60^{\circ}-x\right)+3 \cos \left(60^{\circ}+x\right)+\cos 3\left(60^{\circ}+x\right)\right\}$ $=\frac{1}{4}\left[3\left\{\cos x+\cos \left(60^{\circ}+x\right)+\cos \left(60^{\circ}-x\right)\right\}\right.$ $\left.+\cos 3 x+\cos \left(180^{\circ}+3 x\right)+\cos \left(180^{\circ}-3 x\right)\right]$ $=\frac{1}{4}\left[3\left(\cos x+2 \cos 60^{\circ} \cos x\right)+\right.$
$\cos 3 x-\cos 3 x-\cos 3 x]$
$=\frac{1}{4}\left[3\left(\cos x+2 \cdot \frac{1}{2} \cos x\right)-\cos 3 x\right]$
$=\frac{1}{4}(3.2 \cos x-\cos 3 x)$
$=\frac{1}{4}(6 \cos x-\cos 3 x)=$ R.H.S. (Proved)
(b) $\cos ^{3} x \cos 3 x+\sin ^{3} x \sin 3 x=\cos ^{3} 2 x$ [य.’○৩]
L.H.S. $=\cos ^{3} x \cos 3 x+\sin ^{3} x \sin 3 x$ $=\frac{1}{4}(\cos 3 x+3 \cos x) \cos 3 x+$
$\frac{1}{4}(3 \sin x-\sin 3 x) \sin 3 x$ $=\frac{1}{4}\left(\cos ^{2} 3 x+3 \cos x \cos 3 x+\right.$ $\left.3 \sin x \sin 3 x-\sin ^{2} 3 x\right)$
$=\frac{1}{4}\{\cos 2.3 x+3 \cos (3 x-x)\}$
$=\frac{1}{4}\{\cos 3 \cdot 2 x+3 \cos 2 x\}=\cos ^{3} 2 x=$ R.H.S.
3. (c) $\cos ^{4} x=\frac{3}{8}+\frac{1}{2} \cos 2 x+\frac{1}{8} \cos 4 x$
L.H.S. $=\cos ^{4} x=\left(\cos ^{2} x\right)^{2}$
$=\left\{\frac{1}{2}(1+\cos 2 x)\right\}^{2}$
$=\frac{1}{4}\left\{1+2 \cos 2 x+\cos ^{2} 2 x\right\}$
$=\frac{1}{4}\left\{1+2 \cos 2 x+\frac{1}{2}(1+\cos 4 x)\right\}$
$\left.=\frac{1}{4}\left\{1+2 \cos 2 x+\frac{1}{2}+\frac{1}{2} \cos 4 x\right)\right\}$
$\left.=\frac{1}{4}\left\{\frac{3}{2}+2 \cos 2 x+\frac{1}{2} \cos 4 x\right)\right\}$
$=\frac{3}{8}+\frac{1}{2} \cos 2 x+\frac{1}{8} \cos 4 x=$ R.H.S.
3(d) $\sin ^{4} x+\cos ^{4} x=1-\frac{1}{2} \sin ^{2} 2 x$
L.H.S. $=\sin ^{4} x+\cos ^{4} x$
$=\left(\sin ^{2} x\right)^{2}+\left(\cos ^{2} x\right)^{2}$
$=\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x$
$=1^{2}-\frac{1}{2}(2 \sin x \cos x)^{2}=1-\frac{1}{2}(\sin 2 x)^{2}$
$=1-\frac{1}{2} \sin ^{2} 2 x=$ R.H.S. (Proved)
4.(a) $\sec \theta=\frac{2}{\sqrt{2+\sqrt{2+2 \cos 4 \theta}}}$ [मि.'○৯; ज丁.'ग8]
L.H.S. $=\sec \theta=\frac{1}{\cos \theta}=\frac{2}{2 \cos \theta}$
$=\frac{2}{\sqrt{4 \cos ^{2} \theta}}=\frac{2}{\sqrt{2(1+\cos 2 \theta)}}$
$=\frac{2}{\sqrt{2+2 \cos 2 \theta}}=\frac{2}{\sqrt{2+\sqrt{4 \cos ^{2} 2 \theta}}}$
$=\frac{2}{\sqrt{2+\sqrt{2(1+\cos 4 \theta)}}}=\frac{2}{\sqrt{2+\sqrt{2+2 \cos 4 \theta)}}}$
$=$ R.H.S.
4.(b) $\frac{1}{\sin 10^{\circ}}-\frac{\sqrt{3}}{\cos 10^{\circ}}=4$ [द..'০৬; র্ा.'०१;

ঢা.’০৭; চ., ব.'০৮; দি. '১১; সি. '১২; য.'১১]
L.H.S. $=\frac{1}{\sin 10^{\circ}}-\frac{\sqrt{3}}{\cos 10^{\circ}}$
$=\frac{\cos 10^{\circ}-\sqrt{3} \sin 10^{\circ}}{\sin 10^{\circ} \cos 10^{\circ}}$
$=\frac{\frac{1}{2} \cos 10^{\circ}-\frac{\sqrt{3}}{2} \sin 10^{\circ}}{\frac{1}{2} \sin 10^{\circ} \cos 10^{\circ}}$
$=\frac{\cos 60^{\circ} \cos 10^{\circ}-\sin 60^{\circ} \sin 10^{\circ}}{\frac{1}{4} \sin 20^{\circ}}$

$$
=\frac{4 \cos \left(60^{\circ}+10^{\circ}\right)}{\sin \left(90^{\circ}-70^{\circ}\right)}=\frac{4 \cos 70^{\circ}}{\cos 70^{\circ}}=4=\text { R.H.S. }
$$

4(c) $\frac{\sqrt{3}}{\sin 20^{\circ}}-\frac{1}{\cos 20^{\circ}}=4$
[ঢা.'১০;চ.'১8]
L.H.S. $=\frac{\sqrt{3}}{\sin 20^{\circ}}-\frac{1}{\cos 20^{\circ}}$
$=\frac{\sqrt{3} \cos 20^{\circ}-\sin 20^{\circ}}{\sin 20^{\circ} \cos 20^{\circ}}$
$=\frac{\frac{\sqrt{3}}{2} \cos 20^{\circ}-\frac{1}{2} \sin 20^{\circ}}{\frac{1}{2} \sin 20^{\circ} \cos 20^{\circ}}$

$$
=\frac{\cos 30^{\circ} \cos 20^{\circ}-\sin 30^{\circ} \sin 10^{\circ}}{\frac{1}{4} \sin 40^{\circ}}
$$

$$
=\frac{4 \cos \left(30^{\circ}+20^{\circ}\right)}{\sin \left(90^{\circ}-50^{\circ}\right)}=\frac{4 \cos 50^{\circ}}{\cos 50^{\circ}}=4=\text { R.H.S. }
$$

5. (a) $\tan \theta=\frac{1}{7}$ এবং $\tan \varphi=\frac{1}{3}$ रणে দেখাও ब. $\cos 2 \theta=\sin 4 \varphi$.
প্রমাণ : দেওয়া আহে, $\tan \theta=\frac{1}{7}, \tan \varphi=\frac{1}{3}$.

$$
\begin{aligned}
\cos 2 \theta & =\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{1-(1 / 7)^{2}}{1+(1 / 7)^{2}} \\
& =\frac{1-1 / 49}{1+1 / 49}=\frac{49-1}{49+1}=\frac{48}{50}=\frac{24}{25}
\end{aligned}
$$

$\sin 4 \varphi=2 \sin 2 \varphi \cos 2 \varphi$

$$
\begin{aligned}
& =2 \frac{2 \tan \varphi}{1+\tan ^{2} \varphi} \frac{1-\tan ^{2} \varphi}{1+\tan ^{2} \varphi} \\
& =\frac{4 \cdot \frac{1}{3}\left(1-\frac{1}{9}\right)}{\left(1+\frac{1}{9}\right)^{2}}=\frac{4 \cdot \frac{1}{3} \cdot \frac{8}{9}}{\left(\frac{10}{9}\right)^{2}}=\frac{32}{27} \times \frac{81}{100}=\frac{24}{25}
\end{aligned}
$$

$\cos 2 \theta=\sin 4 \varphi \quad$ (Showed)
5.(b) $2 \tan \alpha=3 \tan \beta$ হলে প্রমাণ কর থে, $\tan (\alpha-\beta)=\frac{\sin 2 \beta}{5-\cos 2 \beta}$
sমাष \& দেওয়া জাছে, $2 \tan \alpha=3 \tan \beta$
$\Rightarrow \tan \alpha=\frac{3}{2} \tan \beta$
-H.S. $=\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$
$=\frac{\left(\frac{3}{2}-1\right) \tan \beta}{1+\frac{3}{2} \tan ^{2} \beta}=\frac{\tan \beta}{2+3 \tan ^{2} \beta}$
$=\frac{\frac{\sin \beta}{\cos \beta}}{2+3 \frac{\sin ^{2} \beta}{\cos ^{2} \beta}}=\frac{\sin \beta \cos \beta}{2 \cos ^{2} \beta+3 \sin ^{2} \beta}$
$=\frac{2 \sin \beta \cos \beta}{2.2 \cos ^{2} \beta+3.2 \sin ^{2} \beta}$
$=\frac{\sin 2 \beta}{2(1+\cos 2 \beta)+3(1-\cos 2 \beta)}$

$$
\begin{aligned}
& =\frac{\sin 2 \beta}{2+2 \cos 2 \beta+3-3 \cos 2 \beta}=\frac{\sin 2 \beta}{5-\cos 2 \beta} \\
& =\text { R.H.S. (Proved) }
\end{aligned}
$$

6.(a) $x=\sin \frac{\pi}{18}$ रলে দেখা® যে,

$$
8 x^{4}+4 x^{3}-6 x^{2}-2 x+\frac{1}{2}=0
$$

প্রমাণ 8 आমরা জানि, $4 \sin ^{3} \theta=3 \sin \theta-\sin 3 \theta$
$\therefore 4 \sin ^{3} \frac{\pi}{18}=3 \sin \frac{\pi}{18}-\sin 3 \frac{\pi}{18}$
$\Rightarrow 4 x^{3}=3 x-\sin \frac{\pi}{6} \quad\left[\quad x=\sin \frac{\pi}{18}\right]$
$\Rightarrow 4 x^{3}-3 x+\frac{1}{2}=0$
এখन, $8 x^{4}+4 x^{3}-6 x^{2}-2 x+\frac{1}{2}$
$=2 x\left(4 x^{3}-3 x+\frac{1}{2}\right)+1\left(4 x^{3}-3 x+\frac{1}{2}\right)$
$=2 x \times 0+1 \times 0=0 \quad$ (Showed)
6(b) প্রমাণ কর : $\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta$ $+5 \cos \theta$ [রा.’১১]

প্রমাণ \& $\cos 5 \theta=\cos (3 \theta+2 \theta)$
$=\cos 3 \theta \cos 2 \theta-\sin 3 \theta \sin 2 \theta$
$=\left(4 \cos ^{3} \theta-3 \cos \theta\right)\left(2 \cos ^{2} \theta-1\right)-$
($3 \sin \theta-4 \sin ^{3} \theta$). $2 \sin \theta \cos \theta$
$=8 \cos ^{5} \theta-6 \cos ^{3} \theta-4 \cos ^{3} \theta+3 \cos \theta-$
$2 \cos \theta\left(3 \sin ^{2} \theta-4 \sin ^{4} \theta\right)$
$=8 \cos ^{5} \theta-10 \cos ^{3} \theta+3 \cos \theta-$
$2 \cos \theta\left\{3\left(1-\cos ^{2} \theta\right)-4\left(1-\cos ^{2} \theta\right)^{2}\right\}$
$=8 \cos ^{5} \theta-10 \cos ^{3} \theta+3 \cos \theta-$
$2 \cos \theta\left\{3-3 \cos ^{2} \theta-4\left(1-2 \cos ^{2} \theta+\cos ^{4} \theta\right)\right\}$
$=8 \cos ^{5} \theta-10 \cos ^{3} \theta+3 \cos \theta-(6 \cos \theta-$ $\left.6 \cos ^{3} \theta-8 \cos \theta+16 \cos ^{3} \theta-8 \cos ^{5} \theta\right)$ $=8 \cos ^{5} \theta-10 \cos ^{3} \theta+3 \cos \theta-6 \cos \theta+$ $6 \cos ^{3} \theta+8 \cos \theta-16 \cos ^{3} \theta+8 \cos ^{5} \theta$ $\therefore \cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$
7.(a) $\tan \alpha \tan \beta=\sqrt{\frac{a-b}{a+b}}$ रनে প্রমাণ बন্ন यে ,
$(a-b \cos 2 \alpha)(a-b \cos 2 \beta)=a^{2}-b^{2}$

প্রমাণ ঃ দেওয়া আছে , $\tan \alpha \tan \beta=\sqrt{\frac{a-b}{a+b}}$
$\Rightarrow \tan ^{2} \alpha \tan ^{2} \beta=\frac{a-b}{a+b}$
$\Rightarrow(\mathrm{a}-\mathrm{b})=(\mathrm{a}+\mathrm{b}) \tan ^{2} \alpha \tan ^{2} \beta$
L.H.S $=(a-b \cos 2 \alpha)(a-b \cos 2 \beta)$
$=\left\{a-b \frac{1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha}\right\}\left\{a-b \frac{1-\tan ^{2} \beta}{1+\tan ^{2} \beta}\right\}$
$=\frac{a+a \tan ^{2} \alpha-b+b \tan ^{2} \alpha}{1+\tan ^{2} \alpha} \times$
$\frac{a+a \tan ^{2} \beta-b+b \tan ^{2} \beta}{1+\tan ^{2} \beta}$
$=\frac{(a-b)+(a+b) \tan ^{2} \alpha}{1+\tan ^{2} \alpha} \times$

$$
\frac{(a-b)+(a+b) \tan ^{2} \beta}{1+\tan ^{2} \beta}
$$

$=\frac{(a+b) \tan ^{2} \alpha \tan ^{2} \beta+(a+b) \tan ^{2} \alpha}{1+\tan ^{2} \alpha} \times$

$$
\frac{(a+b) \tan ^{2} \alpha \tan ^{2} \beta+(a+b) \tan ^{2} \beta}{1+\tan ^{2} \beta}
$$

$$
=\frac{(a+b) \tan ^{2} \alpha\left(\tan ^{2} \beta+1\right)}{1+\tan ^{2} \alpha} \times
$$

$$
\frac{(a+b) \tan ^{2} \alpha\left(\tan ^{2} \beta+1\right)}{1+\tan ^{2} \beta}
$$

$=(a+b)^{2} \tan ^{2} \alpha \tan ^{2} \beta=(a+b)^{2} \frac{a-b}{a+b}$
$=a^{2}-b^{2}=$ R.H.S. (Proved)
7. (b) यमি α Ө কোণদয় ধনাঅক $~ স ু$ এ্ম এবং $\cos 2 \alpha=\frac{3 \cos 2 \beta-1}{3-\cos 2 \beta}$ হয়, তবে দেখাও যে,
$\tan \alpha= \pm \sqrt{2} \tan \beta$
প্রমাণ : দেওয়া আছে, $\cos 2 \alpha=\frac{3 \cos 2 \beta-1}{3-\cos 2 \beta}$
$\Rightarrow \frac{1}{\cos 2 \alpha}=\frac{3-\cos 2 \beta}{3 \cos 2 \beta-1}$
$\Rightarrow \frac{1-\cos 2 \alpha}{1+\cos 2 \alpha}=\frac{3-\cos 2 \beta-3 \cos 2 \beta+1}{3-\cos 2 \beta+3 \cos 2 \beta-1}$
$\Rightarrow \frac{2 \sin ^{2} \alpha}{2 \cos ^{2} \alpha}=\frac{4(1-\cos 2 \beta)}{2(1+\cos 2 \beta)}$
$\Rightarrow \tan ^{2} \alpha=\frac{2.2 \sin ^{2} \beta}{2 \cos ^{2} \beta}=2 \tan ^{2} \beta$
$\therefore \tan \alpha= \pm \sqrt{2} \tan \beta$ (Showed)
7(c) $\cos A \sin \left(A-\frac{\pi}{6}\right)$ এর মান বৃহৃম হলে A এর মান নির্ণয় কর।

সমাষान : $\cos A \sin \left(A-\frac{\pi}{6}\right)$
$=\frac{1}{2} .2 \cos A \cos \left(A-\frac{\pi}{6}\right)$
$=\frac{1}{2}\left\{\sin \left(A+A-\frac{\pi}{6}\right)-\sin \left(A-A+\frac{\pi}{6}\right)\right\}$
$=\frac{1}{2}\left\{\sin \left(2 A-\frac{\pi}{6}\right)-\sin \frac{\pi}{6}\right\}$
$=\frac{1}{2}\left\{\sin \left(2 \mathrm{~A}-\frac{\pi}{6}\right)-\frac{1}{2}\right\}$
ইহা বৃহজ্তম হলে , $\sin \left(2 A-\frac{\pi}{6}\right)=1$
$\Rightarrow \sin \left(2 \mathrm{~A}-\frac{\pi}{6}\right)=\sin \frac{\pi}{2}$
$\therefore 2 \mathrm{~A}-\frac{\pi}{6}=\frac{\pi}{2} \Rightarrow 2 \mathrm{~A}=\frac{\pi}{2}+\frac{\pi}{6}=\frac{3 \pi+\pi}{6}$
$\Rightarrow 2 A=\frac{4 \pi}{6} \therefore A=\frac{\pi}{3}$ (Ans.)
অতিব্রিক্ঠ প্রশ্ন (সমাধান্সহ)
ब্রমাণ কর যে,
1(a) $\tan \theta(1+\sec 2 \theta)=\tan 2 \theta$
L.H.S. $=\tan \theta(1+\sec 2 \theta)$
$=\tan \theta\left(1+\frac{1}{\cos 2 \theta}\right)$
$=\tan \theta\left(1+\frac{1+\tan ^{2} \theta}{1-\tan ^{2} \theta}\right)$
$=\tan \theta\left(\frac{1-\tan ^{2} \theta+1+\tan ^{2} \theta}{1-\tan ^{2} \theta}\right)$
$=\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\tan 2 \theta=$ R.H.S. (proved)
1.(b) $\frac{\sin A+\sin 2 A}{1+\cos A+\cos 2 A}=\tan A$
L.H.S. $=\frac{\sin A+\sin 2 A}{1+\cos A+\cos 2 A}$
$=\frac{\sin A+2 \sin A \cos A}{1+\cos A+2 \cos ^{2} A-1}$
$=\frac{\sin A(1+2 \cos A)}{\cos A(1+2 \cos A)}=\tan A=$ R.H.S.
1(c) $\frac{\cos ^{3} x+\sin ^{3} x}{\cos x+\sin x}=1-\frac{1}{2} \sin 2 x$
L.H.S. $=\frac{\cos ^{3} x+\sin ^{3} x}{\cos x+\sin x}$
$=\frac{(\cos x+\sin x)\left(\cos ^{2} x+\sin ^{2} x-\cos x \sin x\right)}{\cos x+\sin x}$
$=1-\cos x \sin x=1-\frac{1}{2} \sin 2 x=$ R.H.S.
2. $\frac{\tan ^{2}\left(\theta+\frac{\pi}{4}\right)-1}{\pi}=\sin 2 \theta$
$\boldsymbol{\operatorname { t a n }}^{2}\left(\theta+\frac{\pi}{4}\right)+1$
L.H.S. $=\frac{\tan ^{2}\left(\theta+\frac{\pi}{4}\right)-1}{\tan ^{2}\left(\theta+\frac{\pi}{4}\right)+1}$
$=-\frac{1-\tan ^{2}\left(\theta+\frac{\pi}{4}\right)}{1+\tan ^{2}\left(\theta+\frac{\pi}{4}\right)}=-\cos 2\left(\theta+\frac{\pi}{4}\right)$
$=-\cos \left(\frac{\pi}{2}+2 \theta\right)=-(-\sin 2 \theta)$
$=\sin 2 \theta=$ R.H.S (Proved)
$34 \cos ^{3} x \sin 3 x+4 \sin ^{3} x \cos 3 x=3 \sin 4 x$
L.H.S. $=4 \cos ^{3} \sin 3 x+4 \sin ^{3} x \cos 3 x$
$=(\cos 3 x+3 \cos x) \sin 3 x+$ $(3 \sin x-\sin 3 x) \cos 3 x$
$=\cos 3 x \sin 3 x-\sin 3 x \cos 3 x+$ $3(\sin 3 x \cos x+\sin x \cos 3 x)$
$=3 \sin (3 x+x)$
$=3 \sin 4 x=$ R.H.S (Proved)
4. $\tan ^{2} \theta=1+2 \tan ^{2} \varphi$ रনে দেখাө বে, $\cos 2 \varphi=1+2 \cos 2 \theta$
প্রমাণ ः দেওয়া আছে, $\tan ^{2} \theta=1+2 \tan ^{2} \varphi$
जथन , $1+2 \cos 2 \theta=1+2 \frac{1-\tan ^{2} \theta}{1-\tan ^{2} \theta}$
$=\frac{1+\tan ^{2} \theta+2-2 \tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{3-\tan ^{2} \theta}{1+\tan ^{2} \theta}$
$=\frac{3-1-2 \tan ^{2} \varphi}{1+1+2 \tan ^{2} \varphi}=\frac{2\left(1-\tan ^{2} \varphi\right)}{2\left(1+\tan ^{2} \varphi\right)}$
$=\frac{1-\tan ^{2} \varphi}{1+\tan ^{2} \varphi}=\cos 2 \varphi$
$\cos 2 \varphi=1+\cos 2 \theta$ (Showed)
বিক্প্প পচ্মতি: দেওয়া आহে , $\tan ^{2} \theta=1+2 \tan ^{2} \varphi$
$\Rightarrow \tan ^{2} \theta-1=2 \tan ^{2} \varphi$
$\Rightarrow \frac{1}{\tan ^{2} \varphi}=\frac{2}{\tan ^{2} \theta-1}$
$\Rightarrow \frac{1-\tan ^{2} \varphi}{1+\tan ^{2} \varphi}=\frac{2-\tan ^{2} \theta+1}{2+\tan ^{2} \theta-1}$
[যোজন-বিয়োজন করে]
$\Rightarrow \cos 2 \varphi=\frac{3-\tan ^{2} \theta}{1+\tan ^{2} \theta}$
$=\frac{1+\tan ^{2} \theta+2\left(1-\tan ^{2} \theta\right)}{1+\tan ^{2} \theta}$
$=\frac{1+\tan ^{2} \theta}{1+\tan ^{2} \theta}+2 \frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$
$\therefore \quad \cos 2 \varphi=1+2 \cos 2 \theta$
5. $\cos \alpha=\frac{1}{2}\left(x+\frac{1}{x}\right)$ হबে প্রমাণ কন্র যে, $\cos 2 \alpha$
$=\frac{1}{2}\left(x^{2}+\frac{1}{x^{2}}\right), \cos 3 \alpha=\frac{1}{2}\left(x^{3}+\frac{1}{x^{3}}\right)$
, $\cos 4 \alpha=\frac{1}{2}\left(x^{4}+\frac{1}{x^{4}}\right)$
প্রমাণ \& দেওয়া জাছে , $\cos \alpha=\frac{1}{2}\left(x+\frac{1}{x}\right)$
$\cos 2 \alpha=2 \cos ^{2} \alpha-1$

$$
\begin{aligned}
& =2 \cdot\left(\frac{1}{2}\left(x+\frac{1}{x}\right)\right)^{2}-1 \\
& =2 \cdot \frac{1}{4}\left(x^{2}+2 \cdot x \cdot \frac{1}{x}+\frac{1}{x^{2}}\right)-1 \\
& =\frac{1}{2}\left(x^{2}+2+\frac{1}{x^{2}}-2\right)=\frac{1}{2}\left(x^{2}+\frac{1}{x^{2}}\right) \\
& \cos 2 \alpha=\frac{1}{2}\left(x^{2}+\frac{1}{x^{2}}\right)
\end{aligned}
$$

$\cos 3 \alpha=4 \cos ^{3} \alpha-3 \cos \alpha$

$$
\begin{aligned}
&=4\left(\frac{1}{2}\left(x+\frac{1}{x}\right)\right)^{3}-3 \cdot \frac{1}{2}\left(x+\frac{1}{x}\right) \\
&=4 \cdot \frac{1}{8}\left(x^{3}+3 x^{2} \cdot \frac{1}{x}+3 x \frac{1}{x^{2}}+\frac{1}{x^{3}}\right) \\
&-3 \cdot \frac{1}{2}\left(x+\frac{1}{x}\right) \\
&= \frac{1}{2}\left(x^{3}+3 x+3 \cdot \frac{1}{x}+\frac{1}{x^{3}}-3 x-3 \cdot \frac{1}{x}\right) \\
&= \frac{1}{2}\left(x^{3}+\frac{1}{x^{3}}\right)
\end{aligned}
$$

$\therefore \cos 3 \alpha=\frac{1}{2}\left(x^{3}+\frac{1}{x^{3}}\right)$
$\cos 4 \alpha=\cos 2.2 \alpha=2 \cos ^{2} 2 \alpha-1$

$$
\begin{aligned}
& =2 \cdot\left\{\frac{1}{2}\left(x^{2}+\frac{1}{x^{2}}\right)\right\}^{2}-1 \\
& =\frac{1}{2}\left(x^{4}+2 \cdot x^{2} \frac{1}{x^{2}}+\frac{1}{x^{4}}\right)-1 \\
& =\frac{1}{2}\left(x^{4}+2+\frac{1}{x^{4}}-2\right) \\
& \cos 4 \alpha=\left(x^{4}+\frac{1}{x^{4}}\right)
\end{aligned}
$$

$6 \tan \theta=\frac{\tan x+\tan y}{1+\tan x \tan y}$ रणে লেখাও বে, $\sin 2 \theta=\frac{\sin 2 x+\sin 2 y}{1+\sin 2 x \cdot \sin 2 y}$
প্রমাণঃ দ্গওয়া आছে, $\tan \theta=\frac{\tan x+\tan y}{1+\tan x \tan y}$
$=\frac{\frac{\sin x}{\cos x}+\frac{\sin y}{\cos y}}{1+\frac{\sin x}{\cos x} \frac{\sin y}{\cos y}}=\frac{\sin x \cos y+\sin y \cos x}{\cos x \cos y+\sin x \sin y}$
$\therefore \quad \tan \theta=\frac{\sin (x+y)}{\cos (x-y)}$
$\sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\frac{2 \frac{\sin (x+y)}{\cos (x-y)}}{1+\left\{\frac{\sin (x+y)}{\cos (x-y)}\right\}^{2}}$
$=\frac{2 \sin (x+y)}{\cos (x-y)} \times \frac{\cos ^{2}(x-y)}{\cos ^{2}(x-y)+\sin ^{2}(x+y)}$
$=\frac{2 \sin (x+y) \cos (x-y)}{\frac{1}{2}\{1+\cos 2(x-y)\}+\frac{1}{2}\{1-\cos 2(x+y)\}}$
$=\frac{\sin (x+y+x-y)+\sin (x+y-x+y)}{\frac{1}{2}\{2+\cos 2(x-y)-\cos 2(x+y)\}}$
$=\frac{\sin 2 x+\sin 2 y}{1+\frac{1}{2} \cdot 2 \sin \frac{2(x-y)+2(x+y)}{2} \sin \frac{2(x+y)-2(x-y)}{2}}$
$\therefore \quad \sin 2 \theta=\frac{\sin 2 x+\sin 2 y}{1+\sin 2 x+\sin 2 y}$ (Showed)
7. $\tan \theta=\frac{y}{x}$ रলে দেখা যে,

$$
x \cos 2 \theta+y \sin 2 \theta=x
$$

প্রমাণ ः চেওয়া আছে , $\tan \theta=\frac{y}{x}$
$x \cos 2 \theta+y \sin 2 \theta$
$=x \frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}+y \frac{2 \tan \theta}{1+\tan ^{2} \theta}$
$=x \frac{1-\frac{y^{2}}{x^{2}}}{1+\frac{y^{2}}{x^{2}}}+y \frac{2 \frac{y}{x}}{1+\frac{y^{2}}{x^{2}}}$
$=x \frac{x^{2}-y^{2}}{x^{2}+y^{2}}+y\left(\frac{2 y}{x} \times \frac{x^{2}}{x^{2}+y^{2}}\right)$
$=\frac{x^{3}-x y^{2}}{x^{2}+y^{2}}+\frac{2 x y^{2}}{x^{2}+y^{2}}$
$\frac{x^{3}-x y^{2}+2 x y^{2}}{x^{2}+y^{2}}=\frac{x\left(x^{2}+y\right)}{x^{2}+y^{2}}$
$x \cos 2 \theta+y \sin 2 \theta=x \quad$ (Showed)
3. $\sqrt{2} \cos A=\cos B+\cos ^{3} B$ এবर $\sqrt{2} \sin A=$ $\sin B-\sin ^{3} B$ হলে দেখাে যে, $\sin (A-B)= \pm \frac{1}{3}$.
ब্রাণ 8 मেওয়া आছে, $\sqrt{2} \cos \mathrm{~A}=\cos \mathrm{B}+\cos ^{3} \mathrm{~B}$ $\sqrt{2} \sin A=\sin B-\sin ^{3} B$
in $(A-B)=\sin A \cos B-\sin B \cos A$
$=\frac{1}{\sqrt{2}}\left(\sin B-\sin ^{3} B\right) \cos B-$
$\frac{1}{\sqrt{2}} \sin B\left(\cos B+\cos ^{3}\right.$
B)
$\Rightarrow \sqrt{2} \sin (\mathrm{~A}-\mathrm{B})=\sin \mathrm{B} \cos \mathrm{B}-\sin ^{3} \mathrm{~B} \cos \mathrm{~B}$ $-\sin B \cos B-\sin B \cos ^{3} B$
$\Rightarrow \sqrt{2} \sin \left(\mathrm{~A}-\mathrm{B}=-\sin \mathrm{B} \cos \mathrm{B}\left(\sin ^{2} \mathrm{~B}+\cos ^{2} \mathrm{~B}\right)\right.$
$\Rightarrow \sqrt{2} \sin (\mathrm{~A}-\mathrm{B})=-\frac{1}{2} \sin 2 \mathrm{~B}$
$=2 \sqrt{2} \sin (\mathrm{~A}-\mathrm{B})=-\sin 2 \mathrm{~B}$
$\sqrt{2} \cos (A-B)=\sqrt{2} \cos A \cos B-\sqrt{2} \sin A \sin B$
$=\left(\cos B+\cos ^{3} B\right) \cos B-\sin B\left(\sin B-\sin ^{3} B\right)$
$=\cos ^{2} B+\sin ^{2} B+\cos ^{4} B-\sin ^{4} B$
$=1+\left(\cos ^{2} \mathrm{~B}+\sin ^{2} \mathrm{~B}\right)\left(\cos ^{2} \mathrm{~B}-\sin ^{2} \mathrm{~B}\right)$
$\sqrt{2} \cos (A-B)=1+\cos 2 B$
$=\sqrt{2} \cos (\mathrm{~A}-\mathrm{B})-1=\cos 2 \mathrm{~B}$

$=\sqrt{2})^{2} \sin ^{2}(\mathrm{~A}-\mathrm{B})+(\sqrt{2})^{2} \cos ^{2}(\mathrm{~A}-\mathrm{B})+$
$-2 \sqrt{2} \cos (A-B)=\sin ^{2} 2 B+\cos ^{2} 2 B$
$=8\left\{1-\cos ^{2}(\mathrm{~A}-\mathrm{B})\right\}+2 \cos ^{2}(\mathrm{~A}-\mathrm{B})$ $+1-2 \sqrt{2} \cos (A-B)=1$
$=8-8 \cos ^{2}(\mathrm{~A}-\mathrm{B})+2 \cos ^{2}(\mathrm{~A}-\mathrm{B})$ $-2 \sqrt{2} \cos (A-B)=0$
$=6 \cos ^{2}(A-B)-2 \sqrt{2} \cos (A-B)-8=0$
$=3 \cos ^{2}(A-B)-\sqrt{2} \cos (A-B)-4=0$
$=3 \cos ^{2}(\mathrm{~A}-\mathrm{B})-3 \sqrt{2} \cos (\mathrm{~A}-\mathrm{B})$

$$
+2 \sqrt{2} \cos (A-B)-4=0
$$

$\Rightarrow 5 \cos (A-B)\{\cos (A-B)-\sqrt{2}\}$ $+2 \sqrt{2}\{\cos (A-B)-\sqrt{2}\}=0$
$\Rightarrow\{\cos (A-B)-\sqrt{2}\}\{3 \cos (A-B)+2 \sqrt{2}\}=0$
$\therefore \quad \cos (\mathrm{A}-\mathrm{B})=\sqrt{2}$ बथবा, $\cos (\mathrm{A}-\mathrm{B})=-\frac{2 \sqrt{2}}{3}$
কिन्गू $-1 \leq \cos \theta \leq 1$ বनে $\cos (\mathrm{A}-\mathrm{B}) \neq \sqrt{2}$
$\therefore \quad \cos (A-B)=-\frac{2 \sqrt{2}}{3}$
$\therefore \quad \sin (\mathrm{A}-\mathrm{B})= \pm \sqrt{1-\sin ^{2}(A-B)}$

$$
= \pm \sqrt{1-\left(-\frac{2 \sqrt{2}}{3}\right)^{2}}= \pm \sqrt{1-\frac{8}{9}}
$$

$\therefore \sin (\mathrm{A}-\mathrm{B})= \pm \sqrt{\frac{1}{9}}= \pm \frac{1}{3}$
9. मেষী (x, $\frac{\tan 2^{n} \theta}{\tan \theta}=(1+\sec 2 \theta)(1+\sec$ $\left.2^{2} \theta\right)\left(1+\sec 2^{3} \theta\right) \cdots \cdots\left(1+\sec 2^{n} \theta\right)$
প্রমাण $8 \tan \theta(1+\sec 2 \theta)=\tan \theta$ $\left(1+\frac{1+\tan ^{2} \theta}{1-\tan ^{2} \theta}\right)=$ $\boldsymbol{\operatorname { t a n }} \theta$
$\left(\frac{1-\tan ^{2} \theta+1+\tan ^{2} \theta}{1-\tan ^{2} \theta}\right)$

$$
=\tan \theta \frac{2}{1-\tan ^{2} \theta}=\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\tan 2 \theta
$$

$\therefore \frac{\tan 2 \theta}{\tan \theta}=1+\sec 2 \theta$
অনুরূপভাবে আমরা পাই, $\frac{\tan 2^{2} \theta}{\tan 2 \theta}=1+\sec 2^{2}$
$\theta, \frac{\tan 2^{3} \theta}{\tan 2^{2} \theta}=1+\sec ^{3} \quad \theta, \cdots, \frac{\tan 2^{n} \theta}{\tan 2^{n-1} \theta}=1+$ $\sec 2^{n} \theta$
\therefore
$\frac{\tan 2 \theta}{\tan \theta} \cdot \frac{\tan 2^{2} \theta}{\tan 2 \theta} \cdot \frac{\tan 2^{3} \theta}{\tan 2^{2} \theta} \cdots \cdots \cdot \frac{\tan 2^{n} \theta}{\tan 2^{n-1} \theta}=$ $(1+\sec 2 \theta)\left(1+\sec 2^{2} \theta\right)$
$\left(1+\sec 2^{3} \theta\right) \cdots \cdots\left(1+\sec 2^{n} \theta\right)$
$\Rightarrow \frac{\tan 2^{n} \theta}{\tan \theta}=(1+\sec 2 \theta)\left(1+\sec 2^{2} \theta\right)($ $\left.1+\sec 2^{3} \theta\right) \cdots \cdots \cdots\left(1+\sec 2^{n} \theta\right)$
10.(a) দেখাও বে, $\frac{2 \cos 2^{n} \theta+1}{2 \cos \theta+1}=(2 \cos \theta-1)$ $(2 \cos 2 \theta-1)\left(2 \cos 2^{2} \theta-1\right) \cdots\left(2 \cos 2^{n-1}-1\right)$ প্রমাণ : জামরা পাই ,
$(2 \cos \theta+1)(2 \cos \theta-1)=4 \cos ^{2} \theta-1$

$$
=4 \cdot \frac{1}{2}(1+\cos 2 \theta)-1=2+2 \cos 2 \theta-1
$$

$$
2 \cos \theta-1=\frac{2 \cos 2 \theta+1}{2 \cos \theta+1}
$$

जনুরূপভাবে,
$2 \cos 2 \theta-1=\frac{2 \cos 2^{2} \theta+1}{2 \cos 2 \theta+1}$
$2 \cos 2^{2} \theta-1=\frac{2 \cos 2^{3} \theta+1}{2 \cos 2^{2} \theta+1}$
$2 \cos 2^{n-1} \theta-1=\frac{2 \cos 2^{n} \theta+1}{2 \cos 2^{n-1} \theta+1}$
গুণ করে জামরা পাই ,
$(2 \cos \theta-1)(2 \cos 2 \theta-1)\left(2 \cos 2^{2} \theta-1\right)$

$$
\cdots \cdots\left(2 \cos 2^{n-1} \theta-1\right)
$$

$$
\begin{gathered}
\frac{2 \cos 2 \theta+1}{2 \cos \theta+1} \cdot \frac{2 \cos 2^{2} \theta+1}{2 \cos 2 \theta+1} \cdot \frac{2 \cos 2^{3} \theta+1}{2 \cos 2^{2} \theta+1} \\
\quad \ldots \cdots \cdots \frac{2 \cos 2^{n} \theta+1}{2 \cos 2^{n-1} \theta+1}=\frac{2 \cos 2^{n} \theta+1}{2 \cos \theta+1} \\
\frac{2 \cos 2^{n} \theta+1}{2 \cos \theta+1}=(2 \cos \theta-1)((2 \cos 2 \theta-1) \\
\quad\left(2 \cos 2^{2} \theta-1\right) \cdots \cdots\left(2 \cos 2^{n-1} \theta-1\right)
\end{gathered}
$$

10.(b) $13 \theta=\pi$ হলে দেখাও যে, $\cos \theta ، \cos 2 \theta$. $\cos 3 \theta \cdot \cos 4 \theta \cdot \cos 5 \theta \cdot \cos 6 \theta=\frac{1}{2^{6}}$

প্রমাণ : $\cos \theta \cos 2 \theta \cos 3 \theta \cos 4 \theta \cos 5 \theta \cos 6 \theta$

आামরা জাनि, $2 \sin \theta \cos \theta=\sin 2 \theta$
$\Rightarrow \sin \theta \cos \theta=\frac{1}{2} \sin 2 \theta$
$\therefore \sin \theta \cos \theta \cos 2 \theta=\frac{1}{2} \sin 2 \theta \cos 2 \theta$

$$
=\frac{1}{2^{2}} \sin 4 \theta
$$

অनুরূপডাবে, $\sin \theta \cos \theta \cos 2 \theta \cdot \cos 4 \theta=\frac{1}{2^{3}} \sin 8 \theta$ $\sin \theta \cos \theta \cos 2 \theta \cdot \cos 4 \theta \cos 8 \theta=\frac{1}{2^{3}} \sin 16 \theta$
$\sin \theta \cos \theta \cos 2 \theta \cdot \cos 4 \theta \cos 8 \theta \cos 16 \theta$

$$
\cos 32 \theta=\frac{1}{2^{6}} \sin 64 \theta
$$

$\Rightarrow \sin \theta \cos \theta \cos 2 \theta \cdot \cos 4 \theta \cos (13 \theta-5 \theta)$ $\cos (13 \theta+3 \theta) \cos (26 \theta+6 \theta)$

$$
=\frac{1}{2^{6}} \sin (65 \theta-\theta)
$$

$\Rightarrow \sin \theta \cos \theta \cos 2 \theta \cdot \cos 4 \theta \cos (\pi-5 \theta)$ $\cos (\pi+3 \theta) \cos (2 \pi+6 \theta)$

$$
=\frac{1}{2^{6}} \sin (5 \pi-\theta)
$$

$\Rightarrow \sin \theta \cos \theta \cos 2 \theta \cdot \cos 4 \theta(-\cos 5 \theta)$

$$
(-\cos 3 \theta) \cdot \cos 6 \theta=\frac{1}{2^{6}}(\sin \theta)
$$

$\therefore \quad \cos \theta \cos 2 \theta \cos 3 \theta \cos 4 \theta$

$$
\cos 5 \theta \cos 6 \theta=\frac{1}{2^{6}}(\text { Showed })
$$

10.(c) $\theta=\frac{\pi}{2^{n}+1}$ रबে প্রমাণ बন্ন बে, $2^{n} \cos \theta$ $\cos 2 \theta \cos 2^{2} \theta \cdots \cdots \cdots \cos 2^{n-1} \theta=1$. প্রমাণ : দেওয়া आাছ, $\theta=\frac{\pi}{2^{n}+1} \Rightarrow 2^{n} \theta+\theta=\pi$ $\Rightarrow 2^{n} \theta=\pi-\theta \Rightarrow \sin 2^{n} \theta=\sin (\pi-\theta)$
$\Rightarrow 2 \sin 2^{n-1} \theta \cos 2^{n-1} \theta=\sin \theta$
$\Rightarrow 2 \cos 2^{n-1} \theta\left(2 \sin 2^{n-2} \theta \cos 2^{n-2} \theta\right)=\sin \theta$
$\Rightarrow 2^{2} \cos 2^{n-1} \theta \cos 2^{n-2} \theta \sin 2^{n-2} \theta=\sin \theta$
$\Rightarrow 2^{n} \cos 2^{n-1} \theta \cos 2^{n-2} \theta \cos 2^{n-3} \theta \cdots$ $\sin 2^{n-n} \theta \cos 2^{n-n} \theta=\sin \theta$
$\Rightarrow 2^{n} \cos 2^{n-1} \theta \cos 2^{n-2} \theta \cos 2^{n-3} \theta \cdots$ $\sin 2^{0} \theta \cos 2^{0} \theta=\sin \theta$
$\Rightarrow 2^{n} \cos 2^{n-1} \theta \cos 2^{n-2} \theta \cos 2^{n-3} \theta \ldots$ $\sin \theta \cos \theta=1$
$2^{n} \cos \theta \cdot \cos 2 \theta \cdot \cos 2^{2} \theta \cdots \cos 2^{n-1} \theta=1$
(Showed)

প্রশ্নমানা-VII E

প্রমাণ ক্ন যে,

1. (a) $\frac{1-\sin x}{1+\sin x}=\tan ^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right)$
L.H.S. $=\frac{1-\sin x}{1+\sin x}$
$=\frac{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}-2 \sin \frac{x}{2} \cos \frac{x}{2}}{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}}$
$=\frac{\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)^{2}}{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^{2}}=\left(\frac{1-\tan \frac{x}{2}}{1+\tan \frac{x}{2}}\right)^{2}$
$=\left(\frac{\tan \frac{\pi}{4}-\tan \frac{x}{2}}{1+\tan \frac{\pi}{4} \tan \frac{x}{2}}\right)^{2}=\tan ^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right)=$ R.H.S
2. (b) $\cos ^{2} \frac{\alpha}{2}+\cos ^{2}\left(\frac{\alpha}{2}-60^{\circ}\right)+$

$$
\cos ^{2}\left(\frac{\alpha}{2}+60^{\circ}\right)=\frac{3}{2}
$$

L.H.S. $=\cos ^{2} \frac{\alpha}{2}+\cos ^{2}\left(\frac{\alpha}{2}-60^{\circ}\right)$

$$
+\cos ^{2}\left(\frac{\alpha}{2}+60^{\circ}\right)
$$

$=\frac{1}{2}\left\{1+\cos 2 \cdot \frac{\alpha}{2}+1+\cos 2 \cdot\left(\frac{\alpha}{2}-60^{\circ}\right)\right.$
$\left.+1+\cos 2\left(\frac{\alpha}{2}+60^{\circ}\right)\right\}$
$=\frac{1}{2}\left\{3+\cos \alpha+\cos \left(\alpha-120^{\circ}\right)+\cos \left(\alpha+120^{\circ}\right)\right\}$
$=\frac{1}{2}\left\{3+\cos \alpha+2 \cos \alpha \cos 120^{\circ}\right\}$
$=\frac{1}{2}\left\{3+\cos \alpha+2 \cos \alpha .\left(-\frac{1}{2}\right)\right\}$
$=\frac{1}{2}\{3+\cos \alpha-\cos \alpha\}=\frac{3}{2}$
1.(c) $\sin ^{2}\left(\frac{\alpha}{2}-36^{\circ}\right)+\sin ^{2}\left(\frac{\alpha}{2}+36^{\circ}\right)$
$=\frac{1}{4}\{4-(\sqrt{ } 5-1) \cos \alpha\}$
L.H.S. $=\sin ^{2}\left(\frac{\alpha}{2}-36^{\circ}\right)+\sin ^{2}\left(\frac{\alpha}{2}+36^{\circ}\right)$
$=\frac{1}{2}\left\{1-\cos 2\left(\frac{\alpha}{2}-36^{\circ}\right)+1-\cos 2\left(\frac{\alpha}{2}+36^{\circ}\right)\right\}$
$=\frac{1}{2}\left[2-\left\{\cos \left(\alpha-72^{\circ}\right)+\cos \left(\alpha+72^{\circ}\right)\right\}\right]$
$=\frac{1}{2}\left\{2-2 \cos \alpha \cos 72^{\circ}\right\}=1-\cos \alpha \cos 72^{\circ}$
$=1-\cos \alpha \cdot \cos \left(90^{\circ}-18^{\circ}\right)$
$=1-\cos \alpha \sin 18^{\circ}$
$=1-\frac{1}{4}(\sqrt{5}-1) \cos \alpha$
$=\frac{1}{4}\{4-(\sqrt{ } 5-1) \cos \alpha\}=$ R.H.S. (Proved)
2.(a) $2 \cos \frac{\pi}{16}=2 \cos 11^{\circ} 15^{\prime}$
$=\sqrt{2+\sqrt{2+\sqrt{2}}}$ [दू.'०१, 'ग৩; চ.' ০১; रा.'’৩]
R.H.S. $=\sqrt{2+\sqrt{2+\sqrt{2}}}$
$=\sqrt{2+\sqrt{2\left(1+\frac{\sqrt{2}}{2}\right)}}=\sqrt{2+\sqrt{2\left(1+\frac{1}{\sqrt{2}}\right)}}$
$=\sqrt{2+\sqrt{2\left(1+\cos 45^{\circ}\right)}}$
$=\sqrt{2+\sqrt{\left.2.2 \cos ^{2} 22^{\circ} 30^{\prime}\right)}}$
$=\sqrt{2+2 \cos 22^{\circ} 30^{\prime}}=\sqrt{2\left(1+\cos 22^{\circ} 30^{\prime}\right)}$
$=\sqrt{\left.2.2 \cos ^{2} 11^{0} 15^{\prime}\right)}=2 \cos 11^{\circ} 15^{\circ}=$ M.H.S.

$$
\begin{aligned}
& \text { आবার , } 2 \cos \frac{\pi}{16}=2 \cos 11^{\circ} 15^{\circ} \\
& \qquad 2 \cos \frac{\pi}{16}=2 \cos 11^{\circ} 15^{\circ}=\sqrt{2+\sqrt{2+\sqrt{2}}}
\end{aligned}
$$

2. (b) $\cos \left(7 \frac{1}{2}\right)^{0}=\frac{1}{2} \sqrt{2+\sqrt{2+\sqrt{3}}}$
[র্রা '০২; কূ., ,চ.'১০]
R.H.S. $=\frac{1}{2} \sqrt{2+\sqrt{2+\sqrt{3}}}$
$=\frac{1}{2} \sqrt{2+\sqrt{2\left(1+\frac{\sqrt{3}}{2}\right)}}$
$=\frac{1}{2} \sqrt{2+\sqrt{2\left(1+\cos 30^{\circ}\right)}}$
$=\frac{1}{2} \sqrt{2+\sqrt{\left.2.2 \cos ^{2} 15^{\circ}\right)}}=\frac{1}{2} \sqrt{2+2 \cos 15^{0}}$
$=\frac{1}{2} \sqrt{2\left(1+\cos 15^{\circ}\right)}=\frac{1}{2} \sqrt{2.2 \cos ^{2}\left(7 \frac{1}{2}\right)^{0}}$
$=\frac{1}{2} \cdot 2 \cos \left(7 \frac{1}{2}\right)^{0}=\cos \left(7 \frac{1}{2}\right)^{0}=$ RH.S.
2(c) $\tan \left(7 \frac{1}{2}\right)^{0}=\sqrt{6}-\sqrt{3}+\sqrt{2}-2$
L.H.S. $=\tan \left(7 \frac{1}{2}\right)^{0}=\tan 7^{\circ} 30^{\prime}$
$=\frac{\sin 7^{0} 30^{\prime}}{\cos 7^{0} 30^{\prime}}=\frac{2 \sin ^{2} 7^{0} 30^{\prime}}{2 \sin 7^{0} 30^{\prime} \cos 7^{0} 30^{\prime}}$
$=\frac{1-\cos 15^{\circ}}{\sin 15^{\circ}}=\frac{1-\cos \left(45^{\circ}-30^{\circ}\right)}{\sin \left(45^{\circ}-30^{\circ}\right)}$
$=\frac{1-\left(\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ}\right)}{\sin 45^{\circ} \cos 30^{\circ}-\cos 45^{\circ} \sin 30^{\circ}}$
$=\frac{1-\frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \frac{1}{2}}{\frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \frac{1}{2}}=\frac{2 \sqrt{2}-\sqrt{3}-1}{\sqrt{3}-1}$
$=\frac{(2 \sqrt{2}-\sqrt{3}-1)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}$
$=\frac{2 \sqrt{6}-3-\sqrt{3}+2 \sqrt{2}-\sqrt{3}-1}{3-1}$
$=\frac{2 \sqrt{6}+2 \sqrt{2}-4-2 \sqrt{3}}{2}$
$=\sqrt{6}-\sqrt{3}+\sqrt{2}-2=$ R.H.S (Proved)
3. $\frac{\sec \alpha-\tan \alpha}{\sec \alpha+\tan \alpha}=\cot ^{2}\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)$
L.H.S. $=\frac{\sec \alpha-\tan \alpha}{\sec \alpha+\tan \alpha}$
$=\frac{\frac{1}{\cos \alpha}-\frac{\sin \alpha}{\cos \alpha}}{\frac{1}{\cos \alpha}+\frac{\sin \alpha}{\cos \alpha}}=\frac{1-\sin \alpha}{1+\sin \alpha}$
$=\frac{\sin ^{2} \frac{\alpha}{2}+\cos ^{2} \frac{\alpha}{2}-2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}{\sin ^{2} \frac{\alpha}{2}+\cos ^{2} \frac{\alpha}{2}+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}$
$=\frac{\left(\sin \frac{\alpha}{2}-\cos \frac{\alpha}{2}\right)^{2}}{\left(\sin \frac{\alpha}{2}+\cos \frac{\alpha}{2}\right)^{2}}=\left(\frac{\cos \frac{\alpha}{2}\left(\cot \frac{\alpha}{2}-1\right)}{\cos \frac{\alpha}{2}\left(\cot \frac{\alpha}{2}+1\right)}\right)^{2}$
$=\left(\frac{\cot \frac{\alpha}{2} \cot \frac{\pi}{2}-1}{\cot \frac{\pi}{2}+\cot \frac{\alpha}{2}}\right)^{2}=\left(\cot \left(\frac{\alpha}{2}+\frac{\pi}{2}\right)\right)^{2}$
$=\cot ^{2}\left(\frac{\alpha}{2}+\frac{\pi}{2}\right)=$ R.H.S. (Proved)
4. $\cos \theta=\frac{a \cos \varphi-b}{a-b \cos \varphi}$ হনে ศেখাও যে,
$\frac{\tan \frac{1}{2} \theta}{\sqrt{a+b}}=\frac{\tan \frac{1}{2} \varphi}{\sqrt{a-b}}$
প্রমাণ : দেওয়া জাছ, $\cos \theta=\frac{a \cos \varphi-b}{a-b \cos \varphi}$

$$
\begin{aligned}
& \Rightarrow \frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}=\frac{a \frac{1-\tan ^{2} \frac{\varphi}{2}}{1+\tan ^{2} \frac{\varphi}{2}}-b}{a-b \frac{1-\tan ^{2} \frac{\varphi}{2}}{1+\tan ^{2} \frac{\varphi}{2}}} \\
& \text { or, } \frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}=\frac{a\left(1-\tan ^{2} \frac{\varphi}{2}\right)-b\left(1+\tan ^{2} \frac{\varphi}{2}\right)}{a\left(1+\tan ^{2} \frac{\varphi}{2}\right)-b\left(1-\tan ^{2} \frac{\varphi}{2}\right)}
\end{aligned}
$$

$$
\text { or, } \frac{2}{-2 \tan ^{2} \frac{\theta}{2}}=
$$

$$
\frac{a\left(1-\tan ^{2} \frac{\varphi}{2}+1+\tan ^{2} \frac{\varphi}{2}\right)-b\left(1+\tan ^{2} \frac{\varphi}{2}+1-\tan ^{2} \frac{\varphi}{2}\right)}{a\left(1-\tan ^{2} \frac{\varphi}{2}-1-\tan ^{2} \frac{\varphi}{2}\right)-b\left(1+\tan ^{2} \frac{\varphi}{2}-1+\tan ^{2} \frac{\varphi}{2}\right)}
$$

$$
\Rightarrow \frac{1}{-\tan ^{2} \frac{\theta}{2}}=\frac{2 a-2 b}{-2 a \tan ^{2} \frac{\varphi}{2}-2 b \tan ^{2} \frac{\varphi}{2}}
$$

$$
\Rightarrow \frac{1}{\tan ^{2} \frac{\theta}{2}}=\frac{a-b}{(a+b) \tan ^{2} \frac{\varphi}{2}}
$$

$$
\Rightarrow \frac{\tan ^{2} \frac{1}{2} \theta}{a+b}=\frac{\tan ^{2} \frac{1}{2} \varphi}{a-b}
$$

$\therefore \frac{\tan \frac{1}{2} \theta}{\sqrt{a+b}}=\frac{\tan \frac{1}{2} \varphi}{\sqrt{a-b}}$ (Showed)
5. (a) $\sec (\theta+\alpha)+\sec (\theta-\alpha)=2 \sec \theta$
₹णে मেখাఆ यে, $\cos \theta= \pm \sqrt{2} \cos \frac{\alpha}{2}$.
भ্রমाণ \& $\sec (\theta+\alpha)+\sec (\theta-\alpha)=2 \sec \theta$
$\Rightarrow \frac{1}{\cos (\theta+\alpha)}+\frac{1}{\cos (\theta-\alpha)}=\frac{2}{\cos \theta}$
$\Rightarrow \frac{\cos (\theta-\alpha)+\cos (\theta+\alpha)}{\cos (\theta+\alpha) \cos (\theta-\alpha)}=\frac{2}{\cos \theta}$
$\Rightarrow \frac{2 \cos \theta \cos \alpha}{\cos ^{2} \theta-\sin ^{2} \alpha}=\frac{2}{\cos \theta}$
$\Rightarrow \cos ^{2} \theta \cos \alpha=\cos ^{2} \theta-\sin ^{2} \alpha$
$\Rightarrow \cos ^{2} \theta(1-\cos \alpha)=\sin ^{2} \alpha$
$\Rightarrow \cos ^{2} \theta=\frac{1-\cos ^{2} \alpha}{1-\cos \alpha}=1+\cos \alpha$
$\Rightarrow \cos ^{2} \theta=2 \cos ^{2} \frac{\alpha}{2}$
$\therefore \quad \cos \theta= \pm \sqrt{2} \cos \frac{\alpha}{2} \quad$ (Showed)
5(b) $\sin A=\frac{1}{\sqrt{2}}$ जदर $\sin B=\frac{1}{\sqrt{3}}$ रলে দেখাও যে
, $\tan \frac{A+B}{2} \cot \frac{A-B}{2}=5+2 \sqrt{6}$
প্রমাণ 8 দেওয়া জাছে, $\sin \mathrm{A}=\frac{1}{\sqrt{2}}$ এবং $\sin \mathrm{B}=\frac{1}{\sqrt{3}}$
$\therefore \quad \frac{\sin A}{\sin B}=\frac{\sqrt{3}}{\sqrt{2}}$
$\Rightarrow \frac{\sin A+\sin B}{\sin A-\sin B}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ [ป্যাজन-বিয়োষন করের]
$\Rightarrow \frac{2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}}{2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}}=\frac{(\sqrt{3}+\sqrt{2})^{2}}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}$
$\Rightarrow \tan \left(\frac{A+B}{2}\right) \cot \left(\frac{A-B}{2}\right)=\frac{3+2 \sqrt{3} \sqrt{2}+2}{3-2}$
$\therefore \tan \left(\frac{A+B}{2}\right) \cot \left(\frac{A-B}{2}\right)=5+2 \sqrt{ } 6$
(Showed)
6 (a) $\tan \frac{\theta}{2}=\sqrt{\frac{1-e}{1+e}} \tan \frac{\varphi}{2}$ रनে প্রমাণ कर यে, $\cos \varphi=\frac{\cos \theta-e}{1-e \cos \theta}$ [চ.'ob; সि.'.০৮,'১২; রा.'০১]

প্রমাণ \& দেওয়া আছে , $\tan \frac{\theta}{2}=\sqrt{\frac{1-e}{1+e}} \tan \frac{\varphi}{2}$ $\Rightarrow \tan ^{2} \frac{\theta}{2}=\frac{1-e}{1+e} \tan ^{2} \frac{\varphi}{2}$

$$
\begin{array}{r}
\Rightarrow \frac{1}{\tan ^{2} \frac{\varphi}{2}}=\frac{1-e}{1+e} \frac{1}{\tan ^{2} \frac{\theta}{2}}=\frac{(1-e) \cos ^{2} \frac{\theta}{2}}{(1+e) \sin ^{2} \frac{\theta}{2}} \\
\Rightarrow \frac{1-\tan ^{2} \frac{\varphi}{2}}{1+\tan ^{2} \frac{\varphi}{2}}=\frac{(1-e) \cos ^{2} \frac{\theta}{2}-(1+e) \sin ^{2} \frac{\theta}{2}}{(1-e) \cos ^{2} \frac{\theta}{2}+(1+e) \sin ^{2} \frac{\theta}{2}} \\
\quad=\frac{\left(\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2}\right)-e\left(\sin ^{2} \frac{\theta}{2}+\cos ^{2} \frac{\theta}{2}\right)}{\left(\sin ^{2} \frac{\theta}{2}+\cos ^{2} \frac{\theta}{2}\right)-e\left(\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2}\right)}
\end{array}
$$

$$
\cos \varphi=\frac{\cos \theta-e}{1-e \cos \theta}
$$

6.(b) $A+B \neq 0$ बবर $\sin A+\sin B=$ $2 \sin (A+B)$ इबে দেঋা® যে, $\tan \frac{A}{2} \tan \frac{B}{2}=\frac{1}{3}$
[दं, ob]
প্রমাণ 8 मেওয়া जाছে, $\sin \mathrm{A}+\sin \mathrm{B}=2 \sin (\mathrm{~A}+\mathrm{B})$
$\Rightarrow 2 \sin \frac{1}{2}(\mathrm{~A}+\mathrm{B}) \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})$
$=2 \times 2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A+B)$
$\Rightarrow \sin \frac{1}{2}(A+B)\left\{\cos \frac{1}{2}(A-B)-\right.$

$$
\left.2 \cos \frac{1}{2}(\mathrm{~A}+\mathrm{B})\right\}=0
$$

$A+B \neq 0$ বलে $\sin \frac{1}{2}(A+B) \neq 0$

$$
\cos \frac{1}{2}(A-B)-2 \cos \frac{1}{2}(A+B)=0
$$

$\Rightarrow \cos \frac{A}{2} \cos \frac{B}{2}+\sin \frac{A}{2} \sin \frac{B}{2}-$

$$
2\left(\cos \frac{A}{2} \cos \frac{B}{2}-\sin \frac{A}{2} \sin \frac{B}{2}\right)=0
$$

$$
\Rightarrow 3 \sin \frac{A}{2} \sin \frac{B}{2}=\cos \frac{A}{2} \cos \frac{B}{2}
$$

$\Rightarrow \frac{\sin \frac{A}{2} \sin \frac{B}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}}=\frac{1}{3}$
$\therefore \tan \frac{A}{2} \tan \frac{B}{2}=\frac{1}{3}$ (Showed)
7.(a) $\sin \theta=\frac{a-b}{a+b}$ रनে প্রমাণ कर यে,

$$
\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right)=\sqrt{\frac{b}{a}}
$$

প্রমাণ ঃ দেওয়া জাছে, $\sin \theta=\frac{a-b}{a+b}$
L.H.S. $=\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right)=\frac{\sin \left(\frac{\pi}{4}-\frac{\theta}{2}\right)}{\cos \left(\frac{\pi}{4}-\frac{\theta}{2}\right)}$
$=\frac{2 \sin \left(\frac{\pi}{4}-\frac{\theta}{2}\right) \cos \left(\frac{\pi}{4}-\frac{\theta}{2}\right)}{2 \cos ^{2}\left(\frac{\pi}{4}-\frac{\theta}{2}\right)}=\frac{\sin 2\left(\frac{\pi}{4}-\frac{\theta}{2}\right)}{1+\cos 2\left(\frac{\pi}{4}-\frac{\theta}{2}\right)}$
$=\frac{\sin \left(\frac{\pi}{2}-\theta\right)}{1+\cos \left(\frac{\pi}{2}-\theta\right)}=\frac{\cos \theta}{1+\sin \theta}$
$=\frac{\sqrt{1-\sin ^{2} \theta}}{1+\sin \theta}=\frac{\sqrt{1-\left(\frac{a-b}{a+b}\right)^{2}}}{1+\frac{a-b}{a+b}}$
$=\frac{\frac{\sqrt{(a+b)^{2}-(a-b)^{2}}}{a+b}}{\frac{a+b+a-b}{a+b}}=\frac{\sqrt{4 a b}}{2 a}$
$=\frac{2 \sqrt{a} \sqrt{b}}{2 a}=\sqrt{\frac{b}{a}}=$ R.H.S.
বिকब्ब প冋্सडि : দেওয়া जाছে, $\sin \theta=\frac{a-b}{a+b}$
$\Rightarrow \frac{1}{\sin \theta}=\frac{a+b}{a-b} \Rightarrow \frac{1-\sin \theta}{1+\sin \theta}=\frac{a+b-a+b}{\dot{a}+b+a-b}$
[বিয়োজন-যোজন করে।]
$\Rightarrow \frac{\cos ^{2} \frac{\theta}{2}+\sin ^{2} \frac{\theta}{2}-2 \cos \frac{\theta}{2} \sin \frac{\theta}{2}}{\cos ^{2} \frac{\theta}{2}+\sin ^{2} \frac{\theta}{2}+2 \cos \frac{\theta}{2} \sin \frac{\theta}{2}}=\frac{2 b}{2 a}$
$\Rightarrow \frac{\left(\cos \frac{\theta}{2}-\sin \frac{\theta}{2}\right)^{2}}{\left(\cos \frac{\theta}{2}+\sin \frac{\theta}{2}\right)^{2}}=\frac{b}{a} \Rightarrow \frac{\cos \frac{\theta}{2}-\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}+\sin \frac{\theta}{2}}=\sqrt{\frac{b}{a}}$
$\Rightarrow \frac{1-\tan \frac{\theta}{2}}{1+\tan \frac{\theta}{2}}=\sqrt{\frac{b}{a}} \Rightarrow \frac{\tan \frac{\pi}{4}-\tan \frac{\theta}{2}}{1+\tan \frac{\pi}{4} \tan \frac{\theta}{2}}=\sqrt{\frac{b}{a}}$ $\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right)=\sqrt{\frac{b}{a}}$
 डिन्न মান α, β पात्रा সिम्ब इलে पেथाও यে,

$$
\sin (\alpha+\beta)=\frac{2 a b}{a^{2}+b^{2}}
$$

সমাथান $\dot{8} \cos \theta+b \sin \theta=c$ সমীকরণটি θ এর দूইটট ভিন্ন মান $\alpha ও \beta$ দারা সিশ্ধ বলে,
$\mathrm{a}^{\mathrm{a}} \cos \alpha+\mathrm{b} \sin \alpha=\mathrm{c}$
ब बए $a \cos \beta+b \sin \beta=c$
$a \cos \alpha+b \sin \alpha=a \cos \beta+b \sin \beta$
$\Rightarrow \mathrm{a}(\cos \alpha-\cos \beta)=\mathrm{b}(\sin \beta-\sin \alpha)$
$\Rightarrow \mathrm{a} .2 \sin \frac{1}{2}(\alpha+\beta) \sin \frac{1}{2}(\beta-\alpha)$

$$
=b \cdot 2 \cos \frac{1}{2}(\alpha+\beta) \sin \frac{1}{2}(\beta-\alpha)
$$

$\alpha \neq \beta$ বलে, $\sin \frac{1}{2}(\beta-\alpha) \neq 0$
$a \sin \frac{1}{2}(\alpha+\beta)=b \cos \frac{1}{2}(\alpha+\beta)$
$\Rightarrow \tan \frac{1}{2}(\alpha+\beta)=\frac{b}{a}$
এچन, L.H.S. $=\sin (\alpha+\beta)=\sin 2 \cdot \frac{1}{2}(\alpha+\beta)$
$=\frac{2 \tan \frac{1}{2}(\alpha+\beta)}{1+\tan ^{2} \frac{1}{2}(\alpha+\beta)}=\frac{2 \frac{b}{a}}{1+\left(\frac{b}{a}\right)^{2}}$
$=\frac{2 b}{a} \times \frac{a^{2}}{a^{2}+\dot{b}^{2}}=\frac{2 a b}{a^{2}+b^{2}}=$ R.H.S.
অতিব্রিক্চ প্রশ্ন (সমাধানসহ)

ब बमाণ কব্র यে,

1. $\cos ^{2}\left(\frac{\alpha}{2}-18^{\circ}\right)+\cos ^{2}\left(\frac{\alpha}{2}+18^{\circ}\right)$ $=\frac{1}{4}\{4+(\sqrt{ } 5+1) \cos \alpha\}$
L.H.S. $=\cos ^{2}\left(\frac{\alpha}{2}-18^{\circ}\right)+\cos ^{2}\left(\frac{\alpha}{2}+18^{\circ}\right)$
$=\frac{1}{2}\left\{1+\cos 2\left(\frac{\alpha}{2}-18^{\circ}\right)+1+\cos 2\left(\frac{\alpha}{2}+18^{\circ}\right)\right\}$
$=\frac{1}{2}\left\{2+\cos \left(\alpha-36^{\circ}\right)+\cos \left(\alpha+36^{\circ}\right)\right\}$
$=\frac{1}{2}\left(2+2 \cos \alpha \cos 36^{\circ}\right)$
$=\left\{1+\frac{1}{4}(\sqrt{5}+1) \cos \alpha\right\}$
$=\frac{1}{4}\{4+(\sqrt{ } 5+1) \cos \alpha\}=$ R.H.S.(Proved)
2.(a) $\sin (292.5)^{0}=-\frac{1}{2} \sqrt{2+\sqrt{2}}$
L.H.S. $=\sin (292.5)^{0}$
$=\sin \left\{270^{\circ}+(22.5)^{\circ}\right\}=-\cos (22.5)^{\circ}$
$=-\sqrt{\cos ^{2}(22.5)^{\circ}}=-\sqrt{\frac{1}{2}\left(1+\cos 45^{\circ}\right)}$
$=-\sqrt{\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}\right)}=-\sqrt{\frac{\sqrt{2}+1}{2 \sqrt{2}}}$
$=-\sqrt{\frac{2+\sqrt{2}}{4}}=-\frac{1}{2} \sqrt{2+\sqrt{2}}=$ R.H.S.
2.(b) $\cot (142.5)^{0}=\sqrt{2}+\sqrt{3}-2-\sqrt{6}$
L.H.S. $=\cot (142.5)^{\circ}=\cot 142^{\circ} 30^{\prime}$
$=\cot \left(180^{\circ}-37^{\circ} 30^{\prime}\right)=-\cot 37^{\circ} 30^{\prime}$
$=-\frac{\cos 37^{\circ} 30^{\prime}}{\sin 37^{\circ} 30^{\prime}}=-\frac{2 \cos ^{2} 37^{\circ} 30^{\prime}}{2 \sin 37^{\circ} 30^{\prime} \cos 37^{\circ} 30^{\prime}}$
$=--\frac{1+\cos 75^{\circ}}{\sin 75^{\circ}}=-\frac{1+\cos \left(45^{\circ}+30^{\circ}\right)}{\sin \left(45^{\circ}+30^{\circ}\right)}$
$=-\frac{1+\cos 45^{\circ} \cos 30^{\circ}-\sin 45^{\circ} \sin 30^{\circ}}{\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}}$

$$
\begin{aligned}
& =-\frac{1+\frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \frac{1}{2}}{\frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \frac{1}{2}}=-\frac{2 \sqrt{2}+\sqrt{3}-1}{\sqrt{3}-1} \\
& =-\frac{(2 \sqrt{2}+\sqrt{3}-1)(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)} \\
& =-\frac{2 \sqrt{6}+3-\sqrt{3}-2 \sqrt{2}-\sqrt{3}+1}{3-1} \\
& =-\frac{2 \sqrt{6}+4-2 \sqrt{3}-2 \sqrt{2}}{2} \\
& =-(\sqrt{6}+2-\sqrt{3}-\sqrt{2})=\sqrt{3}+\sqrt{2}-2-\sqrt{6}
\end{aligned}
$$

2（c） $\boldsymbol{\operatorname { t a n }}(82.5)^{0}=\sqrt{6}+\sqrt{3}+\sqrt{2}+2$
L．H．S．$=\tan (82.5)^{\circ}=\tan 82^{\circ} 30^{\prime}$
$=\tan \left(90^{\circ}-7^{0} 30^{\prime}\right)=\cot 7^{0} .30^{\prime}$
$=\frac{\cos 7^{0} 30^{\prime}}{\sin 7^{0} 30^{\prime}}=\frac{2 \cos ^{2} 7^{0} 30^{\prime}}{2 \sin 7^{0} 30^{\prime} \cos 7^{0} 30^{\prime}}$
$=\frac{1+\cos 15^{\circ}}{\sin 15^{\circ}}=\frac{1+\cos \left(45^{\circ}-30^{\circ}\right)}{\sin \left(45^{\circ}-30^{\circ}\right)}$
$=\frac{1+\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ}}{\cos 45^{\circ} \cos 30^{\circ}-\sin 45^{\circ} \cos 30^{\circ}}$
$=\frac{1+\frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \frac{1}{2}}{\frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \frac{1}{2}}=\frac{2 \sqrt{2}+\sqrt{3}+1}{\sqrt{3}-1}$
$=\frac{(2 \sqrt{2}+\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$
$=\frac{2 \sqrt{6}+3+\sqrt{3}+2 \sqrt{2}+\sqrt{3}+1}{3-1}$
$=\frac{2 \sqrt{6}+4+2 \sqrt{3}+2 \sqrt{2}}{2}$
$=\sqrt{6}+2+\sqrt{3}+\sqrt{2}=\sqrt{6}+\sqrt{3}+2+\sqrt{2}$
3．$a \sin \theta+b \sin \varphi=c=a \cos \theta+b \cos \varphi$ रनि：G7サー 《ে；

$$
\cos \frac{1}{2}(\theta-\varphi)= \pm \sqrt{\frac{2 c^{2}-(a-b)^{2}}{4 a b}}
$$

প্রমাণ ঃ দেওয়া আছে ， $\mathrm{a} \sin \theta+\mathrm{b} \sin \varphi=\mathrm{c}$ $\Rightarrow a^{2} \sin ^{2} \theta+b^{2} \sin ^{2} \varphi+2 a b \sin \theta \sin \varphi=c^{2}$

এবং $\mathrm{a} \cos \theta+\mathrm{b} \cos \varphi=\mathrm{c}$
$\Rightarrow \mathrm{a}^{2} \cos ^{2} \theta+\mathrm{b}^{2} \cos ^{2} \varphi+2 \mathrm{ab} \cos \theta \cos \varphi=\mathrm{c}^{2}$
（1）ও（2）যোগ করে পাই ，
$\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab}(\sin \theta \sin \varphi+\cos \theta \cos \varphi)=2 \mathrm{c}^{2}$
$\Rightarrow 2 \mathrm{ab} \cos (\theta-\varphi)=2 \mathrm{c}^{2}-\mathrm{a}^{2}-\mathrm{b}^{2}$
$\Rightarrow 2 \mathrm{ab}\left\{2 \cos ^{2} \frac{1}{2}(\theta-\varphi)-1\right\}=2 \mathrm{c}^{2}-\mathrm{a}^{2}-\mathrm{b}^{2}$
$\Rightarrow 4 a b \cos ^{2} \frac{1}{2}(\theta-\varphi)=2 c^{2}-a^{2}-b^{2}+2 a b$
$=2 \mathrm{c}^{2}-(\mathrm{a}-\mathrm{b})^{2}$
$\Rightarrow \cos ^{2} \frac{1}{2}(\theta-\varphi)=\frac{2 c^{2}-(a-b)^{2}}{4 a b}$
$\therefore \cos \frac{1}{2}(\theta-\varphi)= \pm \sqrt{\frac{2 c^{2}-(a-b)^{2}}{4 a b}}$
4．দেখাও যে， $\sin x=2^{n} \cos \frac{x}{2} \cdot \cos \frac{x}{2^{2}}$ ． $\cos \frac{x}{2^{3}} \cdot \cdots \cos \frac{x}{2^{n}} \cdot \sin \frac{x}{2^{n}}$
প্রমাণ ： $\sin x=\sin 2 \cdot \frac{x}{2}=2 \sin \frac{x}{2} \cdot \cos \frac{x}{2}$
$=2 \cos \frac{x}{2} \cdot \sin 2 \cdot \frac{x}{2^{2}}=2 \cos \frac{x}{2} \cdot 2 \sin \frac{x}{2^{2}} \cdot \cos \frac{x}{2^{2}}$
$=\left(2 \cos \frac{x}{2}\right) \cdot\left(2 \cos \frac{x}{2^{2}}\right) \cdot \sin \frac{x}{2^{2}}$
$=-\left(2 \cos \frac{x}{2}\right) \cdot\left(2 \cos \frac{x}{2^{2}}\right) \cdot\left(2 \cos \frac{x}{2^{3}} \cdot\right) \cdot \sin \frac{x}{2^{3}}$
$=\left(2 \cos \frac{x}{2}\right) \cdot\left(2 \cos \frac{x}{2^{2}}\right) \cdot\left(2 \cos \frac{x}{2^{3}}\right)$ ．

$$
\left(2 \cos \frac{x}{2^{n-1}}\right)\left(2 \cos \frac{x}{2^{n}}\right) \cdot \sin \frac{x}{2^{n}}
$$

$\therefore \sin x=2^{n} \cos \frac{x}{2} \cdot \cos \frac{x}{2^{2}} \cdot \cdots \cdot \cos \frac{x}{2^{n}} \cdot \sin \frac{x}{2^{n}}$

প্রশ্নমালা VII F

$\mathbf{A}+\mathbf{B}+\mathbf{C}=\pi$ হনে প্রমাণ বর যে,

1. (a) $\sin A+\sin B+\sin C$

$$
=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \quad \text { [য.’০২] }
$$

প্রমাণ : L.H.S. $=\sin \mathrm{A}+\sin \mathrm{B}+\sin \mathrm{C}$
$=2 \sin \frac{1}{2}(\mathrm{~A}+\mathrm{B}) \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})+2 \sin \frac{C}{2} \cos \frac{C}{2}$
$=2 \sin \left(\frac{\pi}{2}-\frac{C}{2}\right) \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})+2 \sin \frac{C}{2} \cos \frac{C}{2}$
$=2 \cos \frac{C}{2} \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})+2 \sin \frac{C}{2} \cos \frac{C}{2}$
$=2 \cos \frac{C}{2}\left\{\cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})+\sin \frac{C}{2}\right\}$
$=2 \cos \frac{C}{2}\left\{\cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})+\sin \left(\frac{\pi}{2}-\frac{A+B}{2}\right)\right\}$
$=2 \cos \frac{C}{2}\left\{\cos \left(\frac{A}{2}-\frac{B}{2}\right)+\cos \left(\frac{A}{2}+\frac{B}{2}\right)\right\}$
$=2 \cos \frac{C}{2}\left(2 \cos \frac{A}{2} \cos \frac{B}{2}\right)$
$=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}=$ R.H.S. (Proved)
1.(b) $\sin A+\sin B-\sin C=$ $4 \sin \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2} \quad$ [य.'०৮]
भ्रमाण \& L.H.S. $=\sin A+\sin B-\sin C$
$=2 \sin \frac{1}{2}(\mathrm{~A}+\mathrm{B}) \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})-2 \sin \frac{C}{2} \cos \frac{C}{2}$
$=2 \sin \left(\frac{\pi}{2}-\frac{C}{2}\right) \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})-2 \sin \frac{C}{2} \cos \frac{C}{2}$
$=2 \cos \frac{C}{2} \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})-2 \sin \frac{C}{2} \cos \frac{C}{2}$
$=2 \cos \frac{C}{2}\left\{\cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})-\sin \frac{C}{2}\right\}$
$=2 \cos \frac{C}{2}\left\{\cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})-\sin \left(\frac{\pi}{2}-\frac{A+B}{2}\right)\right\}$
$=2 \cos \frac{C}{2}\left\{\cos \left(\frac{A}{2}-\frac{B}{2}\right)-\cos \left(\frac{A}{2}+\frac{B}{2}\right)\right\}$
$=2 \cos \frac{C}{2}\left(2 \sin \frac{A}{2} \sin \frac{B}{2}\right)$
$=4 \sin \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2}=$ R.H.S. \quad (Proved)

1. (c) $\sin 2 A-\sin 2 B+\sin 2 C=4 \cos A \sin B$ $\cos \mathrm{C}$
[दू.'o১]
প্রমাণ \& L.H.S. $=\sin 2 \mathrm{~A}-\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}$
$=2 \sin \frac{2 \mathrm{~A}-2 \mathrm{~B}}{2} \cos \frac{2 \mathrm{~A}+2 \mathrm{~B}}{2}+\cos 2 \mathrm{C}$
$=2 \sin (\mathrm{~A}-\mathrm{B}) \cos (\mathrm{A}+\mathrm{B})+2 \sin \mathrm{C} \cos \mathrm{C}$
$=2 \sin (\mathrm{~A}-\mathrm{B}) \cos (\pi-\mathrm{C})+2 \sin \mathrm{C} \cos \mathrm{C}$
$=-2 \cos \mathrm{C} \sin (\mathrm{A}-\mathrm{B})+2 \sin \mathrm{C} \cos \mathrm{C}$
$=2 \cos C\{\sin C-\sin (A-B)\}$
$=2 \cos C[\sin \{\pi-(A+B)\}-\sin (A+B)] \cdot$
$=2 \cos \mathrm{C}\{\sin (\mathrm{A}+\mathrm{B})-\sin (\mathrm{A}-\mathrm{B})\}$
$=2 \cos C \cdot 2 \sin B \cos A=4 \cos A \sin B \cos C$
$=$ R.H.S. (Proved)
1.(d) $\cos 2 \mathrm{~A}-\cos 2 \mathrm{~B}+\cos 2 \mathrm{C}=1-4 \sin \mathrm{~A}$ $\cos B \sin C$
প্রমাণ : L.H.S. $=\cos 2 \mathrm{~A}-\cos 2 \mathrm{~B}+\cos 2 \mathrm{C}^{\circ}$
$=\cos 2 \mathrm{~A}+\cos 2 \mathrm{C}-\cos 2 \mathrm{~B}$
$=2 \cos (\mathrm{~A}+\mathrm{C}) \cos (\mathrm{A}-\mathrm{C})-\left(2 \cos ^{2} \mathrm{~B}-1\right)$
$=2 \cos (\pi-\mathrm{B}) \cos (\mathrm{A}-\mathrm{C})-2 \cos ^{2} \mathrm{~B}+1$
$=-2 \cos \mathrm{~B} \cos (\mathrm{~A}-\mathrm{C})-2 \cos ^{2} \mathrm{~B}+1$
$=1-2 \cos \mathrm{~B}\{\cos (\mathrm{~A}-\mathrm{C})+\cos \mathrm{B}\}$
$=1-2 \cos \mathrm{~B}[\cos (\mathrm{~A}-\mathrm{C})+\cos \{\pi-(\mathrm{A}+\mathrm{C})\}]$
$=1-2 \cos \mathrm{~B}\{\cos (\mathrm{~A}-\mathrm{C})-\cos (\mathrm{A}+\mathrm{C})\}$
$=1-2 \cos \mathrm{~B} \cdot 2 \sin \mathrm{~A} \sin \mathrm{C}$
$=1-4 \sin A \cos B \sin C=$ R.H.S. \quad (Proved)
(e) $\frac{\cos A}{\sin B \sin C}+\frac{\cos B}{\sin C \sin A}+\frac{\cos C}{\sin A \sin B}=2$

প্রমাণ :
L.H.S. $=\frac{\cos A}{\sin B \sin C}+\frac{\cos B}{\sin C \sin A}+\frac{\cos C}{\sin A \sin B}$
$=\frac{\cos A \sin A+\cos B \sin B+\cos C \sin C}{\sin A \sin B \sin C}$
$=\frac{\sin 2 A+\sin 2 B+\sin 2 C}{2 \sin A \sin B \sin C}$
এヌन, $\sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}$
$=2 \sin (\mathrm{~A}+\mathrm{B}) \cos (\mathrm{A}-\mathrm{B})+2 \sin \mathrm{C} \cos \mathrm{C}$
$=2 \sin (\pi-C) \cos (A-B)+2 \sin C \cos C$
$=2 \sin C \cos (A-B)+2 \sin C \cos C$
$=2 \sin C\{\cos (A-B)+\cos C\}$
$=2 \sin \mathrm{C}\{\cos (\mathrm{A}-\mathrm{B})+\cos (\pi-\overline{\mathrm{A}+\mathrm{B}})\}$
$=2 \sin C\{\cos (A-B)-\cos (A+\nu j\}$
$=2 \sin C \cdot 2 \sin \mathrm{~A} \sin \mathrm{~B}=4 \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}$
L.H.S. $=\frac{4 \sin A \sin B \sin C}{2 \sin A \sin B \sin C}=2=$ R.H.S.
2.(a) $\sin (B+2 C)+\sin (C+2 A)+\sin (A+2 B)$
$=4 \sin \frac{B-C}{2} \sin \frac{C-A}{2} \sin \frac{A-B}{2}$
ब्रमान \& L.H.S. $=\sin (B+2 C)+\sin (C+2 A)$
$+\sin (A+2 B)$
$=\sin \{\mathrm{A}+\mathrm{B}+\mathrm{C}+(\mathrm{C}-\mathrm{A})\}+\sin \{\mathrm{A}+\mathrm{B}+\dot{\mathrm{C}}$
$+(A-B)\}+\sin \{A+B+C+(B-C)\}$
$=\sin \{\pi-(A-C)\}+\sin \{\pi-(B-A)\}+$ $\sin \{\pi-(C-B)\}$
$=\sin (A-C)+\sin (B-A)+\sin (C-B)$
$=2 \sin \frac{1}{2}(A-C+B-A) \cos \frac{1}{2}(A-C-B+A)$
$-\sin (B-C)$
$=2 \sin \frac{1}{2}(B-C) \cos \frac{1}{2}(2 A-B-C)-$
$2 \sin \frac{1}{2}(\mathrm{~B}-\mathrm{C}) \cos (\mathrm{B}-\mathrm{C})$
$=2 \sin \frac{1}{2}(B-C)\left\{\cos \frac{1}{2}(2 A-B-C)-\right.$ $\overline{\cos }(\mathrm{B}-\mathrm{C})$
$=2 \sin \frac{B-C}{2}\left\{2 \sin \frac{1}{2}\left(\frac{2 A-B-C+B+C}{2}\right)\right.$
$\left.\sin \frac{1}{2}\left(\frac{B-C-2 A+B+C}{2}\right)\right\}$
$=2 \sin \frac{B-C}{2} .2 \sin \frac{A-C}{2} \sin \frac{B-A}{2}$
$=4 \sin \frac{B-C}{2} \sin \frac{C-A}{2} \sin \frac{A-B}{2}=$ R.H.S.
2.(b) $\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2}=$
$4 \cos \frac{\pi-A}{4} \cos \frac{\pi-B}{4} \cos \frac{\pi-C}{4}$
R.H.S. $=4 \cos \frac{\pi-A}{4} \cos \frac{\pi-B}{4} \cos \frac{\pi-C}{4}$
$=2.2 \cos \frac{B+C}{4} \cos \frac{C+A}{4} \cos \frac{A+B}{4}$
$=2\left[\cos \left(\frac{B+C}{4}+\frac{C+A}{4}\right)\right.$

$$
\left.+\cos \left(\frac{B+C}{4}-\frac{C+A}{4}\right)\right] \cos \frac{A+B}{4}
$$

$=2\left[\cos \frac{A+B+2 C}{4}+\cos \frac{B-A}{4}\right] \cos \frac{A+B}{4}$
$=2 \cos \frac{A+B+2 C}{4} \cos \frac{A+B}{4}+$

$$
2 \cos \frac{B-A}{4} \cos \frac{A+B}{4}
$$

$=\cos \frac{A+B+C}{2}+\cos \frac{C}{2}+\cos \frac{B}{2}+\cos \left(-\frac{A}{2}\right)$
$=\cos \frac{\pi}{2}+\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2}$
$=0+\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2}$
$=\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2}=$ R.H.S.(Proved)
3.(a) $\tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{C}{2} \tan \frac{A}{2}+$ $\boldsymbol{\operatorname { t a n }} \frac{A}{2} \boldsymbol{\operatorname { t a n }} \frac{B}{2}=1$
প্রমাণ" : मেওয়া জা巨ে , $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$
$\Rightarrow \frac{A}{2}+\frac{B}{2}+\frac{C}{2}=\frac{\pi}{2} \Rightarrow \frac{A}{2}+\frac{B}{2}=\frac{\pi}{2}-\frac{C}{2}$
$\therefore \tan \left(\frac{A}{2}+\frac{B}{2}\right)=\tan \left(\frac{\pi}{2}-\frac{C}{2}\right)$
$\Rightarrow \frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{1-\tan \frac{A}{2} \tan \frac{B}{2}}=\cot \frac{C}{2}=\frac{1}{\tan \frac{C}{2}}$
$\Rightarrow \tan \frac{A}{2} \tan \frac{C}{2}+\tan \frac{B}{2} \tan \frac{C}{2}=1-\tan \frac{A}{2} \tan \frac{B}{2}$: $\tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{C}{2} \tan \frac{A}{2}+\tan \frac{A}{2} \tan \frac{B}{2}=1$ $3(b) \cot B \cot C+\cot C \cot A+\cot A$ $\operatorname{sot} B=1$
[প্র.ভ.भ.'०৫]
प্যাष a দেওয়া জাহে $\quad \mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$
$\Rightarrow \mathrm{A}+\mathrm{B}=\pi-\mathrm{C} \Rightarrow \cot (\mathrm{A}+\mathrm{B})=\cot (\pi-\mathrm{C})$
$\Rightarrow \frac{\cot A \cot B-1}{\cot B+\cot A}=-\cot \mathrm{C}$
$\Rightarrow \cot \mathrm{A} \cot \mathrm{B}-1=-\cot \mathrm{B} \cot \mathrm{C}-\cot \mathrm{C} \cot \mathrm{A}$ $\cot \mathrm{B} \cot \mathrm{C}+\cot \mathrm{C} \cot \mathrm{A}+\cot \mathrm{A} \cot \mathrm{B}=1$
4. (a) $\sin ^{2} A-\sin ^{2} B+\sin ^{2} C=2 \sin A$
 द्याज : L.H.S. $=\sin ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}$ $=\frac{1}{2}(1-\cos 2 \mathrm{~A}+1-\cos 2 \mathrm{C})-\sin ^{2} \mathrm{~B}$ $=1-\sin ^{2} \mathrm{~B}-\frac{1}{2} \cdot 2 \cos (\mathrm{~A}+\mathrm{C}) \cos (\mathrm{A}-\mathrm{C})$
$=\cos ^{2} \mathrm{~B}-\cos (\pi-\mathrm{B}) \cos (\mathrm{A}-\mathrm{C})$
$=\cos ^{2} B+\cos B \cos (A-C)$
$=\cos B\{\cos B+\cos (A-C)\}$
$=\cos B[\cos \{\pi-(A+C)\}+\cos (A-C)]$
$=\cos B[-\cos (A+C)+\cos (A-C)]$
$=\cos B .2 \sin A \sin C$
$=2 \sin \mathrm{~A} \cos \mathrm{~B} \sin \mathrm{C}=$ R.H.S. (Proved)
b) $\cos ^{2} A+\cos ^{2} B-\cos ^{2} C=1-2 \sin A$ nㅛ $B \cos C$
[ঢ.'০৩,’০৭,'০১; य.'০৭]
ड्वश \& L.H.S. $=\cos ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~B}-\cos ^{2} \mathrm{C}$ $=\frac{1}{2}(1+\cos 2 \mathrm{~A}+1+\cos 2 \mathrm{~B})-\cos ^{2} \mathrm{C}$ $=1+\frac{1}{2} .2 \cos (\mathrm{~A}+\mathrm{B}) \cos (\mathrm{A}-\mathrm{B})-\cos ^{2} \mathrm{C}$ $=1+\dot{\cos }(\pi-C) \cos (A-B)-\cos ^{2} C$ $=-\cos C \cos (A-B)-\cos ^{2} C$
$=1-\cos C\{\cos (A-B)+\cos C\}$
$=1-\cos C[\cos (A-B)+\cos \{\pi-(A+B)\}]$
$=1-\cos C .[\cos (A-B)-\cos (A+B)]$
$=1-2 \cos C \sin A \sin B=$ R.H.S
(c) $\cos ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~B}+\cos ^{2} \mathrm{C}=1-2 \cos \mathrm{~A}$ $\cos B \cos C[भ ि . ' \circ २$, '০৭; मि.'od; ঢा.'১১; চ.'১৩] প्रमाণ \& L.H.S. $=\cos ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~B}+\cos ^{2} \mathrm{C}$
$=\frac{1}{2}(1+\cos 2 \mathrm{~A}+1+\cos 2 \mathrm{~B})+\cos ^{2} \mathrm{C}$
$=1+\frac{1}{2} \cdot 2 \cos (\mathrm{~A}+\mathrm{B}) \cos (\mathrm{A}-\mathrm{B})+\cos ^{2} \mathrm{C}$
$=1+\cos (\pi-C) \cos (\mathrm{A}-\mathrm{B})+\cos ^{2} \mathrm{C}$
$=1-\cos \mathrm{C} \cos (\dot{\mathrm{A}}-\mathrm{B})+\cos ^{2} \mathrm{C}$
$=1-\cos \mathrm{C}[\cos (\mathrm{A}-\mathrm{B})-\cos \mathrm{C}]$
$=1-\cos C[\cos (A-B)-\cos \{\pi-(A+B)\}]$
$=1-\cos C[\cos (A-B)+\cos (A+B)]$
$=1-\cos C .2 \cos \mathrm{~A} \cos \mathrm{~B}$
$=1-2 \cos A \cos B \cos C=$ R.H.S.
4(d) $\cos ^{2} 2 \mathrm{~A}+\cos ^{2} 2 \mathrm{~B}+\cos ^{2} 2 \mathrm{C}=1+$ $2 \cos 2 \mathrm{~A} \cos 2 \mathrm{~B} \cos 2 \mathrm{C}$
প্রমাণ ः L.H.S. $=\cos ^{2} 2 \mathrm{~A}+\cos ^{2} 2 \mathrm{~B}+\cos ^{2} 2 \mathrm{C}$ $=\frac{1}{2}[1+\cos 4 \mathrm{~A}+1+\cos 4 \mathrm{~B}]+\cos ^{2} 2 \mathrm{C}$.
$=1+\frac{1}{2} .2 \cos 2(\mathrm{~A}+\mathrm{B}) \cos 2(\mathrm{~A}-\mathrm{B})+\cos ^{2} 2 \mathrm{C}$
$=1+\cos (2 \pi-2 C) \cos 2(A-B)+\cos ^{2} 2 C$
$=1+\cos 2 \mathrm{C}\{\cos 2(\mathrm{~A}-\mathrm{B})+\cos 2 \mathrm{C}\}$
$=1+\cos 2 \mathrm{C}[\cos 2(\mathrm{~A}-\mathrm{B})+$

$$
\cos \{2 \pi-2(\mathrm{~A}+\mathrm{B})\}]
$$

$=1+\cos 2 \mathrm{C}[\cos 2(\mathrm{~A}-\mathrm{B})+\cos 2(\mathrm{~A}+\mathrm{B})]$
$=1+\cos 2 \mathrm{C} \cdot 2 \cos 2 \mathrm{~A} \cos 2 \mathrm{~B}$
$=1+2 \cos 2 A \cos 2 B \cos 2 C=$ R.H.C.
(Proved)
4(e) $\sin ^{2} \frac{A}{2}+\sin ^{2} \frac{B}{2}+\sin ^{2} \frac{C}{2}=1-2$ $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$

$$
=1-\sin \frac{C}{2} \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})+\sin ^{2} \frac{C}{2}
$$

$$
=1-\sin \frac{C}{2}\left\{\cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})-\sin \frac{C}{2}\right\}
$$

$$
=1-\sin \frac{C}{2}\left[\cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})-\right.
$$

$$
\left.\sin \left\{\frac{\pi}{2}-\frac{1}{2}(\mathrm{~A}+\mathrm{B})\right\}\right]
$$

$$
=1-\sin \frac{C}{2}\left[\cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})-\cos \frac{1}{2}(\mathrm{~A}+\mathrm{B})\right]
$$

$$
=1-2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=\text { R.H.S. }(\text { Proved })
$$

$$
\text { 5. } \mathbf{A}+\mathbf{B}+\mathbf{C}=\frac{\pi}{2} \text { হলে প্রমাণ কর্ন শে, }
$$

(a) $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C+2 \sin A$ \sin B $\sin \mathrm{C}=1 \quad$ [ঢा., বা.'০১;মা., দি.'১২;'কু.'১8] প্রমাণ \& L.H.S. $=\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}$ $+2 \sin \mathrm{~A} \cos \mathrm{~B} \sin \mathrm{C}$

$$
\begin{aligned}
&=\frac{1}{2}(1-\cos 2 \mathrm{~A}+1-\cos 2 \mathrm{~B})+\sin ^{2} \mathrm{C} \\
&+2 \sin \mathrm{~A} \cos \mathrm{~B} \sin \mathrm{C}
\end{aligned}
$$

$=1-\frac{1}{2} .2 \cos (\mathrm{~A}+\mathrm{B}) \cos (\mathrm{A}-\mathrm{B})+\sin ^{2} \mathrm{C}$ $+2 \sin \mathrm{~A} \cos \mathrm{~B} \sin \mathrm{C}$
$=1-\cos \left(\frac{\pi}{2}-C\right) \cos (A-B)+\sin ^{2} C$
$+2 \sin \mathrm{~A} \cos \mathrm{~B} \sin \mathrm{C}$
$=1-\sin C \cos (A-B)+\sin ^{2} C+2 \sin A \sin B \sin C$ $=1-\sin C\{\cos (A-B)-\sin C\}$
$+2 \sin \mathrm{~A} \cos \mathrm{~B} \sin \mathrm{C}$

5(b) $\cot A+\cot B+\cot C=\cot A \cot B \cot C$ প্রমাণ ঃ দেওয়া আছে , $\mathrm{A}+\mathrm{B}+\mathrm{C}=\frac{\pi}{2}$
$\Rightarrow \mathrm{A}+\mathrm{B}=\frac{\pi}{2}-\mathrm{C}$
$\Rightarrow \cot (\mathrm{A}+\mathrm{B})=\cot \left(\frac{\pi}{2}-\mathrm{C}\right)$
$\Rightarrow \frac{\cot A \cot B-1}{\cot B+\cot A}=\tan C$
$\Rightarrow \frac{\cot A \cot B-1}{\cot B+\cot A}=\frac{1}{\cot C}$
$\Rightarrow \cot A+\cot B=\cot A \cot B \cot C+\cot C$
$\therefore \cot \mathrm{A}+\cot \mathrm{B}+\cot \mathrm{C}=\cot \mathrm{A} \cot \mathrm{B} \cot \mathrm{C}$
6. (a) $\mathrm{A}+\mathrm{B}+\mathrm{C}=2 \pi$ হ হেে প্রমাণ কর বে, $\cos ^{2} A+\cos ^{2} B+\cos ^{2} C-2 \cos A \cos B$ $\cos \mathrm{C}=1$
[fि.'os]
প্रমাণ ः L.H.S. $=\cos ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~B}+\cos ^{2} \mathrm{C}-$ $2 \cos A \cos B \cos C$
$=\frac{1}{2}(1+\cos 2 \mathrm{~A}+1+\cos 2 \mathrm{~B})+\cos ^{2} \mathrm{C}-$
$2 \cos A \cos B \cos C$
$=1+\frac{1}{2} .2 \cos (\mathrm{~A}+\mathrm{B}) \cos (\mathrm{A}-\mathrm{B})+\cos ^{2} \mathrm{C}$
$-2 \cos A \cos B \cos C$
$=1+\cos (2 \pi-\mathrm{C}) \cos (\mathrm{A}-\mathrm{B})+\cos ^{2} \mathrm{C}$
$-2 \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}$
$=1+\cos C\{\cos (A-B)+\cos C\}$
$-2 \cos A \cos B \cos C$
$=1+\cos \mathrm{C}[\cos (\mathrm{A}-\mathrm{B})+\cos \{2 \pi-(\mathrm{A}+\mathrm{B})\}$
$-2 \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}$

$$
\begin{aligned}
& \text { প্রমাণ : L.H.S. }=\sin ^{2} \frac{A}{2}+\sin ^{2} \frac{B}{2}+\sin ^{2} \frac{C}{2} \left\lvert\,=1-\sin C\left[\cos (\mathrm{~A}-\mathrm{B})-\sin \left\{\frac{\pi}{2}-(\mathrm{A}+\mathrm{B})\right\}\right]\right. \\
& =\frac{1}{2}(1-\cos \mathrm{A}+1-\cos \mathrm{B})+\sin ^{2} \frac{C}{2} \\
& =1-\frac{1}{2} \cdot 2 \cos \frac{1}{2}(\mathrm{~A}+\mathrm{B}) \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})+\sin ^{2} \frac{C}{2} \\
& =1-\cos \left(\frac{\pi}{2}-\frac{C}{2}\right) \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})+\sin ^{2} \frac{C}{2} \\
& +2 \sin \mathrm{~A} \cos \mathrm{~B} \sin \mathrm{C} \\
& =1-\sin \mathrm{C}[\cos (\mathrm{~A}-\mathrm{B})-\cos (\mathrm{A}+\mathrm{B})] \\
& +2 \sin A \cos B \sin C \\
& =1-\sin \mathrm{C} \cdot 2 \sin \mathrm{~A} \sin \mathrm{~B}+2 \sin \mathrm{~A} \cos \mathrm{~B} \sin \mathrm{C} \\
& =1-2 \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}+2 \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C} \\
& =1=\text { R.H.S. }
\end{aligned}
$$

$=1+\cos \mathrm{C}[\cos (\mathrm{A}-\mathrm{B})+\cos (\mathrm{A}+\mathrm{B})] \mid \Rightarrow \tan \mathrm{A} \tan \mathrm{C}+\tan \mathrm{B} \tan \mathrm{C}=1-\tan \mathrm{A} \tan \mathrm{B}$
$-2 \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}$
$=1+\cos \mathrm{C} \cdot 2 \cos \mathrm{~A} \cdot \cos \mathrm{~B}-2 \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}$
$=1-2 \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}+2 \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}$ $=1$
6(b) $\mathrm{A}+\mathrm{B}+\mathrm{C}=0$ হলে প্রমাণ কর যে, $\cos \mathrm{A}+$ $\cos B+\cos C=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}-1$ প्रभाণ : L.H.S. $=\cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C}$
$=2 \cos \frac{1}{2}(\mathrm{~A}+\mathrm{B}) \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})+2 \cos ^{2} \frac{1}{2} \mathrm{C}-1$ $=2 \cos \frac{1}{2}(-\mathrm{C}) \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})+2 \cos ^{2} \frac{1}{2} \mathrm{C}-1$ $=2 \cos \frac{1}{2} \mathrm{C}\left[\cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})+\right.$

$$
\left.\cos \frac{1}{2}\{-(\mathrm{A}+\mathrm{B})\}\right]-1
$$

$=2 \cos \frac{1}{2} \mathrm{C}\left[\cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})+\cos \frac{1}{2}(\mathrm{~A}+\mathrm{B})\right]-1$ $=2 \cos \frac{1}{2} \mathrm{C} \cdot 2 \cos \frac{1}{2} \mathrm{~A} \cdot \cos \frac{1}{2} \mathrm{~B}-1$
$=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}-1=$ R.H.S. (Proved)
6. (c) $A+B+C=(2 n+1) \frac{\pi}{2}$ হणে দেখাs বে, $\tan A \tan C+\boldsymbol{\operatorname { t a n }} C \tan A+\boldsymbol{\operatorname { t a n }} A \tan B=1$ द्याণ : দেওয়া आাে, $\mathrm{A}+\mathrm{B}+\mathrm{C}=(2 \mathrm{n}+1) \frac{\pi}{2}$
$\Rightarrow \mathrm{A}+\mathrm{B}=\left(\mathrm{n} \pi+\frac{\pi}{2}\right)-\mathrm{C}$
$\Rightarrow \tan (\mathrm{A}+\mathrm{B})=\tan \left\{\left(\mathrm{n} \pi+\frac{\pi}{2}\right)-\mathrm{C}\right\}$
$=\tan \left\{n \pi+\left(\frac{\pi}{2}-C\right)\right\}$
$=\tan \left(\frac{\pi}{2}-C\right)=\cot C$
$\Rightarrow \frac{\tan A+\tan B}{1-\tan A \tan B}=\frac{1}{\tan C}$
$\tan \mathrm{A} \tan \mathrm{C}+\tan \mathrm{C} \tan \mathrm{A}+\tan \mathrm{A} \tan \mathrm{B}=1$
7. (a) $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$ এব? $\cot \mathrm{A}+\cot \mathrm{B}+$ $\cot C=\sqrt{3}$ হলে দেখা৩ যে, $A=B=C$. [ব.’০৭]. প্রমাণ : দেওয়া আছে, $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$
$\Rightarrow \mathrm{A}+\mathrm{B}=\pi-\mathrm{C}$
$\Rightarrow \cot (\mathrm{A}+\mathrm{B})=\cot (\pi-\mathrm{C})$
$\Rightarrow \frac{\cot A \cot B-1}{\cot B+\cot A}=-\cot \mathrm{C}$.
$\Rightarrow \cot \mathrm{A} \cot \mathrm{B}-1=\cot \mathrm{B} \cot \mathrm{C}-\cot \mathrm{C} \cot \mathrm{A}$
$\Rightarrow \cot \mathrm{A} \cot \mathrm{B}+\cot \mathrm{B} \cot \mathrm{C}+\cot \mathrm{C} \cot \mathrm{A}=1$
এVन, $\cot \mathrm{A}+\cot \mathrm{B}+\cot \mathrm{C}=\sqrt{3}$
$\Rightarrow \cot ^{2} A+\cot ^{2} B+\cot ^{2} C+2$ ($\cot \mathrm{A} \cot \mathrm{B}$ $+\cot \mathrm{B} \cot \mathrm{C}+\cot \mathrm{C} \cot \mathrm{A})=3(\cot \mathrm{~A}$ $\cot \mathrm{B}+\cot \mathrm{B} \cot \mathrm{C}+\cot \mathrm{C} \cot \mathrm{A})$
$\Rightarrow \cot ^{2} A+\cot ^{2} B+\cot ^{2} C-(\cot \mathrm{A} \cot \mathrm{B}+$ $\cot \mathrm{B} \cot \mathrm{C}+\cot \mathrm{C} \cot \mathrm{A})=0$
$\Rightarrow \frac{1}{2}\left\{(\cot A-\cot B)^{2}+(\cot B-\cot C)^{2}\right.$
$\left.+(\cot C-\cot A)^{2}\right\}=0$
প্রত্যেকটি শূন্য না হলে তিনটি বর্গের সমষ্টি শূন্য হতে পারে না।
$\cot A-\cot B=0 \Rightarrow \cot \mathrm{~A}=\cot \mathrm{B}$
$\cot B-\cot C=0 \Rightarrow \cot \mathrm{~B}=\cot \mathrm{C}$
$\cot \mathrm{A}=\cot \mathrm{B}=\cot \mathrm{C}$
$\Rightarrow A=B=C$
7(b) $A+B+C=\pi$ এবং $\sin ^{2} A+\sin ^{2} B+$ $\sin ^{2} C=\sin B \sin C+\sin C \sin A+\sin A$ $\sin B$ হনে দেখাও শে, $\mathbf{A}=\mathbf{B}=\mathbf{C}$
প্রমাণ ঃ দেওয়া আছে, $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C=$ $\sin A \sin B+\sin B \sin C+\sin C \sin A$ $\Rightarrow \sin ^{2} A+\sin ^{2} B+\sin ^{2} C-(\sin A \sin B+$ $\sin \mathrm{B} \sin \mathrm{C}+\sin \mathrm{C} \sin \mathrm{A})=0$
$\Rightarrow \frac{1}{2}\left\{(\sin A-\sin B)^{2}+(\sin B-\sin C)^{2}\right.$

$$
\left.+(\sin C-\sin A)^{2}\right\}=0
$$

প্রত্যেকুটি শূন্য না হলে তিনটি বর্গার সমষ্টি শূন্য হতে পারে না।
$\sin A-\sin B=0 \Rightarrow \sin A=\sin B$
$\Rightarrow \sin A=\sin B=\sin (\pi-B)$
$\sin \mathrm{A}=\sin \mathrm{B}$ बथবा, $\sin \mathrm{A}=\sin (\pi-\mathrm{B}$
$\mathrm{A}=\mathrm{B}$ बথবा, $\mathrm{A}=\pi-\mathrm{B} \Rightarrow \mathrm{A}+\mathrm{B}=\pi$
কিন্নু $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$ বलে, $\mathrm{A}+\mathrm{B}=\pi$
হতে পারে না।
$A=B$ অनুরূপナাবে, $B=C$
$A=B=C \quad$ (Showed)
7.(c) $\boldsymbol{\operatorname { t a n }} A+\tan B+\boldsymbol{\operatorname { t a n }} C=\boldsymbol{\operatorname { t a n }} A \tan B$ $\tan \mathbf{C}$ হলে লেখাষ বে, $\mathbf{A}+\mathbf{B}+\mathbf{C}=\mathbf{n} \pi$, यथन $\mathrm{n} \in \mathbb{Z}$.

প্রমাণ 8 দেওয়া জাছে, $\tan \mathrm{A}+\tan \mathrm{B}+\tan \mathrm{C}$ $=\tan A \tan B \tan C$
$\Rightarrow \tan A+\tan B=-\tan C(1-\tan A \tan B)$
$\Rightarrow \frac{\tan A+\tan B}{1-\tan A \tan B}=-\tan C$
$\Rightarrow \tan (\mathrm{A}+\mathrm{B})=-\tan \mathrm{C}=\tan (\pi-\mathrm{C}) \equiv$
$\tan (2 \pi-C)=\tan (3 \pi-C)=\cdots$
$=\tan (\mathrm{n} \pi-\mathrm{C})$, মেখানে $\mathrm{n} \in \mathbb{Z}$.
$A+B=n \pi-C \Rightarrow A+B+C=n \pi$
(Showed)
অতিব্রিক্চ প্রশ্ন (সমাধানসহ)
$\mathbf{A}+\mathbf{B}+\mathbf{C}=\pi$ इफে প্রমাণ কন্ন यে,

1. $\cos \mathrm{A}+\cos \mathrm{B}-\cos \mathrm{C}=$

$$
4 \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}-1
$$

প্রমাণ \& L.H.S. $=\cos \mathrm{A}+\cos \mathrm{B}-\cos \mathrm{C}$ $=2 \cos \frac{1}{2}(\mathrm{~A}+\mathrm{B}) \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})-\left(1-2 \sin ^{2} \frac{\mathrm{C}}{2}\right)$ $=2 \cos \left(\frac{\pi}{2}-\frac{C}{2}\right) \cos \frac{1}{2}\left(\mathrm{~A}_{\bar{\pi}} \mathrm{B}\right)+2 \sin ^{2} \frac{C}{2}-1$ $=2 \sin \frac{C}{2} \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})+2 \sin ^{2} \frac{C}{2}-1$
$=2 \sin \frac{C}{2}\left\{\cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})+\sin \frac{C}{2}\right\}-1$
$=2 \sin \frac{C}{2}\left\{\cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})+\sin \left(\frac{\pi}{2}-\frac{A+B}{2}\right)\right\}-1$
$=2 \sin \frac{C}{2}\left\{\cos \left(\frac{A}{2}-\frac{B}{2}\right)+\cos \left(\frac{A}{2}+\frac{B}{2}\right)\right\}-1$
$=2 \sin \frac{C}{2}\left(2 \cos \frac{A}{2} \cos \frac{B}{2}\right)-1$
$=4 \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}-1=$ R.H.S. (Proved)
2.(a) $\sin (B+C-A)+\sin (C+A-B)+$ $\sin (A+B-C)=4 \sin A \sin B \sin C$
थ्रमान 8 L.H.S. $=\sin (B+C-A)+$ $\sin (C+A-B)+\sin (A+B-C)$
$=\sin (A+B+C-2 A)+\sin (A+B+C-2 B)$
$+\sin (\mathrm{A}+\mathrm{B}+\mathrm{C}-2 \mathrm{C})$
$=\sin (\pi-2 \mathrm{~A})+\sin (\pi-2 \mathrm{~B})+\sin (\pi-2 \mathrm{C})$
$=\sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}$
$=2 \sin \frac{1}{2}(2 \mathrm{~A}+2 \mathrm{~B}) \cos \frac{1}{2}(2 \mathrm{~A}-2 \mathrm{~B})+\cos 2 \mathrm{C}$
$=2 \sin (\mathrm{~A}+\mathrm{B}) \cos (\mathrm{A}-\mathrm{B})+2 \sin \mathrm{C} \cos \mathrm{C}$
$=2 \sin (\mathrm{~A}-\mathrm{C}) \cos (\mathrm{A}-\mathrm{B})+2 \sin \mathrm{C} \cos \mathrm{C}$
$=2 \sin \mathrm{C} \cos (\mathrm{A}-\mathrm{B})+2 \sin \mathrm{C} \cos \mathrm{C}$
$=2 \sin C\{\cos (A-B)+\cos C\}$
$=2 \sin \mathrm{C}\{\cos (\mathrm{A}-\mathrm{B})+\cos (\pi-\overline{\mathrm{A}+\mathrm{B}})\}$
$=2 \sin \mathrm{C}\{\cos (\mathrm{A}-\mathrm{B})-\cos (\mathrm{A}+\mathrm{B})\}$
$=2 \sin C \cdot 2 \sin A \sin B=4 \sin A \sin B \sin C$
= R.H.S. (Proved)
2. (b) $\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2}=$
$1+4 \sin \frac{B+C}{4} \sin \frac{C+A}{4} \sin \frac{A+B}{4}$
$=1+4 \sin \frac{\pi-A}{4} \sin \frac{\pi-B}{4} \sin \frac{\pi-C}{4}$
M.H.S. $=1+4 \sin \frac{B+C}{4} \sin \frac{C+A}{+} \sin \frac{A+B}{4}$
$=1+2.2 \sin \frac{B+C}{4} \sin \frac{C+A}{4} \sin \frac{A+B}{4}$
$=1+2\left[\cos \frac{B+C-C-A}{4}-\right.$

$$
\left.\cos \frac{B+C+C+A}{4}\right] \sin \frac{A+B}{4}
$$

$$
\begin{aligned}
&=1+2 \cos \frac{B-A}{4} \sin \frac{A+B}{4}- \\
& 2 \cos \frac{A+B+2 C}{4} \sin \frac{A+B}{4}
\end{aligned}
$$

$$
=1+\sin \left(\frac{A+B}{4}+\frac{B-A}{4}\right)+
$$

$$
\sin \left(\frac{A+B}{4}-\frac{B-A}{4}\right)-
$$

$$
\left\{\sin \left(\frac{A+B}{4}+\frac{A+B+2 C}{4}\right)+\right.
$$

$$
\left.\sin \left(\frac{A+B}{4}-\frac{A+B+2 C}{4}\right)\right\}
$$

$$
=1+\sin \frac{B}{2}+\sin \frac{A}{2}-
$$

$$
\sin \frac{A+B+C}{2}-\sin \left(-\frac{C}{2}\right)
$$

$=1+\sin \frac{A}{2}+\sin \frac{B}{2}-\sin \frac{\pi}{2}+\sin \frac{C}{2}$
$=1+\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2}-1$
$=\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2}=$ L.H.S.
Again, $1+4 \sin \frac{B+C}{4} \sin \frac{C+A}{4} \sin \frac{A+B}{4}$
$=1+4 \sin \frac{\pi-A}{4} \sin \frac{\pi-B}{4} \sin \frac{\pi-C}{4}=$ R.H.S.
(c) $\sin A \cos B \cos C+\sin B \cos C \cos A$
$+\sin C \cos A \cos B=\sin A \sin B \sin C$
प्रমাণ : L.H.S. $=\sin \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}+$
$\sin B \cos C \cos A+\sin C \cos A \cos B$
$=(\sin A \cos B+\sin B \cos A) \cos C+$ $\sin C \cos A \cos B$
$=\sin (A+B) \cos C+\sin C \cos A \cos B$
$=\sin (\pi-C) \cos \{\pi-(A+B)\}+$ $\sin C \cos A \cos B$
$=\sin C\{-\cos (A+B)+\cos A \cos B\}$
$=\sin C(-\cos A \cos B+\sin A \sin B+$ $\cos A \cos B)$
$=\sin A \sin B \sin C=$ R.H.S. (Proved)
5. $\tan 2 A+\tan 2 B+\tan 2 C=$
$\boldsymbol{\operatorname { t a n }} 2 \mathrm{~A} \boldsymbol{\operatorname { t a n }} 2 \mathrm{~B} \boldsymbol{\operatorname { t a n }} 2 \mathrm{C}$
প্রমাণ : দেওয়া জাছে , $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$
$\Rightarrow 2 \mathrm{~A}+2 \mathrm{~B}=2 \pi-2 \mathrm{C}$
$\Rightarrow \tan (2 \mathrm{~A}+2 \mathrm{~B})=\tan (2 \pi-2 \mathrm{C})$
$\Rightarrow \frac{\tan 2 A+\tan 2 B}{1-\tan 2 A+\tan 2 B}=-\tan 2 C$
$\Rightarrow \tan 2 \mathrm{~A}+\tan 2 \mathrm{~B}=-\tan 2 \mathrm{C}$ $+\tan 2 \mathrm{Atan} 2 \mathrm{Btan} 2 \mathrm{C}$
$\therefore \tan 2 \mathrm{~A}+\tan 2 \mathrm{~B}+\tan 2 \mathrm{C}$ $=\tan 2 \mathrm{~A} \tan 2 \mathrm{~B} \tan 2 \mathrm{C}$
4. $\cos ^{2} \frac{A}{2}+\cos ^{2} \frac{B}{2}+\cos ^{2} \frac{C}{2}$

$$
=2+2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}
$$

भ्रमाण : L.H.S. $=\cos ^{2} \frac{A}{2}+\cos ^{2} \frac{B}{2}+\cos ^{2} \frac{C}{2}$
$=\frac{1}{2}(1+\cos \mathrm{A}+1+\cos \mathrm{B})+\cos ^{2} \frac{C}{2}$
$=1+\frac{1}{2} \cdot 2 \cos \frac{1}{2}(\mathrm{~A}+\mathrm{B}) \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})+\cos ^{2} \frac{\mathrm{C}}{2}$
$=1+\cos \left(\frac{\pi}{2}-\frac{C}{2}\right) \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})+\cos ^{2} \frac{C}{2}$
$=1+\sin \frac{C}{2} \cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})+1-\sin ^{2} \frac{C}{2}$
$=2+\sin \frac{C}{2}\left\{\cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})-\sin \frac{C}{2}\right\}$
$=2+\sin \frac{C}{2}\left[\cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})-\right.$

$$
\left.\sin \left\{\frac{\pi}{2}-\frac{1}{2}(\mathrm{~A}+\mathrm{B})\right\}\right]
$$

$=2+\sin \frac{C}{2}\left[\cos \frac{1}{2}(\mathrm{~A}-\mathrm{B})-\cos \frac{1}{2}(\mathrm{~A}+\mathrm{B})\right]$
$=2+\sin \frac{C}{2} \cdot 2 \sin \frac{A}{2} \sin \frac{B}{2}$
$=2+2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=$ R.H.S (Proved)
5. $\mathbf{A}+\mathrm{B}+\mathrm{C}=(2 \mathrm{n}+1) \frac{\pi}{2}$ रলে দেখাs মে, $\sin 2 A+\sin 2 B+\sin 2 C= \pm 4 \cos A \cos B \cos C$ প্রমান $\therefore \sin \left\{(2 \mathrm{n}+1) \frac{\pi}{2}-\theta\right\}=\sin \left\{\mathrm{n} \pi+\left(\frac{\pi}{2}-\theta\right)\right\}$ $= \pm \sin \left(\frac{\pi}{2}-\theta\right)= \pm \cos \theta$
এখन, $\sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}$
$=2 \sin (\mathrm{~A}+\mathrm{B}) \cos (\mathrm{A}-\mathrm{B})+2 \sin \mathrm{C} \cos \mathrm{C}$
$=2 \sin \left\{(2 n+1) \frac{\pi}{2}-C\right\} \cos (A-B)+$
$2 \sin \left\{(2 n+1) \frac{\pi}{2}-(A+B)\right\} \cos C$
$=2(\pm \cos \mathrm{C}) \cos (\mathrm{A}-\mathrm{B})+$
$2\{ \pm \cos (A+B)\} \cos C$
$= \pm 2 \cos \mathrm{C}\{\cos (\mathrm{A}-\mathrm{B})+\cos (\mathrm{A}+\mathrm{B})\}$
$= \pm 2 \cos \mathrm{C}(2 \cos \mathrm{~A} \cos \mathrm{~B})$
$\pm 4 \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}$
$\sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}=$
$\pm 4 \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}$
6. $\cos ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~B}+\cos ^{2} \mathrm{C}+2 \cos \mathrm{~A} \cos$
$B \cos C=1$ হনে দেখাও শে, $A \pm B \pm C=(2 n$ $+1) \pi$, যেभানে n যে কোন অथড্ড সং্য্যা।

প্রমাণ : দেওয়া আাছে,

$$
\begin{aligned}
& \cos ^{2} A+\cos ^{2} B+\cos ^{2} C+ \\
& 2 \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}=1 \\
& \Rightarrow \frac{1}{2}(1+\cos 2 A+1+\cos 2 B)+\cos ^{2} \mathrm{C}+ \\
& \cos \mathrm{C} \cdot 2 \cos \mathrm{~A} \cos \mathrm{~B}=1 \\
& \Rightarrow 1+\frac{1}{2} \cdot 2 \cos (\mathrm{~A}+\mathrm{B}) \cos (\mathrm{A}-\mathrm{B})+ \\
& \cos ^{2} \mathrm{C}+\cos \mathrm{C}\{\cos (\mathrm{~A}+\mathrm{B})+ \\
&\cos (\mathrm{A}-\mathrm{B})\}=1 \\
& \Rightarrow \cos (\mathrm{~A}+\mathrm{B}) \cos (\mathrm{A}-\mathrm{B})+\cos ^{2} \mathrm{C}+ \\
& \cos \mathrm{C} \cos (\mathrm{~A}+\mathrm{B})+\cos (\mathrm{A}-\mathrm{B}) \cos \mathrm{C}=0 \\
& \Rightarrow \cos (\mathrm{~A}-\mathrm{B})\{\cos (\mathrm{A}+\mathrm{B})+\cos \mathrm{C}\}+ \\
& \cos \mathrm{C}\{\cos (\mathrm{~A}+\mathrm{B})+\cos \mathrm{C}\}=0 \\
& \Rightarrow\{\cos (\mathrm{~A}+\mathrm{B})+\cos \mathrm{C}\} \\
&\{\cos (\mathrm{A}-\mathrm{B})+\cos \mathrm{C}\}=0 \\
& \cos (\mathrm{~A} \pm \mathrm{B})+\cos \mathrm{C}=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \cos (\mathrm{A} \pm \mathrm{B})=-\cos \mathrm{C}=\cos (\pi \pm \mathrm{C})= \\
& \cos (3 \pi \pm \mathrm{C})= \\
& \quad=\cos \{(2 \mathrm{n}+1) \pi \pm \mathrm{C}\} \text {, মেখানে } \mathrm{n} \in \mathbb{Z} . \\
& \Rightarrow \mathrm{A} \pm \mathrm{B}=(2 \mathrm{n}+1) \pi \pm \mathrm{C} \\
& \Rightarrow \quad \mathrm{~A} \pm \mathrm{B} \pm \mathrm{C}=(2 \mathrm{n}+1) \pi \\
& \text { 7. } x+y+z=x y z \text { इबে প্রমাণ কর यে, } \\
& \frac{2 x}{1-x^{2}}+\frac{2 y}{1-y^{2}}+\frac{2 z}{1-z^{2}}= \\
& \frac{2 x}{1-x^{2}} \cdot \frac{2 y}{1-y^{2}} \cdot \frac{2 z}{1-z^{2}}
\end{aligned}
$$

মনে করি, $x=\tan \mathrm{A} \Rightarrow \mathrm{A}=\tan ^{-1} x$

$$
\begin{gathered}
y=\tan B \Rightarrow A=\tan ^{-1} y \\
z=\tan C \Rightarrow C=\tan ^{-1} z
\end{gathered}
$$

$\tan \mathrm{A}+\tan \mathrm{B}+\tan \mathrm{C}=\tan \mathrm{A} \tan \mathrm{B} \tan \mathrm{C}$
$\Rightarrow \tan A+\tan B=-\tan C(1-\tan A \tan B)$
$\Rightarrow \frac{\tan A+\tan B}{1-\tan A \tan B}=-\tan C$
$\Rightarrow \tan (\mathrm{A}+\mathrm{B})=\tan (\pi-\mathrm{C})$
$\Rightarrow \mathrm{A}+\mathrm{B}=\pi-\mathrm{C}$
$\Rightarrow 2 A+2 B=2 \pi-2 C$
$\Rightarrow \tan (2 \mathrm{~A}+2 \mathrm{~B})=\tan (2 \pi-2 \mathrm{C})$
$\Rightarrow \frac{\tan 2 A+\tan 2 B}{1+\tan 2 A \tan 2 B}=-\tan 2 C$
$\Rightarrow \tan 2 \mathrm{~A}+\tan 2 \mathrm{~B}=$
$\tan 2 C+\tan A \tan B \tan C$
$\Rightarrow \tan 2 \mathrm{~A}+\tan 2 \mathrm{~B}+\tan 2 \mathrm{C}=$ $\tan \mathrm{A} \tan \mathrm{B} \tan \mathrm{C}$
$\Rightarrow \frac{2 \tan A}{1-\tan ^{2} A}+\frac{2 \tan B}{1-\tan ^{2} B}+\frac{2 \tan C}{1-\tan ^{2} C}=$
$\frac{2 \tan A}{1-\tan ^{2} A} \frac{2 \tan B}{1-\tan ^{2} B} \frac{2 \tan C}{1-\tan ^{2} C}$
$\Rightarrow \frac{2 x}{1-x^{2}}+\frac{2 x}{1-x^{2}}+\frac{2 x}{1-x^{2}}=$

$$
\frac{2 x}{1-x^{2}} \frac{2 x}{1-x^{2}} \frac{2 x}{1-x^{2}}
$$

8. $x+y+z=x y z$ रচে প্রমাণ কর্গ যে,

$$
\frac{3 x-x^{3}}{1-3 x^{2}}+\frac{3 y-y^{3}}{1-3 y^{2}}+\frac{3 z-z^{3}}{1-3 z^{2}}
$$

প্রশ্নর্মিচ্ঠির্VII F

$$
=\frac{3 x-x^{3}}{1-3 x^{2}} \cdot \frac{3 y-y^{3}}{1-3 y^{2}} \cdot \frac{3 z-z^{3}}{1-3 z^{2}}
$$

থ্রমাণ $\mathrm{\square}$ মনে করি, $x=\tan \mathrm{A}, y=\tan \mathrm{B}, z=\tan \mathrm{C}$ $\tan \mathrm{A}+\tan \mathrm{B}+\tan \mathrm{C}=\tan \mathrm{A} \cdot \tan \mathrm{B}$ $\tan \mathrm{C}$
$[\because x+y+z=x y z]$
$\Rightarrow \tan \mathrm{A}+\tan \mathrm{B}=\tan \mathrm{C}(\tan \mathrm{A} \cdot \tan \mathrm{B}-1)$
$\Rightarrow \frac{\tan A+\tan B}{1-\tan A \tan B}=-\tan C$
$\Rightarrow \tan (\mathrm{A}+\mathrm{B})=\tan (\pi-\mathrm{C})$
$A+B=\pi-C$
$\Rightarrow 3 \mathrm{~A}+3 \mathrm{~B}+3 \mathrm{C}=3 \pi$
$\tan (3 A+3 B+3 C)=\tan 3 \pi$
$\Rightarrow \frac{\tan 3 \mathrm{~A}+\tan 3 \mathrm{~B}+\tan 3 \mathrm{C}-\tan 3 \mathrm{~A} \cdot \tan 3 \mathrm{~B} \cdot \tan 3 \mathrm{C}}{1-\tan 3 \mathrm{~A} \cdot \tan 3 \mathrm{~B}-\tan 3 \mathrm{~B} \cdot \tan 3 \mathrm{C}-\tan 3 \mathrm{C} \cdot \tan 3 \mathrm{~A}}$

$$
=0
$$

$\Rightarrow \tan 3 \mathrm{~A}+\tan 3 \mathrm{~B}+\tan 3 \mathrm{C}-$
$\tan 3 A \cdot \tan 3 B \cdot \tan 3 C=0$
$\Rightarrow \frac{3 \tan \mathrm{~A}-\tan ^{3} \mathrm{~A}}{1-3 \tan ^{2} \mathrm{~A}}+\frac{3 \tan \mathrm{~B}-\tan ^{3} \mathrm{~B}}{1-3 \tan ^{2} \mathrm{~B}}$
$+\frac{3 \tan \mathrm{C}-\tan ^{3} \mathrm{C}}{1-3 \tan ^{2} \mathrm{C}}$
$=\frac{3 \tan \mathrm{~A}-\tan ^{3} \mathrm{~A}}{1-3 \tan ^{2} \mathrm{~A}} \frac{3 \tan \mathrm{~A}-\tan ^{3} \mathrm{~A}}{1-3 \tan ^{2} \mathrm{~A}}$

$$
\frac{3 \tan \mathrm{~A}-\tan ^{3} \mathrm{~A}}{1-3 \tan ^{2} \mathrm{~A}}
$$

$$
\frac{3 x-x^{3}}{1-3 x^{2}}+\frac{3 y-y^{3}}{1-3 y^{2}}+\frac{3 z-z^{3}}{1-3 z^{2}}
$$

$$
=\frac{3 x-x^{3}}{1-3 x^{2}} \frac{3 y-y^{3}}{1-3 y^{2}} \frac{3 z-z^{3}}{1-3 z^{2}}
$$

(Proved)
9. $y z+z x+x y=1$ হলে প্রমাণ কর যে,

$$
\frac{\left(x^{2}-1\right)\left(y^{2}-1\right)}{x y}+\frac{\left(y^{2}-1\right)\left(z^{2}-1\right)}{y z}+
$$

$$
\frac{\left(z^{2}-1\right)\left(x^{2}-1\right)}{z x}=4
$$

প্রমাণ : মনে করি, $x=\cot \mathrm{A} \Rightarrow \mathrm{A}=\cot ^{-1} x$

$$
\begin{aligned}
& y=\cot B \Rightarrow A=\cot ^{-1} y \\
& z=\cot C \Rightarrow C=\cot ^{-1} z
\end{aligned}
$$

$\cot A \cot B+\cot B \cot C+$
$\cot C \cot A=1$
$\Rightarrow \cot \mathrm{A} \cot \mathrm{B}-1=-(\cot \mathrm{B}+\cot \mathrm{A}) \cot \mathrm{C}$
$\Rightarrow \frac{\cot A \cot B-1}{\cot A+\cot B}=-\cot C$
$\Rightarrow \cot (\mathrm{A}+\mathrm{B})=\cot (\pi-\mathrm{C})$
$\Rightarrow \mathrm{A}+\mathrm{B}=\pi-\mathrm{C}$
$\Rightarrow 2 \mathrm{~A}+2 \mathrm{~B}=2 \pi-2 \mathrm{C}$
$\Rightarrow \cot (2 \mathrm{~A}+2 \mathrm{~B})=\cot (2 \pi-2 \mathrm{C})$
$\Rightarrow \frac{\cot 2 A \cot 2 B-1}{\cot 2 B+\cot 2 A}=-\cot 2 C$
$\Rightarrow \cot 2 \mathrm{~A} \cot 2 \mathrm{~B}+\cot 2 \mathrm{~B} \cot 2 \mathrm{C}+$ $\cot 2 \mathrm{C} \cot 2 \mathrm{~A}=1$
$\Rightarrow \frac{\cot ^{2} A-1}{2 \cot A} \frac{\cot ^{2} B-1}{2 \cot B}+$
$\frac{\cot ^{2} B-1}{2 \cot B} \frac{\cot ^{2} C-1}{2 \cot C}+$ $\frac{\cot ^{2} C-1}{2 \cot C} \frac{\cot ^{2} A-1}{2 \cot A}=1$
$\frac{x^{2}-1}{2 x} \frac{y^{2}-1}{2 y}+\frac{y^{2}-1}{2 y} \cdot \frac{z^{2}-1}{2 z}+$ $\frac{z^{2}-1}{2 z} \frac{x^{2}-1}{2 x}=1$
$\therefore \frac{\left(x^{2}-1\right)\left(y^{2}-1\right)}{x y}+\frac{\left(y^{2}-1\right)\left(z^{2}-1\right)}{y z}+$

$$
\frac{\left.z^{2}-1\right)\left(x^{2}-1\right)}{z x}=4(\text { Showed })
$$

1. (a) Sol $^{n}: \sec \left(-135^{\circ}\right)=\sec 135^{\circ}$ $=\sec \left(180^{\circ}-45^{\circ}\right)=-\sec 45^{\circ}=-\sqrt{2}$
(b) $\operatorname{Sol}^{\mathrm{n}}: \sec \theta= \pm \sqrt{1+\tan ^{2} \theta}$
$= \pm \sqrt{1+\frac{25}{144}}= \pm \frac{13}{12} \quad \cos \theta= \pm \frac{12}{13}$
(c) $\mathrm{Sol}^{\mathrm{n}}: \cot 45^{\circ}+\cot \left(\pi+45^{\circ}\right)+\cot (2 \pi$ $\left.+45^{\circ}\right)+\cdots \cdots+\cot \left(9 \pi+45^{\circ}\right)$
$=(9+1) \cot 45^{\circ}=10 \cdot 1=10$
(d) $\mathrm{Sol}^{\mathrm{n}}: \mathrm{A}$ ও B প্রকক কোণ হালে, $\sin A=\cos B \quad$ Ans. A.
(e) Sol" : ক্যালকুলেটর্রের সাহায্যে, $\sin 15^{\circ}$ এবং $\frac{\sqrt{6}-\sqrt{2}}{4}$ जर आসन्न घान $=0.258 \therefore$ Ans. C.
(f) Sol $^{\mathrm{n}}: \cos 68^{\circ} 20^{\prime} \cos 8^{\circ} 20^{\prime}+\cos 81^{\circ}$ $40^{\prime} \cos 21^{\circ} 40^{\prime}=\cos \left(68^{\circ} 20^{\prime}-8^{\circ} 20\right)$
$=\cos 60^{\circ}=\frac{1}{2}$
(g) Sol ${ }^{\text {n }}: \frac{\cos 8^{0}+\sin 8^{0}}{\cos 8^{\circ}-\sin 8^{\circ}}=\frac{1+\tan 8^{0}}{1-\tan 8^{\circ}}$
$=\frac{\tan 45^{\circ}+\tan 8^{\circ}}{\tan 45^{\circ}-\tan 8^{\circ}}=\tan \left(45^{\circ}+8^{\circ}\right)=\tan 53^{\circ}$
(h) Sol ${ }^{\mathrm{n}}$: সবभूलि उथ্য সত্য। \therefore Ans. D.
(i) Sol $^{\mathrm{n}}: \tan \theta= \pm \frac{\sqrt{13^{2}-12^{2}}}{12}= \pm \frac{5}{12}$ Ans. A
(j) Sol ${ }^{\mathrm{n}}: \angle \mathrm{C}=180^{\circ}-\left(60^{\circ}+75^{\circ}\right)=45^{\circ}$

$$
\frac{a}{\sin A}=\frac{c}{\sin C} \Rightarrow \frac{a}{\sin 60^{\circ}}=\frac{\sqrt{6}}{\sin 45^{\circ}}
$$

$\Rightarrow a=\sqrt{6} \times \frac{\sqrt{3} / 2}{1 / \sqrt{2}}=\frac{6}{2}=3 \quad \therefore$ Ans. B
(k) $\mathrm{Sol}^{\mathrm{n}}: \theta=20^{\circ}$ ধরে প্রদত্ভ রাশি $=0.766$ এবং $\cos 2 \theta=0.766 . \therefore$ Ans. C
(l) Sol $^{\mathrm{n}}: \tan \theta= \pm \sqrt{\frac{1-\cos 2 \theta}{1+\cos 2 \theta}}$
$= \pm \sqrt{\frac{25-24}{25+24}}= \pm \frac{1}{7}$
(m) Sol" : $9^{2}+40^{2}=41^{2} \quad \therefore$ ब्रिডুজাি সমকেণী

$$
\mathrm{ABC} \text { बिজুজ্র প্রমাণ কর যে, }
$$

2. (a) $\frac{a-b}{a+b}=\tan \frac{A-B}{2} \tan \frac{C}{2}$
[ঢ.'০৩; य.'০১; রা.'১০]
প্রমাণ : L.H.S. $=\frac{a-b}{a+b}=\frac{2 R \sin A-2 R \sin B}{2 R \sin A+2 R \sin B}$
$=\frac{\sin A-\sin B}{\sin A+\sin B}=\frac{2 \sin \frac{1}{2}(A-B) \cos \frac{1}{2}(A+B)}{2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)}$
$=\tan \frac{A-B}{2} \cot \frac{A+B}{2}=\tan \frac{A-B}{2} \cot \left(\frac{\pi}{2}-\frac{C}{2}\right)$
$=\tan \frac{A-B}{2} \tan \frac{C}{2}=$ R.H.S. (Proved)
2(b) $\cos \frac{B-C}{2}=\frac{b+c}{a} \sin \frac{A}{2}$ [य.'ग०; ঢ..'১২]
প্রমাण : R.H.S. $=\frac{b+c}{a} \sin \frac{A}{2}$
$=\frac{2 R \sin B+2 R \sin C}{2 R \sin A} \sin \frac{A}{2}$
$=\frac{\sin B+\sin C}{\sin A} \sin \frac{A}{2}$
$=\frac{2 \sin \frac{B+C}{2} \cos \frac{B-C}{2}}{2 \sin \frac{A}{2} \cos \frac{A}{2}} \sin \frac{A}{2}$
$=\frac{\sin \left(\frac{\pi}{2}-\frac{A}{2}\right) \cos \frac{B-C}{2}}{\cos \frac{A}{2}}$
$=\frac{\cos \frac{A}{2} \cos \frac{B-C}{2}}{\cos \frac{A}{2}}=\cos \frac{B-C}{2}=$ L.H.S.
3. (a) $a^{2}\left(\cos ^{2} B-\cos ^{2} C\right)+b^{2}\left(\cos ^{2} C-\right.$ $\left.\cos ^{2} \mathrm{~A}\right)+c^{2}\left(\cos ^{2} \mathrm{~A}-\cos ^{2} \mathrm{~B}\right)=0$
[রা. '০৭, য. '০৭,’১২]
গ্রমাণ : L.H.S. $=\mathrm{a}^{2}\left(\cos ^{2} \mathrm{~B}-\cos ^{2} \mathrm{C}\right)+$ $\mathrm{b}^{2}\left(\cos ^{2} \mathrm{C}-\cos ^{2} \mathrm{~A}\right)+\mathrm{c}^{2}\left(\cos ^{2} \mathrm{~A}-\cos ^{2} \mathrm{~B}\right)$
$=4 R^{2} \sin ^{2} A\left(\cos ^{2} B-\cos ^{2} C\right)+$
$4 R^{2} \sin ^{2} B\left(\cos ^{2} C-\cos ^{2} A\right)+$
$4 R^{2} \sin ^{2} C\left(\cos ^{2} A-\cos ^{2} B\right)$
$=4 R^{2}\left(\sin ^{2} A \cos ^{2} \mathrm{~B}-\sin ^{2} \mathrm{~A} \cos ^{2} \mathrm{C}+\right.$
$\sin ^{2} B \cos ^{2} C-\cos ^{2} A \sin ^{2} B+$
$\left.\sin ^{2} C \cos ^{2} A-\cos ^{2} B \sin ^{2} C\right)$
$=4 R^{2}\left\{\sin ^{2} A\left(1-\sin ^{2} B\right)-\sin ^{2} A\left(1-\sin ^{2} C\right)\right.$
$-\sin ^{2} B\left(1-\sin ^{2} C\right)-\sin ^{2} B\left(1-\sin ^{2} A\right)+$
$\left.\sin ^{2} C\left(1-\sin ^{2} A\right)-\sin ^{2} C\left(1-\sin ^{2} B\right)\right\}$
$=4 R^{2}\left(\sin ^{2} A-\sin ^{2} A \sin ^{2} B-\sin ^{2} A+\sin ^{2} A\right.$
$\sin ^{2} C+\sin ^{2} B-\sin ^{2} B \sin ^{2} C-\sin ^{2} B$
$+\sin ^{2} \mathrm{~B} \sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{C}-\sin ^{2} \mathrm{C} \sin ^{2} \mathrm{~A}-$ $\left.\sin ^{2} C+\sin ^{2} C \sin ^{2} B\right)$
$=4 \mathrm{R}^{2} \times 0=0=$ R.H.S. (proved)
$3(b)(b+c) \cos A+(c+a) \cos B+(a+b)$
$\cos \mathbf{C}=a+b+c \quad$ [ব.'०৫ ; সি.'০৩,'০৭; রা.' '১৪]
क्रমाष : L.H.S. $=(b+c) \cos A+(c+a) \cos B$ $-(a+b) \cos C$
$=b \cos A+c \cos A+c \cos B+a \cos B+$ $a \cos C+b \cos C$
$=(c \cos B+b \cos C)+(c \cos A+a \cos C)$ $-(b \cos A+a \cos B)=a+b+c=$ R.H.S. [নোট $a=c \cos B+b \cos C$]
$3(c) a^{2}\left(\sin ^{2} B-\sin ^{2} C\right)+b^{2}\left(\sin ^{2} C-\sin ^{2} A\right)$ $+c^{2}\left(\sin ^{2} A-\sin ^{2} B\right)=0 \quad$ [ঢा.'০০, য.'০৪] প्रমाष : L.H.S. $=a^{2}\left(\sin ^{2} B-\sin ^{2} C\right)+$ $b^{2}\left(\sin ^{2} \mathrm{C}-\sin ^{2} \mathrm{~A}\right)+c^{2}\left(\sin ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~B}\right)$ $=(2 R \sin A)^{2}\left(\sin ^{2} B-\sin ^{2} C\right)+(2 R \sin B)^{2}$ $\left.\sin ^{2} \mathrm{C}-\sin ^{2} \mathrm{~A}\right)+(2 R \sin \mathrm{C})^{2}\left(\sin ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~B}\right)$ $=4 R^{2}\left\{\sin ^{2} A \sin ^{2} B-\sin ^{2} A \sin ^{2} C+\right.$ $\sin ^{2} B \sin ^{2} C-\sin ^{2} B \sin ^{2} A+$ $\left.\sin ^{2} C \sin ^{2} A-\sin ^{2} C \sin ^{2} B\right\}$
$=4 R^{2} \times 0=0=$ R.H.S. \quad (Proved)
4. (a) $a(\cos C-\cos B)=2(b-c) \cos ^{2} \frac{A}{2}$
[ग.'০৪; রা.'০@; मि.'১০; ঢা. '১১; Mি.'১২]
প্রমাণ : L.H.S. $=a(\cos C-\cos B)$

$$
\begin{aligned}
& =a \cos C-a \cos B \\
& =(b-c \cos A)-(c-b \cos A) \\
& =b-c+(b-c) \cos A
\end{aligned}
$$

$$
=(b-c)(1+\cos A)=(b-c) \cdot 2 \cos \frac{A}{2}
$$

$=2(\mathrm{~b}-\mathrm{c}) \cos ^{2} \frac{A}{2}=$ R.H.S.
$4(b) a(\cos B+\cos C)=2(b+c) \sin ^{2} \frac{A}{2}$
[ป.'০০; ষ.'০8; ঢা.'০৮; চ. '০১; Mি.'১8]
প্রমাণ : L.H.S. $=\mathrm{a}(\cos \mathrm{B}+\cos \mathrm{C})$
$=a \cos B+a \cos C$
$=c-b \cos A+b-c \cos A$
$=b+c-(b+c) \cos A=(b+c)\{1-\cos A)$
$=(b+c) 2 \cdot \sin ^{2} \frac{A}{2}$
$=2(b+c) \sin ^{2} \frac{A}{2}=$ R.H.S.
$4(c) b^{2} \sin 2 C+c^{2} \sin 2 B=4 \Delta$
প্রমাণ : L.H.S. $=b^{2} \sin 2 C+c^{2} \sin 2 B$
$=b^{2} .2 \sin C \cos C+c^{2} .2 \sin B \cos B$
$=2 \mathrm{~b}^{2} \frac{c}{2 R} \cos \mathrm{C}+2 \mathrm{c}^{2} \frac{b}{2 R} \cos \mathrm{~B}$
$=\frac{b c}{R}(\mathrm{~b} \cos \mathrm{C}+\mathrm{c} \cos \mathrm{B})=\frac{b c}{R} \mathrm{a}$
$=\frac{a b c}{R}=4 \Delta=$ R.H.S.
4(d) $a^{3} \cos (B-C)+b^{3} \cos (C-A)+$
$c^{3} \cos (A-B)=3 a b c$
[ब,'ov]
প্রমাণ : $\mathrm{a}^{3} \cos (\mathrm{~B}-\mathrm{C})$
$=a\left(a^{2} \cos B \cos C+a^{2} \sin B \sin C\right)$
$=a(a \cos B \cdot a \cos C+a \sin B \cdot a \sin C)$
$=a\{(c-b \cos A)(b-c \cos A)+b \sin A \cdot \sin A\}$

$$
\begin{aligned}
= & a\left\{b c-b^{2} \cos A-c^{2} \cos A+b c \cos ^{2} A\right. \\
& \left.+b c \sin ^{2} A\right\} \\
= & a\left\{b c-\left(b^{2}+c^{2}\right) \cos A+b c\right\} \\
= & 2 a b c-a\left(b^{2}+c^{2}\right) \cos A .
\end{aligned}
$$

অনুরূপভাবে आমরা পাই,

$b^{3} \cos (C-A)=2 a b c-b\left(c^{2}+a^{2}\right) \cos B$ a $c^{3} \cos (A-B)=2 a b c-c\left(a^{2}+b^{2}\right) \cos C$
এVन, L.H.S. $=a^{3} \cos (B-C)+b^{3} \cos (C-A)$ $+\mathrm{c}^{3} \cos (\mathrm{~A}-\mathrm{B})$
$=6 a b c-a\left(b^{2}+c^{2}\right) \cos A-b\left(c^{2}+a^{2}\right)$
$\operatorname{Cos} B-c\left(a^{2}+b^{2}\right) \cos C$
$=6 a b c-a b^{2} \cos A-c^{2} a \cos A-b c^{2} \cos B-$
$a^{2} b \cos B-c a^{2} \cos C-b^{2} c \cos C$
$=6 a b c-b c(c \cos B+b \cos C)-a b(a \cos B+$ $b \cos \mathrm{~A})-c a(c \cos \mathrm{~A}+\mathrm{a} \cos \mathrm{C})$
$=6 a b c-b c . a-a b . c-c a . b$
$=6 \mathrm{abc}-3 \mathrm{abc}=3 \mathrm{abc}=$ R.H.S. $\quad($ Proved $)$
5.(a) $a^{3} \sin (B-C)+b^{3} \sin (C-A)+$ $c^{3} \sin (A-B)=0$
প্রমাण : $a^{3} \sin (B-C)=a^{2} \cdot a \sin (B-C)$
$=a^{2} \cdot 2 R \sin A \sin (B-C)$
$=2 R a^{2} \sin \{\pi-(B+C)\} \sin (B-C)$
$=2 R a^{2} \sin (B+C) \sin (B-C)$
$=2 \mathrm{R} \cdot 4 \mathrm{R}^{2} \sin ^{2} \mathrm{~A}\left(\sin ^{2} \mathrm{~B}-\sin ^{2} \mathrm{C}\right)$
$=8 \mathrm{R}^{3} \sin ^{2} \mathrm{~A}\left(\sin ^{2} \mathrm{~B} \sin ^{2} \mathrm{C}\right)$

অनুরূণডাবে জামর়া পাই,

$b^{3} \sin (C-A)=8 R^{3} \sin ^{2} B\left(\sin ^{2} C-\sin ^{2} A\right)$ в
$c^{3} \sin (A-B)=8 R^{3} \sin ^{2} C\left(\sin ^{2} A-\sin ^{2} B\right)$
এथन , L.H.S. $=a^{3} \sin (B-C)+b^{3} \sin (C-A)$

$$
+c^{3} \sin (A-B)
$$

$=8 R^{3}\left(\sin ^{2} A \sin ^{2} B-\sin ^{2} A \sin ^{2} B+\sin ^{2} B \sin ^{2} C\right.$ $\left.-\sin ^{2} \mathrm{~A} \sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C} \sin ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~B} \sin ^{2} \mathrm{C}\right)$
$=8 \mathrm{R}^{3} \times 0=0=$ R.H.S (Proved).
5. (b) $\left(b^{2}-c^{2}\right) \cot \mathrm{A}+\left(c^{2}-a^{2}\right) \cot \mathrm{B}+$ $\left(a^{2}-b^{2}\right) \cot \mathrm{C}=0$
প্রমাণ : $\left(b^{2}-c^{2}\right) \cot A$

$$
=\left(b^{2}-\mathrm{c}^{2}\right) \frac{R}{a b c}\left(\mathrm{~b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}\right)
$$

$$
\begin{aligned}
& =\frac{R}{a b c}\left\{\left(\mathrm{~b}^{2}-\mathrm{c}^{2}\right)\left(\mathrm{b}^{2}+\mathrm{c}^{2}\right)-\mathrm{a}^{2}\left(\mathrm{~b}^{2}-\mathrm{c}^{2}\right)\right\} \\
& =\frac{R}{a b c}\left\{\mathrm{~b}^{4}-\mathrm{c}^{4}-\mathrm{a}^{2}\left(\mathrm{~b}^{2}-\mathrm{c}^{2}\right)\right\} \\
& \text { जनूสূ৭जाবে जামরা পাই , }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\mathrm{c}^{2}-\mathrm{a}^{2}\right) \cot \mathrm{B}=\frac{R}{a b c}\left\{\mathrm{c}^{4}-\mathrm{a}^{4}-\mathrm{b}^{2}\left(\mathrm{c}^{2}-\mathrm{a}^{2}\right)\right\} \\
& \left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \cot \mathrm{C}=\frac{R}{a b c}\left\{\mathrm{a}^{4}-\mathrm{b}^{4}-\mathrm{c}^{2}\left(\mathrm{a}^{4}-\mathrm{b}^{2}\right)\right\}
\end{aligned}
$$

$$
\text { L.H.S }=\left(b^{2}-c^{2}\right) \cot A+\left(c^{2}-a^{2}\right) \cot B
$$

$$
+\left(a^{2}-b^{2}\right) \cot C
$$

$$
=\frac{R}{a b c}\left\{b^{4}-c^{4}+c^{4}-a^{4}+a^{4}-b^{4}-\left(a^{2} b^{2}-c^{2} a^{2}\right.\right.
$$

$$
\left.\left.+b^{2} c^{2}-a^{2} b^{2}+c^{2} a^{2}-b^{2} c^{2}\right)\right\}
$$

$$
=\frac{R}{a b c:} \times 0=0=\text { R.H.S. (Proved) }
$$

$5(c)(a-b)^{2} \cos ^{2} \frac{C}{2}+(a+b)^{2} \sin ^{2} \frac{C}{2}=c^{2}$
[ซ.' 'os]
প্রমাণ:L.H.S. $=(a-b)^{2} \cos ^{2} \frac{C}{2}+(a+b)^{-2} \sin ^{2} \frac{C}{2}$
$=(a-b)^{2} \frac{1}{2}(1+\cos C)+(a+b)^{2} \frac{1}{2}(1-\cos C)$
$=\frac{1}{2}\left[\left\{(a-b)^{2}+(a+b)^{2}\right\}-\right.$
$\left\{(a+b)^{2}-(a-b)^{2}\right\} \cos C \mid$
$=\frac{1}{2} \cdot\left\{2\left(a^{2}+b^{2}\right)-4 a b \cos C\right\}$
$=a^{2}+b^{2}-2 a b \cos C=c^{2}=$ R.H.S. (Proved)
6. (a) $(\mathrm{s}-a) \tan \frac{A}{2}=(\mathrm{s}-b) \tan \frac{B}{2}=$ $(\mathrm{s}-\mathrm{c}) \cot \frac{C}{2}$
প্रমাণ : $(\mathrm{s}-\mathrm{a}) \tan \frac{\mathrm{A}}{2}$
$=(s-a) \frac{\sqrt{(s-b)(s-c)}}{\sqrt{s(s-a)}}$
$=\frac{\sqrt{s-a} \sqrt{s-a} \sqrt{(s-b)(s-c)}}{\sqrt{s(s-a)}}$

$$
\begin{aligned}
& =\frac{\sqrt{(s-a)(s-b)(s-c)}}{\sqrt{s}} \\
& (s-b) \tan \frac{B}{2}=(s-b) \frac{\sqrt{(s-c)(s-a)}}{\sqrt{s(s-b)}} \\
& =\frac{\sqrt{s-b} \sqrt{s-b} \sqrt{(s-c)(s-a)}}{\sqrt{s(s-b)}} \\
& =\frac{\sqrt{(s-a)(s-b)(s-c)}}{\sqrt{s}} \\
& (\mathrm{~s}-\mathrm{c}) \tan \frac{C}{2}=(\mathrm{s}-\mathrm{c}) \frac{\sqrt{(s-a)(s-b)}}{\sqrt{s(s-c)}} \\
& =\frac{\sqrt{s-c} \sqrt{s-c} \sqrt{(s-a)(s-b)}}{\sqrt{s(s-c)}} \\
& =\frac{\sqrt{(s-a)(s-b)(s-c)}}{\sqrt{s}}
\end{aligned}
$$

$\therefore(\mathrm{s}-\mathrm{a}) \tan \frac{A}{2}=(\mathrm{s}-\mathrm{b}) \tan \frac{B}{2}=(\mathrm{s}-\mathrm{c}) \cot \frac{C}{2}$
6(b) $\sin \mathrm{A}+\sin \mathrm{B}+\sin \mathrm{C}=\frac{s}{R}$

$$
\text { প্রমাণ :L.H.S. }=\sin A+\sin B+\sin C
$$

$$
=\frac{a}{2 R}+\frac{b}{2 R}+\frac{c}{2 R}=\frac{a+b+c}{2 R}
$$

$=\frac{2 s}{2 R}=\frac{s}{R}=$ R.H.S. (Proved)
$6(\mathrm{c}) a \sin \left(\frac{A}{2}+B\right)=(b+c) \sin \frac{A}{2}$
[दू.’o৩; সि.'০১,’১১; ঢা.’১০; চ.'১১]
ধ্याণ : R.H.S. $=(\mathrm{b}+\mathrm{c}) \sin \frac{A}{2}$
$=(2 R \sin \mathrm{~B}+2 \mathrm{R} \sin \mathrm{C}) \sin \frac{A}{2}$
$=2 \mathrm{R}(\sin \mathrm{B}+\sin \mathrm{C}) \sin \frac{A}{2}$
$=2 \mathrm{R} 2 \cdot \sin \frac{1}{2}(\mathrm{~B}+\mathrm{C}) \cos \frac{1}{2}(\mathrm{~B}-\mathrm{C}) \sin \frac{A}{2}$
$=4 \mathrm{R} \sin \left(\frac{\pi}{2}-\frac{A}{2}\right) \sin \left(\frac{\pi}{2}+\frac{B-C}{2}\right) \sin \frac{A}{2}$

$$
\begin{aligned}
& =2 \mathrm{R} \cdot 2 \cos \frac{A}{2} \sin \frac{A}{2} \sin \frac{\pi+B-C}{2} \\
& =2 \mathrm{R} \sin \mathrm{~A} \sin \frac{A+B+C+B-C}{2} \\
& =\mathrm{a} \sin \left(\frac{A}{2}+\mathrm{B}\right)=\text { R.H.S. (Proved) }
\end{aligned}
$$

7.(a) $a \sin B \sin C+b \sin C \sin A+$ $c \sin A \sin B=\frac{3 \Delta}{R}$
প्रमाण :L.H.S $=a \sin B \sin C+b \sin C \sin A+$ c $\sin A \sin B$
$=\mathrm{a} \cdot \frac{b}{2 R} \cdot \frac{c}{2 R}+\mathrm{b} \frac{c}{2 R} \frac{a}{2 R}+\mathrm{c} \frac{a}{2 R} \frac{b}{2 R}$
$=\frac{a b c}{4 R^{2}}+\frac{a b c}{4 R^{2}}+\frac{a b c}{4 R^{2}}=\frac{3 a b c}{4 R^{2}}$
$=\frac{a b c}{4 R} \cdot \frac{3}{R}=\Delta \cdot \frac{3}{R}=\frac{3 \Delta}{R}=$ R.H.S. (Proved)
7(b) $\frac{1}{a} \sin \mathrm{~A}+\frac{1}{b} \sin \mathrm{~B}+\frac{1}{c} \sin \mathrm{C}=\frac{6 \Delta}{a b c}$
[প.ए.\%. '১৫]
প्रमाण : L.H.S. $=\frac{1}{a} \sin \mathrm{~A}+\frac{1}{b} \sin \mathrm{~B}+\frac{1}{-} \sin \mathrm{C}$

$$
\begin{aligned}
& =\frac{1}{2 R}+\frac{1}{2 R}+\frac{1}{2 R}=\frac{3}{2 R} \\
& =\frac{3}{2} \cdot \frac{1}{R}=\frac{3}{2} \cdot \frac{4 \Delta}{a b c}=\frac{6 \Delta}{a b c}=\text { R.H.S. (Proved) }
\end{aligned}
$$

8.(a) $\frac{\cos B \cos C}{b c}+\frac{\cos C \cos A}{c a}+\frac{\cos A \cos B}{a b}$

$$
=\frac{1}{4 R^{2}}
$$

L.H.S. $=\frac{\cos B \cos C}{b c}+\frac{\cos C \cos A}{c a}+\frac{\cos A \cos B}{a b}$
$=\frac{a \cos B \cos C+b \cos C \cos A+c \cos A \cos B}{a b c}$
$=\frac{1}{a b c}\{2 R \sin A \cos B \cos C+$
$2 R \sin B \cos C \cos A+2 R \sin C \cos A \cos B\}$ $=\frac{2 R}{a b c}\{(\sin A \cos B+\sin B \cos A) \cos C$
$=\frac{2 R}{a b c}\{\sin (A+B) \cos C+\cos A \cos B \sin C\}$
$=\frac{2 R}{a b c}\{\sin (\pi-C) \cos C+\cos A \cos B \sin C\}$
$=\frac{2 R}{a b c}\{\sin C \sin \{\pi-(A+B)\}$
$+\cos A \cos B \sin C]$
$=\frac{2 R}{a b c} \sin \mathrm{C}\{-\cos (\mathrm{A}+\mathrm{B})+\cos \mathrm{A} \cos \mathrm{B}\}$
$=\frac{2 R}{a b c} \sin \mathrm{C}(-\cos \mathrm{A} \cos \mathrm{B}+\sin \mathrm{A} \sin \mathrm{B}+$ $\cos \mathrm{A} \cos \mathrm{B})$
$=\frac{2 R}{a b c} \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}=\frac{2 R}{a b c} \cdot \frac{a}{2 R} \cdot \frac{b}{2 R} \cdot \frac{c}{2 R}$
$=\frac{1}{4 R^{2}}=$ R.H.S. (Proved)
8(b) $\frac{b^{2}-c^{2}}{a^{2}} \sin 2 A+\frac{c^{2}-a^{2}}{b^{2}} \sin 2 B$

$$
+\frac{a^{2}-b^{2}}{c^{2}} \sin 2 C=0
$$

প্রমাণ : $\frac{b^{2}-c^{2}}{a^{2}} \sin 2 A$
$=\frac{4 R^{2}\left(\sin ^{2} B-\sin ^{2} C\right)}{4 R^{2} \sin ^{2} A} \cdot 2 \sin A \cos A$
$=2 \cos A \frac{\sin (B+C) \sin (B-C)}{\sin A}$
$=2 \cos \mathrm{~A} \frac{\sin (\pi-A) \sin (B-C)}{\sin A}$
$=\frac{2 \cos \{\pi-(B+C)\} \sin A \sin (B-C)}{\sin A}$
$=-2 \cos (B+C) \sin (B-C)$
$=-(\sin 2 B-\sin 2 C)=\sin 2 C-\sin 2 B$
অনুরূপভাবে আমরা পাই,

$$
\begin{aligned}
& \frac{c^{2}-a^{2}}{b^{2}} \sin 2 B=\sin 2 \mathrm{~A}-\sin 2 \mathrm{C} \\
& \frac{a^{2}-b^{2}}{c^{2}} \sin 2 C=\sin 2 \mathrm{~B}-\sin 2 \mathrm{~A}
\end{aligned}
$$

এशन L.H.S. $=\frac{b^{2}-c^{2}}{a^{2}} \sin 2 A$

$$
+\frac{c^{2}-a^{2}}{b^{2}} \sin 2 B+\frac{a^{2}-b^{2}}{c^{2}} \sin 2 C
$$

$=\sin 2 C-\sin 2 B+\sin 2 A-\sin 2 C$

$$
+\sin 2 B-\sin 2 A
$$

$=0=$ R.H.S. (Proved)
9. (a) $a^{4}+b^{4}+c^{4}=2 c^{2}\left(a^{2}+b^{2}\right)$ रলে দেখ যে, $\mathrm{C}=45^{\circ}$ षथবा 135° [य.'০৬,'১);

প্রমাণ : দেওয়া জাছে,

$$
\begin{aligned}
& a^{4}+b^{4}+c^{4}=2 c^{2}\left(a^{2}+b^{2}\right) \\
& \Rightarrow a^{4}+b^{4}+c^{4}-2 c^{2} a^{2}-2 b^{2} c^{2}=0 \\
& \Rightarrow\left(a^{2}\right)^{2}+\left(b^{2}\right)^{2}+\left(-c^{2}\right)^{2}+2 a^{2} b^{2}+ \\
& 2 b^{2}\left(-c^{2}\right)+2\left(-c^{2}\right) a^{2}=2 a^{2} b^{2} \\
& \Rightarrow\left(a^{2}+b^{2}-c^{2}\right)^{2}=2 a^{2} b^{2} \\
& \Rightarrow a^{2}+b^{2}-c^{2}= \pm \sqrt{2} a b \\
& \Rightarrow 2 a b \cos C= \pm \sqrt{2} a b \Rightarrow \cos C= \pm \frac{1}{\sqrt{2}} \\
& \cos C=\frac{1}{\sqrt{2}} \text { रबन , } \cos C=\cos 45^{\circ} \quad C=45^{\circ} \\
& \cos C=-\frac{1}{\sqrt{2}} \text { रबে , } \cos C=-\cos 45^{\circ} \\
& \Rightarrow \cos C=\cos \left(180^{\circ}-45^{\circ}\right)=\cos 135^{\circ} \\
& C=135^{\circ} \\
& C=45^{\circ} \text { पथा }, 135^{\circ} \text { (Showed) }
\end{aligned}
$$

$9(b) c^{4}-2\left(a^{2}+b^{2}\right) c^{2}+a^{4}+a^{2} b^{2}+$ $b^{4}=0$ एলে দেঋও যে, $\mathrm{C}=60^{\circ}$ অश্যা 120° সমাগান ঃ দেওয়া শাছে,

$$
\begin{aligned}
& c^{4}-2\left(a^{2}+b^{2}\right) c^{2}+a^{4}+a^{2} b^{2}+b^{4}=0 \\
\Rightarrow & c^{4}-2 a^{2} c^{2}-2 b^{2} c^{2}+a^{4}+a^{2} b^{2}+b^{4} \\
\Rightarrow & \left(a^{2}\right)^{2}+\left(b^{2}\right)^{2}+\left(-c^{2}\right)^{2}+2 a^{2} b^{2}-2 a^{2} c^{2} \\
& -2 b^{2} c^{2}=a^{2} b^{2} \\
\Rightarrow & \left(a^{2}+b^{2}-c^{2}\right)^{2}=4 a^{2} b^{2} \cdot \frac{1}{4} \\
\Rightarrow & \left(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right)^{2}=\frac{1}{4}
\end{aligned}
$$

$\Rightarrow \cos ^{2} \mathrm{C}=\frac{1}{4} \Rightarrow \cos \mathrm{C}= \pm \frac{1}{2}$

$$
\cos C=\frac{1}{2}=\cos 60^{\circ} \Rightarrow C=60^{\circ}
$$

इश्या , $\cos \mathrm{C}=-\frac{1}{2}=\cos 120^{\circ} \Rightarrow \mathrm{C}=120^{\circ}$ $\mathrm{C}=60^{\circ}$ जशया, 120°
10.(a) बোন खिडूष্बের বাঙ্গুলো 13,14 এবर 15

[ব.’০২; চ.’০৫; য.’০৭; ঢা. ’০১]
न्यাখান : মনে করি $a=13, b=14, c=15$
जধभরিসীমা $\mathrm{s}=\frac{1}{2}(\mathrm{a}+\mathrm{b}+\mathrm{c})$

$$
=\frac{1}{2}(13+14+15)=\frac{1}{2} \times 42=21
$$

ত্রিडूজ্রের কেত্রফন $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{21(21-13)(21-14)(21-15)} \\
& =\sqrt{21.8 .7 .6}=\sqrt{7056}=84 \text { (Ans.) }
\end{aligned}
$$

10(b) दোন ত্রিজুজ্রে বাস্গুুলো $\frac{y}{z}+\frac{z}{x}, \frac{z}{x}+\frac{x}{y}$ এবए
 সমाधान 8 मतन করি, $\mathrm{a}=\frac{y}{z}+\frac{z}{x}, \mathrm{~b}=\frac{z}{x}+\frac{x}{y}$ এবং $\mathrm{c}=\frac{x}{y}+\frac{y}{z}$

$$
\begin{aligned}
& \text { बद์রिगीगा } \mathrm{s}=\frac{1}{2}(\mathrm{a}+\mathrm{b}+\mathrm{c}) \\
& \quad=\frac{1}{2}\left(\frac{y}{z}+\frac{z}{x}+\frac{z}{x}+\frac{x}{y}+\frac{x}{y}+\frac{y}{z}\right) \\
& \quad=\frac{1}{2} \cdot 2\left(\frac{y}{z}+\frac{z}{x}+\frac{x}{y}\right)=\frac{y}{z}+\frac{z}{x}+\frac{x}{y} \\
& \mathrm{~s}-\mathrm{a}=\frac{y}{z}+\frac{z}{x}+\frac{x}{y}-\frac{y}{z}-\frac{z}{x}=\frac{x}{y} \\
& \mathrm{~s}-\mathrm{b}=\frac{y}{z}+\frac{z}{x}+\frac{x}{y}-\frac{z}{x}-\frac{x}{y}=\frac{y}{z}
\end{aligned}
$$

$$
\mathrm{s}-\mathrm{c}=\frac{y}{z}+\frac{z}{x}+\frac{x}{y}-\frac{x}{y}-\frac{y}{z}=\frac{z}{x}
$$

ত্রिडूजজর क্মেত্রফन $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{\left(\frac{y}{z}+\frac{z}{x}+\frac{x}{y}\right) \frac{x}{y} \frac{y}{z}} \\
& =\sqrt{\left(\frac{y}{z}+\frac{z}{x}+\frac{x}{y}\right)}
\end{aligned}
$$

10. (c) $(a+b+c)(b+c-a)=3 b c$ एल, \mathbf{A}

 সমাधাन : দেওয়া बাছে,
$(a+b+c)(b+c \cdots a)=3 b c$
$\Rightarrow(b+c)^{2}-a^{2}=3 b c$
$\Rightarrow b^{2}+2 b c+c^{2}-a^{2}=3 b c$
$\Rightarrow b^{2}+c^{2}-a^{2}=b c \Rightarrow 2 b c \cos A=h c$
$\Rightarrow \cos A=\frac{1}{2}=\cos 60^{\circ} \therefore A=60^{\circ}$ (Ans.)
 यে, $b+c=2 a \cos \frac{B-C}{2}$
[ঢ.,সি '১০; ব.'০১; রা.'০৯,'১৪]
প्रयां : $\mathrm{b}+\mathrm{c}=2 \mathrm{R}(\sin \mathrm{B}+\sin \mathrm{C})$

$$
\begin{aligned}
& 2 R \cdot 2 \sin \frac{1}{2}(B+C) \cos \frac{1}{2}(B-C \\
= & 4 R \sin \frac{1}{2}\left(120^{\circ}\right) \cos \frac{1}{2}(B-C) \\
& \left.\because A=60^{\circ} \quad \therefore B+C=120^{\circ}\right) \\
= & 4 R \cos 60^{\circ} \cos \frac{1}{2}(B-C) \\
= & 2.2 R \cos A \cos \frac{1}{2}(B-C) \\
= & 2 a \cos \frac{1}{2}(B-C)=\text { R.H.S. }
\end{aligned}
$$

(e) $\triangle \mathrm{ABC}$-a $\mathrm{C}=60^{\circ}$ रलে नেখাও 《ে $\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$

 প্রমাণ 8 দেওয়া জাছে, $A B C$ ज্রিডूজের বাহू a, b, c সমান্তর व্রেণী\ুুক্ট।

$$
\begin{aligned}
& \mathrm{a}-\mathrm{b}=\mathrm{b}-\mathrm{c} \\
\Rightarrow & (\mathrm{~s}-\mathrm{b})-(\mathrm{s}-\mathrm{a})=(\mathrm{s}-\mathrm{c})-(\mathrm{s}-\mathrm{b}) \\
\Rightarrow & \mathrm{s}(\mathrm{~s}-\mathrm{b})-\mathrm{s}(\mathrm{~s}-\mathrm{a})=\mathrm{s}(\mathrm{~s}-\mathrm{c})-\mathrm{s}(\mathrm{~s}-\mathrm{b}) \\
\Rightarrow & \frac{s(s-b)}{\Delta}-\frac{s(s-a)}{\Delta}=\frac{s(s-c)}{\Delta}-\frac{s(s-b)}{\Delta} \\
\Rightarrow & \cot \frac{B}{2}-\cot \frac{A}{2}=\cot \frac{C}{2}-\cot \frac{B}{2} \\
\Rightarrow & \cot \frac{A}{2}-\cot \frac{B}{2}=\cot \frac{B}{2}-\cot \frac{C}{2} \\
& \cot \frac{A}{2}, \cot \frac{B}{2} \text { उ } \cot \frac{C}{2} \text { সমाब्रत्र ब्विণोपूक्ठ। }
\end{aligned}
$$

11(b) a^{2}, b^{2} अ c^{2} সমাল্তর প্রামन ভूক্ত হলে প্রমাণ बন্ন बে, $\cot A, \cot B$ B $\cot C$ সমাশ্তর্র थ थामन स्रूठ।

$$
\begin{aligned}
& \mathrm{a}^{2}-\mathrm{b}^{2}=\mathrm{b}^{2}-\mathrm{c}^{2} \Rightarrow 2 \mathrm{a}^{2}-2 \mathrm{~b}^{2}=2 \mathrm{~b}^{2}-2 \mathrm{c}^{2} \\
\Rightarrow & 2 \mathrm{~b}^{2}-2 \mathrm{a}^{2}=2 \mathrm{c}^{2}-2 \mathrm{~b}^{2} \\
\Rightarrow & \mathrm{~b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}-\mathrm{c}^{2}-\mathrm{a}^{2}+\mathrm{b}^{2} \\
& =\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}-\mathrm{a}^{2}-\mathrm{b}^{2}+\mathrm{c}^{2} \\
\Rightarrow & \frac{R}{a b c}\left\{\left(\mathrm{~b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}\right)-\left(\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}\right)\right\} \\
& =\frac{R}{a b c}\left\{\left(\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}\right)-\left(\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}\right)\right\} \\
\Rightarrow & \frac{R\left(b^{2}+c^{2}-a^{2}\right)}{a b c}-\frac{R\left(c^{2}+a^{2}-b^{2}\right)}{a b c} \\
& =\frac{R\left(c^{2}+a^{2}-b^{2}\right)}{a b c}-\frac{R\left(a^{2}+b^{2}-c^{2}\right)}{a b c}
\end{aligned}
$$

$\Rightarrow \cot A-\cot B=\cot B-\cot C$
$\therefore \cot \mathrm{A}, \cot \mathrm{B}$ ও $\cot \mathrm{C}$ সমাब্তরা ल্রেণীডুক্ত।
11(c) কোন ত্রিডুজ্জের বাঙ্গুলো m,n, $\sqrt{m^{2}+m n+n^{2}}$ হলে, বৃহত্য কোণটি নিণ্য় কর। সমाधान $8 \mathrm{~m}, \mathrm{n}$ এदर $\sqrt{m^{2}+m n+n^{2}}$ এदढि ত্রিজूজ্রের বাহू বলে, প্রত্যেকেই ধনাতাক এবংm ও n

এর যেরেন্ ধनাত্মক মানের জন্য ,

$$
\sqrt{m^{2}+m n+n^{2}}>\mathrm{m} \text { बा, } \mathrm{n}
$$

$$
\begin{aligned}
\cos \mathrm{A} & =\frac{m^{2}+n^{2}-\left(\sqrt{m^{2}+m n+n^{2}}\right)^{2}}{2 m n} \\
& =\frac{m^{2}+n^{2}-m^{2}-m n-n^{2}}{2 m n} \\
& =-\frac{1}{2}=\cos 120^{\circ} \therefore \mathrm{A}=120^{\circ}
\end{aligned}
$$

অতএব ত্রিজूজটি স্শূఠ<োণী।
11. (d) דোন ত্রিতूজ্জে বাছুুুলো $2 x+3, x^{2}+3 x+3$,$x^{2}+2 x$ रলে , বৃহত্তম কোধটি निর্ষ্য় কর ।
সমাখान : $2 x+3, x^{2}+3 x+3$ जब? $x^{2}+2 x$

$$
\begin{aligned}
& 2 x+3>0 \Rightarrow x>-\frac{3}{2}, \\
& x^{2}+3 x+3>0 \Rightarrow\left(x+\frac{3}{2}\right)^{2}+3-\frac{9}{4}>0
\end{aligned}
$$

$\Rightarrow\left(x+\frac{3}{2}\right)^{2}+\frac{3}{4}>0 \quad$ या $x-এ$ जর नकल दाग्তय মান্রে জন্য সण্য এব?

$$
x^{2}+2 x>0 \Rightarrow x(x+2)>0
$$

$x>0$ जथবा $x<-2$

$\therefore x>0$ - এর সকঅ বাস্তব মানের জন্য $2 x+3$
 $x^{2}+3 x+3>2 x+3, x^{2}+3 x+3>x^{2}+2 x$.
$\therefore x^{2}+3 x+3$ বৃহब্ বাহू । বৃহ্তম কোণ A रলে, $\left(x^{2}+3 x+3\right)^{2}=(2 x+3)^{2}+\left(x^{2}+2 x\right)^{2}-$ $2(2 x+3)\left(x^{2}+2 x\right) \cos \mathrm{A}$
$\Rightarrow x^{4}+9 x^{2}+9+6 x^{3}+18 x+6 x^{2}=4 x$
${ }^{2}+9 \quad 12 x+x^{4}+4 x^{2}+4 x^{3}$

$$
-2\left(2 x^{3}+7 x^{2}+6 x\right) \cos \mathrm{A}
$$

$\Rightarrow 2 .+7 x^{2}+6 x=$

$$
-2\left(2 x^{3}+7 x^{2}+6 x\right) \cos \mathrm{A}
$$

$\Rightarrow \cos \mathrm{A}=-\frac{1}{2}=\cos 120^{\circ} \quad \mathrm{A}=120^{\circ}$
11(e) यमि কোন ত্রিডুख্েের যে কোন দুইটি কোণের
কোসাইন তাদের বিभরীত বাহুর সণ্ধে বাস্ত তেদে অল্বিত হয়, उবে দেখাও যে, ত্রিডূজটি সমদিবাহू জथবা সমকোণী। প্রমাण 8 মনে করি, $\triangle \mathrm{ABC}-এ$,

$$
\frac{\cos A}{\cos B}=\frac{b}{a} \Rightarrow \frac{\cos A}{\cos B}=\frac{2 R \sin B}{2 R \sin A}
$$

$\Rightarrow \cos A \sin A=\cos B \sin B$
$\Rightarrow 2 \sin \mathrm{~A} \cos \mathrm{~A}=2 \sin \mathrm{~B} \cos \mathrm{~B}$
$\Rightarrow \sin 2 A=\sin 2 B$
$\Rightarrow \sin 2 \mathrm{~A}-\sin 2 \mathrm{~B}=0$
$\Rightarrow 2 \sin (\mathrm{~A}-\mathrm{B}) \cos (\mathrm{A}+\mathrm{B})=0$
$\Rightarrow \sin (\mathrm{A}-\mathrm{B}) \cos (\mathrm{A}+\mathrm{B})=0$
$\sin (A-B)=0 \Rightarrow \sin (A-B)=\sin 0$
$A-B=0 \Rightarrow A=B$
बथया, $\cos (\mathrm{A}+\mathrm{B})=0$
$\Rightarrow \cos (A+B)=\cos 90^{\circ} \Rightarrow A+B=90^{\circ}$
$\mathrm{C}=90^{\circ}$
बতএব, ত্রিভूজটি সমবাহू অথবা সমকোণী।

 निर्षश्र कर।

প্রমাণ 8 এখানে, বৃशত্তম বাহू $=7$.
\therefore বৃহষ্জম কোণঢি A হলে জামরা পাই,

$$
\begin{aligned}
\cos \mathrm{A} & =\frac{3^{2}+5^{2}-7^{2}}{2.3 .5}=\frac{9+25-49}{30} \\
& =\frac{34-49}{30}=\frac{-15}{30}=-\frac{1}{2}=\cos 120^{\circ}
\end{aligned}
$$

$A=120^{\circ}$, या স্মূलকোণ।
जতএব, ত্রিডূজটি একটি স্মূनকোণী এবং স্মৃণকোণটির मान 120°
12.(a) $\triangle \mathrm{ABC}-এ$ यमि $\mathrm{A}=75^{\circ}, \mathrm{B}=45^{\circ}$ হয়, তবে সেখাও যে, $c: b=\sqrt{3}: \sqrt{2}$ [ব.’०१] ধ্রমা \& দেওয়া জাছে, $\triangle A B C-\Theta \quad A=75^{\circ}, B=45^{\circ}$ $\therefore C=180^{\circ}-\left(75^{\circ}+45^{\circ}\right)=180^{\circ}-120^{\circ}=60^{\circ}$

ब्रिभ্রুজ্রের সাইন সূত্র रতে পাই, $\frac{b}{\sin B}=\frac{c}{\sin C}$

$$
\begin{aligned}
& \Rightarrow \frac{b}{\sin 45^{\circ}}=\frac{c}{\sin 60^{\circ}} \Rightarrow \frac{b}{\frac{1}{\sqrt{2}}}=\frac{c}{\frac{\sqrt{3}}{2}} \\
& c: a=\frac{\sqrt{3}}{2}: \frac{1}{\sqrt{2}}=\sqrt{3}: \sqrt{2}
\end{aligned}
$$

12. (b) $\triangle \mathrm{ABC}$ - - यमि $\mathrm{A}=45^{\circ}, \mathrm{B}=75^{\circ}$ इয় , एব্বে দেখাও বে, $a+\sqrt{2} c=2 b$.
প्रमाण ঃ तদওয়া জাহ, $\triangle A B C-\Omega \quad A=45^{\circ} . B=75^{\circ}$ $\therefore C=180^{\circ}-\left(45^{\circ}+75^{\circ}\right)=180^{\circ}-120^{\circ}=60^{\circ}$
ত্রিজ্রেজ্রের সাইন সূত্র হতে পাই,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

$\Rightarrow \frac{a}{\sin 45^{\circ}}=\frac{b}{\sin 75^{\circ}}=\frac{c}{\sin 60^{\circ}}$
এขन, $\sin 75^{\circ}=\sin \left(45^{\circ}+30^{\circ}\right)$
$=\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}$

$$
\begin{aligned}
= & \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{2}=\frac{\sqrt{3}+1}{2 \sqrt{2}} \\
& \frac{a}{\frac{1}{\sqrt{2}}}=\frac{b}{\frac{1+\sqrt{3}}{2 \sqrt{2}}}=\frac{c}{\frac{\sqrt{3}}{2}}=k \text { (ধরি) } \\
& a=\frac{k}{\sqrt{2}}, b=\frac{k(1+\sqrt{3})}{2 \sqrt{2}}, c=\frac{\sqrt{3}}{2} k
\end{aligned}
$$

এখन, $a+\sqrt{2} c=\frac{k}{\sqrt{2}}+\sqrt{2} \cdot \frac{\sqrt{3}}{2} k=\frac{1+\sqrt{3}}{\sqrt{2}} k$

$$
=2 \cdot \frac{1+\sqrt{3}}{2 \sqrt{2}} k=2 b
$$

$a+\sqrt{2} c=2 b$
12(c) $a=2 b$ बবर $\mathrm{A}=3 \mathrm{~B}$ इलে, ত্রিডুজ্রের কোণ্র্য় নিষয় কর।

সমাধান 8 দেওয়া आাছ, $a=2 b$
এヌং $\mathrm{A}=3 \mathrm{~B}$
(1) इতে পাই, $2 \mathrm{R} \sin \mathrm{A}=2.2 \mathrm{R} \sin \mathrm{B}$
$\Rightarrow \sin A=2 \sin B \Rightarrow \sin 3 B=2 \sin B$; (2) घारा।
$\Rightarrow 3 \sin B-4 \sin ^{3} B=2 \sin B$
$\Rightarrow 4 \sin ^{3} B-\sin B=0 \Rightarrow \sin B\left(4 \sin ^{2} B-1\right)=0$
$\Rightarrow \sin B(2 \sin B+1)(2 \sin B-1)=0$
$\sin B=0$ शलে，$B=0$
$2 \sin B+1=0$ रूে， $\sin B=-\frac{1}{2}$
$\mathrm{B}=150^{\circ}$ जবश $\mathrm{A}=3 \mathrm{~B}=450^{\circ}$
কिन्गू ABC त्रिडूজ্জের बन্য， $\mathrm{B}=0$ এবং $\mathrm{A}=450^{\circ}$ अख्यद नয় ।
$\sin B \neq 0$ बरह $\sin B \neq-1 / 2$ ．
$\sin B=\frac{1}{2}=\sin 30^{\circ} \Rightarrow B=30^{\circ}$
$\mathrm{A}=3 \mathrm{~B}=3 \times 30^{\circ}=90^{\circ}$ जবং
$\mathrm{C}=180^{\circ}-\left(90^{\circ}+30^{\circ}\right)$
$=180^{\circ}-120^{\circ}=60^{\circ}$
ত্রিছ্রেজর কোণ তিন্ট $30^{\circ}, 60^{\circ}, 90^{\circ}$
13．（a）$\triangle \mathrm{ABC}-\Omega, a=2, b=\sqrt{3}+1$ এदং
 कर।
［প্র．ড．প’০২］
সমাধান \＆দেওয়া जाएে；$\triangle A B C-এ a=2, b=\sqrt{3}+1$ এবং $C=60^{\circ}$ ．ब্রিডূজের্ন সাইন সূত্র হতে পাই， $c^{2}=a^{2}+b^{2}-2 a b \cos C$
$=2^{2}+(\sqrt{3}+1)^{2}-2 \cdot 2 \cdot(\sqrt{3}+1) \cos 60^{\circ}$
$=4+3+2 \sqrt{3}+1-4(\sqrt{3}+1) / 2$
$=8+2 \sqrt{3}-2 \sqrt{3}-2=6 \quad c=\sqrt{6}$
ত্রিভুজ্রের সাইन সূত্র হরে পাই，$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$\Rightarrow \frac{2}{\sin A}=\frac{\sqrt{3}+1}{\sin B}=\frac{\sqrt{6}}{\sin 60^{\circ}}$
$\Rightarrow \frac{2}{\sin \mathrm{~A}}=\frac{\sqrt{3}+1}{\sin \mathrm{~B}}=\frac{\sqrt{3} \sqrt{2}}{\sqrt{3} / 2}=2 \sqrt{2}$
$\sin A=\frac{2}{2 \sqrt{2}}=\frac{1}{\sqrt{2}}=\sin 45^{\circ} \Rightarrow A=45^{\circ}$
$\sin B=\frac{\sqrt{3}+1}{2 \sqrt{2}}=\sin 75^{\circ} \Rightarrow B=75^{\circ}$
ত্রিডুর্জটির অপর বাহ্ু $c=\sqrt{6}$ এবং কোণদ্য $A=45^{\circ}$ ఆ $B=75^{\circ}$

13（b）$\triangle \mathrm{ABC}-\mathrm{A}, \mathrm{A}=45^{\circ}, \mathrm{C}=105^{\circ}$ बयर
 जमाधानः रुওय्या आएে，$\triangle A B C-\Theta \quad A=45^{\circ}$ $C=105^{\circ}$ ज オ $c=\sqrt{3}+1$ ．
$\therefore B=180^{\circ}-\left(45^{\circ}+105^{\circ}\right)=180^{\circ}-150^{\prime \prime}=30^{\circ}$ व्रिड्ञজের সাইন সूত্র হতে পাই，$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$\Rightarrow \frac{a}{\sin 45^{\circ}}=\frac{b}{\sin 30^{\circ}}=\frac{\sqrt{3}+1}{\sin 105^{\circ}}$
बभन ， $\sin 105^{\circ}=\sin \left(60^{\circ}+45^{\circ}\right)$
$=\sin 60^{\circ} \cos 45^{\circ}+\cos 60^{\circ} \sin 45^{\circ}$
$=\frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}}+\frac{1}{2} \cdot \frac{1}{\sqrt{2}}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$
$\frac{a}{\frac{1}{\sqrt{2}}}=\frac{b}{\frac{1}{2}}=\frac{\sqrt{3}+1}{\frac{\sqrt{3}+1}{2 \sqrt{2}}} \Rightarrow \sqrt{2} a=2 b=2 \sqrt{2}$
$\Rightarrow a=2, b=\sqrt{2}$
ত্রিভুজ্জটির অপর কোণ 30° এবং বাহুর্র্য $2 \circlearrowleft \sqrt{2}$
13（c）$\triangle \mathrm{ABC}-\mathrm{A}, \mathrm{B}=30^{\circ}, \mathrm{C}=45^{\circ}$ ©
 किख्वस्व $\frac{1}{2}(\sqrt{3}+1)$ ব升 ハেमि．।
প্রমাণ ：চদওয়া জাছে，$\triangle A B C-এ \quad B=30^{\circ}, C=45^{\circ}$ जষং $a=(\sqrt{3}+1)$ সে．মি．
$\therefore A=180^{\circ}-\left(30^{\circ}+45^{\circ}\right)=180^{\circ}-75^{\circ}=105^{\circ}$
ত্রিঙ্জের গাইন সূত হন্ে পাই，$\frac{a}{\sin A}=\frac{c}{\sin C}$
$\Rightarrow \frac{a}{\sin 105^{\circ}}=\frac{c}{\sin 45^{\circ}}$
बখन, $\sin 105^{\circ}=\sin \left(60^{\circ}+45^{\circ}\right)$

$$
=\sin 60^{\circ} \cos 45^{\circ}+\cos 60^{\circ} \sin 45^{\circ}
$$

$=\frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}}+\frac{1}{2} \cdot \frac{1}{\sqrt{2}}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$
$\frac{\sqrt{3}+1}{\frac{\sqrt{3}+1}{2 \sqrt{2}}}=\frac{c}{\frac{1}{\sqrt{2}}} \Rightarrow 2 \sqrt{2}=\sqrt{2} c \Rightarrow c=2$
$A B C$ विडूজজের কেত্র্র্ন $=\frac{1}{2} a c \sin B$ वर्গ একক $=\frac{1}{2}(\sqrt{3}+1) \times 2 \sin 30^{\circ}$ বর্গ সে. মি. $=-\frac{1}{2}(\sqrt{3}+1) \times 2 \times \frac{1}{2}$ বর্গ সে. মि. $=\frac{1}{2}(\sqrt{3}+1)$ বর্গ সে.মি.
14. ABC बिडूজে A, B उ C কোলেন্র বিপন্রীত বাছ

(a) $\tan \mathrm{A}=\tan \mathrm{B}+\tan \mathrm{C}$, यथन $\cos \mathrm{A}=\cos \mathrm{B}$ $\cos C$. [य.'০৩,'০৯; ব.,কু.,मि.'১৩; बা.'১৪]
(b) $\cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C}=1+4$ $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
[ঢ.'১২;жু.'০৬; ব.'১২]
(c) $\cos \mathrm{A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$ [ব.'১১; य.'১১,’১8;

চ.'১০; দি.'১১; রা.'১৩; মা.'১০,'১২,’১৪]
অথবা, প্রত্যেক বাহूন ל্দর্য্য তার বিপর্木ীত কোণের সাইন (sine)-এর সমানুপাতিক।
[ঢা.’১৩ ; ব.'১০,'১৪; রা.'১২ ; কু.'১০; য.'০৮;
দি.'১০,’১৩; চ.'১৪]
সयাধান : (a) প্রশ্নমালা VII B এন্ন উদাহরণ 7 দ্র্ট্য়।
(b) ब্ৰশ্নমাणा VII F এর্ন উদাহत्रণ 2 দ্রళ্যব।
(c) बশ্মমালা VII G এন্গ কোসাইন সুত্র ও সাইন সুত্র प्रষ্বय।
15. भালেন্ন চিত্রে, ABC একটি বিভুজ।
(a) ত্রিভুজणিন বাহ তিनটি $a=3$ একক, $\mathrm{b}=5$ একক ও $\mathrm{c}=7$ একক হলে, এর পরিব্যাসার্ধ নির্ণয় কর।

(b) $\mathrm{A}=\frac{\pi}{16}$ रলে. প্রমাণ কর বে,
$2 \sin \mathrm{~A}=\sqrt{2-\sqrt{2+\sqrt{2}}}$
[य. '১৪; কু.'০৩; ব. '১০,’১৪; র্রা.’২,'১১; চ.'১৪]
(c) $\cos A=\sin B-\cos C$ रूে দেখাও বে, ত্রিজুজটি সমকোণী । [ঝૂ.'১৩ ;, ৰা.'১২; চ.'০৮ ;

য.'০৯,'১২,'১৪ ; সি.'১১; চা.’০৭,’১৩; ব.'১০,'১২;
มা.'০৯,’১8 ब.ভ.भ.'০৪,'০৫]
সমাধান : (a) ত্রিভুজটির অর্বপরিসীমা,
$s=\frac{3+5+7}{2}=7.5$ जकन।
ब্রিডুজট্রি বেত্রयन,

$$
\begin{aligned}
\Delta & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{7 \cdot 5(7 \cdot 5-3)(7 \cdot 5-5)(7 \cdot 5-7)} \\
& =\sqrt{7 \cdot 5 \times 4 \cdot 5 \times 2 \cdot 5 \times 0 \cdot 5} \\
& =6.495 \text { वर्भ जक्क। }
\end{aligned}
$$

त्रिजुজটির পরিব্যাসার্ধ, $\mathrm{R}=\frac{\mathrm{abc}}{4 \Delta}=\frac{3 \times 5 \times 7}{4 \times 6.495}$
$=\frac{3 \times 5 \times 7}{4 \times 6.495}=4.041$ এकক (थाয়)
(b) «্রল্নমালা VII D এর উদাহর্র 1 দ্রষষ্য।

16.

সমাধাनः (a) $\mathrm{AC}=\sqrt{\mathrm{AB}^{2}+\mathrm{BC}^{2}}=\sqrt{4^{2}+3^{2}}=5$

$$
\cos x^{\circ}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{3}{5}, \sin x^{\circ}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{4}{5}
$$

(b) $\triangle \mathrm{ADC}$ এ কোসাইন সূত্র ঞ্য়াগ ক্রে পাই,

$$
\begin{aligned}
\mathrm{AD}^{2} & =\mathrm{AC}^{2}+\mathrm{CD}^{2}-2 \mathrm{AC.CD} \cos x \\
& =5^{2}+2^{2}-2 \times 5 \times 2 \times \frac{3}{5} \\
& =25+4-12=17 \text { đর্গ সে.গি. }
\end{aligned}
$$

(c) ABCD চতুর্ভুজ্রের বের্রকন $=\mathrm{ABC}$ त্রিযুজের বেত্রফন +ACD ত্রিডুজ্জে বেশ্রেল্ল

$$
=\frac{1}{2}(\mathrm{AB} \times \mathrm{BC})+\frac{1}{2}\left(\mathrm{AC} \times \mathrm{CD} \sin \mathrm{x}^{\prime \prime}\right)
$$

$$
\begin{aligned}
& =\frac{1}{2}(4 \times 3)+\frac{1}{2}\left(5 \times 2 \times \frac{4}{5}\right) \\
& =6+4=10 \text { বर्গ cে.মि. }
\end{aligned}
$$

অতিব্রিক্ত প্রশ্ন (সমাধানসহ)

ABC ত্রিভুর্জে প্রমাণ কন যে,
1(a) $(b-c) \sin A+(c-a) \sin B+(a-b)$ $\sin C=0$

প্রমাণ : L.H.S. $=(b-c) \sin A+(c-a) \sin B$ $+(a-b) \sin C$
$=(2 R \sin B-2 R \sin C) \sin A+(2 R \sin C$ $-2 R \sin A) \sin B+(2 R \sin A-2 R \sin B) \sin C$
$=2 R(\sin A \sin B-\sin A \sin C+\sin B \sin C$
$-\sin A \sin B+\sin A \sin C-\sin B \sin C)$
$=2 \mathrm{R} \times 0=0=\mathrm{R} . \mathrm{H} . \mathrm{S}$. (Proved)
1(b) $a(\sin B-\sin C)+b(\sin C-\sin A)$ $+c(\sin A-\sin B)=0$
প্রমাণ : L.H.S. $=a(\sin B-\sin C)+$
$b(\sin C-\sin A)+c(\sin A-\sin B)$
$=2 R \sin A(\sin B-\sin C)+2 R \sin B$ $(\sin C-\sin A)+2 R \sin C(\sin A-\sin C)$
$=2 R(\sin A \sin B-\sin A \sin C+\sin B \sin C$
$-\sin A \sin B+\sin A \sin C-\sin B \sin C)$
$=2 \mathrm{R} \times 0=0=$ R.H.S. (Proved)
2.(a) $\left(b^{2}-c^{2}\right) \sin ^{2} A+\left(c^{2}-a^{2}\right) \sin ^{2} B$ $+\left(a^{2}-b^{2}\right) \sin ^{2} \mathrm{C}=0$

প্রমাণ : L.H.S. $=\left(b^{2}-c^{2}\right) \sin ^{2} \mathrm{~A}$
$+\left(c^{2}-a^{2}\right) \sin ^{2} B+\left(a^{2}-b^{2}\right) \sin ^{2} C$
$=\left(4 R^{2} \sin ^{2} B-4 R^{2} \sin ^{2} C\right) \sin ^{2} A+$ $\left(4 R^{2} \sin ^{2} C-4 R^{2} \sin ^{2} A\right) \sin ^{2} B+$ $\left(4 R^{2} \sin ^{2} A-4 R^{2} \sin ^{2} B\right) \sin ^{2} C$
$=4 R^{2}\left(\sin ^{2} A \sin ^{2} B-\sin ^{2} C \sin ^{2} A+\sin ^{2} B \sin ^{2} C\right.$ $\left.-\sin ^{2} \mathrm{~A} \sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C} \sin ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~B} \sin ^{2} \mathrm{C}\right)$ $=4 R^{2} \times 0=0=$ R.H.S. (Proved)
2(b) $a \sin (B-C)+b \sin (C-A)+$

$$
c \sin (A-B)=0
$$

[ङֻ.'oo]

প্রমাণ : L.H.S. $=\mathrm{a} \sin (\mathrm{B}-\mathrm{C})+\mathrm{b} \sin (\mathrm{C}-\mathrm{A})$ $+\mathrm{c} \sin (\mathrm{A}-\mathrm{B})$
$=2 R \sin \mathrm{~A}(\sin \mathrm{~B} \cos \mathrm{C}-\cos \mathrm{B} \sin \mathrm{C})+$ $2 R \sin B(\sin C \cos A-\sin A \cos C)+$
$2 R \sin C(\sin A \cos B-\sin B \cos A)$
$=2 R(\sin A \sin B \cos C-\sin A \cos B \sin C+$ $\cos A \sin B \sin C-\sin A \sin B \cos C+$
$\sin \mathrm{A} \cos \mathrm{B} \sin \mathrm{C}-\cos \mathrm{A} \sin \mathrm{B} \sin \mathrm{C})$
$=2 \mathrm{R} \times 0=0=$ R.H.S. (Proved)
3. (a) $\frac{a^{2} \sin (B-C)}{\sin A}+\frac{b^{2} \sin (C-A)}{\sin B}+$

$$
\frac{c^{2} \sin (A-B)}{\sin C}=0
$$

প्रमाण : $\frac{a^{2} \sin (B-C)}{\sin A}$

$$
\begin{aligned}
& =\frac{(2 R \sin A)^{2} \sin (B-C)}{\sin A} \\
& =4 R^{2} \sin A \sin (B-C) \\
& =4 R^{2} \sin \{\pi-(B+C)\} \sin (B-C) \\
& =4 R^{2} \sin (B+C) \sin (B-C) \\
& =4 R^{2}\left(\sin ^{2} B-\sin ^{2} C\right)
\end{aligned}
$$

जनুরূগভাবে জামরা পাই,

$$
\frac{b^{2} \sin (C-A)}{\sin B}=4 \mathrm{R}^{2}\left(\sin ^{2} \mathrm{C}-\sin ^{2} \mathrm{~A}\right) \text { A }
$$

$$
\frac{c^{2} \sin (A-B)}{\sin C}=4 R^{2}\left(\sin ^{2} A-\sin ^{2} B\right)
$$

এभन

$$
\begin{aligned}
\text {, L.H.S. }=\frac{a^{2} \sin (B-C)}{\sin A} & +\frac{b^{2} \sin (C-A)}{\sin B} \\
& +\frac{c^{2} \sin (A-B)}{\sin C}
\end{aligned}
$$

$=4 R^{2}\left(\sin ^{2} \mathrm{~B}-\sin ^{2} \mathrm{C}+\sin ^{2} \mathrm{C}-\sin ^{2} \mathrm{~A}+\right.$ $\left.\sin ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~B}\right)$
$=4 \mathrm{R}^{2} \times 0=0=$ R.H.S. (Proved)
3(b) $a \sin \frac{A}{2} \sin \frac{B-C}{2}+b \sin \frac{B}{2} \sin \frac{C-A}{2}$
$+c \sin \frac{C}{2} \sin \frac{A-B}{2}=0$

थ्रमाष : $\mathrm{a} \sin \frac{A}{2} \sin \frac{B-C}{2}$
$=2 \mathrm{R} \sin \mathrm{A} \sin \frac{1}{2} \mathrm{~A} \sin \frac{B-C}{2}$
$=2 \mathrm{R} \sin \mathrm{A} \sin \left(\frac{\pi}{2}-\frac{B+C}{2}\right) \sin \frac{B-C}{2}$
$=2 \mathrm{R} \sin \mathrm{A} \cos \frac{B+C}{2} \sin \frac{B-C}{2}$
$=R \sin A(\sin B-\sin C)$
बनूबূষ্গাবে জামরা পাই,
$\mathrm{b} \sin \frac{B}{2} \sin \frac{C-A}{2}=\mathrm{R} \sin \mathrm{B}(\sin \mathrm{C}-\sin \mathrm{A})$ এবং
$\mathrm{c} \sin \frac{C}{2} \sin \frac{A-B}{2}=R \sin C(\sin \mathrm{~A}-\sin \mathrm{B})$
এथन , L.H.S. $=\mathrm{a} \sin \frac{A}{2} \sin \frac{B-C}{2}+\mathrm{b} \sin \frac{B}{2}$
$\sin \frac{C-A}{2}+\mathrm{c} \sin \frac{C}{2} \sin \frac{A-B}{2}$
$=R(\sin A \sin B-\sin C \sin A+\sin B \sin C-$
$\sin A \sin B+\sin C \sin A-\sin B \sin C)$
$=\mathrm{R} \times 0=0$
4(a) $\frac{2 \cot A+\cot B+\cot C}{\cot A-\cot B+2 \cot C}=\frac{b^{2}+c^{2}}{2 b^{2}-c^{2}}$
প্বমাণ : $2 \cot A+\cot B+\cot C$
$=2 \frac{R}{a b c}\left(\mathrm{~b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}\right)+\frac{R}{a b c}\left(\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}\right)+$
$\frac{R}{a b c}\left(\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}\right)$
$=\frac{R}{a b c}\left(2 \mathrm{~b}^{2}+2 \mathrm{c}^{2}-2 \mathrm{a}^{2}+\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}+\mathrm{a}^{2}+\right.$ $b^{2}-c^{2}$)
$=\frac{R}{a b c}\left(2 \mathrm{~b}^{2}+2 \mathrm{c}^{2}\right)=\frac{2 R}{a b c}\left(\mathrm{~b}^{2}+\mathrm{c}^{2}\right)$
जবং $\cot A-\cot B+2 \cot C=\frac{R}{a b c}\left\{\mathrm{~b}^{2}+\mathrm{c}^{2}-\right.$

$$
\begin{aligned}
& \left.\mathrm{a}^{2}-\left(\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}\right)+2\left(\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}\right)\right\} \\
= & \frac{R}{a b c}\left(\mathrm{~b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}-\mathrm{c}^{2}-\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{a}^{2}+\right. \\
& \left.2 \mathrm{~b}^{2}-2 \mathrm{c}^{2}\right)
\end{aligned}
$$

$=\frac{R}{a b c}\left(4 \mathrm{~b}^{2}-2 \mathrm{c}^{2}\right)=\frac{2 R}{a b c}\left(2 \mathrm{~b}^{2}-\mathrm{c}^{2}\right)$
बথन , L.H.S. $=\frac{2 \cot A+\cot B+\cot C}{\cot A-\cot B+2 \cot C}$
$=\frac{\frac{2 R}{a b c}\left(b^{2}+c^{2}\right)}{\frac{2 R}{a b c}\left(2 b^{2}-c^{2}\right)}=\frac{b^{2}+c^{2}}{2 b^{2}-c^{2}}=$ R.H.S.
$4(\mathrm{~b}) 4 \Delta(\cot \mathrm{~A}+\cot \mathrm{B}+\cot \mathrm{C})=a^{2}+b^{2}+c^{2}$
প্রমाष :L.H.S. $=4 \Delta(\cot \mathrm{~A}+\cot \mathrm{B}+\cot \mathrm{C})$
$=4 \Delta \frac{R}{a b c}\left(\mathrm{~b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}+\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}+\mathrm{a}^{2}\right.$ $\left.+b^{2}-c^{2}\right)$
$=4 \cdot \frac{a b c}{4 R} \frac{R}{a b c}\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)$
$=a^{2}+b^{2}+c^{2}=$ R.H.S (Proved)
$5(\mathrm{a})(a+b+c)\left(\tan \frac{A}{2}+\tan \frac{B}{2}\right)=2 \mathrm{c} \cot \frac{C}{2}$
প্রयाष :L.H.S. $=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left(\tan \frac{A}{2}+\tan \frac{B}{2}\right)$
$=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left(\frac{(s-b)(s-c)}{\Delta}+\frac{(s-c)(s-a)}{\Delta}\right)$
$=(\mathrm{s}-\mathrm{c})(\mathrm{a}+\mathrm{b}+\mathrm{c}) \frac{2 \mathrm{~s}-\mathrm{b}-a}{\Delta}$
$=(\mathrm{s}-\mathrm{c}) \cdot 2 \mathrm{~s} \frac{a+b+c-b-a}{\Delta}$
$=2 \mathrm{c} \cdot \frac{s(s-c)}{\Delta}=2 c \cot \frac{C}{2}=$ R.H.S. (Proved)
(b) $(b+c-a) \tan \frac{A}{2}=(c+a-b)$
$\tan \frac{B}{2}=(a+b-c) \tan \frac{C}{2}$
প্र্াণ :L.H.S. $=(\mathrm{b}+\mathrm{c}-\mathrm{a}) \tan \frac{A}{2}$
$=(\mathrm{a}+\mathrm{b}+\mathrm{c}-2 \mathrm{a}) \frac{(s-b)(s-c)}{\Delta}$
$=(2 \mathrm{~s}-2 \mathrm{a}) \frac{(s-b)(s-c)}{\Delta}$

$$
=\frac{2(s-a)(s-b)(s-c)}{\Delta}
$$

M.H.S. $=(c+a-b) \tan \frac{B}{2}$

$$
\begin{aligned}
& =(2 s-2 b) \frac{(s-c)(s-a)}{\Delta} \\
& =\frac{2(s-a)(s-b)(s-c)}{\Delta}
\end{aligned}
$$

R.H.S. $=(a+b-c) \tan \frac{C}{2}$

$$
\begin{aligned}
& =(2 s-2 c) \frac{(s-a)(s-b)}{\Delta} \\
& =\frac{2(s-a)(s-b)(s-c)}{\Delta}
\end{aligned}
$$

\therefore L.H.S. $=$ M.H.S. $=$ R.H.S. (Proved)
6.(a) $\frac{1}{a} \cos ^{2} \frac{A}{2}+\frac{1}{b} \cos ^{2} \frac{B}{2}+\frac{1}{c} \cos ^{2} \frac{C}{2}=\frac{s^{2}}{a b c}$ [थ.ङ.ฯ. 'oo]
L.H.S $=\frac{1}{a} \cos ^{2} \frac{A}{2}+\frac{1}{b} \cos ^{2} \frac{B}{2}+\frac{1}{c} \cos ^{2} \frac{C}{2}$

$$
\begin{aligned}
& =\frac{1}{a} \frac{s(s-a)}{b c}+\frac{1}{b} \frac{s(s-b)}{c a}+\frac{1}{c} \frac{s(s-c)}{a b} \\
& =\frac{s(s-a)+s(s-b)+s(s-c)}{a b c} \\
& =\frac{3 s^{2}-s(a+b+c)}{a b c}=\frac{3 s^{2}-s \cdot 2 s}{a b c}
\end{aligned}
$$

$$
=\frac{s^{2}}{a b c}=\text { R.H.S. }
$$

6(b) $\frac{a^{2}-b^{2}}{2} \cdot \frac{\sin A \sin B}{\sin (A-B)}=\Delta$
প্রমাণ : $\frac{a^{2}-b^{2}}{2} \cdot \frac{\sin A \sin B}{\sin (A-B)}$
$=\frac{4 R^{2}\left(\sin ^{2} A-\sin ^{2} B\right)}{2} \cdot \frac{\sin A \sin B}{\sin (A-B)}$
$=\frac{2 R^{2} \sin (A+B) \sin (A-B) \sin A \sin B}{\sin (A-B)}$
$=2 R^{2} \sin \{\pi-(A+B)\} \sin A \sin B$
$=2 \mathrm{R}^{2} \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}=2 \mathrm{R}^{2} \frac{a}{2 R} \cdot \frac{b}{2 R} \cdot \frac{c}{2 R}$

$$
=\frac{a b c}{4 R}=\Delta=\text { R.H.S.(Proved) }
$$

7. (a) $\frac{b^{2}-c^{2}}{\cos B+\cos C}+\frac{c^{2}-a^{2}}{\cos C+\cos A}$

$$
+\frac{a^{2}-b^{2}}{\cos A+\cos B}=0
$$

প্रমাণ : $\frac{b^{2}-c^{2}}{\cos B+\cos C}=\frac{4 R^{2}\left(\sin ^{2} B-\sin ^{2} C\right)}{\cos B+\cos C}$

$$
\begin{aligned}
& =\frac{4 R^{2}\left(\cos ^{2} C-\cos ^{2} B\right)}{\cos B+\cos C} \\
& =\frac{4 R^{2}(\cos C+\cos B)(\cos C-\cos B)}{\cos B+\cos C}
\end{aligned}
$$

$$
=4 R^{2}(\cos C-\cos B)
$$

जनুরুর্ডাবে आমরা পাই,

$$
\frac{c^{2}-a^{2}}{\cos C+\cos A}=4 R^{2}(\cos A-\cos C) \text { aß }
$$

$$
\frac{a^{2}-b^{2}}{\cos A+\cos B}=4 R^{2}(\cos B-\cos A)
$$

$$
\text { बचन , L.H.S. }=\frac{b^{2}-c^{2}}{\cos B+\cos C}
$$

$$
+\frac{c^{2}-a^{2}}{\cos C+\cos A}+\frac{a^{2}-b^{2}}{\cos A+\cos B}
$$

$$
=4 R^{2}\{\cos C-\cos B+\cos A-\cos C
$$

$$
\cos B-\cos A\}
$$

$$
=4 R^{2} \times 0=0=\text { R.H.S. } \text { (Proved) }
$$

7(b) $\frac{b-c}{a} \cos ^{2} \frac{A}{2}+\frac{c-a}{b} \cos ^{2} \frac{B}{2}+$

$$
\frac{a-b}{c} \cos ^{2} \frac{C}{2}=0
$$

প্রমাণ : L.H.S. $=\frac{b-c}{a} \cos ^{2} \frac{A}{2}+\frac{c-a}{b} \cos ^{2} \frac{B}{2}$

$$
+\frac{a-b}{c} \cos ^{2} \frac{c}{2}
$$

$=\frac{b-c}{a} \times \frac{s(s-a)}{b c}+\frac{c-a}{b} \times \frac{s(s-b)}{c a}$

$$
\begin{aligned}
& \quad+\frac{a-b}{c} \times \frac{s(s-c)}{a b} \\
& =\frac{s}{a b c}\{(\mathrm{~b}-\mathrm{c})(\mathrm{s}-\mathrm{a})+(\mathrm{c}-\mathrm{a})(\mathrm{s}-\mathrm{b}) \\
& \\
& \quad+(\mathrm{a}-\mathrm{b})(\mathrm{s}-\mathrm{c})\} \\
& =\frac{s}{a b c}\{\mathrm{~s}(\mathrm{~b}-\mathrm{c}+\mathrm{c}-\mathrm{a}+\mathrm{a}-\mathrm{b})+ \\
& \quad(-\mathrm{ab}+\mathrm{ca}-\mathrm{bc}+\mathrm{ab}-\mathrm{ca}+\mathrm{bc})\}
\end{aligned}
$$

8(a) $\triangle \mathrm{ABC}$-ธে $\frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}$ रल প্রমাণ কর বে, $\frac{\cos A}{7}=\frac{\cos B}{19}=\frac{\cos C}{25}$
প্রমাণ ৪ দেও্যা জাছে,

$$
\begin{aligned}
& \frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}=\frac{b+c+c+a+a+b}{11+12+13} \\
& \Rightarrow \\
& \Rightarrow \frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}=\frac{2(a+b+c)}{36} \\
& \Rightarrow \frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}=\frac{a+b+c}{18} \\
& \quad \frac{a+b+c}{18}=\frac{b+c}{11}=\frac{a+b+c-b-c}{18-11}=\frac{a}{7}, \\
& \\
& \frac{a+b+c}{18}=\frac{c+a}{12}=\frac{a+b+c-c-a}{18-12}=\frac{b}{6} \text { बবং } \\
& \\
& \frac{a+b+c}{18}=\frac{a+b}{13}=\frac{a+b+c-a-b}{18-13}=\frac{c}{5} \\
& \\
& \frac{a}{7}=\frac{b}{6}=\frac{c}{5}=\mathrm{k} \text { (say) } \\
& \Rightarrow \mathrm{a}=7 \mathrm{k}, \mathrm{~b}=6 \mathrm{k}, \mathrm{c}=5 \mathrm{k} \\
& \text { जथन , }
\end{aligned}
$$

$$
\begin{aligned}
\cos \mathrm{A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c} & =\frac{36 k^{2}+25 k^{2}-49 k^{2}}{2.6 k \cdot 5 k} \\
& =\frac{61-49}{60}=\frac{12}{60}=\frac{1}{5}
\end{aligned}
$$

$$
\cos \mathrm{B}=\frac{c^{2}+a^{2}-b^{2}}{2 c a}=\frac{25 k^{2}+49 k^{2}-36 k^{2}}{2.5 k .7 k}
$$

$$
=\frac{74-36}{70}=\frac{38}{70}=\frac{19}{3.5}
$$

$\cos \mathrm{C}=\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{49 k^{2}+36 k^{2}-25 k^{2}}{2.7 k .6 k}$

$$
=\frac{85-25}{84}=\frac{60}{84}=\frac{5}{7}
$$

$\therefore \cos \mathrm{A} \quad \cos \mathrm{B}: \cos \mathrm{C}=\frac{1}{5}: \frac{19}{35}: \frac{5}{7}=7 \quad 19: 25$ $\frac{\cos A}{7}=\frac{\cos B}{19}=\frac{\cos C}{25}$ (Showed)
8. (b) $\triangle \mathrm{ABC}-এ, a=6, b=3 \sqrt{3}$ बदर $\mathrm{A}=90^{\circ}$ रলে B কোণের মাन निष़ কর।
সमाधान : 万hওয়্যা आছে, $\triangle A B C-\Theta a=6 . b=3 \sqrt{3}$ उ $A=90^{\circ}$
ত্রিঙ্রুজ্জের সাইন সূত্র ২ত্ে পাই, $\frac{a}{\sin A}=-\frac{b}{\sin B}$
$\Rightarrow \frac{6}{\sin 90^{\circ}}=\frac{3 \sqrt{3}}{\sin B} \Rightarrow \frac{6}{1}=\frac{3 \sqrt{3}}{\sin B}$
$\Rightarrow \sin B=\frac{3 \sqrt{3}}{6}=\frac{\sqrt{3}}{2}=\sin 60^{\circ} \quad B=60^{\circ}$

ব্যবহার্রিক অनूশীলনী

 ক্র্র্রত্ম কোণ নির্ৰ্য় কন্ন

 বৃহख্ম ও
মৃল্তত্র ः মनে করি, ABC একটি ত্রিসूজ यার তিনিটি বাহू
 $\mathrm{c}=60$ সে.মি. । $\triangle \mathrm{ABC}$ তে বৃহত্তম বাহু $\mathrm{c}=60$ সে.মি. এর বিপরীত কোণ $\angle C$ বৃহত্তম কোণ এবং क्यूप্রত্ম বাহू $a=40$ সে.মি. এর বিপরীত কেো $\angle A$

 কোণ निष্ম করি এবং সূত্র $\cos \mathrm{C}=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$ В

$$
=\frac{2(s-a)(s-b)(s-c)}{\Delta}
$$

M.H.S. $=(c+a-b) \tan \frac{B}{2}$

$$
\begin{aligned}
& =(2 s-2 b) \frac{(s-c)(s-a)}{\Delta} \\
& =\frac{2(s-a)(s-b)(s-c)}{\Delta}
\end{aligned}
$$

R.H.S. $=(\mathrm{a}+\mathrm{b}-\mathrm{c}) \tan \frac{C}{2}$

$$
=(2 s-2 c) \frac{(s-a)(s-b)}{\Delta}
$$

$$
=\frac{2(s-a)(s-b)(s-c)}{\Delta}
$$

\therefore L.H.S. $=$ M.H.S. $=$ R.H.S. $($ Proved $)$
6.(a) $\frac{1}{a} \cos ^{2} \frac{A}{2}+\frac{1}{b} \cos ^{2} \frac{B}{2}+\frac{1}{c} \cos ^{2} \frac{C}{2}=\frac{s^{2}}{a b c}$ [ช.Ч.9. 'o०]
L.H.S. $=\frac{1}{a} \cos ^{2} \frac{A}{2}+\frac{1}{b} \cos ^{2} \frac{B}{2}+\frac{1}{c} \cos ^{2} \frac{C}{2}$ $=\frac{1}{a} \frac{s(s-a)}{b c}+\frac{1}{b} \frac{s(s-b)}{c a}+\frac{1}{c} \frac{s(s-c)}{a b}$ $=\frac{s(s-a)+s(s-b)+s(s-c)}{a b c}$
$=\frac{3 s^{2}-s(a+b+c)}{a b c}=\frac{3 s^{2}-s .2 s}{a b c}$
$=\frac{s^{2}}{a b c}=$ R.H.S.
6(b) $\frac{a^{2}-b^{2}}{2} \cdot \frac{\sin A \sin B}{\sin (A-B)}=\Delta$
প্রমाণ : $\frac{a^{2}-b^{2}}{2} \cdot \frac{\sin A \sin B}{\sin (A-B)}$

$$
\begin{aligned}
& =\frac{4 R^{2}\left(\sin ^{2} A-\sin ^{2} B\right)}{2} \cdot \frac{\sin A \sin B}{\sin (A-B)} \\
& =\frac{2 R^{2} \sin (A+B) \sin (A-B) \sin A \sin B}{\sin (A-B)} \\
& =2 R^{2} \sin \{\pi-(A+B)\} \sin A \sin B
\end{aligned}
$$

$$
\begin{gathered}
=2 \mathrm{R}^{2} \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}=2 \mathrm{R}^{2} \frac{a}{2 R} \cdot \frac{b}{2 R} \cdot \frac{c}{2 R} \\
=\frac{a b c}{4 R}=\Delta=\mathrm{R} . \text { H.S. (Proved) }
\end{gathered}
$$

7. (a) $\frac{b^{2}-c^{2}}{\cos B+\cos C}+\frac{c^{2}-a^{2}}{\cos C+\cos A}$

$$
+\frac{a^{2}-b^{2}}{\cos A+\cos B}=0
$$

প্রমাণ : $\frac{b^{2}-c^{2}}{\cos B+\cos C}=\frac{4 R^{2}\left(\sin ^{2} B-\sin ^{2} C\right)}{\cos B+\cos C}$

$$
\begin{aligned}
& =\frac{4 R^{2}\left(\cos ^{2} C-\cos ^{2} B\right)}{\cos B+\cos C} \\
& =\frac{4 R^{2}(\cos C+\cos B)(\cos C-\cos B)}{\cos B+\cos C}
\end{aligned}
$$

$$
=4 R^{2}(\cos C-\cos B)
$$

অनুরূभজাবে গমরা পাই,

$$
\frac{c^{2}-a^{2}}{\cos C+\cos A}=4 R^{2}(\cos A-\cos C) \text { ब쥬 }
$$

$$
\frac{a^{2}-b^{2}}{\cos A+\cos B}=4 R^{2}(\cos B-\cos A)
$$

$$
\text { এฟन , L.H.S. }=\frac{b^{2}-c^{2}}{\cos B+\cos C}
$$

$$
+\frac{c^{2}-a^{2}}{\cos C+\cos A}+\frac{a^{2}-b^{2}}{\cos A+\cos B}
$$

$$
=4 \mathrm{R}^{2}\{\cos C-\cos B+\cos A-\cos C
$$

$$
\cos B-\cos A\}
$$

$$
=4 \mathrm{R}^{2} \times 0=0=\text { R.H.S. (Proved) }
$$

7(b) $\frac{b-c}{a} \cos ^{2} \frac{A}{2}+\frac{c-a}{b} \cos ^{2} \frac{B}{2}+$

$$
\frac{a-b}{c} \cos ^{2} \frac{C}{2}=0
$$

প্রমাণ : L.H.S. $=\frac{b-c}{a} \cos ^{2} \frac{A}{2}+\frac{c-a}{b} \cos ^{2} \frac{B}{2}$

$$
+\frac{a-b}{c} \cos ^{2} \frac{C}{2}
$$

$$
=\frac{b-c}{a} \times \frac{s(s-a)}{b c}+\frac{c-a}{b} \times \frac{s(s-b)}{c a}
$$

প্রশ্নমাল্বাঘ্, VII Cr

$$
\begin{aligned}
& \quad+\frac{a-b}{c} \times \frac{s(s-c)}{a b} \\
& =\frac{s}{a b c}\{(b-c)(s-a)+(c-a)(s-b) \\
& \quad+(a-b)(s-c)\} \\
& =\frac{s}{a b c}\{s(b-c+c-a+a-b)+ \\
& \quad(-a b+c a-b c+a b-c a+b c)\} \\
& =\frac{s}{a b c}\{s \times 0+0\}=0=\text { R.H.S. (Proved) }
\end{aligned}
$$

8(a) $\triangle \mathrm{ABC}$-তে $\frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}$ इलে
প্রমাণ কর যে, $\frac{\cos A}{7}=\frac{\cos B}{19}=\frac{\cos C}{25}$
প্রমাণ 8 দেজ্যো জাছে ,

$$
\begin{aligned}
& \frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}=\frac{b+c+c+a+a+b}{11+12+13} \\
\Rightarrow & \frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}=\frac{2(a+b+c)}{36} \\
\Rightarrow & \frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}=\frac{a+b+c}{18} \\
& \frac{a+b+c}{18}=\frac{b+c}{11}=\frac{a+b+c-b-c}{18-11}=\frac{a}{7}, \\
& \frac{a+b+c}{18}=\frac{c+a}{12}=\frac{a+b+c-c-a}{18-12}=\frac{b}{6} \text { এবং } \\
& \frac{a+b+c}{18}=\frac{a+b}{13}=\frac{a+b+c-a-b}{18-13}=\frac{c}{5} \\
& \frac{a}{7}=\frac{b}{6}=\frac{c}{5}=\mathrm{k} \quad \text { (say) } \\
\Rightarrow & \mathrm{a}=7 \mathrm{k}, \mathrm{~b}=6 \mathrm{k}, \mathrm{c}=5 \mathrm{k}
\end{aligned}
$$

এখন ,

$$
\begin{aligned}
\cos \mathrm{A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c} & =\frac{36 k^{2}+25 k^{2}-49 k^{2}}{2.6 k \cdot 5 k} \\
& =\frac{61-49}{60}=\frac{12}{60}=\frac{1}{5}
\end{aligned}
$$

$\cos \mathrm{B}=\frac{c^{2}+a^{2}-b^{2}}{2 c a}=\frac{25 k^{2}+49 k^{2}-36 k^{2}}{2.5 k .7 k}$

$$
=\frac{74-36}{70}=\frac{38}{70}=\frac{19}{35}
$$

$$
\begin{aligned}
\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b} & =\frac{49 k^{2}+36 k^{2}-25 k^{2}}{2.7 k \cdot 6 k} \\
& =\frac{85-25}{84}=\frac{60}{84}=\frac{5}{7}
\end{aligned}
$$

$\therefore \cos A \cos B: \cos C=\frac{1}{5}: \frac{19}{35}: \frac{5}{7}=7 \quad 19: 25$

$$
\frac{\cos A}{7}=\frac{\cos B}{19}=\frac{\cos C}{25} \text { (Showed) }
$$

8. (b) $\triangle \mathrm{ABC}$ - $, ~ a=6, b=3 \sqrt{3}$ এবश $A=90^{\circ}$ रলে B কোণের মান निष্য় কর।
সमाधान : দেওয়া आছে, $\triangle A B C-এ a=6 . b=3 \sqrt{3}$ उ $A=90^{\circ}$
ত্রিजুজ্েের সাইন সূত্র হতে পাই, $\frac{a}{\sin A}=\frac{b}{\sin B}$
$\Rightarrow \frac{6}{\sin 90^{\circ}}=\frac{3 \sqrt{3}}{\sin B} \Rightarrow \frac{6}{1}=\frac{3 \sqrt{3}}{\sin B}$
$\Rightarrow \sin B=\frac{3 \sqrt{3}}{6}=\frac{\sqrt{3}}{2}=\sin 60^{\circ} \quad B=60^{\circ}$
ব্যবহারিক অनুশীলनী

 ক্রুদ্রত্ম কোণ নির্ণয় কর ।

 বৃহত্র ও ক্রুদ্রত্ম কোণ নির্ণয় ।
 অথাক্রন্নে $a=40$ সে.মি., $b=50$ সে.মি. এবং $c=60$ সে.মি. । $\triangle \mathrm{ABC}$ তে বৃহত্তম বাহ্র $\mathrm{c}=60$ সে.মি. এর বিপরীঅ কোণ $\angle \mathrm{C}$ বৃহত্তম কোণ এবং क্র্র্রতম বাহू $a=40$ সে.নি. এর বিপরীত কোে $\angle A$ স্ক্রুত্স কোপ। ऊাহলে প্রদ্ত উপাজের গাহান্যে
 কোণ নির্ণয্ম করি এবং সূত্র $\cos C=\frac{a^{2}+b^{2}-r^{2}}{2 a b)}$ ও $\cos \mathrm{A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$ बেকে প্রাপ্ত মাन্রের সাকেপে

প্রয়োজনীয় উপক্রণ ：（i）বেস্পিন（ii）স্কেন（iii）গ্রাফ পপার（iv）ইরেজার（v）শাপ্পনার（vi）চ゙দা（vii）てেস্পিন কম্শাস（viii）সার্রেন্টিফিক ক্যালকুুেটর।

কার্পপ্মতি ：

1．একটি গ্রাফ পেপারে স্থানাজ্কের অক্ষ র্রেখা $\mathrm{X}^{\prime} \mathrm{AX}$ © YAY^{\prime} आँाँकि।
 पৈर्ঘ्य $=2$ সে．मि．ধরি।

3．গ্রাফ পপপারে AX বরাবর 30 বগগর বাহूর সমান করে বৃহত্তম বাডু $A B=60$ সে．মি．কেটে নেই।

4．A কে কেন্দ্র করে w্র্রততম（ $50 \div 2$ ）অর্ণৎ 25 র্বগের বাহুর সমান ব্যাসাi্ নিয়ে একটি বৃত্তাপ শাঁকি এবং B কে কেল্দ্দ করে（ $40 \div 2$ ）অর্থাৎ 20 ব্বগে বাহুর সমান ব্যাসার্ধ নিয়ে জারও একটি বৃত্তচাপ জাঁকি। বৃচ্চাপদ্র়্ পরস্পর C বিন্দুতে ছেদ করে। A，B এবং B，C যোগ করি। তাহলে $\triangle \mathrm{ABC}$ তে $\mathrm{AB}=\mathrm{c}=60$ সে．মি．， $\mathrm{BC}=\mathrm{a}=40$ সে．মि．এবং $\mathrm{AC}=\mathrm{b}=50$ সে．মি． সূচিত করে।
5．চাঁদার সাহাयো বৃহত্ম কোণ $\angle \mathrm{C}$ এবং অদ্র্রতম কোণ $\angle \mathrm{A}$ निর্ণয় করি।

शिসाब $8 \cos C=\frac{40^{2}+50^{2}-60^{2}}{2 \times 40 \times 50}$

$$
=\frac{1600+2500-3600}{4000}=\frac{500}{4000}=0 \cdot 125
$$

$$
\angle \mathrm{C}=82.82^{\circ}
$$

$$
\begin{aligned}
\cos A & =\frac{50^{2}+60^{2}-40^{2}}{2 \times 50 \times 60} \\
& =\frac{2500+3600-1600}{6000}=\frac{4500}{6000}=0.75 \\
& \angle A=41.41^{\circ}
\end{aligned}
$$

ফল্ল সংক্লন ：

বৃহত্তন কৌী C Fिির্ত			
গ্রাফ ฮেকে प्राक्ज माने	সৃর ञে＜ 비으 गान	গা «েকে প্राপ্ড মাन	गू贝
$\begin{gathered} \angle \mathrm{C} \\ =83^{\circ} \end{gathered}$	$\begin{gathered} \angle \mathrm{C} \\ = \\ 82.82^{\circ} \end{gathered}$	$\begin{aligned} & \angle \mathrm{A} \\ = & 41.5^{\circ} \end{aligned}$	$\begin{gathered} \angle \mathrm{A} \\ =41.41^{\circ} \end{gathered}$

 মান भ্রায় সगান। অতএব ক্লাফল সঠিক।

2．এবটি ত্রিভুष্জের কোণপুলি $105^{\circ}, 60^{\circ}, 15^{\circ}$ হলে ত্রিভুষ্জটির বাগ্গুলিলির অনুপাত নির্ণয় কর।
 $60^{\circ}, 15^{\circ}$ रबে ज্রিজুজটির বাহুগুলির অনুপাত निণ্ণফ়

 গ্রাক্ের সাহাব্যে जबং $\frac{a}{\sin \mathrm{~A}}=\frac{\mathrm{b}}{\sin \mathrm{B}}=\frac{\mathrm{c}}{\sin \mathrm{C}}$ সূত্রের সাহায্যে a, b ও c এর অনুপাত নির্কয়़ করি।
প্রয়োधनীয় উপকন্নণ ：（i）てপপ্পিল（ii）স্কেল（iii）গ্রাফ পেপার（iv）ইরেজার（v）শার্পনার（vi）চাঁদা（vii）বপপপিল কম্শাস（viii）সাত্যেন্টিফিক ক্যালকুনৌ্র।

কার্বপশ্凶্রি：

 ज YBY^{\prime} खाँकि।

 जिं？

3．চাঁদার সাহাय্যে B বিদ্দুতে $\angle C B D=60^{\circ}$ ও C বিস্দুতে $\angle \mathrm{BCE}=15^{\circ}$ बজ্কন করি। BD ও CE র্রেযা পর্সর্রকে A বিদ্দুতে ছেদ করে।
4．গ্রাফ পেকে চাঁদার সাহায্যে $\angle \mathrm{A}$ এণং পেস্পিল কম্শাসের সাহাय্যে AB ও AC বাহूরু দৈৈ⿹্য মেপে BX বরাবর বসিয্যে যथাতকমে c ও b বাহুদ্দের্যের দৈর্ঘ্য নির্ণয় কरि।

रिসাব 8 आামরা জানি，$\triangle \mathrm{ABC}$ তে
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \Rightarrow \angle \mathrm{A}+60^{\circ}+$ $15^{\circ}=180^{\circ}$

$$
\angle \mathrm{A}=105^{\circ}
$$

आবার，$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$\Rightarrow \frac{\mathrm{a}}{\sin 105^{\circ}}=\frac{\mathrm{b}}{\sin 60^{\circ}}=\frac{\mathrm{c}}{\sin 15^{\circ}}$
$\Rightarrow \frac{a}{0.966}=\frac{b}{0.866}=\frac{c}{0.259}$
$\Rightarrow \frac{a}{\frac{0.966 \times 10}{0.966}}=\frac{b}{\frac{0.866 \times 10}{0.966}}=\frac{c}{\frac{0.259 \times 10}{0.966}}$
$\Rightarrow \quad \frac{\mathrm{a}}{10}=\frac{\mathrm{b}}{8.96}=\frac{\mathrm{c}}{2.68}$
$\mathrm{a}: \mathrm{b}: \mathrm{c}=10 \quad 8.96: 2 \cdot 68$
खण সাক্রन 8
\square

ফ্লাফ্ল 8 निর্ণ্রে অनুপাত

$$
\begin{array}{lllll}
a & b & c=10 & 8.96 & 2.68
\end{array}
$$

মন্ত্ব্য \＆গ্রাফ थেকে প্রাঁত মান এবং গাণিতিক্ডারে নির্ণীত

3．একটি ब্রিस्यूप্জে একটি বাזू 20 সে．মি．এবर এ বাহू
 কোণ ও বাদ্রুদ্য নিণ্ণীয কর।
 এবং এ বাহু সংল্নগ্ন দুইটি কোণ 70° ও 50° గৈजওয়া আছে，জপর কোণ ও বাহুদ্ম্য় নির্ণয় করতে হবে।

 $\angle B=70^{\circ} \quad \angle C=50^{\circ}$ मिওয়া শাহে। जাহনে প্রদত্ত উপাত্ত পেকক a বাহুর বিপনীত বোণ $\angle A$ आবং
 গ্রাফ্রে সাহাব্যে এ এT？$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ ज
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ भृत्बে木 সাशय্যে निर्बय़ করি।

প্রয়োজनীয় উপক্রণ ：（i）てপস্পিष（ii）प्क्कलन（iii）গ্রাख

কাব্যপচ্মতি 8

1．একটি গ্রাষ পেপারে স্পানাজ্কের অক্ষ রেখা $X^{\prime} B X$ $3 \mathrm{YBY}^{\prime}$ জाँकि।
 দ্র্ঘ $=1$ সে．মি．ষরে BX বরাবর কদ্র্রতম 20 বগের বাহ্র সমান করে $B C=20$ সে．মি．কেটে নেই।
3．চাঁদার সাহাय্যে BC রেখার B বিপ্দুতে $\angle \mathrm{CBD}$
 BD \rightarrow CE রেষা পরসররকে A বিস্দুতে ছেদ করে।

रिসাব 8 आমরা জানি，$\triangle \mathrm{ABC}$ তে

$$
\begin{aligned}
& \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \\
& \Rightarrow \angle \mathrm{A}+70^{\circ}+50^{\circ}=180^{\circ} \\
& \angle \mathrm{A}=60^{\circ} \\
& \text { आाবার, } \frac{\mathrm{a}}{\sin \mathrm{~A}}=\frac{\mathrm{b}}{\sin \mathrm{~B}} \Rightarrow \frac{20}{\sin 60^{\circ}}=\frac{\mathrm{b}}{\sin 70^{\circ}} \\
& \Rightarrow \mathrm{b}=\frac{\sin 70^{\circ}}{\sin 60^{\circ}} \times 20=\frac{0.939}{0.866} \times 20 \\
&= 21.69 \text { Mে.মি.(প্রায়) }
\end{aligned}
$$

नद्बूश，$\frac{\mathrm{a}}{\sin \mathrm{A}}=\frac{\mathrm{c}}{\sin \mathrm{C}} \Rightarrow \frac{20}{\sin 60^{\circ}}=\frac{\mathrm{c}}{\sin 50^{\circ}}$

$$
\begin{aligned}
\Rightarrow \mathrm{c} & =\frac{\sin 50^{\circ}}{\sin 60^{\circ}} \times 20=\frac{0.766}{0.866} \times 20 \\
& =17.69 \text { 万ে.मि. (প্রায়) }
\end{aligned}
$$

यल ग স

	খाए Cেবে প্রাত্ড মান：	সূত্র থেরে প্র｜শ্ত মান ：
$\angle \mathrm{A}$	60°	60°
b	22 সে．মি．	21.69 সে．মি．（প্রাম）
c	18 नु．মि．	17.69 गে．মि．（প্রात्य）

यक्बाय্ज 8 निर्व্̛যে $\angle \mathrm{A}=60^{\circ}$
b বাহ্হর দৈর্ঘ্য $\mathrm{AC}=21.69$ সে．মি．（প্রায়）ও c বাহ্রে দৈर्凶্য $\mathrm{AB}=17.69$ সে．মি．（প্রাম）
মम্তব্য 8 গ্রীফ থেকে প্রাশ্ত মান এব！গাণিতিকভাবে নিণীত মান প্রায় সমান। অতএব ফন্নাय্न সঠिক।
 সে．মি．এবং এদের অন্তর্ডুক্ কোণ 60° দেওয়া আছে， जপর বাহ্র ৫ কোণদ্য় নির্ণ কর।

পরীশ্মণের নাম ：একটি ত্রিডূজেজের দুইটি বাছুর তৈৈ্র্য 9 সে．মি．， 6 সে．মি．এৃং এদের অন্তর্ভুক্ত কোে 60° দেওয়া জাছ，অপর বাহ্র্র ও কোণদ্য নির্তয়।
 $B C=a=9$ সে．मि．，$A B=c=6$ तु．मि．बবং এদের অम্তর্ভूকु কোণ $\angle B=60^{\circ}$ দেওয়া आएছ । जাহলে প্রদত্ত উপাঙ থেকে a বাহুর বিপরীত বেেণ $\angle A$ ， c বাহूর বিপরীত কেেণ $\angle \mathrm{C}$ जবং $\mathrm{AC}=\mathrm{b}$ গ্রাফের সাহাব্যে जヌং $b^{2}=a^{2}+c^{2}-2 a c \cos B \quad$ B $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ मृত্রের जাহাব্যে निিক়্ করি।
প্রड্রোজनীয় উপকরণ ：（i）বপপ্পিন（ii）ए্কেল（iii）গ্ञाए

दার্যপ্মতি ：
1．একটি গ্রাফ পেপারে স্মানাঙ্ধের অক্ক রেখা $X^{\prime} B X$ B YBY＇জाँकि ।

 বাহूর সমান করে $\mathrm{BC}=\mathrm{a}=9$ সে．মি．কেটে লেই।

3．尚দারার সাহাব্যে BC तেभার B ক্দ্দুতে $\angle \mathrm{CBD}$ $=60^{\circ}$ অङ्बन सरी।

4． BD রেখা হতে ক্র্রত্ম 12 বর্গবাহ্র সমান করে $\mathrm{BA}=\mathrm{c}=6$ সে．মি．কেটে নেই। A, C 元াগ করি।

4．গ্রাফ থেকে চাঁদার সাহাय্যে $\angle \mathrm{A}, \angle \mathrm{C}$ এবং পেস্পিল কম্শাসের সাহয্যে AC বাহুন দৈর্ঘ্য মেপে BX বরাবর বসিয্রে b বাহুর দৈর্ঘ্য নির্ণ্য করি।

रिসাব：

बाমরা জानि， $\mathrm{b}^{2}=\mathrm{a}^{2}+\mathrm{c}^{2}-2 \mathrm{ac} \cos \mathrm{B}$

$$
\begin{aligned}
&=9^{2}+6^{2}-2 \times 9 \times 6 \cos 60^{\circ} \\
&=81+36-108(\cdot 5) \\
& \Rightarrow \mathrm{b}^{2}=117-54=63 \\
& \mathrm{~b}=7.94 \text { 万ে.मि. (भ্রায়) }
\end{aligned}
$$

आবার $\frac{a}{\sin A}=\frac{b}{\sin B} \Rightarrow \frac{9}{\sin A}=\frac{7.94}{\sin 60^{\circ}}$
$\Rightarrow \sin \mathrm{A}=\frac{9 \times 0.866}{7.94}=$
$\Rightarrow \sin \mathrm{A}=\frac{17 \cdot 32}{18}=0.982$

$$
\mathrm{A}=78.99^{\circ} \text { (প্রায়) }
$$

उन्दूभ，$\frac{\mathrm{b}}{\sin B}=\frac{\mathrm{c}}{\sin } \mathrm{C} \Rightarrow \frac{7.94}{\sin 60^{\circ}}=\frac{6}{\sin C}$
$\Rightarrow \sin C=\frac{6 \times 0.866}{7.94}=0.65$

$$
\mathrm{C}=40.87^{\circ} \text { (थ্রায) }
$$

यक्ज मश्शन 8

b	8 সে．মি．	7.94 সে．মি．（প্রায়）
$\angle A$	79°（勿衣）	78.99°（9）｜
$\angle \mathrm{C}$	41°（勿迷）	40.87°（\％）｜स）

জ্পাষ্ণ ：নির্নেম্য $b=7.94$ নে．মি．（প্রায়），$\angle \mathrm{A}=79^{\circ}$ ज水 $\angle C^{\circ}=41^{\circ}$
 মান প্রায় সমান। षতএব ফলায়্न সঠিক।

ভর্তি পরীমান্র MCQ প্রশ্ন উজ্জরসহ ：

1．（a） $\tan \theta=\frac{5}{12} \quad$ এवः θ সूम्मत्याव रलে
$\sin \theta+\sec (-\theta)$ 日র মান－［DU 08－09］
（b）यभि $\cos A=\frac{4}{5}$ হग्र，उबে $\frac{1+\tan ^{2} A}{1-\tan ^{2} A}$ जर মান－
［BUET 06－07］
Sol＂${ }^{n}$ ：（a）\ominus गূশ্ষ＜োণ বনে
$\sin \theta+\sec (-0)=\frac{5}{13}+\frac{13}{12}=\frac{229}{156}$

（b） $\tan A=\frac{3}{4} \quad \frac{1+\tan ^{2} A}{1-\tan ^{2} A}=\frac{25}{7}$

（ক্যালকূনোটরের সাহাব্যে）
2． $\cot A-\tan A$ সयान－
［DU 08－09］
Sol ${ }^{\prime \prime} .: \cot A-\tan A=\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\sin \theta \cos \theta}$
$=\frac{2 \cos 20}{2 \sin \theta \cos \theta}=2 \cot 2 \theta$
3．（a） $\cos ^{2} 0^{\circ}+\cos ^{2} 10^{\circ}+\cos ^{2} 20^{\circ}+\cdots+$ $\cos ^{2} 90^{\circ}$ এর মাन－
［DU 08－09］
（b） $\cos ^{2} 30^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} 90^{\circ}+\quad+$ $\cos ^{2} 180^{\circ}$ बর মাन－
［BUET 06－07］
Sol＂．：（a）এখানে পদ সश्ᅯ্যা $=\frac{90-0}{10}+1=10$ जर्बाल 5 जোড়া পদ। Ans． 5
（b）এथानে পদ সং্খ্যা $=\frac{180-30}{30}+1=6$ जर्बाए 3 জোড়া পদ। Ans． 3

4． $\cos 75^{\circ}$ बর সঠिক মান－［BUET，DU 07－08］
A．$\frac{\sqrt{3}+1}{2 \sqrt{2}}$
B．$\frac{\sqrt{3}}{2 \sqrt{2}}$
C．$\frac{-\sqrt{3}}{2 \sqrt{2}}$
D．$\frac{\sqrt{3}-1}{2 \sqrt{2}}$

Sol ${ }^{n}$ ．：ब্যালকূলেটরের সাহাভ্যে， $\cos 75^{\circ}=0.2588$
Option D $=0.2588$
Ans．D
5． $\sin \left(780^{\circ}\right) \cos \left(390^{\circ}\right)-\sin \left(330^{\circ}\right) \cos \left(-300^{\circ}\right)$ এর মান－［DU 02－03，05－06；Jt U 05－06，08－09］

Sol ${ }^{n}$ ．：ক্যানকূলেটরের সাহাব্যে রাশি মান $=1$ ．
6. $\tan 54^{\circ}-\tan 36^{\circ}$ এর মান-
[DU 03-04; BUET 03-04]
Sol ${ }^{n}$. : প্রদত্ত মান $=2 \tan \left(54^{0}-36^{\circ}\right)$
$=2 \tan 18^{\circ}$ [निয়ম : $A+B=90^{\circ}$ रनে $\tan A-\tan B=2 \tan (A-B)]$
অथবা, ক্যানকূনেটরের সাহাব্যে কর্রতে হবে।
7. $\sin 65^{\circ}+\cos 65^{\circ}$ मयान-
[DU 02-03; KU 06-07]
श्रमउ मान $=\sqrt{2} \sin \left(65^{\circ}+45^{\circ}\right)=\sqrt{2} \sin 115^{\circ}$

$$
=\sqrt{2} \cos \left(65^{\circ}-45^{\circ}\right)=\sqrt{2} \cos 20^{\circ}
$$

निड्यम $8 a \cos A+b \sin A$

$$
\begin{aligned}
& =\sqrt{a^{2}+b^{2}} \sin \left(A+\tan ^{-1} \frac{b}{a}\right) \\
& =\sqrt{a^{2}+b^{2}} \cos \left(A-\tan ^{-1} \frac{b}{a}\right)
\end{aligned}
$$

8. $\tan 15^{\circ}$ এর মাन- [DU 00-01; CU 07-08]
A. $2+\sqrt{2}$
B. $2-\sqrt{3}$
C. $2+\sqrt{3}$
D. $3+\sqrt{2}$

Sol ${ }^{n}$. : ক্যানক্রেলেটরের সাহায্যে, $\tan 15^{0}=0.268$
Option B=0.268 . Ans. B
9. $\frac{\sin 75^{\circ}-\sin 15^{\circ}}{\sin 75^{\circ}+\sin 15^{\circ}}$ এর মान-
[DU 99-00, 04-05]
Sol ${ }^{n}$. : প্রদত্ত রাশি $=\frac{\cos 15^{\circ}-\sin 15^{\circ}}{\cos 15^{\circ}+\sin 15^{\circ}}$

$$
=\tan \left(45^{\circ}-15^{0}\right)=\frac{1}{\sqrt{3}}
$$

निड़ू : 1. $\frac{\cos A-\sin A}{\cos A+\sin A}=\tan \left(45^{\circ}-A\right)$
2. $\frac{\cos A+\sin A}{\cos A-\sin A}=\tan \left(45^{\circ}+A\right)$

অथবা, ক্যানকূুেটটরের সাহব্যে প্রদ্তত রাশি $=0.57735$
10. $\cot \frac{\pi}{20} \cot \frac{3 \pi}{20} \cot \frac{5 \pi}{20} \cot \frac{7 \pi}{20} \cot \frac{9 \pi}{20}$
[RU 07-08]
Sol ${ }^{n}$.: ক্যানকূনেটরের সাহাব্যে প্রদত্ত মান $=1$

$$
\frac{\pi}{20}=\frac{180}{20}=9
$$

11. $\frac{1-\cos 2 \theta+\sin 2 \theta}{1+\cos 2 \theta+\sin 2 \theta}=$?
[CU 02-03, RU 07-08]
A. $\sec \theta$
B. $\sin \theta$
C. $\tan \Theta$
D. $\cot \theta$ Sol ${ }^{n} .: \theta=30^{n}$ বनिय़ि প্রদত্ত রাশি $=0.5773$
$\tan 30^{\circ}=0.5773$
Ans. D
12. n একটি পুণ সৃখ্যা হলে $\cos \{(2 n+1) \pi+\pi / 3\}$
[SU 06-070]
A. $-\frac{1}{2}$
B. 0
C. 1
D. ক্কেনিটিই गয়।

Sol".$: 11=0$ इনে भ্রमত রাশি $=\cos (\pi+\pi / 3)=-\frac{1}{2}$ $\mathrm{n}=1$ इबে ত্রদজ রাশি $=\cos (3 \pi+\pi / 3)=-\frac{1}{2}$
13.(a) $\tan 27^{\circ}+\tan 18^{\circ}+\tan 27^{\circ} \tan 18^{\circ}$ बর घान-
[IU 05-06]
(b) $\tan 75^{\circ}-\tan 30^{\circ}-\tan 75^{\circ} \tan 30^{\circ}$ এর

घान-
[DU 03-04]
Sol ${ }^{n} .:(a)$ প্রদত রাশি $=\tan \left(27^{\circ}+18^{\circ}\right)=1$
(b) প্রদত্ত র্নাশি $=1$

অथবা, ক্যানকূুেেটেের সাহায্যো প্রদত্ত রাণি $=1$
निয्रम : (a) $A+B=n \pi+\pi / 4$ इलে,
$\tan A+\tan B+\tan A \tan B=1$
(b) $A-B=\pi / 4$ रल. ,
$\tan A-\tan B-\tan A \tan B=1$
जथ্যা, ক্যানকুলৌরেরে সাহায্যে প্রদত্ত রাশি $=1$
14. $\sin A=\frac{1}{2}$ जবए $\tan B=\sqrt{3}$ रग़ उवে $\sin A \cos B+\cos A \sin B$ बর মান-[KU 03-04] Sol ${ }^{\prime \prime} .: A=30^{\circ}, B=60^{\circ}$

প্রদब রাশि $=\sin (A+B)=\sin 90^{\circ}=1$
16. $A+B+C=\pi$ रल $\sin 2 A+\sin 2 B+$ $\sin 2 C$ এর মান-
[KU ; RU 07-08]
a. $4 \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}$
b. $4 \sin ^{2} A \sin ^{2} B \sin ^{2} C$
c． $1-4 \sin A \sin B \sin C$ d． $4 \sin A \sin B \sin C-1$ Sol ${ }^{n}$ ： $\mathrm{A}=\mathrm{B}=\mathrm{C}=60^{\circ}$ ४র্রে প্রা রাশr $=2.598$
Option গুন্োতে $\mathrm{A}=\mathrm{B}=\mathrm{C}=60^{\circ}$ বসানে $\mathrm{a}=2.598$
17． $\tan A+\tan B+\tan C=\tan A \tan B \tan C$ रলে $\mathrm{A}+\mathrm{B}+\mathrm{C}$ এর মান কঠ？［ EA 05－06］
A．$\pi / 2$
B． 0
C．π
D． 2π

Sol ${ }^{n}$ ．：Ans．π
18． $\sin ^{2}\left(60^{\circ}+A\right)+\sin ^{2} A+\sin ^{2}\left(60^{\circ}-A\right)$ এর মান－
Sol ${ }^{n}$ ．：A $=30^{0}$ ধরে，

19． ABC ত্রिषूष्बে $\cos \mathrm{A}+\cos \mathrm{C}=\sin \mathrm{B}$ रলে， $\angle C$ সমान－
［DU 04－05］
A． 30°
B． 60°
C． 90°
D． 45°

কৌশল 8 কোন ত্রিজুজ্⺀ের দুইটি কোণের cosine অনুপাতের যোগফল অপর কোণের sine এর সমান হলে ত্রিজুজ্টি সমকোপী এবং cosine এর সাথের কোণঘয়ের যেকোন একটি কোণ সমকোণ।
Sol ${ }^{n}$ ．：Ans．C
20． ABC प्रिसूজ্खে $a=8, b=4, c=6$ रूে
$\angle A=$ ？［SU 08－09］
A． $\sin ^{-1} \frac{\sqrt{5}}{8}$
B． $2 \sin ^{-1} \frac{\sqrt{5}}{8}$
C． $\sin ^{-1} \frac{4}{5}$
D． $2 \sin ^{-1} \frac{4}{5}$

Sol $^{n} .: \cos A=\frac{4^{2}+6^{2}-8^{2}}{2.4 .6}=-\frac{1}{4}$

$$
\mathrm{A}=104.48^{\circ}
$$

Option পুনোত $D=106.26^{\circ} \approx 104.48^{0}$
21． ABC সমঘিবাহू ত্রিভুজ যার $\mathrm{a}=10 \mathrm{~cm}$ এবर $b=c$ बिডूজটির পরিলিशिত বৃজ্েের ব্যাসার 10 cm रলে $\angle B=$ ？
［SU 08－09］
Sol ${ }^{n}$ ．：$\frac{a}{\sin A}=2 R \Rightarrow \sin A=\frac{10}{2.10}$
$\Rightarrow A=30^{\circ} \therefore \mathrm{B}+\mathrm{C}=180^{\circ}-30^{\circ}=150^{\circ}$

$$
B=150^{\circ} / 2=75^{\circ}
$$

 7 হলে স্যুলকোণঢির মান－［IU 06－07；RU 07－08］ Sol ${ }^{n}$ ：：স्यूलक्वেণけি $=\cos ^{-1} \frac{3^{2}+5^{2}-7^{2}}{2.3 .5}=120^{\circ}$

23．खোন ত্রিজूজ্রের বাগ্গুলো 13，14， 15 रलে ত্রিভুজটির ক্কেশ্রষল－［RU 07－08；BUET 06－07］
Sol ${ }^{n}$ ．：$S=\frac{13+14+15}{2}=21$
क्ष्ब্রऐन $=\sqrt{21(21-13)(21-14)(21-15)}=84$
24． ABC ज्रिसूप्ध $\angle A=60^{\circ}, \angle B=75^{\circ}$ ब पर $c=\sqrt{6} \mathrm{~cm}$ रलে $a=$ ？
［SU 06：07］
Sol ${ }^{\prime \prime}$ ：$\angle C=180^{\circ}-\left(60^{\circ}+75^{\circ}\right)=45^{\circ}$

$$
\frac{a}{\sin A}=\frac{c}{\sin C} \Rightarrow a=\sqrt{6} \frac{\sin 60^{\prime \prime}}{\sin 45^{\circ}}=3
$$

25．$(a-b)^{2} \cos ^{2} \frac{C}{2}+(a+b)^{2} \sin ^{2} \frac{C}{2}=$ ？
［ SU 06－07］
প্রमত রাশি $=a^{2}+b^{-}-2 a b\left(\cos ^{2} \frac{C}{2}-\sin ^{2} \frac{C}{2}\right)$
$=a^{2}+b^{2}-2 a b \cos C=c^{2}$
26． ABC এবটি ত্রিভুজ रলে $2(b c \cos A+$ $c a \cos B+a b \cos C)=$ ？
［RU 06－07］
Sol ${ }^{n}$ ．：প্रদత রাশ্শ $=2 \mathrm{bc} \frac{b^{2}+c^{2}-a^{2}}{2 b c}+$
$2 c a \frac{c^{2}+a^{2}-b^{2}}{2 c a}+2 b c \frac{a^{2}+a^{2}-b^{2}}{2 a b}$ $=a^{2}+b^{2}+c^{2}$
27．যে＜োন ब্রিভুজের ক্小েত্রে $b c \cos ^{2} \frac{A}{2}+$ $c a \cos ^{2} \frac{B}{2}+a b \cos ^{2} \frac{C}{2}=$ ？
［IU 05－06］
Sol ${ }^{n} .:$ প্রमত্ত রাশি $=\mathrm{bc} \frac{s(s-a)}{b c}+\mathrm{ca} \frac{s(s-b)}{c(a}$
$+\mathrm{ab} \frac{s(s-c)}{a b}=\mathrm{s}\{3 \mathrm{~s}-2(\mathrm{a}+\mathrm{b}+\mathrm{c})\}$
$=s(3 s-2 s)=s^{2}$

কিছ্র বিশেষ সূত্র / কৌশন যা ভর্তি পরীস্মায় দ্র্ত উত্তর করতে সাহায্য করবে :

1. $f(x)=\frac{a x+b}{c x+d}$ रलि, $f^{-1}(x)=\frac{-d x+b}{c x-a}$,

ডোমেন $f=\mathbb{R}-\left\{-\frac{d}{c}\right\}$, রেঞ $f=\mathbb{R}-\left\{\frac{a}{c}\right\}$
2. $f(x)=a x+b$ रनে, $f^{-1}(x)=\frac{x-b}{a}$, ড্েোমেন $f=\mathbb{R}$, রেঞ্জ $f=\mathbb{R}$
3. $f(x)=\frac{x^{2}-a^{2}}{x-a}$ रूে,

ডোমেন $f=\mathbb{R}-\{a\}$, রেঞ্জ $f=\mathbb{R}-\{2 a\}$
4. $f(x)=\sqrt{x^{2}-a^{2}}$ रूে, ডোমেন $f=\{x \in \mathbb{R} \quad x \leq-a$ or $x \geq a\}$, রেঞ্জ $f=\{x \in \mathbb{R} \quad x \geq 0\}$
5. $f(x)=\sqrt{x^{2}-a^{2}}$ रलि, ডোমেন $f=\{x \in \mathbb{R}:-a \leq x \leq a\}=[-a, a]$, রেজ $f=\{x \in \mathbb{R}: 0 \leq x \leq a\}=[0, a]$
6. $f(x)=\log (a+b x)$ रলে,

ডোমেন $f=\left\{x \in \mathbb{R}: x>-\frac{a}{b}\right\}$, রেজ $f=\mathbb{R}$
7. $f(x)=e^{x}$ হলে, ডোমেন $f=\mathbb{R}$,

রেজ্জ $f=\{x \in \mathbb{R}: x>0\}$

প্রশ্নমানা VIII

1. (a) Sol $^{\mathrm{n}}: \mathrm{f}(x)=x^{2}$ দ্বারা সংজ্ঞায়িত $\mathrm{f}:[0$, 2] \rightarrow ফাংশনটি একক কিষ্তু সার্বিক নয় ।
$[0,2]$ এর ভিন্ন ভিন্ন উপাদানের ছবি ভিন্ন ভিন্ন কিন্জু \mathbb{R} সেটের সকল উপাদানই A সেটের উপাদানের ছবি नয়। \therefore Ans. C.
(b) $\mathrm{Sol}^{\mathrm{n}}:[-2,2]$ এর ভিন্ন উপাদান -2 ও 2 এর ছবি 4 কিষ্ঠু $[0,4]$ সেটের সকল উপাদানই [$-2,2$] সেটের উপাদানের ছবি । \therefore Ans. B.
(c) $\mathrm{Sol}^{\mathrm{n}}$: সবগুলি তথ্য সত্য । \therefore Ans. D.
(d) Sol ${ }^{n}$: দ্বিঘাত ফাংশনের লেখ y অক্ষ অথবা y অক্ষের সমান্তরাল রেখার সাপেক্ষে প্রতিসম হয়।

Ans.B.
(e) Sol ${ }^{n}$: $f(x)$ এর রূপান্তরি ফাংশন $f(x-4)$ ডানে স্থান্তরিত হয় । Ans. B.
(f) Sol ${ }^{n}: x$ अক্ষের সাপেক্ষে $y=x^{2}$ এর প্রতিচ্ছবি $y=-x^{2}$
(g) Sol ${ }^{n}: 3$ বিজোড় বলে $\operatorname{cosec}^{3}\left(4 \theta+\frac{\pi}{3}\right)$ এর পर्याয় $=\frac{\pi}{|4|}=\frac{\pi}{4} . \quad \therefore$ Ans.D.
(h) Sol $^{\text {n }}: 1-x^{2} \geq 0 \Rightarrow x^{2}-1 \leq 0$

$$
\Rightarrow-1 \leq x \leq 1 \quad \therefore \text { Ans. B }
$$

(i) Sol ${ }^{\mathrm{n}}: \mathrm{x}>0$ रलে $\frac{x}{|x|}=1, \mathrm{x}<0$ रलে $\frac{x}{|x|}=-1$ বিস্তার $\mathrm{f}=\{-1,1\} \quad \therefore$ Ans. A.
(j) Sol ${ }^{n}$: $f(x)$ ফাংশনের গ্রাফ থেকে এর রূপাষ্তরিত ফাংশন $f(x+2)$ এর গ্রাফ 2 একক স্থানান্তরিত হবে বামে। \therefore Ans. A.
(k) Sol ${ }^{n}: f(x)=x+1$ এবং $g(x)=2 x$ रলে, $(f \circ g)(2)=f(g(2))=f(2 \times 2)=f(4)=4+1=5$ এর মান নিচের কোনটি?
D. একক নয়, সার্বিক নয়
$\mathrm{g}(x)=2 x \quad \therefore \mathrm{~g}^{-1}(x)=\frac{x}{2}$.

$$
\begin{aligned}
& \left(f o g^{-1}\right)(2)=f\left(g^{-1}(2)\right)=f\left(\frac{2}{2}\right)=f(1) \\
& =1+1=2
\end{aligned}
$$

2. (a) দেওয়া আছে, $\mathrm{f}(x)=\left\{\begin{array}{c}3 x-1, x>3 \\ x^{2}-2,-2 \leq x \leq 3 \\ 2 x+3, x<-2\end{array}\right.$
[ঢা.'১২; য.'০৭, রা '০৮; চ .'০৮,'১২; কৃ.'১৩] $\mathrm{f}(2)=2^{2}-2$
$[\because-2 \leq 2 \leq 3]$
$=4-2=2$
$\mathrm{f}(4)=3 \times 4-1$
$=12-1=11$
$\mathrm{f}(-1)=(-1)^{2}-2$
$[\because-2 \leq-1 \leq 3]$
$=1-2=-1$

$$
\begin{aligned}
& f(-3)=2 \times(-3)+3 \\
& \quad=-6+3=-3
\end{aligned}
$$

$$
[\because-3<-2]
$$

2(b) $\mathrm{f}(x)=x^{2}+a x+b, \mathrm{f}(1)=1$ ® $\mathrm{f}(2)=2$ হনে, $f(3)$ এর মান নির্ণয় কর।
[Б.'०8]
সমাধানঃ দেওয়া আছে, $\mathrm{f}(x)=x^{2}+a x+b \cdots(1)$
$\mathrm{f}(1)=1^{2}+a .1+b=1 \Rightarrow \mathrm{a}+\mathrm{b}=0 \cdots$ (2)
$\mathrm{f}(2)=2^{2}+a .2+b=1$
$\Rightarrow 2 \mathrm{a}+\mathrm{b}=-3$
(3) থেকে (2) বিয়োগ করে পাই, $a=-3$
(2) থেকে পাই, $-3+b=0 \Rightarrow b=3$
(1) $\Rightarrow \mathrm{f}(x)=x^{2}-3 x+3$
$\mathrm{f}(3)=3^{2}-3 \times 3+3=9-9+3=3$ (Ans.)
2.(c) $A=[-3,5]$ এবए $f: A \rightarrow \mathbb{R}$ ফाशশनটি $\mathrm{f}(x)=2 x^{2}-7$ घারা সৃষ্बায়িত। $\mathrm{f}(2), \mathrm{f}(6)$ এবং $\mathbf{f (t - 2)}$ निर्ণয় কর।
সমাধান : $2 \in A=[-3,5]$, সুতরাং $f(2)$ সংজ্ঞায়িত এবश $\mathrm{f}(2)=2.2^{2}-7=8-7=1$
$6 \notin \mathrm{~A}=[-3,5]$, সুতরাং $f(6)$ अসংজ্बায়িত । यमि $\mathrm{t}-2 \in \mathrm{~A}=[-3,5]$ i.e. $-3 \leq \mathrm{t}-2 \leq 5$ i.e. $-1 \leq t \leq 7$ হয় তবে $f(t-2)$ নঞজ্ঞায়িত হবে এবং $\mathrm{f}(\mathrm{t}-2)=2 .(\mathrm{t}-2)^{2}-7$

$$
\begin{aligned}
& =2\left(t^{2}-4 t+4\right)-7=2 t^{2}-8 t+8-7 \\
& =2 t^{2}-8 t+1
\end{aligned}
$$

3.(a) $f(x)=b \frac{x-a}{b-a}+a \frac{x-b}{a-b}$ হলে, লেখা যে, $f(a)+f(b)=f(a+b)$ 【ব.’०৮; य.’২২; ঢ.’○৭; রা.'০৮,'১৩; কু.'০৮]

প্রমাণ : দেওয়া আছে, $f(x)=b \frac{x-a}{b-a}+a \frac{x-b}{a-b}$

$$
f(a)=b \frac{a-a}{b-a}+a \frac{a-b}{a-b}=a
$$

$f(b)=b \frac{b-a}{b-a}+a \frac{b-b}{a-b}=b$ এব
$f(a+b)=b \frac{a+b-a}{b-a}+a \frac{a+b-b}{a-b}$
$=\frac{b^{2}}{b-a}+\frac{a^{2}}{a-b}=\frac{a^{2}}{a-b}-\frac{b^{2}}{a-b}$
$=\frac{a^{2}-b^{2}}{a-b}=\frac{(a-b)(a+b)}{(a-b)}=a+b$
$=f(a)+f(b)$

$$
f(a)+f(b)=f(a+b) \text { (Showed) }
$$

3(b) $f(x)=\frac{1}{2}\left(3^{x}+3^{-x}\right), g(x)=\frac{1}{2}\left(3-3^{-x}\right)$
रনে, প্রমাণ কর বে, $\mathrm{f}(x+y)=\mathrm{f}(x) \mathrm{f}(y)+\mathrm{g}(x)$ $\mathrm{g}(\mathrm{y}) \quad$ [य.'০৯;সि.'১২; দি.'১৩; চ.'১৪] প্রমাণঃ L.H.S. $=\mathrm{f}(x+y)=\frac{1}{2}\left(3^{x+y}+3^{-x-y}\right)$
R.H.S. $=\mathrm{f}(x) \mathrm{f}(y)+\mathrm{g}(x) \mathrm{g}(y)$

$$
\begin{aligned}
& =\frac{1}{2}\left(3^{x}+3^{-x}\right) \frac{1}{2}\left(3^{y}+3^{-y}\right)+ \\
& \frac{1}{2}\left(3^{x}-3^{-x}\right) \frac{1}{2}\left(3^{y}-3^{-y}\right) \\
& =\frac{1}{4}\left(3^{x+y}+3^{x-y}+3^{-x+y}+3^{-x-y}+3^{x+y}\right. \\
& \left.-3^{x-y}-3^{-x+y}+3^{-x-y}\right) \\
& =\frac{1}{4} \cdot 2\left(3^{x+y}+3^{-x-y}\right)=\frac{1}{2}\left(3^{x+y}+3^{-x-y}\right)
\end{aligned}
$$

L.H.S. = R.H.S. (Proved)

4(a) $y=f(x)=\frac{a x+b}{c x-a}$ इলে, x এর মাষ্যমে $f(y)$ এর মান নির্ণ্য কর। [য.'०৭; প্র.ভ.9.’’৪] প্রমাণ ः দেওয়া আছে, $y=f(x)=\frac{a x+b}{c x-a}$

$$
\begin{equation*}
f(x)=\frac{a x+b}{c x-a} \Rightarrow f(y)=\frac{a y+b}{c x-a} \cdots \tag{1}
\end{equation*}
$$

এবং $y=\frac{a x+b}{c x-a} \Rightarrow c x y-a y=a x+\mathrm{b}$
$\Rightarrow c x y-a x=a y+b$
$\Rightarrow(\mathrm{c} y-a) x=a y+\mathrm{b}$
$\Rightarrow x=\frac{a y+b}{c y-a}=f(y) \quad$ [(1) घारा]

$$
f(y)=x
$$

4(b) $\phi(x)=\frac{x-1}{x+1}$ इलে, প্রমাণ बর यে, $\frac{\phi(x)-\phi(y)}{1+\phi(x) \phi(y)}=\frac{x-y}{1+x y}$ [य.'०२; সि.'०৫] প্রমাণ : দেওয়া জাছে,

$$
\begin{aligned}
& \phi(x)=\frac{x-1}{x+1} . \quad \phi(y)=\frac{y-1}{y+1} \\
& \begin{aligned}
& \frac{\phi(x)-\phi(y)}{1+\phi(x) \phi(y)}=\frac{\frac{x-1}{x+1}-\frac{y-1}{y+1}}{1+\frac{x-1}{x+1} \frac{y-1}{y+1}} \\
&=\frac{\frac{x y+x-y-1-(x y-x+y-1)}{(x+1)(y+1)}}{\frac{x y+x+y+1+x y-x-y+1}{(x+1)(y+1)}} \\
& \quad=\frac{x y+x-y-1-x y+x-y+1}{2 x y+2}=\frac{2(x-y)}{2(1+x y)} \\
& \frac{\phi(x)-\phi(y)}{1+\phi(x) \phi(y)}=\frac{x-y}{1+x y} \text { (Proved) }
\end{aligned}
\end{aligned}
$$

3(c) यमि $f(x)=\frac{2 x+1}{2 x-1}$ इয়, তाহनে প্রমাণ কর ㅈ, $\frac{f(x)+1}{f(x)-1}=2 x$
[দি.'১০; ব.'১৩]
প্রমাণ ৪ দেওয়া আছে, $f(x) \quad \frac{2 x+1}{x-1}$
$\Rightarrow \quad \frac{f(x)}{1}=\frac{2 x+1}{2 x-1}$
$\Rightarrow \frac{f(x)+1}{f(x)-1}=\frac{(2 x+1)+(2 x-1)}{(2 x+1)-(2 x-1)}$
[যোজন-বিয়োজন করে ।]
$\Rightarrow \frac{f(x)+1}{f(x)-1}=\frac{4 x}{2} \quad \frac{f(x)+1}{f(x)-1}=2 x$

4(d) यमि $f(x)=\frac{3 x+5}{3 x-5}$ इয়, তारলে প্রমাণ कর य., $\frac{f(x)+1}{f(x)-1}=\frac{3 x}{5}$.
[b.' \quad '১]
প্রমাণ \& দেওয়া আছে, $f(x)=\frac{3 x+5}{3 x-5}$
$\Rightarrow \frac{f(x)}{1}=\frac{3 x+5}{3 x-5}$
$\Rightarrow \frac{f(x)+1}{f(x) \mp 1}=\frac{(3 x+5)+(3 x-5)}{(3 x+5)-(3 x-5)}$
[যোজন-বিয়োজন করে ।]
$\Rightarrow \frac{f(x)+1}{f(x) \mp 1}=\frac{6 x}{10} \quad \frac{f(x)+1}{f(x)-1}=\frac{3 x}{5}$
4(e) यमि $\mathrm{y}=f(x)=\frac{5 x+3}{4 x-5}$ रয়, তাহলে দেখাও dে, $x=f(y)$. [ঢ.'১১; সি.’১৩]

প্রমাণ ঃ দেওয়া জাছে, $\mathrm{y}=f(x)=\frac{5 x+3}{4 x-5}$

$$
f(y)=\frac{5 y+3}{4 y-5},\left[\because f(x)=\frac{5 x+3}{4 x-5}\right]
$$

এथन, $\mathrm{y}=\frac{5 x+3}{4 x-5} \Rightarrow 4 \mathrm{xy}-5 \mathrm{y}=5 \mathrm{x}+3$
$\Rightarrow 4 \mathrm{xy}-5 \mathrm{x}=5 \mathrm{y}+3$
$\Rightarrow(4 y-5) x=5 y+3$
$\Rightarrow \mathrm{x}=\frac{5 y+3}{4 y-5}=\mathrm{f}(\mathrm{y}) \quad \therefore \mathrm{x}=\mathrm{f}(\mathrm{y})$
4(f) $y=f(x)=\frac{4 x-7}{2 x-4}$ रनে, প্রমাণ কর बে, $f(y)=x \quad$ [রা.'১২; ব.'১১; চ.'১২; দি. '০৯,’১৪;
সि.'০৯; ঢा.'कু.'১৩]
প্রমাণ ঃ দেওয়া আছে, $y=\frac{4 x-7}{2 x-4}$
$\Rightarrow 4 x-7=2 x y-4 y$
$\Rightarrow 4 x-2 x y=-4 y+7$
$\Rightarrow-x(2 y-4)=-(4 y-7)$
$\Rightarrow x=\frac{4 y-7}{2 y-4}$
घাবার, $f(x)=\frac{4 x-7}{2 x-4}$

$$
\begin{equation*}
f(y)=\frac{4 y-7}{2 y-4} \ldots \tag{ii}
\end{equation*}
$$

(i) ও (ii) হতে পাই, $\mathrm{f}(\mathrm{y})=\mathrm{x}$
$\mathcal{f}(\mathrm{g}) f(x)=\frac{1+x^{2}+x^{4}}{x^{2}}$ रলে, দেখাও বে, $f\left(\frac{1}{x}\right)=f(x)$
[রা.’’৬; মা.’○৩]
প্रমাণ 8 मেওয়া জাছ, $f(x)=\frac{1+x^{2}+x^{4}}{x^{2}}$

$$
\begin{aligned}
f\left(\frac{1}{x}\right) & =\frac{1+\frac{1}{x^{2}}+\frac{1}{x^{4}}}{\frac{1}{x^{2}}}=\frac{x^{4}+x^{2}+1}{x^{4}} \times \frac{x^{2}}{1} \\
& =\frac{1+x^{2}+x^{4}}{x^{2}}=f(x)
\end{aligned}
$$

5(a) $f(x)=e^{x}+e^{-x}$ रলে, প্রমাণ কর যে, $f(x+y) f(x-y)=f(2 x)+f(2 y)$
[চ.'০৯,'১৩; สূ.'১০; द্রা.'১০, '১8; ব. '০৯; সি.'০৭; ঢা.’১২; य. ’০৮,'১২৷
প্रমাণ \& L.H.S. $=f(x+y) f(x-y)$
$=\left\{e^{x+y}+e^{-(x+y)}\right\}\left\{e^{x-y}+e^{-(x-y)}\right\}$
$=e^{x+y+x-y}+e^{x+y-x+y}+e^{-x-y+x-y}+e^{-x-y-x+y}$
$=e^{2 x}+e^{2 y}+e^{-2 y}+e^{-2 x}$
$=\left(e^{2 x}+e^{-2 x}\right)+\left(e^{2 y}+e^{-2 y}\right)$
$=\mathrm{f}(2 x)+\mathrm{f}(2 y)=$ R.H.S.
L.H.S. $=$ R.H.S. $\quad($ Proved $)$

5(b) $\phi(x)=\ln \left(\frac{1-x}{1+x}\right)$ হनে, मেখা बে, $\phi(y)+$ $\phi(z)=\phi\left(\frac{y+z}{1+y z}\right)$ [द्रा.'১০; य.'০৬; কু.'১১; ব.'১২]

$$
\begin{aligned}
& \text { भ्रमाण : } \phi(y)+\phi(z)=\ln \left(\frac{1-y}{1+y}\right)+\ln \left(\frac{1-z}{1+z}\right) \\
& =\ln \left(\frac{1-y}{1+y}\right)\left(\frac{1-z}{1+z}\right)=\ln \frac{1-y-z+y z}{1+y+z+y z} \\
& 1-\frac{y+z}{1+y z} \\
& \phi\left(\frac{y+z}{1+y z}\right)=\ln \frac{1+y z-y-z}{1+\frac{y+z}{1+y z}} \\
& \phi(y)+\phi(z)=\phi\left(\frac{y+z}{1+y z}\right)
\end{aligned}
$$

5(c) $f(x)=\ln (\sin x) ఆ \phi(x)=\ln (\cos x)$ হबে, দে丹া囚 যে, $e^{2 \phi(a)}-e^{2 f(a)}=e^{\phi(2 a)}$
[य.'১০; ব.'১০,'১৪; ঢ.'১০; সি. '০৮,'১০,'ग৪; बা.'০њ] প্রমাণ : $f(x)=\ln (\sin x) \quad f(a)=\ln (\sin a)$
$\phi(x)=\ln (\cos x) \quad \therefore \phi(a)=\ln (\cos a)$ এবং $\phi(2 a)=\ln (\cos 2 a)$
এখन, $e^{2 \varphi(a)}-e^{2 f(a)}=\mathrm{e}^{2 \ln (\cos a)}-e^{2 \ln (\sin a)}$

$$
\begin{aligned}
& =e^{\ln \left(\cos ^{2} a\right)}-e^{\operatorname{tn}\left(\sin ^{2} a\right)}=\cos ^{2} a-\sin ^{2} a \\
& =\cos 2 a=e^{\ln (\cos 2 a)}=e^{\phi(2 a)} \\
& e^{2 \varphi((a)}-e^{2 f(a)}=e^{\phi(2 a)} \text { (Showed) }
\end{aligned}
$$

$5(\mathrm{~d}) f(x)=\ln (\sin x) \quad \otimes \quad \phi(x)=\ln (\cos x)$
रनে, দেখাఆ यে, $e^{2 \phi(x)}+e^{2 f(x)}=1 \quad$ [প্র.ভ.भ. '১১]
প্রমাণ : $f(x)=\ln (\sin x) \quad \therefore f(a)=\ln (\sin a)$ এবং

$$
\phi(x)=\ln (\cos x) \quad \phi(a)=\ln (\cos a)
$$

এVन, $e^{2 \varphi(a)}+e^{2 f(a)}=e^{2 \ln (\cos x)}+e^{2 \ln (\sin x)}$

$$
\begin{aligned}
& =e^{\ln \left(\cos ^{2} x\right)}+e^{{\ln \left(\sin ^{2} x\right)}^{2}}=\cos ^{2} \mathrm{x}+\sin ^{2} \mathrm{X} \\
& e^{2 \varphi(a)}+e^{2 f(a)}=1 \text { (Showed) }
\end{aligned}
$$

5(e) $f(x)=\ln (x)$ ® $\phi(x)=x^{3}$ হলে, দেथাও खে, $f(\phi(x))=3 f(x)$
[ব.'০২]
প্রমাণ : $f(\phi(x))=f\left(x^{3}\right)\left[\because \phi(x)=x^{3}\right]$
$=\ln \left(x^{3}\right) \quad[\because f(x)=\ln (x)]$
$=3 \ln (x)=3 f(x)[\because f(x)=\ln (x)]$
$f(\phi(x))=3 f(x)$ (Showed)

5(f) $f(x)=\ln (x)$ ও $\phi(x)=x^{n}$ হলে, দেখাও যে, $f(\phi(x))=n f(x) \quad$ [রা. '০৩,'०१; সि. '০৬] প্রমাণ : $f(\phi(x))=f\left(x^{n}\right) \quad\left[\because \phi(x)=x^{n}\right]$

$$
\begin{aligned}
& =\ln \left(x^{n}\right) \quad[\because f(x)=\ln (x)] \\
& =\mathrm{n} \ln (x)=\mathrm{n} f(x) \quad[\because f(x)=\ln (x)] \\
& f(\phi(x))=n f(x) \quad \text { (Showed) }
\end{aligned}
$$

6. (a) $f(x)=\cos x$ হলে,দেখাও যে,

$$
f(2 x)=2\{f(x)\}^{2}-1 \text { এবং }
$$

$$
f(3 x)=4\{f(x)\}^{3}-3 f(x) \quad[\text { ঢা.’০১, য.'১৩] }
$$

প্রমাণ ঃ দেওয়া আছে, $f(x)=\cos x$

$$
\begin{aligned}
f(2 x) & =\cos 2 x=2 \cos ^{2} \mathrm{x}-1 \\
& =2(\cos x)^{2}-1 \\
f(2 x) & =2\{\mathrm{f}(x)\}^{2}-1 \text { (Showed) }
\end{aligned}
$$

$f(3 x)=\cos 3 x=4 \cos ^{3} x-3 \cos x$

$$
=4(\cos x)^{3}-3 \cos x
$$

$\therefore f(3 x)=4\{\mathrm{f}(x)\}^{3}-3 \mathrm{f}(x)$ (Showed)
6(b) $\mathrm{f}(x)=\sin ^{3} x \cos x$ रणन, $f\left(x-\frac{3 \pi}{2}\right)$ এर মান নির়্ কর।
[প্র.ভ.श.'०৬]
সমাধান ঃ দেওয়া আছে, $\mathrm{f}(x)=\sin ^{3} x \cos x$

$$
\begin{aligned}
& f\left(x-\frac{3 \pi}{2}\right)=\sin ^{3}\left(x-\frac{3 \pi}{2}\right) \cos \left(x-\frac{3 \pi}{2}\right) \\
& =\left[\sin \left\{-\left(\frac{3 \pi}{2}-x\right)\right\}\right]^{3} \cos \left\{-\left(\frac{3 \pi}{2}-x\right)\right\} \\
& =\left[-\sin \left(\frac{3 \pi}{2}-x\right)\right]^{3} \cos \left(\frac{3 \pi}{2}-x\right) \\
& =\left[+\cos ^{3} x\right]^{3}\{-\sin x\} \\
& =-\cos ^{3} x \sin x \text { (Ans.) }
\end{aligned}
$$

6.(c) $f(x)=\frac{1-x}{1+x}$ रলে, প্রমাণ কর यে, $f(\cos \theta)=\tan ^{2} \frac{\theta}{2} \quad$ [א.'০৭,'০৯,'১8;मि.'১১; সি.'১১] প্রমাণ ঃ দেওয়া আছে, $f(x)=\frac{1-x}{1+x}$
$f(\cos \theta)=\frac{1-\cos \theta}{1+\cos \theta}=\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}}$
$f(\cos \theta)=\tan ^{2} \frac{\theta}{2}$ (Showed)
7. (a) $\phi(x)=\tan x$ रसে, দেখাও যে, $\phi(\mathbf{a}-\mathbf{b})=\frac{\phi(\mathbf{a})-\phi(\mathbf{b})}{1+\phi(\mathbf{a}) \phi(\mathbf{b})}$
[সि.'০৩]
প্রমাণ ঃ দেওয়া আছে, $\phi(x)=\tan x$
$\phi(a)=\tan a, \phi(b)=\tan b$ এবং
$\phi(a-b)=\tan (a-b)=\frac{\tan a-\tan b}{1+\tan a \tan b}$
$\phi(a-b)=\frac{\phi(a)-\phi(b)}{1+\phi(a) \phi(b)}$ (Showed)
7(b) $f(x)=\tan x$ इझে, দেখা যে, $f(x+y)=\frac{f(x)+f(y)}{1-f(x) f(y)}$

প্রমাণ ঃ দেওয়া আছে, $f(x)=\tan x$
$f(y)=\tan y$ এব゚

$$
f(x+y)=\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}
$$

$$
f(x+y)=\frac{f(x)+f(y)}{1-f(x) f(y)} \text { (Showed) }
$$

$7(c) f(x)=\cos (\ln x)$ रबে, $f(x) f(y)-$ $\frac{1}{2}\left[f\left(\frac{x}{y}\right)+f(x y)\right]$ এর মান নির্ণয় কর।

> [য. ’০৫; কু.'০৭, '০৯; সি., দি.’১১]

সমাধান ঃ দেওয়া আছে, $\mathrm{f}(x)=\cos (\ln x)$

$$
\begin{aligned}
& \mathrm{f}(x) \mathrm{f}(y)-\frac{1}{2}\left[f\left(\frac{x}{y}\right)+f(x y)\right] \\
& =\cos (\ln x) \cos (\ln y)- \\
& \quad \frac{1}{2}\left[\cos \left(\ln \frac{x}{y}\right)+\cos (\ln x y)\right] \\
& =\cos (\ln x) \cos (\ln y)- \\
& \frac{1}{2}[\cos (\ln x-\ln y)+\cos (\ln x+\ln y)] \\
& =\cos (\ln x) \cos (\ln y)-
\end{aligned}
$$

$\frac{1}{2}[2 \cos (\ln x) \cos (\ln y)]$ $=\cos (\ln x) \cos (\ln y)-\cos (\ln x) \cos (\ln y)$ $=0$ (Ans.)
8. (a) দেওয়া आছে, $\mathrm{f}(x)=x^{2}-2|x|$ এবং

$$
\mathrm{g}(x)=x^{2}+1
$$

(i) $($ gof $)(-4)=\mathrm{g}(f(-4))$ [ঢ.'○ه ; সि’ob]

$$
\begin{aligned}
& =g\left((-4)^{2}-2|-4|\right)=g(16-2.4) \\
& =g(16-8)=g(8)=8^{2}+1 \\
& =64+1=65
\end{aligned}
$$

(ii) $(\mathrm{fog})(5)=\mathrm{f}(\mathrm{g}(5))$
[ঢ.'০৫ ; সि’ot]

$$
\begin{aligned}
& =\mathrm{f}\left(5^{2}+1\right)=\mathrm{f}(25+1)=\mathrm{f}(26) \\
& =26^{2}-2|26|=676-2 \times 26 \\
& =676-52=624
\end{aligned}
$$

(iii) $(\mathrm{g} \circ \mathrm{f})(3)=\mathrm{g}(\mathrm{f}(3))$
[ব.’०१]

$$
\begin{aligned}
& =g\left(3^{2}-2|3 \cdot|\right)=g(9-6) \\
& =g(3)=3^{2}+1=9+1=10
\end{aligned}
$$

(iv) $(\mathrm{f} \circ \mathrm{g})(-2)=\mathrm{f}(\mathrm{g}(-2)) \quad$ [य.’०७; ব.’○१] $=\mathrm{f}\left((-2)^{2}+1\right)=\mathrm{f}(4+1)=\mathrm{f}(5)$ $=5^{2}-2|5|=25-10=15$
8. (b) দেওয়া আছে, $\mathrm{f}(x)=2 x-5$ এবং $\mathrm{g}(x)=x^{2}+6$
[ব.'০৬; সি.'০৬ ; চ.'০৭; य.'০৬,’০৯; রা.'১৩] $g(f(2))=\mathrm{g}(2 \times 2-5)=\mathrm{g}(4-5)$

$$
=g(-1)=(-1)^{2}+6=1+6=7
$$

$f(g(5))=\mathrm{f}\left(5^{2}+6\right)=\mathrm{f}(25+6)=\mathrm{f}(31)$

$$
=2 \times 31-5=62-5=57
$$

8(c) দেওয়া আছে, $\mathrm{f}(x)=x^{2}+3 x+1$ এবং

$$
\begin{aligned}
\mathrm{g}(x)= & 2 x-3 \quad \text { [চ.’০৭; ব.’১২; দি.'১৩] } \\
(\mathrm{gof}) & (2)=g(f(2))=\mathrm{g}\left(2^{2}+3.2+1\right) \\
& =\mathrm{g}(4+6+1)=\mathrm{g}(11)=2 \times 11-3 \\
& =22-3=19
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{fog})(2) & =f(g(2))=\mathrm{f}(2.2-3)=\mathrm{f}(4-3) \\
& =\mathrm{f}(1)=1^{2}+3 \times 1+1=1+3+1=5
\end{aligned}
$$

(d) $\mathrm{f} \quad \mathbb{R} \rightarrow \mathbb{R}$, यেখानে $\mathrm{f}(x)=x^{2} ; \mathrm{g} \quad \mathbb{R}$ $\rightarrow \mathbb{R}$, यেখানে $\mathrm{g}(x)=x^{3}+1$ এবং $x=-3$ হলে দেখাও বে, $(\mathrm{f} \circ \mathrm{g})(x) \neq(\mathrm{g} \circ \mathrm{f})(x)$
[ঢ.,’৭,’’১]
8(e) দেওয়া आছে, $\mathrm{f}(x)=x^{2}+2 x-3$ এবर

$$
\mathrm{g}(x)=3 x-4 \quad \text { [区.'০৬; मि.'ग০; সি.’’২] }
$$

$(\mathrm{f} \circ \mathrm{g})(x)=\mathrm{f}(\mathrm{g}(x))=\mathrm{f}(3 x-4)$
$=(3 x-4)^{2}+2(3 x-4)-3$
$=9 x^{2}-24 x+16+6 x-8-3$
$=9 x^{2}-18 x+5$ (Ans.)
$(\mathrm{fog})(3)=9 \times 3^{2}-18 \times 3+5$
$=81-54+5=32$ (Ans.)
8(f) $f(x)=2 x^{3}+3$ जবर $g(x)=\sqrt[3]{\frac{x-3}{2}}$

সমাধান : $(\mathrm{fog})(x)=\mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{f}\left(\sqrt[3]{\frac{x-3}{2}}\right)$

$$
=2\left(\sqrt[3]{\frac{x-3}{2}}\right)^{3}+3=2 \times \frac{x-3}{2}+3
$$

$$
=x-3+3=x
$$

$(\mathrm{g} \circ \mathrm{f})(x)=\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{g}\left(2 x^{3}+3\right)$
$=\sqrt[3]{\frac{2 x^{3}+3-3}{2}}=\sqrt[3]{\frac{2 x^{3}}{2}}=\sqrt[3]{x^{3}}=x$
$\therefore(\mathrm{fog})(x)=(\mathrm{g} \circ \mathrm{f})(x)$
(Showed

(i) $\mathrm{f}(x)=\frac{x}{x-1}$ [य.'Jo] (ii) $\mathrm{f}(x)=\frac{x}{|x|}$
(iii) $f(x)=\sqrt{x^{2}-9}$ (iv) $f(x)=\sqrt{16-x^{2}}$
(i) $\mathrm{f}(x)=\frac{x}{x-1} \in \mathbb{R}$ হবে यमि ও কেবল यमि $x \in \mathbb{R}$ এবং $x-1 \neq 0$ i.e., $x \neq 1$ হয়।

ডোমেন $\mathrm{f}=\mathbb{R}-\{1\}$.
মনে করি , f এর অধীন x এর ছবি y

$$
y=\mathrm{f}(x)=\frac{x}{x-1} \Rightarrow x y-y=x
$$

$\Rightarrow x y-x=y \Rightarrow x(y-1)=y \Rightarrow x=\frac{y}{y-1}$ $x=\frac{y}{y-1} \in \mathbb{R}$ इবে यमि ও কেবল যमि $y \in \mathbb{R}$ এব? $y-1 \neq 0$ i.e. $y \neq 1$ इয়।

রেঞ $f=\mathbb{R}-\{1\}$
(ii) $x=0$ ব্যতীত সকল $x \in \mathbb{R}$ এর জন্য প্রদত্ত ফাশন $\mathrm{f}(x)=\frac{x}{|x|}$ স尺ভ্ঞায়িত হয়।

ডোমেন $\mathrm{f}=\mathbb{R}-\{0\}$
$x>0$ रলে $|x|=x$ অতএব, ডোমেন f এর সকম $x>0$ উপাদানের জন্য, $\mathrm{f}(x)=\frac{x}{x}=1$
$x<0$ হলে $|x|=-x$ बতএব, ডোমেন f এর সকল $x<0$ উभাদানের জন্য, $\mathrm{f}(x)=\frac{x}{-x}=-1$

রেঞ্চ $f=\{-1,1\}$
(iii) $f(x)=\sqrt{x^{2}-9} \in \mathbb{R}$ হবে যদि ও কেবन यमि $\mathrm{x} \in \mathbb{R}$ এবং $x^{2}-9 \geq 0 \Rightarrow(\mathrm{x}-3)(\mathrm{x}+3) \geq 0$ जबाৎ $\mathrm{x} \geq 3$ जथবा, $\mathrm{x} \leq-3$ হয়।

ডোমেন $f=\{x \in \mathbb{R}: x \geq 3$ जথবা, $x \leq-3\}$
$x= \pm 3 \in$ ডোমেন f এর জন্য $f(x)=0$ এবং $x>3$ অথবा $x<-3$ जর बन्य $f(x)>0$.

রেঞ্চ $f=\{x \in \mathbb{R}: x \geq 0\}$
(iv) $f(x)=\sqrt{16-x^{2}} \in \mathbb{R}$ शবে यদি ও কেবল यদি $\mathrm{x} \in \mathbb{R}$ এব尺 $16-x^{2} \geq 0 \Rightarrow x^{2}-16 \leq 0$
$\Rightarrow(x-4)(x+4) \leq 0$ जबाৎ $-4 \leq \mathrm{x} \leq 4$ शয়।
ডোমেন $=\{x \in \mathbb{R}:-4 \leq x \leq 4\}$
$x= \pm 4$ এর জন্য $f(x)=0$, या $f(x)$ এর ক্র্র্রত্ম মান এবং $x=0$ এর জন্য $f(x)=4$, या $f(x)$ এর বৃহত্ম घान।

রেঞ্চ $\mathrm{f}=\{x \in \mathbb{R}: 0 \leq x \leq 4\}$
9.(b) $\mathrm{f} \quad \mathbb{R} \rightarrow \mathbb{R}$ खाशनtि \quad (i) $\mathrm{f}(x)=x^{3}$ (ii) $\mathrm{f}(x)=x^{2}+1$ घারা প্রকাশিত হলে, উহাদের রেঞ্জ নিন্নয় ক্।
[รू.’○9]
(i) প্রদত্ত ফাংশন, $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}$
$x \in \mathbb{R}$ এর যেকোন মানের জন্য $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}$ এর মান যেকোন বাস্তব সং্থ্যা।

রেঞ্ $f=\mathbb{R}$
(ii) প্রদত্ত ফाशxन, $f(x)=x^{2}+1$

মনে করি , f এর অধীন x এর ছবি y

$$
y=f(x)=x^{2}+1 \Rightarrow x^{2}=y-1
$$

$\Rightarrow x= \pm \sqrt{y-1} \in \mathbb{R}$ यमि B কেবন यमि $x \in \mathbb{R}$ जবर $y \geq 1$

$$
\text { রেঞে } \mathrm{f}=\{y \in \mathbb{R} \quad y \geq 1\} \quad \text { (Ans.) }
$$

9(c) \mathbb{R} বাস্তব সংখ্যার সেট এবং $A=\{-3,-1,0$, $1,3\} ; \mathrm{f}: \mathrm{A} \rightarrow \mathbb{R}$ याश्षनणि $\mathrm{f}(x)=x^{2}+x+1$ দারা সংভ্ঞায়িত হনে, $\mathrm{f}(x)$ এর রেঞ নির্ণয় কর। [य.’o০] সমाथान ः $\mathrm{f}(-3)=(-3)^{2}+(-3)+1$

$$
=9-3+1=7
$$

$\mathrm{f}(-1)=(-1)^{2}+(-1)+1=1-1+1=1$
$\mathrm{f}(0)=0^{2}+0+1=1$
$f(1)=1^{2}+1+1=3$
$f(3)=3^{2}+3+1=9+3+1=13$

$$
\mathrm{f}(x) \text {-এর রেঞ্ }=\{7,1,3,13\}
$$

9(d) $A=\{-4,-2,0,2,4\}$ जবং $f: A \rightarrow \mathbb{R}$ ফাশশनটি $\mathrm{f}(x)=x^{2}+2 x+3$ घারা সষख্sায়িত। f এর রেঞ্ নির্ণয় কর।
[ธ.'०১]
সमाधानः $\mathrm{f}(-4)=(-4)^{2}+2(-4)+3$

$$
=16-8+3=11
$$

$\mathrm{f}(-2)=(-2)^{2}+2(-2)+3=4-4+3=3$
$\mathrm{f}(0)=0^{2}+2 \times 0+3=3$
$f(2)=2^{2}+2 \times 2+3=4+4+3=11$
$f(4)=4^{2}+2 \times 4+3=16+8+3=27$
$\therefore \mathrm{f}$-এর রেঞs $=\{11,3,3,11,27\}$

$$
=\{3,11,27\} \text { (Ans.) }
$$

9(e) দেওয়া আহে, $\mathrm{f}(x)=\sqrt{x}$ এবং
$\mathrm{g}(x)=x^{2}-1$
[চ.’०২; সি.'০৫]

$$
(f \circ g)(x)=\mathrm{f}(\mathrm{~g}(\mathrm{x}))=\mathrm{f}\left(x^{2}-1\right)
$$

$=\sqrt{x^{2}-1} \quad$ fog $=\sqrt{x^{2}-1}$
$\left(\right.$ fog) $(x)=\sqrt{x^{2}-1}=\sqrt{(x-1)(x+1)} \in \mathbb{R}$ হবে यদি ও কেবল যদি $x \in \mathbb{R}$ এবং $(x-1)(x+1) \geq 0$.
$x \geq 1$ बথবা $x \leq-1$
$[\because 1>-1]$
ডোমেন (fog) $=\{x \in \mathbb{R}: x \geq 1$ অথবা $x \leq-1\}$ $x=1 \in$ ডোমেন (fog) অথবা $x=-1 \in$ ডোমেন (fog) এর জন্য $(\mathrm{fog})(x)=0$; या fog এর 内म্র্রতম মান এবং এর বৃহত্র মান $\rightarrow \infty$.

রেজs ($\mathrm{f} \circ \mathrm{g}$) $=\{x \in \mathbb{R}: 0 \leq x<\infty\}$
आবার, $(\mathrm{g}$ ○ f) $(x)=g(f(x))=\mathrm{g}(\sqrt{x})$

$$
\begin{aligned}
= & (\sqrt{x})^{2}-1=x-1 \\
& \text { g of }=x-1
\end{aligned}
$$

এখन, g of $=x-1 \in \mathbb{R}$ यদি ও কেবল यদি $x \in \mathbb{R}$
ডোমেন (gof) $=\mathbb{R}$
সকল $x \in$ ডোমেন (gof) $=\mathbb{R}$ এর জন্য gof এর মান বাস্তব সং্খ্যা।

রেঞ্ $(\mathrm{g} \circ \mathrm{f})=\mathbb{R}$

 घना বিপরীण ফाशশन निর্য় कर।
(i) $\mathrm{f}(x)=2 x-3$
[চ.'ग०; रा.'>১]
সমাধান 8 প্রদত্ত ফাংশন, $\mathrm{f}(x)=2 x-3$
यদि সख্खব হয় কল্পনা করি, $\mathrm{f}(x)=2 x-3$ একটি এক - এক ফাশশন নয় এবং যেকোন দুইটি অসমান উभাদান $x_{1}, x_{2} \in$ ডোমেন f এর ছবি সমান, जর্বাৎ

$$
\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)
$$

$2 \mathrm{x}_{1}-3=2 \mathrm{x}_{2}-3 \Rightarrow 2 \mathrm{x}_{1}=2 \mathrm{x}_{2}$
$\mathrm{x}_{1}=\mathrm{x}_{2}$; या आমাদের কম্পনাকে অযৌক্তিক প্রতিপন্ন করে , কেননা $x_{1} \neq x_{2}$
$f(x)$ একটি এক-এক ফাশ্নন নয় তা সয়ব নয় ।
$\mathrm{f}(\mathrm{x})$ একটি এক - এক ফাংশ ।
$x \in \mathbb{R}$ (ডোমেন f) এর জন্য, $f(x)=2 x-3$ এর মান সকল বাস্তব সश्খ্যা।
 অতএব, $f(x)$ একটি সার্বিক ফাংশন । এVन, $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-3$

$$
f\left(f^{-1}(x)\right)=2 f^{-1}(x)-3
$$

$\Rightarrow \mathrm{x}=2 \mathrm{f}^{-1}(\mathrm{x})-3 \Rightarrow 2 \mathrm{f}^{-1}(\mathrm{x})=\mathrm{x}+3$

$$
f^{-1}(x)=\frac{x+3}{2}
$$

(ii) প্রদত্ত ফাংশন, $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R} ; \mathrm{f}(x)=x^{3}+5$
[भि.’○৩;ব.’১৩]
যেকোন $x_{1}, x_{2} \in \mathbb{R}$-এর জন্য,$f\left(x_{1}\right)=f\left(x_{2}\right)$ यদি उ কেবল यদি, $x_{1}{ }^{3}+5=x_{2}{ }^{3}+5$
$\Rightarrow \mathrm{x}_{1}{ }^{3}=\mathrm{x}_{2}{ }^{3} \Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$
$\mathrm{f}(\mathrm{x})$ একটি এক-এক ফাশশন ।
$\mathrm{x} \in \mathbb{R}$ এর জন্য $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+5$ এর মান সকল বাস্তব সং্থ্যা।

রেঞ্জ $f=\mathbb{R}$. i.e., $f(\mathbb{R})=\mathbb{R}$
जতএব, $f(x)$ একটি সার্বিক ফাংন ।
यमि ফাংশन f -এর जধীন x এর ছবি y অबাৎ
$y=f(x)$ হয়, তবে ফাশশন f^{-1}-এর অধীন y এর ছবি x অ布ৎ $x=f^{-1}(y)$ হবে।
এখन, $y=f(x) \Rightarrow y=x^{3}+5 \Rightarrow x^{3}=y-5$
$\Rightarrow x=\sqrt[3]{y-5} \quad \therefore f^{-1}(\mathrm{y})=\sqrt[3]{y-5}$
y কে x দ্রার প্রতিস্পাপন করে পাই, $f^{-1}(\mathrm{x})=\sqrt[3]{x-5}$
10(a) (iii) প্রদত্ত যাংশন, $\mathrm{A}=\mathbb{R}-\{3\}, \mathrm{B}=\mathbb{R}-\{1\}$
, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ এবং $\mathrm{f}(x)=\frac{x-2}{x-3}$
বেকোন $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{~A}$-এর জন্য, $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$ হবে यमि ও কেবল যদি, $\frac{x_{1}-2}{x_{1}-3}=\frac{x_{2}-2}{x_{2}-3}$
$\Rightarrow \mathrm{x}_{1} \mathrm{x}_{2}-3 \mathrm{x}_{1}-2 \mathrm{x}_{2}+6=\mathrm{x}_{1} \mathrm{x}_{2}-2 \mathrm{x}_{1}-3 \mathrm{x}_{2}+6$ $\Rightarrow-x_{1}=-x_{2} \Rightarrow x_{1}=x_{2}$
जতএব, $\mathrm{f}(\mathrm{x})$ একটি এক - এক खাশশন ।
মনে করি , $f-এ র$ অধীন x এর ছবি y

$$
\begin{equation*}
y=f(x)=\frac{x-2}{x-3} \Rightarrow x y-3 y=x-2 \tag{1}
\end{equation*}
$$

$\Rightarrow \mathrm{x}(\mathrm{y}-1)=3 \mathrm{y}-2 \Rightarrow \mathrm{x}=\frac{3 y-2}{y-1}$.
এখन , $\mathrm{x}=\frac{3 y-2}{y-1} \in \mathbb{R}$ इবে যদি ও কেবল যদি
$y \in \mathbb{R}$ এবং $y-1 \neq 0$ i.ę., $y \neq 1$ হয়।
রেঞ্জ $f=\mathbb{R}-\{1\}=B$

$$
f(A)=B
$$

जতএব, $\mathrm{f}(x)$ একটি সার্বিক ফাংন ।
(1) इতে পাই , $x=\frac{3 y-2}{y-1}$
$\Rightarrow f^{-1}(y)=\frac{3 y-2}{y-1}\left[\because \mathrm{y}=\mathrm{f}(x)\right.$ iff $x=f^{-1}$
y কে x ज্ञाর প্রতিস্পাপন করে পাই, $f^{-1}(\mathrm{x})=\frac{3 x-2}{x-1}$
10(a) (iv) প্রদত্ ফাংশন, $\mathrm{A}=\{x \in \mathbb{R}: x \geq 0\}$ এবং $\mathrm{f} \quad \mathrm{A} \rightarrow \mathrm{A}, \mathrm{f}(x)=x^{2}$
যেকোন $\cdot \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{~A}$-এর জন্য, $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$ रবে यमि ও কেবল यদি, $x_{1}{ }^{2}=x_{2}{ }^{2}$
$\Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2} \quad[\because \mathrm{x} \geq 0]$
অতএব, $f(x)$ একটি এক-এক ফাং্গন
মনে করি , $y=f(x)=x^{2} \Rightarrow x^{2}=y$
$\Rightarrow x=\sqrt{y} \quad$ (1) $[\because \mathrm{x} \geq 0]$
$x=\sqrt{y} \in \mathbb{R}$ रবে यদি ও কেবল যদি $y \in \mathbb{R}$ এবহ $y \geq 0$ इয়।

রেঞs $f=\{y \in \mathbb{R}: y \geq 0\}=\{x \in \mathbb{R}: x \geq 0]=A$ $\mathrm{f}(\mathrm{A})=\mathrm{A}$
जতএব, $\mathrm{f}(x)$ একটি সার্বিক ফাংশন ।
এখন, (1) হতে পাই, $\mathrm{x}=\sqrt{y}$

$$
f^{-1}(\mathrm{y})=\sqrt{y}\left[\because \mathrm{y}=\mathrm{f}(\mathrm{x}) \text { iff } \mathrm{x}=f^{-1}(\mathrm{y})\right]
$$

y কে x দ্পার প্রতিস্মাপন করে পাই, $f^{-1}(\mathrm{x})=\sqrt{x}$
10(a) (v) প্রদত্ত ফাশ্শন, $\mathrm{f} \quad \mathbb{R} \rightarrow \mathbb{R}, \mathrm{f}(x)=x^{2}$

$$
\mathrm{x}_{1}=1, \mathrm{x}_{2}=-1 \in \mathbb{R}(\text { ডোমেন } \mathrm{f}) \text { এর জন্য, }
$$

$$
\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}(\mathrm{l})=(1)^{2}=1 \text { এব尺 }
$$

$$
f\left(x_{2}\right)=f(-1)=(-1)^{2}=1
$$

$$
\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)=1 \text {, কিল্তু } \mathrm{x}_{1} \neq \mathrm{x}_{2} \text {. }
$$

जতএব, $f(x)$ এক-এক खা巾শন নয় ।
মনে করি, $y=f(x)=x^{2} \Rightarrow x^{2}=y$
$\Rightarrow \mathrm{x}= \pm \sqrt{\mathrm{y}}$
$\mathrm{x}= \pm \sqrt{y} \in \mathbb{R}$ रবে যদি ও কেবল যদি $\mathrm{y} \in \mathbb{R}$ এবং $y \geq 0$ रয়।

রেজ্$f=\{y \in \mathbb{R} \quad y \geq 0\}$
जबাৎ রেঞ্ণ $f=\{x \in \mathbb{R}: x \geq 0\} \subset \mathbb{R}$
$\mathrm{f}(\mathbb{R}) \subset \mathbb{R}$.
অতএব, $f(x)$ একটি সার্বিক ফাংশন নয় ।
$\mathbf{1 0 (a)}(\mathbf{v i})$ প্রদত্ত ফাংশন, $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}, \mathrm{f}(x)=x^{3}+1$ যেকোন $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathbb{R}$-এর জন্য, $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$ হবে यमि ও কেবল यদি $x_{1}{ }^{3}+1=x_{2}{ }^{3}+1$

$$
\Rightarrow x_{1}^{3}=x_{2}^{3} \Rightarrow x_{1}=x_{2}
$$

অতএব, $f(x)$ একটি এক-এক ফাংশ ।
এখন, $x \in \mathbb{R}$ (ডোমেন f) এর জন্য, $f(x)=x^{3}+1$ - এর মান সকল বাস্তব সo্খ্যা।

$$
\text { রেজজ } f=\mathbb{R} \text { i.e., } f(\mathbb{R})=\mathbb{R}
$$

जতএব, $f(x)$ একটি সার্বিক ফাशশন ।
এখन , $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+1 \Rightarrow \mathrm{x}^{3}=\mathrm{y}-1$
$\Rightarrow x=\sqrt[3]{y-1}$
$\therefore f^{-1}(\mathrm{y})=\sqrt[3]{y-1}\left[\because \mathrm{y}=\mathrm{f}(\mathrm{x})\right.$ iff $\left.\mathrm{x}=f^{-1}(\mathrm{y})\right]$ y কে x जারা প্রতিস্থপন করে পাই, $f^{-1}(\mathrm{x})=\sqrt[3]{x-1}$ 10(a) (vii) প্রদত্ত ফাঁাশন,
$\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}, \mathrm{f}(x)=|x-1|$
$\mathrm{x}_{1}=0, \mathrm{x}_{2}=2 \in \mathbb{R}$ (ডোমেন f$)$ এর জন্য,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}(0)=|0-1|=|-1|=1 \text { এবৃ } \\
& \mathrm{f}\left(\mathrm{x}_{2}\right)=\mathrm{f}(2)=|2-1|=|1|=1 \\
& \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)=1, \text { किन्णू } \mathrm{x}_{1} \neq \mathrm{x}_{2} .
\end{aligned}
$$

जতএব, $\mathrm{f}(\mathrm{x})$ এক-এক ফাশশন নয় ।
$\mathrm{x} \in \mathbb{R}$ (ডোমেন f) এর জন্য, $\mathrm{f}(\mathrm{x})=|x-1|$ এর মান সকল বাস্তব সং্খ্যা।

রেজ $f=\mathbb{R}$. जब্ৰাৎ, $f(\mathbb{R})=\mathbb{R}$ অতএব, $f(x)$ একটি সার্বিক ফাংশ ।

10(a) (viii) প্রদত্ত ফাংশন, $\mathrm{A}=[-2,2]$ $\mathrm{B}=[0,4], \mathrm{f} \quad \mathrm{A} \rightarrow \mathrm{B}, \mathrm{f}(x)=x^{2}$
$\mathrm{x}_{1}=-2, \mathrm{x}_{2}=2 \in \mathbb{R}$ (ডোমেনf) এর জন্য,

$$
f\left(x_{1}\right)=f(-2)=(-2)^{2}=4 \text { এবং }
$$

$$
f\left(x_{2}\right)=f(2)=2^{2}=4
$$

$f\left(x_{1}\right)=f\left(x_{2}\right)=4$, কিন্তু $x_{1} \neq x_{2}$

অতএব, $f(x)$ এক - এক ফাংশন নয় ।
সক্ল $x \in$ ডোমেন f এর জন্য, $f(x)=x^{2}$ এর মান অঋণাঅক এবং $x \leq 4$

$$
\begin{aligned}
& \text { রেঞ্ } \mathrm{f}=\{x \in \mathbb{R}: x \geq 0 \text { এবং } x \leq 4\} \\
& =\{x \in \mathbb{R}: 0 \leq x \leq 4\}=[0,4]=\mathrm{B} \\
& \mathrm{f}(\mathrm{~A})=\mathrm{B}
\end{aligned}
$$

অতএব , $f(x)$ একটি সার্ধিক ফাংশন ।
10.(b) $A=\{1,2,3,4\}$ बবश $B=\{1,2,3$, 4, 5\}; f: A $\rightarrow \mathrm{B}$ खारশनটি $\mathrm{f}(x)=x+1$ घाता প্রকাশিত । ফাশ্টির ডোমেন এবং রেঞ্গ নিণয় কর । ফাহশনটি কি এক-এক ? [א্.’১২; প্র.ভ.প. ০৫] সমাষান ঃ দেওয়া আছে, $\mathrm{f}(x)=x+1$

$$
f(1)=1+1=2, f(2)=2+1=3
$$

$\mathrm{f}(3)=4 ; \mathrm{f}(4)=5$
ডোমেন $\mathrm{f}=\{1,2,3,4\}=\mathrm{A}$
রেঞ্ $f=\{2,3,4,5\}$
প্রতীয়মান হয় যে, $x \in\{1,2,3,4\}$ এর ভিন্ন ভিন্ন মানের জন্য $\mathrm{f}(x)=x+1$ এর ভিন্ন ভিন্ন মান পাওয়া যায়। অতএব, $\mathrm{f}(x)$ একটি এক - এক ফাশশন ।

10(c) বাস্তব সংখ্যা সেট \mathbb{R} এর উপর $S=\{(x, y)$: $y=\sqrt{x}\}$ অम्यয়ের ডোমেন এবৃ রেঞ্ছে নিণ্স কর । S^{-1} निর্ণয় কর ।
সমাধান : দেওয়া আছে, $S=\{(x, y): y=\sqrt{x}\}$
S সেটের বর্ণনাকারী শর্ত,$y=\sqrt{x}$.
$y=\sqrt{x} \in \mathbb{R}$ হবে यদি ও কেবল যদি $x \in \mathbb{R}$ এবং $x \geq 0$ হয়।

$$
\text { ডোমেন } S=\{x \in \mathbb{R} \quad x \geq 0\}
$$

সকম $x \in$ ডোমেন S এর জন্য, $\mathrm{f}(x)=x^{2}$ এর মান অঋণাত্মক ।

$$
\begin{aligned}
& \text { রেঞ্জ } S=\{x \in \mathbb{R}: x \geq 0\} \\
& \text { এখন }, y=\sqrt{x} \Rightarrow x=y^{2} \\
& S^{-1}=\left\{(y, x) \quad x=y^{2}\right\}
\end{aligned}
$$

x কে y দ্বারা y এবং কে x দ্বারা প্রতিস্ফাপন করে পাই, $S^{-1}=\left\{(x, y): y=x^{2}\right\}$
10.(d) $\mathbf{A}=\mathbb{R}-\left\{-\frac{1}{2}\right\}$ बবా $\mathbf{B}=\mathbb{R}-\left\{\frac{1}{2}\right\}$ বাস্তব সং্্যার সেট \mathbb{R}-এর দুইটি উপসেট এবং $f: A \rightarrow B$; যেখানে $f(x)=\frac{x-3}{2 x+1}$. দেখাও যে, ফাশশনটি এক-এক ఆ সার্বিক।
[ঢा. '০১]
সমাধান ঃ যেকোন $x_{1}, x_{2} \in \mathrm{~A}=\mathbb{R}-\left\{-\frac{1}{2}\right\}$ এর জंन्य, $\mathrm{f}\left(x_{1}\right)=\mathrm{f}\left(x_{2}\right)$ यमि ও কেবল यमि, $\frac{x_{1}-3}{2 x_{1}+1}=\frac{x_{2}-3}{2 x_{2}+1}$
$\Rightarrow 2 x_{1} x_{2}-6 x_{2}+x_{1}-3 x_{1}-1$

$$
=2 x_{1} x_{2}-6 x_{1}+x_{2}-3
$$

$\Rightarrow 7 x_{1}=7 x_{2} \Rightarrow x_{1}=x_{2}$
অতএব, $\mathrm{f}(x)$ একটি এক - এক ফাংশন ।
ধরি , $y=\mathrm{f}(x)=\frac{x-3}{2 x+1} \Rightarrow 2 x y+y=x-3$
$\Rightarrow(2 y-1) x=-y-3 \Rightarrow x=\frac{y+3}{1-2 y}$
এখन , $x=\frac{y+3}{1-2 y} \in \mathrm{~A}=\mathbb{R}-\left\{-\frac{1}{2}\right\}$ यमि ও
কেবল यদি $y \in \mathbb{R}$ এবং $1-2 y \neq 0$ অण্থাৎ $y \neq \frac{1}{2}$.
রেঞ $f=\mathbb{R}-\left\{\frac{1}{2}\right\}=B$.
$\mathrm{f}(\mathrm{A})=\mathrm{B}$.
অতএব, $\mathrm{f}(x)$ একটি সার্বিক ফাহশন ।
10(e) $A=\mathbb{R}-\{3\}$ এবp $B=\mathbb{R}-\{1\}$ বাস্তব সৃখ্যার সেট \mathbb{R}-এর দুইটি উপসেট এবং $\mathbf{f}: \mathbf{A} \rightarrow \mathbf{B}$; যেখানন $f(x)=\frac{x-2}{x-3}$. मেখাও যে, ফাएনनট একএক ४ সার্বিক।
সমাধান : যেকোন $x_{1}, x_{2} \in \mathrm{~A}=\mathbb{R}-\{3\}$ এর জন্য ,
$\mathrm{f}\left(x_{1}\right)=\mathrm{f}\left(x_{2}\right)$ यদি ও কেবল यদি, $\frac{x_{1}-2}{x_{1}-3}=\frac{x_{2}-2}{x_{2}-3}$
$\Rightarrow \quad x_{1} x_{2}-2 x_{2}-3 x_{1}+6$

$$
=x_{1} x_{2}-2 x_{1}-3 x_{2}+6
$$

$\Rightarrow-x_{1}=-x_{2} \Rightarrow x_{1}=x_{2}$
जতএব, $\mathrm{f}(x)$ একটি এক-এক ফাংশন । ধরি, $y=\mathrm{f}(x)=\frac{x-2}{x-3} \Rightarrow x y-3 y=x-2$
$\Rightarrow(y-1) x=3 y-2 \Rightarrow x=\frac{3 y-2}{y-1}$
এখन, $x=\frac{3 y-2}{y-1} \in \mathrm{~A}=\mathbb{R}-\{3\}$ शबে यमि ఆ কেবল यদি $y \in \mathbb{R}$ এবং $y-1 \neq 0 \Rightarrow y \neq 1$ इয়।

রেঞ্জ $f=\mathbb{R}-\{1\}=B$.
$\mathrm{f}(\mathrm{A})=\mathrm{B}$.
जতএব, $\mathrm{f}(x)$ একটি সার্বিক ফাহশন ।
11. (a) $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}, \mathrm{f}(x)=x^{2}$ দ্বाরা স尺ভ্बায়িত করা হলে, মান নিণ্ণয় কর :
(i) $f^{-1}(25)$
[жू.'o৫; य.'১১]
(ii) $f^{-1}(-16)$
[य.'08, '১১]
(iii) $f^{-1}([16,36])$ (iv) $f^{-1}(\{16,36\})$

সমাধাन 8 (i) মন্নে করি , $f^{-1}(25)=x$

$$
\begin{aligned}
& \mathrm{f}(x)=25 \quad\left[\because \mathrm{f}(x)=y \text { iff } f^{-1}(y)=x\right] \\
\Rightarrow & x^{2}=25 \Rightarrow x= \pm 5 \\
& f^{-1}(25)=\{-5,5\}
\end{aligned}
$$

(ii) মনে করি , $f^{-1}(-16)=x$

$$
f(x)=-16 \Rightarrow x^{2}=-16
$$

x এর এমন কোন বাস্তব মান নেয় যার বগ আাাঅাক

$$
f^{-1}(-16)=\varnothing
$$

(iii) মন্ে করি, $y=\mathrm{f}(x)=x^{2} \Rightarrow x= \pm \sqrt{y}$

$$
\begin{aligned}
& f^{-1}(y)= \pm \sqrt{y} \\
& \quad\left[\quad y=\mathrm{f}(x) \text { iff } x=f^{-1}(y)\right] \\
& f^{-1}(16)= \pm \sqrt{16}= \pm 4 \text { এবং } \\
& f^{-1}(36)= \pm \sqrt{36}= \pm 6 \\
& f^{-1}([16,36])=[-6,-4] \cup[4,6] \\
& =\{x \in \mathbb{R} \quad-6 \leq x \leq-4 \text { অথবा } 4 \leq x \leq 6\}
\end{aligned}
$$

(iv) মনে করি, $y=\mathrm{f}(x)=x^{2} \Rightarrow x= \pm \sqrt{y}$

$$
\begin{aligned}
& f^{-1}(y)= \pm \sqrt{y} \\
& \quad\left[\because y=\mathrm{f}(x) \text { iff } x=f^{-1}(y)\right] \\
& f^{-1}(16)= \pm \sqrt{16}= \pm 4 \text { এবr } \\
& f^{-1}(36)= \pm \sqrt{36}= \pm 6 \\
& f^{-1}(\{16,36\})=\{-6,-4,4,6\} \text { (Ans.) }
\end{aligned}
$$

11(b) $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ ख区 $\mathrm{f}(x)=x^{2}+1$ पारा সৃভ্ভয়িত করা इলে , মান निর্ণয় কর :
$\begin{array}{lll}\text { (i) } f^{-1}(5) & {[\bar{\prime}, \circ \circ]} & \text { (ii) } f^{-1}(0) \\ \text { [ব.'गs] }\end{array}$
(iii) $f^{-1}([5,37])$
[ব.'১১]
(iv) $f^{-1}(-5)$
[ङ̌.'ov; य.'ob]
(v) $f^{-1}(10)$ [य.'ob] (vi) $f^{-1}(\{1,10\})$
(i) মনে করি , $f^{-1}(5)=x$

$$
\mathrm{f}(x)=5,\left[\because \mathrm{f}(x)=y \text { iff } f^{-1}(y)=x\right]
$$

$\Rightarrow x^{2}+1=5 \Rightarrow x^{2}=4 \Rightarrow x= \pm 2$

$$
f^{-1}(5)=\left\{\begin{array}{ll}
-2 & 2
\end{array}\right\}
$$

(ii) মনে করি, $f^{-1}(0)=x$

$$
\mathrm{f}(x)=0\left[\because \mathrm{f}(x)=y \text { iff } f^{-1}(y)=x\right]
$$

$\Rightarrow x^{2}+1=0 \Rightarrow x^{2}=-1$; या x এর বाग्তব মানের জন্য সख़य নয় ।

$$
f^{-1}(0)=\varnothing
$$

(iii) মনে করি, $y=\mathrm{f}(x)=x^{2}+\mathrm{l} \Rightarrow x= \pm \sqrt{y-1}$

$$
\begin{aligned}
& f^{-1}(y)= \pm \sqrt{y-1} \\
& \quad\left[\because \mathrm{f}(x)=y \text { iff } f^{-1}(y)=x\right] \\
& f^{-1}(5)= \pm \sqrt{5-1}= \pm 2 \text { এবং } \\
& f^{-1}(37)= \pm \sqrt{37-1}= \pm 6 \\
& f^{-1}([16,36])=[-6,-2] \cup[2,6] \\
& =\{x \in \mathbb{R}:-6 \leq x \leq-2 \text { जथবा } 2 \leq x \leq 6\}
\end{aligned}
$$

(iv) মনে করি, $f^{-1}(-5)=x \quad \mathrm{f}(x)=-5$

$$
\left[\because \mathrm{f}(x)=y \text { iff } f^{-1}(y)=x\right]
$$

$\Rightarrow x^{2}+1=-5 \Rightarrow x^{2}=-6$; या x এর বাস্তব মানের জন্য সফ্টব নয় ।

$$
f^{-1}(-5)=\emptyset
$$

(v) মনে করি , $f^{-1}(10)=x \quad \mathrm{f}(x)=10$

$$
\left[\because f(x)=y \text { iff } f^{-1}(y)=x\right]
$$

$\Rightarrow x^{2}+1=10 \Rightarrow x^{2}=9 \Rightarrow x= \pm 3$

$$
f^{-1}(10)=\{-3,3\}
$$

(vi) মনে করি, $y=f(x)=x^{2}+1$

$$
\begin{aligned}
\Rightarrow & x= \pm \sqrt{y-1} \\
& f^{-1}(y)= \pm \sqrt{y-1}
\end{aligned}
$$

$$
\left[\because \mathrm{f}(x)=y \text { iff } f^{-1}(y)=x\right]
$$

$f^{-1}(1)= \pm \sqrt{1-1}=0$ এবং
$f^{-1}(10)= \pm \sqrt{10-1}= \pm 3$
$f^{-1}(\{1,10\})=\{-3,0,3\}$
11.(c) $f: \mathbb{R} \rightarrow \mathbb{R}$ कে $f(x)=x^{2}-7$ छात्रा সৃজ্ঞায়িত করা হলে , মান নিণ্য কন্ন :
(i) f^{-1}
(2)
[চ.'০৩; রা. '১০]
(ii) $f^{-1}(-3)$
(i) মনে করি, $f^{-1}(2)=x$

$$
\Rightarrow \begin{aligned}
& \mathrm{f}(x)=2 \quad\left[\because \mathrm{f}(x)=y \text { iff } f^{-1}(y)=x\right] \\
& \Rightarrow x^{2}-7=2 \Rightarrow x^{2}=9 \Rightarrow x= \pm 3 \\
& f^{-1}(2)=\{-3,3\}
\end{aligned}
$$

(ii) মনে করি , $f^{-1}(-3)=x$

$$
\mathrm{f}(x)=-3\left[\because \mathrm{f}(x)=y \text { iff } f^{-1}(y)=x\right]
$$

$\Rightarrow x^{2}-7=-3 \Rightarrow x^{2}=4 \Rightarrow x= \pm 2$
$\therefore f^{-1}(-3)=\{-2,2\}$
(d) $f: \mathbb{R} \rightarrow \mathbb{R}$ ফাश্টি $f(x)=x^{3}+7$ घारा সरख्बाয়িত रलে $\quad f^{-1} \quad(x), f^{-1} \quad$ (34) এবए $f^{-1}(-57)$ এর মান निর্ণয় কর। [প্র.U.প.'०8] সমাষান : মনে করি, $y=\mathrm{f}(x)=x^{3}+7$

$$
\begin{gathered}
x^{3}=y-7 \Rightarrow x=\sqrt[3]{y-7} \\
f^{-1}(y)=\sqrt[3]{y-7}
\end{gathered}
$$

$$
\left[\because \mathrm{f}(x)=y \text { iff } f^{-1}(y)=x\right]
$$

y এর পরিবর্তে x লিতে পাই,

$$
\begin{aligned}
& f^{-1}(x)=\sqrt[3]{x-7} \quad \text { (Ans.) } \\
& f^{-1}(2)=\sqrt[3]{34-7}=\sqrt[3]{27}=3 \text { এবং }
\end{aligned}
$$

$$
f^{-1}(-57)=\sqrt[3]{-57-7}=\sqrt[3]{-64}=-4
$$

12(a) $f(x)=\ln \left(\frac{1-x}{1+x}\right)$ इलि, मেथाब यে,

$$
f^{-1}(x)=\left(\frac{1-e^{x}}{1+e^{x}}\right)
$$

প্রমাণ ঃ ধরি, $y=f(x)=\ln \left(\frac{1-x}{1+x}\right)$

$$
y=f(x) \Rightarrow x=f^{-1}(y) \cdots(1) \text { এবए }
$$

$$
y=\ln \left(\frac{1-x}{1+x}\right) \Rightarrow \frac{1-x}{1+x}=e^{y}
$$

$$
\Rightarrow e^{y}+\mathrm{x} e^{y}=1-\mathrm{x} \Rightarrow \mathrm{x}+\mathrm{x} e^{y}=1-e^{y}
$$

$$
\Rightarrow\left(1+e^{y}\right) \mathrm{x}=1-e^{y} \Rightarrow \mathrm{x}=\frac{1-e^{y}}{1+e^{y}}
$$

$\Rightarrow f^{-1}(y)=\frac{1-e^{y}}{1+e^{y}}[(1)$ घ্বाর $]$
$f^{-1}(x)=\frac{1-e^{x}}{1+e^{x}} \quad$ (Showed)
12(b) $f(2 x-1)=x+2$ इनে, $f(x+3)$ पবर $\mathrm{f}^{-1}(x)$ এন মান নির্ণয় কর।

প্রমাণ ৪ ধরি, $2 x-1=\mathrm{y} \therefore \mathrm{f}(\mathrm{y})=x+2$ এবৃ

$$
\begin{aligned}
& 2 x=y+1 \Rightarrow x=\frac{1}{2}(y+1) \\
\Rightarrow & x+2=2+\frac{1}{2}(y+1)=\frac{4+y+1}{2} \\
\Rightarrow & f(y)=\frac{y+5}{2} \\
& f(x+3)=\frac{x+3+5}{2}=\frac{x+8}{2} \text { (Ans.) }
\end{aligned}
$$

आবার, $\mathrm{f}(2 x-1)=x+2$
$\Rightarrow f^{-1}(x+2)=2 x-1$
$f^{-1}\{(x-2)+2\}=2(x-2)-1$
$\Rightarrow f^{-1}(x)=2 \mathrm{x}-4-1=2 x-5$ (Ans.)
12(c) $\varphi(x)=\cot ^{-1}\left(1+x+x^{2}\right)$ হウে দেथাध শে, $\varphi(0)+2 \varphi(1)+\varphi(2)=\frac{\pi}{2}$
[ঢ.’o১]
প্রমাণ \& দেওয়া আছে, $\varphi(x)=\cot ^{-1}\left(1+x+x^{2}\right)$

$$
\begin{aligned}
& \varphi(0)=\cot ^{-1}(1+0+0)=\cot ^{-1}(1)=\tan ^{-1}(1) \\
& \varphi(1)=\cot ^{-1}(1+1+1)=\cot ^{-1}(3)=\tan ^{-1} \frac{1}{3} \\
& \varphi(2)=\cot ^{-1}(1+2+4)=\cot ^{-1}(7)=\tan ^{-1} \frac{1}{7} \\
& \varphi(0)+2 \varphi(1)+\varphi(2)
\end{aligned}
$$

$$
=\tan ^{-1}(1)+2 \tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}
$$

$$
=\left\{\tan ^{-1}(1)+\tan ^{-1} \frac{1}{7}\right\}+2 \tan ^{-1} \frac{1}{3}
$$

$$
=\tan ^{-1} \frac{1+\frac{1}{7}}{1-\frac{1}{7}}+\tan ^{-1} \frac{2 \cdot \frac{1}{3}}{1-\left(\frac{1}{3}\right)^{2}}
$$

$$
=\tan ^{-1} \frac{7+1}{7-1}+\tan ^{-1}\left(\frac{2}{3} \times \frac{9}{9-1}\right)
$$

$$
=\tan ^{-1} \frac{4}{3}+\tan ^{-1} \frac{6}{8}=\tan ^{-1} \frac{4}{3}+\cot ^{-1} \frac{4}{3}
$$

$$
\varphi(0)+2 \varphi(1)+\varphi(2)=\frac{\pi}{2}(\text { Showed }),
$$

$$
\left[\therefore \tan ^{-1} \theta+\cot ^{-1} \theta=\frac{\pi}{2}\right]
$$

12(d) यमि $\mathrm{f}(\mathrm{x})=\sqrt{1-\mathrm{x}^{2}},-1 \leq \mathrm{x} \leq 0$ इय्य, उবে $f^{-1}(x)$ निर्षয় কর এবर $f^{-1}\left(\frac{1}{2}\right)$-এর মান निर्ष़য় কর।
[রা.’১১]
সমাধান ঃ ধরি, $\mathrm{y}=\mathrm{f}(x)=\sqrt{1-x^{2}}$

$$
\begin{aligned}
& \mathrm{y}^{2}=1-\mathrm{x}^{2} \Rightarrow \mathrm{x}^{2}=1-\mathrm{y}^{2} \\
& \Rightarrow \mathrm{x}=-\sqrt{1-y^{2}},[\therefore-1 \leq x \leq 0] \\
& \Rightarrow f^{-1}(y)=-\sqrt{1-y^{2}} \quad f^{-1}(x)=-\sqrt{1-y^{2}} \\
& \quad\left[\because \mathrm{y}=\mathrm{f}(x) \text { iff } \mathrm{x}=f^{-1}(y)\right]
\end{aligned}
$$

এখन, $f^{-1}\left(\frac{1}{2}\right)=-\sqrt{1-\left(\frac{1}{2}\right)^{2}}=-\sqrt{\frac{4-1}{4}}$

$$
f^{-1}\left(\frac{1}{2}\right)=-\frac{\sqrt{3}}{2} \text { (Ans.) }
$$

13. (a) $\mathrm{F}=\{(x, y): x \in \mathbb{R}, y \in \mathbb{R}$ जदर $\left.\frac{x^{2}}{16}+\frac{y^{2}}{9}=1\right\}$. बम्यय F जর ডোমেন $⿴$ রেख निর্फ़ কর। F^{-1} निর্ণ্য বর।
সমাধান : F সেটের বর্ণনাকারী শর্ভ $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
$\Rightarrow \frac{y^{2}}{9}=1-\frac{x^{2}}{16} \Rightarrow y^{2}=\frac{9}{16}\left(16-x^{2}\right)$
$\Rightarrow y= \pm \frac{3}{4} \sqrt{16-x^{2}}$
$y= \pm \frac{3}{4} \sqrt{16-x^{2}} \in \mathbb{R}$ इबে यদি ও কেবল यদি $x \in \mathbb{R}$ এবर $16-x^{2} \geq 0 \Rightarrow x^{2}-4^{2} \leq 0$ $\Rightarrow(x-4)(x+4) \leq 0 \Rightarrow-4 \leq x \leq 4$ इड़ ।

ডোমেন $F=\{x \in \mathbb{R}:-4 \leq x \leq 4\}=[-4,4]$ जशन, $x=0 \in$ ডোমেন F এর জন্য,
$y= \pm \frac{3}{4} \sqrt{16-0^{2}}= \pm \frac{3}{4} \times 4= \pm 3$ या रुख F এর যথাক্রমে বৃহও্টম ও ক্র্র্র্র্ম মান।

রেঞ্ $F=[-3,3]$
$F^{-1}=\{(y, x): y \in[-3,3], x \in[-4,4]$ এবर

$$
\left.\frac{x^{2}}{16}+\frac{y^{2}}{9}=1\right\}
$$

x কে y দারা এবং y কে x ঘারা প্রতিস্মাপন করে পাই; $F^{-1}=\{(x, y): x \in[-3,3], y \in[-4,4]$ এবং

$$
\left.\frac{y^{2}}{16}+\frac{x^{2}}{9}=1\right\}
$$

$$
F^{-1}=\{(x, y): x \in[-3,3], y \in[-4,4]
$$

$$
\text { এবং } \left.\frac{x^{2}}{9}+\frac{y^{2}}{16}=1\right\}
$$

13(b) $\mathrm{f}(x)=\sqrt{x^{2}+4}$ घारा প্রকাणिত $\mathrm{f}:[-2,2] \rightarrow \mathbb{R}$
 সমাখান ঃ দেఆয়া জাছে, $\mathrm{f}(x)=\sqrt{x^{2}+4}$

$$
\mathrm{f}(0)=\sqrt{4}=2 \quad \text { या } x \in[-2,2] \text { এর }
$$ জন্য $\mathrm{f}(x)$ অথ্গ! রেঞ f এর

$$
f(\pm 2)=\sqrt{(\pm 2)^{2}+4}=\sqrt{4+4}=2 \sqrt{2}
$$

या $x \in[-2,2]$ जর জन্য $\mathrm{f}(x)$ অর্ব! রোজ f जর বৃহত্তম মান।

$$
\text { রেঞ্ } \mathrm{f}=[2,2 \sqrt{2}]
$$

মরে করি, $y=\mathrm{f}(x)=\sqrt{x^{2}+4}$

$$
\begin{aligned}
& y^{2}=x^{2}+4 \Rightarrow x^{2}=y^{2}-4 \\
& \Rightarrow \quad x= \pm \sqrt{y^{2}-4} \\
& f^{-1}(y)= \pm \sqrt{y^{2}-4} \\
& \quad\left[\quad y=f(x) \Leftrightarrow x=f^{-1}(y)\right] \\
& \\
& f^{-1}(\sqrt{5})= \pm \sqrt{5-4}= \pm 1 \text { बनR } \\
& f^{-1}\left(\frac{5}{2}\right) \doteq \pm \sqrt{\frac{25}{4}-4} \doteq \pm \sqrt{\frac{25-16}{4}}= \pm \frac{3}{2} \\
& \\
& f^{-1}\left(\left[\sqrt{5}, \frac{5}{2}\right]\right)=\left[-\frac{3}{2} \quad-1\right] \cup\left[1, \frac{3}{2}\right]
\end{aligned}
$$

13(c) $\mathrm{f}(x)=5-3 x$ घाजा প্রকাশিত $\mathrm{f}:[-5,3] \rightarrow \mathbb{R}$
 সমাধান \& দেওয়া আছে, $\mathrm{f}(x)=5-3 x$

$$
f(-5)=5-3 \times(-5)=5+20=20
$$ या $x \in[-5,3]$ এর জन্য $\mathrm{f}(x)$ এর বৃহত্তম মান।

$$
f(3)=5-3 \times(3)=5-9=-4 \quad \text { या }
$$ $x \in[0,2]$ এর জন্য $\mathrm{f}(x)$ এর ক্রুত্র মান ।

$$
\text { রেঞ্ } \mathrm{f}=[-4,20] \quad \text { (Ans.) }
$$

মनে করি, $y=\mathrm{f}(x) \quad y=5-3 x$

$$
\begin{aligned}
& \Rightarrow 3 x=5-y \Rightarrow x=\frac{5-y}{3} \\
& \mathrm{f}^{-1}(y)=\frac{5-y}{3} \\
& {\left[\quad y=\mathrm{f}(x) \Leftrightarrow x=\mathrm{f}^{-1}(y)\right] }
\end{aligned}
$$

$\therefore \mathrm{f}^{-1}(-4)=\frac{5+4}{3}=3$; या $y \in\left[-4, \frac{1}{2}\right]$ এর जन्य $\mathrm{f}^{-1}(y)$ এর বৃহত্তম মান।
$\mathrm{f}^{-1}\left(\frac{1}{2}\right)=\frac{5-\frac{1}{2}}{3}=\frac{9}{2 \times 3}=\frac{3}{2}$; या $y \in\left[-4, \frac{1}{2}\right]$ এর জন্য $\mathrm{f}^{-1}(y)$ এর স্র্র্র্ম ম মান।

$$
\mathrm{f}^{-1}\left(\left[-4, \frac{1}{2}\right]\right)=\left[\frac{3}{2}, 3\right] \quad \text { (Ans.) }
$$

13(d) $\mathrm{f}(x)=2 x^{2}+1$ घारा সसख्बाয়িত $\mathrm{f}:[0,2] \rightarrow \mathbb{R}$
 बनं।
সমাধান : দেওয়া আছে, $\mathrm{f}(x)=2 x^{2}+1$

$$
\mathrm{f}(0)=2 \times(0)^{2}+1=1 \text {; या } x \in[0,2]
$$

এর জन্য $\mathrm{f}(x)$ এর ब্র্র্রতম মান।
$\mathrm{f}(2)=2 \times(2)^{2}+1=9$; या $x \in[0,2]$ जর জন্য $\mathrm{f}(x)$ এর বৃহত্তম মান ।

$$
\text { রেঞ্ } \mathrm{f}=[1,9] \quad \text { (Ans.) }
$$

মনে করি, $y=\mathrm{f}(x) \quad y=2 x^{2}+1$
$\Rightarrow 2 x^{2}=y-1 \Rightarrow x^{2}=\frac{\mathrm{y}-1}{2}$
$\Rightarrow x=\sqrt{\frac{y-1}{2}} \quad[\quad x \in[0,2]]$
$\mathrm{f}^{-1}(y)=\sqrt{\frac{y-1}{2}}$

$$
\left[y=\mathrm{f}(x) \Leftrightarrow x=\mathrm{f}^{-1}(y)\right]
$$

$\mathrm{f}^{-1}(3)=\sqrt{\frac{3-1}{2}}=\sqrt{\frac{2}{2}}=1$; या $y \in\left[\frac{3}{2}, 3\right]$
aর बन्य $\mathrm{f}^{-1}(y)$ এর বৃহত্তম মান ।
$\mathrm{f}^{-1}\left(\frac{3}{2}\right)=\sqrt{\frac{\frac{3}{2}-1}{2}}=\sqrt{\frac{1}{4}}=\frac{1}{2}$; या $y \in\left[\frac{3}{2}, 3\right]$
वর জन्य $\mathrm{f}^{-1}(y)$ এর क्রুত্ম মান।

$$
\left.\mathrm{f}^{-1}\left(\left[\frac{3}{2}, 3\right]\right)=\left[\frac{1}{2}, 1\right] \quad \text { (Ans. }\right)
$$

14(a) $\mathrm{f}\left(\frac{1-x}{1+x}\right)=x+2$ शबन $\mathrm{f}(x+3)$ जयर
$f^{-1}(x)$ निर्ণर्त कर।
সমাষান g মনে করি, $\frac{1-x}{1+x}=y \quad \therefore \mathrm{f}(y)=x+2$ এヌং $y+x y=1-x \Rightarrow x(y+1)=1-y$
$\Rightarrow x=\frac{1-y}{1+y} \Rightarrow x+2=\frac{1-y}{1+y}+2$
$\Rightarrow \mathrm{f}(y)=\frac{1-y+2+2 y}{1+y}[\because \mathrm{f}(y)=x+2]$
$\Rightarrow \mathrm{f}(y)=\frac{3+y}{1+y}$

$$
\begin{equation*}
\mathrm{f}(x+3)=\frac{3+(x+3)}{1+(x+3)}=\frac{x+6}{x+4} \tag{Ans.}
\end{equation*}
$$

২য় জশ্য: দেওয়া আাছ, $\mathrm{f}\left(\frac{1-x}{1+x}\right) \doteq x+2$
$\Rightarrow \quad f^{-1}(x+2)=\frac{1-x}{1+x}$

$$
f^{-1}\{(x-2)+2\}=\frac{1-(x-2)}{1+(x-2)}
$$

$\Rightarrow \quad f^{-1}(x)=\frac{3-x}{x-1} \quad$ (Ans.)
14 (b) $\mathrm{f}(2 x-1)=x+2$ रूে $\mathrm{f}(x+3)$ बदर $f^{-1}(x)$ निर्ण़त्र कर।
সমাধান ः মনে করি, $2 x-1=y \therefore \mathrm{f}(y)=x+2$ এবং $2 x=y+1 \Rightarrow x=\frac{y+1}{2}$
$\Rightarrow x+2=\frac{y+1}{2}+2$
$\Rightarrow \mathrm{f}(y)=\frac{y+1+4}{2}[\because \mathrm{f}(y)=x+2]$
$\Rightarrow \mathrm{f}(y)=\frac{y+5}{2}$
$\mathrm{f}(x+3)=\frac{(x+3)+5}{2}=\frac{x+8}{2}$ (Ans.)
২য় অश्ఫ: দেওয়া জাছে, $\mathrm{f}(2 x-1)=x+2$
$\Rightarrow \quad f^{-1}(x+2)=2 x-1$

$$
f^{-1}\{(x-2)+2\}=2(x-2)-1
$$

$\Rightarrow \quad f^{-1}(x)=2 x-5 \quad$ (Ans.)

14(c) দেখাও মে, $\mathrm{A}=\{x \in \mathbb{R}: x \geq 0\}$ जবर
 $f^{-1}(x)$ বिम्यमान। $f^{-1}(x)$ निर्षয় কর।
বেबোন $x_{1}, x_{2} \in \mathrm{~A}$ এর घनग, $\mathrm{f}\left(x_{1}\right)=\mathrm{f}\left(x_{2}\right)$ হবে यमि B কেবল यमि, $x_{1}^{2}=x_{2}^{2} \Rightarrow x_{1}=x_{2}$ श़। $[\because x \geq 0]$
$\mathrm{f}(x)$ একটি এক- এক ফাশ্।
४রি, $y=\mathrm{f}(x)=x^{2} \Rightarrow x^{2}=y$

$$
\Rightarrow x=\sqrt{y} \cdots \cdots(1) \quad[\because x \geq 0]
$$

এখন, $x=\sqrt{y} \in \mathbb{R}$ यमि ও কেবল यमि, $y \in \mathbb{R}$ এবং $y \geq 0$

রেঞ $\mathrm{f}=\{y \in \mathbb{R}: y \geq 0\}=\{x \in \mathbb{R}: x \geq 0]=\mathrm{A}$ $\mathrm{f}(\mathrm{A})=\mathrm{A}$
$\mathrm{f}(x)$ একটি সার্বিক खाশশন ।
যেহেতু $\mathrm{f}(x)$ একটি এক - এক ও সার্বিক ফा®শन সুতরাং $\mathrm{f}(x)$-এর বিপরীত ফাংশন বিদ্যমান । এখन (1) इতে পাই, $x=\sqrt{y}$

$$
f^{-1}(y)=\sqrt{y} \quad\left[\because y=\mathrm{f}(x) \text { iff } x=f^{-1}(y)\right]
$$ y কে x দ্রার প্রতিস্থান করে পাই, $f^{-1}(x)=\sqrt{x}$

14 (d) $A, B \subseteq \mathbb{R}$ जবং $f(x): A \rightarrow B$ इनে जबए (i) $\mathrm{f}(x)=\sqrt{x-2} \quad$ (ii) $\mathrm{f}(x)=x^{2}$
 $f^{-1}(x)$ বिम्यমान बाকमে A जবर B সেটের মান নির্ণয় কর ; বেখানে A বৃহৃ্টম।
(i) যেহেতু $\mathrm{f}(x)=\sqrt{x-2}$ ফाশশনের বিপরীত ফাशশन f^{-1} বिদ্যমাन সুতরাং প্রদত্ত ফাশ্ণনি এক - এক এবং সার্বিক।

$$
\text { রেঞ্} f=B \text {. }
$$

এখन , $\mathrm{f}(x)=\sqrt{x-2} \in \mathbb{R}$ হবে यमि ఆ কেবপ यमि, $x \in \mathbb{R}$ এবং $x-2 \geq 0$ i.e., $x \geq 2$ इয়।

$$
\text { ডোমেন } \mathrm{f}=\{x \in \mathbb{R}: x \geq 2\}
$$

ডোমেন $\mathrm{f}=\{x \in \mathbb{R}: x \geq 2\}$ এর জন্য, $=\sqrt{x-2}$ একটি এক-এক ফাशশन।
$\mathrm{A}=$ ডোমেন $\mathrm{f}=\{x \in \mathbb{R}: x \geq 2\}$
$x \in$ ডোমেন f এর জন্য , $\mathrm{f}(x)$ এর মান অঋけাত্যক রেজ $\mathrm{f}=\{x \in \mathbb{R}: x \geq 0\}$.

$$
\mathrm{B}=\{x \in \mathbb{R}: x \geq 0\}
$$

(ii) যেহেতু $\mathrm{f}(x)=x^{2}$ ফাংশনের বিপরীত ফাংশন f^{-1} বिদ্যমান, সুতরাং প্রদত্ত ফাংশনটি এক - এক এবং সার্বিক।

$$
\text { রেss } f=B
$$

এখन, $\mathrm{f}(x)=x^{2} \in \mathbb{R}$ यमि ও কেবল যদি , $x \in \mathbb{R}$.
ডোম্মন. $f=\mathbb{R}$
ডোমেন $\mathrm{f}=\mathbb{R}$ এর জন্য, $\mathrm{f}(x)=x^{2}$ ফাশশনটি এক এক নয় ।
কিग্তু ড়োমেন f -এর সর্বাধিক মান $\{x \in \mathbb{R}: x \geq 0\}$ जথ্থবা $\{x \in \mathbb{R}: x \leq 0\}$ এর बन्ग $\mathrm{f}(x)=x^{2}$ खाশশনটি একএক।
$\mathrm{A}=\{x \in \mathbb{R}: x \geq 0\}$ जথবা $\mathrm{A}=\{x \in \mathbb{R}: x \leq 0\}$ $x \in$ ডোমেন f এর জন্য, $\mathrm{f}(x)$-এর মান অঋণাতাক।

$$
\text { রেঞs } \mathrm{f}=\{x \in \mathbb{R}: x \geq 0\}
$$

$$
\mathrm{B}=\{x \in \mathbb{R}: x \geq 0\}
$$

(iii) যেহেতু $\mathrm{f}(x)=(x-1)^{2}$ ফাংশনের বিপরীত় ফাশশন f^{-1} বিদ্যমান , সুতরাং প্রদত্ত ফাংশনটি এক - এক এবং সার্বিক।
রেজg f=B

এখन , $\mathrm{f}(x)=(x-1)^{2} \in \mathbb{R}$ रবে यদি ও কেবল यদি , $x \in \mathbb{R}$
ডোমেন f = R

ডেমেন $\mathrm{f}=\mathbb{R}$-जর জन्य ,भদত্ত खाশन $\mathrm{f}(x)=(x-1)^{2}$ এক-এক नয়।
কিন্তু ডোমেন f -এর সর্বাধিক মান $\{x \in \mathbb{R}: x \geq 1\}$ जข্বা $\{x \in \mathbb{R}: x \leq 1\}$ जর জন্য $\mathrm{f}(x)=(x-1)^{2}$ ফাংশনটি এক-এক।
$\mathrm{A}=\{x \in \mathbb{R}: x \geq 1\}$ जথবा $\mathrm{A}=\{x \in \mathbb{R}: x \leq 1\}$
$x \in$ ডোমেন f এর জন্য, $\mathrm{f}(x)$ এর মান অধণাতক
রেজ $\mathrm{f}=\{x \in \mathbb{R}: x \geq 0\}$.
$\mathrm{B}=\{x \in \mathbb{R}: x \geq 0\}$

সমাষান :

(a) নিচের তালিকায় $x \in[-3,3]$ এর ডিন্ন ডিন্ন মানের জন্য $v=x^{2}$ এর প্রতিযুপী মান নির্ণয় করি

x	± 3	± 2	± 1	0
$y=x^{2}$	9	4	1	0

একটি ছক কাগজজ স্থানাংকের অক্ক রেখা $\mathrm{X}^{\prime} \mathrm{OX}$ ও YOY' ボাকি।
স্কেষ নিষারা :
 y-অক্ষ বরাবর ক্র্র্রতম বগ্কক্ষেত্রের 1 বাুু = 1 একক।

এখন নিদ্ধারিত স্কেল অনুযায়ী তালিকাভুক্ত বিদ্দুগুলো
ছক কাগজ্জে স্যাপন করি । স্যাপিত বিন্দুগুলো মুক্ত হল্তে বক্রাকারে যোগ করে $\mathrm{R}=\left\{(x, y) \quad y=x^{2}\right.$ এবং $-3 \leq x \leq 3\}$ এর লেখ অজ্কन করা ছল।
$-3 \leq x \leq 3$ সীমার মধ্যে y-অক্ষের সমান্তরাল প্রতিটি উনম্ম রেখায় প্রদত্ত অন্ষয়ের লেখচিত্রটির একটি মাত্র কিদ্দু আছে। অতএব, প্রদত্ত অন্ময় একটি যাশশন

15(b) নিচের তালিকায় $x \in[0,4]$ এর ভিন্ন ভিন্ন
মানের জন্য $y^{2}=x \Rightarrow y= \pm \sqrt{x}$ এর প্রতিরূপী মান নির্ণয় করি :

x	0	1	2	3	4
$y= \pm \sqrt{x}$	0	± 1	± 1.42	± 1.73	± 2

একটি ছক কাগজ্জে স্থনাংকের অষ্ষ রেখা X'OX ও YOY' আiকি।
স্কেন নিধারণ :
x-অক্ষ বরাবর ক্র্র্র্ম বর্গক্ষেত্রের 2 বাহू $=1$ একক। y-অক্ষ বরাবর ক্রুদ্রতম বর্গক্ষেত্রের 2 বাহু $=1$ একক। এখন নিধ্ধারিত স্কেল অনুযয়ী তালিকাভুক্ত বিদ্দুগুলো ছক কাগজ্জ স্যাপন করি। স্গাপিত বিন্দুগুলো মুক্ত হল্তে

उनाबाब ब्याभ कब $\mathrm{R}=\left\{(x, y) \quad y^{2}=x\right.$ बरह $0 \leq x \leq 4\}$ এর লেখ অঙ্কন করা হল।

$0<x \leq 4$ সীমার মধ্যে y-অক্ষের সমমান্তরাল প্রতিটি উলম্ব রেখায় প্রদত্ত অন্ময়ের লেখচিত্রটির একাধিক (দুইটি) বिস্দু आছে । অতএব, প্রদত্ত अन्यয় ফাংশन নয় । 15(c) नিচের তালিকায় $x \in[0,4]$ এর ভিন্ন ভিন্ন মাनের জन्य $y^{2}=x \Rightarrow y=\sqrt{x}(\quad y \geq 0)$ এর প্রতিরূপী মান नিণয় করি :

x	0	1	2	3	4
$y=\sqrt{x}$	0	1	1.42	1.73	2

একটি ছক কাগজে স্থানাংকের অক্ষ রেখা X'OX ও YOY' आঁাকি ।
স্কেন নিষারণ :
x-অক্ষ বরাবর ক্ষুদ্রতম বর্গক্ষেত্রের 2 বাহু $=1$ একক । y-অক্ষ বরাবর ক্ষ্রুতম বর্গক্ষেত্রের 2 বাহু $=1$ একক।

এখन নিধ্রারিত স্কেল জনুযায়ী তালিকাতুক্ত ব্দ্দুগুলো ছক কাগজে স্থাপন করি। স্থাপিত ব্ন্দুগুলো মুক্ত হল্তে বক্সাকারে যোগ করে $\mathrm{R}=\left\{(x, y): y^{2}=x, 0 \leq x \leq 4\right.$ এবং $y \geq 0\}$ এর লেখ অজ্কন করা হল।
$0 \leq x \leq 4$ সीমার মধ্যে y-অক্ষের সমাল্তরাল প্রতিটি উলম্ম রেখায় প্রদত্ত অন্ময়ের লেখচিত্রটির একটি মাত্র বিিদ্দু आছে। অতএব, প্রদত্ত অন্ময় একটি ফাংশন ।

15(d) निচের তালিকায় $x \in[0,10]$ এর ভিন্ন ভিন্ন মানের জন্য $y=\sqrt{x-1}$ এর প্रতিরূপী মান निণয় করি

x	1	3	5	7	10
$y=\sqrt{x-1}$	0	1.42	2	2.45	3

এখন নিধ্রারিত স্কেল অনুযায়ী তালিকাভুক্ত বি্দুগুলো ছক কাগজ্র স্থাপন করি । স্থাপিত ক্ন্দুগুলো মুক্ত হল্তে বক্রাকারে যোগ করে $\mathrm{R}=\{(x, y) \quad y=\sqrt{x-1}$ এবर $1 \leq x \leq 10\}$ এর लেখ অЕ्बन করা হल।
$1 \leq x \leq 10$ সীমার মষ্যে y -অক্ষের সমান্তরাল প্রতিটি উলম্ম রেখায় প্রদত্ত অন্ময়ের লেখচিত্রটির একটি মাত্র ক্দ্দু জাছে। অতএব, প্রদত্ত অन্ময় একটি ফাংশ।

15(e) প্রদত্ত অन्यয় R এর বর্ণনাকারী সমীকরণ
$(x-1)^{2}+(y+2)^{2}=9$ একটি বৃত্ত , যার কেন্দ্রের স্যানাং $(1,-2)$ जবং ব্যাসার্গ 3
একটি ছক কাগজে স্থানাংকের অক্ষ রেখা $X^{\prime} O X$ ও YOY' आँকি ।
স্কেন নিধারণ :
x-অक্ষ বরাবর ক্মুর্মত বর্গক্ষেত্রের 2 বাহू $=1$ একক। y-অক্ষ বরাবর ক্মুদ্রতম বর্গক্ষেত্রের 2 বাহু $=1$ একক।
$(1,-2)$ ब্দিকে কেন্দ্র করে 3 একক ব্যাসাধ নিয়ে একটি বৃত্ত অজ্কন করি ।

$$
\mathrm{R}=\left\{(x, y) \quad(x-1)^{2}+(y+2)^{2}=9\right\} \text { ה }
$$

লেখ অঙ্কন করা হল।

$2<x<4$ সীমার মধ্যে y－অক্ষের সমান্তরাল প্রতিটি উঁলম্ব রেখাi় প্রদত্ত অন্ময়ের লেখচিত্রটির একাধিক（দুইটি ）户্দ্দু आছে। অতএব，প্রদד্ত অন্ময় ফাংশন নয় । $15(\mathrm{f})$ ）প্রদত্ত অन্ঘয় R এর বর্ণনাকারী শर্ত $x^{2}+y^{2}=$ 9 এ飞ং $y \geq 0$ একটি অর্ধতৃত যার কেন্দ্রের স্থানাংক $(0,0)$ এবং ব্যাসাধ 3
ऽকটি ছক কাগজজ স্থানাংকে়্র অস্ষ রেখা $\mathrm{X}^{\prime} \mathrm{OX}$ • YOY＇आँকি ।

স্কে নিধারণ ：
x－4ক বরাবর ক্রুদ্রতম বর্গক্ষেত্রের 2 বাহু＝ 1 একক।
 l－অক্ষের সমান্তরাল কোন সরললেখা প্রদত্ত অন্ময়ের ল্গখকে একাধিক ক্দিতুতে ছেদ করেনা । অতএব প্রদত্ত অन्बয় একটি ফাংশ়ন।
$y \geq 0$ সীমার মধ্বে y－অক্ষর সমান্তরাল প্রতিটি উলম্ফ র্রখায় প্রদত্ত অন্बর্যের লেখচিত্রটির একটি মাত্র বিন্দু আছে । অতএব，প্রদত্ত অन्ময় একটি ফাংশন ।
16．（a）$y=\sin x,-\pi \leq x \leq \pi$ এর গ্রাফ হতে $y=3 \sin x$ এর গ্রাফ অষ্কন কর।

সমাধানः x－অক বরাবর ছোট বর্গের এক বাহু $=30^{\circ}$ এবং y－অক্ষ বরাবর ছোট বর্গের 3 বাহ $=1$ ধরে $\mathrm{y}=\sin \mathrm{x},-\pi \leq x \leq \pi$ লের্খচিত্র अঙ্কন করি। $\mathrm{y}=\sin \mathrm{x}$ এর রৃপাד্তরিত ফাংশন $\mathrm{y}=3 \sin \mathrm{x}, \mathrm{y}$
 বিন্দুর y －স্থানাঙ্ককে 3 जুণ বৃদ্ধি করে বিন্দুটিকে উপরের দিকে সরিয়ে $\mathrm{y}=3 \sin x$ बिथখ নিচচ অঙ্কন করা হলো।।

（b） $\mathrm{y}=e^{x}$ এর নেষ एब্ $\mathrm{y}=\ln \mathrm{x}$ এর নেখ অকন কর।

निচের जালিকায় x এর ডিন্ন ডিন্ন মানের জন্য $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$ এর প্রতিরূপী মান নির্ণয় কর্কর ：

x	-2	-1	0	1	2
$\mathrm{y}=\mathrm{e}^{\mathrm{x}}$	$0 \cdot 14$	$0 \cdot 37$	1	2.72	$7 \cdot 39$

x－অक্ষ ও y－অক্ষ বরাবর ক্কুদ্রত্ম বগের 3 বাহू $=1$ একক ধরে তালিকাভুক্ত বিন্দুগলি ছক কাগজে স্থাপন করি এবং সরূ পেন্সিল দিয়ে স্থাপিত বিন্দুর্তল যুক্ত হচ্তে বক্রাকরে যোগ করে $\mathrm{f}(x)=\mathrm{e}^{\mathrm{x}}$ এর লেখ অঙ্কন করি।
$\mathrm{f}(x)=\mathrm{e}^{\mathrm{x}}$ ফाংশনनর লেণের উপরश্থ $(-2,0 \cdot 14)$ ， $(-1,0.37),(0,1)$ ও $(1,2 \cdot 72)$ বিন্দুর্⿹勹⿰亻 x স্থা াক্ত ও y श্থানাক্কের স্থান বিনিময় করে যথাক্রুম্ম $(0 \cdot 14,-2)$ $(0.37,-1),(1,0)$ ও $(2 \cdot 72,1)$ বिन्দूఆলি ছক

কাগজজ স্থাপন করি এবং সরূ পেস্সিল দিয়ে স্शাপিত বিন্দুগ্তু মুক্ত হচ্ডে বক্রাকারে যোগ করে $\mathrm{f}(x)=\mathrm{e}^{\mathrm{x}}$ এর বিপরীত ফাংশন $f^{-1}(x)=\ln x$ এর লেখ অझ্\%ন করা रলো। (जন্যভবে, $\mathrm{y}=\mathrm{x}$ সরলরেখা হতে $(-2,0 \cdot 14)$ $(-1,0.37),(0,1)$ ও $(1,2.72)$ বিন্দু ত্তলির সমদূরব্ত্তী বিন্দুগুলির সাহাব্যে $f^{-1}(x)=\ln x$ এর লেঋ অक् করা যায় 1)

17. खाष्णनथनित्त পर्यात्र निर्ष্য कব্ন: (a) $\sin (5 \theta+$ $\frac{\pi}{4}$)
(b) $7 \tan (-3 \theta)$
(c) $\cos \frac{1}{2} \theta \tan \theta$

সমাধানः (a) धরি, $f(\theta)=\sin \left(5 \theta+\frac{\pi}{4}\right)$

$$
f(\theta)=\sin \left(5 \theta+\frac{\pi}{4}+2 \pi\right)
$$

$[\because \sin \theta$ बর পर्याয় $2 \pi]$
$=\sin 5\left(\theta+\frac{\pi}{20}+\frac{2 \pi}{5}\right)=f\left(\theta+\frac{2 \pi}{5}\right)$
$\sin \left(5 \theta+\frac{\pi}{4}\right)$ এর পর্याয় $\frac{2 \pi}{5}$.
(b) ধরি, $f(\theta)=7 \tan (-3 \theta)$

$$
f(\theta)=7 \tan (-3 \theta+\pi)
$$

$[\because \tan \theta$ এর পर्याয় $\pi]$
$=7 \tan 3\left(-\theta+\frac{\pi}{3}\right)=f\left(\theta+\frac{\pi}{3}\right)$
$7 \tan (-3 \theta)$ এর পর্যায় $\frac{\pi}{3}$.
(c) ধরি, $f(\theta)=\cos \frac{1}{2} \theta \tan \theta$
$\cos \frac{1}{2} \theta=\cos \left(\frac{1}{2} \theta+2 \pi\right)=\cos \frac{1}{2}(\theta+4 \pi)$
$[\because \sin \theta$ এর পর্যায় $2 \pi]$
এবং $\tan \theta=\tan (\theta+\pi)=\tan (\theta+2 \pi)$

$$
=\tan (\theta+3 \pi)=\tan (\theta+4 \pi)
$$

$[\because \tan \theta$ এর পর্যায় $\pi]$
$f(\theta)=\cos \frac{1}{2}(\theta+4 \pi) \tan (\theta+4 \pi)$
$=f(\theta+4 \pi)$
$\cos \frac{1}{2} \theta \tan \theta$ এর পर्याয় 4π.
18. দেওয়া आছে, $\mathrm{f}(x)=x^{2}+3 x+1$, $\mathrm{g}(\mathrm{x})=2 x-3$.
(a) $\mathrm{g}\left(\frac{1}{2}\right)$ এর মান নिर्ণয় কর। $\mathrm{f}(\mathrm{x})=19$ হলে, x এর মান নির্ণয় কর।
(b) ($\mathrm{g} \circ \mathrm{f}$) (2) এবং ($\mathrm{f} \circ \mathrm{g}$) (2) নির্ণ্য কর।
[চ.'০৭; ব.’১২; দি.'১৩]
(c) $f(x)$ ফाংশনের এবং এর র্রপান্তরিত ফাংশন $f(x+4)$ ఆ $f(x-4)$ এর স্কেচ অক্কন কর। সমাধানः (a) দেওয়া আছে, $\mathrm{g}(x)=2 x-3$

$$
\begin{aligned}
& \mathrm{g}\left(\frac{1}{2}\right)=2 \times \frac{1}{2}-3=1-3=-2 \\
& \mathrm{f}(\mathrm{x})=19 \Rightarrow x^{2}+3 x+1=19 \\
\Rightarrow & x^{2}+3 x-18=0 \\
\Rightarrow & (\mathrm{x}+6)(\mathrm{x}-3)=0 \\
& \mathrm{x}+6=0 \text { शलে, } \mathrm{x}=-6 \\
& \mathrm{x}-3=0 \text { शलে, } \mathrm{x}=3 .
\end{aligned}
$$

(b) 8(c) দ্রষ্টय।
(c) नিচের তালিকায় x এর ভিন্ন ভিন্ন মানের জন্য $\mathrm{f}(\mathrm{x})=x^{2}+3 x+1$ এর প্রতিনূপী. মান নির্ণয় করি :

x	0	-1	-2	-3	1	-4	$-\frac{3}{2}$
$\mathrm{f}(\mathrm{x})=x^{2}+$ $3 x+1$	1	-1	-1	1	5	5	$-\frac{5}{4}$

x - অक्ष ও y - অক্ষ বরাবর অ্দ্রুতম বগের 2 বাহू $=1$ একক ধরে তালিকাত্রক্ত ব্দ্দুগুল্ি ছক কাগজে স্পাপন করি এবং সরূ পেন্পিন দিয়ে স্থাপিত ব্দ্দুগুলি মুক্ত হল্তে বক্কাকারে যোগ করে $\mathrm{f}(\mathrm{x})=x^{2}+3 \mathrm{x}+1$ এর ক্কেচ बए্কन করি।

$\mathrm{f}(\mathrm{x})$ ষাংশনের লেখের প্রতিটি বিন্দুকে 4 একক অর্থাৎ 8 ঘর বামে সরিয়ে $f(x)$ এর র্রপাত্তরিত ফাংশন $f(x+4)$ এর এবং 4 একক অর্থাৎ 8 घর ডানে সরিয়ে $\mathrm{f}(\mathrm{x}-4)$ এর ক্কেচ অঙ্কন করা হলো।
19. দেওয়া आছে, $\mathrm{f}(x)=\sqrt{x}, \mathrm{~g}(x)=x^{2}-1$.
(a) $g^{-1}(\{-1,8\})$ এর মান निर्ণয় কর।
(b) (fog)(x) এবং (gof)(x) निर्ণয় কর। প্রথ্ম
[চ.'০৯ ; সি.'০৫; ব.'০৯]
(c) $g(x)$ ফাংশনের এবং এর র্রপাד্তরিত ফাংশন $\mathrm{g}(2 \mathrm{x})$ ও $\mathrm{f}(0.5 \mathrm{x})$ এর ক্ষেচ অঙ্কন কর।
সমাধান : ধরি, $y=\mathrm{g}(x)=x^{2}-1 \Rightarrow x^{2}=y+1$

$$
\begin{aligned}
\Rightarrow & x= \pm \sqrt{y+1} \\
& g^{-1}(y)= \pm \sqrt{y+1}
\end{aligned}
$$

www.boighar.com $y=\mathrm{g}(x)$ iff $x=\mathrm{g}^{-1}(y)$]
এখन, $\mathrm{g}^{-1}(-1)= \pm \sqrt{-1+1}=0$ এবং
$\mathrm{g}^{-1}(8)= \pm \sqrt{8+1}= \pm \sqrt{9}= \pm 3$

$$
\mathrm{g}^{-1}(\{-1,8\})=\{-3,0,3\}
$$

(b) 9(e) प्रह्यद्य।
$\mathrm{f}(x)=\sqrt{x}, \mathrm{~g}(x)=x^{2}-1$
 $=1$ একক ४রে $\mathrm{g}(\mathrm{x})$ ফাংশনের এবং এর র্রপাত্তর্নিত याংশन $g(2 x)$ ও $g(0.5 x)$ এর निচে ক্কেচ অক্কন কন্না रलো।

						Y P			11111		
						($\mathrm{x}=\mathrm{x}^{2}-1$			$g(2 x)=$) $=(2 \mathrm{x}$	
	(05x)										
											\cdots
	-										7
	V							-	-		
										,	,
		N									
					,			-	,		
						,	O	\rightarrow			+
X^{\prime}											X
						${ }^{\text {¢ }}$					

20. $\mathrm{f} \quad\{x \in \mathbb{R}: x \geq 0\} \rightarrow \mathbb{R}$ কে $\mathrm{f}(x)=x^{2}+1$ দ্বারা সংজ্ভায়িত করা হলে ,
সমাধান : (a) $x=0$ रলে $f(0)=0+1=1$, या $\mathrm{f}(x)$ এর फুদ্রতম মান এবং $\mathrm{x}>0$ राে $\mathrm{f}(\mathrm{x})>1$.

$$
\mathrm{f}(x) \text { এর রেজ }=\{x \in \mathbb{R}: x \geq 1\}
$$

(b) মনে করি, $y=\mathrm{f}(x)=x^{2}+1$

$$
\Rightarrow x^{2}=y-1 \Rightarrow x=\sqrt{y-1},[\because x \geq 0]
$$

$$
f^{-1}(y)=\sqrt{y-1}
$$

$$
\left[\because \mathrm{f}(x)=y \text { iff } f^{-1}(y)=x\right]
$$

$$
f^{-1}(1)=\sqrt{1-1} \doteq 0 \text { এবং }
$$

$$
\begin{aligned}
& f^{-1}(10)=\sqrt{10-1}=3 \\
& f^{-1}([1,10])=[0,3] \text { এবং } \\
& f^{-1}(\{1,10\})=\{0,3\}
\end{aligned}
$$

(c) $\mathrm{f}(x)$ এর লেখচিত্র থেকে $f^{-1}(x)$ এর লেখচিত্র অए্কन কর।
একটি ছক কাগজে স্থানাংকের অক্ষ রেখা $X^{\prime} O X$ ও YOY' জौँকি ।
2. সश্যুক্ত তালিকায় $x \geq 0$ এর ভিন্ন ভিন্ন মানের জন্য $\mathrm{y}=x^{2}+1$ এর প্রতিরূপী মান নিণ্য় করি ঃ

x	0	1	2	3	4
$\mathrm{f}(x)$	1	2	5	10	17

x - बक्ष ও y - অक्ष বরাবর "দ্রুতম বগেগ 1 বাহू $=1$ একক ধরে তালিকাভুক্ত বিন্দুগুলি ছক কাগজ্জ স্থাপন করি এবং স্রূ পেন্পিল দিয়ে স্যাপিত ক্ন্দুগুলি মুক্ত হল্তে বক্রাকারে যোগ করে $\mathrm{y}=x^{2}+1$ এর লেখ অᄐ্কন করি ।

$y=x$ সরলরেখার লেখ অঙ্ফন করি। $y=x$ রেখা হতে $(0,1)(1,2),(2,5),(3,10),(4,17)$ ₹ত্যामि ক্সিদ্দুলির সমদূরব্ত্তী যথাক্রমে $(1,0),(2,1),(5,2)$, $(10,3),(17,4)$ ইত্যাদি বিন্দুগুলি মুক্ত হল্তে বক্রাকারে যোগ করে $\mathrm{f}(x)$ এর নেখ থেকে $f^{-1}(x)=\sqrt{1-x}$ এর লেখ অঙ্কন করা হলে।।

ব্যবহারিক অনুশীলনী

1. $\mathrm{y}=-\mathrm{x}^{2}$ ফাশনের এবং রূপান্তরিত $\mathrm{y}=-(\mathrm{x}+$ $3)^{2} \mathrm{y}=(\mathrm{x}-3)^{2}$ ফাংনের লেখচিত্র অষ্థन কর।

পরীশণের নাম : $y=-x^{2}$ ফাংশন্নর ও রূभाন্তরিত $y=-(x+3)^{2}$ ও $y=(x-3)^{2}$ ফाংশনের লেখচিত্র अङ्कन

মূণত্ত্ব : $\mathrm{y}=-x^{2}$ একটি পরাবৃত্তের সমীকরণ যার শীর্বক্দিমু মৃলব্দ্দুত এবং অক্ষ y-অক্ষ। $y=-x^{2}$ এর লেখ নিজের সমান্তরালে 3 একক বামে স্রিয়ে দিয়ে $\mathrm{y}=-(\mathrm{x}+3)^{2}$ পরাবৃত্তের লেখ পাওয়া যায় যার শীর্ষব্দ্দু $(-3,0)$ । आবার, x অক্ষের সাপেক্ষে $\mathrm{y}=-x^{2}$ এর প্রতিচ্ছবি $\mathrm{y}=x^{2}$ এর লেখকে 3 একক ডানে সরিয়ে দিয়ে $y=(x-3)^{2}$ পরাবৃত্তের লেখ পাওয়া যায় যার শীর্ষব্দ্দু $(3,0)$.
প্রয়োজনীয় উপকরণ : (i) পেস্গিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) পেন্সিল কম্পাস (vii) সায়েন্টিফিক ক্যালকুলেটর ইত্যাদি।

কার্যপাদ্রতি:

1. একটি ছক কাগজে স্থানাজ্কের অক্ষ রেখা $\mathrm{X}^{\prime} \mathrm{OX}$ ఆ YOY' आँकि .
2. नিচের তালিকায় x এর ভিন্ন ভিন্ন মানের জন্য $y=-x^{2}$ এর প্রতিরূপী মান নির্ণয় করি :

x	-2	-1	0	1	2
$\mathrm{f}(x)$	-4	-1	0	-1	-4

3. x - अক্ষ ও y - অक्ष বরাবর $=1$ একক ধরে তালিকাভুক্ত ব্ন্দুগুলি ছক কাগজজ স্থাপন করি এবং সরূ পেন্সিল দিয়ে স্পাপিত ক্ন্দুগুলি মুক্ত হল্তে বক্রাকারে যোগ করে $y=-x^{2}$ এর লেখ অজ্ঞন করি ।

4. লেখটির প্রতিটি ব্ন্দুকে 2×3 বা 6 বগের বাহুর সমান অब্বাৎ 3 একক বাম দিকে সরিয়ে $\mathrm{y}=-(x+3)^{2}$ এর লেখ অজ্কন করি ।
5. आবার, x অক্ষের সাপেক্ষে $y=-x^{2}$ এর প্রতিছ্ছবি $y=x^{2}$ बর লেฑের প্রতিটি ক্দ্দুকে 2×3 বা 6 বগগর বাহুর সমান অর্ৰাৎ 3 একক ডানে সরিয়ে দিয়ে $y=(x-3)^{2}$ এর লেখ অজ্কন করি ।
বৈশিষ্যু: (i) লেখচিত্র তিনটি পরাবৃত্ত। $y=-x^{2}$ এর শীর্ষব্দ্দু (0,0), $\mathrm{y}=-(\mathrm{x}+3)^{2}$ এর শীর্বক্দিন্দু $(-3,0)$ এ६ং $\mathrm{y}=(\mathrm{x}-3)^{2}$ এর শীর্ষকিন্দू $(3,0)$ । (ii) $y=-x$ এর নেখ y অক্ষের সাপেক্ষে, $y=-(x+3)^{2}$ এর লেখ $x=-3$ রেখার সাপপক্ষ ও $y=(x-3)^{2}$ এর লেখ $x=3$ রেখার সাপেক্ষে প্রতিসম।
6. $\mathrm{y}=x^{2}$ ফাশনের ও রুপান্তরিত $\mathrm{y}=-2 x^{2}+$ $4 x-5$ खাংশনের নেখচিত্র অষ্কন কর।
পরীশণের নাম : $\mathrm{y}=\mathrm{x}^{2}$ ফাংশনের ও রৃপান্তরিত $\mathrm{y}=-2 x^{2}+4 \mathrm{x}-5$ ফাংশনের লেখচিত্র অজ্কন
মুনত্জ : $y=x^{2}$ একটি পরাবৃত্তের সমীকরণ যার শীর্বক্ন্দু মূলক্ন্দুত্ এবং অক্ষ y -অক্ষ। $\mathrm{y}=x^{2}$ এর লেখ থেকে $y=-2 x^{2}+4 x-5=-2\left(x^{2}-2 x+1\right)-3$ $=-2(x-1)^{2}-3$ এর লেখ অঙ্কন করা যায়।
প্রয়োজনীয় উপকরণ : (i) বপন্সিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শাপ্পনার (vi) বেন্সিল কম্মাস (vii) সায়েন্টিফিক ক্যালকুলেটর ইত্যাদি।

কার্বপা্ধতি :

1. একটি ছক কাগজ্জে স্পানাজ্জের অক্ষ রেখা $\mathrm{X}^{\prime} \mathrm{OX}$ ও YOY' đँকি ।
2. नিচের তালিকায় x এর ভিন্ন ভিন্ন মানের জন্য $y=x^{2}$ এর প্রতিরূপী মান নিণয় করি :

x	0	± 1	± 2	± 3
$\mathrm{f}(x)$	0	1	4	9

3. x - অक্ষ বরাবর ক্ষূ্রতম বগের 2 বাহू $=1$ একক ও y - অক্ষ বরাবর ক্মূর্রতম র্বগের 1 বাহू = 1 একক

ধরে তালিকাভুক্ত ক্দিগুগি ছক কাগজে স্মাপন করি এবং সরূ পেন্সিল দিত্যে স্পাপিত ক্ন্দুগুলি মুক্ত হল্তে বক্লাকারে যোগ করে $\mathrm{y}=x^{2}$ এর লেখ অজ্কন করি ।
4. x बক্ষের সাপেক্ষে $\mathrm{y}=x^{2}$ এর প্রতিচ্ছবি $\mathrm{y}=-x^{2}$ এর লেখের প্রতিটি ক্দ্দুকে 2×1 বা 2 বগগের বাহুর সমান जबाৎ 1 একক ডानে সরিয়ে मिए़ে $y=-(x-1)^{2}$ এর লেখ অভ্কে করি । এ লেখকে y অক্ষের দিকে 2 গুণ সংকুচিত করে $y=-2(x-1)^{2}$ এর লেখ অঙ্কন করি। সর্বশেষে এ লেণ্েে প্রতিটি ক্দিকে 3 একক নিচে স্থানান্তরিত করে $y=-2(x-1)^{2}-3$ এর লেখ অঙ্কন করা হলো।

বৈশিষ্ট্য : (i) লেখচিত্র দুইটি পরাবৃত্ত। $\mathrm{y}=x^{2}$ এর শীর্ষব্দ্দু $(0,0)$, এবং $y=-2(x-1)^{2}-3$ এর শীর্বব্দ্দু $(1,-3)$ ।
(ii) $y=x^{2}$ এর लেখ y অক্ষের সাপেকে, $y=y=-2(x-1)^{2}-3$ এর লেখ $x=1$ রেখার সাপেক্ষে সাপেক্ষে প্রতিসম।
3. একই নেখচিত্রে $y=2 x+5$ ফাংশনের ४ তার বিপরীত ফাশনের ‘লেখচিত্র অষ্কন কর।

পরীষণের নাম : একই লেখচিত্রে $f(x)=y=2 x+5$ ফাংশনের ও তার বিপরীত ফাংশন $f^{-1}(x)=\frac{x-5}{2}$ এর লেখচिত্ত जজ্কन

মুনত্অ: $f(x)=2 x+5$ লেখের উপরস্প বিন্দুগুলির ভুজ ও কোটির স্থাन বিनिময় করে $f^{-1}(x)=\frac{x-5}{2}$ এর নেখচিত্র অঙ্কন করা যায় অথবা $y=x$ রেখার সাপেক্ষে $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+5$ এर প্রতিছ্ছবি অষ্கন করে $f_{f}^{-1}(x)=\frac{x-5}{2}$ এর लেখ পাওয়া যায়।
প্রয়োজনীয় উপক্নণ : (i) পেপ্পিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শাপ্নার (vi) পেস্পিন কম্মাস (vii) সাভ্যেন্টিফিক ক্যালকুলেটর ইত্যাদি।

কার্যপদ্\&তি:

1. একটি ছৃক কাগজ্জে স্পানাজ্কের অক্ষ রেখা $\mathrm{X}^{\prime} \mathrm{OX}$ ও YOY' ${ }^{\prime}$ Kíক ।
2. नিচের তালিকায় x এর ভিন্ন ভিন্ন মানের জন্য $y=2 x+5$ এর প্রতিরূপী মান নিণ্ৰয় করি :

x	0	1	2
y	5	7	9

 = 1 একক ধরে তালিকাভুক্ত ব্দ্দুগুলি ছক কাগজ্জে স্সাপন করি এবং সরূ পেন্সিল দিয়ে স্পাপিত ক্ন্দুগুলি মুক্ত হল্তে বক্সাকারে যোগ করে $y=2 x+5$ এরন লেখ অঙ্কন করি । 4. একই স্কেলে $(5,0),(7,1),(9,2)$ ব্দ্দুগুলি ছক কাগজ্জে স্থাপন করি এবং সরূ পেন্পিল দিয়ে স্থাপিত ব্স্দুগুলি মুক্তু হল্তে বক্সাকারে যোগ করে $f^{-1}(x)=\frac{x-5}{2}$ এর লেখ অজ্জন করি ।

 বৈশিষ্ট্য নিকয় কর।
পরীষণের নাম : $y=5^{x}$ ফাংশনটির লেখ অফ্কন করে লেথের বৈশিফ নির্ৰয়।
মूণত্ত্ব : x এর যেরোন বাত্তব মানের জন্য $\mathrm{f}(x)=5^{\mathrm{x}}$ ফাংশনটির লেখচিত্র অষ্কন করতে হবে এবং লেখের বৈশিষ্ট নির্ৰ় করতে হবে।
প্রয়োষনীয় উপকরণ : (i) বপপ্গিন (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শাপ্পনার (vi) বপন্পিল কম্মাস (vii) সায়েন্টিফিক ক্যালকুলেটর ইত্যাদি।

কার্যপাম্রি:

1. একটি ছক কাগজে স্থানাজ্কের অক্ষ রেখা $\mathrm{X}^{\prime} \mathrm{OX}$ ও YOY' आँকি ।
2. निচের ঢালিকায় x এর ভিন্ন ভিন্ন মানের জন্য $y=5^{x}$ এর প্রতিরূীী মান নিণ্য় করি :

x	-2	-1	0	1	2
y	$0 \cdot 04$	$0 \cdot 2$	1	5	25

3. x-অঙ্ম ও y - অन्ष বরাবর "দ্র্রতম বগের 1 বাহू $=$ 1 একক ধরে তালিকাভুক্ত ব্দিগুলি ছক কাগজে স্যাপন করি এবহ সরূ পেন্সিল দিয়ে স্মাপিত কিন্দুগুলি মুক্তে হল্তে বক্রাকারে. যোগ করে $\mathrm{f}(x)=5^{\mathrm{x}}$ এর লেখ অজ্কন করি।

বৈশिষ্ট্য: (1) লেখচিত্রটি x অক্ষের নিচে आসবে না (2) x अক্ষটি লেখটির একটি অসীমতট রেখা।
（3）লেখচিত্রটি y অணকক $(0,1)$ ক্দিদ্দুত ঢছদ করে।
（4）x অक्ष বা y অক্ষের সাপেেকে লেখচিত্রটি প্রতিসম নয়।
（v）লেখচিত্রটি x অক্ষের ধনাতক দিকে বিদ্যমান।
5． $\mathbf{y}=\log _{10} x$ बগারিদমিক ফাশ্গনটির লেখ অজ্尺ন করে লেখের বৈশিষ্ট্য নির়্ ।
প্রীশণের নাম ： $\mathrm{y}=\log _{10} \mathrm{x}$ লগারিদমিক ফাশ্শটির লেখ অষ্কন করে লেখের বৈশিষ্য নির্ণয় ।
মুणত্ম ： $\mathrm{y}=\log _{10} x$ সমীকরণটি $\mathrm{x} \leq 0$ এর জন্য অসংঙ্ঞায়িত হয় বিধায় $\mathrm{x}>0$ এর যেকোন বাস্তব মানের बन্য $y=\log _{10} x$ এর লেখচিত্র অЕ্কন করতে হবে এবৃ লেণ্রের বৈশিষ্ট নির্ণয় করতে হবে।

প্রয়োজনীয় উপকরণ ：（i）বপপ্গিল（ii）স্কেল（iii）গ্রাফ পেপার（iv）ইরেজার（v）শাপনার（vi）পেপ্সিল কম্মাস （vii）সায়েন্টিফিক ক্যালকুলেটর ইত্যাদি।

কার্यभদ्यणि：

1．একটি ছক কাগজ্জে স্পানাংকের অঙ্ষ রেখা $\mathrm{X}^{\prime} \mathrm{OX}$ ও YOY＇জ̆াকি ।
2．नিচের তালিকায় x এর ভিন্ন ভিন্ন মানের জন্য $\mathrm{f}(x)=\log _{10} x$ এর প্রতিরূপী মান নির্ণয় করি ：

x	0.1	0.3	0.5	0.7
$\log _{10} x$	-1	-0.5	-0.3	-0.15
x	1	1.5	2	2.5
$\log _{10} x$	0	0.18	0.3	0.39

3．x－অक ও y－অক্ বরাবর ক্র্র্ম ব বগের 10 বাহু $=1$ একক ধরে তালিকাভুক্ঠ ব্দ্দুগুলি ছক কাগজ্জে স্সাপন করি এবং সরূ পেলিল দিয়ে স্সাপিত বিদ্দুগুলি মুক্তু হস্চে বক্সাকরে যোগ করে $\mathrm{y}=\log _{10} x$ এর লেখ बЕ्बन করি।
বৈশিষ্য ः（i）নেখচিত্রটি x অক্ষ বা y অক্小ের সাপেক্ষে প্রতিসম নয়।
（ii）লেখচিত্রটি ১ম চতুর্ভাগ ও ৪ব্ব চতুর্ভাগে অসীম পর্যন্ত বিगৃত।
（iii）নেখচিত্রটি x অক্ষকে $(1,0)$ ব্দ্দুতে ছেদ করে।
（iv）y অক্ষ লেখটির একটি অসীমতট রেো।
（v）লেখচিত্রটি y অক্ষের ধনাতাক দিকে বিদ্যমান।
6． $\mathbf{y}=\cos ^{-1} x$ ত্রিকোণমিতিক ফাख্শनঢির नেय অষ্কন ঝরে লেখের বৈশিষ্য নির্রয় ।

পরীষশণের নাম ：$y=\cos ^{-1} x$ এর লেখচিত্র অঙ্কন করে লেখের বৈশিষ্ট্য নির্ণয়，যथন $-1 \leq \mathrm{x} \leq 1$ ．
মুলতত্জ্：$x \in[-1,1]$ এর বিভিন্ন বাচ্তব মানের জন্য $y=\cos ^{-1} x$ এর লেখ্িত্র অষ্巾ন করতে হবে এবং লেথের বৈশিষ্ট্য নির্ণয় করতে হবে।

প্রয়োজনীয় উপকরণ 8 （i）বপন্সিল（ii）স্কেল（iii）গ্রাফ পেপার（iv）ইরেজার（v）শাপ্নার（vi）সায়েন্টিফিক ক্যালকুলেটর ইত্যাদি।
1．একটি ছক কাগজ্জ স্থানাজ্কের অক্ষ রেখা $\mathrm{X}^{\prime} \mathrm{OX}$ ও YOY＇জाँकि

2．निচের তালিকায় $\mathrm{x} \in[-1,1]$ এর ভিন্ন ভিন্ন মানের জन্য $y=\cos ^{-1} x$ এর প্রতিরূপী মান নির্ণয় করিঃ

x	-1	-0.87	-0.5	0
y	$\pm 180^{\circ}$	$\pm 150^{\circ}$	$\pm 120^{\circ}$	$\pm 90^{\circ}$
x	0.5	0.87	1	
y	$\pm 60^{\circ}$	$\pm 30^{\circ}$	90°	

3．x－অक्ष বরাবর ক্র্র্রতম বগের 10 বाহू $=1$ একক
 $=10^{\circ}$ একক ধরে তালিকাভুক্ত কিন্দুগুলি ছক কাগজে স্সাপন করি এবং স－রূ পেস্গিল দিত্যে স্থাপিত ক্ন্দুগুলি মুক্ত

হস্তে বক্রাকারে যোগ করে $y=\cos ^{-1} x$ এর লেখ অা্কন করি।

বৈশিষ্য : (i) লেখচিब্রিি অবিচ্ছিন্ন। (ii) নেখচিত্রটি ঢেউয়ের আকৃতি। (iii) লেখ্রি্রটি মূলবিন্দুগামী নয়।
7. $y=|2 x-1|$ পর্রমমান खাংশनঢ্র্র লেখ অझन করে লেথের বৈশিষ্য নির্ণয়।
পরীষ্মণের নাম : $y=|x|$ পরমমান ফাশ্শনঢির লেখ બজ্কন করে লেখ্থে বৈশিষ্ট নির্ণয়।
মूণত্তः $y=|2 \mathrm{x}-1|$ সমীকরণে x এর সকল বাত্তব মানের জন্য y এর মান অঋণাত্।

$$
|2 x-1|=\left\{\begin{array}{c}
2 x-1, \text { घशन } 2 x-1 \geq 0 \\
-(2 x-1) x . \text { घशन } 2 x-1<0
\end{array}\right.
$$

প্রয়োজনীয় উপকরণ : (i) বপস্সিল (ii) স্কেল (iii) গ্রাফ পেপার (iv) ইরেজার (v) শার্পনার (vi) সায়েন্টিফিক ক্যালকুলেটর ইত্যাদি।

কার্যপপ্রতি:

 YOY' জাঁি ।
2. निচের তালিকায় x এর ভিন্ন ভিন্ন মানের জন্য

x	0	-2	-1	1	2	3	$0 \cdot 5$
y	1	5	3	1	3	5	0

3. x - অक্ষ ও y - অक্ষ বরাবর ক্ষ্র্র্রত বর্বগর 2 বাহू $=1$ একক ধরে ঢালিকাভুক্ত বিন্দুগুলি ছক কাগজ্জ স্াপন

করি এবং সরূ পেন্সিলের সাহায্যে স্থাপিত ক্নিগুগুলি মুক্ত रল্তে বক্রাকারে ব্যাগ করে $\mathrm{y}=|x|$ এর লেখ অজ্কন করি।

বৈশিষ্য : (i) লেখচিত্রটি $x=\frac{1}{2}$ রেথোর সাপেক্ষে প্রতিসম । (ii) লেখচিত্রটি ১ম চতুর্ভাগ ও ২য় চতুর্ভাগে অসীম পর্যন্ত বিস্তৃত। (iii) লেখচিত্রটি মূcব্ন্দুতত ছেদ করে না। (iv) লেখচিত্রটি y অক্ষের ধনাঅক দিকে বিদ্যমান।

অতির্রিক্ত প্রশ্ন (সমাধানসহ)
1 (a) $4 \mathrm{f}(x)+2 x \mathrm{f}\left(\frac{1}{x}\right)=10 x+17$ रলে, $\mathrm{f}(x)$ এর মান নিণয় কর।

সমাধান ঃ দেওয়া আছে,
$4 \mathrm{f}(x)+2 x \mathrm{f}^{\prime}\left(\frac{1}{x}\right)=10 x+17$
x কে $\frac{1}{x}$ দ্দারা প্রতিস্পাপন করে পাই,
$4 \mathrm{f}\left(\frac{1}{x}\right)+2 \frac{1}{x} \mathrm{f}(x)=10 \frac{1}{x}+17$
$\Rightarrow 4 x \mathrm{f}\left(\frac{1}{x}\right)+2 \mathrm{f}(x)=10+17 x$
$\Rightarrow 2 \mathrm{f}(x)+4 x \mathrm{f}\left(\frac{1}{x}\right)=17 x+10 \cdots$
(i) $\times 2-$ (ii) \Rightarrow
$(8-2) \mathrm{f}(x)=(20-17) x+34-10$
$\Rightarrow 6 \mathrm{f}(x)=3 x+24$
$\mathrm{f}(x)=\frac{1}{2} x+4$ (Ans.)

1(b) $2 \mathrm{f}(x)+3 \mathrm{f}(-x)=x^{2}-x+1$ इलে, $f(x)$ এর মান নির্ণয় কর।
সমাধান ः দেওয়া জাছ,

$$
\begin{equation*}
2 \mathrm{f}(x)+3 \mathrm{f}(-x)=x^{2}-x+1 \tag{i}
\end{equation*}
$$

x কে $(-x)$ দ্বারা প্রতিস্পাপন করে পাই,
$2 \mathrm{f}(-x)+3 \mathrm{f}(x)=(-x)^{2}-(-x)+1$
$\Rightarrow 3 \mathrm{f}(x)+2 \mathrm{f}(-x)=x^{2}+x+1$
(ii) $\times 3-$ (i) $\times 2 \Rightarrow$
$(9-4) \mathrm{f}(x)=(3-2) x^{2}+(3+2) \mathrm{x}+3-2$
$\Rightarrow 5 \mathrm{f}(x)=x^{2}+5 x+1$

$$
\mathrm{f}(x)=\frac{1}{5}\left(x^{2}+5 x+1\right)
$$

ভर्তি পরীকার MCQ :

1. $f(x)=\frac{1-x}{1+x}$ रणে $f(\cos \theta)$ जর মান निर्षয়

कर।
[RU 07-08; JU 09-10]
Sol $^{n} .: f(\cos \theta)=\frac{1-\cos \theta}{1+\cos \theta}=\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}}$

$$
=\tan ^{2} \frac{\theta}{2}
$$

2. $f(x)=\frac{x}{1+x}$ रबে $\mathrm{f}(2 / 3)+\mathrm{f}(3 / 2)$ সমान-

> [DU 04-05]

Sol ${ }^{n} .: f(2 / 3)+f(3 / 2)=\frac{2}{3} \times \frac{3}{5}+\frac{3}{2} \times \frac{2}{5}=1$
3. $f(a)=\ln (a)$ रणि $f\left(\frac{1}{a}\right)=$ रण ?
[KUET 05-06; JU 09-10]
Sol ${ }^{n}: f\left(\frac{1}{a}\right)=\ln \left(\frac{1}{a}\right)=\ln \left(a^{-1}\right)=-\ln (a)$
4. $g(\theta)=\frac{1-\tan \theta}{1+\tan \theta}$ इตে $g\left(\frac{\pi}{4}-\theta\right)=$?
[KUET 08-09]
Sol ${ }^{n} .: g(\theta)=\frac{1-\tan \theta}{1+\tan \theta}=\tan \left(\frac{\pi}{4}-\theta\right)$
$g\left(\frac{\pi}{4}-\theta\right)=\tan \left\{\frac{\pi}{4}-\left(\frac{\pi}{4}-\theta\right)\right\}=\tan \theta$
5. $f(x)=x^{2}+4$ बर२ $g(x)=2 x-1$ रनে $(g o f)(x)=$? [DU 07-08, 05-06; Jt.U 0506; JU, CU 09-10]
Sol". : $(g o f)(x)=g\left(x^{2}+4\right)$

$$
=2\left(x^{2}+4\right)-1=2 x^{2}+7
$$

6. $f(x)=\sin x, g(x)=x^{2}$ रबে $f\left(g\left(\frac{\sqrt{\pi}}{2}\right)\right)=$?
[DU 09-10]
Sol ${ }^{n}: f\left(g\left(\frac{\sqrt{\pi}}{2}\right)\right)=f\left(\frac{\pi}{4}\right)=\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}$
7. $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{3}+2, \mathrm{~g}(\mathrm{x})=\sqrt[3]{\frac{x-2}{2}}$ इलে $(f o g)(5)$ এর মান হবে-
[BUET 08-09] Sol $^{n} .:(\mathrm{fog})(5)=\mathrm{f}\left(\sqrt[3]{\frac{5-2}{2}}\right)=\mathrm{f}(1)=3.1^{3}+2$
8. $f(x)=x^{2}+3$ इ能 $f(f(-3))=$?
[KUET 07-08]
Sol ${ }^{n}$. : $f(f(-3))=f\left((-3)^{2}+3\right)=f(12)$

$$
=12^{2}+3=147
$$

9. $f(x)=x^{3}+5$ এর বিপরীত ফাশন [JU 09-10] Sol ${ }^{n}$.: $\mathrm{f}\left(f^{-1}(x)\right)=\left\{\mathrm{f}^{-1}(\mathrm{x})\right\}^{3}+5$
$\Rightarrow \mathrm{x}=\left\{\mathrm{f}^{-1}(\mathrm{x})\right\}^{3}+5 \Rightarrow f^{-1}(x)=\sqrt[3]{x-5}$
10. একটি ফাশশ $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}, f(x)=2 \mathrm{x}+1$ घारा সए凹্ঞায়িত করা হনে f^{-1} (2) এর মান হবে-
[BUET 06-07; JU, RU 09-10]
Sol ${ }^{n}$. : $f^{-1}(x)=\frac{x-1}{2} \therefore \mathrm{f}^{-1}(2)=\frac{2-1}{2}=\frac{1}{2}$
11. यमि $f(x): \mathbb{R} \rightarrow \mathbb{R}$ এবर $f(x)=x^{2}$ इয় उबে $f^{-1}(4)=$ रण ?
[CU 04-05; JU,Jt.U,RU 09-10]
Sol ${ }^{n}$. $: x^{2}=4 \Rightarrow x= \pm 2$
$f^{-1}(4)=\{-2,2\}$
12. $\mathrm{f}(\mathrm{x})=\frac{5 x+3}{4 x-5}$ ₹बে $f^{-1}(x)=$? [DU10-11]

Sol ${ }^{n} .: f^{-1}(x)=\frac{5 x+3}{4 x \rightleftharpoons 5} \quad$ [मूত্র ব্যবशা করে।]
13. అবढि ফাংশ $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\frac{x-2}{x-3}$ घारा সसভ্ঞায়িত করা হলে $f^{-1}(0)$ সমান- [BUET 08-09] Sol ${ }^{n}$. $: f^{-1}(x)=\frac{+3 x-2}{x-1} \quad f^{-1}(0)=2$
14. $f(x)=\frac{x-3}{2 x+1}$ এবং $x \neq-\frac{1}{2}$ হ बে
$f^{-1}(-2)$ এর মান-
[DU,RU 08-09]
Sol ${ }^{n} \cdot: f^{-1}(x)=\frac{-x-3}{2 x-1}$

$$
f^{-1}(-2)=\frac{-(-2)-3}{2(-2)-1}=\frac{2-3}{-4-1}=\frac{1}{5}
$$

15. $f(x)=\frac{2 x-1}{x-2}$ ফাংনের ডোমেন, রেঞ্ এবং বিপরীত ফাশ্ নির্ণয় কর।[IU, SU 07-08; CU 05-06, 08-09; JU 09-10]
Sol ${ }^{n} .:$ ডোমেন $=\mathbb{R}-\left\{2\right.$, রেজs $=\mathbb{R}-\left\{\frac{2}{1}\right\}=\mathbb{R}-\{2\}$ এてং $f^{-1}(x)=\frac{-2 x-1}{x-(-2)}=\frac{-2 x-1}{x+2}$
16. $\log \left(5 x^{2}-7\right)$ ফাংশনের ডোমেন হবে-
[CU 07-08]
Sol ${ }^{n}$. $: 5 x^{2}-7>0 \Rightarrow x^{2}-\frac{7}{5}>0$
$\Rightarrow(x-\sqrt{7 / 5})(x+\sqrt{7 / 5})>0$
ডোমেন $=\{x \in \mathbb{R}: x>\sqrt{7 / 5}$ बथবা $x<-\sqrt{7 / 5}\}$
17. $f(x)=\frac{x}{|x|}$ यাশনের ডোমেন ও বিস্তার হবে-
[CU 04-05, 06,07]
Sol ${ }^{n}$.: ডোমেন $f=\mathbb{R}-\{0\}=(-\infty, \infty)-\{0\}$ বিস্তার $\mathrm{f}=\{-1,1\}$
18. $f(x)=\sqrt{\frac{1-x}{x}}$ ঋাশশনটির ডোমেন কত?
[SU 05-06]
A. (0,1)
B. $[0,1)$
C. $(0,1]$
D. $[0,1]$

Sol ${ }^{n} .: \mathrm{f}(\mathrm{x}) \in \mathbb{R}$ iff $(1-\mathrm{x}) \mathrm{x} \geq 0$ but $\mathrm{x} \neq 0$ $\Rightarrow(x-0)(x-1) \leq 0$ but $x \neq 0 \Rightarrow 0<x \leq 1$
19. $f(x)=x^{2}-1$ ঢारा সशब्बाয়িত ফाएশन f এর ডোমেন $[-1,1]$ হলে রেঞ কত ?
[IU 04-05] Sol ${ }^{n}$.: $\mathrm{f}(0)=0^{2}-1=-1$; या $x \in[-1,1]$ এর জন্য $\mathrm{f}(x)$ এর ক্র্র্রতম মান।
$\mathrm{f}(\pm 1)=(\pm 1)^{2}-1=0$; या $x \in[-1,1]$ এ জন্য $\mathrm{f}(x)$ এর বৃহত্ম মান । f এর রেঞ় $=[-1,0]$
20. $\mathrm{f}(x)=\sqrt{x}+1$ হणে এর ডোমেন এবং রেঙ্গ বত?
[CU ‘03-04]
Sol ${ }^{n}$.: এখানে ডোমেন হল সকল অభণাত্ সং্খ্যার সেট অबাc $[0, \infty) \mid \mathrm{f}(0)=\sqrt{0}+1=1$; य $x \in[0, \infty)$ এর জন্য $\mathrm{f}(x)$ এর

রেঞ্ $f=[1, \infty)$
21. $f(x)=\sqrt{1-x^{2}}$ ষাश্শনের ডোমেন কত?
[CU 03-04, 08-09]
Sol ${ }^{n}$.: $1-x^{2} \geq 0 \Rightarrow x^{2}-1 \leq 0$
$\Rightarrow(x-1)(x+1) \leq 0 \Rightarrow-1 \leq x \leq 1$
ডোমেন $\mathrm{f}=\{x \in \mathbb{R}:-1 \leq x \leq 1\}$
22. $f(x)=\sqrt{x-2}$ जবर $g(x)=x^{2}+1$ इए़ " $\mathrm{g} g$ এর ডোমেন হবে- [BUET 10-11]
sot .: $f o g=f\left(g(x)=f\left(x^{2}+1\right)\right.$

$$
=\sqrt{x^{2}+1-2}=\sqrt{x^{2}-1}=\sqrt{(x-1)(x+1}
$$

For Dom, $(x-1)(x+1) \geq 0 \Rightarrow \mathrm{x} \leq-1$ or, $\mathrm{x} \geq 1$
$\operatorname{Dom}(f o g)=(-\infty,-1) \cup(1, \infty)$
ফাংশনে ক্যালকুুেেটের ব্যবহার :
$f(x)=\frac{x}{1+x}$ इजে $\mathrm{f}(2 / 5) \div \mathrm{f}(5 / 2)$ সমान-

SOLVE=
CALC Screen এ দেখাবে x ?
Press 2 ablc $5=$ মান आসে $2 / 7$
Again, press $=$ Screen এ দেখাবে x ?
Press 5ablc $2=$ মান ளাসে $5 / 7$
Press $2 / 7$ - $5 / 7=$ Screen এ बानु 2/5. Ans. $2 / 5$.
\Longrightarrow সीমাখ্ির মান নির্ণয় কর :
3. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-5 x+6}$

ন্দাধান ः ধরি $x=2+\mathrm{h} . \therefore \mathrm{h} \rightarrow 0$, যখन $x \rightarrow 2$

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-5 x+6}
$$

$=\lim _{h \rightarrow 0} \frac{(2+h)^{2}-4}{(2+h)^{2}-5(2+h)+6}$
$=\lim _{h \rightarrow 0} \frac{4+4 h+h^{2}-4}{4+4 h+h^{2}-10-5 h+6}$
$=\lim _{h \rightarrow 0} \frac{h(h+4)}{h(h-1)}=\lim _{h \rightarrow 0} \frac{h+4}{\dot{h}-1}$
$=\frac{0+4}{0-1}=-4$ (Ans.)
বকब्र भद्धणि : $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-5 x+6}$
$=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)(x-3)}=\lim _{x \rightarrow 2} \frac{x+2}{x-3}$
$=\lim _{x \rightarrow 2} \frac{x+2}{x-3}=\frac{2+2}{2-3}=-4$ (Ans.)
1(b) $\lim _{x \rightarrow 0} \frac{(x+4)^{3}-(x-8)^{2}}{x(x-3)}$
$=\lim _{x \rightarrow 0} \frac{x^{3}+12 x^{2}+48 x+64-x^{2}+16 x-64}{x(x-3)}$
$=\lim _{x \rightarrow 0} \frac{x^{3}+12 x^{2}+48 x+64-x^{2}+16 x-64}{x(x-3)}$
$=\lim _{x \rightarrow 0} \frac{x^{3}+11 x^{2}+64 x}{x(x-3)}$
$=\lim _{x \rightarrow 0} \frac{x\left(x^{2}+11 x+64\right)}{x(x-3)}$
$=\lim _{x \rightarrow 0} \frac{x^{2}+11 x+64}{x-3}=\frac{0^{2}+11.0+64}{0-3}$
$=\frac{64}{-3}=-21 \frac{1}{3}$ (Ans.)

$$
\text { 2(a) } \lim _{x \rightarrow 0} \frac{\sqrt{1+3 x}-\sqrt{1-4 x}}{x} \quad \text { [मि.'०৩] }
$$

$$
=\lim _{x \rightarrow 0} \frac{(\sqrt{1+3 x}-\sqrt{1-4 x})(\sqrt{1+3 x}+\sqrt{1-4 x})}{x(\sqrt{1+3 x}+\sqrt{1-4 x})}
$$

$$
=\lim _{x \rightarrow 0} \frac{(\sqrt{1+3 x})^{2}-(\sqrt{1-4 x})^{2}}{x(\sqrt{1+3 x}+\sqrt{1-4 x})}
$$

$$
=\lim _{x \rightarrow 0} \frac{1+3 x-1+4 x}{x(\sqrt{1+3 x}+\sqrt{1-4 x})}
$$

$$
=\lim _{x \rightarrow 0} \frac{7 x}{x(\sqrt{1+3 x}+\sqrt{1-4 x})}
$$

$$
=\lim _{x \rightarrow 0} \frac{7}{\sqrt{1+3 x}+\sqrt{1-4 x}}
$$

$$
=\frac{7}{\sqrt{1+3.0}+\sqrt{1-4.0}}=\frac{7}{1+1}=\frac{7}{2}
$$

$$
\text { 2(b) } \lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-\sqrt{1-3 x}}{x}[\text { ব. '০৯,’১৩] }
$$

$$
=\lim _{x \rightarrow 0} \frac{(\sqrt{1+2 x}-\sqrt{1-3 x})(\sqrt{1+2 x}+\sqrt{1-3 x})}{x(\sqrt{1+2 x}+\sqrt{1-3 x})}
$$

$$
=\lim _{x \rightarrow 0} \frac{(\sqrt{1+2 x})^{2}-(\sqrt{1-3 x})^{2}}{x(\sqrt{1+2 x}+\sqrt{1-3 x})}
$$

$$
=\lim _{x \rightarrow 0} \frac{1+2 x-1+3 x}{x(\sqrt{1+2 x}+\sqrt{1-3 x})}
$$

$$
=\lim _{x \rightarrow 0} \frac{5 x}{x(\sqrt{1+2 x}+\sqrt{1-3 x})}
$$

$$
=\lim _{x \rightarrow 0} \frac{5}{\sqrt{1+2 x}+\sqrt{1-3 x}}
$$

$$
=\frac{5}{\sqrt{1+2.0}+\sqrt{1-3.0}}=\frac{5}{1+1}=\frac{5}{2}(\text { Ans. })
$$

$$
\text { 2(c) } \lim _{x \rightarrow 0} \frac{\sqrt{1+x^{2}}-\sqrt{1+x}}{\sqrt{1+x^{3}}-\sqrt{1+x}}
$$

$$
\begin{aligned}
&= \lim _{x \rightarrow 0}\left\{\frac{\sqrt{1+x^{2}}-\sqrt{1+x}}{\sqrt{1+x^{3}}-\sqrt{1+x}} \times \frac{\sqrt{1+x^{2}}+\sqrt{1+x}}{\sqrt{1+x^{2}}+\sqrt{1+x}}\right. \\
&\left.\times \frac{\sqrt{1+x^{3}}+\sqrt{1+x}}{\sqrt{1+x^{3}}+\sqrt{1+x}}\right\} \\
&= \lim _{x \rightarrow 0} \frac{\left(1+x^{2}-1-x\right)\left(\sqrt{1+x^{3}}+\sqrt{1+x}\right)}{\left(1+x^{3}-1-x\right)\left(\sqrt{1+x^{2}}+\sqrt{1+x}\right)} \\
&= \lim _{x \rightarrow 0} \frac{x(x-1)\left(\sqrt{1+x^{3}}+\sqrt{1+x}\right)}{x\left(x^{2}-1\right)\left(\sqrt{1+x^{2}}+\sqrt{1+x}\right)} \\
&= \lim _{x \rightarrow 0} \frac{(x-1)\left(\sqrt{1+x^{3}}+\sqrt{1+x}\right)}{\left(x^{2}-1\right)\left(\sqrt{1+x^{2}}+\sqrt{1+x}\right)} \\
&=\frac{(0-1)\left(\sqrt{\left.1+0^{3}+\sqrt{1+0}\right)}\right.}{\left(0^{2}-1\right)\left(\sqrt{1+0^{2}}+\sqrt{1+0}\right)}=\frac{2}{2}=1
\end{aligned}
$$

3(a) $\lim _{x \rightarrow \infty} \frac{2 x^{4}-3 x^{2}+1}{6 x^{4}+x^{3}-3 x}$
$=\lim _{x \rightarrow \infty} \frac{x^{4}\left(2-\frac{3}{x^{2}}+\frac{1}{x^{4}}\right)}{x^{4}\left(6+\frac{1}{x}-\frac{3}{x^{3}}\right)}$
$=\lim _{x \rightarrow \infty} \frac{2-\frac{3}{x^{2}}+\frac{1}{x^{4}}}{6+\frac{1}{x}-\frac{3}{x^{3}}}=\frac{2-0+0}{6+0-0}=\frac{2}{6}=\frac{1}{3}$
3(b) $\lim _{x \rightarrow \infty} \frac{3^{x}-3^{-x}}{3^{x}+3^{-x}}$
[চ.'००]

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{3^{x}\left(1-\frac{1}{3^{2 x}}\right)}{3^{x}\left(1+\frac{1}{3^{2 x}}\right)}=\lim _{x \rightarrow \infty} \frac{1-\frac{1}{3^{2 x}}}{1+\frac{1}{3^{2 x}}} \\
& =\frac{1-0}{1+0}=\frac{1-0}{1+0}=1
\end{aligned}
$$

3(c) $\lim _{x \rightarrow \infty}\{\ln (2 x-1)-\ln (x+5)\}$ [প্..ভ.9.'○8]
$=\lim _{x \rightarrow \infty} \ln \frac{2 x-1}{x+5}=\lim _{x \rightarrow \infty} \ln \frac{x\left(2-\frac{1}{x}\right)}{x\left(1+\frac{5}{x}\right)}$
$=\lim _{x \rightarrow \infty} \ln \frac{2-\frac{1}{x}}{1+\frac{5}{x}}=\ln \frac{2-0}{1+0}$
$=\ln 2$ (Ans.)
3.(d) $\lim _{x \rightarrow \infty} 2^{x} \sin \frac{b}{2^{x}}$
[मि.' \circ ©]
ধরি, $\frac{b}{2^{x}}=\theta$. এখানে $x \rightarrow \infty$ বলে $2^{x} \rightarrow \infty$ $\theta=\frac{b}{2^{x}} \rightarrow 0$
$\lim _{x \rightarrow \infty} 2^{x} \sin \frac{b}{2^{x}}=\lim _{\theta \rightarrow 0} \frac{b}{\theta} \sin \theta$

$$
=b \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=\mathrm{b} \cdot \mathrm{l}=\mathrm{b}
$$

4.(a) $\lim _{x \rightarrow a} \frac{x^{7 / 2}-a^{7 / 2}}{\sqrt{x}-\sqrt{a}}$
[ঢ.'○৩]

$$
=\frac{\lim _{x \rightarrow a}\left(x^{7 / 2}-a^{7 / 2}\right)}{\lim _{x \rightarrow a}\left(x^{1 / 2}-a^{1 / 2}\right)}=\frac{\lim _{x \rightarrow a} \frac{x^{7 / 2}-a^{7 / 2}}{x-a}}{\lim _{x \rightarrow a} \frac{x^{1 / 2}-a^{1 / 2}}{x-a}}
$$

$$
\begin{align*}
& =\frac{\frac{7}{2} a^{\frac{7}{2}-1}}{\frac{1}{2} a^{\frac{1}{2}-1}} \quad, \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n \tag{Ans.}\\
& =\left(\frac{7}{2} \times \frac{2}{1}\right) a^{\frac{7}{2}-1-\frac{1}{2}+1}=7 a^{\frac{7}{2}-\frac{1}{2}}=7 a^{3}
\end{align*}
$$

4(b) $\lim _{x \rightarrow a} \frac{x^{5 / 2}-a^{5 / 2}}{x^{3 / 5}-a^{3 / 5}}$
$=\frac{\lim _{x \rightarrow a}\left(x^{5 / 2}-a^{5 / 2}\right)}{\lim _{x \rightarrow a}\left(x^{3 / 5}-a^{3 / 5}\right)}=\frac{\lim _{x \rightarrow a} \frac{x^{5 / 2}-a^{5 / 2}}{x-a}}{\lim _{x \rightarrow a} \frac{x^{3 / 5}-a^{3 / 5}}{x-a}}$

$$
\begin{aligned}
& =\frac{\frac{5}{2} a^{\frac{5}{2}-1}}{\frac{3}{5} a^{\frac{3}{5}-1}} \quad\left[\because \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}\right] \\
& =\left(\frac{5}{2} \times \frac{5}{3}\right) a^{\frac{5}{2}-1-\frac{3}{5}+1}=\frac{25}{6} a^{\frac{5}{2}-\frac{3}{5}} \\
& =\frac{25}{6} a^{\frac{25-6}{10}}=\frac{25}{6} a^{\frac{19}{10}} \text { (Ans.) }
\end{aligned}
$$

5(a) $\lim _{x \rightarrow 0} \frac{1-\cos 3 x}{3 x^{2}}$
[প্র.ভ.भ. ৮৫]
$=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} \frac{3 x}{2}}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} \frac{3 x}{2}}{\frac{9 x^{2}}{4} \cdot \frac{4}{3}}$
$=\frac{2.3}{4} \lim _{x \rightarrow 0}\left\{\frac{\sin (3 x / 2)}{3 x / 2}\right\}^{2}=\frac{3}{2} .1=\frac{3}{2}$
5.(b) $\lim _{x \rightarrow 0} \frac{1-\cos 7 x}{3 x^{2}}$ [भि.'০৮,'ग২; ষx.'ग১;

$=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} \frac{7 x}{2}}{3 \cdot \frac{49 x^{2}}{4} \cdot \frac{4}{49}}$
$=\left(\frac{2}{3} \times \frac{49}{4}\right) \lim _{x \rightarrow 0}\left\{\frac{\sin (7 x / 2)}{7 x / 2}\right\}^{2}$
$=\frac{49}{6} \cdot 1=\frac{49}{6}$ (Ans.)
6. (a) $\lim _{x \rightarrow 0} \frac{\cos 2 x-\cos 3 x}{x^{2}}$
[ব.'०১; মা.'०® मि.'08]
$=\lim _{x \rightarrow 0} \frac{2 \sin \frac{1}{2}(2 x+3 x) \sin \frac{1}{2}(3 x-2 x)}{x^{2}}$
$=\lim _{x \rightarrow 0} \frac{2 \sin \frac{5 x}{2} \sin \frac{x}{2}}{x^{2}}$

$$
\begin{aligned}
& =2 \lim _{x \rightarrow 0} \frac{\sin \frac{5 x}{2}}{\frac{5 x}{2}} \times \lim _{x \rightarrow 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}} \times \frac{5}{2} \times \frac{1}{2} \\
& =2 \times 1 \times \frac{5}{4}=\frac{5}{2} \text { (Ans.) }
\end{aligned}
$$

$$
\text { 6(b) } \lim _{x \rightarrow 0} \frac{\cos 2 x-\cos 4 x}{x^{2}}
$$

[ほ.'OU]
$=\lim _{x \rightarrow 0} \frac{2 \sin \frac{1}{2}(2 x+4 x) \sin \frac{1}{2}(4 x-2 x)}{x^{2}}$

$$
=\lim _{x \rightarrow 0} \frac{2 \sin 3 x \sin x}{x^{2}}
$$

$$
=2 . \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \times \lim _{x \rightarrow 0} \frac{\sin x}{x} \times 3
$$

$$
=2 \times 1 \times 1 \times 3=6 \text { (Ans.) }
$$

$$
\text { 6. (c) } \lim _{x \rightarrow 0} \frac{\cos a x-\cos b x}{x^{2}} \quad \text { [ব’১২; য.’১৩] }
$$

$$
=\lim _{x \rightarrow 0} \frac{2 \sin \frac{1}{2}(a x+b x) \sin \frac{1}{2}(b x-a x)}{x^{2}}
$$

$$
=2 \lim _{x \rightarrow 0} \frac{\sin \frac{(a+b) x}{2}}{\frac{(a+b) x}{2}} \times \frac{a+b}{2} \times
$$

$$
\lim _{x \rightarrow 0} \frac{\sin \frac{(b-a) x}{2}}{\frac{(b-a) x}{2}} \times \frac{b-a}{2}
$$

$$
=2 \times 1 \times \frac{a+b}{2} \times 1 \times \frac{b-a}{2}=\frac{1}{2}\left(b^{2}-a^{2}\right)
$$

$$
\text { 6(d) } \lim _{x \rightarrow 0} \frac{1-2 \cos x+\cos 2 x}{x^{2}}
$$

[य.'○®; दx.'’8]
$=\lim _{x \rightarrow 0} \frac{1-2 \cos x+2 \cos ^{2} x-1}{x^{2}}$
$=\lim _{x \rightarrow 0} \frac{2 \cos x(\cos x-1)}{x^{2}}$
$=\lim _{x \rightarrow 0} \frac{2 \cos x\left(-2 \sin ^{2} \frac{x}{2}\right)}{x^{2}}$
$=-4 \lim _{x \rightarrow 0}\left\{\frac{\sin (x / 2)}{x / 2}\right\} \times \frac{1}{4} \times \lim _{x \rightarrow 0} \cos x$
$=-4 \times 1 \times \frac{1}{4} \times \cos 0=-1 \times 1=-1$
6(e) $\lim _{x \rightarrow 0} \frac{x(\cos x+\cos 2 x)}{\sin x}$
[य.'০১; রা.’১১; চ,’১৩]
$=\lim _{x \rightarrow 0} \frac{x}{\sin x} \times \lim _{x \rightarrow 0}(\cos x+\cos 2 x)$
$=1 \times(\cos 0+\cos 0)$
$=1+1=1$ (Ans.)
7.(a) $\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}$
'১8; কু.'১০; সि.'০৯; মা.'১৩]
$=\lim _{x \rightarrow 0} \frac{\tan x(1-\cos x)}{x^{3}}=\lim _{x \rightarrow 0} \frac{\tan x .2 \sin ^{2} \frac{x}{2}}{x^{3}}$
$=2 \lim _{x \rightarrow 0} \frac{\tan x}{x} \times \lim _{x \rightarrow 0}\left\{\frac{\sin (x / 2)}{x / 2}\right\}^{2} \times \frac{1}{4}$
$=2 \times 1 \times 1 \times \frac{1}{4}=\frac{1}{2} \quad$ (Ans.).
7(b) $\lim _{x \rightarrow 0} \frac{\tan 2 x-\sin 2 x}{x^{3}}$ [มा.'०8,’०৭]
$=\lim _{x \rightarrow 0} \frac{\tan 2 x(1-\cos 2 x)}{x^{3}}$
$=\lim _{x \rightarrow 0} \frac{\tan 2 x .2 \sin ^{2} x}{x^{3}}$
$=2 \lim _{x \rightarrow 0} \frac{\tan 2 x}{2 x} \times 2 \times \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{2}$
$=2 \times 1 \times 2 \times 1=4$ (Ans.)
7(c) $\lim _{x \rightarrow 0} \frac{\operatorname{cosec} x-\cot x}{x}$
[ঢ.'০১]

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\frac{1}{\sin x}-\frac{\cos x}{\sin x}}{x}=\lim _{x \rightarrow 0} \frac{1-\cos x}{x \sin x} \\
& =\lim _{x \rightarrow 0} \frac{2 \sin ^{2} \frac{x}{2}}{x .2 \sin \frac{x}{2} \cos \frac{x}{2}}=\lim _{x \rightarrow 0} \frac{\tan \frac{x}{2}}{\frac{x}{2}} \times \frac{1}{2} \\
& =1 \times \frac{1}{2}=\frac{1}{2} \text { (Ans.) }
\end{aligned}
$$

$$
\text { 7(d) } \lim _{x \rightarrow y} \frac{\sin x-\sin y}{x-y}
$$

$$
=\lim _{x \rightarrow y} \frac{2 \sin \frac{x-y}{2} \cos \frac{x+y}{2}}{x-y}
$$

$$
=2 . \lim _{x \rightarrow y} \frac{\sin \frac{x-y}{2}}{\frac{x-y}{2}} \times \frac{1}{2} \times \lim _{x \rightarrow y} \cos \frac{x+y}{2}
$$

$$
=2 \times 1 \times \frac{1}{2} \cos \frac{y+y}{2}=\cos y \text { (Ans.) }
$$

$$
\text { 7(e) } \lim _{x \rightarrow \alpha} \frac{\tan x-\tan \alpha}{x-\alpha}=\lim _{x \rightarrow \alpha} \frac{\frac{\sin x}{\cos x}-\frac{\sin \alpha}{\cos \alpha}}{x-\alpha}
$$

$$
=\lim _{x \rightarrow \alpha} \frac{\sin x \cos \alpha-\cos x \sin \alpha}{(x-\alpha) \cos x \cos \alpha}
$$

$$
=\lim _{x \rightarrow \alpha} \frac{\sin (x-\alpha)}{(x-\alpha) \cos x \cos \alpha}
$$

$$
=\frac{1}{\cos \alpha} \lim _{(x-\alpha) \rightarrow 0} \frac{\sin (x-\alpha)}{x-\alpha} \times \lim _{x \rightarrow \alpha} \frac{1}{\cos x}
$$

$$
=\frac{1}{\cos \alpha} \times 1 \times \frac{1}{\cos \alpha}=\sec ^{2} \alpha \text { (Ans.) }
$$

$$
\text { 8.(a) } \lim _{x \rightarrow 0} \frac{\tan a x}{\sin b x}
$$

[ঢা.’০৬]

$$
=\lim _{x \rightarrow 0} \frac{\tan a x}{\sin b x}=\frac{\lim _{a x \rightarrow 0} \frac{\tan a x}{a x} \times a}{\lim _{b x \rightarrow 0} \frac{\sin b x}{b x} \times b}
$$

$$
=\frac{1 \times a}{1 \times b}=\frac{a}{b} \text { (Ans.) }
$$

$=\frac{1 \times 2}{2 \times 0+1}=2$ (Ans.)
9(b) $\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x}=\lim _{x^{2} \rightarrow 0} \frac{\sin x^{2}}{x^{2}} \times \lim _{x \rightarrow 0} x$
$=1 \times 0=0$ (Ans.)
10.(a) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cos x}$
[य. ’০8; ব. '০৬; ঢা.’’৩ ब্রা.’’৪]
ধরি, $x=\frac{\pi}{2}+h . \quad x \rightarrow \frac{\pi}{2} \quad h \rightarrow 0$
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cos x}=\lim _{h \rightarrow 0} \frac{1-\sin \left(\frac{\pi}{2}+h\right)}{\cos \left(\frac{\pi}{2}+h\right)}$
$=\lim _{h \rightarrow 0} \frac{1-\cos h}{-\sin h}=\lim _{h \rightarrow 0} \frac{2 \sin ^{2} \frac{h}{2}}{-2 \sin \frac{h}{2} \cos \frac{h}{2}}$
$=-\lim _{h \rightarrow 0} \tan \frac{h}{2}=-\tan \frac{0}{2}=-\tan 0=0$
10(b) $\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\pi}{2}-x\right) \tan x$
[চ. '১०]
«রি, $\frac{\pi}{2}-x=h . \quad x \rightarrow \frac{\pi}{2} \quad h \rightarrow 0$
$\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\pi}{2}-x\right) \tan x$
$=\lim _{x \rightarrow \frac{\pi}{2}} h \tan \left(\frac{\pi}{2}-h\right)=\lim _{h \rightarrow 0} h \cot h$
$=\lim _{h \rightarrow 0} \frac{h}{\tan h}=1$
10(c) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sec x-\tan x}{\frac{\pi}{2}-x}$
[ব.’০২]
ধরি, $\frac{\pi}{2}-x=h . \quad x \rightarrow \frac{\pi}{2} \quad h \rightarrow 0$
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sec x-\tan x}{\frac{\pi}{2}-x}$
$=\lim _{h \rightarrow 0} \frac{\sec \left(\frac{\pi}{2}-h\right)-\tan \left(\frac{\pi}{2}-h\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{\operatorname{cosec} h-\cot h}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{\sin h}-\frac{\cos h}{\sin h}}{h}$
$=\lim _{h \rightarrow 0} \frac{1-\cos h}{h \sin h}=\lim _{h \rightarrow 0} \frac{2 \sin ^{2} \frac{h}{2}}{h .2 \sin \frac{h}{2} \cos \frac{h}{2}}$
$=\lim _{h \rightarrow 0} \frac{\tan \frac{h}{2}}{\frac{h}{2}} \times \frac{1}{2}=1 \times \frac{1}{2}=\frac{1}{2}$ (Ans.)
10(d) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\left(\frac{\pi}{2}-x\right)^{2}}$ [य.'০৬,'১০; דू. 'ob]

ধরি, $\frac{\pi}{2}-x=h . \quad x \rightarrow \frac{\pi}{2} \quad h \rightarrow 0$
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\left(\frac{\pi}{2}-x\right)^{2}}=\lim _{h \rightarrow 0} \frac{1-\sin \left(\frac{\pi}{2}-h\right)}{h^{2}}$
$=\lim _{h \rightarrow 0} \frac{1-\cos h}{h^{2}}=\lim _{h \rightarrow 0} \frac{2 \sin ^{2}(h / 2)}{(h / 2)^{2} \times 4}$
$=\frac{1}{2} \lim _{h \rightarrow 0}\left\{\frac{\sin (h / 2)}{h / 2}\right\}^{2}=\frac{1}{2} \times 1=\frac{1}{2}$ (Ans.)
11.(a) $\lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}$

ধরি, $\sin ^{-1} x=\theta \Rightarrow \sin \theta=x$

$$
x \rightarrow 0 \quad \theta \rightarrow 0
$$

$\lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=\lim _{\theta \rightarrow 0} \frac{\theta}{\sin \theta}=1$

11(b) $\lim _{x \rightarrow 0} \frac{\sin ^{-1}(3 x)}{4 x}$
ধরি, $\sin ^{-1}(3 x)=\theta \Rightarrow \sin \theta=3 x$

$$
x \rightarrow 0 \quad \theta \rightarrow 0
$$

$\lim _{x \rightarrow 0} \frac{\sin ^{-1}(3 x)}{4 x}=\lim _{\theta \rightarrow 0} \frac{\theta}{\frac{4}{3} \sin \theta}$
$=\frac{3}{4} \lim { }^{\theta} \frac{\theta}{\sin \theta}=\frac{3}{4} \times 1=\frac{3}{4}$ (Ans.)
12. (a) $\lim _{x \rightarrow 0} \frac{e^{2 x}-(1+x)^{7}}{\ln (1+x)}$
$=\lim _{x \rightarrow 0} \frac{\left\{1+2 x+\frac{(2 x)^{2}}{2!} \cdots\right\}-\left(1+7 x+21 x^{2}+\cdots\right)}{x-\frac{\dot{x}^{2}}{2}+\frac{x^{3}}{3}-\cdots}$
$=\lim _{x \rightarrow 0} \frac{(2-7) x+(2-21) x^{2}+\cdots}{x\left(1-\frac{x}{2}+\frac{x^{2}}{3}-\cdots\right)}$
$=\lim _{x \rightarrow 0} \frac{-5-19 x+\cdots}{1-\frac{x}{2}+\frac{x^{2}}{3}-\cdots}$
$=\frac{-5-19 \times 0+0+\cdots}{1-\frac{0}{2}+\frac{0^{2}}{3}-0+\cdots}$
$=\frac{-5}{1}=-5$ (Ans.)
12(b) $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}$
$=\lim _{x \rightarrow 0} \frac{\left\{1+x \ln a+\frac{(x \ln a)^{2}}{2!}+\cdots\right\}-1}{x}$
$=\lim _{x \rightarrow 0} \frac{x\left\{\ln a+\frac{x(\ln a)^{2}}{2!}+\frac{x^{2}(\ln a)^{3}}{3!}+\cdots\right\}}{x}$
$=\lim _{x \rightarrow 0}\left\{\ln a+\frac{x(\ln a)^{2}}{2!}+\frac{x^{2}(\ln a)^{3}}{3!}+\cdots\right\}$

$$
\begin{aligned}
& =\ln a+\frac{0 \times(\ln a)^{2}}{2!}+\frac{0^{2}(\ln a)^{3}}{3!}+\cdots \cdots \cdot \\
& =\ln a
\end{aligned}
$$

$$
\text { 12(c) } \lim _{x \rightarrow 0} \frac{e^{\sin x}-1}{\sin x} \quad \text { [ङ.'o১; মা.ब小ा.'o৯; द्रा. '১र] }
$$

$$
=\lim _{x \rightarrow 0} \frac{\left\{1+\sin x+\frac{\sin ^{2} x}{2!}+\frac{\sin ^{3} x}{3!}+\cdots\right)-1}{\sin x}
$$

$$
=\lim _{x \rightarrow 0} \frac{\sin x+\frac{\sin ^{2} x}{2!}+\frac{\sin ^{3} x}{3!}+\cdots}{\sin x}
$$

$$
=\lim _{x \rightarrow 0}\left(1+\frac{\sin x}{2!}+\frac{\sin ^{2} x}{3!}+\cdots\right)
$$

$$
=1+\frac{\sin 0}{2!}+\frac{\sin ^{2} 0}{2!}+\cdots=1+0+0 \cdots
$$

$$
=1
$$

$$
\text { 12(d) } \lim _{x \rightarrow 0} \frac{a^{x}-a^{-x}}{x}
$$

[এ.ভ.ฯ. ’০৬]

$$
=\lim _{x \rightarrow 0} \frac{1}{x}\left[\left\{1+x \ln a+\frac{(x \ln a)^{2}}{2!}+\frac{(x \ln a)^{3}}{3!}+\cdots\right]\right.
$$

$$
-\left\{\left.1-x \ln a+\frac{(x \ln a)^{2}}{2!}-\frac{(x \ln a)^{3}}{3!}+\cdots \right\rvert\,\right]
$$

$$
=\lim _{x \rightarrow 0} \frac{1}{x}\left\{2 x \ln a+2 \frac{(x \ln a)^{3}}{3!}+\cdots \cdots\right\}
$$

$$
=2 \lim _{x \rightarrow 0}\left\{\ln a+\frac{x^{2}(\ln a)^{3}}{3!}+\frac{x^{4}(\ln a)^{5}}{5!}+\cdots\right\}
$$

$$
=2 \lim _{x \rightarrow 0}\left\{\ln a+\frac{0^{2}(\ln a)^{3}}{3!}+\frac{0^{4}(\ln a)^{5}}{5!}+\cdots\right\}
$$

$$
=2 \ln a \text { (Ans.) }
$$

12(e) $\lim _{x \rightarrow \infty}\left(1+\frac{b}{x}\right)^{\frac{x}{a}}, a>0, b>0$

$$
=\lim _{x \rightarrow \infty}\left(1+\frac{b}{x}\right)^{\frac{x}{4}}
$$

$$
=\lim _{x \rightarrow \infty}\left\{1+\frac{\frac{x}{a}}{1!} \cdot \frac{b}{x}+\frac{\frac{x}{a}\left(\frac{x}{a}-1\right)}{2!}\left(\frac{b}{x}\right)^{2}+\right.
$$

$$
\begin{aligned}
&\left.+\frac{\frac{x}{a}\left(\frac{x}{a}-1\right)\left(\frac{x}{a}-2\right)}{3!}\left(\frac{x}{a}\right)^{3}+\cdots \cdots \cdot\right\} \\
&= \lim _{x \rightarrow \infty}\left\{1+\frac{b}{a}+\frac{\frac{x^{2}}{a^{2}}\left(1-\frac{a}{x}\right)}{2!} \frac{b^{2}}{x^{2}}+\right. \\
&\left.\frac{\frac{x^{3}}{a^{3}}\left(1-\frac{a}{x}\right)\left(1-\frac{2 a}{x}\right)}{3!} \frac{b^{3}}{x^{3}}+\cdots\right\}
\end{aligned}
$$

$=\lim _{x \rightarrow \infty}\left\{1+\frac{b}{a}+\frac{1-\frac{a}{x}}{2!} \frac{b^{2}}{a^{2}}+\right.$

$$
\left.\frac{\left(1-\frac{a}{x}\right)\left(1-\frac{2 a}{x}\right)}{3!} \frac{b^{3}}{a^{3}}+\cdots\right\}
$$

$=1+\frac{b}{a}+\frac{1-0}{2!} \frac{b^{2}}{a^{2}}+\frac{(1-0)(1-0)}{3!} \frac{b^{3}}{a^{3}}+\cdots$
$=1+\frac{b}{a}+\frac{1}{2!}\left(\frac{b}{a}\right)^{2}+\frac{1}{3!}\left(\frac{b}{a}\right)^{3}+\cdots \cdots=e^{\frac{b}{a}}$
12(i) $f(x)=\sin x$ रबि, $\lim _{h \rightarrow 0} \frac{f(x+n h)-f(x)}{h}$ এর মান নিণয় কর।
[প्र.Ш.भ.'००]

$$
\begin{aligned}
\lim _{h \rightarrow 0} & \frac{f(x+n h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x+n h)-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 \sin \frac{n h}{2} \cos \frac{1}{2}(2 x+n h)}{h} \\
& =2 \lim _{h \rightarrow 0} \frac{\sin \frac{n h}{2}}{\frac{n h}{2}} \times \frac{n}{2} \lim _{h \rightarrow 0} \cos \frac{1}{2}(2 x+n h) \\
& =2 \times 1 \times \frac{n}{2} \times \cos \frac{1}{2}(2 x+n \times 0) \\
& =\mathrm{n} \cos x \text { (Ans.) }
\end{aligned}
$$

13. (a) $\lim _{n \rightarrow \infty} \frac{1^{2}+2^{2}+\cdots \cdots+n^{2}}{n^{3}}$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{n(n+1)(2 n+1)}{6 n^{3}} \\
& =\lim _{n \rightarrow \infty} \frac{n^{3}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)}{6 n^{3}} \\
& =\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)}{6}=\frac{(1+0)(2+0)}{6} \\
& =\frac{2}{6}=\frac{1}{3} \text { (Ans.) }
\end{aligned}
$$

13(b) $\lim _{n \rightarrow \infty} \frac{1}{n^{4}} \sum_{r=1}^{n} r^{3}$
$=\lim _{n \rightarrow \infty} \frac{1}{n^{4}}\left(1^{3}+2^{3}+3^{3}+\cdots+n^{3}\right)$
$=\lim _{n \rightarrow \infty} \frac{n^{2}(n+1)^{2}}{4 n^{4}}=\lim _{n \rightarrow \infty} \frac{n^{4}\left(1+\frac{1}{n}\right)^{2}}{4 n^{4}}$
$=\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)^{2}}{4}=\frac{(1+0)^{2}}{4}=\frac{1}{4}$ (Ans.)
13(c) $\lim _{n \rightarrow \infty} \frac{1.3+2.4+\cdots \cdots+n(n+2)}{n^{3}}$
সমাষান :মনে করি, $1.3+2.4+\cdots+n(n+2)$ ধারার nতম পদ u_{n}.

$$
\begin{aligned}
& u_{n}=n(n+2)=\mathrm{n}^{2}+2 \mathrm{n} \\
& 1.3+2.4+\cdots+n(n+2)=\sum_{n=1}^{n} n^{2}+2 \sum_{n=1}^{n} n \\
& =\frac{n(n+1)(2 n+1)}{6}+2 \frac{n(n+1)}{2} \\
& =n(n+1)\left(\frac{2 n+1}{6}+1\right) \\
& =n(n+1) \frac{2 n+1+6}{6}=\frac{n(n+1)(n+7)}{3} \\
& \lim _{n \rightarrow \infty} \frac{1.3+2.4+\cdots \cdots+n(n+2)}{n^{3}} \\
& \quad=\lim _{n \rightarrow \infty} \frac{n(n+1)(n+7)}{6 n^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{n^{3}\left(1+\frac{1}{n}\right)\left(1+\frac{6}{n}\right)}{6 n^{3}} \\
& =\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)}{6}=\frac{(1+0)(1+0)}{6} \\
& =\frac{1}{6} \text { (Ans.) }
\end{aligned}
$$

14. यमि $\mathrm{f}(\mathrm{x})=\frac{2 x}{1-x}$ इয়, उবে (i) $\lim _{x \rightarrow 1_{+}} f(x)$

जदर $\lim f(x)$ जর মান নির্ণয় কর। $x \rightarrow 1-$

সমাধান ঃ ধরি $x=1+\mathrm{h}$
$\therefore \lim _{x \rightarrow 1_{+}} f(x)=\lim _{h \rightarrow 0+} \frac{2(1+h)}{1-(1+h)}=\lim _{h \rightarrow 0+} \frac{2+2 h}{1-1-h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0+} \frac{2+2 h}{-h}=\lim _{h \rightarrow 0^{+}}\left(-\frac{2}{h}-2\right) \\
& =-\infty-2=-\infty \text { (Ans.) }
\end{aligned}
$$

$\lim _{x \rightarrow l_{-}} f(x)=\lim _{h \rightarrow 0-} \frac{2(1+h)}{1-(1+h)}=\lim _{h \rightarrow 0-1} \frac{2+2 h}{1-1-h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0-} \frac{2+2 h}{-h}=\lim _{h \rightarrow 0-}\left(-\frac{2}{h}-2\right) \\
& =+\infty-2=+\infty \text { (Ans.) }
\end{aligned}
$$

(ii) $\lim _{x \rightarrow \infty} f(x)$ जবং $\lim _{x \rightarrow-\infty} f(x)$ जत्र মान निर्षयत कर्न।
समाथान : $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{2 x}{1-x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{2 x}{x\left(\frac{1}{x}-1\right)}=\lim _{x \rightarrow \infty} \frac{2}{\frac{1}{x}-1} \\
& =\frac{2}{0-1}=-2 \text { (Ans.) }
\end{aligned}
$$

$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{2 x}{1-x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow-\infty} \frac{2 x}{x\left(\frac{1}{x}-1\right)}=\lim _{x \rightarrow-\infty} \frac{2}{\frac{1}{x}-1} \\
& =\frac{2}{-0-1}=-2 \text { (Ans.) }
\end{aligned}
$$

15. স্যান্ডউইচ উপপাদ্যে্র সাহাব্যে মান নির্ণয় কন্ন:
(a) $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$ সমাধানः জামরা পাই, $-1 \leq \sin \left(\frac{1}{x}\right) \leq 1, x \neq 0$ जবर $x^{2} \geq 0$

$$
-x^{2} \leq x^{2} \sin \left(\frac{1}{x}\right) \leq x^{2}
$$

এVन, $\lim _{x \rightarrow 0}\left(-x^{2}\right)=-0^{2}=0$ Бদ্রপ, $\lim _{x \rightarrow 0} x^{2}=0$
স্যাভ্টউইচ এর উপপাদ্য অনুসারে পাই,

$$
\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0
$$

(b) $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)$
$\mathrm{x} \neq 0$ এর জন্য আমরা পাই, $-1 \leq \sin \left(\frac{1}{x}\right) \leq 1$ $\mathrm{x}>0$ এর জন্য,$-x \leq x \sin \left(\frac{1}{x}\right) \leq x$ এবং $\mathrm{x}<0$ जর जন্য,$-x \geq x \sin \left(\frac{1}{x}\right) \geq x$

$$
\Rightarrow x \leq x \sin \left(\frac{1}{x}\right) \leq-x
$$

যেহেত্র, $\lim _{x \rightarrow 0}(-x)=0=\lim _{x \rightarrow 0} x$, সুতরাং স্যাভউইচ
এর উপপাদ্য অনুসারে পাই, $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$,
(c) $\lim _{x \rightarrow \infty} \frac{\sin x}{x}$

সমাধান ः আমরা পাই, $-1 \leq \sin x \leq 1$

$$
-\frac{1}{x} \leq \frac{\sin x}{x} \leq \frac{1}{x},[\because x \rightarrow \infty, \therefore x>0]
$$

এখन, $\lim _{x \rightarrow \infty}\left(-\frac{1}{x}\right)=0$ এবश $\lim _{x \rightarrow \infty}\left(\frac{1}{x}\right)=0$
স্যাডউইচ এর উপপাদ্য অন্মসারে পাই,
$\lim _{x \rightarrow \infty} \frac{\sin x}{x}=0$
15. (d) $\lim _{x \rightarrow \infty} \frac{2-\cos x}{x+3}$

সমাবান \& आমরা পাই, $-1 \leq \cos x \leq+1$
$\Rightarrow+1 \geq-\cos x \geq-1$, [উङয় পক্মকে (-1) घाরা গুণ করে।]
$\Rightarrow-1 \leq-\cos x \leq+1$
$\Rightarrow 2-1 \leq 2-\cos x \leq 2+1$
$\Rightarrow \frac{1}{x+3} \leq \frac{2-\cos x}{x+3} \leq \frac{3}{x+3}$

$$
[\because x \rightarrow \infty, \therefore x+3>0]
$$

যেহেছু $\lim _{x \rightarrow \infty} \frac{1}{x+3}=0=\lim _{x \rightarrow \infty} \frac{3}{x+3}$, স্যাষউইচ এর
উপপাদ্য অনूসারে পাই, $\lim _{x \rightarrow \infty} \frac{2-\cos x}{x+3}=0$
15. (e) $\lim _{x \rightarrow \infty} \frac{\cos ^{2}(2 x)}{3-2 x}$

সমাষান : आামরা পাই, $-1 \leq \cos (2 x) \leq+1$
$\Rightarrow 0 \leq \cos ^{2}(2 x) \leq 1$
$\Rightarrow \frac{0}{3-2 x} \geq \frac{\cos ^{2}(2 x)}{3-2 x} \geq \frac{1}{3-2 x}$
$[\because x \rightarrow \infty, \therefore 3-2 x>0]$
$\Rightarrow \frac{1}{3-2 x} \leq \frac{\cos ^{2}(2 x)}{3-2 x} \leq \frac{0}{3-2 x}$
যেহেত $\lim _{x \rightarrow \infty} \frac{1}{3-2 x}=0=\lim _{x \rightarrow \infty} 0$; স্যাভউইচ এর উপপাদ্য অनूসারে পাই, $\lim _{x \rightarrow \infty} \frac{\cos ^{2}(2 x)}{3-2 x}=0$
15. (f) $\lim _{x \rightarrow 0^{-}} x^{3} \cos \left(\frac{2}{x}\right)$

সयाषान : जाমরা পাই, $-1 \leq \cos \left(\frac{2}{x}\right) \leq+1$
$\Rightarrow-x^{3} \geq x^{3} \cos \left(\frac{2}{x}\right) \geq+x^{3}$

$$
\left[\because x \rightarrow 0^{-}, \therefore \mathrm{x}^{3}<0\right]
$$

$\Rightarrow x^{3} \leq x^{3} \cos \left(\frac{2}{x}\right) \leq-x^{3}$
বেহেত $\lim _{x \rightarrow 0^{-}} x^{3}=0=\lim _{x \rightarrow 0^{-}}\left(-x^{3}\right)$, স্যাঙ্ডউইচ এর
উপপাদ্য অनूসারে পাই, $\lim _{x \rightarrow 0^{-}} x^{3} \cos \left(\frac{2}{x}\right)=0$
15. (g) $\lim _{x \rightarrow \infty} \frac{x^{2}\left(2+\sin ^{2} x\right)}{x+100}$

সমাধাन : आমরা পাই, $-1 \leq \sin x \leq+1$
$\Rightarrow 0 \leq \sin ^{2} x \leq 1 \Rightarrow 2 \leq 2+\sin ^{2} x \leq 3$
$\Rightarrow 2 x^{2} \leq x^{2}\left(2+\sin ^{2} x\right) \leq 3 x^{2}$
$\Rightarrow \frac{2 x^{2}}{x+100} \leq \frac{x^{2}\left(2+\sin ^{2} x\right)}{x+100} \leq \frac{3 x^{2}}{x+100}$
$[\because x \rightarrow \infty, \therefore \mathrm{x}+100>0]$
এथन, $\lim _{x \rightarrow \infty} \frac{2 x^{2}}{x+100}=\lim _{x \rightarrow \infty} \frac{2 x^{2}}{x\left(1+\frac{100}{x}\right)}$
$=\lim _{x \rightarrow \infty} \frac{2 x}{1+\frac{100}{x}}=\frac{2 \times \infty}{1+0}=\infty$
उप्सू, $\lim _{x \rightarrow \infty} \frac{3 x^{2}}{x+100}=\infty$
স্যাভউইচ এর উপপাদ্য অনুসারে পাই,
$\lim _{x \rightarrow \infty} \frac{x^{2}\left(2+\sin ^{2} x\right)}{x+100}=\infty$ (বिদदा बान. नाই)
15. (h) $\lim _{x \rightarrow-\infty} \frac{5 x^{2}-\sin (3 x)}{x^{2}+10}$

সমাধান ঃ आমরা পাই, $-1 \leq \sin (3 x) \leq+1$
$\Rightarrow+1 \geq-\sin (3 x) \geq-1$
$\Rightarrow-1 \leq-\sin (3 x) \leq+1$
$\Rightarrow 5 x^{2}-1 \leq 5 x^{2}-\sin (3 x) \leq 5 x^{2}+1$
$\Rightarrow \frac{5 x^{2}-1}{x^{2}+10} \geq \frac{5 x^{2}-\sin (3 x)}{x^{2}+10} \geq \frac{5 x^{2}+1}{x^{2}+10}$
$\left[\because x \rightarrow-\infty, \mathrm{x}^{2}+10<0\right]$
$\Rightarrow \frac{5 x^{2}+1}{x^{2}+10} \leq \frac{5 x^{2}-\sin (3 x)}{x^{2}+10} \leq \frac{5 x^{2}-1}{x^{2}+10}$.
এথन, $\lim _{x \rightarrow \infty} \frac{5 x^{2}+1}{x^{2}+100}=\lim _{x \rightarrow \infty} \frac{x^{2}\left(5+1 / x^{2}\right)}{x^{2}\left(1+100 / x^{2}\right)}$
$=\lim _{x \rightarrow \infty} \frac{5+1 / x^{2}}{1+100 / x^{2}}=\frac{5+0}{1+0}=5$
उम्पूभ, $\lim _{x \rightarrow \infty} \frac{5 x^{2}-1}{x^{2}+100}=5$
স্যাভউইচ এর উপপাদ্য অনুসারে পাই,
$\lim _{x \rightarrow-\infty} \frac{5 x^{2}-\sin (3 x)}{x^{2}+10}=5$
অতিজি ब্রশ্ন (সমাধানসহ)

1. $\lim _{x \rightarrow 1} \frac{1}{x-1}\left(\frac{1}{x+3}-\frac{2}{3 x+5}\right)$
$=\lim _{x \rightarrow 1} \frac{3 x+5-2 x-6}{(x-1)(x+3)(3 x+5)}$
$=\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(x+3)(3 x+5)}$
$=\lim _{x \rightarrow 1} \frac{1}{(x+3)(3 x+5)}=\frac{1}{(1+3)(3.1+5)}$
$=\frac{1}{4.8}=\frac{1}{32}$ (Ans.)

$$
\begin{aligned}
& \text { 2.(a) } \lim _{x \rightarrow 2} \frac{4-x^{2}}{3-\sqrt{x^{2}+5}} \\
& =\lim _{x \rightarrow 2} \frac{\left(4-x^{2}\right)\left(3+\sqrt{x^{2}+5}\right)}{\left(3-\sqrt{x^{2}+5}\right)\left(3+\sqrt{x^{2}+5}\right)} \\
& =\lim _{x \rightarrow 2} \frac{\left(4-x^{2}\right)\left(3+\sqrt{x^{2}+5}\right)}{3^{2}-\left(x^{2}+5\right)} \\
& =\lim _{x \rightarrow 2} \frac{\left(4-x^{2}\right)\left(3+\sqrt{x^{2}+5}\right)}{9-x^{2}-5} \\
& =\lim _{x \rightarrow 2} \frac{\left(4-x^{2}\right)\left(3+\sqrt{x^{2}+5}\right)}{4-x^{2}} \\
& =\lim _{x \rightarrow 2}\left(3+\sqrt{x^{2}+5}\right)=3+\sqrt{2^{2}+5} \\
& =3+3=6 \text { (Ans.) } \\
& \text { 2(b) } \lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x^{2}-1}+\sqrt{x-1}} \\
& \text { [প্র.ভ.প. ৮०] } \\
& =\lim _{x \rightarrow 1} \frac{(x-1)\left(\sqrt{x^{2}-1}-\sqrt{x-1}\right)}{\left(\sqrt{x^{2}-1}+\sqrt{x-1}\right)\left(\sqrt{x^{2}-1}-\sqrt{x-1}\right)} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)\left(\sqrt{x^{2}-1}-\sqrt{x-1}\right)}{\left(x^{2}-1\right)-(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)\left(\sqrt{x^{2}-1}-\sqrt{x-1}\right)}{x^{2}-1-x+1} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)\left(\sqrt{x^{2}-1}-\sqrt{x-1}\right)}{x(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}-1}-\sqrt{x-1}}{x} \\
& =\frac{\sqrt{1^{2}-1}-\sqrt{1-1}}{1}=\frac{0}{1}=0 \text { (Ans.) } \\
& \text { 2(c) } \lim _{h \rightarrow 0} \frac{(x+h)^{1 / 2}-x^{1 / 2}}{h} \\
& \text { [भि.'o১] } \\
& =\lim _{h \rightarrow 0} \frac{\left\{(x+h)^{1 / 2}-x^{1 / 2}\right\}\left\{(x+h)^{1 / 2}+x^{1 / 2}\right\}}{h\left\{(x+h)^{1 / 2}+x^{1 / 2}\right\}} \\
& =\lim _{h \rightarrow 0} \frac{\left\{(x+h)^{1 / 2}\right\}^{2}-\left\{x^{1 / 2}\right\}^{2}}{h\left\{(x+h)^{1 / 2}+x^{1 / 2}\right\}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{x+h-x}{h\left\{(x+h)^{1 / 2}+x^{1 / 2}\right\}} \\
& =\lim _{h \rightarrow 0} \frac{h}{h\left\{(x+h)^{1 / 2}+x^{1 / 2}\right\}} \\
& =\lim _{h \rightarrow 0} \frac{1}{(x+h)^{1 / 2}+x^{1 / 2}} \\
& =\frac{1}{(x+0)^{1 / 2}+x^{1 / 2}}=\frac{1}{x^{1 / 2}+x^{1 / 2}}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

$$
\text { 2.(d) } \lim _{x \rightarrow 0} \frac{a-\sqrt{a^{2}-x^{2}}}{x^{2}}
$$

$$
=\lim _{x \rightarrow 0} \frac{a-\sqrt{a^{2}-x^{2}}}{x^{2}}
$$

$$
=\lim _{x \rightarrow 0} \frac{\left(a-\sqrt{a^{2}-x^{2}}\right)\left(a+\sqrt{a^{2}+x^{2}}\right)}{x^{2}\left(a+\sqrt{a^{2}-x^{2}}\right)}
$$

$$
=\lim _{x \rightarrow 0} \frac{a^{2}-\left(\sqrt{a^{2}-x^{2}}\right)^{2}}{x^{2}\left(a+\sqrt{a^{2}-x^{2}}\right)}
$$

$$
=\lim _{x \rightarrow 0} \frac{a^{2}-a^{2}+x^{2}}{x^{2}\left(a+\sqrt{a^{2}-x^{2}}\right)}
$$

$$
=\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}\left(a+\sqrt{a^{2}-x^{2}}\right)}
$$

$$
=\lim _{x \rightarrow 0} \frac{1}{a+\sqrt{a^{2}-x^{2}}}
$$

$$
=\lim _{x \rightarrow 0} \frac{1}{a+\sqrt{a^{2}-0^{2}}}=\frac{1}{a+a}=\frac{1}{2 a}
$$

$$
\text { 3. } \lim _{x \rightarrow \infty} \frac{2 x^{2}+1}{6+x-3 x^{2}}
$$

$$
=\lim _{x \rightarrow \infty} \frac{x^{2}\left(2+\frac{1}{x^{2}}\right)}{x^{2}\left(\frac{6}{x^{2}}+\frac{1}{x}-3\right)}
$$

$$
=\lim _{x \rightarrow \infty} \frac{2+\frac{1}{x^{2}}}{\frac{6}{x^{2}}+\frac{1}{x}-3}=\frac{2+0}{0+0-3}=-\frac{2}{3}
$$

4.(a) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$
$=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} \frac{x}{2}}{x^{2}}=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} \frac{x}{2}}{x^{2}}$
$=\lim _{x \rightarrow 0} \frac{\sin ^{2} \frac{x}{2}}{2 \cdot \frac{x^{2}}{4}}=\frac{1}{2} \lim _{x \rightarrow 0}\left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^{2}$
$=\frac{1}{2} \cdot 1=\frac{1}{2}$ (Ans.)
4(b) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} \frac{x}{2}}{x}$
$=\lim _{x \rightarrow 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}} \times{ }_{x \rightarrow 0} \sin \frac{x}{2}=1 \cdot \sin \frac{0}{2}$
$=\quad 1.0=0$ (Ans.)
5. $\lim _{x \rightarrow 0} \frac{3 \sin \pi x-\sin 3 \pi x}{x^{3}}$
$=\lim _{x \rightarrow 0} \frac{4 \sin ^{3} \pi x}{x^{3}}=4 \lim _{x \rightarrow 0}\left(\frac{\sin \pi x}{\pi x}\right)^{3} \cdot \pi^{3}$
$=4 \times 1 \times \pi^{3}=4 \pi^{3}$
6.(a) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin 3 x}=\frac{\lim _{x \rightarrow 0} \frac{\sin 5 x}{5 x} \times 5}{\lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \times 3}$
$=\frac{1 \times 5}{1 \times 3}=\frac{5}{3}$ (Ans.)
6(b) $\lim _{x \rightarrow 0} \frac{6 x-\sin 2 x}{2 x+3 \sin 4 x}$
$=\lim _{x \rightarrow 0} \frac{x\left(6-\frac{\sin 2 x}{x}\right)}{x\left(2+3 \frac{\sin 4 x}{x}\right)}=\frac{6-\lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x} \times 2}{2+3 \lim _{x \rightarrow 0} \frac{-\sin 4 x}{4 x} \times 4}$
$=\frac{6-1 \times 2}{2+3 \times 1 \times 4}=\frac{6-2}{2+12}=\frac{4}{14}=\frac{2}{7}$ (Ans.)
7(a) $\lim _{x \rightarrow \frac{\pi}{4}} \frac{1-\sin 2 x}{\cos 2 x}$
кর, $x=\frac{\pi}{4}+h . \quad x \rightarrow \frac{\pi}{4} \quad h \rightarrow 0$
$\lim _{x \rightarrow \frac{\pi}{4}} \frac{1-\sin 2 x}{\cos 2 x}=\lim _{h \rightarrow 0} \frac{1-\sin 2\left(\frac{\pi}{4}+h\right)}{\cos 2\left(\frac{\pi}{4}+h\right)}$
$=\lim _{h \rightarrow 0} \frac{1-\sin \left(\frac{\pi}{2}+2 h\right)}{\cos \left(\frac{\pi}{2}+2 h\right)}=\lim _{h \rightarrow 0} \frac{1-\cos 2 h}{-\sin 2 h}$
$=\lim _{h \rightarrow 0} \frac{2 \sin ^{2} h}{-2 \sin h \cos h}=-\lim _{h \rightarrow 0} \tan h$
$=-\lim _{h \rightarrow 0} \frac{\tan h}{h} \times h=-1 \times 0=0$
-(b) $\lim _{x \rightarrow \pi} \frac{\sin x}{\pi-x}$
रे, $\pi-x=h . \quad x \rightarrow \pi \quad h \rightarrow 0$
$\lim _{x \rightarrow \pi} \frac{\sin x}{\pi-x}=\lim _{h \rightarrow 0} \frac{\sin (\pi-h)}{h}$
$=\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$ (Ans.)
3 a) $\lim _{x \rightarrow 0} \frac{x-\ln (1+x)}{1+x-e^{x}}$
$=\lim _{x \rightarrow 0} \frac{x-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots\right)}{1+x-\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right)}$
$=\lim _{x \rightarrow 0} \frac{x-x+\frac{x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{4}-\cdots}{1+x-1-x-\frac{x^{2}}{2!}-\frac{x^{3}}{3!}-\cdots}$
$=\lim _{x \rightarrow 0} \frac{x^{2}\left(\frac{1}{2}-\frac{x}{3}+\frac{x^{2}}{4}-\cdots \cdots\right)}{x^{2}\left(-\frac{1}{2!}-\frac{x}{3!}-\cdots \cdots\right)}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\frac{1}{2}-\frac{x}{3}+\frac{x^{2}}{4}-\cdots \cdots}{-\frac{1}{2!}-\frac{x}{3!}-\cdots \cdots} \\
& =\frac{\frac{1}{2}-\frac{0}{3}+\frac{0^{2}}{4}-\cdots}{-\frac{1}{2!}-\frac{0}{3!}-\cdots}=\frac{\frac{1}{2}}{-\frac{1}{2}}=-1 \\
& \text { 8(b) } \lim _{x \rightarrow 0} \frac{\ln (1+5 x)}{\ln (1-5 x)} \\
& =\lim _{x \rightarrow 0} \frac{5 x-\frac{(5 x)^{2}}{2}+\frac{(5 x)^{3}}{3}-\frac{(5 x)^{4}}{4}+\cdots}{-5 x-\frac{(5 x)^{2}}{2}-\frac{(5 x)^{3}}{3}-\frac{(5 x)^{4}}{4}-\cdots} \\
& =\lim _{x \rightarrow 0} \frac{5-\frac{5^{2} x}{2}+\frac{5^{3} x^{2}}{3}-\frac{5^{4} x^{3}}{4}+\cdots}{-5-\frac{5^{2} x}{2}-\frac{5^{3} x^{2}}{3}-\frac{5^{4} x^{3}}{4}-\cdots} \\
& =\frac{5-\frac{5^{2} .0}{2}+\frac{5^{3} 0^{2}}{3}-\frac{5^{4} 0^{3}}{4}+\cdots}{5^{2} \cdot 0} 5^{5^{3} 0^{2}}-\frac{5^{4} 0^{3}}{4}-\cdots \\
& =\frac{5}{2}=-\frac{1(\text { Ans. })}{4} \\
& =
\end{aligned}
$$

$$
\text { 8(c) } \lim _{x \rightarrow 0}(1+2 x)^{(2 x+5) / x}=\lim _{x \rightarrow 0}(1+2 x)^{2+5 / x}
$$

$$
=\lim _{x \rightarrow 0}(1+2 x)^{2} \lim _{x \rightarrow 0}(1+2 x)^{\frac{5}{x}}
$$

$$
=(1+2.0)^{2} \times\left\{\lim _{x \rightarrow 0}(1+2 x)^{\frac{1}{2 x}}\right\}^{10}
$$

$$
=e^{10} \text { (Ans.) }
$$

$$
\text { 9. (a) } f(x)=\left\{\begin{array}{ll}
e^{-|x| / 2}, & \text { যষন }-1<x<0 \\
x^{2}, & \text { যষন } 0<x<2
\end{array}\right. \text { হणে }
$$

$$
\lim _{x \rightarrow 0} f(x) \text { बत्र মান কি বিদ্যমান बाছছ? }
$$

সমাষান $8 x=0$ বিন্দুঢে
ডानमिকবर्তী लिমिট $=\lim _{x \rightarrow 0_{+}} f(x)=\lim _{x \rightarrow 0_{+}} x^{2}=0^{2}=0$

বামদিকবর্তী লিমিট $=\lim _{x \rightarrow 0_{-}} f(x)$

$$
=\lim _{x \rightarrow 0_{-}} e^{-|x| / 2}=e^{-|0| 2}=e^{0}=1
$$

বামদিকবর্তী লিমিট ও ডানদিকবর্তী লিমিট বিদ্যমান আছে কিষ্তু সমান নয়।•

$$
\lim _{x \rightarrow 0} f(x) \text { বিদ্যমান নাই । }
$$

ভর্তি পরীক্ষার MCQ :

MCQ এর জন্য বিশেষ স্র :
L'Hospital's rule : কার্যপ্রণালী : यদি $\mathrm{x}=\mathbf{a}$ এর্ন बन्য $\frac{f(x)}{g(x)}$ ভग्नाएশটি अनिर्চেয় जাকার यেমন $\frac{0}{0}$ বा $\frac{\infty}{\infty}$ হয়, তবে অनিণ্ৰেয় জাকার শেষ না ই৫য়া পর্যস্ত ভগ্মারশের্র बব এবং इর্রকে পৃरক্তাবে অস্তর্মীকন্নণ (differentiation) কর্মতে হবে। Чতঃপর নতून ভগ্মাছশে পদত $\mathbf{x}=\mathbf{a}$ স্মাপন করে ফাংণনের্গ সীমায়িত মান নির্ণয় করতে হয় ।

1. यখन $x \rightarrow 0$, लिमिট $\frac{\sqrt{3+x}-\sqrt{3-x}}{x}$ কण ? [DU 04-05, NU 08-09, 05-06]
Sol ${ }^{n}: \lim _{x \rightarrow 0} \frac{\sqrt{3+x}-\sqrt{3-x}}{x}$
$=\lim _{x \rightarrow 0} \frac{\frac{1}{2 \sqrt{3+x}}-\frac{1}{2 \sqrt{3-x}}(-1)}{1}$
$=\frac{1}{2 \sqrt{3}}+\frac{1}{2 \sqrt{3}}=\frac{1}{\sqrt{3}}$
By Calculator : (Mode Radian এ নিতে হবে)

\% 0. $0.577 \approx 1 / \sqrt{ } 3$
2. यथन $x \rightarrow 0$, 户िमिট $\frac{x(\cos x+\cos 2 x)}{\sin x}$ कण p [DU 03-04, RU 06-07, 04-05; KU 03-04]

Sol ${ }^{n}: \lim _{x \rightarrow 0} \frac{x(\cos x+\cos 2 x)}{\sin x}$
$=\lim _{x \rightarrow 0} \frac{(\cos x+\cos 2 x) \cdot 1+x(-\sin x-2 \sin x)}{\cos x}$
$=\frac{(\cos .0+\cos 2 \cdot 0) \cdot 1+0 \cdot(-\sin 0-2 \sin 0)}{\cos 0}$
$=2$
3. যथन $x \rightarrow 0$, निमिট $\frac{\sin 3 x}{x}$ কण?
[DU 99-00, RU 06-07]
Sol ${ }^{n}: \lim _{x \rightarrow 0} \frac{\sin 3 x}{x}=\lim _{x \rightarrow 0} \frac{3 \cos 3 x}{1}$

$$
=3 \cos 0=3
$$

4. यथन $x \rightarrow 0$, गिमिট $\frac{\tan x-\sin x}{x^{3}}$ क्ज ?
[KU 03-04]
Sol $^{n}: \lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}=\lim _{x \rightarrow 0} \frac{\sec ^{2} x-\cos x}{3 x^{2}}$
$=\lim _{x \rightarrow 0} \frac{2 \sec ^{2} x \tan x+\sin x}{6 x}$
$=\frac{1}{6} \lim _{x \rightarrow 0}\left\{2\left(\sec ^{2} x \cdot \sec ^{2} x\right.\right.$
$\left.\left.+\tan x .2 \sec ^{2} x \tan x\right)+\cos x\right\}$
$=\frac{1}{6}\{2(1+0)+1\}=\frac{1}{2}$
5. $\lim _{x \rightarrow 0} \frac{\sin (2 x)^{2}}{x}=$?
[DU 08-09]
Sol ${ }^{n}: \lim _{x \rightarrow 0} \frac{\sin \left(4 x^{2}\right)}{x}=\lim _{x \rightarrow 0} \frac{\cos \left(4 x^{2}\right) \cdot 8 x}{1}$
$=\cos (4 \cdot 0) \cdot 8 \cdot 0=0$
6. यशन $x \rightarrow \frac{\pi}{2}$, णिमिট $\frac{1-\sin x}{\cos x}$ কত?
[DU 00-01 , RU 06-07]
Sol" : $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cos x}=\lim _{x \rightarrow \frac{\pi}{2}} \frac{-\cos x}{-\sin x}=\frac{\cos \frac{\pi}{2}}{\sin \frac{\pi}{2}}$

$$
=\frac{0}{1}=0
$$

7. यौन $x \rightarrow 2$, निमिট $\frac{\sin (x-2)}{x-2}$ कण?
[CU 07-08]
Sol ${ }^{n}: \lim _{x \rightarrow 2} \frac{\sin (x-2)}{x-2}=\lim _{x \rightarrow 2} \frac{\cos (x-2)}{1}$
$=\cos (2-2)=\cos 0=1$
8. यथन $x \rightarrow 0$, निमिট $\frac{e^{x}-e^{-x}-2 x}{x-\sin x}$ बण?
[SU 04-05]
Sol ${ }^{n}: \lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x-\sin x}=\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2}{1-\cos x}$
$=\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{\sin x}=\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}}{\cos x}=\frac{1+1}{1}=2$

$-\sin$ (2) cли $x ? \cdot 0,1=$ $1.99 \approx 2$
9. यथन $x \rightarrow 0$, निमिট $\frac{a^{x}-1}{x}$ बण? [CU 0809; RU 02-03]

$$
\begin{aligned}
\text { Sol } & : \lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\lim _{x \rightarrow 0} \frac{a^{x} \ln a}{1}=a^{0} \log _{e} a \\
& =\log _{e} a \quad \text { www.boighar.com }
\end{aligned}
$$

10. $\lim _{x \rightarrow 0} \frac{1-e^{-2 x}}{\ln (1+x)}, 0<x<1$ बर मान कण ?
[SU 04-05, KU 03-04]
Sol ${ }^{n}: \lim _{x \rightarrow 0} \frac{1-e^{-2 x}}{\ln (1+x)}=\lim _{x \rightarrow 0} \frac{2 e^{-2 x}}{\frac{1}{1+x}}=\lim _{x \rightarrow 0} \frac{2 e^{-2 x}}{\frac{1}{1+x}}$ $=2$
11. यथन $x \rightarrow 0$, निमिं $\frac{\sin ^{-1} x}{x}$ बण? [CU 0809; RU 07-08; IU 04-05]
Sol ${ }^{n}: \lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=\lim _{x \rightarrow 0} \frac{\frac{1}{\sqrt{1-x^{2}}}}{1}=1$
12. यथन $x \rightarrow 0$, विमिढ $\frac{\tan ^{-1} x}{x}$ बए? [DU 0607]
Sol ${ }^{n}: \lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}=\lim _{x \rightarrow 0} \frac{\frac{1}{1+x^{2}}}{1}=\frac{1}{1+0^{2}}=1$
13. यथन $x \rightarrow 0$, निमिढ $\frac{\tan ^{-1}(2 x)}{x}$ कण?
[DU 07-08; CU 07-08; NU 06-07]
Sol ${ }^{n}: \lim _{x \rightarrow 0} \frac{\tan ^{-1} 2 x}{x}=\lim _{x \rightarrow 0} \frac{\frac{2}{1+4 x^{2}}}{1}=\frac{2}{1+4.0^{2}}$

$$
=2
$$

14. $\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2}{x^{2}}=$? \quad [BUET 03-04]

Sol ${ }^{n}: \lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2}{x^{2}}=\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{2 x}$
$=\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}}{2}=\frac{e^{0}+e^{-0}}{2}=\frac{1+1}{2}=1$
15. $\lim _{x \rightarrow 0} \frac{1-\cos 7 x}{3 x^{2}}=$?
[BUET 07-08]
Sol ${ }^{n}: \lim _{x \rightarrow 0} \frac{1-\cos 7 x}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{0+7 \sin 7 x}{6 x}$
$=\lim _{x \rightarrow 0} \frac{0+49 \cos 7 x}{6}=\frac{49}{6}$
16. $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x^{2}-9}=$?
[KUET 05-06]
Sol ${ }^{n}: \lim _{x \rightarrow 3} \frac{x^{3}-27}{x^{2}-9}=\lim _{x \rightarrow 3} \frac{3 x^{2}}{2 x}=\lim _{x \rightarrow 3} \frac{3 x}{2}$
$=\frac{3.3}{2}=\frac{9}{2}$

অम্তরীক্ররণ (প্রণ্নমাणা IXB)

1. यमि $\mathbf{f}(\mathbf{x})=\left\{\begin{array}{cc}-x, & \text { যथन } x \leq 0 \\ x, & \text { যখन } 0<x<1 \\ 1-x, & \text { যथन } x \geq 1\end{array}\right.$ इয, जবে
 $x=1$ বিন্দूতে বিচ্ছিন্ন ।

সমাধানः $\mathrm{x}=0$ বিন্দूতে, $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x=0$,
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(-x)=0$ এবং $\mathrm{f}(0)=-0=0$

যেহেতু $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=\mathrm{f}(0) \quad$ সুতরাং $x=0$ बिन्দूতে $\mathrm{f}(\mathrm{x})$ अবিচ্ছিন্ন।
$\mathrm{x}=1$ বिन्দूতে, $\lim _{x \rightarrow \mathrm{l}^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(1-x)=1-1=0$ $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x=1$
যেহেত্ $\lim _{x \rightarrow 1^{+}} f(x) \neq \lim _{x \rightarrow 1^{-}} f(x)$, সুতরাং $x=1$ বিদ্দুতে $f(x)$ বিচ্ছ্নি।
2. यमि $\mathbf{f}(\mathbf{x})=\left\{\begin{array}{cl}\frac{\sin ^{2} a x}{x^{2}}, & \text { घथन } x \neq 0 \\ 1 & \text { घथन } x=0\end{array}\right.$ इत्र, उबে প্রমাণ কর্র বে $a=1$ ना হলে $x=0$ ক্স্দুডে $f(x)$ ফাएणन বিচ্ছিন্ন হবে।

প্রমাণ: $\mathrm{x}=0$ বিন্দুতে,

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{\sin ^{2} a x}{x^{2}}=\lim _{x \rightarrow 0^{+}}\left(\frac{\sin a x}{a x}\right)^{2} \cdot a^{2} \\
&=1 \times a^{2}=a^{2} \\
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{\sin ^{2} a x}{x^{2}}=\lim _{x \rightarrow 0^{-}}\left(\frac{\sin a x}{a x}\right)^{2} \cdot a^{2} \\
&=1 \times a^{2}=a^{2} \text { এবং } \mathrm{f}(0)=1 \\
& a \neq 1 \text { रनে, } \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x) \neq f(0)
\end{aligned}
$$

এবং $a=1$ रबে, $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=f(0)$
কাজেই, $a=1$ ना रूলে $x=0$ বিन्দूতে $f(x)$ यাংশन বিচ্ছ্নিন্ন হবে।
3. $\mathbf{f}(\mathbf{x})=\left\{\begin{array}{ll}\frac{x^{2}-4}{x-2}, & \text { यथन } x \neq 2 \\ 3 & \text { यथन } x=2\end{array}\right.$ घार्रा श्रमउ একটি বাস্ত্ব ফাশশन । দেষাও ब্, f यাংশनটি $x=2$
 তा $x=2$ বিन्দूতে অবিচ্চিন্ন হয়।

প্রমাণঃ $x=2$ বিন্দুতে, $f(2)=3$,

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} \frac{x^{2}-4}{x-2} \\
& \quad=\lim _{x \rightarrow 2^{+}} \frac{(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2^{+}}(x+2) \\
& \quad=2+2=4
\end{aligned}
$$

जヌং $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{x^{2}-4}{x-2}$
$=\lim _{x \rightarrow 2^{-}} \frac{(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2^{--}}(x+2)$

$$
=2+2=4
$$

যেহেতু $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x) \neq \mathrm{f}(2) \quad$ সूতরাং $x=1$ ब্দ্দুতে $\mathrm{f}(\mathrm{x})$ বিচ্ছ্নিন
(बिणীয় जश्य): $\mathrm{x}=2$ বिन्मूডে $\mathrm{f}(\mathrm{x})$ ফाःশनের অবিচ্ম্নিন্নতার জন্য নিম্নরূপে সংজ্ঞায়িত করা হলো-
$\mathrm{f}(\mathrm{x})= \begin{cases}\frac{x^{2}-4}{x-2}, & \text { यथन } x \neq 2 \\ 4 & \text { যथन } x=2\end{cases}$

প্রশ্নমাচা IX C

1. (a) $] 0,4[$ दायभिত $f(x)=(x-1)(x-2)$
$(x-3)$ यাखশনের জন্য ब্যাগ্রাঞ্জের গড়মান উপপাদোয্র স্্যতা যাচাই কর।
সমাধান: এখানে, $\mathrm{f}(\mathrm{x})=(\mathrm{x}-1)(\mathrm{x}-2)(\mathrm{x}-3)$

$$
\begin{aligned}
& \Rightarrow \mathrm{f}(\mathrm{x})=(\mathrm{x}-1)\left(\mathrm{x}^{2}-5 \mathrm{x}+6\right) \\
& =x^{3}-5 x^{2}+6 x-x^{2}+5 x-6 \\
& =\mathrm{x}^{3}-6 \mathrm{x}^{2}+11 \mathrm{x}-6 \\
& \mathrm{Rf}^{\prime}(\mathrm{x})=\lim _{h \rightarrow 0+} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0+} \frac{1}{h}\left[(x+h)^{3}-6(x+h)^{2}+11(x+h)-6\right. \\
& \left.-x^{3}+6 x^{2}-11 x+6\right] \\
& =\lim _{h \rightarrow 0+} \frac{1}{h}\left[x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-6 x^{2}\right. \\
& \left.-12 x h-6 h^{2}+11 x+11 h-x^{3}+6 x^{2}-11 x\right] \\
& =\lim _{h \rightarrow 0+} \frac{1}{h}\left[3 x^{2} h+3 x h^{2}+h^{3}-12 x h\right. \\
& \left.-6 h^{2}+11 h\right] \\
& =\lim _{h \rightarrow 0+}\left[3 x^{2}+3 x h+h^{2}-12 x-6 h+11\right] \\
& =3 x^{2}-12 x+11
\end{aligned}
$$

उদ्पूश, $L f^{\prime}(\mathrm{x})=\lim _{\mathrm{h} \rightarrow 0^{-}} \frac{\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})}{\mathrm{h}}$
$=\lim _{h \rightarrow 0^{-}}\left[3 x^{2}+3 x h+h^{2}-12 x-6 h+11\right]$
$=3 x^{2}-12 x+11$
যেহেতু $\mathrm{Rf}^{\prime}(\mathrm{x})=\mathrm{Lf}^{\prime}(\mathrm{x})$, কাজেই x এর সক্ল
 এবং] 0, $4[$ थ্যো ব্যবধিতে অস্তরীকরণবোগ্য।
$\mathrm{f}(\mathrm{x})$ यাশশন ল্যাগ্যাঞ্জের গড়মান উপপাদ্যের স্রকম শর্ঠ পালন করে। অতএব ন্যাগ্রাడ্জের গড়মান উপপাদ্যের শর্তানুসারে অम্তত:পক্巾 একটি ক্দি $c \in] 0,4[$ এর জন্য $f(4)-f(0)=(4-0) f^{\prime}(c) \cdots \cdot(1)$ হবে।

এখन, $f(4)=(4-1)(4-2)(4-3)=6$
এবং $f(0)=(0-1)(0-2)(0-3)=-6$
প্রদজ্ত সমীকরণকে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}-12 \mathrm{x}+11 \\
& f^{\prime}(c)=3 \mathrm{c}^{2}-12 \mathrm{c}+11
\end{aligned}
$$

(1) হতে পাই, $6+6=4\left(3 c^{2}-12 c+11\right)$
$\Rightarrow 3=3 c^{2}-12 c+11$

$$
\begin{aligned}
& \Rightarrow 3 c^{2}-12 c+8=0 \\
& c=\frac{12 \pm \sqrt{144-96}}{2 \times 3}=\frac{12 \pm \sqrt{48}}{2 \times 3} \\
& \quad=\frac{12 \pm 4 \sqrt{3}}{2 \times 3}=2 \pm \frac{2}{\sqrt{3}} \\
& \left.c=2 \pm \frac{2}{\sqrt{3}} \in\right] 0,4[
\end{aligned}
$$

 উপপাদ্যের সত্যতা প্রমাণিত হলো।
(b)] $1,1\left[\right.$ युयধिज $\mathrm{f}(\mathrm{x})=\frac{1}{x}$ ফाशनের घन्य ন্যাখ্রাক্জের গড়মান উপপাদ্য প্রযোষ্য কিনা যাচাই কন।

সমাবান: প্রদত্ত ফাংশন $f(x)=\frac{1}{x}$
$\mathrm{f}(0)=\frac{1}{0}$, বিদ্যমান নয়।
जर्थाৎ $\mathrm{x}=0$ বিন্দूতে প্রদত্ত ফাংশন অবিচ্ছিমি নয়।
]-1, 1 [ব্যবধিতে ফাংশনটি অবিচ্ছিন্ম নয়।
সুতরাং প্রদত্ত ব্যবধিতে ফাংশনটির জন্য ল্যাগ্রাঞ্জের গড়মান উপপাদ্য প্রযোজ্য নয়।
(c) $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}-x, & \text { घशन }-1 \leq x<0 \\ x, & \text { घथन } 0 \leq x \leq 1\end{array}\right.$ щाशশनের্গ জना
$[-1,1]$ ব্যবধিতে न्याण্রাঞ্জের গড়মান উপপাদ্য প্রযোজ্য কিনা যাচাই কর।
স माधान: গ्रमख्ख याशणन $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}-x, & \text { यथन }-1 \leq x<0 \\ x, & \text { यथन } 0 \leq x \leq 1\end{array}\right.$

$$
\begin{aligned}
& \mathrm{Rf}^{\prime}(0)=\lim _{\mathrm{h} \rightarrow 0^{+}} \frac{\mathrm{f}(0+\mathrm{h})-\mathrm{f}(0)}{\mathrm{h}} \\
& =\lim _{h \rightarrow 0^{+}} \frac{f(h)-0}{h}=\lim _{h \rightarrow 0+} \frac{h}{h}=\lim _{h \rightarrow 0^{+}}(\mathrm{l})=1
\end{aligned}
$$

$\mathrm{Lf}^{\prime}(0)=\lim _{h \rightarrow 0-} \frac{f(0+h)-f(0)}{h}$
$=\lim _{h \rightarrow 0^{-}} \frac{f(h)-0}{h}=\lim _{h \rightarrow 0+} \frac{-h}{h}$
$=\lim _{h \rightarrow 0+}(-1)=-1$

যেহেত $R f^{\prime}(0) \neq L f^{\prime}(0)$, লেহেতু $x=0$ বিন্দুতে ফাহ্শনটি অ্তরীকরণণোগ্য নয়।
\therefore প্রদত্ত ব্যবধিতে ফাংশनটির জন্য क्याগ্রাজ্জের গড়মান উপপাদ্য প্রযোজ্য নয়।

 निर्षग़ बर्ग :$$
\begin{equation*}
\text { 2(a) }(2 x)^{n}-b^{n} \tag{চ.’’২}
\end{equation*}
$$

$$
\begin{aligned}
& \text { 《धि, } y=(2 x)^{n}-b^{n}=2^{n} x^{n}-b^{n} \\
& \frac{d y}{d x}=2^{n} \frac{d}{d x}\left(x^{n}\right)-\frac{d}{d x}\left(b^{n}\right) \\
& =2^{n}\left(n x^{n-1}\right)-0 \\
& \frac{d}{d x}\left\{(2 x)^{n}-b^{n}\right\}=2^{n} n x^{n-1} \text { (Ans.) }
\end{aligned}
$$

2(b) $\frac{d}{d x}\left(x \sqrt{x}+x^{2} \sqrt{x}+\frac{x^{2}}{\sqrt{x}}-\sqrt{x}+\frac{1}{\sqrt{x}}\right)$
$=\frac{d}{d x}\left(x^{1+\frac{1}{2}}+x^{2+\frac{1}{2}}+x^{2-\frac{1}{2}}-x^{\frac{1}{2}}+x^{-\frac{1}{2}}\right)$
$=\frac{d}{d x}\left(x^{\frac{3}{2}}+x^{\frac{5}{2}}+x^{\frac{3}{2}}-x^{\frac{1}{2}}+x^{-\frac{1}{2}}\right)$
$=\frac{d}{d x}\left(2 x^{\frac{3}{2}}+x^{\frac{5}{2}}-x^{\frac{1}{2}}+x^{\frac{1}{2}}\right)$
$=2 \cdot \frac{3}{2} x^{\frac{3}{2}-1}+\frac{5}{2} x^{\frac{3}{2}-1}-\frac{1}{2} x^{\frac{1}{2}-1}-\frac{1}{2} x^{-\frac{1}{2}-1}$
$=3 x^{\frac{1}{2}}+\frac{5}{2} x^{\frac{3}{2}}-\frac{1}{2 \sqrt{x}}-\frac{1}{2 x \sqrt{x}}$ (Ans.)
2(c) $\frac{d}{d x}\left(a^{x}+x^{a}-e^{x}\right)$
$=\frac{d}{d x}\left(a^{x}\right)+\frac{d}{d x}\left(x^{a}\right)-\frac{d}{d x}\left(e^{x}\right)$
$=a^{x} \ln a+\mathrm{a} x^{a-1}-e^{x} \quad$ (Ans.)
2(d) $\frac{d}{d x}\left(\log _{a} x+\log x^{a}+e^{\ln x}+\ln x+e^{x}\right)$
$=\frac{d}{d x}\left(\log _{a} x+a \log x+x+\ln x+e^{x}\right)$
$=\frac{1}{x \ln a}+a \frac{1}{x \ln 10}+1+\frac{1}{x}+e^{x}$
(e) $\frac{d}{d x}\left(3 \sin x+4 \ln x-2 a^{x}+\ln x^{a}\right)$
$=\frac{d}{d x}\left(3 \sin x+4 \ln x-2 a^{x}+a \ln x\right)$
$=3 \cos x+4 \cdot \frac{1}{x}-2 a^{x} \ln x+a \frac{1}{x}$
 ब্রब সহগ निর্ণী बत्य :
(a) $\sin 2 x$
[ঢ.’০৫; ব.’১৩]
মনে করি, $\mathrm{f}(x)=\sin 2 x$
$\mathrm{f}(x+\mathrm{h})=\sin 2(x+\mathrm{h})=\sin (2 x+2 \mathrm{~h})$
অশ্তরক সহগের সৃভ্ঞা হতে পাই,
$\frac{d}{d x}\{\mathrm{f}(x)\}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\frac{d}{d x}(\sin 2 x)=\lim _{h \rightarrow 0} \frac{\sin (2 x+2 h)-\sin 2 x}{h}$
$=\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \frac{2 x+2 h+2 x}{2} \sin \frac{2 x+2 h-2 x}{2}\right]$
$=\lim _{h \rightarrow 0} \frac{1}{h} \cdot 2 \cos (2 x+h) \sin h$
$=2 \lim _{h \rightarrow 0} \frac{\sin h}{h} \cdot \lim _{h \rightarrow 0} \cos (2 x+h)$
$=2 \cdot 1 \cdot \cos (2 x+0)=2 \cos 2 x$
3.(b) $\cos 3 x$
[ঢ.'০২; त्रा.'১১]
মনে করি, $\mathrm{f}(x)=\cos 3 x$.
$\mathrm{f}(x+\mathrm{h})=\cos 3(x+\mathrm{h})=\cos (3 x+3 \mathrm{~h})$
অল্তরক সহগের সংষ্ঞ হতে পাই,
$\frac{d}{d x}\{\mathrm{f}(x)\}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\frac{d}{d x}(\cos 3 x)=\lim _{h \rightarrow 0} \frac{\cos (3 x+3 h)-\cos 3 x}{h}$
$=\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \sin \frac{3 x+3 h+3 x}{2} \sin \frac{3 x-3 h-3 x}{2}\right]$
$=2 \lim _{h \rightarrow 0} \sin \left(3 x+\frac{3 h}{2}\right) \times-\lim _{\frac{3 h}{2} \rightarrow 0} \frac{\sin (3 h / 2)}{3 h / 2} \times \frac{3}{2}$

$$
\left[\because \mathrm{h} \rightarrow 0 \therefore \frac{3 h}{2} \rightarrow 0\right]
$$

$=2 \sin (3 x+0) \cdot\left(-1 \cdot \frac{3}{2}\right)=-3 \sin 3 x$
3(c) $\cos a x$
[द㇇ा.'o১]
মনে করি, $\mathrm{f}(x)=\cos a x$.
$\mathrm{f}(x+\mathrm{h})=\cos a(x+\mathrm{h})=\cos (a x+a \mathrm{~h})$
অল্তরক সহগের সৃষ্ঞ হতে পাই,
$\frac{d}{d x}\{\mathrm{f}(x)\}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\frac{d}{d x}(\cos a x)=\lim _{h \rightarrow 0} \frac{\cos (a x+a h)-\cos a x}{h}$
$=\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \sin \frac{a x+a h+a x}{2} \sin \frac{a x-a h-a x}{2}\right]$
$=2 \lim _{h \rightarrow 0} \sin \left(a x+\frac{a h}{2}\right) \times-\lim _{h \rightarrow 0} \frac{\sin (a h / 2)}{a h / 2} \times \frac{a}{2}$
$=2 \sin (a x+0) .\left(-1 \cdot \frac{a}{2}\right)=-a \sin a x$
3(d) $\boldsymbol{\operatorname { t a n }} 2 \boldsymbol{x}$
[ธ.’०১]
মনে করি, $\mathrm{f}(x)=\tan 2 x$.
$\mathrm{f}(x+\mathrm{h})=\tan 2(x+\mathrm{h})=\tan (2 x+2 \mathrm{~h})$
অম্তরক সহগের সঞ্ঞা হতে পাই,

$$
\begin{aligned}
& \frac{d}{d x}\{\mathrm{f}(x)\}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \frac{d}{d x}(\tan 2 x)=\lim _{h \rightarrow 0} \frac{\tan (2 x+2 h)-\tan 2 x}{h} \\
= & \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (2 x+2 h)}{\cos (2 x+2 h)}-\frac{\sin 2 x}{\cos 2 x}\right] \\
= & \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (2 x+2 h) \cos 2 x-\sin 2 x \cos (2 x+2 h)}{\cos (2 x+2 h) \cos 2 x}\right] \\
= & \lim _{h \rightarrow 0} \frac{1}{h} \frac{\sin (2 x+2 h-2 x)}{\cos (2 x+2 h) \cos 2 x} \\
= & \lim _{h \rightarrow 0} \frac{\sin 2 h}{2 h} \times 2 \times \lim _{h \rightarrow 0} \frac{1}{\cos (2 x+2 h) \cos 2 x} \\
= & 1 \times 2 \times \frac{1}{\cos (2 x+0) \cos 2 x}=\frac{2}{\cos ^{2} x} \\
= & 2 \sec ^{2} 2 x
\end{aligned}
$$

$$
\text { 3(e) } \sec 2 x
$$

[य. ’०२,’○৭; চ.’○৭,’’০]
মনে করি, $\mathrm{f}(x)=\sec 2 x$.
$\mathrm{t}(x+\mathrm{h})=\sec 2(x+\mathrm{h})=\sec (2 \mathrm{x}+2 \mathrm{~h})$
অশ্তরক সহগের সংষ্ঞা হতে পাই,
$\frac{d}{d x}\{\mathrm{f}(x)\}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\frac{d}{d x}(\sec 2 x)=\lim _{h \rightarrow 0} \frac{\sec (2 x+2 h)-\sec 2 x}{h}$
$=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\cos (2 x+2 h)}-\frac{1}{\cos 2 x}\right]$
$=\lim _{h \rightarrow 0} \frac{\cos 2 x-\cos (2 x+2 h)}{h \cos (2 x+2 h) \cos 2 x}$
$=\lim _{h \rightarrow 0} \frac{2 \sin \frac{2 x+2 x+2 h}{2} \sin \frac{2 x+2 h-2 x}{2}}{h \cos (2 x+2 h) \cos 2 x}$
$=2 \lim _{h \rightarrow 0} \frac{\sin (2 x+h)}{\cos (2 x+2 h) \cos 2 x} \times \lim _{h \rightarrow 0} \frac{\sin h}{h}$
$=2 \frac{\sin (2 x+0)}{\cos (2 x+0) \cos 2 x} \times 1$
$=\frac{2 \sin 2 x}{\cos 2 x \cos 2 x}=2 \tan 2 x \sec 2 x$
3(f) $e^{2 x}$
[द्रा.'০७]
মনে बরি, $\mathrm{f}(x)=e^{2 x}$.
$\mathrm{f}(x+\mathrm{h})=e^{2(x+h)}=e^{2 x+2 h}$
অল্তরক সহগের সংষ্ঞা হতে পাই,

$$
\begin{aligned}
& \frac{d}{d x}\{\mathrm{f}(x)\}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \frac{d}{d x}\left(e^{2 x}\right)=\lim _{h \rightarrow 0} \frac{e^{2 x+2 h}-e^{2 x}}{h} \\
= & \lim _{h \rightarrow 0} \frac{e^{2 x} \cdot e^{2 h}-e^{2 x}}{h}=\lim _{h \rightarrow 0} \frac{e^{2 x}}{h}\left(e^{2 h}-1\right) \\
= & e^{2 x} \lim _{h \rightarrow 0} \frac{e^{2 h}-1}{2 h} \times 2 \\
= & e^{2 x} \times 1 \times 2=2 e^{2 x},\left[\because \lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1\right]
\end{aligned}
$$

3. (g) $\operatorname{cosec} a x$

মনে করি, $\mathrm{f}(x)=\operatorname{cosec} \mathrm{a} x$. $\mathrm{f}(x+\mathrm{h})=\operatorname{cosec}(\mathrm{a} x+\mathrm{ah})$
অN্তরক সহগের সৃফ্ঞা হতে পাই,

$$
\begin{aligned}
& \frac{d}{d x}\{\mathrm{f}(x)\}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \frac{d}{d x}(\operatorname{cosec} \operatorname{ax})= \\
&= \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\sin (a x+a h)}-\frac{1}{\sin a x}\right] \\
&= \lim _{h \rightarrow 0} \frac{\sin e c(a x+a h)-\cos e c a x}{h} \\
& h \sin (a x+a h) \sin a x \\
&= \lim _{h \rightarrow 0} \frac{2 \sin \frac{a x-a x-a h}{2} \cos \frac{a x+a x+a h}{2}}{h \sin (a x+a h) \sin a x} \\
&= \lim _{h \rightarrow 0} \frac{2 \sin (-h) \cos (a x+h)}{h \sin (a x+a h) \sin a x} \\
&=-2 \lim _{h \rightarrow 0} \frac{\sin h}{h} \times \lim _{h \rightarrow 0} \frac{\cos (a x+h)}{\sin (a x+a h) \sin a x} \\
&=-2 \times 1 \times \frac{\cos (a x+0)}{\sin (a x+0) \sin a x} \\
&=-2 \times \frac{\cos a x}{\sin a x \sin a x} \\
&=-2 \cot a x \operatorname{cosec} a x
\end{aligned}
$$

3(h) $\cos 2 x$

[মা.বো.’o8; ব.'১১]
মনে করি, $\mathrm{f}(x)=\cos 2 x$.
$\mathrm{f}(x+\mathrm{h})=\cos 2(x+\mathrm{h})=\cos (2 x+2 \mathrm{~h})$
অম্তরক সহগের সঙ্ভ্ঞা হতে পাই,

$$
\frac{d}{d x}\{\mathrm{f}(x)\}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
\frac{d}{d x}(\cos 2 x)=\lim _{h \rightarrow 0} \frac{\cos (2 x+2 h)-\cos 2 x}{h}
$$

$=\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \sin \frac{2 x+2 h+2 x}{2} \sin \frac{2 x-2 h-2 x}{2}\right]$
$=2 \lim _{h \rightarrow 0} \sin (2 x+h) \times-\lim _{h \rightarrow 0} \frac{\sin h}{h}$
$=2 \sin (2 x+0) .(-1)=-2 \sin 2 x$
3(i) $\boldsymbol{e}^{a x}$ [ব'०৫,'০১; ঢা.'০৬; य., मि.'১১; ङু.'১৩]. মনে করি, $\mathrm{f}(x)=e^{a x}$.

$$
\mathrm{f}(x+\mathrm{h})=e^{a(x+h)}=e^{a x+a h}
$$

অল্তরক সহগের সংজ্ঞ হতে পাই,
$\frac{\bar{d}}{d x}\{\mathrm{f}(x)\}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\frac{d}{d x}\left(e^{a x}\right)=\lim _{h \rightarrow 0} \frac{e^{a x+a h}-e^{a x}}{h}$
$=\lim _{h \rightarrow 0} \frac{e^{a x} \cdot e^{a h}-e^{a x}}{h}=\lim _{h \rightarrow 0} \frac{e^{a x}}{h}\left(e^{a h}-1\right)$
$=e^{a x} \lim _{h \rightarrow 0} \frac{1}{h}\left[\left\{\left(1+a h+\frac{(a h)^{2}}{2!}+\frac{(a h)^{3}}{3!}+\cdots\right\}-1\right]=\right.$
$e^{a x} \lim _{h \rightarrow 0} \frac{1}{h}\left(a h+\frac{a^{2} h^{2}}{2!}+\frac{a^{3} h^{3}}{3!}+\cdots \cdots\right)$
$=e^{a x} \lim _{h \rightarrow 0}\left(a+\frac{a^{2} h}{2!}+\frac{a^{3} h^{2}}{3!}+\mathrm{h}\right.$ - এর উচঘाত
সম্ষলিত পদসমূহ)
$=e^{a x}(a+0+0+\cdots \cdots)=a e^{a x}$
3(j) $\log _{a} x \quad$ [б.'০৮; ঢা.'১১; य.'১২,'১8; मि.'১৪] ধরি, $\mathrm{f}(x)=\log _{a} x=\log _{a} e \times \log _{e} x$

$$
=\frac{\ln x}{\log _{e} a}=\frac{\ln x}{\ln a}
$$

$\mathrm{f}(x+\mathrm{h})=\frac{\ln (x+h)}{\ln a}$
অল্তন্নক সহগের সৃভ্g হতে পাই,

$$
\begin{aligned}
& \frac{d}{d x}\{\mathrm{f}(x)\}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \frac{d}{d x}\left(\log _{a} x\right)=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\ln (x+h)}{\ln a}-\frac{\ln x}{\ln a}\right]
\end{aligned}
$$

$=\lim _{h \rightarrow 0} \frac{1}{h \ln a} \ln \frac{x+h}{x}=\lim _{h \rightarrow 0} \frac{1}{h \ln a} \ln \left(1+\frac{h}{x}\right)$
$=\frac{1}{\ln a} \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{h}{x}-\frac{1}{2} \frac{h^{2}}{x^{2}}+\frac{1}{3} \frac{h^{3}}{x^{3}}-\cdots \cdots \cdot\right]$
$=\frac{1}{\ln a} \lim _{h \rightarrow 0}\left[\frac{1}{x}-\frac{1}{2} \frac{h}{x^{2}}+\mathrm{h}\right.$-এর উচ্চঘাত সম্মলিত পদসমूহ]
$=\frac{1}{\ln a} \frac{1}{x}-0=\frac{1}{x \ln a}$
4.(a) মूल निয়মে $x=2$-তে x^{5} जत्र অल्তत्तक সহগ निय्ष।

মনে করি, $\mathrm{f}(x)=x^{5}$.
$f(2)=2^{5}$
$f^{\prime}(2)=\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} \frac{x^{5}-2^{5}}{x-2}$
$=5 \times(2)^{4} \quad\left[\because \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}\right]$
$=5 \times 16=80$
4(b) মूळ निয়ম $x=a$-তে $e^{m x}$ এর্র অN্তরন সহগ निर्ণ্য।

মনে করি, $\mathrm{f}(x)=e^{m x} \quad \mathrm{f}(a)=e^{m a}$
$f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
$=\lim _{x \rightarrow a} \frac{e^{m x}-e^{m a}}{x-a}=\lim _{x \rightarrow a} \frac{e^{m a}\left(e^{m x-m a}-1\right)}{x-a}$
$=e^{m a} \lim _{x \rightarrow a \rightarrow 0} \frac{e^{m(x-a)}-1}{m(x-a)} \times m$
$=m e^{m a} .1 \quad\left[\quad \lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1\right]$
$=m e^{m a}$
4(c) घून निय़ম $x=\frac{\pi}{4}$-דে $\tan x$ এत्र অम्তत्रक সহগ नির্শ।
মনে করি, $\mathrm{f}(x)=\tan x . \quad \mathrm{f}\left(\frac{\pi}{4}\right)=\tan \frac{\pi}{4}$

$$
\begin{aligned}
& f^{\prime}\left(\frac{\pi}{4}\right)=\lim _{x \rightarrow \frac{\pi}{4}} \frac{f(x)-f\left(\frac{\pi}{4}\right)}{x-\frac{\pi}{4}} \\
= & \lim _{x \rightarrow \frac{\pi}{4}} \frac{\tan x-\tan \frac{\pi}{4}}{x-\frac{\pi}{4}} \\
= & \lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin x \cos \frac{\pi}{4}-\cos x \sin \frac{\pi}{4}}{\left(x-\frac{\pi}{4}\right) \cos x \cos \frac{\pi}{4}} \\
= & \lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin \left(x-\frac{\pi}{4}\right)}{\left(x-\frac{\pi}{4}\right) \cos x \cos \frac{\pi}{4}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x-\frac{\pi}{4} \rightarrow 0} \frac{\sin \left(x-\frac{\pi}{4}\right)}{x-\frac{\pi}{4}} \times \lim _{x \rightarrow \frac{\pi}{4}} \frac{1}{\cos x \cos \frac{\pi}{4}} \\
& =1 \cdot \frac{1}{\cos \frac{\pi}{4} \cos \frac{\pi}{4}}=\frac{1}{(1 / \sqrt{2})^{2}}=2 \\
& \text { बNand IX D }
\end{aligned}
$$

\boldsymbol{x} এর সাপেক্ছে অল্তরক সহগ নির্ণয় ক্ন 8
1(a) $\frac{d}{d x}\left\{x^{2} \ln (x)\right\}$
$=x^{2} \frac{d}{d x}\{\ln (x)\}+\ln (x) \frac{d}{d x}\left(x^{2}\right)$
$=x^{2} \frac{1}{x}+\ln (x) .(2 x)=x+2 x \ln (x)$
1(b) $5 e^{x} \log _{a} x$
[ব.'০৮;দি.’১৩]
মনে করি, $\mathrm{y}=5 e^{x} \log _{a} x$

$$
\begin{aligned}
\frac{d y}{d x} & =5\left\{e^{x} \frac{d}{d x}\left(\log _{a} x\right)+\log _{a} x \frac{d}{d x}\left(e^{x}\right)\right\} \\
& =5\left\{e^{x} \frac{1}{x \ln a}+\log _{a} x \cdot e^{x}\right\}
\end{aligned}
$$

$\therefore \frac{d}{d x}\left\{5 e^{x} \log _{a} x\right\}=5 e^{x}\left\{\frac{1}{x \ln a}+\log _{a} x\right\}$
1(c) $\log _{10} x$
[मि.'১১,’১৩]
মনে করি, $\mathrm{y}=\log _{10} x=\log _{10} e \times \log _{e} x$
$\Rightarrow \mathrm{y}=\frac{1}{\log _{e} 10} \times \ln x=\frac{1}{\ln 10} \times \ln x$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{\ln 10} \frac{d}{d x}(\ln x)=\frac{1}{\ln 10} \times \frac{1}{x} \\
& \frac{d}{d x}\left(\log _{10} x\right)=\frac{1}{x \ln 10} \text { (Ans.) }
\end{aligned}
$$

1(d) $\log _{a} x$
[ঢ.’১৩]
মনে করি, $\mathrm{y}=\log _{a} x=\log _{a} e \times \log _{e} x$
$\Rightarrow \mathrm{y}=\frac{1}{\log _{e} a} \times \ln x=\frac{1}{\ln a} \times \ln x$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{\ln a} \frac{d}{d x}(\ln x)=\frac{1}{\ln a} \times \frac{1}{x} \\
& \frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a} \text { (Ans.) }
\end{aligned}
$$

2. (a) $a^{x} \ln (x)+b e^{x} \sin x$

$$
\begin{aligned}
& \frac{d}{d x}\left\{a^{x} \ln (x)+b e^{x} \sin x\right\}=a^{x} \frac{d}{d x}\{\ln (x)\} \\
& \quad+\ln (x) \frac{d}{d x}\left(a^{x}\right)+\mathrm{b}\left\{e^{x} \frac{d}{d x}(\sin x)+\right.
\end{aligned}
$$

$$
\left.\sin x \frac{d}{d x}\left(e^{x}\right)\right\}
$$

$$
=a^{x} \frac{1}{x}+\ln (x)\left(a^{x} \ln a\right)+\mathrm{b}\left\{e^{x}(\cos x)+\right.
$$

$$
\left.\sin x\left(e^{x}\right)\right\}
$$

$$
=a^{x}\left\{\frac{1}{x}+\ln a \ln (x)\right\}+\mathrm{b} e^{x}(\cos x+\sin x)
$$

$$
\text { 2(b) } x^{2} \log _{a} x-x^{3} \ln a^{x}+6 x e^{x} \ln x
$$

$$
\text { ধরি, } \mathrm{y}=x^{2} \log _{a} x-x^{3} \ln a^{x}+6 x e^{x} \ln x
$$

$$
=x^{2} \log _{a} x-x^{4} \ln a+6 x e^{x} \ln x
$$

$$
\frac{d y}{d x}=x^{2} \frac{d}{d x}\left(\log _{a} x\right)+\log _{a} x \frac{d}{d x}\left(x^{2}\right)-
$$

$$
\ln a \frac{d}{d x}\left(x^{4}\right)+6\left\{x e^{x} \frac{d}{d x}(\ln x)+\right.
$$

$$
\left.x \ln x \frac{d}{d x}\left(e^{x}\right)+e^{x} \ln x \frac{d}{d x}(x)\right\}
$$

$$
=x^{2} \frac{1}{x \ln a}+\log _{a} x .(2 x)-\ln a .\left(4 x^{3}\right)
$$

$$
+6\left\{x e^{x} \cdot \frac{1}{x}+x \ln x \cdot e^{x}+e^{x} \ln x .1\right\}
$$

$$
=x\left(\frac{1}{\ln a}+2 \log _{a} x-4 x^{2} \ln a\right)
$$

$$
+6 e^{x}(1+x \ln x+\ln x)
$$

3. (a) মনে করি, $y=\frac{x}{x^{2}+a^{2}}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\left(x^{2}+a^{2}\right) \frac{d}{d x}(x)-x \frac{d}{d x}\left(x^{2}+a^{2}\right)}{\left(x^{2}+a^{2}\right)^{2}} \\
= & \frac{\left(x^{2}+a^{2}\right) \cdot 1-x(2 x+0)}{\left(x^{2}+a^{2}\right)^{2}}=\frac{x^{2}+a^{2}-2 x^{2}}{\left(x^{2}+a^{2}\right)^{2}} \\
& \frac{d}{d x}\left(\frac{x}{x^{2}+a^{2}}\right)=\frac{a^{2}-x^{2}}{\left(x^{2}+a^{2}\right)^{2}}
\end{aligned}
$$

3(b) $\frac{d}{d x}\left(\frac{1-\tan x}{1+\tan x}\right)$
[भि.'১০; ব. ’১৩]
$=\frac{(1+\tan x) \frac{d}{d x}(1-\tan x)-(1-\tan x) \frac{d}{d x}(1+\tan x)}{(1+\tan x)^{2}}$
$=\frac{(1+\tan x)\left(-\sec ^{2} x\right)-(1-\tan x)\left(\sec ^{2} x\right)}{(1+\tan x)^{2}}$
$=\frac{(-1-\tan x-1+\tan x) \sec ^{2} x}{(1+\tan x)^{2}}$
$=\frac{-2 \sec ^{2} x}{(1+\tan x)^{2}} \quad$ (Ans.)
3(c) $\frac{d}{d x}\left(\frac{1+\sin x}{1+\cos x}\right)=$
$\frac{(1+\cos x) \frac{d}{d x}(1+\sin x)-(1+\sin x) \frac{d}{d x}(1+\cos x)}{(1+\cos x)^{2}}=$
$(1+\cos x)(\cos x)-(1+\sin x)(-\sin x)$
$(1+\cos x)^{2}$
$=\frac{\cos x+\cos ^{2} x+\sin x+\sin ^{2} x}{(1+\cos x)^{2}}$
$=\frac{\cos x+\sin x+1}{(1+\cos x)^{2}} \quad$ (Ans.)
3(d) $\frac{1+\sin x}{1-\sin x}$
[ঢ.'১৩; ব. '০৭; রা.'০১; চ.'১২; भি.'১৪]
$\frac{d}{d x}\left(\frac{1+\sin x}{1-\sin x}\right)=$

$$
\begin{aligned}
& \frac{(1-\sin x) \frac{d}{d x}(1+\sin x)-(1+\sin x) \frac{d}{d x}(1-\sin x)}{(1-\sin x)^{2}} \\
& =\frac{(1-\sin x)(\cos x)-(1+\sin x) \frac{d}{d x}(-\cos x)}{(1-\sin x)^{2}} \\
& =\frac{(1-\sin x+1+\sin x) \cos x}{(1-\sin x)^{2}} \\
& =\frac{2 \cos x}{(1-\sin x)^{2}}(\text { Ans.) }
\end{aligned}
$$

3(e) $\frac{\cos x-\cos 2 x}{1-\cos x}$
[ব.'১০; রা., কূ.'০৮; য. '১৩; ঢা. '১8]

$$
\frac{\cos x-\cos 2 x}{1-\cos x}=\frac{\cos x-\left(2 \cos ^{2} x-1\right)}{1-\cos x}
$$

$$
=\frac{1+\cos x-2 \cos ^{2} x}{1-\cos x}
$$

$$
=\frac{(1-\cos x)(1+2 \cos x)}{1-\cos x}=1+2 \cos x
$$

$$
\frac{d}{d x}\left(\frac{\cos x-\cos 2 x}{1-\cos x}\right)=-2 \sin x
$$

3(f) $\frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}}$ [ঢা.'০৯; ব.'০১,’১১; য.'১৪] $\frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}}=\frac{\sin x+\cos x}{\sqrt{\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x}}$

$$
=\frac{\sin x+\cos x}{\sqrt{(\sin x+\cos x)^{2}}}=\frac{\sin x+\cos x}{\sin x+\cos x}=1
$$

$$
\frac{d}{d x}\left(\frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}}\right)=0 \text { (Ans.) }
$$

$\mathbf{3}(\mathrm{g})$ ধরি, $y=\frac{x \ln x}{\sqrt{1+x^{2}}}$
[প্র.ভ.প.'०৫]
$\frac{d y}{d x}=\frac{\sqrt{1+x^{2}} \frac{d}{d x}(x \ln x)-x \ln x \frac{d}{d x}\left(\sqrt{1+x^{2}}\right)}{\left(\sqrt{1+x^{2}}\right)^{2}}$
$=\frac{1}{1+x^{2}}\left[\sqrt{1+x^{2}}\left(x \cdot \frac{1}{x}+\ln x\right)-x \ln x \frac{2 x}{2 \sqrt{1+x^{2}}}\right]$

$$
\begin{gathered}
=\frac{1}{1+x^{2}}\left[\frac{\left(1+x^{2}\right)(1+\ln x)-x^{2} \ln x}{\sqrt{1+x^{2}}}\right] \\
\frac{d}{d x}\left(\frac{x \ln x}{\sqrt{1+x^{2}}}\right)=\frac{1+x^{2}+\ln x}{\left(\sqrt{1+x^{2}}\right)^{3}}
\end{gathered}
$$

বিক্প্প পচ্জতি ঃ ধরি, $y=\frac{x \ln x}{\sqrt{1+x^{2}}}$

$$
\frac{d y}{d x}=\frac{x \ln x}{\sqrt{1+x^{2}}}\left[\frac{1}{x} \frac{d}{d x}(x)+\frac{1}{\ln x} \frac{d}{d x}(\ln x)-\right.
$$

$$
\left.\frac{1}{\sqrt{1+x^{2}}} \frac{d}{d x}\left(\sqrt{1+x^{2}}\right)\right]
$$

$$
=\frac{x \ln x}{\sqrt{1+x^{2}}}\left[\frac{1}{x}+\frac{1}{\ln x} \cdot \frac{1}{x}-\frac{1}{\sqrt{1+x^{2}}} \cdot \frac{2 x}{2 \sqrt{1+x^{2}}}\right]
$$

$$
=\frac{x \ln x}{\sqrt{1+x^{2}}} \frac{\ln x\left(1+x^{2}\right)+1+x^{2}-x^{2} \ln x}{x\left(1+x^{2}\right) \ln x}
$$

$$
\frac{d}{d x}\left(\frac{x \ln x}{\sqrt{1+x^{2}}}\right)=\frac{1+x^{2}+\ln x}{\left(\sqrt{1+x^{2}}\right)^{3}} \quad \text { (Ans.) }
$$

প্রশ্নমানা IX E

1.(a) $(1+\sin 2 x)^{2}$
[চ.'08]
ধরি, $\mathrm{y}=(1+\sin 2 x)^{2}$

$$
\begin{aligned}
& \frac{d y}{d x}=2(1+\sin 2 x) \frac{d}{d x}(1+\sin 2 x) \\
&=2(1+\sin 2 x)(0+\cos 2 x) \frac{d}{d x}(2 x) \\
&=2(1+\sin 2 x) \cos 2 x(2.1) \\
& \frac{d}{d x}\left\{(1+\sin 2 x)^{2}\right\}=4 \cos 2 x(1+\sin 2 x)
\end{aligned}
$$

1(b) $\boldsymbol{a}^{\mathrm{px+q}}$

$$
\begin{aligned}
& \text { ४রি, } \mathrm{y}=a^{\mathrm{p} x+\mathrm{q}} \\
& \begin{array}{l}
\frac{d y}{d x}=a^{\mathrm{p} x+\mathrm{q}} \cdot \ln a \frac{d}{d x}(\mathrm{p} x+\mathrm{q}) \\
\\
\quad\left[\because \frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a\right] \\
=a^{\mathrm{p} x+\mathrm{q}} \cdot \ln a(\mathrm{p} \cdot 1+0) \\
\frac{d}{d x}\left(a^{\mathrm{p} x+\mathrm{q}}\right)=\mathrm{p} a^{\mathrm{p} x+\mathrm{q}} \cdot \ln a(\text { Ans. })
\end{array}
\end{aligned}
$$

$1(\mathrm{c}) \mathrm{a}^{\cos x}$

$$
\begin{aligned}
\frac{d}{d x} & \left(\mathrm{a}^{\cos x}\right)=\mathrm{a}^{\cos x} \cdot \ln a \cdot \frac{d}{d x}(\cos x) \\
& =\mathrm{a}^{\cos x} \cdot \ln a \cdot(-\sin x) \\
& =-\mathrm{a}^{\cos x} \sin x \cdot \ln a
\end{aligned}
$$

1(d) $10^{\ln (\sin x)}$
[সि.'०२ '०৫; চ.'०৭]
ধরি, $y=10^{\ln (\sin x)}$
$\frac{d y}{d x}=10^{\ln (\sin x)} \cdot \ln 10 \frac{d}{d x}\{\ln (\sin x)\}$
$=10^{\ln (\sin x)} \cdot \ln 10 \frac{1}{\sin x} \frac{d}{d x}(\sin x)$
$=10^{\ln (\sin x)} \cdot \ln 10 \frac{1}{\sin x}(\cos x)$
$\frac{d}{d x}\left\{10^{\ln (\sin x)}\right\}=10^{\ln (\sin x)} \cdot \ln 10 \cdot \cot x$
(e) $10^{\ln (\tan x)}$

$$
\begin{aligned}
& \text { ধরি, } \mathrm{y}=10^{\ln (\tan x)} \\
& \frac{d y}{d x}=10^{\ln (\tan x)} \cdot \ln 10 \frac{d}{d x}\{\ln (\tan x)\} \\
& =10^{\ln (\tan x)} \cdot \ln 10 \frac{1}{\tan x} \frac{d}{d x}(\tan x) \\
& =10^{\ln (\sin x)} \cdot \ln 10 \frac{\cos x}{\sin x}\left(\sec ^{2} x\right) \\
& =10^{\ln (\sin x)} \cdot \ln 10 \frac{\cos x}{\sin x} \cdot \frac{1}{\cos ^{2} x} \\
& =10^{\ln (\sin x)} \cdot \ln 10 \frac{2}{2 \sin x \cos x} \\
& =10^{\ln (\sin x)} \cdot \ln 10 \frac{2}{\sin 2 x} \\
& =2 \operatorname{cosec} 2 \mathrm{x} \cdot 10^{\ln (\sin x)} \cdot \ln 10
\end{aligned}
$$

1(f) $a^{\ln (\cos x)}$

ধরি, $\mathrm{y}=a^{\ln (\cos x)}$

$$
\begin{aligned}
& \frac{d y}{d x}=a^{\ln (\cos x)} \cdot \ln a \frac{d}{d x}\{\ln (\cos x)\} \\
& =a^{\ln (\cos x)} \cdot \ln a \frac{1}{\cos x} \frac{d}{d x}(\cos x) \\
& =a^{\ln (\cos x)} \cdot \ln a \frac{1}{\cos x}(-\sin x)
\end{aligned}
$$

[B, '○O]

$$
\frac{d}{d x}\left\{a^{\ln (\cos x)}\right\}=-\tan x a^{\ln (\cos x)} \ln a
$$

 $e^{2 \ln (\tan 5 x)}=e^{\ln (\tan 5 . x)^{2}}=(\tan 5 x)^{2}$ $\frac{d}{d x}\left\{e^{2 \ln (\tan 5 x)}\right\}=2 \tan 5 x \frac{d}{d x}(\tan 5 x)$
$=2 \tan 5 x\left(\sec ^{2} 5 x\right) \frac{d}{d x}(5 x)$
$=2 \tan 5 x \sec ^{2} 5 x(5)$
$=10 \tan 5 x \sec ^{2} 5 x$
1(h) $\left(\ln \sin x^{2}\right)^{n}$
[भि.'০৬; রা.'o১]
ধরি, $\mathrm{y}=\left(\ln \sin x^{2}\right)^{\mathrm{n}}$
$\frac{d y}{d x}=\mathrm{n}\left(\ln \sin x^{2}\right)^{\mathrm{n}-1} \frac{d}{d x}\left(\ln \sin x^{2}\right)$
$=\mathrm{n}\left(\ln \sin x^{2}\right)^{\mathrm{n}-1} \cdot \frac{1}{\sin x^{2}} \frac{d}{d x}\left(\sin x^{2}\right)$
$=\mathrm{n}\left(\ln \sin x^{2}\right)^{\mathrm{n}-1} \frac{1}{\sin x^{2}}\left(\cos x^{2}\right)(2 x)$
$\frac{d}{d x}\left\{\left(\ln \sin x^{2}\right)^{\mathrm{n}}\right\}=\mathrm{n} x \cot x^{2}\left(\ln \sin x^{2}\right)^{\mathrm{n}-1}$
1(i) $\cos \left(e^{\operatorname{tin}^{2} 2 x}\right)$

$$
\begin{align*}
& \frac{d}{d x}\left\{\cos \left(e^{\tan ^{2} 2 x}\right)\right\}=\frac{d\left\{\cos \left(e^{\tan ^{2} 2 x}\right)\right\}}{d\left(e^{\tan ^{2} 2 x}\right)} \\
& \quad \frac{d\left(e^{\tan ^{2} 2 x}\right)}{d\left(\tan ^{2} 2 x\right.} \frac{d\left(\tan ^{2} 2 x\right)}{d\left(\tan ^{2 x}\right)} \frac{d(\tan 2 x)}{d(2 x)} \frac{d(2 x)}{d x} \\
& =-\sin \left(e^{\tan ^{2} 2 x}\right) \cdot e^{\tan ^{2} 2 x} \cdot 2{\tan 2 x \cdot \sec ^{2} 2 x .2}^{=-4 \tan 2 x \sec ^{2} 2 x \sin \left(e^{\tan ^{2} 2 x}\right) e^{\tan ^{2} 2 x}} \\
& 1(\mathrm{j}) \frac{d}{d x}\left(\sin ^{3} x^{2}\right) \\
& =\frac{d\left(\sin x^{2}\right)^{3}}{d\left(\sin x^{2}\right)} \frac{d\left(\sin x^{2}\right)}{d\left(x^{2}\right)} \frac{d\left(x^{2}\right)}{d x} \tag{চ.’o১}\\
& =3\left(\sin x^{2}\right)^{2} \cdot \cos x^{2} \cdot 2 x \\
& \left.=6 x \sin ^{2} x^{2} \cos x^{2} \quad \text { Ans. }\right) \\
& 1(\mathbf{k}) e^{5 \ln (\tan x)} \\
& =e^{\ln (\tan x)^{5}}=(\tan x)^{5}
\end{align*}
$$

- $8 \subset$
$\frac{d}{d x}\left\{e^{5 \ln (\tan x)}\right\}=5 \tan ^{4} x \frac{d}{d x}(\tan x)$
$=5 \tan ^{4} x \sec ^{2} x$
$1(l) x^{n} \ln (2 x)$
[6.'०9]
মনে করি, $\mathrm{y}=x^{n} \ln (2 x)$

$$
\begin{aligned}
& \frac{d y}{d x}=x^{\mathrm{n}} \frac{d}{d x}\{\ln (2 x)\}+\ln (2 x) \cdot \frac{d}{d x}\left(x^{\mathrm{n}}\right) \\
&=x^{\mathrm{n}} \frac{1}{2 x} \cdot \frac{d}{d x}(2 x)+\ln (2 x) \cdot \mathrm{n} x^{\mathrm{n}-1} \\
&=x^{\mathrm{n}-1} \frac{1}{2} \cdot(2)+\mathrm{n} x^{\mathrm{n}-1} \ln (2 x) \\
& \frac{d}{d x}\left\{x^{n} \ln (2 x)\right\}=x^{\mathrm{n}-1}\{1+\mathrm{n} \ln (2 x)\}
\end{aligned}
$$

1(m) $x \sqrt{\sin x}$
[ঢ.'০৮]
মন্ করি, $\mathrm{y}=x \sqrt{\sin x}=x(\sin x)^{\frac{1}{2}}$
$\frac{d y}{d x}=x \frac{d}{d x}\left\{(\sin x)^{\frac{1}{2}}\right\}+(\sin x)^{\frac{1}{2}} \frac{d}{d x}(\mathrm{x})$
$=x . \frac{1}{2}(\sin x)^{-\frac{1}{2}} \frac{d}{d x}(\sin x)+\sqrt{\sin x} .1$
$=\frac{1}{2} x \frac{1}{\sqrt{\sin x}}(\cos x)+\sqrt{\sin x}$
$\frac{d}{d x}(x \sqrt{\sin x})=\frac{x \cos x+2 \sin x}{2 \sqrt{\sin x}}$
1(n) $e^{a x} \tan ^{2} x$
[ঢা.'০১]
মনে করি, $\mathrm{y}=e^{a x} \tan ^{2} x$
$\frac{d y}{d x}=e^{a x} \frac{d}{d x}\left(\tan ^{2} x\right)+\tan ^{2} x \frac{d}{d x}\left(e^{a x}\right)$
$=e^{a x}(2 \tan x) \frac{d}{d x}(\tan x)+\tan ^{2} x \cdot e^{a x}(a)$
$=e^{a x} \tan x\left(2 \sec ^{2} x+a \tan x\right)$ (Ans.)
2.(a) $\ln (\cos x)$
[রা.'০৩,’০৫,'১০]

$$
\begin{aligned}
\frac{d}{d x} & \{\ln (\cos x)\}=\frac{1}{\cos x} \frac{d}{d x}(\cos x) \\
& =\frac{1}{\cos x}(-\sin x)=-\tan x \text { (Ans.) }
\end{aligned}
$$

$$
\begin{gathered}
\frac{d}{d x} \\
\left\{\ln \left(e^{x}+e^{-x}\right)\right\}=\frac{1}{e^{x}+e^{-x}} \frac{d}{d x}\left(e^{x}+e^{-x}\right) \\
=\frac{1}{e^{x}+e^{-x}}\left(e^{x}-e^{-x}\right)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
\end{gathered}
$$

2(c) $\log _{x} a$
[রা.'০১; চ.'০৬;'ob] $\log _{x} a=\log _{x} e \times \log _{e} a=\ln a \frac{1}{\log _{e} x}$
$=\ln a \frac{1}{\ln x}=\ln a(\ln x)^{-1}$
$\therefore \frac{d}{d x}\left(\log _{x} a\right)=\ln a\left\{-1(\ln x)^{-2} \frac{d}{d x}(\ln x)\right\}$

$$
=-\ln a \frac{1}{(\ln x)^{2}} \cdot \frac{1}{x}=-\frac{\ln a}{x(\ln x)^{2}}
$$

2(d) $\log _{10} 3 x$
[য.'০৬,'১৩]
$\log _{10} 3 x=\log _{10} e \times \log _{c} 3 x=\frac{1}{\log _{e} 10} \ln (3 x)$

$$
\begin{aligned}
& \frac{d}{d x}\left(\log _{10} 3 x\right)=\frac{1}{\ln 10} \frac{1}{3 x} \frac{d}{d x}(3 x) \\
& =\frac{1}{\ln 10} \frac{1}{3 x}(3.1)=\frac{1}{x \ln 10} \text { (Ans.) }
\end{aligned}
$$

2(e) $\log _{a} x+\log _{x} a$
$=\log _{a} e \times \log _{e} x+\log _{x} e \times \log _{e} a$
$=\frac{1}{\log _{e} a} \times \ln x+\frac{1}{\log _{e} x} \times \ln a$
$=\frac{1}{\ln a} \times \ln x+\ln a \times(\ln x)^{-1}$
$\frac{d}{d x}\left(\log _{a} x+\log _{x} a\right)$
$=\frac{1}{\ln a} \frac{1}{x}+\ln a \times\left\{-1(\ln x)^{-2} \frac{1}{x}\right\}$
$=\frac{1}{x \ln a}-\frac{\ln a}{x(\ln x)^{2}}$
2(f) ধরি, $\mathrm{y}=\log _{x} \tan x=\log _{x} e \times \log _{e} \tan x$

$$
=\frac{1}{\log _{e} x} \times \ln (\tan x)=\frac{\ln (\tan x)}{\ln x}
$$

$\therefore \frac{d y}{d x}=\frac{\ln x \frac{d}{d x}\{\ln (\tan x)\}-\ln (\tan x) \frac{d}{d x}(\ln x)}{(\ln x)^{2}}$

$$
=\frac{\ln x \frac{1}{\tan x} \sec ^{2} x-\ln (\tan x) \cdot \frac{1}{x}}{(\ln x)^{2}}
$$

$=\frac{\ln x \frac{\cos x}{\sin x} \frac{1}{\cos ^{2} x}-\frac{1}{x} \ln (\tan x)}{(\ln x)^{2}}$
$=\frac{\ln x \frac{2}{\sin 2 x}-\frac{1}{x} \ln (\tan x)}{(\ln x)^{2}}$
$=\frac{2 x \ln x \operatorname{cosec} 2 x-\ln (\tan x)}{x(\ln x)^{2}}$ (Ans.)

2(g) $\ln (\sin 2 x)$

[ঢ.'১১; সি.'১৩]

$$
\begin{aligned}
\frac{d}{d x} & \{\ln (\sin 2 x)\}=\frac{1}{\sin 2 x} \frac{d}{d x}(\sin 2 x) \\
& =\frac{1}{\sin 2 x}(\cos 2 x) \frac{d}{d x}(2 x)=2 \cot 2 x
\end{aligned}
$$

(h) $\ln \left(\sin x^{2}\right)$
[त्रा.'১২]

$$
\begin{aligned}
\frac{d}{d x} & \left\{\ln \left(\sin \mathrm{x}^{2}\right)\right\}=\frac{1}{\sin \mathrm{x}^{2}} \frac{d}{d x}\left(\sin x^{2}\right) \\
& =\frac{1}{\sin \mathrm{x}^{2}}\left(\cos x^{2}\right) \frac{d}{d x}\left(x^{2}\right)=2 x \cot x^{2}
\end{aligned}
$$

3(a) $\ln \left[x-\sqrt{x^{2}-1}\right]$ [彳ा. '०र; कू. '০৩; চ.'০৫]

$$
\begin{aligned}
\frac{d}{d x} & \left\{\ln \left(x-\sqrt{x^{2}-1}\right)\right\} \\
& =\frac{1}{x-\sqrt{x^{2}-1}} \frac{d}{d x}\left(x-\sqrt{x^{2}-1}\right) \\
& =\frac{1}{x-\sqrt{x^{2}-1}}\left\{1-\frac{1}{2 \sqrt{x^{2}-1}}(2 x)\right\} \\
& =\frac{1}{x-\sqrt{x^{2}-1}}\left\{\frac{\sqrt{x^{2}-1-x}}{\sqrt{x^{2}-1}}\right\} \\
& =-\frac{1}{\sqrt{x^{2}-1}} \text { (Ans.) }
\end{aligned}
$$

3(b) $\ln \left[x-\sqrt{x^{2}+1}\right]$ [রা. '০২; ঞू. '০৩,'১০] $\frac{d}{d x}\left\{\ln \left(x-\sqrt{x^{2}+1}\right)\right\}$
$=\frac{1}{x-\sqrt{x^{2}+1}} \frac{d}{d x}\left(x-\sqrt{x^{2}+1}\right)$
$=\frac{1}{x-\sqrt{x^{2}+1}}\left\{1-\frac{1}{2 \sqrt{x^{2}+1}}(2 x)\right\}$
$=\frac{1}{x-\sqrt{x^{2}+1}}\left\{\frac{\sqrt{x^{2}+1}-x}{\sqrt{x^{2}+1}}\right\}$
$=-\frac{1}{\sqrt{x^{2}+1}}$ (Ans.)
3(c) $\ln (\sqrt{x-a}+\sqrt{x-b})$
[אू.'০S]
$\frac{d}{d x}\{\ln (\sqrt{x-a}+\sqrt{x-b})\}$
$=\frac{1}{\sqrt{x-a}+\sqrt{x-b}} \frac{d}{d x}(\sqrt{x-a}+\sqrt{x-b})$
$=\frac{1}{\sqrt{x-a}+\sqrt{x-b}}\left\{\frac{1}{2 \sqrt{x-a}}+\frac{1}{2 \sqrt{x-b}}\right\}$
$=\frac{1}{\sqrt{x-a}+\sqrt{x-b}}\left\{\frac{\sqrt{x-b}+\sqrt{x-a}}{2 \sqrt{x-a} \sqrt{x-b}}\right\}$
$=\frac{1}{2 \sqrt{(x-a)(x-b)}}$ (Ans.)
3(d) $\ln \left\{e^{x}\left(\frac{x-1}{x+1}\right)^{3 / 2}\right\}$
[চ.'००]
ধরি, $y=\ln \left\{e^{x}\left(\frac{x-1}{x+1}\right)^{3 / 2}\right\}$
$=\ln e^{x}+\frac{3}{2}\{\ln (x-1)-\ln (x+1)\}$
$=x+\frac{3}{2}\{\ln (x-1)-\ln (x+1)\}$

$$
\begin{aligned}
\frac{d y}{d x} & =1+\frac{3}{2}\left\{\frac{1}{x-1}-\frac{1}{x+1}\right\} \\
& =1+\frac{3}{2}\left\{\frac{x+1-x+1}{(x-1)(x+1)}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =1+\frac{3}{2}\left\{\frac{2}{x^{2}-1}\right\}=\frac{x^{2}-1+3}{x^{2}-1} \\
& =\frac{x^{2}+2}{x^{2}-1} \text { (Ans.) }
\end{aligned}
$$

4. (a) $\frac{\tan x-\cot x}{\tan x+\cot x}$

$$
\begin{aligned}
& \frac{\tan x-\cot x}{\tan x+\cot x}=\frac{\frac{\sin x}{\cos x}-\frac{\cos x}{\sin x}}{\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}} \\
& =\frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x+\cos ^{2} x}=\frac{-\cos 2 x}{1}=-\cos 2 x \\
& \frac{d}{d x}\left(\frac{\tan x-\cot x}{\tan x+\cot x}\right)=\sin 2 x .2=2 \sin 2 x
\end{aligned}
$$

$$
\text { 4(b) }\left(\frac{\sin 2 x}{1+\cos 2 x}\right)^{2}
$$

$$
=\left(\frac{2 \sin x \cos x}{2 \cos ^{2} x}\right)^{2 \cdot}=\left(\frac{\sin x}{\cos x}\right)^{2}=\tan ^{2} x
$$

$$
\frac{d}{d x}\left(\frac{\sin 2 x}{1+\cos 2 x}\right)^{2}=2 \tan x \frac{d}{d x}(\tan x)
$$

$$
=2 \tan x \sec ^{2} x
$$

4(c) $\ln \sqrt{\frac{1-\cos x}{1+\cos x}} \quad$ [ঢ.'০৭,'১৩; র্রা.'১১; কু.'১৪]

$$
=\ln \sqrt{\frac{2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}}=\ln \sqrt{\tan ^{2} \frac{x}{2}}=\ln \tan \frac{x}{2}
$$

$$
\frac{d}{d x}\left\{\ln \sqrt{\frac{1-\cos x}{1+\cos x}}\right\}=\frac{1}{\tan \frac{x}{2}} \sec ^{2} \frac{x}{2} \cdot \frac{1}{2}
$$

$$
=\frac{1}{2} \frac{\cos \frac{x}{2}}{\sin \frac{x}{2}} \frac{1}{\cos ^{2} \frac{x}{2}}=\frac{1}{2 \sin \frac{x}{2} \cos \frac{x}{2}}
$$

$$
=\frac{1}{\sin x}=\operatorname{cosec} x \text { (Ans.) }
$$

$$
\begin{aligned}
& \text { 4(d) } \sqrt{\frac{1+x}{1-x}} \\
& \text { थরि, } y=\sqrt{\frac{1+x}{1-x}}=\frac{\sqrt{1+x}}{\sqrt{1-x}} \\
& =\frac{\frac{d y}{d x}=\frac{\sqrt{1-x} \frac{d}{d x}(\sqrt{1+x})-\sqrt{1+x} \frac{d}{d x}(\sqrt{1-x})}{(\sqrt{1-x})^{2}}}{=\frac{\sqrt{1-x} \frac{1}{2 \sqrt{1+x}} \cdot 1-\sqrt{1+x} \frac{1}{2 \sqrt{1-x}}(-1)}{1-x}} \\
& =\frac{\sqrt{1-x} \frac{1}{2 \sqrt{1+x}} \cdot 1-\sqrt{1+x} \frac{1}{2 \sqrt{1-x}}(-1)}{1-x+x) \sqrt{(1+x)(1-x)}}=\frac{2}{2(1-x) \sqrt{1-x^{2}}} \\
& \frac{d}{d x}\left(\sqrt{\frac{1+x}{1-x}}\right)=\frac{1}{(1-x) \sqrt{1-x^{2}}}
\end{aligned}
$$

4.(e) $\ln \sqrt[3]{\frac{1-\cos x}{1+\cos x}}$
[দি.'১২; প্র.ভ.প.'০৫]

$$
=\ln \left(\frac{2 \sin ^{2}(x / 2)}{2 \cos ^{2}(x / 2)}\right)^{1 / 3}=\frac{1}{3} \ln \tan ^{2} \frac{x}{2}
$$

$$
=\frac{2}{3} \ln \tan \frac{x}{2}
$$

$$
\frac{d}{d x}\left(\ln \sqrt[3]{\frac{1-\cos x}{1+\cos x}}\right)=\frac{2}{3} \frac{\sec ^{2}(x / 2)}{\tan (x / 2)} \cdot \frac{1}{2}
$$

$$
=\frac{1}{3} \frac{\cos \frac{x}{2}}{\cos ^{2} \frac{x}{2} \sin \frac{x}{2}}=\frac{2}{3} \frac{1}{2 \cos \frac{x}{2} \sin \frac{x}{2}}
$$

$$
=\frac{2}{3} \frac{1}{\sin x}=\frac{2}{3} \operatorname{cosec} x
$$

5. (a) $\sin ^{2}[\ln (\sec x)]$ [रा.'०१,’১৩; कू., সि.,

মা.বো.'০১; চ.'১১; ঢা. '১২; য., मि.'১৩]
ধরি, $\mathrm{y}=\sin ^{2}[\ln (\sec x)]$
$\therefore \frac{d y}{d x}=\frac{d\{\sin [\ln (\sec x)]\}^{2}}{d\{\sin [\ln (\sec x)]\}} \frac{d\{\sin [\ln (\sec x)]\}}{d\{\ln (\sec x)\}}$
$\frac{d\{\ln (\sec x)\}}{d(\sec x)} \frac{d(\sec x)}{d x}$
$=2 \sin [\ln (\sec x)] \cos [\ln (\sec x)] \frac{1}{\sec x}$
$\sec x \tan x$
$=\tan x \sin [2 \ln (\sec x)]$
5(b) $\sin ^{2}\left\{\ln \left(x^{2}\right)\right\}$
[य.'○৭,'०৮; চ.'০৬,'১৩; ঢা.,সि,'১৪]
$\frac{d}{d x}\left[\sin ^{2}\left\{\ln \left(x^{2}\right)\right\}\right]=\frac{d\left[\sin \left\{\ln \left(x^{2}\right)\right\}\right]^{2}}{d\left[\sin \left\{\ln \left(x^{2}\right)\right\}\right]}$

$$
\frac{d\left[\sin \left\{\ln \left(x^{2}\right)\right\}\right]}{d\left[\ln \left(x^{2}\right)\right]} \frac{d\left[\ln \left(x^{2}\right)\right]}{d\left(x^{2}\right)} \frac{d\left(x^{2}\right)}{d x}
$$

$=2 \sin \left\{\ln \left(x^{2}\right)\right\} \cos \left\{\ln \left(x^{2}\right)\right\} \frac{1}{x^{2}} \cdot 2 x$
$=\frac{2}{x} \sin \left\{2 \ln \left(x^{2}\right)\right\}=\frac{2}{x} \sin \{4 \ln (x)\}$
5(c) $\sqrt{\sin \sqrt{x}}$
[চ.’०১; ঢ.'०৫,’०৭]
$\frac{d}{d x}(\sqrt{\sin \sqrt{x}})$

$$
\begin{aligned}
& =\frac{d(\sqrt{\sin \sqrt{x}})}{d(\sin \sqrt{x})} \frac{d(\sin \sqrt{x})}{d(\sqrt{x})} \frac{d(\sqrt{x})}{d x} \\
& =\frac{1}{2 \sqrt{\sin \sqrt{x}}} \cos \sqrt{x} \cdot \frac{1}{2 \sqrt{x}} \\
& =\frac{\cos \sqrt{x}}{4 \sqrt{x} \sqrt{\sin \sqrt{x}}} \text { (Ans.) }
\end{aligned}
$$

$5(\mathrm{~d}) \cos (\ln x)+\ln (\tan x)$
[ব.'o৩; সि.'o৬]

$$
\begin{aligned}
\frac{d}{d x} & \{\cos (\ln x)+\ln (\tan x)\} \\
& =\frac{d}{d x}\{\cos (\ln x)\}+\frac{d}{d x}\{\ln (\tan x)\} \\
& =-\sin (\ln x) \cdot \frac{1}{x}+\frac{1}{\tan x} \cdot \sec ^{2} x \\
& =-\frac{1}{x} \sin (\ln x)+\frac{\cos x}{\sin x} \frac{1}{\cos ^{2} x}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{2 \sin x \cos x}-\frac{1}{x} \sin (\ln x) \\
& =2 \operatorname{cesec} 2 x-\frac{1}{x} \sin (\ln x)
\end{aligned}
$$

5(e) $2 \operatorname{cosec} 2 x \cos (\ln \tan x)$ [রা.'০৬] $\frac{d}{d x}\{2 \operatorname{cosec} 2 x \cos (\ln \tan x)\}$ $=2\left[\operatorname{cosec} 2 x \frac{d}{d x}\{\cos (\ln \tan x)\}+\right.$ $\left.\cos (\ln \tan x) \frac{d}{d x}(\operatorname{cosec} 2 x)\right]$
$=2\left[\operatorname{cosec} 2 x\{-\sin (\ln \tan x)\} \cdot \frac{1}{\tan x}\right.$. $\left.\sec ^{2} x+\cos (\ln \tan x)(-\operatorname{cosec} 2 x \cot 2 x . .2)\right]$
$=2[-\operatorname{cosec} 2 x \quad \sin (\ln \tan x)\} \cdot \frac{\cos x}{\sin x}$.
$\left.\frac{1}{\cos ^{2} x}-2 \operatorname{cosec} 2 x \cot 2 x \cos (\ln \tan x)\right]$
$=2[-\operatorname{cosec} 2 x \sin (\ln \tan x)\} \frac{2}{2 \sin x \cos x}$
$-2 \operatorname{cosec} 2 x \cot 2 x \cos (\ln \tan x)]$
$=-4\left[\operatorname{cosec}^{2} 2 x \sin (\ln \tan x)\right\}$
$+\operatorname{cosec} 2 x \cot 2 x \cos (\ln \tan x)]$
5(f) $\frac{d}{d x}\{1+\tan (1+\sqrt{x})\}^{1 / 3}$
$=\frac{1}{3}\{1+\tan (1+\sqrt{x})\}^{\frac{1}{3}-1}\left\{0+\sec ^{2}(1+\sqrt{x})\right\}$

$$
\begin{aligned}
&\left(0+\frac{1}{2 \sqrt{x}}\right) \\
&= \frac{1}{6 \sqrt{x}}\{1+\tan (1+\sqrt{x})\}^{-\frac{2}{3}} \sec ^{2}(1+\sqrt{x}) \\
& \mathbf{5}(\mathrm{g}) \frac{d}{d x}\left(\sqrt{\tan e^{x^{2}}}\right) \\
&= \frac{d\left(\sqrt{\tan e^{x^{2}}}\right)}{d\left(\tan e^{x^{2}}\right)} \frac{d\left(\tan e^{x^{2}}\right)}{d\left(e^{x^{2}}\right)} \frac{d\left(e^{x^{2}}\right)}{d\left(x^{2}\right)} \frac{d\left(x^{2}\right)}{d x}
\end{aligned}
$$

$=\frac{1}{2 \sqrt{\tan e^{x^{2}}}} \sec ^{2} e^{x} \cdot e^{x} \cdot 2 x=\frac{x e^{x} \sec ^{2} e^{x}}{\sqrt{\tan e^{x}}}$
5(h) $\frac{d}{d x}\left\{\sin ^{2} \log (\sec x)\right\}$
[गि.'১২]
$=2 \sin \{\log (\sec x)\} \cdot \cos \{\log (\sec x)\} \times$ $\frac{d}{d x}\{\log (\sec x)\}$
$=\sin \{2 \log (\sec x)\} \times \frac{1}{\sec x \ln 10} \frac{d}{d x}(\sec x)$
$=\frac{\sin \{2 \log (\sec x)\}}{\sec x \ln 10} \sec x . \tan x$
$=\frac{\sin \{2 \log (\sec x)\} \cdot \tan x}{\ln 10}$
5(i) $\frac{d}{d x}(\sin \sqrt{x})$
$=\cos \sqrt{x} \frac{d}{d x}(\sqrt{x})$
$=\cos \sqrt{x} \cdot \frac{1}{2 \sqrt{x}}=\frac{\cos \sqrt{x}}{2 \sqrt{x}}$
6.(a) ধরি, $\mathrm{y}=x^{2} \sqrt{\frac{1+x}{1-x}}$
[রা.’০১]
$\therefore \ln \mathrm{y}=2 \ln \mathrm{x}+\frac{1}{2}[\ln (1+\mathrm{x})-\ln (1-\mathrm{x})]$
ইহাকে এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\frac{1}{y} \frac{d y}{d x}=2 \cdot \frac{1}{x}+\frac{1}{2}\left[\frac{1}{1+x}-\frac{1}{1-x}(-1)\right]
$$

$$
\Rightarrow \frac{d y}{d x}=y\left[\frac{2}{x}+\frac{1}{2}\left\{\frac{1-x+1+x}{(1+x)(1-x)}\right\}\right]
$$

$$
\Rightarrow \frac{d y}{d x}=x^{2} \frac{\sqrt{1+x}}{\sqrt{1-x}}\left[\frac{2}{x}+\frac{1}{2}\left\{\frac{1-x+1+x}{(1+x)(1-x)}\right\}\right]
$$

$$
=2 x \sqrt{\frac{1+x}{1-x}}+\frac{x^{2}}{\sqrt{(1+x)}(1-x)^{3 / 2}}
$$

6(b) $\sqrt{e^{\sqrt{x}}}$
[દ̌.'০৪; ঢ.'’০৬,'০১; য.'১৩]

$$
\begin{aligned}
\frac{d}{d x} & \left(\sqrt{e^{\sqrt{x}}}\right)=\frac{1}{2 \sqrt{e^{\sqrt{x}}}} \frac{d}{d x}\left(e^{\sqrt{x}}\right) . \\
& =\frac{1}{2 \sqrt{e^{\sqrt{x}}}} e^{\sqrt{x}} \frac{d}{d x}(\sqrt{x}) \\
& =\frac{\left(e^{\sqrt{x}}\right)^{1-\frac{1}{2}}}{2} \cdot \frac{1}{2 \sqrt{x}}=\frac{\sqrt{e^{\sqrt{x}}}}{4 \sqrt{x}} \text { (Ans.) }
\end{aligned}
$$

6.(c) $\frac{1}{\sqrt{x+1}+\sqrt{x+2}}$

$$
=\frac{\sqrt{x+1}-\sqrt{x+2}}{(\sqrt{x+1}+\sqrt{x+2})(\sqrt{x+1}-\sqrt{x+2})}
$$

$$
=\frac{\sqrt{x+1}-\sqrt{x+2}}{x+1-x-2}=\sqrt{x+2}-\sqrt{x+1}
$$

$$
\begin{aligned}
& \therefore \frac{d}{d x}\left(\frac{1}{\sqrt{x+1}+\sqrt{x+2}}\right)=\frac{1}{2 \sqrt{x+2}}-\frac{1}{2 \sqrt{x+1}} \\
& \quad=-\frac{\sqrt{x+2}-\sqrt{x+1}}{2 \sqrt{(x+2)(x+1)}} \text { (Ans.) }
\end{aligned}
$$

$$
\text { 6(d) } \frac{d}{d x}\left\{\frac{(x+1)^{2} \sqrt{x-1}}{(x+4)^{3} e^{x}}\right\}
$$

$$
=\frac{(x+1)^{2} \sqrt{x-1}}{(x+4)^{3} e^{x}}\left[\frac{1}{(x+1)_{s}^{2}} \frac{d}{d x}(x+1)^{2}+\right.
$$

$$
\frac{1}{\sqrt{x-1}} \frac{d}{d x}(\sqrt{x-1})-\frac{1}{(x+4)^{3}} \frac{d}{d x}(x+4)^{3}
$$

$$
\left.-\frac{1}{e^{x}} \frac{d}{d x}\left(e^{x}\right)\right]
$$

$$
=\frac{(x+1)^{2} \sqrt{x-1}}{(x+4)^{3} e^{x}}\left[\frac{2(x+1)}{(x+1)^{2}}+\right.
$$

$$
\left.\frac{1}{\sqrt{x-1}} \frac{1}{2 \sqrt{x-1}}-\frac{3(x+4)^{2}}{(x+4)^{3}}-\frac{1}{e^{x}}\left(e^{x}\right)\right]
$$

$$
=\frac{(x+1)^{2} \sqrt{x-1}}{(x+4)^{3} e^{x}}\left[\frac{2}{x+1}+\frac{1}{2(x-1)}-\frac{3}{x+4}-1\right]
$$

7.(a) $\frac{\ln (\cos x)}{x}$ [ঢा.’০৬; সি.’০৭;’০১,'১১; ব. '১০] $\frac{d}{d x}\left\{\frac{\ln (\cos x)}{x}\right\}$
$=\frac{x \frac{d}{d x}\left\{\ln (\cos x)-\ln (\cos x) \frac{d}{d x}(x)\right.}{x^{2}}$
$=\frac{x \frac{1}{\cos x}(-\sin x)-\ln (\cos x) \cdot 1}{x^{2}}$
$=\frac{\{x \tan x+\ln (\cos x)}{x^{2}}$
7(b) ধরি, $\mathrm{y}=\frac{e^{-3 x}(3 x+5)}{7 x-1}$
[य.'०৫]
$\ln y=\ln e^{-3 x}+\ln (3 x+5)-\ln (7 x-1)$

$$
=-3 x+\ln (3 x+5)-\ln (7 x-1)
$$

ইহাকে এর সাপেক্ষে অন্তরীকরণ করে পাই,
$\frac{1}{y} \frac{d y}{d x}=-3+\frac{1}{3 x+5}(3)-\frac{1}{7 x-1}(7)$
$=\frac{-3\left(21 x^{2}+32 x-5\right)+21 x-3-21 x-35}{(3 x+5)(7 x-1)}$
$\Rightarrow \frac{d y}{d x}=\mathrm{y} \frac{-63 x^{2}-96 x+15-38}{(3 x+5)(7 x-1)}$
$\Rightarrow \frac{d y}{d x}=\frac{e^{-3 x}(3 x+5)}{7 x-1} \cdot \frac{-\left(63 x^{2}+96 x+23\right)}{(3 x+5)(7 x-1)}$

$$
=\frac{-\left(63 x^{2}+96 x+23\right) e^{-3 x}}{(7 x-1)^{2}}
$$

7. (c) $\frac{x^{4}}{\ln x}$
[ঢা:'08]
$\frac{d}{d x}\left(\frac{x^{4}}{\ln x}\right)=\frac{\ln x \frac{d}{d x}\left(x^{4}\right)-x^{4} \frac{d}{d x}(\ln x)}{(\ln x)^{2}}$

$$
=\frac{\ln x\left(4 x^{3}\right)-x^{4} \frac{1}{x}}{(\ln x)^{2}}=\frac{x^{3}(4 \ln x-1)}{(\ln x)^{2}}
$$

8. (a) $\cos x^{\circ}$
[রা.'०8]
$\cos x^{\circ}=\cos \frac{\pi x}{180}$

$$
\begin{aligned}
& \frac{d}{d x}\left(\cos x^{\circ}\right)=-\sin \frac{\pi x}{180} \cdot \frac{d}{d x}\left(\frac{\pi x}{180}\right) \\
& =-\sin x^{\circ} \cdot \frac{\pi}{180}=-\frac{\pi}{180} \sin x^{\circ}
\end{aligned}
$$

8(b) $\mathrm{e}^{5 x} \sin x^{\circ}$
[সि.'০২]
$=\mathrm{e}^{5 x} \sin \frac{\pi x}{180}$
$\frac{d}{d x}\left(\mathrm{e}^{5 x} \sin \frac{\pi x}{180}\right)=\mathrm{e}^{5 x} \cdot \cos \frac{\pi x}{180}$
$\frac{d}{d x}\left(\frac{\pi x}{180}\right)+\sin \frac{\pi x}{180} \cdot \mathrm{e}^{5 x} \frac{d}{d x}(5 x)$
$=\mathrm{e}^{5 x} \cdot \cos x^{\circ} \cdot\left(\frac{\pi}{180}\right)+\sin x^{\circ} \cdot \mathrm{e}^{5 \cdot x} \cdot 5$
$=\mathrm{e}^{5 x}\left(\frac{\pi}{180} \cos x^{\circ}+5 \sin x^{\circ}\right)$
8(c) $2 x^{\circ} \cos 3 x^{\circ} \quad$ [চ.'০৩; য.'০৫; ङ.'১০,'১৩;
সি. '০৬,'০৮,'১১; ব. , রা.'০৭,'১8; দি.'০৯,'১১]
$2 x^{\circ} \cos 3 x^{\circ}=2 \frac{\pi x}{180} \cos \frac{3 \pi x}{180}$

$$
\begin{aligned}
& \frac{d}{d x}\left(2 x^{\circ} \cos 3 x^{\circ}\right)=\frac{\pi}{90}\left[x\left(-\sin \frac{3 \pi x}{180}\right) .\right. \\
& \left.\frac{d}{d x}\left(\frac{3 \pi x}{180}\right)+\cos \frac{3 \pi x}{180} \frac{d}{d x}(x)\right] \\
= & \frac{\pi}{90}\left[x\left(-\sin 3 x^{\circ}\right) \cdot\left(\frac{3 \pi}{180}\right)+\cos 3 x^{\circ} \cdot 1\right] \\
= & \frac{\pi}{90}\left(\cos 3 x^{\circ}-\frac{\pi}{60} x \sin 3 x^{\circ}\right)
\end{aligned}
$$

প্রশ্নমানা IX F

$$
\begin{aligned}
& \text { 1. (a) } \sqrt{\sin ^{-1} x^{5}} \\
& \text { [র.'08, '১৬] } \\
& \frac{d}{d x}\left(\sqrt{\sin ^{-1} x^{5}}\right)=\frac{1}{2 \sqrt{\sin ^{-1} x^{5}}} \frac{d}{d x}\left(\sin ^{-1} x^{5}\right) \\
& =\frac{1}{2 \sqrt{\sin ^{-1} x^{5}}} \frac{1}{\sqrt{1-\left(x^{5}\right)^{2}}} \frac{d}{d x}\left(x^{5}\right) \\
& =\frac{1}{2 \sqrt{\sin ^{-1} x^{5}} \sqrt{1-x^{10}}}\left(5 x^{4}\right) \\
& =\frac{5 x^{4}}{2 \sqrt{\sin ^{-1} x^{5}} \sqrt{1-x^{10}}}
\end{aligned}
$$

$\frac{d}{d x}\left\{\tan ^{-1}\left(\sin e^{x}\right)\right\}=\frac{d\left\{\tan ^{-1}\left(\sin e^{x}\right)\right\}}{d\left(\sin e^{x}\right)}$

৩৫১

$$
\begin{align*}
& \frac{d\left(\sin e^{x}\right)}{d\left(e^{x}\right)} \frac{d\left(e^{x}\right)}{d x} \\
& =\frac{1}{1+\left(\sin e^{x}\right)^{2}}\left(\cos e^{x}\right) \cdot e^{x}=\frac{e^{x} \cos e^{x}}{1+\sin ^{2} e^{x}} \\
& \mathbf{1 (c)} \sin ^{-1}\left(\sin \mathrm{e}^{x}\right)=e^{x} \tag{চ.’o8}\\
& \frac{d}{d x}\left\{\sin ^{-1}\left(\sin \mathrm{e}^{x}\right)\right\}=\frac{d}{d x}\left(e^{x}\right)=e^{x} \\
& \begin{array}{l}
\text { 1(d) } \frac{d}{d x}\left(\sin ^{-1} \sqrt{x e^{x}}\right) \\
\quad=\frac{1}{\sqrt{1-\left(\sqrt{x e^{x}}\right)^{2}}} \frac{d}{d x}\left(\sqrt{x e^{x}}\right) \\
\quad=\frac{1}{\sqrt{1-x e^{x}} \frac{1}{2 \sqrt{x e^{x}}}} \frac{d}{d x}\left(x e^{x}\right) \\
\quad=\frac{1}{2 \sqrt{x e^{x}\left(1-x e^{x}\right)}}\left(x e^{x}+e^{x}\right) \\
=\frac{e^{x}(1+x)}{2 \sqrt{x e^{x}\left(1-x e^{x}\right)}} \text { (Ans.) }
\end{array} .
\end{align*}
$$

1(e) $\boldsymbol{\operatorname { s i n }}^{-1}\left(\boldsymbol{\operatorname { t a n }}^{-1} x\right)$
[भि.'os]
$\frac{d}{d x}\left\{\sin ^{-1}\left(\tan ^{-1} x\right)\right\}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{1-\left(\tan ^{-1} x\right)^{2}}} \cdot \frac{d}{d x}\left(\tan ^{-1} x\right) \\
& =\frac{1}{\sqrt{1-\left(\tan ^{-1} x\right)^{2}}} \frac{1}{1+x^{2}} \\
& =\frac{1}{\left(1+x^{2}\right) \sqrt{1-\left(\tan ^{-1} x\right)^{2}}}
\end{aligned}
$$

1(f) $\frac{d}{d x}\left\{\tan ^{-1}\left(\sqrt{\frac{a-b}{a+b}} \tan \frac{x}{2}\right)\right\}$
$=\frac{1}{1+\frac{a-b}{a+b} \tan ^{2} \frac{x}{2}} \sqrt{\frac{a-b}{a+b}} \cdot \frac{d}{d x}\left(\tan \frac{x}{2}\right)$

$$
\begin{aligned}
& =\frac{\frac{1}{1+\frac{(a-b) \sin ^{2}(x / 2)}{(a+b) \cos ^{2}(x / 2)}} \sqrt{\frac{a-b}{a+b}} \sec ^{2} \frac{x}{2} \cdot \frac{1}{2}}{=\frac{(a+b) \cos ^{2}(x / 2)}{a\left(\cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}\right)+b\left(\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right)}} \\
& \cdot \frac{1}{2} \frac{\sqrt{a-b}}{\sqrt{a+b}} \frac{1}{\cos ^{2}(x / 2)} \\
& =\frac{\sqrt{(a-b)(a+b)}}{2(a+b \cos x)}=\frac{\sqrt{a^{2}-b^{2}}}{2(a+b \cos x)} \\
& \text { 1.(g) } \frac{d}{d x}\left\{\sin ^{-1}\left(\frac{a+b \cos x}{b+a \cos x}\right)\right\} \\
& =\frac{1}{\sqrt{1-\left(\frac{a+b \cos x}{b+a \cos x}\right)^{2}}}
\end{aligned}
$$

$$
\frac{(b+a \cos x)(-b \sin x)-(a+b \cos x)(-a \sin x)}{(b+a \cos x)^{2}}
$$

$$
b+a \cos x
$$

$$
=\frac{b+a \cos x}{\sqrt{(b+a \cos x)^{2}-(a+b \cos x)^{2}}}
$$

$$
\frac{\left(-b^{2}+a^{2}\right) \sin x}{(b+a \cos x)^{2}}
$$

$$
=\frac{\left(a^{2}-b^{2}\right) \sin x}{(b+a \cos x) \sqrt{b^{2}+a^{2} \cos ^{2} x-a^{2}-b^{2} \cos ^{2} x}}
$$

$$
=\frac{-\left(b^{2}-a^{2}\right) \sin x}{(b+a \cos x) \sqrt{\left(b^{2}-a^{2}\right)\left(1-\cos ^{2} x\right)}}
$$

$$
=\frac{-\left(b^{2}-a^{2}\right) \sin x}{(b+a \cos x) \sqrt{\left(b^{2}-a^{2}\right) \sin ^{2} x}}
$$

$$
=\frac{-\sqrt{b^{2}-a^{2}}}{b+a \cos x}
$$

1(h) ধরি, $y=\sec ^{-1}\left(\frac{x^{2}+1}{x^{2}-1}\right)=-\sec ^{-1} \frac{1+x^{2}}{1-x^{2}}$

$$
\begin{aligned}
& =-\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}=-2 \tan ^{-1} x \\
& \frac{d y}{d x}=-2 \frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{-2}{1+x^{2}}
\end{aligned}
$$

2. (a) $x \sin ^{-1} x$
[Fि.'os]
$\frac{d}{d x}\left(x \sin ^{-1} x\right)=x \frac{d}{d x}\left(\sin ^{-1} x\right)+\sin ^{-1} x \frac{d}{d x}(x)$
$=x \frac{1}{\sqrt{1-x^{2}}}+\sin ^{-1} x .1$
$=\frac{x}{\sqrt{1-x^{2}}}+\sin ^{-1} x$
2(b) $x^{2} \sin ^{-1}(1-x)$ [রা.'০৬; ব.'০৮; ঢা.’’8]
$\frac{d}{d x}\left\{x^{2} \sin ^{-1}(1-x)\right\}$
$=x^{2} \frac{d}{d x}\left\{\sin ^{-1}(1-x)\right\}+\sin ^{-1}(1-x) \frac{d}{d x}\left(x^{2}\right)$
$=x^{2} \frac{1}{\sqrt{1-(1-x)^{2}}}(-1)+\sin ^{-1}(1-x) \cdot 2 x$
$=-\frac{x^{2}}{\sqrt{1-1+2 x-x^{2}}}+2 x \sin ^{-1}(1-x)$
$=2 x \sin ^{-1}(1-x)-\frac{x^{2}}{\sqrt{2 x-x^{2}}}$
2(c) $\frac{d}{d x}\left\{\mathrm{e}^{x} \sin ^{-1} x\right\}$
[य.'०8]
$=\mathrm{e}^{x} \frac{d}{d x}\left(\sin ^{-1} x\right)+\sin ^{-1} x \frac{d}{d x}\left(\mathrm{e}^{x}\right)$
$=\mathrm{e}^{x} \frac{1}{\sqrt{1-x^{2}}}+\sin ^{-1} x . \mathrm{e}^{x}$
$=\mathrm{e}^{x}\left(\frac{1}{\sqrt{1-x^{2}}}+\sin ^{-1} x\right)$
2.(d) $\tan ^{-1}\left(\frac{x^{2}}{e^{x}}\right)+\tan ^{-1}\left(\frac{e^{x}}{x^{2}}\right)$
$=\tan ^{-1} \frac{\frac{x^{2}}{e^{x}}+\frac{e^{x}}{x^{2}}}{1-\frac{x^{2}}{e^{x}} \cdot \frac{e^{x}}{x^{2}}}=\tan ^{-1} \frac{\frac{x^{2}}{e^{x}}+\frac{e^{x}}{x^{2}}}{1-1}$
$=\cot ^{-1} \frac{1-1}{\frac{x^{2}}{e^{x}}+\frac{e^{x}}{x^{2}}}=\cot ^{-1} 0=\frac{\pi}{2}$
$\therefore \frac{d}{d x}\left\{\tan ^{-1}\left(\frac{x^{2}}{e^{x}}\right)+\tan ^{-1}\left(\frac{e^{x}}{x^{2}}\right)\right\}=\frac{d}{d x}\left(\frac{\pi}{2}\right)=0$
2(c) $\frac{d}{d x}\left(\tan x \sin ^{-1} x\right)$
[ঢा.’৫]
$=\tan x \frac{d}{d x}\left(\sin ^{-1} x\right)+\sin ^{-1} x \frac{d}{d x}(\tan x)$
$=\tan x \frac{1}{\sqrt{1-x^{2}}}+\sin ^{-1} x \cdot\left(\sec ^{2} x\right)$
$=\frac{\tan x}{\sqrt{1-x^{2}}}+\sec ^{2} x \sin ^{-1} x$.
2(f) $\left(x^{2}+1\right) \tan ^{-1} x-x$ [ঢा., য.' '১১; दू., फि.'১২] মনে করি, $\mathrm{y}=\left(x^{2}+1\right) \tan ^{-1} x-x$

$$
\begin{aligned}
& \frac{d y}{d x}=\left(x^{2}+1\right) \frac{d}{d x}\left(\tan ^{-1} x\right)+ \\
& \tan ^{-1} x \frac{d}{d x}\left(x^{2}+1\right)-\frac{d}{d x}(x) \\
& =\left(x^{2}+1\right) \frac{1}{1+x^{2}}+\tan ^{-1} x \times(2 x)-1 \\
& =1+2 x \tan ^{-1} x-1 \\
& \frac{d}{d x}\left\{\left(x^{2}+1\right) \tan ^{-1} x-x\right\}=2 x \tan ^{-1} x
\end{aligned}
$$

3.(a) $\tan ^{-1} \frac{1-x}{1+x}$
[\$ू.’○ט]
$=\tan ^{-1} \frac{1-x}{1+1 \cdot x}=\tan ^{-1}(1)-\tan ^{-1} x$
$=\frac{\pi}{4}-\tan ^{-1} x$
$\frac{d}{d x}\left(\tan ^{-1} \frac{1-x}{1+x}\right)=\frac{d}{d x}\left(\frac{\pi}{4}-\tan ^{-1} x\right)$
$=0-\frac{1}{1+x^{2}}=-\frac{1}{1+x^{2}}$ (Ans.)
3(b) $\cot ^{-1} \frac{1-x}{1+x}$
[চ.'০১,’১০; য.'০৫]

$$
\begin{aligned}
& =\tan ^{-1} \frac{1+x}{1-x}=\tan ^{-1} \frac{1+x}{1-1 \cdot x} \\
& =\tan ^{-1}(1)+\tan ^{-1} x=\frac{\pi}{4}+\tan ^{-1} x \\
& \therefore \frac{d}{d x}\left\{\cot ^{-1} \frac{1-x}{1+x}\right\}=\frac{d}{d x}\left(\frac{\pi}{4}+\tan ^{-1} x\right) \\
& \quad=0+\frac{1}{1+x^{2}}=\frac{1}{1+x^{2}}
\end{aligned}
$$

$$
3(c) \tan ^{-1} \frac{1-\sqrt{x}}{1+\sqrt{x}}
$$

[दू.'oo]

$$
=\tan ^{-1} \frac{1-\sqrt{x}}{1+1 \cdot \sqrt{x}}=\tan ^{-1}(1)-\tan ^{-1} \sqrt{x}
$$

$$
=\frac{\pi}{4}-\tan ^{-1} \sqrt{x}
$$

$$
\frac{d}{d x}\left\{\tan ^{-1} \frac{1-\sqrt{x}}{1+\sqrt{x}}\right\}=\frac{d}{d x}\left(\frac{\pi}{4}-\tan ^{-1} \sqrt{x}\right)
$$

$$
=0-\frac{1}{1+(\sqrt{x})^{2}} \frac{d}{d x}(\sqrt{x})
$$

$$
=-\frac{1}{1+x} \cdot \frac{1}{2 \sqrt{x}}=-\frac{1}{2 \sqrt{x}(1+x)}
$$

3(d) $\tan ^{-1} \frac{a+b x}{a-b x}$ [य.'o২,'১১; ঢা.'o১,'১১; ব.'o১;

$$
\begin{aligned}
& =\tan ^{-1} \frac{a\left(1+\frac{b}{a} x\right)}{a\left(1-\frac{b}{a} x\right)}=\tan ^{-1} \frac{1+\frac{b}{a} x}{1-1 \cdot \frac{b}{a} x} \\
& =\tan ^{-1}(1)-\tan ^{-1}\left(\frac{b}{a} x\right)=\frac{\pi}{4}-\tan ^{-1}\left(\frac{b}{a} x\right) \\
& \therefore \frac{d}{d x}\left\{\tan ^{-1} \frac{a+b x}{a-b x}\right\}=\frac{d}{d x}\left\{\frac{\pi}{4}-\tan ^{-1}\left(\frac{b}{a} x\right)\right\} \\
& \quad=0-\frac{1}{1+\left(\frac{b}{a} x\right)^{2}} \frac{d}{d x}\left(\frac{b}{a} x\right) \\
& \quad=\frac{a^{2}}{a^{2}+b^{2} x^{2}}: \frac{b}{a}=\frac{a b}{a^{2}+b^{2} x^{2}}
\end{aligned}
$$

3(e) $\tan ^{-1} \frac{a \cos x-b \sin x}{b \cos x+a \sin x}$
[প्र.屯.ף. '১৬]
$=\tan ^{-1} \frac{\frac{a \cos x}{b \cos x}-\frac{b \sin x}{b \cos x}}{\frac{b \cos x}{b \cos x}+\frac{a \sin x}{b \cos x}}=\tan ^{-1} \frac{\frac{a}{b}-\tan x}{1+\frac{a}{b} \cdot \tan x}$
$=\tan ^{-1} \frac{a_{4}}{b}-\tan ^{-1} \tan x=\tan ^{-1} \frac{a}{b}-x$

$$
\frac{d}{d x}\left\{\tan ^{-1} \frac{a \cos x-b \sin x}{b \cos x+a \sin x}\right\}=0-1=-1
$$

3(f) $\cot ^{-1} \frac{1+x}{1-x} \quad$ [כ. '০৬; সि. '०8; রা. य. ०৭]
$=\tan ^{-1} \frac{1-x}{1+x}=\tan ^{-1} \frac{1-x}{1+1 \cdot x}$
$=\tan ^{-1}(1)-\tan ^{-1} x=\frac{\pi}{4}-\tan ^{-1} x$
$\frac{d}{d x}\left\{\cot ^{-1} \frac{1+x}{1-x}\right\}=\frac{d}{d x}\left(\frac{\pi}{4}-\tan ^{-1} x\right)$
$=0-\frac{1}{1+x^{2}}=-\frac{1}{1+x^{2}}(($ Ans. $)$
3(g) ধরি, $\mathrm{y}=\cos ^{-1}\left(\frac{1+x}{2}\right)^{1 / 2}$
[চ.’os]
এবং $x=\cos \theta$. তাহলে, $\theta=\cos ^{-1} x$ এবং

$$
\begin{aligned}
y=\cos ^{-1}\left\{\frac{1}{2}(1+\cos \theta)\right\}^{1 / 2} & =\cos ^{-1}\left(\cos ^{2} \frac{\theta}{2}\right)^{1 / 2} \\
=\cos ^{-1} \cos \frac{\theta}{2}=\frac{\theta}{2} & =\frac{1}{2} \cos ^{-1} x \\
\frac{d}{d x}\left\{\cos ^{-1}\left(\frac{1+x}{2}\right)^{1 / 2}\right\} & =\frac{d}{d x}\left(\frac{1}{2} \cos ^{-1} x\right) \\
& =\frac{1}{-2 \sqrt{1-x^{2}}}
\end{aligned}
$$

3(h) $\tan ^{-1} \frac{a+b x}{b-a x}$
[ব.'১৩; বুয়েv.'০৯]
$=\tan ^{-1} \frac{b\left(\frac{a}{b}+x\right)}{b\left(1-\frac{a}{b} \cdot x\right)}=\tan ^{-1}\left(\frac{a}{b}\right)+\tan ^{-1}(x)$
$\frac{d}{d x}\left\{\tan ^{-1} \frac{a+b x}{b-a x}\right\}=\frac{d}{d x}\left\{\tan ^{-1}\left(\frac{a}{b}\right)\right\}+$ $\frac{d}{d x}\left\{\tan ^{-1}(x)\right\}$

$$
=0+\frac{1}{1+x^{2}}=\frac{1}{1+x^{2}}
$$

4.(a) ধরি, $y=\sin ^{-1} \frac{1-x^{2}}{1+x^{2}} \quad$ [य.'০২,'১২,’১8]

এবৃ $x=\tan \theta$. ঢাহলে, $\theta=\tan ^{-1} x$ এবए

$$
\begin{aligned}
y= & \sin ^{-1} \frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\sin ^{-1} \cos 2 \theta \\
& =\sin ^{-1} \sin \left(\frac{\pi}{2}-2 \theta\right)=\frac{\pi}{2}-2 \theta \\
& =\frac{\pi}{2}-2 \tan ^{-1} x \\
& \frac{d y}{d x}=\frac{d}{d x}\left(\frac{\pi}{2}-2 \tan ^{-1} x\right)=0-2 \frac{1}{1+x^{2}} \\
& \frac{d}{d x}\left(\sin ^{-1} \frac{1-x^{2}}{1+x^{2}}\right)=\frac{-2}{1+x^{2}}
\end{aligned}
$$

4(b) $\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}=2 \tan ^{-1} x \quad$ [य.'০৬; চ.'○৭]

$$
\begin{aligned}
& \frac{d}{d x}\left(\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}\right)=\frac{d}{d x}\left(2 \tan ^{-1} x\right) \\
& =2 \frac{1}{1+x^{2}}=\frac{2}{1+x^{2}} \text { (Ans.) }
\end{aligned}
$$

4(c) $\sec ^{-1} \frac{1+x^{2}}{1-x^{2}} \quad$ [य.'০৬; «. ০d; Fि. 'J০]

$$
\begin{aligned}
= & \cos ^{-1} \frac{1-x^{2}}{1+x^{2}}=2 \tan ^{-1} x \\
& \frac{d}{d x}\left(\sec ^{-1} \frac{1+x^{2}}{1-x^{2}}\right)=\frac{d}{d x}\left(2 \tan ^{-1} x\right) \\
& =2 \frac{1}{1+x^{2}}=\frac{2}{1+x^{2}} \text { (Ans.) }
\end{aligned}
$$

4(d) $\tan ^{-1} \frac{4 x}{1-4 x^{2}}$
[4.'०8]

$$
=\tan ^{-1} \frac{2.2 x}{1-(2 x)^{2}}=2 \tan ^{-1}(2 x)
$$

$$
\left[\tan ^{-1} \frac{2 x}{1-x^{2}}=2 \tan ^{-1} x\right]
$$

$$
\frac{d}{d x}\left(\tan ^{-1} \frac{4 x}{1-4 x^{2}}\right)=\frac{d}{d x}\left\{2 \tan ^{-1}(2 x)\right\}
$$

$$
=2 \frac{1}{1+(2 x)^{2}} \cdot 2=\frac{4}{1+4 x^{2}} \text { (Ans.) }
$$

4(e) $\tan ^{-1} \frac{4 \sqrt{x}}{1-4 x}$
[চ.'০১; রা.'০৬; সি.'০১, '১২; ব.'১১; मि.'১৩]
$=\tan ^{-1} \frac{2.2 \sqrt{x}}{1-(2 \sqrt{x})^{2}}=2 \tan ^{-1}(2 \sqrt{x})$

$$
\left[\because \tan ^{-1} \frac{2 x}{1-x^{2}}=2 \tan ^{-1} x\right]
$$

$$
\frac{d}{d x}\left(\tan ^{-1} \frac{4 \sqrt{x}}{1-4 x}\right)=\frac{d}{d x}\left\{2 \tan ^{-1}(2 \sqrt{x})\right\}
$$

$$
=2 \frac{1}{1+(2 \sqrt{x})^{2}} \frac{d}{d x}(2 \sqrt{x})
$$

$$
=\frac{2}{1+4 x} \cdot 2 \cdot \frac{1}{2 \sqrt{x}}=\frac{2}{\sqrt{x}(1+4 x)} \text { (Ans.) }
$$

$$
\begin{aligned}
& \text { 4(f) } \sin ^{-1} \frac{4 x}{1+4 x^{2}} \\
& =\sin ^{-1} \frac{2.2 x}{1+(2 x)^{2}}=2 \tan ^{-1}(2 x) . \\
& \frac{d}{d x}\left(\sin ^{-1} \frac{4 x}{1+4 x^{2}}\right)=\frac{d}{d x}\left\{2 \tan ^{-1}(2 x)\right\} \\
& =2 \frac{1}{1+(2 x)^{2}} \frac{d}{d x}(2 x)=\frac{4}{1+4 x^{2}} \text { (Ans.) }
\end{aligned}
$$

4(g) $\sin ^{-1} \frac{2 x}{1+x^{2}}=2 \tan ^{-1} x$

$$
\frac{d}{d x}\left(\sin ^{-1} \frac{2 x}{1+x^{2}}\right)=\frac{d}{d x}\left(2 \tan ^{-1} x\right)
$$

$$
=\frac{2}{1+x^{2}} \text { (Ans.) }
$$

4(h) $\sin ^{-1} \frac{6 x}{1+9 x^{2}}$
[ต.'o১]
$=\sin ^{-1} \frac{2.3 x}{1+(3 x)^{2}}=2 \tan ^{-1}(3 x)$

$$
\left[\because \sin ^{-1} \frac{2 x}{1+x^{2}}=2 \tan ^{-1} x\right]
$$

$$
\begin{aligned}
& \frac{d}{d x}\left(\sin ^{-1} \frac{6 x}{1+9 x^{2}}\right)=\frac{d}{d x}\left\{2 \tan ^{-1}(3 x)\right\} \\
& =2 \frac{1}{1+(3 x)^{2}} \frac{d}{d x}(3 x)=\frac{2}{1+9 x^{2}} \cdot 3 \\
& =\frac{9}{1+9 x^{2}} \text { (Ans.) }
\end{aligned}
$$

4.(i) $\tan ^{-1} \frac{2 \sqrt{x}}{1-x}$ [চ'○৬,'১১; ঢा.'○৭; সि.'১১]
$=\tan ^{-1} \cdot \frac{2 \sqrt{x}}{1-(\sqrt{x})^{2}}=2 \tan ^{-1} \sqrt{x}$

$$
\begin{aligned}
& \frac{d}{d x}\left(\tan ^{-1} \frac{2 \sqrt{x}}{1-x}\right)=\frac{d}{d x}\left\{2 \tan ^{-1}(\sqrt{x})\right\} \\
& =2 \frac{1}{1+(\sqrt{x})^{2}} \frac{d}{d x}(\sqrt{x})=\frac{2}{1+x} \frac{1}{2 \sqrt{x}} \\
& =\frac{1}{(1+x) \sqrt{x}} \text { (Ans.) }
\end{aligned}
$$

5.(a) ধরি, $\mathrm{y}=\cos ^{-1}\left(2 x \sqrt{1-x^{2}}\right\}$
[य.'০১,’১০; कू.'১০]
এবर $x=\sin \theta$. তাহলে, $\theta=\sin ^{-1} x$ এরर

$$
\begin{aligned}
& y=\cos ^{-1}\left(2 \cos \theta \sqrt{1-\cos ^{2} \theta}\right\} \\
&=\cos ^{-1}(2 \cos \theta \sin \theta)=\cos ^{-1} \sin 2 \theta \\
&=\cos ^{-1} \cos \left(\frac{\pi}{2}-2 \theta\right)=\frac{\pi}{2}-2 \theta \\
&=\frac{\pi}{2}-2 \sin ^{-1} x \\
& \frac{d y}{d x}=\frac{d}{d x}\left(\frac{\pi}{2}-2 \sin ^{-1} x\right) \\
&=0-2 \frac{1}{\sqrt{1-x^{2}}}=\frac{-2}{\sqrt{1-x^{2}}} \text { (Ans.) }
\end{aligned}
$$

5(b) ধরি, $\mathrm{y}=\sin ^{-1}\left\{2 a x \sqrt{1-a^{2} x^{2}}\right\}$ [థ.'’৮;; সি.'S৩] এবং $a x=\sin \theta$. তাহলে, $\theta=\sin ^{-1}(a x)$ এবং

$$
\begin{aligned}
y & =\sin ^{-1}\left\{2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right\} \\
& =\sin ^{-1}\{2 \sin \theta \cos \theta\}=\sin ^{-1} \sin 2 \theta \\
& =2 \theta=2 \sin ^{-1}(a x)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=2 \frac{1}{\sqrt{1-(a x)^{2}}} \frac{d}{d x}(a x) \\
& =\frac{2 a}{\sqrt{1-a^{2} x^{2}}}
\end{aligned}
$$

5(c)) ধরি, $\mathrm{y}=\tan ^{-1} \frac{4 x}{\sqrt{1-4 x^{2}}}$
[রা.’০২]
এヌर $2 x=\sin \theta$.

$$
\begin{aligned}
& y=\tan ^{-1} \frac{2 \sin \theta}{\sqrt{1-\sin ^{2} \theta}}=\tan ^{-1} \frac{2 \sin \theta}{\cos \theta} \\
& =\tan ^{-1}(2 \tan \theta) \\
& \frac{d y}{d x}=\frac{1}{1+(2 \tan \theta)^{2}} \frac{d}{d x}(2 \tan \theta) \\
& =\frac{2 \sec ^{2} \theta}{1+4 \tan ^{2} \theta}=\frac{2 / \cos ^{2} \theta}{1+\frac{4 \sin ^{2} \theta}{\cos ^{2} \theta}} \\
& =\frac{2}{\cos ^{2} \theta+4 \sin ^{2} \theta}=\frac{2}{1+3 \sin ^{2} \theta} \\
& =\frac{2}{1+3(2 x)^{2}}=\frac{2}{1+12 x^{2}}
\end{aligned}
$$

5(d) ধরি, $\mathrm{y}=\sin ^{-1} \frac{x+\sqrt{1-x^{2}}}{\sqrt{2}}$ এবৃ
$x=\sin \theta$. ठाइलে, $\theta=\sin ^{-1} x$ এबर
$\mathrm{y}=\sin ^{-1} \frac{\sin \theta+\sqrt{1-\sin ^{2} \theta}}{\sqrt{2}}$.
$=\sin ^{-1}\left(\sin \theta \cdot \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \cos \theta\right)$
$=\sin ^{-1}\left(\sin \theta \cdot \cos \frac{\pi}{4}+\sin \frac{\pi}{4} \cos \theta\right)$
$=\sin ^{-1} \sin \left(\theta+\frac{\pi}{4}\right)=\theta+\frac{\pi}{4}=\sin ^{-1} x+\frac{\pi}{4}$

$$
\frac{d y}{d x}=\frac{d}{d x}\left(\sin ^{-1} x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{1-x^{2}}} \text { (Ans.) }
$$

6.(a) ধরি, $\mathrm{y}=\tan ^{-1} \frac{1}{\sqrt{x^{2}-1}}$
[রা.'○৩]
এবং $x=\sec \theta$. তাহলে, $\theta=\sec ^{-1} x$ এবং
$y=\tan ^{-1} \frac{1}{\sqrt{\sec ^{2} \theta-1}}=\tan ^{-1} \frac{1}{\sqrt{\tan ^{2} \theta}}$
$=\tan ^{-1} \frac{1}{\tan \theta}=\tan ^{-1} \cot \theta=\tan ^{-1} \tan \left(\frac{\pi}{2}-\theta\right)=$ $\frac{\pi}{2}-\theta=\frac{\pi}{2}-\sec ^{-1} x$

$$
\frac{d y}{d x}=\frac{d}{d x}\left(\frac{\pi}{2}-\sec ^{-1} x\right)=0-\frac{1}{x \sqrt{x^{2}-1}}
$$

बनाৎ, $\frac{d}{d x}\left(\tan ^{-1} \frac{1}{\sqrt{x^{2}-1}}\right)=-\frac{1}{x \sqrt{x^{2}-1}}$
6.(b) $\tan ^{-1} \sqrt{\frac{1-x}{1+x}}$ [भि.'०৫,'०१; প্র.ভ.भ.'১০]

ধরি, $y=\tan ^{-1} \sqrt{\frac{1-x}{1+x}}$ এবং $x=\cos \theta$. তাহলে, $\theta=\cos ^{-1} x$ এবश

$$
\begin{aligned}
& y=\tan ^{-1} \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}=\tan ^{-1} \sqrt{\frac{2 \sin ^{2}(\theta / 2)}{2 \cos ^{2}(\theta / 2)}} \\
& =\tan ^{-1} \sqrt{\tan ^{2} \frac{\theta}{2}}=\tan ^{-1} \tan \frac{\theta}{2} \\
& =\frac{\theta}{2}=\frac{1}{2} \cos ^{-1} x \\
& \quad \frac{d y}{d x}=\frac{1}{2} \frac{d}{d x}\left(\cos ^{-1} x .\right)=\frac{1}{2} \frac{-1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

जब্ৰए, $\frac{d}{d x}\left(\tan ^{-1} \sqrt{\frac{1-x}{1+x}}\right)=\frac{-1}{2 \sqrt{1-x^{2}}}$
6(e) $\sin ^{4}\left(\cot ^{-1} \sqrt{\frac{1+x}{1-x}}\right)$
[বুয়েট,’০১]
ধরি, $\mathrm{y}=\sin ^{4}\left(\cot ^{-1} \sqrt{\frac{1+x}{1-x}}\right)$ এবং $x=\cos \theta$
$\mathrm{y}=\sin ^{4}\left(\cot ^{-1} \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}\right)$
$=\sin ^{4}\left(\cot ^{-1} \sqrt{\frac{2 \cos ^{2}(\theta / 2)}{2 \sin ^{2}(\theta / 2)}}\right)$
$=\sin ^{4}\left(\cot ^{-1} \cot \frac{\theta}{2}\right)=\sin ^{4} \frac{\theta}{2}=\left\{\frac{1}{2}\left(2 \sin ^{2} \frac{\theta}{2}\right)\right\}^{2}$

$$
\begin{aligned}
= & \left\{\frac{1}{2}(1-\cos \theta)\right\}^{2}=\frac{1}{4}(1-x)^{2} \\
& \frac{d y}{d x}=\frac{1}{4} \times 2(1-x) \times(-1)=-\frac{1}{2}(1-x)
\end{aligned}
$$

6(f) $\tan \left(\sin ^{-1} x\right)$ [б.'০২,'০৯;థু.'০৮,'১১; র্রা.'০৮;
ব.'০৯,’১২; ঢা.,য.,সি.’১০; ঢা.’১২; দি.'১৩]

$$
\begin{aligned}
\frac{d}{d x} & \left\{\tan \left(\sin ^{-1} x\right)\right\}=\sec ^{2}\left(\sin ^{-1} x\right) \cdot \frac{d}{d x}\left(\sin ^{-1} x\right) \\
& =\frac{1}{\cos ^{2}\left(\sin ^{-1} x\right)} \cdot \frac{1}{\sqrt{1-x^{2}}} \\
& =\frac{1}{1-\sin ^{2}\left(\sin ^{-1} x\right)} \cdot \frac{1}{\sqrt{1-x^{2}}} \\
& =\frac{1}{1-\left\{\sin ^{\left.\left(\sin ^{-1} x\right)\right\}^{2}}\right.} \cdot \frac{1}{\sqrt{1-x^{2}}} \\
& =\frac{1}{1-x^{2}} \cdot \frac{1}{\sqrt{1-x^{2}}}=\frac{1}{\left(1-x^{2}\right)^{3 / 2}} \text { (Ans.) }
\end{aligned}
$$

7.(a) $\tan ^{-1}(\sec x+\tan x)$ [मि.'১৪;य.’০৭; চ.’১৩]

$$
=\tan ^{-1}\left(\frac{1}{\cos x}+\frac{\sin x}{\cos x}\right)=\tan ^{-1}\left(\frac{1+\sin x}{\cos x}\right)
$$

$$
=\tan ^{-1} \frac{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}}{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}
$$

$$
=\tan ^{-1} \frac{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^{2}}{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)}
$$

$$
=\tan ^{-1} \frac{\cos \frac{x}{2}+\sin \frac{x}{2}}{\cos \frac{x}{2}-\sin \frac{x}{2}}
$$

$$
=\tan ^{-1} \frac{\cos \frac{x}{2}\left(1+\tan \frac{x}{2}\right)}{\cos \frac{x}{2}\left(1-\tan \frac{x}{2}\right)}=\tan ^{-1} \frac{1+\tan \frac{x}{2}}{1-\tan \frac{x}{2}}
$$

$$
=\tan ^{-1}(1)+\tan ^{-1} \tan \left(\frac{x}{2}\right)=\frac{\pi}{4}+\frac{x}{2}
$$

$$
\begin{aligned}
\therefore \frac{d}{d x}\left\{\tan ^{-1}(\sec x+\tan x)\right\} & =\frac{d}{d x}\left(\frac{\pi}{4}+\frac{x}{2}\right) \\
& =\frac{1}{2} \text { (Ans.) }
\end{aligned}
$$

7(b) $\tan ^{-1} \frac{\cos x}{1+\sin x}$
[ঢা.'০৫,'১৩]
$=\tan ^{-1} \frac{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}{\cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}}$
$=\tan ^{-1} \frac{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)}{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^{2}}$
$=\tan ^{-1} \frac{\cos \frac{x}{2}\left(1-\tan \frac{x}{2}\right)}{\cos \frac{x}{2}\left(1+\tan \frac{x}{2}\right)}=\tan ^{-1} \frac{1-\tan \frac{x}{2}}{1+\tan \frac{x}{2}}$
$=\tan ^{-1}(\mathrm{l})-\tan ^{-1} \tan \left(\frac{x}{2}\right)=\frac{\pi}{4}-\frac{x}{2}$
$\frac{d}{d x}\left(\tan ^{-1} \frac{\cos x}{1+\sin x}\right)=\frac{d}{d x}\left(\frac{\pi}{4}-\frac{x}{2}\right)$ $=0-\frac{1}{2}=-\frac{1}{2}$.

7(c) $\tan ^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}}$
[রা.'১০; কু.'১১; ব.'১২]
$=\tan ^{-1} \sqrt{\frac{2 \sin ^{2}(x / 2)}{2 \cos ^{2}(x / 2)}}=\tan ^{-1} \sqrt{\tan ^{2} \frac{x}{2}}$
$=\tan ^{-1} \tan \frac{x}{2}=\frac{x}{2}$

$$
\frac{d}{d x}\left(\tan ^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}}\right)=\frac{d}{d x}\left(\frac{x}{2}\right)=\frac{1}{2}
$$

7(d) $\sin \left(2 \tan ^{-1} \sqrt{\frac{1-x}{1+x}}\right)$
[ব.'০২; চ. '০৮; রা. '০৭,'১১; দি.'০৯,'১১] ধরি, $\mathrm{y}=\sin \left(2 \tan ^{-1} \sqrt{\frac{1-x}{1+x}}\right)$ এবং $x=\cos \theta$

$$
\begin{aligned}
& \text { তাহनে, } \theta=\cos ^{-1} x \text { এবং } \\
& y=\sin \left(2 \tan ^{-1} \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}\right) \\
& =\sin \left(2 \tan ^{-1} \sqrt{\frac{2 \sin ^{2}(\theta / 2)}{2 \cos ^{2}(\theta / 2)}}\right) \\
& =\sin \left(2 \tan ^{-1} \tan \frac{\theta}{2}\right)=\sin \left(2 \cdot \frac{\theta}{2}\right)=\sin \theta \\
& =\sin \left(\cos ^{-1} x\right)=\sin \sin ^{-1} \sqrt{1-x^{2}} \\
& =\sqrt{1-x^{2}} \\
& \therefore \frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{1-x^{2}}\right)=\frac{1}{2 \sqrt{1-x^{2}}} \cdot(-2 x) \\
& \\
& \quad \frac{d}{d x}\left\{\sin \left(2 \tan ^{-1} \sqrt{\frac{1-x}{1+x}}\right)\right\}=\frac{-x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

প্রশ্নমানা IX G

$\frac{d y}{d x}$ निণয় কর্ন \& 1. (a) $x=\sqrt{t}, y=t-\frac{1}{\sqrt{t}}$

$$
\frac{d x}{d t}=\frac{d}{d t}(\sqrt{t})=\frac{1}{2 \sqrt{t}} \text { এবং }
$$

$$
\frac{d y}{d t}=\frac{d}{d t}\left(t-\frac{1}{\sqrt{t}}\right)=\frac{d}{d t}\left(t-t^{-\frac{1}{2}}\right)
$$

$$
=1-\left(-\frac{1}{2}\right) t^{-\frac{1}{2}-1}=1+\frac{1}{2 t \sqrt{t}}
$$

$$
=\frac{1}{2 \sqrt{t}}\left(2 \sqrt{t}+\frac{1}{t}\right)
$$

$\therefore \frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}=\frac{1}{2 \sqrt{t}}\left(2 \sqrt{t}+\frac{1}{t}\right) \times \frac{2 \sqrt{t}}{1}$

$$
\begin{equation*}
=2 \sqrt{t}+\frac{1}{t} \tag{2}
\end{equation*}
$$

1.(b) $x=\frac{3 a t}{1+t^{3}} \cdots \cdots(1), y=\frac{3 a t^{2}}{1+t^{3}} \cdots$
$(2) \div(1) \Rightarrow \frac{y}{x}=t$
(1) হতে পাই, $x=\frac{3 a \frac{y}{x}}{1+\left(\frac{y}{x}\right)^{3}}=\frac{3 a y}{x} \times \frac{x^{3}}{x^{3}+y^{3}}$
$\Rightarrow x=\frac{3 a x^{2} y}{x^{3}+y^{3}} \Rightarrow x^{3}+y^{3}=3 a x y$
ইহাকে x এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
3 x^{2}+3 y^{2} \frac{d y}{d x}=3 a\left(x \frac{d y}{d x}+y\right)
$$

$\Rightarrow\left(y^{2}-a x\right) \frac{d y}{d x}=a y-x^{2} \therefore \frac{d y}{d x}=\frac{a y-x^{2}}{y^{2}-a x}$
1(c) $x=a(\cos \phi+\phi \sin \phi), y=a(\sin \phi-\phi \cos \phi)$
$\frac{d x}{d \phi}=\frac{d}{d \phi}\{a(\cos \phi+\phi \sin \phi)\}$

$$
=a(-\sin \phi+\phi \cos \phi+\sin \phi)=a \phi \cos \phi
$$

$$
\begin{aligned}
\frac{d y}{d \phi} & =\frac{d}{d \phi}\{a(\sin \phi-\phi \cos \phi)\} \\
& =a(\cos \phi+\phi \sin \phi-\cos \phi)=a \phi \sin \phi
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \phi}}{\frac{d x}{d \phi}}=\frac{a \phi \sin \phi}{a \phi \cos \phi}=\tan \phi
$$

$$
1(d) x=\sqrt{a^{\sin ^{-1} t}}, y=\sqrt{a^{\cos ^{-1} t}}
$$

$$
=\frac{1}{2 \sqrt{a^{\sin ^{-1} t}}} a^{\sin ^{-1} t} \ln a \frac{1}{\sqrt{1-t^{2}}}
$$

$$
=\frac{\ln a \sqrt{a^{\sin ^{-1} t}}}{2 \sqrt{1-t^{2}}}=\frac{x \ln a}{2 \sqrt{1-t^{2}}}
$$

$$
\frac{d y}{d t}=\frac{d}{d t}\left(\sqrt{a^{\cos ^{-1} t}}\right)
$$

$$
=\frac{1}{2 \sqrt{a^{\cos ^{-1} t}}} a^{\cos ^{-1} t} \ln a \frac{1}{-\sqrt{1-t^{2}}}
$$

$$
=-\frac{\ln a \sqrt{a^{\cos ^{-1} t}}}{2 \sqrt{1-t^{2}}}=-\frac{y \ln a}{2 \sqrt{1-t^{2}}}
$$

$$
\begin{aligned}
\therefore \frac{d y}{d x} & =\frac{d y}{d t} \times \frac{d t}{d x}=-\frac{y \ln a}{2 \sqrt{1-t^{2}}} \times \frac{2 \sqrt{1-t^{2}}}{x \ln a} \\
& =-\frac{y}{x}
\end{aligned}
$$

 $\frac{d}{d x}\left(x^{\frac{1}{x}}\right)=x^{\frac{1}{x}}\left[\frac{1}{x} \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}\left(\frac{1}{x}\right)\right]$ $\left[\quad \frac{d}{d x}\left(u^{v}\right)=u^{v}\left\{v \frac{d}{d x}(\ln u)+\ln u \frac{d v}{d x}\right\}\right]$
$=x^{\frac{1}{x}}\left[\frac{1}{x} \cdot \frac{1}{x}+\ln x \frac{d}{d x}\left(x^{-1}\right)\right]$
$=x^{\frac{1}{x}}\left[\frac{1}{x^{2}}+\ln x \cdot\left(-x^{-2}\right)\right]=x^{\frac{1}{x}}\left(\frac{1}{x^{2}}-\frac{\ln x}{x^{2}}\right)$
$=x^{\frac{1}{x}} \cdot \frac{1-\ln x}{x^{2}}=x^{\frac{1}{x}-2}(1-\ln x) \quad$ (Ans.)
2. (b) $\frac{d}{d x}(1+x)^{x}$
[ব.’১৩]

$$
=(1+x)^{x}\left[x \frac{d}{d x}\{\ln (1+x)\}+\ln (1+x) \frac{d}{d x}(x)\right]
$$

$$
\left[\because \frac{d}{d x}\left(u^{v}\right)=u^{v}\left\{v \frac{d}{d x}(\ln u)+\ln u \frac{d v}{d x}\right\}\right]
$$

$=(1+x)^{x}\left[x \frac{1}{1+x}+\ln (1+x) .1\right]$
$=(1+x)^{x}\left\{\frac{x}{1+x}+\ln (1+x)\right\}$
2(c) $\left(1+x^{2}\right)^{2 x}$
[য.'০৬]
$\frac{d}{d x}\left\{\left(1+x^{2}\right)^{2 x}\right\}=\left(1+x^{2}\right)^{2 x}$
$\left[2 x \frac{d}{d x}\left\{\ln \left(1+x^{2}\right)\right\}+\ln \left(1+x^{2}\right) \frac{d}{d x}(2 x)\right]$
$=\left(1+x^{2}\right)^{2 x}\left[\frac{2 x}{1+x^{2}}(2 x)+\ln \left(1+x^{2}\right)\right.$.
$=2\left(1+x^{2}\right)^{2 x}\left[\frac{2 x^{2}}{1+x^{2}}+\ln \left(1+x^{2}\right)\right]$
2(d) $\left(1+x^{2}\right)^{x^{2}}$
$\frac{d}{d x}\left(1+x^{2}\right)^{x^{2}}=\left(1+x^{2}\right)^{x^{2}}$

$$
\begin{aligned}
& \quad\left[x^{2} \frac{d}{d x}\left\{\ln \left(1+x^{2}\right)\right\}+\ln \left(1+x^{2}\right) \frac{d}{d x}\left(x^{2}\right)\right] \\
= & \left(1+x^{2}\right)^{x^{2}}\left[\frac{x^{2}}{1+x^{2}}(2 x)+\ln \left(1+x^{2}\right) \cdot(2 x)\right] \\
= & 2 x\left(1+x^{2}\right)^{x^{2}}\left[\frac{x^{2}}{1+x^{2}}+\ln \left(1+x^{2}\right)\right]
\end{aligned}
$$

2(e) $(\sqrt{x})^{\sqrt{x}} \quad$ [ব.'১২;চ.'১০; چૂ.'১১; প্র.ভ.প.'০৫] $\frac{d}{d x}\left\{(\sqrt{x})^{\sqrt{x}}\right\}$
$=(\sqrt{x})^{\sqrt{x}}\left[\sqrt{x} \frac{d}{d x}(\ln \sqrt{x})+\ln \sqrt{x} \frac{d}{d x}(\sqrt{x})\right]$
$=(\sqrt{x})^{\sqrt{x}}\left[\sqrt{x} \cdot \frac{1}{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}}+\ln \sqrt{x} \cdot \frac{1}{2 \sqrt{x}}\right]$
$=(\sqrt{x})^{\sqrt{x}}\left[\frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{x}} \ln \sqrt{x}\right]$
$=(\sqrt{x})^{\sqrt{x}}\left[\frac{1+\ln \sqrt{x}}{2 \sqrt{x}}\right]$ (Ans.)
2(f) ধরি, $y=x^{\ln x} \quad$ [রা.'০২; बू.'০৮; সि.’১১] $\frac{d y}{d x}=x^{\ln x}\left[\ln x \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}(\ln x)\right]$ $\left[\quad \frac{d}{d x}\left(u^{\prime \prime}\right)=u^{v}\left[v \frac{d}{d x}(\ln u)+\ln u \frac{d v}{d x}\right]\right.$
$=x^{\ln x}\left[2 \ln x \cdot \frac{1}{x}\right]=\frac{2 \ln x}{x} x^{\ln x}$
जबाৎ, $\frac{d}{d x}\left(x^{\ln x}\right)=\frac{2 \ln x}{x} x^{\ln x}$
2(g) $\frac{d}{d x}\left(\sin ^{-1} x\right)^{x}=\left(\sin ^{-1} x\right)^{x}$

$$
\left[x \frac{d}{d x}\left\{\ln \left(\sin ^{-1} x\right)\right\}+\ln \left(\sin ^{-1} x\right) \frac{d}{d x}(x)\right]
$$

$=\left(\sin ^{-1} x\right)^{x}\left[x \frac{1}{\sin ^{-1} x} \cdot \frac{1}{\sqrt{1-x^{2}}}+\ln \left(\sin ^{-1} x\right) \cdot 1\right]$
$=\left(\sin ^{-1} x\right)^{x}\left[\frac{x}{\sqrt{1-x^{2}} \sin ^{-1} x .}+\ln \left(\sin ^{-1} x\right)\right]$
2(h) $\frac{d}{d x}(\sin x)^{x}$
[य.’०9]

$$
\begin{aligned}
& =(\sin x)^{x}\left[x \frac{d}{d x}\{\ln (\sin x)\}+\ln (\sin x) \frac{d}{d x}(x)\right] \\
& =(\sin x)^{x}\left[x \frac{1}{\sin x} \cdot \cos x+\ln (\sin x) \cdot 1\right] \\
& =(\sin x)^{x}[x \cot x+\ln (\sin x)]
\end{aligned}
$$

2(i) $\frac{d}{d x}(\ln x)^{x}$
$=(\ln x)^{x}\left[x \frac{d}{d x}\{\ln (\ln x)\}+\ln (\ln x) \frac{d}{d x}(x)\right]$
$=(\ln x)^{x}\left[x \frac{1}{\ln x} \cdot \frac{1}{x}+\ln (\ln x) .1\right]$
$=(\ln x)^{x}\left[\frac{1}{\ln x}+\ln (\ln x)\right]$
2 (j) $\frac{d}{d x}(\log x)^{x}=(\log x)^{x}$

$$
\left[x \frac{d}{d x}\{\ln (\log x)\}+\ln (\log x) \frac{d}{d x}(x)\right]
$$

$=(\log x)^{x}\left[x \frac{1}{\log x} \cdot \frac{1}{x \ln 10}+\ln (\log x) \cdot 1\right]$
$=(\log x)^{x}\left[\frac{1}{\ln 10 \log x}+\ln (\log x)\right]$

'১৩; রা. '০৫, '০৭; ব.'০৬, '১০; দি.'০১; য.'১০]
$\frac{d}{d x}\left(x^{\cos ^{-1} x}\right)$
$=x^{\cos ^{-1} x}\left[\cos ^{-1} x \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}\left(\cos ^{-1} x\right)\right]$
$=x^{\cos ^{\prime} \cdot x}\left[\cos ^{-1} x \cdot \frac{1}{x}+\ln x \frac{-1}{\sqrt{1-x^{2}}}\right]$
$=x^{\cos ^{-1} x}\left[\frac{\cos ^{-1} x}{x}-\frac{\ln x}{\sqrt{1-x^{2}}}\right]$
2(l) $\frac{d}{d x}\left(x^{-1 / x}\right)$
[বুয়েট’’○৭]
$=x^{-1 / x}\left[-\frac{1}{x} \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}\left(-\frac{1}{x}\right)\right]$
$=x^{-1 / x}\left[-\frac{1}{x} \cdot \frac{1}{x}+\ln x\left\{-\left(-\frac{1}{x^{2}}\right)\right\}\right]$

$$
=x^{-1 / x} \times \frac{1}{x^{2}}(\ln x-1)=\frac{1}{x^{2+1 / x}}(\ln x-1)
$$

3(a) $\frac{d}{d x}\left(\mathrm{x}^{x}\right)=e^{x} \frac{d}{d x}\left(x^{x}\right)$
$=e^{x^{x}} x^{x}\left[x \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}(x)\right]$
$=e^{x^{x}} \cdot x^{x}\left\{x \cdot \frac{1}{x}+\ln x .1\right\}$
$=e^{\mathrm{x}^{x}} \cdot x^{x}(1+\ln x)$
3(b) $\frac{d}{d x}\left(x^{\mathrm{e}^{x}}\right)$
$=x^{\mathrm{e}^{x}}\left[e^{x} \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}\left(e^{x}\right)\right]$
$=x^{\mathrm{e}^{x}}\left[e^{x} \frac{1}{x}+\ln x . e^{x}\right]$
$=x^{\mathrm{e}^{x}} e^{x}\left(\frac{1}{x}+\ln x\right)$
(c) $\frac{d}{d x}\left(a^{a^{x}}\right)$
[দি.’১২]
$=a^{a^{x}} . \ln a \cdot \frac{d}{d x}\left(a^{x}\right)$
$=a^{a^{x}} \ln a \cdot a^{x} \cdot \ln a={ }^{a^{a^{x}}} a^{x}(\ln a)^{2}$
3(d) $(\boldsymbol{\operatorname { c o t }} \boldsymbol{x})^{\tan x}$
[চ.'০৫; ব., দি.’০৯; য.'১২]
$\frac{d}{d x}(\cot x)^{\tan x}=(\cot x)^{\tan x}$
$\left[\tan x \frac{d}{d x}\{\ln (\cot x)\}+\ln (\cot x) \frac{d}{d x}(\tan x)\right]$
$=(\cot x)^{\operatorname{tin} x}\left[\frac{\tan x}{\cot x}\left(-\operatorname{cosec}^{2} x\right)+\right.$
$\left.\ln (\cot x) .\left(\sec ^{2} x\right)\right]$
$=(\cot x)^{\tan x}\left[-\frac{\sin ^{2} x}{\cos ^{2} x} \cdot \frac{1}{\sin ^{2} x}+\right.$
$\left.\ln (\cot x) .\left(\sec ^{2} x\right)\right]$
$=(\cot x)^{\tan x}\left[-\sec ^{2} x+\ln (\cot x) \cdot\left(\sec ^{2} x\right)\right]$
$=(\cot x)^{\tan x} \cdot \sec ^{2} x[\ln (\cot x)-1]$
4. (a) $x^{x^{x}} \quad$ [রা.'০৬,'০৮; য.'১১; প্র.ভ.প.'০৫]

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{x^{x}}\right)=x^{x^{x}}\left[x^{x} \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}\left(x^{x}\right)\right] \\
& =x^{x^{x}}\left[x^{x} \cdot \frac{1}{x}+\ln x \cdot x^{x}\left\{x \frac{d}{d x}(\ln x)+\right.\right. \\
& \left.\left.\ln x \frac{d}{d x}(x)\right\}\right] \\
& =x^{x^{x}} \quad x^{x}\left[\frac{1}{x}+\ln x \cdot\left\{x \cdot \frac{1}{x}+\ln x \cdot 1\right\}\right] \\
& =x^{x^{x}} \cdot x^{x}\left[\frac{1}{x}+\ln x \cdot(1+\ln x\}\right]
\end{aligned}
$$

$$
\left(x^{x}\right)^{x}=x^{x^{2}}
$$

$$
\frac{d}{d x}\left(x^{x}\right)^{x}=x^{x^{2}}\left[x^{2} \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}\left(x^{2}\right)\right]
$$

$$
=x^{x^{2}}\left[x^{2} \cdot \frac{1}{x}+\ln x \cdot(2 x)\right]
$$

$$
=x^{x^{2}}[x+2 x \ln x]=\left(x^{x}\right)^{x} \cdot x[1+2 \ln x]
$$

$$
\text { 4(c) } \frac{d}{d x}(\sec x) x^{x}=(\sec x)^{x^{x}}
$$

$$
\left[x^{x} \frac{d}{d x}\{\ln (\sec x)\}+\ln (\sec x) \frac{d}{d x}\left(x^{x}\right)\right]
$$

$$
=(\sec x) x^{x}\left[x^{x} \frac{1}{\sec x} \cdot \sec x \tan x+\right.
$$

$$
\left.\ln (\sec x) \cdot x^{x}\left\{x \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}(x)\right\}\right]
$$

$$
=(\sec x) x^{x} \cdot x^{x}\left[\tan x+\ln (\sec x)\left\{x \cdot \frac{1}{x}+\ln x \cdot 1\right\}\right]
$$

$$
=(\sec x) x^{x} \cdot x^{x}[\tan x+(1+\ln x) \ln (\sec x)]
$$

$$
\text { 5.(a) } \frac{d}{d x}\left(x^{x} \ln x\right) \quad \text { [א. '০৪; দি.'১০; ব.'১২] }
$$

$$
=x \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}\left(x^{x}\right)
$$

$$
=x^{x} \cdot \frac{1}{x}+\ln x \cdot x^{x}\left\{x \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}(x)\right\}
$$

$$
=x^{x}\left[\frac{1}{x}+\ln x .\left\{x \cdot \frac{1}{x}+\ln x \cdot 1\right\}\right]
$$

$$
=x^{x}\left\{\frac{1}{x}+\ln x .(1+\ln x)\right\}
$$

$$
\begin{aligned}
& =x^{-1 / x} \times \frac{1}{x^{2}}(\ln x-1)=\frac{1}{x^{2+1 / x}}(\ln x-1) \\
& \text { 3(a) } \frac{d}{d x}\left(\mathrm{e}^{x}\right)=e^{\mathrm{x}^{x} \frac{d}{d x}\left(x^{x}\right)} \\
& =e^{x^{x}} x^{x}\left[x \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}(x)\right] \\
& =e^{\mathrm{x}^{x}} \cdot x^{x}\left\{x \cdot \frac{1}{x}+\ln x \cdot 1\right\} \\
& =e^{x^{x}} \cdot x^{x}(1+\ln x) \\
& \text { 3(b) } \frac{d}{d x}\left(x^{\mathrm{e}^{x}}\right) \\
& =x^{\mathrm{e}^{x}}\left[e^{x} \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}\left(e^{x}\right)\right] \\
& =x^{\mathrm{e}^{x}}\left[e^{x} \frac{1}{x}+\ln x . e^{x}\right] \\
& =x^{\mathrm{e}^{x}} e^{x}\left(\frac{1}{x}+\ln x\right) \\
& \text { (c) } \frac{d}{d x}\left(a a^{x}\right) \\
& \text { [मि.’১২] } \\
& =a^{a^{x}} \cdot \ln a \cdot \frac{d}{d x}\left(a^{x}\right) \\
& =a^{a^{x}} \ln a \cdot a^{x} \cdot \ln a={ }^{a^{a^{x}}} a^{x}(\ln a)^{2} \\
& \text { 3(d) }(\boldsymbol{\operatorname { c o t }} \boldsymbol{x})^{\tan x} \\
& \text { [চ.'০৫; ব., দি.’০৯; য.’১২] } \\
& \frac{d}{d x}(\cot x)^{\tan x}=(\cot x)^{\tan x} \\
& {\left[\tan x \frac{d}{d x}\{\ln (\cot x)\}+\ln (\cot x) \frac{d}{d x}(\tan x)\right]} \\
& =(\cot x)^{\tan x}\left[\frac{\tan x}{\cot x}\left(-\operatorname{cosec}^{2} x\right)+\right. \\
& \left.\ln (\cot x) .\left(\sec ^{2} x\right)\right] \\
& =(\cot x)^{\tan x}\left[-\frac{\sin ^{2} x}{\cos ^{2} x} \cdot \frac{1}{\sin ^{2} x}+\right. \\
& \left.\ln (\cot x) .\left(\sec ^{2} x\right)\right] \\
& =(\cot x)^{\tan x}\left[-\sec ^{2} x+\ln (\cot x) \cdot\left(\sec ^{2} x\right)\right] \\
& =(\cot x)^{\tan x} \cdot \sec ^{2} x[\ln (\cot x)-1] \\
& \text { 4. (a) } x^{x^{x}} \quad \text { [রা.'০৬,'০৮; য.'১১; প্র.ভ.প.'০৫] } \\
& \frac{d}{d x}\left(x^{x^{x}}\right)=_{x^{x}} x\left[x^{x} \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}\left(x^{x}\right)\right] \\
& =x^{x^{x}}\left[x^{x} \cdot \frac{1}{x}+\ln x \cdot x^{x}\left\{x \frac{d}{d x}(\ln x)+\right.\right. \\
& \left.\left.\ln x \frac{d}{d x}(x)\right\}\right] \\
& =x^{x^{x}} \quad x^{x}\left[\frac{1}{x}+\ln x .\left\{x . \frac{1}{x}+\ln x .1\right\}\right] \\
& =x^{x^{x}} \cdot x^{x}\left[\frac{1}{x}+\ln x .(1+\ln x\}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left(x^{x}\right)^{x}=x^{x^{2}} \\
& \frac{d}{d x}\left(x^{x}\right)^{x}=x^{x^{2}}\left[x^{2} \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}\left(x^{2}\right)\right] \\
& =x^{x^{2}}\left[x^{2} \cdot \frac{1}{x}+\ln x .(2 x)\right] \\
& =x^{x^{2}}[x+2 x \ln x]=\left(x^{x}\right)^{x} \cdot x[1+2 \ln x] \\
& \text { 4(c) } \frac{d}{d x}(\sec x)^{x^{x}}=(\sec x)^{x^{x}} \\
& {\left[x^{x} \frac{d}{d x}\{\ln (\sec x)\}+\ln (\sec x) \frac{d}{d x}\left(x^{x}\right)\right]} \\
& =(\sec x) x^{x}\left[x^{x} \frac{1}{\sec x} \cdot \sec x \tan x+\right. \\
& \left.\ln (\sec x) \cdot x^{x}\left\{x \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}(x)\right\}\right] \\
& =(\sec x) x^{x} \cdot x^{x}\left[\tan x+\ln (\sec x)\left\{x \cdot \frac{1}{x}+\ln x .1\right\}\right] \\
& =(\sec x){ }^{x^{x}}: x^{x}[\tan x+(1+\ln x) \ln (\sec x)]
\end{aligned}
$$

$=x^{x} \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}\left(x^{x}\right)$
$=x^{x} \cdot \frac{1}{x}+\ln x . x^{x}\left\{x \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}(x)\right\}$
$=x^{x}\left[\frac{1}{x}+\ln x .\left\{x . \frac{1}{x}+\ln x .1\right\}\right]$
$=x^{x}\left\{\frac{1}{x}+\ln x .(1+\ln x)\right\}$

5(b) $\frac{d}{d x}(a x)^{b x}$
$=(a x)^{b x}\left[b x \frac{d}{d x}\{\ln (a x)\}+\ln (a x) \frac{d}{d x}(b x)\right]$
$=(a x)^{b x}\left[b x \cdot \frac{1}{a x} \cdot a+\ln (a x) \cdot b\right]$
$=(a x)^{b x} \cdot \mathrm{~b}[1+\ln (a x)]$
5(c) ধরি, $y=\left(x e^{x}\right)^{\sin x}$
$\ln \mathrm{y}=\ln \left(x e^{x}\right)^{\sin x}=\sin x\left(\ln \mathrm{x}+\ln e^{x}\right)$ $=\sin x(\ln x+x)$
ইহাকে x এর সাপেক্ষে অন্তরীকর্রণ করে পাই, $\frac{1}{y} \frac{d y}{d x}=\sin x\left(\frac{1}{x}+1\right)+(\ln \mathrm{x}+\mathrm{x}) \cos \mathrm{x}$
$\Rightarrow \frac{d y}{d x}=y\left[\left(\frac{1}{x}+1\right) \sin x+(\ln x+x) \cos x\right]$
$=\left(x e^{x}\right)^{\sin x}\left[\sin x .\left(\frac{1}{x}+1\right)+(\ln x+x) \cos x\right]$
5(d) $\frac{d}{d x}\left(e^{x^{2}}+x^{x^{2}}\right)$
$=\frac{d}{d x}\left(e^{x^{2}}\right)+\frac{d}{d x}\left(x^{x^{2}}\right)$
$=e^{x^{2}}(2 x)+x^{x^{2}}\left[x^{2} \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}\left(x^{2}\right)\right.$
$=2 x e^{x^{2}+x x^{2}\left[\frac{x^{2}}{x}+\ln x .(2 x)\right]}$
$=2 x e^{x^{2}}+x^{x^{2}}[x+2 x \ln x]$
5(e) $\frac{d}{d x}\left\{(\tan x)^{x}+x^{\tan x}\right\}$
$=\frac{d}{d x}(\tan x)^{x}+\frac{d}{d x}\left(x^{\tan x}\right)$
$=(\tan x)^{x}\left[x \frac{d}{d x}\{\ln (\tan x)\}+\ln (\tan x) \frac{d}{d x}(x)\right]$
$+x^{\tan x}\left[\tan x \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}(\tan x)\right]$
$=(\tan x)^{x}\left[x \frac{1}{\tan x} \cdot \sec ^{2} x+\ln (\tan x) .1\right]$

$$
\begin{aligned}
& +x^{\tan x}\left[\tan x \cdot \frac{1}{x}+\ln x \cdot \sec ^{2} x\right] \\
& =(\tan x)^{x}\left[x \frac{\cos x}{\sin x} \cdot \frac{1}{\cos ^{2} x}+\ln (\tan x)\right] \\
& \quad+x^{\tan x}\left[\frac{1}{x} \tan x+\sec ^{2} x \ln x\right] \\
& =(\tan x)^{x}[2 x \cos e c 2 x+\ln (\tan x)] \\
& \quad+x^{\tan x}\left[\frac{1}{x} \tan x+\sec ^{2} x \ln x\right]
\end{aligned}
$$

5.(f) $\frac{d}{d x}\left(x^{\ln . x}+x^{\log x}\right)$

$$
=\frac{d}{d x}\left(x^{\ln x}\right)+\frac{d}{d x}\left(x^{\ln x}\right)
$$

$$
=x^{\ln x}\left[\ln x \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}(\ln x)\right]
$$

$$
+x^{\log x}\left[\log x \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}(\log x)\right]
$$

$$
=x^{\ln x} 2 \ln x \cdot \frac{1}{x}+x^{\log x}\left[\log x \cdot \frac{1}{x}+\ln x \cdot \frac{1}{x \ln 10}\right]
$$

$$
=\frac{2 \ln x}{x} \cdot x^{\ln x}+x^{\log x}\left[\frac{\log x}{x}+\frac{\ln x}{x \ln 10}\right]
$$

$$
\mathbf{5}(\mathbf{g}) \frac{d}{d x}\left\{(\ln x)^{x}+(\log x)^{x}\right\}
$$

$$
=\frac{d}{d x}(\ln x)^{x}+\frac{d}{d x}(\log x)^{x}
$$

$$
=(\ln x)^{x}\left[x \frac{d}{d x}\{\ln (\ln x)\}+\ln (\ln x) \frac{d}{d x}(x)\right]+
$$

$$
(\log x)^{x}\left[x \frac{d}{d x}\{\ln (\log x)\}+\ln (\log x) \frac{d}{d x}(x)\right]
$$

$$
=(\ln x)^{x}\left[x \frac{1}{\ln x} \cdot \frac{1}{x}+\ln (\ln x) \cdot 1\right]+
$$

$$
(\log x)^{x}\left[x \frac{1}{\log x} \cdot \frac{1}{x \ln 10}+\ln (\log x) .1\right]
$$

$$
=(\ln x)^{x}\left[\frac{1}{\ln x}+\ln (\ln x)\right]+
$$

$$
(\log x)^{x}\left[\frac{1}{\ln 10 \log x}+\ln (\log x)\right]
$$

5(h) $\frac{d}{d x}\left\{(\tan x)^{\cot x}+(\cot x)^{\tan x}\right\}$

$$
\begin{aligned}
& =\frac{d}{d x}(\tan x)^{\cot x}+\frac{d}{d x}(\cot x)^{\tan x} \\
& =(\tan x)^{\cot x}\left[\cot x \frac{d}{d x}\{\ln (\tan x)\}+\ln (\tan x)\right. \\
& \left.\frac{d}{d x}(\cot x)\right]+(\cot x)^{\tan x}\left[\tan x \frac{d}{d x}\{\ln (\cot x)\}\right. \\
& \left.+\ln (\cot x) \frac{d}{d x}(\tan x)\right] \\
& =(\tan x)^{\cot x}\left[\frac{\cot x}{\tan x} \sec ^{2} x+\ln (\tan x) .\right. \\
& \left.\left(-\operatorname{cosec} c^{2} x\right)\right]+(\cot x)^{\tan x}\left[\frac{\tan x}{\cot x}\right. \\
& \left.\left(-\operatorname{cosec}^{2} x\right)+\ln (\cot x) \cdot\left(\sec ^{2} x\right)\right] \\
& =(\tan x)^{\cot x}\left[\frac{\cos ^{2} x}{\sin ^{2} x} \frac{1}{\cos ^{2} x}-\ln (\tan x) .\right. \\
& \left.\cos e c^{2} x\right]+\left(\operatorname { c o t } ^ { \operatorname { t a n } x } \left[-\frac{\sin ^{2} x}{\cos ^{2} x} \cdot \frac{1}{\sin ^{2} x}\right.\right. \\
& \left.+\ln (\cot x) \cdot\left(\sec ^{2} x\right)\right] \\
& =(\tan x)^{\cot x} \cdot \cos ^{2} x[1-\ln (\tan x)] \\
& +(\cot x)^{\tan x} \cdot \sec ^{2} x[\ln (\cot x)-1]
\end{aligned}
$$

$$
\text { 5(i) } \frac{d}{d x}\left(x^{x} \log x\right)
$$

$$
=x^{x} \frac{d}{d x}(\log x)+\log x \frac{d}{d x}\left(x^{x}\right)
$$

$$
=x^{x} \frac{1}{x \ln 10}+\log x\left[x ^ { x } \left\{x \frac{d}{d x}(\ln x)\right.\right.
$$

$$
\left.\left.+\ln \mathrm{x} \frac{d}{d x}(\mathrm{x})\right\}\right]
$$

$$
=\frac{x^{x}}{x \ln 10}+x^{x} \log x\left\{x \frac{1}{x}+\ln x\right\}
$$

$$
=\frac{x^{x}}{x \ln 10}+x^{x} \log x\{1+\ln x\}
$$

প্রশ্নমালা IX H

1. $\frac{d y}{d x}$ निबग्य बस :

(a) $x^{a} y^{b}=(x-y)^{a+b}$
[প.ভ.भ. 'o৬]

$$
\ln \left(x^{a} y^{b}\right)=\ln (x-y)^{a+b}
$$

$\Rightarrow \ln \left(x^{a}\right)+\ln \left(y^{b}\right)=(a+b) \ln (x-y)$
$\Rightarrow a \ln x+\mathrm{b} \ln y=(a+b) \ln (x-y)$
উভয় পক্ষকে x এর সাপেক্ষ অন্তরীকরণ করে পাই,

$$
a \cdot \frac{1}{x}+b \cdot \frac{1}{y} \frac{d y}{d x}=(a+b) \frac{1}{x-y}\left(1-\frac{d y}{d x}\right)
$$

or, $\left(\frac{b}{y}+\frac{a+b}{x-y}\right) \frac{d y}{d x}=\frac{a+b}{x-y}-\frac{a}{x}$
or, $\frac{b x-b y+a y+b y}{y(x-y)} \cdot \frac{d y}{d x}=\frac{a x+b x-a x+a y}{x(x-y)}$
or, $\frac{b x+a y}{y(x-y)} \cdot \frac{d y}{d x}=\frac{b x+a y}{x(x-y)}$

$$
\frac{d y}{d x}=\frac{y}{x}
$$

1(b) $y=\sin (x+y)^{2}$
[রা.’o8; 氏..'০৭; य.' '১১]
উভয় পক্ষকে x এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
& \quad \frac{d y}{d x}=\cos (x+y)^{2} \frac{d}{d x}(x+y)^{2} \\
& \Rightarrow \frac{d y}{d x}=\cos (x+y)^{2} \cdot 2(x+y)\left(1+\frac{d y}{d x}\right) \\
& \Rightarrow\left\{1-2(x+y) \cos (x+y)^{2}\right\} \frac{d y}{d x} \\
& =2(x+y) \cos (x+y)^{2} \\
& \\
& \frac{d y}{d x}=\frac{2(x+y) \cos (x+y)^{2}}{1-2(x+y) \cos (x+y)^{2}} \\
& 1(\mathrm{c}) x+y=\sin ^{-1}(y / x) \\
& \Rightarrow \sin (x+y)=\frac{y}{x} \Rightarrow y=x \sin (x+y) \\
& \text { উভয় পক্ষকে } x \text { এর সাপেক্ক অN্তরীকরণ করে পাই, } \\
& \frac{d y}{d x}=x \cos (x+y)\left(1+\frac{d y}{d x}\right)+\sin (x+y) \\
& \Rightarrow\{1-x \cos (x+y)\} \frac{d y}{d x}=x \cos (x+y)+ \\
& \quad \frac{d y}{d x}=\frac{x \cos (x+y)+\sin (x+y)}{1-x \cos (x+y)}
\end{aligned}
$$

1. (d) $x^{2}=5 y^{2}+\sin y$
[প্র.ভ.প.'০৬]
উভয় পক্ষকে x এর সাপেক্ষে অন্তরীকর্ণ করে পাই,

$$
\begin{aligned}
2 x & =10 y \frac{d y}{d x}+\cos y \frac{d y}{d x} \\
\frac{d y}{d x} & =\frac{2 x}{10 y+\cos y}(\text { Ans. })
\end{aligned}
$$

1(e) $(\cos x)^{y}=(\sin y)^{x}$
[প্র.ভ.প.’০৩]
উভয় পক্ষকে x এর সাপেক্ষে অন্তরীকরণ করে পাই, $(\cos x)^{y}\left[y \frac{d}{d x}\{\ln (\cos x)\}+\ln (\cos x) \frac{d y}{d x}\right]$ $=(\sin y)^{x}\left[x \frac{d}{d x}\{\ln (\sin y)\}+\ln (\sin y) \frac{d}{d x}(x)\right]$
$\Rightarrow \frac{y}{\cos x}(-\sin x)+\ln (\cos x) \frac{d y}{d x}$

$$
=\frac{x}{\sin y}(\cos y) \frac{d y}{d x}+\ln (\sin y) \cdot 1
$$

$$
\left[\because(\cos x)^{y}=(\sin y)^{x}\right]
$$

$\Rightarrow\{\ln (\cos x)-x \cot y\} \frac{d y}{d x}=\ln (\sin y)+y \tan x$

$$
\frac{d y}{d x}=\frac{\ln (\sin y)+y \tan x}{\ln (\cos x)-x \cot y}
$$

1(f) $\sqrt{x / y}+\sqrt{y / x}=1$
$\Rightarrow \frac{\sqrt{x}}{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{x}}=1 \Rightarrow x+y=\sqrt{x y}$
উভয় পক্ষকে x এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{align*}
& 1+\frac{d y}{d x}=\frac{1}{2 \sqrt{x y}}\left(x \frac{d y}{d x}+y .1\right) \\
\Rightarrow & \left(1-\frac{\sqrt{x}}{2 \sqrt{y}}\right) \frac{d y}{d x}=\frac{\sqrt{y}}{2 \sqrt{x}}-1 \\
\Rightarrow & \frac{2 \sqrt{y}-\sqrt{x}}{2 \sqrt{y}} \frac{d y}{d x}=\frac{\sqrt{y}-2 \sqrt{x}}{2 \sqrt{x}} \\
& \frac{d y}{d x}=\frac{\sqrt{y}(\sqrt{y}-2 \sqrt{x})}{\sqrt{x}(2 \sqrt{y}-\sqrt{x})} \tag{Ans.}
\end{align*}
$$

2. $\frac{d y}{d x}$ নিণয় কর:

2(a) $x^{y}=e^{x-y}$
[য.বো.'০৫]
উভয় পক্ষকে x এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
& x^{y}\left[y \frac{d}{d x}(\ln x)+\ln x \frac{d y}{d x}\right]=e^{x-y}\left(1-\frac{d y}{d x}\right) \\
& \Rightarrow \frac{y}{x}+\ln x \frac{d y}{d x}=1-\frac{d y}{d x}\left[\quad x^{y}=e^{x-y}\right] \\
& \Rightarrow(1+\ln x) \frac{d y}{d x}=1-\frac{y}{x}=\frac{x-y}{x} \\
& \quad \frac{d y}{d x}=\frac{x-y}{x(1+\ln x)}
\end{aligned}
$$

2(b) $y+x=x^{-y}$
[রা.'১১; য.'১৩; প্র.ভ.প. '১৫]
উভয় পক্ষকে x এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
& \frac{d y}{d x}+1=x^{-y}\left[-y \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}(-y)\right] \\
& \Rightarrow \frac{d y}{d x}+1=x^{-y}\left[\frac{-y}{x}-\ln x \frac{d y}{d x}\right] \\
& \Rightarrow\left(1+x^{-y} \ln x\right) \frac{d y}{d x}=-1-y \cdot x^{-y-1} \\
& \frac{d y}{d x}=-\frac{1+y x^{-y-1}}{1+x^{-y} \ln x}
\end{aligned}
$$

2(c) $x^{y}+y^{x}=1$
উভয় পক্ষকে x এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{gathered}
x^{y}\left[y \frac{d}{d x}(\ln x)+\ln x \frac{d y}{d x}\right]+ \\
y^{x}\left[x \frac{d}{d x}(\ln y)+\ln y \frac{d}{d x}(x)\right]=0 \\
\Rightarrow x^{y}\left[\frac{y}{x}+\ln x \frac{d y}{d x}\right]+y^{x}\left[\frac{x}{y} \frac{d y}{d x}+\ln y .1\right]=0 \\
\Rightarrow\left(x^{y} \ln x+x y^{x-1}\right) \frac{d y}{d x}=-\left(x^{y-1} y+y^{x} \ln y\right) \\
\frac{d y}{d x}=-\frac{x^{y-1} y+y^{x} \ln y}{x^{y} \ln x+x y^{x-1}} \\
\text { 2(d) } x^{p} y^{p}=(x+y)^{p+q} \\
p \ln x+q \ln y=(p+q) \ln (x+y)
\end{gathered}
$$

উভয় পক্ষকে x এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\frac{p}{x}+\frac{q}{y} \frac{d y}{d x}=\frac{p+q}{x+y}\left(1+\frac{d y}{d x}\right)
$$

$$
\begin{array}{l|l}
\Rightarrow\left(\frac{q}{y}-\frac{p+q}{x+y}\right) \frac{d y}{d x}=\frac{p+q}{x+y}-\frac{p}{x} & \text { www.boighar.com } \\
\Rightarrow \frac{q x+q y-p y-q y}{y(x+y)} \frac{d y}{d x}=\frac{p x+q x-p x-p y}{(x+y) x} & \frac{d y}{d x}=\frac{y(x-1)}{x(1-y)} \text { (Ans.) }
\end{array}
$$

$$
\Rightarrow \frac{q x-p y}{y(x+y)} \frac{d y}{d x}=\frac{q x-p y}{(x+y) x}
$$

$$
\frac{d y}{d x}=\frac{y}{x} \text { (Ans.) }
$$

2(e) $y=x^{y^{x}} \therefore \ln y=y^{x} \ln x \cdots$ (1)
উভয় পক্ষকে x এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
& \frac{1}{y} \frac{d y}{d x}=y^{x} \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}\left(y^{x}\right) \\
\Rightarrow & \frac{1}{y} \frac{d y}{d x}=y^{x} \frac{1}{x}+\ln x \cdot y^{x}\left\{\frac{x}{y} \frac{d y}{d x}+\ln y\right\} \\
\Rightarrow & \frac{1}{y} \frac{d y}{d x}=\frac{\ln y}{x \ln x}+\ln y\left\{\frac{x}{y} \frac{d y}{d x}+\ln y\right\}
\end{aligned}
$$

[(1) দ্বারা]
$\Rightarrow\left(\frac{1}{y}-\frac{x}{y} \ln y\right) \frac{d y}{d x}=\ln y\left(\frac{1}{x \ln x}+\ln y\right)$
$\Rightarrow\left(\frac{1-x \ln y}{y}\right) \frac{d y}{d x}=\ln y\left(\frac{1+x \ln x \ln y}{x \ln x}\right)$

$$
\frac{d y}{d x}=\frac{y \ln y(1+x \ln x \ln y)}{x \ln x(1-x \ln y)}
$$

(f) $\mathbf{y}=\sqrt{x \sqrt{x \sqrt{x \ldots \ldots . . . \infty}}}=\sqrt{x \sqrt{x \sqrt{x \sqrt{x \ldots \ldots \ldots \infty}}}}$
$\Rightarrow y=\sqrt{x y} \Rightarrow y^{2}=x y \Rightarrow y=x$
উভয় পক্ষকে x এর সাপেক্ষে অন্তরীকরণ করে পাই, $\frac{d y}{d x}=1$ (Ans.)
2.(g) $\boldsymbol{\operatorname { l n }}(\boldsymbol{x y})=\boldsymbol{x}+\boldsymbol{y}$
[রা.’o৫; ধૂ. '০৬]
$\Rightarrow \ln x+\ln y=x+y$
উভয় পক্ষকে x এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{y} \frac{d y}{d x}=1+\frac{d y}{d x} \\
\Rightarrow & y+x \frac{d y}{d x}=x y+x y \frac{d y}{d x}
\end{aligned}
$$

2(h) $\log \left(x^{n} y^{n}\right)=x^{n}+y^{n} \quad$ [বুয়েট ০৭-০৮]
$\Rightarrow \mathrm{n} \log x+\mathrm{n} \log y=x^{n}+y^{n}$
$\Rightarrow \mathrm{n} \log _{10} e \times \log _{c} x+\mathrm{n} \log _{10} e \times \log _{c} y$

$$
=x^{n}+y^{n}
$$

উভয় পক্কে x এর সারপক্ষে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
& n \frac{\log _{10} e}{x}+n \frac{\log _{10} e}{y} \frac{d y}{d x}=n x^{n-1}+n y^{n-1} \frac{d y}{d x} \\
& \Rightarrow\left(\frac{\log _{10} e}{y}-y^{n-1}\right) \frac{d y}{d x}=x^{n-1}-\frac{\log _{10} e}{x} \\
& \Rightarrow \frac{\log _{10} e-y^{n}}{y} \frac{d y}{d x}=\frac{x^{n}-\log _{10} e}{x} \\
& \frac{d y}{d x}=\frac{y\left(x^{n}-\log _{10} e\right)}{x\left(\log _{10} e-y^{n}\right)}
\end{aligned}
$$

3. (a) $\tan y=\sin x$ হলে, দেখা যে,

$$
\frac{d y}{d x}=\frac{1}{\left(1-x^{2}\right)^{3 / 2}}
$$

[প্র.ভ.প.'৮৪]
প্रমাণ : $\tan y=\sin x$
$\Rightarrow \mathrm{y}=\tan ^{-1} \sin x$
$\Rightarrow \mathrm{y}=\tan ^{-1} \tan \frac{x}{\sqrt{1-x^{2}}}$
$=\frac{x}{\sqrt{1-x^{2}}}$.
$\frac{d y}{d x}=\frac{\sqrt{1-x^{2}} \frac{d}{d x}(x)-x \frac{d}{d x}\left(\sqrt{1-x^{2}}\right)}{\left(\sqrt{1-x^{2}}\right)^{2}}$

$$
=\frac{\sqrt{1-x^{2}} \cdot 1-x \frac{1}{2 \sqrt{1-x^{2}}}(-2 x)}{1-x^{2}}
$$

$$
=\frac{1-x^{2}+x^{2}}{\left(1-x^{2}\right) \sqrt{1-x^{2}}}=\frac{1}{\left(1-x^{2}\right)^{3 / 2}}
$$

3（b）$x \sqrt{1+y}+y \sqrt{1+x}=0$ रनে，দেখাও যে， $\frac{d y}{d x}=-\frac{1}{(1+x)^{2}}$ ［প্র．ভ．প．＇০২，＇০৪］

প্রমাণ ：$x \sqrt{1+y}+y \sqrt{1+x}=0$
$\Rightarrow x \sqrt{1+y}=-y \sqrt{1+x}$
$\Rightarrow x^{2}(1+y)=y^{2}(1+x)$
［ ব称 করে। ］
$\Rightarrow x^{2}+x^{2} y=y^{2}+x y^{2}$
$\Rightarrow x^{2}-y^{2}+x y(x-y)=0$
$\Rightarrow(x-y)(x+y+x y)=0$
$x+y+x y=0$ হলে，$(1+x) y=-x$
$\Rightarrow \mathrm{y}=\frac{-x}{1+x} \quad \frac{d y}{d x}=\frac{(1+x)(-1)+x(1)}{(1+x)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{-1-x+x}{(1+x)^{2}}=-\frac{1}{(1+x)^{2}}$
3．（c）$x=a(t-\sin t)$ जबर $y=a(1+\cos t)$ इলে， গ্গখা যে，$t=\frac{5 \pi}{3}$ যখন $\frac{d y}{d x}=\sqrt{3}$ ．
［প্র．ভ．भ．＇৮৫］
প্রমাণ ：$\frac{d x}{d t}=a(1-\cos t), \frac{d y}{d t}=a(0-\sin t)$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}=\frac{-a \sin t}{a(1-\cos t)} \\
& =\frac{-2 \sin \frac{t}{2} \cos \frac{t}{2}}{2 \sin ^{2} \frac{t}{2}}=-\cot \frac{t}{2}
\end{aligned}
$$

〔थन，$\frac{d y}{d x}=\sqrt{3}$ इलে ， $\cot \frac{t}{2}=-\sqrt{3}$
$\Rightarrow \tan \frac{t}{2}=-\frac{1}{\sqrt{3}}=-\tan \frac{\pi}{6}=\tan \left(\pi-\frac{\pi}{6}\right)$
$\Rightarrow \tan \frac{t}{2}=\tan \frac{5 \pi}{6} \quad \frac{t}{2}=\frac{5 \pi}{6} \Rightarrow \mathrm{t}=\frac{5 \pi}{3}$
3（d） $\mathrm{f}(x)=\left(\frac{a+x}{b+x}\right)^{a+b+2 x}$ रตে，প্রমাণ कর যে， $f^{\prime}(0)=\left(2 \ln \frac{a}{b}+\frac{b^{2}-a^{2}}{a b}\right)\left(\frac{a}{b}\right)^{a+b}$

প্রমাণ： $\mathrm{f}(x)=\left(\frac{a+x}{b+x}\right)^{a+b+2 x} \quad f(0)=\left(\frac{a}{b}\right)^{a+b}$ এて゚ $\ln \{f(x)\}=$

$$
(a+b+2 x)\{\ln (a+x)-\ln (b+x)\}
$$

৬ভয় পক্ষকে x এর সাপেক্ষে অন্তরীকরণ করে পাই，

$$
\begin{gathered}
\begin{array}{r}
\frac{1}{f(x)} f^{\prime}(x)=(a+b+2 x)\left\{\frac{1}{a+x}-\frac{1}{b+x}\right\}+ \\
\quad\{\ln (a+x)-\ln (b+x)\} 2
\end{array} \\
f^{\prime}(0)=f(0)\left[(a+b)\left(\frac{1}{a}-\frac{1}{b}\right)+\right. \\
2(\ln a-\ln b)] \\
\Rightarrow f^{\prime}(0)=\left(\frac{a}{b}\right)^{a+b}\left[(a+b)\left(\frac{b-a}{a b}\right)+2 \ln \frac{a}{b}\right] \\
f^{\prime}(0)=\left(2 \ln \frac{a}{b}+\frac{b^{2}-a^{2}}{a b}\right)\left(\frac{a}{b}\right)^{a+b}
\end{gathered}
$$

（e）$y=\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x \ldots \ldots . . . \infty}}}$ रणে， প্রমাণ কর বে，$(2 y-1) \frac{d y}{d x}+\sin x=0$ ．
প্রমাণ ：$y=\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x \ldots \ldots . . \infty}}}$
$\Rightarrow y=\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x \cdots \infty}}}}$
$\Rightarrow y=\sqrt{\cos x+y} \Rightarrow \mathrm{y}^{2}=\cos x+\mathrm{y}$
উভয় পক্ষকে x এর সাপেক্ষে অন্তরীকরণী ক্रর পাই，x
$2 y \frac{d y}{d x}=-\sin x+\frac{d y}{d x}$
$\Rightarrow(2 y-1) \frac{d y}{d x}+\sin x=0$
3（f）$x^{y}=y^{x^{n} \text { হলে দেখা বে，}}$

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y^{n+1}(n \ln x-1)}{x^{n+1}(n \ln y-1)} \tag{1}
\end{equation*}
$$

［বুহ়েট ০৮－০৯］
প্রমাण ：$x^{y}=y^{x^{n}} \therefore y^{n} \ln x=x^{n} \ln y \cdots$
উভয় পকককে x এর সাপেক্ষে অন্তরীকরণ করে পাই，
$\frac{y^{n}}{x}+\ln x .\left(n y^{n-1}\right) \frac{d y}{d x}=\frac{x^{n}}{y} \frac{d y}{d x}+\ln y \cdot n \cdot x^{n-1}$
$\Rightarrow y^{n+1}+x \ln x \cdot n y^{n} \frac{d y}{d x}=, x^{n+1} \frac{d y}{d x}+y \ln y \cdot n x^{n}$

$$
\begin{aligned}
& \Rightarrow\left(n x \ln x \cdot y^{n}-x^{n+1}\right) \frac{d y}{d x}=y \ln y \cdot n x^{n}-y^{n+1} \\
& \Rightarrow \frac{d y}{d x}=\frac{n y x^{n} \ln y-y^{n+1}}{n x y^{n} \ln x-x^{n+1}} \\
& \quad=\frac{n y \cdot y^{n} \ln x-y^{n+1}}{n x \cdot x^{n} \ln y-x^{n+1}} \quad[(1) \text { দ্বारा }] \\
& \quad=\frac{y^{n+1}(n \ln x-1)}{x^{n+1}(n \ln y-1)}
\end{aligned}
$$

অতিরিক্ত প্রশ্ন (সমাধানসহ)

\boldsymbol{x} এর সাপেক্ষে নিম্মের ফাশশনগুপির অল্তরক সহগ নিণয়
কর ঃ

1. $\frac{d}{d x}\left(5 x^{3}+3 x^{2}-4 x-9\right)$
$=5 \frac{d}{d x}\left(x^{3}\right)+3 \frac{d}{d x}\left(x^{2}\right)-4 \frac{d}{d x}(x)-\frac{d}{d x}(9)$
$=5\left(3 x^{2}\right)+3(2 x)-4-0$
$=15 x^{2}+6 x-4$ (Ans.)
2. $\frac{d}{d x}\left(2 x^{3}-4 x^{\frac{5}{2}}+\frac{7}{2} x^{-\frac{2}{3}}+7\right)$
$=2\left(3 x^{2}\right)-4\left(\frac{5}{2} x^{\frac{5}{2}-1}\right)+\frac{7}{2}\left(-\frac{2}{3} x^{-\frac{2}{3}-1}\right)+0$
$=6 x^{2}-10 x^{\frac{3}{2}}-\frac{7}{3} x^{-\frac{5}{3}}$ (Ans.)
3(a) মৃণ नিয়মে $x=2$-তে $\sqrt[3]{x}$ এর অল্তরক সহগ निর্ণয়।

মনে করি, $\mathrm{f}(x)=\sqrt[3]{x}=x^{1 / 3}$

$$
\begin{aligned}
& \therefore f^{\prime}(2)=\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} \frac{x^{1 / 3}-2^{1 / 3}}{x-2} \\
& \quad=\frac{1}{3} \times 2^{\frac{1}{3}-1}\left[\quad \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}\right] \\
& \quad=\frac{1}{3} \times 2^{-\frac{2}{3}}=\frac{1}{3} \times 4^{-\frac{1}{3}}=\frac{1}{3 \sqrt[3]{4}}
\end{aligned}
$$

3(b) মুন नিয়মে $x=a$-তে $\cos ^{2} x$ এর অम্তরক সহগ নিণয়।
মন্নে করি, $\mathrm{f}(x)=\cos ^{2} x . \quad \mathrm{f}(a)=\cos ^{2} a$

$$
\begin{align*}
& f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
&= \lim _{x \rightarrow a} \frac{\cos ^{2} x-\cos ^{2} a}{x-a} \\
&= \lim _{x \rightarrow i} \frac{\sin (x+a) \sin (a-x)}{x-a} \\
&= {\left[\because \cos ^{2} \mathrm{~B}-\cos ^{2} \mathrm{~A}=\sin (\mathrm{A}+\mathrm{B}) \sin (\mathrm{A}-\mathrm{B})\right] } \\
&=-\lim _{x \rightarrow-a \rightarrow 0} \frac{\sin (x-a)}{x-a} \cdot \lim _{x \rightarrow a} \sin (x+a) \\
&=-1 \cdot \sin (a+a)=-\sin 2 a \text { (Ans.) } \\
& \text { 4. } \quad(2 x)^{n}-b^{n} \tag{চ.’০২}\\
&(2 x)^{n}-b^{n}=2^{n} x^{n}-b^{n} \\
& \therefore \frac{d}{d x}\left\{(2 x)^{n}-b^{n}\right\}=2^{n} \frac{d}{d x}\left(x^{n}\right)-\frac{d}{d x}\left(b^{n}\right) \\
&= 2^{n} n x^{n-1}-0=2^{n} n x^{n-1}
\end{align*}
$$

$$
\text { 5(a) } x^{2} \log _{a} x+7 e^{x} \cos x
$$

[সि.’o8]

$$
\frac{d}{d x}\left(x^{2} \log _{a} x+7 e^{x} \cos x\right)=x^{2} \frac{d}{d x}\left(\log _{a} x\right)
$$

$$
+\log _{a} x \frac{d}{d x}\left(x^{2}\right)+7\left\{e^{x} \frac{d}{d x}(\cos x)+\right.
$$

$$
\left.\cos x \frac{d}{d x}\left(e^{x}\right)\right\}
$$

$$
=x^{2} \frac{1}{x \ln a}+\log _{a} x(2 x)+
$$

$$
7\left\{e^{x}(-\sin x)+\cos x \cdot e^{x}\right\}
$$

$$
=x\left(\frac{1}{\ln a}+2 \log _{a} x\right)+7 e^{x}(\cos x-\sin x)
$$

5(b) $\sin ^{2} 2 x+e^{2 \ln (\cos 2 x)}$
[প্র.ভ.প. '১৩]
$\sin ^{2} 2 x+e^{2 \ln (\cos 2 x)}=\sin ^{2} 2 x+e^{\ln (\cos 2 x)^{2}}$

$$
=\sin ^{2} 2 x+(\cos 2 x)^{2}
$$

$$
=\sin ^{2} 2 x+\cos ^{2} 2 x=1
$$

$$
\frac{d}{d x}\left\{\sin ^{2} 2 x+e^{2 \ln (\cos 2 x)}\right\}=\frac{d}{d x}(1)=0
$$

5(c) $5 \mathrm{e}^{x} \ln x$
[य.’o8] মনে করি, $\mathrm{y}=5 \mathrm{e}^{x} \ln x$

$$
\begin{aligned}
& \begin{aligned}
\frac{d y}{d x} & =5\left\{\mathrm{e}^{x} \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}\left(\mathrm{e}^{x}\right)\right\} \\
& =5\left\{e^{x} \cdot \frac{1}{x}+\ln x\left(e^{x}\right)\right\} \\
\frac{d}{d x} & \left(5 \mathrm{e}^{x} \ln x\right)=5 e^{x}\left(\frac{1}{x}+\ln x\right)
\end{aligned}
\end{aligned}
$$

6.(a) $\frac{d}{d x}\left(\frac{x^{n}+\tan x}{e^{x}-\cot x}\right)=$

$$
\frac{\left(e^{x}-\cot x\right) \frac{d}{d x}\left(x^{n}+\tan x\right)-\left(x^{n}+\tan x\right) \frac{d}{d x}\left(e^{x}-\cot x\right)}{\left(e^{x}-\cot x\right)^{2}}
$$

$$
=\frac{\left(e^{x}-\cot x\right)\left(n x^{n-1}+\sec ^{2} x\right)-\left(x^{n}+\tan x\right) \frac{d}{d x}\left(e^{x}+\operatorname{cosec}^{2} x\right)}{\left(e^{x}-\cot x\right)^{2}}
$$

6(b) $\frac{d}{d x}\left(\frac{1-\cos x}{1+\cos x}\right)$
$=\frac{(1+\cos x) \frac{d}{d x}(1-\cos x)-(1-\cos x) \frac{d}{d x}(1+\cos x)}{(1+\cos x)^{2}}$
$=\frac{(1+\cos x)(\sin x)-(1-\cos x)(-\sin x)}{(1+\cos x)^{2}}$
$=\frac{\sin x(1+\cos x+1-\cos x)}{(1+\cos x)^{2}}$
$=\frac{2 \sin x}{(1+\cos x)^{2}}$
6(c) $\frac{x \sin x}{x+\cos x}$
[রা. 'oo]
$\frac{d}{d x}\left(\frac{x \sin x}{x+\cos x}\right)=\frac{1}{(x+\cos x)^{2}}[(x+\cos x)$ $\left.\frac{d}{d x}(x \sin x)-x \sin x \frac{d}{d x}(x+\cos x)\right]$
$=\frac{1}{(x+\cos x)^{2}}[(x+\cos x)(x \cos x+\sin x .1)$ $-x \sin x(1-\sin x)]$
$=\frac{1}{(x+\cos x)^{2}}\left[\left(x^{2} \cos x+x \sin x+x \cos ^{2} x+\right.\right.$ $\left.\cos x \sin x-x \sin x+x \sin ^{2} x\right]$

$$
\begin{aligned}
& =\frac{x\left(\sin ^{2} x+\cos ^{2} x\right)+x^{2} \cos x+\cos x \sin x}{(x+\cos x)^{2}} \\
& =\frac{x+\left(x^{2}+\sin x\right) \cos x}{(x+\cos x)^{2}} \text { (Ans.) } \\
& \text { 6.(d) } \frac{\sin ^{2} x}{1+\cos x} \\
& \frac{\sin ^{2} x}{1+\cos x}=\frac{1-\cos ^{2} x}{1+\cos x}=\frac{(1-\cos x)(1+\cos x)}{1+\cos x}
\end{aligned}
$$

$$
=1-\cos x \quad \frac{d}{d x}\left(\frac{\sin ^{2} x}{1+\cos x}\right)=\sin x
$$

$$
\begin{align*}
& 6(\text { e }) \frac{\cos x}{1+\sin ^{2} x} \tag{ষ.'০১}\\
& \frac{d}{d x}\left(\frac{\cos x}{1+\sin ^{2} x}\right)=
\end{align*}
$$

$$
\frac{\left(1+\sin ^{2} x\right) \frac{d}{d x}(\cos x)-\cos x \frac{d}{d x}\left(1+\sin ^{2} x\right)}{\left(1+\sin ^{2} x\right)^{2}}
$$

7(a) «রি, $\mathrm{y}=\left(x+\sqrt{1+x^{2}}\right)^{n}$
$\therefore \frac{d y}{d x}=\mathrm{n}\left(x+\sqrt{1+x^{2}}\right)^{n-1} \frac{d}{d x}\left(x+\sqrt{1+x^{2}}\right)$

$$
=\frac{\left(1+\sin ^{2} x\right)(-\sin x)-\cos x(2 \sin x \cos x)}{\left(1+\sin ^{2} x\right)^{2}}
$$

$$
=\frac{-\sin x\left(1+\sin ^{2} x+2 \cos ^{2} x\right)}{\left(1+\sin ^{2} x\right)^{2}}
$$

$$
=\frac{-\sin x\left(2+\cos ^{2} x\right)}{\left(1+\sin ^{2} x\right)^{2}}
$$

$$
=\mathrm{n}\left(x+\sqrt{1+x^{2}}\right)^{n-1}\left\{1+\frac{1}{2 \sqrt{1+x^{2}}} \cdot 2 x\right\}
$$

$$
=n\left(x+\sqrt{1+x^{2}}\right)^{n-1} \frac{\sqrt{1+x^{2}}+x}{\sqrt{1+x^{2}}}
$$

$$
\frac{d}{d x}\left(\left(x+\sqrt{1+x^{2}}\right)^{n}\right)=\frac{n\left(x+\sqrt{1+x^{2}}\right)^{n}}{\sqrt{1+x^{2}}}
$$

7(b) $\frac{d}{d x}\left\{\operatorname{cosec}\left(e^{x^{2}}\right)\right\}$
$=\frac{d\left\{\operatorname{cosec}\left(e^{x^{2}}\right)\right\}}{d\left(e^{x^{2}}\right)} \frac{d\left(e^{x^{2}}\right)}{d\left(x^{2}\right)} \frac{d\left(x^{2}\right)}{d x}$
$=-\operatorname{cosec}\left(e^{x^{2}}\right) \cot \left(e^{x^{2}}\right) \cdot\left(e^{x^{2}}\right) \cdot 2 x$
$=-2 x e^{x^{2}} \operatorname{cosec}\left(e^{x^{2}}\right) \cot \left(e^{x^{2}}\right)$ (Ans.)
8(a) $\log _{x} 5$

$\log _{x} 5=\log _{x} e \times \log _{e} 5=\ln 5 \frac{1}{\log _{e} x}$
$=\ln 5 \frac{1}{\ln x}=\ln 5(\ln x)^{-1}$
$\therefore \frac{d}{d x}\left(\log _{x} a\right)=\ln 5\left\{-1(\ln x)^{-2} \frac{d}{d x}(\ln x)\right\}$

$$
=-\ln 5 \frac{1}{(\ln x)^{2}} \cdot \frac{1}{x}=-\frac{\ln 5}{x(\ln x)^{2}}
$$

$8(b) \ln \left(\sin e^{x^{2}}\right)$

$$
\frac{d}{d x}\left\{\ln \left(\sin e^{x^{2}}\right)\right\}
$$

$$
=\frac{1}{\sin \left(e^{x^{2}}\right)}\left\{\cos \left(e^{x^{2}}\right)\right\} e^{x^{2}} .2 x
$$

$$
=2 x e^{x^{2}} \cot \left(e^{x^{2}}\right)
$$

8(c) $\frac{d}{d x}\left\{\ln \left(\tan \frac{x}{2}\right)\right\}$
$=\frac{d\left\{\ln \left(\tan \frac{x}{2}\right)\right\}}{d\left(\tan \frac{x}{2}\right)} \frac{d\left(\tan \frac{x}{2}\right)}{d\left(\frac{x}{2}\right)} \frac{d\left(\frac{x}{2}\right)}{d x}$
$=\frac{1}{\tan \frac{x}{2}} \sec ^{2} \frac{x}{2} \cdot \frac{1}{2}=\frac{1}{2} \frac{\cos (x / 2)}{\sin (x / 2)} \frac{1}{\cos ^{2}(x / 2)}$
$=\frac{1}{2 \sin (x / 2) \cos (x / 2)}=\frac{1}{\sin x}=\operatorname{cosec} x$
9. (a) $\frac{d}{d x}\left\{\ln \left(a x^{2}+b x+c\right)\right\}$

$$
\begin{aligned}
& =\frac{1}{a x^{2}+b x+c} \frac{d}{d x}\left(a x^{2}+b x+c\right) \\
& =\frac{2 a x+b}{a x^{2}+b x+c}(\text { Ans. }) \\
& \text { 9(b) } \frac{d}{d x}\left\{\ln \left(x+\sqrt{x^{2} \pm a^{2}}\right)\right\} \\
& =\frac{1}{x+\sqrt{x^{2} \pm a^{2}}} \frac{d}{d x}\left(x+\sqrt{x^{2} \pm a^{2}}\right) \\
& =\frac{1}{x+\sqrt{x^{2} \pm a^{2}}}\left\{1+\frac{1}{2 \sqrt{x^{2} \pm a^{2}}}(2 x)\right\} \\
& =\frac{1}{x+\sqrt{x^{2} \pm a^{2}}}\left\{\frac{\sqrt{x^{2} \pm a^{2}}+x}{\sqrt{x^{2} \pm a^{2}}}\right\} \\
& =\frac{1}{\sqrt{x^{2} \pm a^{2}}} \text { (Ans.) }
\end{aligned}
$$

9.(c) $\ln \frac{\sqrt{x+1}-1}{\sqrt{x+1}+1}$

$$
=\ln (\sqrt{x+1}-1)-\ln (\sqrt{x+1}+1)
$$

$$
\frac{d}{d x}\left\{\ln \frac{\sqrt{x+1}-1}{\sqrt{x+1}+1}\right\}
$$

$$
=\frac{1}{\sqrt{x+1}-1} \frac{1}{2 \sqrt{x+1}}-\frac{1}{\sqrt{x+1}+1} \frac{1}{2 \sqrt{x+1}}
$$

$$
=\frac{\sqrt{x+1}+1-\sqrt{x+1}+1}{2 \sqrt{x+1}(\sqrt{x+1}-1)(\sqrt{x+1}+1)}
$$

$$
\text { 10(a) }\left(\frac{\sin 2 x}{1+\cos 2 x}\right)^{2}=\left(\frac{2 \sin x \cos x}{2 \cos ^{2} x}\right)^{2}
$$

$$
=\left(\frac{\sin x}{\cos x}\right)^{2}=\tan ^{2} x
$$

$$
\frac{d}{d x}\left(\frac{\sin 2 x}{1+\cos 2 x}\right)^{2}=2 \tan x \frac{d}{d x}(\tan x)
$$

$$
=2 \tan x \cdot \sec ^{2} x
$$

$$
=\frac{2}{2 \sqrt{x+1}(x+1-1)}=\frac{1}{x \sqrt{x+1}} \text { (Ans.) }
$$

$$
\begin{aligned}
& \mathbf{1 0}(\mathrm{b})\left[\frac{x}{\sqrt{1-x^{2}}}\right]^{n} \\
& \frac{d}{d x}\left[\frac{x}{\sqrt{1-x^{2}}}\right]^{n}=\mathrm{n}\left[\frac{x}{\sqrt{1-x^{2}}}\right]^{n-1} \\
& \frac{\sqrt{1-x^{2} \cdot .1-x} \frac{1}{2 \sqrt{1-x^{2}}}(-2 x)}{\left(\sqrt{1-x^{2}}\right)^{2}} \\
& =\mathrm{n}\left[\frac{x}{\sqrt{1-\dot{x}^{2}}}\right]^{n-1} \frac{1-x^{2}+x^{2}}{\left(1-x^{2}\right) \sqrt{1-x^{2}}} \\
& =\mathrm{n}\left[\frac{x}{\sqrt{1-x^{2}}}\right]^{n-1} \frac{1}{\left(1-x^{2}\right)^{3 / 2}}
\end{aligned}
$$

[थ्र.ভ.भ. '०৫]

10(c) $\frac{d}{d x}\{x \ln x \ln (\ln x)\}$
$=x \ln x \frac{d}{d x}\{\ln (\ln x)\}+x \ln (\ln x) \frac{d}{d x}(\ln x)$
$+\ln x \ln (\ln x) \frac{d}{d x}(x)$
$=x \ln x \frac{1}{\ln x} \cdot \frac{1}{x}+x \ln (\ln x) \frac{1}{x}+$ $\ln x \ln (\ln x) .1$
$=1+\ln (\ln x)(1+\ln x)$
10(d) $\frac{d}{d x}(\sin x \sin 2 x \sin 3 x)$
$=\sin x \sin 2 x \frac{d}{d x}(\sin 3 x)+\sin x \sin 3 x$

$$
\frac{d}{d x}(\sin 2 x)+\sin 2 x \sin 3 x \frac{d}{d x}(\sin x)
$$

$=\sin x \sin 2 x(\cos 3 x) .3+\sin x \sin 3 x(\cos$ $2 x) .2+\sin 2 x \sin 3 x(\cos x) .1$
$=3 \sin x \sin 2 x \cos 3 x+2 \sin x \sin 3 x \cos 2 x+$ $\sin 2 x \sin 3 x \cos x$

11(a) $\frac{d}{d x}\left(e^{\sqrt{x}}+e^{-\sqrt{x}}\right)$
$=e^{\sqrt{x}} \frac{d}{d x}(\sqrt{x})+e^{-\sqrt{x}} \frac{d}{d x}(-\sqrt{x})$
$=e^{\sqrt{x}} \frac{1}{2 \sqrt{x}}-e^{-\sqrt{x}} \frac{1}{2 \sqrt{x}}=\frac{e^{\sqrt{x}}-e^{-\sqrt{x}}}{2 \sqrt{x}}$

$$
\begin{aligned}
& 11(\mathrm{a}) \frac{d}{d x}\left(e^{-x}+e^{\frac{1}{x}}\right) \\
& =e^{-x} \frac{d}{d x}(-x)+e^{\frac{1}{x}} \frac{d}{d x}\left(\frac{1}{x}\right) \\
& =-e^{-x} \cdot 1+e^{\frac{1}{x}}\left(-\frac{1}{x^{2}}\right)=-\left(e^{-x}+\frac{1}{x^{2}} e^{\frac{1}{x}}\right) \\
& \text { 12(a) ধরি, } \mathrm{y}=\ln \sqrt{\frac{1+\sin x}{1-\sin x}}=\frac{1}{2} \ln \frac{1+\sin x}{1-\sin x} \\
& =\frac{1}{2}\{\ln (1+\sin x)-\ln (1-\sin x)\} \\
& \frac{d y}{d x}=\frac{1}{2}\left\{\frac{\cos x}{1+\sin x}-\frac{(-\cos x)}{1-\sin x}\right\} \\
& =\frac{1}{2} \frac{\cos x(1-\sin x+1+\sin x)}{(1+\sin x)(1-\sin x)} \\
& =\frac{1}{2} \frac{2 \cos x}{1-\sin ^{2} x}=\frac{\cos x}{\cos ^{2} x}=\sec x
\end{aligned}
$$

12(b) ধরি, $\mathrm{y}=\cos \frac{x^{-1}-x}{x^{-1}+x}$
[প্র.ड.9.b১]

$$
\frac{d y}{d x}=-\sin \frac{x^{-1}-x}{x^{-1}+x} \frac{d}{d x}\left(\frac{x^{-1}-x}{x^{-1}+x}\right)
$$

$$
=-\sin \frac{x^{-1}-x}{x^{-1}+x} \frac{d}{d x}\left(\frac{1-x^{2}}{1+x^{2}}\right)
$$

$$
=-\sin \frac{x^{-1}-x}{x^{-1}+x} \frac{\left(1+x^{2}\right)(-2 x)-\left(1-x^{2}\right)(2 x)}{\left(1+x^{2}\right)^{2}}
$$

$$
=-\sin \frac{x^{-1}-x}{x^{-1}+x} \frac{2 x\left(-1-x^{2}-1+x^{2}\right)}{\left(1+x^{2}\right)^{2}}
$$

$$
=\frac{4 x}{\left(1+x^{2}\right)^{2}} \sin \frac{x^{-1}-x}{x^{-1}+x}
$$

12(c) $\mathrm{e}^{3 x} \cos x^{\circ}=\mathrm{e}^{3 x} \cos \frac{\pi x}{180}$

$$
\begin{aligned}
& \frac{d}{d x}\left(\mathrm{e}^{3 x} \cos x^{\circ}\right)=\mathrm{e}^{3 x}\left(-\sin \frac{\pi x}{180}\right) \\
& \frac{d}{d x}\left(\frac{\pi x}{180}\right)+\cos \frac{\pi x}{180} \cdot \mathrm{e}^{3 x} \frac{d}{d x}(3 x)
\end{aligned}
$$

$$
=-\mathrm{e}^{3 x} \cdot \sin x^{\circ} \cdot\left(\frac{\pi}{180}\right)+\cos x^{\circ} \cdot \mathrm{e}^{3 x} \cdot 3
$$

$$
=\quad \mathrm{e}^{3 x}\left(3 \cos x^{\circ}-\frac{\pi}{180} \sin x^{\circ}\right)
$$

$$
\text { 13(a) } \frac{d}{d x}\left\{\sin ^{-1}\left(e^{\tan ^{-1} x}\right)\right\}
$$

$$
=\frac{1}{\sqrt{1-\left(e^{\tan ^{-1} x}\right)^{2}}} \frac{d}{d x}\left(e^{\tan ^{-1} x}\right)
$$

$$
=\frac{1}{\sqrt{1-e^{2 \tan ^{-1} x}}} e^{\tan ^{-1} x} \frac{1}{1+x^{2}}
$$

$$
=\frac{e^{\tan ^{-1} x}}{\left(1+x^{2}\right) \sqrt{1-e^{2 \tan ^{-1} x}}}
$$

$$
\text { 13(b) } \frac{d}{d x}\left\{\cos ^{-1}\left(\frac{a+b \cos x}{b+a \cos x}\right)\right\}
$$

$$
=-\frac{1}{\sqrt{1-\left(\frac{a+b \cos x}{b+a \cos x}\right)^{2}}}
$$

$$
(b+a \cos x)(-b \sin x)-(a+b \cos x)(-a \sin x)
$$

$$
(b+a \cos x)^{2}
$$

$$
b+a \cos x
$$

$$
=-\frac{b+a \cos x}{\sqrt{(b+a \cos x)^{2}-(a+b \cos x)^{2}}}
$$

$$
\frac{\left(-b^{2}+a^{2}\right) \sin x}{(b+a \cos x)^{2}}
$$

$$
=\frac{-\left(a^{2}-b^{2}\right) \sin x}{(b+a \cos x) \sqrt{b^{2}+a^{2} \cos ^{2} x-a^{2}-b^{2} \cos ^{2} x}}
$$

$$
=\frac{\left(b^{2}-a^{2}\right) \sin x}{(b+a \cos x) \sqrt{\left(b^{2}-a^{2}\right)\left(1-\cos ^{2} x\right)}}
$$

$$
=\frac{\left(b^{2}-a^{2}\right) \sin x}{(b+a \cos x) \sqrt{\left(b^{2}-a^{2}\right) \sin ^{2} x}}
$$

$$
=\frac{\sqrt{b^{2}-a^{2}}}{b+a \cos x}
$$

13(c) $\sin ^{-1}\left(\frac{2 x^{-1}}{x+x^{-1}}\right)=\sin ^{-1}\left(\frac{2 / x}{x+1 / x}\right)$

$$
\begin{aligned}
& =\sin ^{-1}\left(\frac{2}{x^{2}+1}\right) \\
\therefore & \frac{d}{d x}\left\{\sin ^{-1}\left(\frac{2 x^{-1}}{x+x^{-1}}\right)\right\} \\
= & \frac{1}{\sqrt{1-\frac{4}{\left(x^{2}+1\right)^{2}}}} 2 \frac{d}{d x}\left(x^{2}+1\right)^{-1} \\
= & \frac{x^{2}+1}{\sqrt{x^{4}+2 x^{2}+1-4}} 2(-1)\left(x^{2}+1\right)^{-2} .2 x \\
= & \frac{-4 x\left(x^{2}+1\right)^{-1}}{\sqrt{x^{4}+2 x^{2}-3}}=\frac{-4 x}{\left(x^{2}+1\right) \sqrt{x^{4}+2 x^{2}-3}}
\end{aligned}
$$

$$
\text { 13(d) } \frac{d}{d x}\left\{\cos ^{-1} x \ln \left(\sin ^{-1} x\right)\right\} \quad \text { [ब्र.ड..9.'०8] }
$$

$$
=\cos ^{-1} x \frac{d}{d x}\left\{\ln \left(\sin ^{-1} x\right)\right\}+
$$

$$
\ln \left(\sin ^{-1} x\right) \frac{d}{d x}\left(\cos ^{-1} x\right)
$$

$$
=\cos ^{-1} x \frac{1}{\sin ^{-1} x} \frac{1}{\sqrt{1-x^{2}}}+\frac{\ln \left(\sin ^{-1} x\right)}{-\sqrt{1-x^{2}}}
$$

$$
=\frac{1}{\sqrt{1-x^{2}}}\left\{\frac{\cos ^{-1} x}{\sin ^{-1} x}-\ln \left(\sin ^{-1} x\right)\right\}
$$

$$
\begin{aligned}
& 13(e) \cot ^{-1}\left(\frac{x^{2}}{e^{x}}\right)+\cot ^{-1}\left(\frac{e^{x}}{x}\right. \\
& =\tan ^{-1}\left(\frac{e^{x}}{x^{2}}\right)+\tan ^{-1}\left(\frac{x^{2}}{e^{x}}\right)
\end{aligned}
$$

$$
=\tan ^{-1} \frac{\frac{e^{x}}{x^{2}}+\frac{x^{2}}{e^{x}}}{1-\frac{e^{x}}{x^{2}} \cdot \frac{x^{2}}{e^{x}}}=\tan ^{-1} \frac{\frac{e^{x}}{x^{2}}+\frac{x^{2}}{e^{x}}}{1-1}
$$

$$
=\cot ^{-1} \frac{1-1}{\frac{e^{x}}{x^{2}}+\frac{x^{2}}{e^{x}}}=\cot ^{-1} 0=\frac{\pi}{2}
$$

$$
\therefore \frac{d}{d x}\left\{\cot ^{-1}\left(\frac{x^{2}}{e^{x}}\right)+\cot ^{-1}\left(\frac{e^{x}}{x^{2}}\right)\right\}=\frac{d}{d x}\left(\frac{\pi}{2}\right)=0
$$

13(f) $\tan ^{-1} \frac{\sqrt{x}+\sqrt{a}}{1-\sqrt{a x}}$
[र्र.ভ.भ. ’১৬]

$$
=\tan ^{-1} \frac{\sqrt{x}+\sqrt{a}}{1-\sqrt{x} \sqrt{a}}=\tan ^{-1} \sqrt{x}+\tan ^{-1} \sqrt{a}
$$

$$
\therefore \frac{d}{d x}\left\{\tan ^{-1} \frac{\sqrt{x}+\sqrt{a}}{1-\sqrt{a x}}\right\}
$$

$$
=\frac{d}{d x}\left(\tan ^{-1} \sqrt{x}\right)+\frac{d}{d x}\left(\tan ^{-1} \sqrt{a}\right)
$$

$$
=\frac{1-}{1+(\sqrt{x})^{2}} \frac{d}{d x}(\sqrt{x})+0
$$

$$
=\frac{1}{1+x} \cdot \frac{1}{2 \sqrt{x}}=\frac{1}{2 \sqrt{x}(1+x)}
$$

14(a) 《রি, $\mathrm{y}=\tan ^{-1} \frac{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}$ এবए
$x^{2}=\cos \theta$. णाइলে, $\theta=\cos ^{-1} x^{2}$ এनR
$y=\tan ^{-1} \frac{\sqrt{1+\cos \theta}-\sqrt{1-\cos \theta}}{\sqrt{1+\cos \theta}+\sqrt{1-\cos \theta}}$
$=\tan ^{-1} \frac{\sqrt{2 \cos ^{2}(\theta / 2)}-\sqrt{2 \sin ^{2}(\theta / 2)}}{\sqrt{2 \cos ^{2}(\theta / 2)}+\sqrt{2 \sin ^{2}(\theta / 2)}}$
$=\tan ^{-1} \frac{\sqrt{2}\{\cos (\theta / 2)-\sin (\theta / 2)\}}{\sqrt{2}\{\cos (\theta / 2)+\sin (\theta / 2)\}}$
$=\tan ^{-1} \frac{\cos (\theta / 2)\{1-\tan (\theta / 2)\}}{\cos (\theta / 2)\{1+\tan (\theta / 2)\}}$
$=\tan ^{-1} \frac{1-\tan (\theta / 2)}{1+\tan (\theta / 2)}=\tan ^{-1}(1)-\tan ^{-1} \tan \frac{\theta}{2}$
$=\frac{\pi}{4}-\frac{\theta}{2}=\frac{\pi}{4}-\frac{1}{2} \tan ^{-1} x^{2}$

$$
\frac{d y}{d x}=0-\frac{1}{2}\left\{-\frac{1}{1+\left(x^{2}\right)^{2}}\right\}(2 x)=\frac{x}{\sqrt{1-x^{4}}}
$$

14(b) ধরি, $\mathrm{y}=\sec ^{-1} \frac{1}{2 x^{2}-1}$ এব $x=\cos \theta$

$$
\text { তাহলে, } \theta=\cos ^{-1} x \text { এবर }
$$

$y=\sec ^{-1} \frac{1}{2 \cos ^{2} \theta-1}=\sec ^{-1} \frac{1}{\cos 2 \theta}$
$=\sec ^{-1} \sec 2 \theta=2 \theta=2 \cos ^{-1} x$
$\frac{d y}{d x}=\frac{d}{d x}\left(2 \cos ^{-1} x\right)=\frac{-2}{\sqrt{1-x^{2}}}$ (Ans.)
$14(\mathrm{c}) \frac{d}{d x}\left\{\sin ^{-1}\left(\tan ^{-1} x\right)\right\}$
$=\frac{1}{\sqrt{1-\left(\tan ^{-1} x\right)^{2}}} \frac{d}{d x}\left(\tan ^{-1} x\right)$
$=\frac{1}{\sqrt{1-\left(\tan ^{-1} x\right)^{2}}} \frac{1}{1+x^{2}}$
$=\frac{1}{\left(1+x^{2}\right) \sqrt{1-\left(\tan ^{-1} x\right)^{2}}}$ (Ans.)
[सि.'os]

14(d) $\tan ^{-1} \frac{\cos x-\sin x}{\cos x+\sin x}$
[ๆ्र.区.भ. '०৫]
$=\tan ^{-1} \frac{\cos x(1-\tan x)}{\cos x(1+\tan x)}=\tan ^{-1} \frac{1-\tan x}{1+1 \cdot \tan x}$
$=\tan ^{-1} 1-\tan ^{-1}(\tan x)=\frac{\pi}{4}-x$
$\therefore \frac{d}{d x}\left\{\tan ^{-1} \frac{\cos x-\sin x}{\cos x+\sin x}\right\}=\frac{d}{d x}\left(\frac{\pi}{4}-x\right)$

$$
=0-1=-1((\text { Ans. })
$$

$\frac{d y}{d x}$ निক্ণী ক্ন 8

15(a) $x=a(\theta-\sin \theta), y=a(1+\cos \theta)$
[প.ৰ.Ј.भ. '০৬]

$$
\begin{aligned}
& \frac{d x}{d \theta}=\frac{d}{d \theta}\{a(\theta-\sin \theta)\}=a(1-\cos \theta) \\
& \frac{d y}{d \theta}=\frac{d}{d \theta}\{a(1+\cos \theta)\}=a(0-\sin \theta) \\
& \frac{d y}{d x}=\frac{d y}{d \theta} \times \frac{d \theta}{d x}=\frac{-a \sin \theta}{a(1-\cos \theta)} \\
& \\
& =\frac{-2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin ^{2} \frac{\theta}{2}}=-\cot \frac{\theta}{2}
\end{aligned}
$$

15(b) $\frac{d}{d x}(\sin x)^{\ln x}=(\sin x)^{\ln x}$

$$
\begin{aligned}
& {\left[\ln x \frac{d}{d x}\{\ln (\sin x)\}+\ln (\sin x) \frac{d}{d x}(\ln x)\right] . \left\lvert\,=(\ln x)^{\tan ^{-1} x}\left[\tan ^{-1} x \frac{1}{\ln x} \cdot \frac{1}{x}+\frac{\ln (\ln x)}{1+x^{2}}\right]\right.} \\
& =(\sin x)^{\ln x}\left[\ln x \frac{1}{\sin x} \cdot \cos x+\ln (\sin x) \cdot \frac{1}{x}\right] \\
& =(\sin x)^{\ln x}\left[\ln x \cdot \cot x+\frac{\ln (\sin x)}{x}\right] \\
& \text { 15(c) } \frac{d}{d x}(\sin x)^{\tan x}=(\sin x)^{\tan x} \\
& {\left[\tan x \frac{d}{d x}\{\ln (\sin x)\}+\ln (\sin x) \frac{d}{d x}(\tan x)\right]} \\
& =(\sin x)^{\operatorname{tin} x}\left[\frac{\sin x}{\cos x} \frac{\cos x}{\sin x}+\ln (\sin x) \cdot \sec ^{2} x\right] \\
& =(\sin x)^{\tan x}\left[1+\sec ^{2} x \cdot \ln (\sin x)\right] \\
& \text { 15(d) } \frac{d}{d x}(\tan x)^{\ln x}=(\tan x)^{\ln x} \\
& {\left[\ln x \frac{d}{d x}\{\ln (\tan x)\}+\ln (\tan x) \frac{d}{d x}(\ln x)\right]} \\
& =(\tan x)^{\ln x}\left[\ln x \frac{1}{\tan x} \sec ^{2} x+\ln (\tan x) \cdot \frac{1}{x}\right] \\
& =(\tan x)^{\ln x}\left[\ln x \frac{\cos x}{\sin x} \cdot \frac{1}{\cos ^{2} x}+\frac{\ln (\tan x)}{x}\right] \\
& =(\tan x)^{\ln x}\left[\ln x \frac{2}{2 \sin x \cos x}+\frac{\ln (\tan x)}{x}\right] \\
& =(\tan x)^{\ln x}\left[2 \ln x \cdot \operatorname{cosec} 2 x+\frac{\ln (\tan x)}{x}\right] \\
& \text { 15(e) } \frac{d}{d x}(\ln x)^{\ln x}=(\ln x)^{\ln x} \\
& {\left[\ln x \frac{d}{d x}\{\ln (\ln x)\}+\ln (\ln x) \frac{d}{d x}(\ln x)\right]} \\
& =(\ln x)^{\ln x}\left[\ln x \frac{1}{\ln x} \cdot \frac{1}{x}+\ln (\ln x) \cdot \frac{1}{x}\right] \\
& =\frac{1}{x}(\ln x)^{\ln x}[1+\ln (\ln x)] \\
& \text { 15.(f) } \frac{d}{d x}(\ln x)^{\tan ^{-1} x}=(\ln x)^{\tan ^{-1} x} \\
& {\left[\tan ^{-1} x \frac{d}{d x}\{\ln (\ln x)\}+\ln (\ln x) \frac{d}{d x}\left(\tan ^{-1} x\right)\right]} \\
& \text { (g) } \frac{d}{d x}(\tan x)^{\cos ^{-1} x}=(\tan x)^{\cos ^{-1} x} \\
& {\left[\cos ^{-1} x \frac{d}{d x}\{\ln (\tan x)\}+\ln (\tan x) \frac{d}{d x}\left(\cos ^{-1} x\right)\right]} \\
& =(\tan x)^{\cos ^{-1} x}\left[\frac{\sec ^{2} x \cdot \cos ^{-1} x}{\tan x}-\frac{\ln (\tan x)}{\sqrt{1-x^{2}}}\right] \\
& \text { (h) }\left(\sin ^{-1} x\right)^{\ln x} \\
& \text { [প্র.Ј.भ. '১৬] } \\
& \frac{d}{d x}\left(\sin ^{-1} x\right)^{\ln x}=\left(\sin ^{-1} x\right)^{\ln x} \\
& {\left[\ln x \frac{d}{d x}\left\{\ln \left(\sin ^{-1} x\right)\right\}+\ln \left(\sin ^{-1} x\right) \frac{d}{d x}(\ln x)\right]} \\
& =\left(\sin ^{-1} x\right)^{\ln x} \quad\left[\frac{\ln x}{\sin ^{-1} x} \frac{1}{\sqrt{1-x^{2}}}+\frac{\ln \left(\sin ^{-1} x\right)}{x}\right] \\
& =\left(\sin ^{-1} x\right)^{\ln x} \quad\left[\frac{\ln x}{\sqrt{1-x^{2}} \sin ^{-1} x}+\frac{\ln \left(\sin ^{-1} x\right)}{x}\right] \\
& \text { 16.(a) } \frac{d}{d x}\left(x^{x}+x^{1 / x}\right)=\frac{d}{d x}\left(x^{x}\right)+\frac{d}{d x}\left(x^{1 / x}\right) \\
& =x^{x}\left\{x \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}(x)\right\}+ \\
& x^{1 / x}\left\{\frac{1}{x} \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}\left(\frac{1}{x}\right)\right\} \\
& =x^{x}\left\{x \cdot \frac{1}{x}+\ln x \cdot 1\right\}+x^{1 / x}\left\{\frac{1}{x} \cdot \frac{1}{x}+\ln x \cdot\left(-\frac{1}{x^{2}}\right)\right\} \\
& =x^{x}(1+\ln x)+x^{1 / x} \cdot \frac{1}{x^{2}}(1-\ln x) \\
& =x^{x}(1+\ln x)+x^{\frac{1}{x}-2}(1-\ln x) \\
& \text { 16(b) } \frac{d}{d x}\left(x^{x} \cdot x^{\cos ^{-1} x}\right) \\
& =x^{x} \frac{d}{d x}\left(x^{\cos ^{-1} x}\right)+x^{\cos ^{-1} x} \frac{d}{d x}\left(x^{x}\right) \\
& =x^{x} \cdot x^{\cos ^{-1} x}\left[\cos ^{-1} x \frac{d}{d x}(\ln x)\right.
\end{aligned}
$$

$\left.+\ln x \frac{d}{d x}\left(\cos ^{-1} x\right)\right]+x^{\cos ^{-1} x} \cdot x^{x}\left[x \frac{d}{d x}(\ln x)\right.$
$\left.+\ln x \frac{d}{d x}(x)\right]$
$=x^{x} \cdot x^{\cos ^{-1} x}\left[\frac{\cos ^{-1} x}{x}+\frac{-\ln x}{\sqrt{1-x^{2}}}\right]$
$+x^{\cos ^{-1} x} \cdot x^{x}\left[x \cdot \frac{1}{x}+\ln x .1\right]$
$=x^{x} \cdot x^{\cos ^{-1} x}\left[\frac{\cos ^{-1} x}{x}-\frac{\ln x}{\sqrt{1-x^{2}}}+1+\ln x\right]$
17(a) $x=y \cdot \ln (x y) \Rightarrow \frac{x}{y}=\ln x+\ln y$
উভয় পক্মকে x এর সাপেক্মে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
& \frac{y \cdot 1-x \cdot \frac{d y}{d x}}{y^{2}}=\frac{1}{x}+\frac{1}{y} \frac{d y}{d x} \\
\Rightarrow & x y-x^{2} \frac{d y}{d x}=y^{2}+x y \frac{d y}{d x} \\
\Rightarrow & y(x-y)=x(x+y) \frac{d y}{d x} \\
& \frac{d y}{d x}=\frac{y(x-y)}{x(x+y)}
\end{aligned}
$$

17(b) $y=\cot (x+y) \Rightarrow \cot ^{-1} y=x+y$
উভয় পক্ষকে x এর সাপেক্ষে অম্তরীকরণ করে পাই,

$$
\begin{aligned}
& -\frac{1}{1+y^{2}} \frac{d y}{d x}=1+\frac{d y}{d x} \\
\Rightarrow & \left(-\frac{1}{1+y^{2}}-1\right) \frac{d y}{d x}=1 \\
\Rightarrow & -\frac{1+1+y^{2}}{1+y^{2}} \frac{d y}{d x}=1 \\
& \frac{d y}{d x}=-\frac{1+y^{2}}{2+y^{2}} \quad \text { (Ans. }
\end{aligned}
$$

17(c) $y=\tan (x+y)$
$\Rightarrow \tan ^{-1} y=x+y$
উভয় পককে x এর সাপেক্ন অল্তরীকর্রণ করে পাই,

$$
\begin{aligned}
& \frac{1}{1+y^{2}} \frac{d y}{d x}=1+\frac{d y}{d x} \\
\Rightarrow & \left(\frac{1}{1+y^{2}}-1\right) \frac{d y}{d x}=1 \\
\Rightarrow & \frac{1-1-y^{2}}{1+y^{2}} \frac{d y}{d x}=1 \therefore \frac{d y}{d x}=-\frac{1+y^{2}}{y^{2}}
\end{aligned}
$$

17(d) $x^{2}+y^{2}=\sin (x y)$
উভয় পক্কে x এর সাপেক্ষে অল্তরীকরণ করে পাই,

$$
2 x+2 y \frac{d y}{d x}=\cos (x y)\left(x \frac{d y}{d x}+y\right)
$$

$\Rightarrow\{2 y-x \cos (x y)\} \frac{d y}{d x}=y \cos (x y)-2 x$

$$
\frac{d y}{d x}=\frac{y \cos (x y)-2 x}{2 y-x \cos (x y)}
$$

(e) $\cos y=x \cos (a+y) \Rightarrow x=\frac{\cos y}{\cos (a+y)}$

উভয় পশ্ষকে x এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
1=\frac{\cos (a+y)(-\sin y) \frac{d y}{d x}-\cos y\{-\sin (a+y)\} \frac{d y}{d x}}{\cos ^{2}(a+y)}
$$

$$
1=\frac{\{\sin (a+y) \cos y-\cos (a+y) \sin y\} \frac{d y}{d x}}{\cos ^{2}(a+y)}
$$

$$
\cos ^{2}(a+y)=\sin (a+y-y) \frac{d y}{d x}
$$

$$
\begin{equation*}
\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\sin a} \tag{Ans.}
\end{equation*}
$$

17(f) $e^{2 x}+5 y^{3}=3 \cos (x y)$
[প. .Ј.भ. '১৫]
উভয় পক্ষকে x এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{array}{r}
e^{2 x} \cdot 2+15 y^{2} \frac{d y}{d x}=3\{-\sin (x y)\} \frac{d}{d x}(x y) \\
\Rightarrow 2 e^{2 x}+15 y^{2} \frac{d y}{d x}=-3 \sin (x y)\left(x \frac{d y}{d x}+y\right) \\
\Rightarrow\left\{15 y^{2}+3 x \sin (x y)\right\} \frac{d y}{d x} \\
=2 e^{2 x}+3 y \sin (x y)
\end{array}
$$

$$
\frac{d y}{d x}=\frac{2 e^{2 x}+3 y \sin (x y)}{15 y^{2}+3 x \sin (x y)}
$$

18(a) $y=x^{y}$
উভয় পক্ষকে x এর সাপেক্ষে অল্তরীকর্রণ করে পাই,

$$
\begin{aligned}
& \frac{d y}{d x}=x^{y}\left[y \frac{d}{d x}(\ln x)+\ln x \frac{d y}{d x}\right] \\
\Rightarrow & \frac{d y}{d x}=y\left[\frac{y}{x}+\ln x \frac{d y}{d x}\right] \quad\left[\because x^{y}=y\right] \\
\Rightarrow & (1-y \ln x) \frac{d y}{d x}=\frac{y^{2}}{x} \\
& \frac{d y}{d x}=\frac{y^{2}}{x(1-y \ln x)} \text { (Ans.) }
\end{aligned}
$$

18(b) $x^{y} y^{x}=1$
[প्र.区.भ. '०২]

$$
y \ln x+x \ln y=0
$$

উভয় পক্করে x এর সাপেক্কে অল্তরীকরণ করে পাই,

$$
\begin{aligned}
& \mathrm{y} \frac{1}{x}+\ln x \frac{d y}{d x}+x \cdot \frac{1}{y} \frac{d y}{d x}+\ln y=0 \\
\Rightarrow & y^{2}+x y \ln x \frac{d y}{d x}+x^{2} \frac{d y}{d x}+x y \ln y=0 \\
\Rightarrow & \left(\mathrm{xy} \ln x+\mathrm{x}^{2}\right) \frac{d y}{d x}=-\left(x y \ln y+y^{2}\right) \\
& \frac{d y}{d x}=-\frac{y(x \ln y+y)}{x(y \ln x+x)}
\end{aligned}
$$

18(c) $(\sin x)^{\cos y}+(\cos x)^{\sin y}=a$
উভয় পশকে x এর সাপেক্ষে অন্তরীকরণ করে পাই,
$(\sin x)^{\cos y}\left[\cos y \frac{d}{d x}\{\ln (\sin x)\}+\ln (\sin x)\right.$
$\left.\frac{d}{d x}(\cos y)\right]+(\cos x)^{\sin y}\left[\sin y \frac{d}{d x}\{\ln (\cos x)\}\right.$
$\left.+\ln (\cos x) \frac{d}{d x}(\sin y)\right]=0$
$\Rightarrow(\sin x)^{\cos y}[\cos y \cot x+\ln (\sin x)$
$\left.(-\sin y) \frac{d y}{d x}\right]+(\cos x)^{\sin y}[\sin y(-\tan x)+$
$\left.\ln (\cos x) \cdot \cos y \frac{d y}{d x}\right]=0$
$\Rightarrow\left\{(\cos x)^{\sin y} \ln (\cos x) \cdot \cos y\right.$
$\left.-(\sin x)^{\cos y} \ln (\sin x) \sin y\right\} \frac{d y}{d x}=(\cos x)^{\sin y}$ $\sin y \tan x-(\sin x)^{\cos y} \cos y \cot x$
$\therefore \frac{d y}{d x}=$
$\frac{(\cos x)^{\sin y} \sin y \tan x-(\sin x)^{\cos y} \cos y \cot x}{(\cos x)^{\sin y} \ln (\cos x) \cos y-(\sin x)^{\cos y} \ln (\sin x) \sin y}$
19. $y=\tan ^{-1} \sqrt{\frac{1-x}{1+x}}$ इলে, লে丹াө बে,
$\frac{d y}{d x}=-\frac{1}{2 \sqrt{1-x^{2}}}$
প্র্যান : বরি, $x=\cos \theta \Rightarrow \theta=\cos ^{-1} x$

$$
\begin{aligned}
& y=\tan ^{-1} \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}=\tan ^{-1} \sqrt{\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \cos \frac{\theta}{2}}} \\
& =\tan ^{-1} \tan \frac{\theta}{2}=\frac{\theta}{2}=\frac{1}{2} \cos ^{-1} x \\
& \quad \frac{d y}{d x}=\frac{1}{2} \frac{-1}{\sqrt{1-x^{2}}}=-\frac{1}{2 \sqrt{1-x^{2}}}
\end{aligned}
$$

20. $x=1$ বিन्দूতে $y=x^{2}$ ফাংশনের অন্তরক आকার সমীকরণ থেকে dy এবং δy নির্ণয় কর যখন

$$
\mathrm{dx}=\delta \mathrm{x}=2
$$

সমাধাन : ধরি, $f(x)=y=x^{2}$

$$
\frac{d y}{d x}=2 x \Rightarrow d y=2 x d x
$$

$\Rightarrow \mathrm{dy}=2 \times 1 \times 2,[\because \mathrm{x}=1, \mathrm{dx}=2]$
$\Rightarrow d y=4$
आবার, $\delta y=f(x+\delta x)-f(x)$

$$
\begin{aligned}
& =f(1+2)-f(1)=f(3)-f(1) \\
& =3^{2}-1^{2}=9-1=8 .
\end{aligned}
$$

21. $x=3$ বিन्দूতে $y=\frac{x^{2}}{3}+1$ ऊाশশनের অन्णরक আকার সমীকরণ থেকে dy এবং δy নির্ণয় কর য়ধল $\mathrm{dx}=\delta \mathrm{x}=3$.

সমাধাन : ধরি, $f(x)=y=\frac{x^{2}}{3}+1$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{2}{3} x \Rightarrow d y=\frac{2}{3} x d x \\
\Rightarrow d y & =\frac{2}{3} \times 3 \times 3,[\because x=3, d x=3] \\
d y & =6
\end{aligned}
$$

আবার, $\delta y=f(x+\delta x)-f(x)$

$$
=f(3+3)-f(3)=f(6)-f(3)
$$

$$
=\left(\frac{6^{2}}{3}+1\right)-\left(\frac{3^{2}}{3}+1\right)
$$

$$
=12-3=9
$$

ভर्তি পরীশ্ষার MCQ :

1. $y=x^{-\frac{1}{x}}$ रबে $\frac{d y}{d x}$ এর মান-[BUET 07-08]

$$
\text { Sol }^{n}: \frac{d y}{d x}=x^{-\frac{1}{x}}\left[-\frac{1}{x} \cdot \frac{1}{x}+\ln x\left(+\frac{1}{x^{2}}\right)\right]
$$

$$
=x^{-\frac{1}{x}} \cdot \frac{1}{x^{2}}(\ln x-1)=\frac{1}{x^{2+\frac{1}{x}}}(\ln x-1)
$$

Option গুলোত $\mathrm{x}=1 / 2$ बमानে $\frac{1}{x^{2+\frac{1}{x}}}(\ln x-1)$ $=27.09$ इड़।
2. $\frac{d}{d x}\left(\log _{x} e\right)=$?
[DU 08-09]
Sol ${ }^{n}: \frac{d}{d x}\left(\log _{x} e\right)=\frac{d}{d x}\left(\frac{1}{\ln x}\right)=-\frac{1}{x(\ln x)^{2}}$
3. $\frac{d}{d x}\left\{\ln \left(x+\sqrt{x^{2}+a^{2}}\right)=\right.$?
[DU 07-08]
Sol ${ }^{n}: \frac{d}{d x}\left\{\ln \left(x+\sqrt{x^{2}+a^{2}}\right)\right.$
$=\frac{1}{x+\sqrt{x^{2}+a^{2}}} \cdot\left(1+\frac{2 x}{2 \sqrt{x^{2}+a^{2}}}\right)=\frac{1}{\sqrt{x^{2}+a^{2}}}$
4. $\mathrm{y}=\sqrt{\sec x}$ रलि, $\frac{d y}{d x}=$?
[DU 00-01]
Sol ${ }^{n}: \frac{d y}{d x}=\frac{1}{2 \sqrt{\sec x}} \cdot \sec x \tan x$
$=\frac{\sqrt{\sec x} \tan x}{2}=\frac{y}{2} \tan x$
5. $\mathrm{y}=\cos \sqrt{x}$ रान, $\frac{d y}{d x}=$?
[DU 03-04]
Sol ${ }^{n}: \frac{d y}{d x}=-\sin \sqrt{x} \cdot \frac{1}{2 \sqrt{x}} \doteq-\frac{\sin \sqrt{x}}{2 \sqrt{x}}$
6. $f(x)=\sqrt{1-\sqrt{x}}$ रल. $\frac{d f}{d x}=$? [DU 01-02]

Sol $^{n}: \frac{d f}{d x}=\frac{1}{2 \sqrt{1-\sqrt{x}}} \frac{-1}{2 \sqrt{x}}=\frac{-1}{4 \sqrt{x} \sqrt{1-\sqrt{x}}}$
7. $\mathrm{y}=\log _{e}(2 x)^{1 / 3}$ रलে, $\frac{d y}{d x}=$? [DU 98-99]

Sol ${ }^{n}: \frac{d y}{d x}=\frac{1}{3} \frac{d}{d x}\left\{\log _{c}(2 x)\right\}=\frac{1}{3.2 x}(2)=\frac{1}{3 x}$
8. $\mathrm{y}=\sin ^{-1} \sin (x+1)$ रणে, $\frac{d y}{d x}=$?
[DU 97-98; SU 06-07]
Sol ${ }^{n}: \mathrm{y}=\sin ^{-1} \sin (x+1)=\mathrm{x}+1 \therefore \frac{d y}{d x}=1$
9. $\mathrm{y}=\frac{x}{\sqrt{x^{2}+1}}$ इलে, $\frac{d y}{d x}=$?
[NU 07-08]
Sol ${ }^{\prime \prime}: \frac{d y}{d x}=\frac{\sqrt{x^{2}+1} \cdot 1-x \frac{1}{2 \sqrt{x^{2}+1}} \cdot 2 x}{\left(\sqrt{x^{2}+1}\right)^{2}}$
$=\frac{x^{2}+1-x^{2}}{\left(x^{2}+1\right) \sqrt{x^{2}+1}}=\frac{1}{\left(x^{2}+1\right)^{3 / 2}}$
10. $\frac{d}{d x}\left(a^{x}\right)=$? [KU,RU07-08;IU 02-03] Sol ${ }^{n}: \frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a$
11. $\frac{d}{d x}\left(\log _{a} m^{2}\right)=$?
[CU 07-08]
Sol ${ }^{n}: \frac{d}{d x}\left(\log _{a} m^{2}\right)=\theta$
12. $x=\frac{1}{2}$ रলে, $\frac{d}{d x}\left(x^{2} e^{2 x} \log _{e} 2 x\right)=$?

Sol ${ }^{n}: \frac{d}{d x}\left(x^{2} e^{2 x} \log _{\epsilon} 2 x\right)$
$-=x^{2} e^{2 x} \cdot \frac{1}{2 x}(2)+x^{2}\left(e^{2 x} \cdot 2\right) \log _{e} 2 x$

$$
+(2 x) \cdot e^{2 x} \log _{e} 2 x
$$

$$
x=\frac{1}{2} \text { इलে, } \frac{d}{d x}\left(x^{2} e^{2 x} \log _{e} 2 x\right)
$$

$$
=\frac{1}{4} e .2+0+0=\frac{1}{2} e
$$

13. $\mathrm{y}=\sqrt{x+\sqrt{x+\sqrt{x+\cdots \infty}}}$ राে, $\frac{d y}{d x}=$?
[SU 06-07, 05-06; RU 03-04; IU 06-07]
Sol ${ }^{n}$: $\mathrm{y}=\sqrt{x+y} \Rightarrow \mathrm{y}^{2}=\mathrm{x}+\mathrm{y}$

$$
2 \mathrm{y} \frac{d y}{d x}=1+\frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{1}{2 y-1}
$$

14. $y=\cos ^{-1} \frac{x-x^{-1}}{x+x^{-1}}$ रनে, $\frac{d y}{d x}=$?
[RU 06-07]
Sol $^{n}: y=\cos ^{-1} \frac{x^{2}-1}{x^{2}+1}=-2 \tan ^{-1} x$

$$
\frac{d y}{d x}=-\frac{2}{1+x^{2}}
$$

 Sol ${ }^{n}: \frac{d y}{d x}=\left(\log _{a} x\right) \frac{1}{x \ln 10}+\frac{1}{x \ln a}(\log x)$
ie. $\frac{d y}{d x}=\left(\log _{a} x\right) \frac{\log _{a} e}{x}+\frac{\log _{10} a}{x}(\log x)$
16. $\mathrm{y}=\tan ^{-1} \frac{1+x}{1-x}$ इศে, $\frac{d y}{d x}=$? [IU 05-06;

CU 02-03]

Sol ${ }^{n}: y=\tan ^{-1} \frac{1+x}{1-x}=\tan ^{-1}(1)+\tan ^{-1} x$ $\frac{d y}{d x}=\frac{1}{1+x^{2}}$
17. $\tan y=\frac{2 t}{1-t^{2}}, \sin x=\frac{2 t}{1+t^{2}} \quad$ इनে, $\frac{d y}{d x}=? \quad$ [SU 04-05;
Sol $^{n}: y=\tan ^{-1} \frac{2 t}{1-t^{2}}=2 \tan ^{-1} t$,
$x=\sin ^{-1} \frac{2 t}{1+t^{2}}=2 \tan ^{-1} t \therefore \mathrm{y}=\mathrm{x} \Rightarrow \frac{d y}{d x}=1$
18. $x^{y}=e^{x-y}$ इळে, $\frac{d y}{d x}=$?
[SU 06-07]
Sol ${ }^{n}: y \ln x=x-y \Rightarrow y=\frac{x}{1+\ln x}$

$$
\frac{d y}{d x}=\frac{(1+\ln x) \cdot 1-x \cdot \frac{1}{x}}{(1+\ln x)^{2}}=\frac{\ln x}{(1+\ln x)^{2}}
$$

19. $y=f(x)$ रनে, $\frac{d}{d x}\left(e^{y}\right)=$? [CU 07-08]

Sol ${ }^{n}: \frac{d}{d x}\left(e^{y}\right)=e^{y} \frac{d y}{d x}$
20. $x^{2}+3 x y+5 y^{2}=1$ इनে, $\frac{d y}{d x}=$?
[DU 07-08]
Sol ${ }^{n}: 2 x+3\left(x \frac{d y}{d x}+y .1\right)+10 y \frac{d y}{d x}=0$
$\Rightarrow(3 x+10 y) \frac{d y}{d x}=-(2 x+3 y)$
$\frac{d y}{d x}=-\frac{2 x+3 y}{3 x+10 y}$
21. $y=x^{\frac{1}{3}}+x^{-\frac{1}{3}}$ इजে, $3\left(y^{2}-1\right) \frac{d y}{d x}=$?
[DU 04-05]
Sol ${ }^{n}: y^{3}=x+x^{-1}+3 \cdot x^{\frac{1}{3}} x^{-\frac{1}{3}}\left(x^{\frac{1}{3}}+x^{\frac{1}{3}}\right)$
$\Rightarrow y^{3}=x+\frac{1}{x}+3 y$

$$
3 y^{2} \frac{d y}{d x}=1-\frac{1}{x^{2}}+3 \frac{d y}{d x}
$$

$$
\Rightarrow 3\left(y^{2}-1\right) \frac{d y}{d x}=1-\frac{1}{x^{2}} \quad \text { (Ans.) }
$$

প্রশ্নমানা IX I

এক নজরে প্রয়োজনীয় সূত্রাবনী :

1. $D^{n}\left(x^{n}\right)=n!\quad$ 2. $D^{n}\left(e^{a x}\right)=a^{n} e^{a x}$
2. $\mathrm{D}^{n}\left(\frac{1}{a x+b}\right)=\frac{(-1)^{n} n!a^{n}}{(a x+b)^{n+1}}$
3. $\mathrm{D}^{n}\{\ln (a x+b)\}=\frac{(-1)^{n-1} \cdot(n-1)!\cdot a^{n}}{(a x+b)^{n}}$
4. $\mathrm{D}^{\mathrm{n}}\{\sin (a x+b)\}=a^{n} \sin \left(\frac{n \pi}{2}+a x+b\right)$
5. $D^{n}(\cos a x)=a^{n} \cos \left(\frac{n \pi}{2}+a x\right)$
6. $D^{n}\left[e^{a x} \cos (b x+c)\right]=\left(a^{2}+b^{2}\right)^{n / 2}$ $e^{a x} \cos \left(b x+c+n \tan ^{-1} \frac{b}{a}\right)$
$1 y=4 x^{\frac{3}{2}}-3+2 x^{\frac{1}{2}}$ रबে, y_{2} निর্ণয় কর এবং $x=4$ হबে, y_{2} এর মান নিণয় কর।
সমাধান: এখানে, $y=4 x^{\frac{3}{2}}-3+2 x^{\frac{1}{2}}$
x-এর সাপেক্ষে পর্যায়ক্রমে অন্তরীকরণ করে পাই, $y_{1}=4 \times \frac{3}{2} x^{\frac{3}{2}-1}-0+2 \times \frac{1}{2} x^{\frac{1}{2}-1}=6 x^{\frac{1}{2}}+x^{-\frac{1}{2}}$
$y_{2}=6 \times \frac{1}{2} x^{\frac{1}{2}-1}+\left(-\frac{1}{2}\right) x^{-\frac{1}{2}-1}=3 x^{-\frac{1}{2}}-\frac{1}{2} x^{-\frac{3}{2}}$
$x=4$ रनि, $y_{2}=3.4^{-\frac{1}{2}}-\frac{1}{2} \cdot 4^{-\frac{3}{2}}$

$$
=\frac{3}{2}-\frac{1}{2} \cdot \frac{1}{8}=\frac{24-1}{16}=\frac{23}{16}
$$

2. $y=\sin x$ হनে, ศেখাও যে, $y_{4}-y=0$
[রা.’o8; ব.'08]
প্রমাণ \& এখানে, $y=\sin x$
x-এর সাপেক্ষে পর্যায়ক্রমে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
y_{1} & =\cos x, y_{2}=-\sin x, y_{3}=-\cos x, \\
y_{4} & =\sin x=y
\end{aligned}
$$

$$
y_{4}-y=0(\text { Showed })
$$

3.(a) $y=\sqrt{x}+\frac{1}{\sqrt{x}}$ रबে, मেখাఆ यে, $2 x \frac{d y}{d x}+$ $y=2 \sqrt{x} \quad$ [ঢा.'०१; य.'০৭; ङू.'০৮; প্র.ভ.প.'০8] প্রমাণ ঃ এখানে, $y=\sqrt{x}+\frac{1}{\sqrt{x}} \Rightarrow \sqrt{x} y=x+1$ উভয় পক্ষকে x-এর সাপেক্ষ অন্তরীকরণ করে পাই,

$$
\sqrt{x} \frac{d y}{d x}+y \frac{d}{d x}(\sqrt{x})=\frac{d}{d x}(x+1)
$$

$\Rightarrow \sqrt{x} \frac{d y}{d x}+y \cdot \frac{1}{2 \sqrt{x}}=1$
উভয় পক্ষকে $2 \sqrt{x}$ দ্বারা গুণ করে পাই,

$$
2 x \frac{d y}{d x}+y=2 \sqrt{x} \quad \text { (Showed) }
$$

3(b) $y=\sqrt{(1-x)(1+x)}$ रबে, দেখাও যে, $\left(1-x^{2}\right) \frac{d y}{d x}+x y=0$
প্রমাণ : এখানে, $y=\sqrt{(1-x)(1+x)}=\sqrt{1-x^{2}}$
উভয় পক্ষকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{2 \sqrt{1-x^{2}}}(-2 x)=\frac{-x \sqrt{1-x^{2}}}{1-x^{2}} \\
\Rightarrow & \left(1-x^{2}\right) \frac{d y}{d x}=-x \sqrt{1-x^{2}}=-x y \\
& \left(1-x^{2}\right) \frac{d y}{d x}+x y=0 \quad \text { (Showed) }
\end{aligned}
$$

3(c) $y=p x+\frac{q}{x}$ रूে, ศেখা যে, $x \frac{d^{2} y}{d x^{2}}+$ $2 \frac{d y}{d x}=2 p$
[கू. '০২; চ. '০৫; য., ঢা.'০১]
প্রমাণ : এখানে, $y=\mathrm{p} x+\frac{q}{x} \Rightarrow x y=p x^{2}+q$ উভয় পক্ষকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই, $x \frac{d y}{d x}+y \cdot 1=p(2 x)+0 \Rightarrow x \frac{d y}{d x}+y=2 p x$
পুনরায় x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
& x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x} \cdot 1+\frac{d y}{d x}=2 p \\
& x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=2 p \text { (Showed) }
\end{aligned}
$$

4.(a) $y=a x^{2}+\frac{b}{\sqrt{x}}$ इलে, ศেখাө बে, $2 x^{2} y_{2}$ $-x y_{1}-2 y=0$
[ব. '০২; ঢা. '০৬; ङ.. '০৯; সি.'১৩; য.,দি.'১৪] প্रयाण 8 उथानে, $y=a x^{2}+\frac{b}{\sqrt{x}}=a x^{2}+b x^{-\frac{1}{2}}$ x-এর সাপেকে জन्তরীকরণ করে পাই,

$$
\begin{aligned}
& y_{1}=2 a x-\frac{1}{2} b x^{-\frac{1}{2}-1}=2 a x-\frac{1}{2} b x^{-\frac{3}{2}} \\
& y_{2}=2 a+\frac{3}{4} b x^{-\frac{3}{2}-1}=2 a+\frac{3}{4} b x^{-\frac{5}{2}}
\end{aligned}
$$

এचन, $2 x^{2} y_{2}-x y_{1}-2 y=4 a x^{2}+\frac{3}{2} b x^{-\frac{1}{2}}$
$-\left(2 a x^{2}-\frac{1}{2} b x^{-\frac{1}{2}}\right)-\left(2 a x^{2}+2 b x^{-\frac{1}{2}}\right)$
$=4 a x^{2}+\frac{3}{2} b x^{-\frac{1}{2}}-2 a x^{2}+\frac{1}{2} b x^{-\frac{1}{2}}$

$$
-2 a x^{2}-2 b x^{-\frac{1}{2}}
$$

$$
=4 a x^{2}-4 a x^{2}+2 b x^{-\frac{1}{2}}-2 b x^{-\frac{1}{2}}=0
$$

$$
2 x^{2} y_{2}-x y_{1}-2 y=0 \quad \text { (Showed) }
$$

4(b) $y=p x^{2}+q x^{-\frac{1}{2}}$ रलে, ศেখাও यে,
 সि. '০৮, '১০; মা.'০১; চ.'১১,'১৩; मि.'১১; ঢ.' '১৩] প্রমাণ 8 जখानে, $y=p x^{2}+q x^{-\frac{1}{2}}$
$\therefore \frac{d y}{d x}=2 p x-\frac{1}{2} q x^{-\frac{3}{2}}, \frac{d^{2} y}{d x^{2}}=2 p+\frac{3}{4} q x^{-\frac{5}{2}}$
এখन, $2 x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=4 p x^{2}+\frac{3}{2} q x^{-\frac{1}{2}}$

$$
\begin{aligned}
& \quad-\left(2 p x^{2}-\frac{1}{2} q x^{-\frac{1}{2}}\right) \\
& =4 p x^{2}+\frac{3}{2} q x^{-\frac{1}{2}}-2 p x^{2}+\frac{1}{2} q x^{-\frac{1}{2}} \\
& =2 p x^{2}+2 q x^{-\frac{1}{2}}=2\left(p x^{2}+q x^{-\frac{1}{2}}\right)=2 \mathrm{y} \\
& 2 x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=2 y \quad \text { (Showed) }
\end{aligned}
$$

5.(a) $y=\frac{1}{2}\left(e^{x}+e^{-x}\right)$ इলে, দেষাে बে,

$$
\begin{equation*}
\left(\frac{d y}{d x}\right)^{2}+1=y^{2} \tag{চ.’০৩}
\end{equation*}
$$

প্রমাণঃ $y=\frac{1}{2}\left(e^{x}+e^{-x}\right) \Rightarrow 2 y=e^{x}+e^{-x} \ldots$

$$
y_{2}-m^{2} y=0 \text { [य.'০৭; ব.'০৮,'১৩; দি.'১০; সি.'১১] }
$$

$$
\text { প্রমাণ \& এখানে, } y=A e^{m x}+B e^{-m x}
$$

$$
\begin{aligned}
y_{1} & =\frac{d}{d x}\left(A e^{m x}+B e^{-m x}\right)=A m e^{m x}-B m e^{-m x} \\
y_{2} & =A m^{2} e^{m x}+B m^{2} e^{-m x} \\
& =m^{2}\left(A e^{m x}+B e^{-m x}\right) \\
& =m^{2} y \quad\left[\because y=A e^{m x}+B e^{-m x}\right] \\
& y_{2}-m^{2} y=0 \quad \text { (Showed) }
\end{aligned}
$$

6(a) $y=\sec x$ रলে, দেষাও বে, $y_{2}=y\left(2 y^{2}-1\right)$
[র্木া. '০৭; চ. '০৬, ০৮, '’৪; সि. '০৭; ব. 'o৬; य. 'ob, '১১; ধ্.' '১০; মగ.'১২,'>8]
প্রমাণ 8 এখानে, $y=\sec x$

$$
\begin{align*}
& 2 \frac{d y}{d x}=e^{x}-e^{-x} \tag{1}\\
& \Rightarrow 4\left(\frac{d y}{d x}\right)^{2}=\left(e^{x}-e^{-x}\right)^{2} \\
& =\left(e^{x}+e^{-x}\right)^{2}-4 e^{x} e^{-x} \\
& =(2 y)^{2}-4 \\
& {\left[\because e^{x}+e^{-x}=2 y\right]} \\
& \left(\frac{d y}{d x}\right)^{2}+1=y^{2} \quad \text { (Showed) } \\
& \text { 5(b) } y=A e^{m x}+B e^{-m x} \text { इলে, দেখাও यে, }
\end{align*}
$$

$$
\begin{aligned}
y_{1} & =\frac{d}{d x}(\sec x)=\sec x \tan x \\
y_{2} & =\sec x \cdot \sec ^{2} x+\tan x \cdot \sec x \tan x \\
& =\sec x\left(\sec ^{2} x+\tan ^{2} x\right) \\
& =\sec x\left(\sec ^{2} x+\sec ^{2} x-1\right) \\
y_{2} & =y\left(2 y^{2}-1\right) \quad[\because y=\sec x]
\end{aligned}
$$

6(b) $y=\tan x+\sec x$ रणে, প্রমাণ ক্ন্ন যে, $\frac{d^{2} y}{d x^{2}}=\frac{\cos x}{(1-\sin x)^{2}}$
[র্না. '১০,'১8; কূ. '০৩; সি.'১৩; ব., ঢঢ.'১৪]
প্রমাণ ঃ এখানে, $y=\tan x+\sec x \cdots(1)$
(1) -এর উভয় পক্ষকে x-এর সাপেক্ষে অন্তরীকরণ

করে পাই, $\frac{d y}{d x}=\sec ^{2} x+\sec x \tan x$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\cos ^{2} x}+\frac{\sin x}{\cos ^{2} x}=\frac{1+\sin x}{\cos ^{2} x}$

$$
\begin{equation*}
=\frac{1+\sin x}{(1+\sin x)(1-\sin x)}=\frac{1}{1-\sin x} \cdots \tag{2}
\end{equation*}
$$

(2) -এর উভয় পক্ষকে x-এর সাপেক্ষে অন্তরীকরণ করে

পাই, $\frac{d^{2} y}{d x^{2}}=-\frac{1}{(1-\sin x)^{2}} \frac{d}{d x}(1-\sin x)$
$\frac{d^{2} y}{d x^{2}}=\frac{\cos x\left(\cos ^{2} x+2 \sin x+2 \sin ^{2} x\right)}{\cos ^{4} x}$

$$
\frac{d^{2} y}{d x^{2}}=\frac{\cos x}{(1-\sin x)^{2}} \quad \text { (Showed) }
$$

6(c) $y=\sin (\sin x)$ रলে, প্রমাণ কন্ন खে, $y_{2}+$ $y_{1} \tan x+y \cos ^{2} x=0$
[य.'০৫; সি.'০৬,'১১; жू.'০৭; ব.'০৫]
প্রমাণ 8 এখানে, $y=\sin (\sin x) \cdots \cdots(1)$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
y_{1}=\cos (\sin x) \cdot \cos x \cdots(2)
$$

ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
& y_{2}=\cos (\sin x) \cdot(-\sin x)+ \\
& \cos x \cdot\{-\sin (\sin x)\} \cdot \cos x \\
& =-\sin x \cos (\sin x)-\cos ^{2} x \cdot \sin (\sin x)
\end{aligned}
$$

$$
\begin{aligned}
& =-\sin x \cdot \frac{y_{1}}{\cos x}-\cos ^{2} x \cdot y \quad[(1) \text { ও (2) হणে।] } \\
& =-y_{1} \tan x-y \cos ^{2} x \\
& y_{2}+y_{1} \tan x+y \cos ^{2} x=0 \quad \text { (Showed) }
\end{aligned}
$$

7. (a) $y=(p+q x) e^{-2 x}$ रলে, প্রमाण কর যে, $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=0 \quad$ [य. '০২; ব'০৯; দি.'১৩] প্রমাণ \& এখানে, $y=(p+q x) e^{-2 x} \cdots(1)$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই, $\frac{d y}{d x}=(p+q x) \cdot e^{-2 x}(-2)+e^{-2 x}(0+q)$
$\Rightarrow \frac{d y}{d x}=-2 y+q e^{-2 x}$
$\Rightarrow \frac{d y}{d x}+2 y=q e^{-2 x}$
[(1) মারা।]

ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=-2 q e^{-2 x} \\
&=-2\left(\frac{d y}{d x}+2 y\right) \\
& \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=0
\end{aligned}
$$

[(2) দারা।]
(Showed)
7(b) $y=\left(e^{x}+e^{-x}\right) \sin x$ इनে, প্রমাণ কন্র [ে, $y_{4}+4 y=0$ [ঢा.'০৪; রা.'০৬; मि.'১২]

প্রমাণ \& এখানে, $y=\left(e^{x}+e^{-x}\right) \sin x \cdots(1)$
$y_{1}=\left(e^{x}+e^{-x}\right) \cos x+\left(e^{x}-e^{-x}\right) \sin x$ $y_{2}=\left(e^{x}+e^{-x}\right)(-\sin x)+\left(e^{x}-e^{-x}\right) \cos x$
$+\left(e^{x}-e^{-x}\right) \cos x+\left(e^{x}+e^{-x}\right) \sin x$
$=2\left(e^{x}-e^{-x}\right) \cos x$
$y_{3}=2\left\{\left(e^{x}+e^{-x}\right) \cos x-\left(e^{x}-e^{-x}\right) \sin x\right\}$
$y_{4}=2\left[\left\{\left(e^{x}-e^{-x}\right) \cos x-\left(e^{x}+e^{-x}\right) \sin x\right\}\right.$
$\left.-\left\{\left(e^{x}+e^{-x}\right) \sin x+\left(e^{x}-e^{-x}\right) \cos x\right\}\right]$
$=2\left\{\left(e^{x}-e^{-x}\right) \cos x-\left(e^{x}+e^{-x}\right) \sin x\right.$
$\left.-\left(e^{x}+e^{-x}\right) \sin x-\left(e^{x}-e^{-x}\right) \cos x\right\}$
$=2\left\{-2\left(e^{x}+e^{-x}\right) \sin x\right\}$

$$
\begin{aligned}
& =-4 y \\
& y_{4}+4 y=0
\end{aligned}
$$

[(1) দ্বারা।]
(Showed)
7(c) $y=e^{x} \cos x$ रबে, मেখাఆ যে, $y_{2}-2 y_{1}+2 y=0$ [দি.'১০;চ.'১২;ব.'১৩; মা.'১৪] প্রমাণ : এখানে, $y=e^{x} \cos x$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$y_{1}=e^{x} \cos x+e^{x}(-\sin x)$
$\Rightarrow y_{1}=y-e^{x} \sin x$
[(1) দ্বারা।]
$\Rightarrow y_{1}-\mathrm{y}=-e^{x} \sin x \cdots(2)$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$y_{2}-y_{1}=-e^{x} \sin x-e^{x} \cos x$

$$
=y_{1}-y-y
$$

[(1) ও (2) দ্মারা।]
$y_{2}-2 y_{1}+2 y=0$
(Showed)
7(d) $y=\mathrm{e}^{a x} \sin b x$ হなে, দেখাও যে,
$y_{2}-2 a y_{1}+\left(a^{2}+b^{2}\right) y=0$
[সि.'০২]
প্রমাণ ঃ এখানে, $y=\mathrm{e}^{a x} \sin b x \cdots \cdots(1)$
ইহাকে x-এর সাপেক্ষে অল্তরীকরণ করে পাই,
$y_{1}=\mathrm{e}^{a x} \cdot \cos b x \cdot b+\sin b x . \mathrm{e}^{a x} \cdot a$
$=\mathrm{b} \mathrm{e}^{a x} \cos b x+a y$
[(1) দ্বারা।]
$\Rightarrow y_{1}-a y=\mathrm{b} \mathrm{e}^{a \cdot x} \cos b x \cdots \cdots$ (2)
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই, $y_{2}-a y_{1}=\mathrm{b}\left\{a \mathrm{e}^{a x} \cos b x-\mathrm{be}^{a x} \sin b x\right\}$
$\Rightarrow y_{2}-a y_{1}=a\left(b \mathrm{e}^{a x} \cos b x\right)-\mathrm{b}^{2} \mathrm{e}^{a x} \sin b x$ $=a\left(y_{1}-a y\right)-b^{2} y \quad[(1)$ ও (2) দ্মারা।] $y_{2}-2 a y_{1}+\left(a^{2}+b^{2}\right) y=0$
8.(a) $y=a \cos (\ln x)+b \sin (\ln x)$ হলে, দেখাও यে, $x^{2} y_{2}+x y_{1}+y=0$
[চ.'০৭'; ঢা.'০৯; ব্রা.’৩;সি.'১৪]
প্রমাণ : $y=a \cos (\ln x)+b \sin (\ln x) \cdots(1)$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই, $y_{1}=a\left\{-\sin (\ln x) \cdot \frac{1}{x}\right\}+b \cos (\ln x) \cdot \frac{1}{x}$
$\Rightarrow x y_{1}=-a \sin (\ln x)+b \cos (\ln x)$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$x y_{2}+y_{1} \cdot 1=-a \cos (\ln x) \cdot \frac{1}{x}-b \sin (\ln x) \cdot \frac{1}{x}$
$\Rightarrow x^{2} y_{2}+x y_{1}=-\{a \cos (\ln x)+b \sin (\ln x)\}$
$\Rightarrow x^{2} y_{2}+x y_{1}=-\mathrm{y}$
[(1) দ্বারা।]

$$
\begin{equation*}
x^{2} y_{2}+x y_{1}+y=0 \tag{Showed}
\end{equation*}
$$

8(b) $y=x^{2} \ln (x)$ হনে, দেখাও যে, $y_{3} x=2$
[প্র.ভ.প.'०৬]
প্রমাণ : এখানে, $y=x^{2} \ln (x)$
$y_{1}=x^{2} \frac{1}{x}+\ln (x) \cdot 2 x=x+2 x \ln (x)$
$y_{2}=1+2\left\{x \frac{1}{x}+\ln (x) \cdot 1\right\}=1+2+2 \ln (x)$
$y_{3}=0+2 \cdot \frac{1}{x} \quad y_{3} x=2$
(Showed)

8(c) $y=\ln (\sin x)$ रनে, দেখাও যে, $\frac{d^{3} y}{d x^{3}}=\frac{2 \cos x}{\sin ^{3} x}$
প্রমাণ ঃ এখানে, $y=\ln (\sin x)$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\{\ln (\sin x)\}=\frac{1}{\sin x}(\cos x) \\
& =\frac{\cos x}{\sin x}=\cot x \\
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x \\
\frac{d^{3} y}{d x^{3}} & =\frac{d}{d x}\left(-\operatorname{cosec}^{2} x\right) \\
& =-2 \operatorname{cosec} x(-\operatorname{cosec} x \cot x \\
& =2 \operatorname{cosec} 2 x \cot x=2 \frac{1}{\sin ^{2} x} \cdot \frac{\cos x}{\sin x} \\
\frac{d^{3} y}{d x^{3}} & =\frac{2 \cos x}{\sin ^{3} x}
\end{aligned}
$$

(Showed)
9.(a) $y=\left(x+\sqrt{1+x^{2}}\right)^{m}$ रणে, প্রমাণ কর যে, $\left(1+x^{2}\right) y_{2}+x y_{1}-m^{2} y=0$
[য.'১০;ব.'১০,'১৪;সি.'১২]
প্রমাণ ঃ এখানে, $y=\left(x+\sqrt{1+x^{2}}\right)^{m} \cdots(1)$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
y_{1} & =m\left(x+\sqrt{1+x^{2}}\right)^{m-1}\left(1+\frac{2 x}{2 \sqrt{1+x^{2}}}\right) \\
& =m\left(x+\sqrt{1+x^{2}}\right)^{m-1}\left(\frac{\sqrt{1+x^{2}}+x}{\sqrt{1+x^{2}}}\right) \\
& =\frac{m\left(x+\sqrt{1+x^{2}}\right)^{m}}{\sqrt{1+x^{2}}}=\frac{m y}{\sqrt{1+x^{2}}}
\end{aligned}
$$

$\Rightarrow \sqrt{1+x^{2}} \quad y_{1}=m y$
$\Rightarrow\left(1+x^{2}\right) y_{1}^{2}=m^{2} y^{2} \quad[$ উভয় পক্ষকে বর্গ করে]
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$\left(1+x^{2}\right) \cdot 2 y_{1} y_{2}+y_{1}{ }^{2}(0+2 x)=m^{2} 2 y y_{1}$
উভয় পক্ষকে $2 y_{1}$ দ্বারা ভাগ করে পাই,
$\left(1+x^{2}\right) y_{2}+y_{1} x=m^{2} y$
$\left(1+x^{2}\right) y_{2}+x y_{1}-m^{2} y=0$
(Showed)
9(b) $y=\sqrt{(4+3 \sin x)}$ रजে, দেখাও যে, $2 y \frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right)^{2}+y^{2}=4 \quad$ [य.'১৩;কૂ.'১১,'১8; চ.'১০; ঢা. '০৮; রা.'১২; সি.'১২;দি.'১১]

প্রমাণ ः $y=\sqrt{(4+3 \sin x)} \Rightarrow y^{2}=4+3 \sin x$
$\Rightarrow y^{2}-4=3 \sin x \cdots$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$2 y \frac{d y}{d x}=3 \cos x$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$2 y \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x} \cdot \frac{d y}{d x}=3(-\sin x)$
$\Rightarrow 2 y \frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right)^{2}=-\left(y^{2}-4\right)$
[(1) দ্বারা।]
$2 y \frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right)^{2}+y^{2}=4$
9(c) $y=\ln \left[x+\sqrt{a^{2}+x^{2}}\right]$ रলে, দেখাও যে, $\left(a^{2}+x^{2}\right) y_{2}+x y_{1}=0$ [চ.'১০,'১8; য.'১8]
প্রমাণ ঃ এখানে, $y=\ln \left[x+\sqrt{a^{2}+x^{2}}\right]$.
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
y_{1} & =\frac{1}{x+\sqrt{a^{2}+x^{2}}}\left(1+\frac{2 x}{2 \sqrt{a^{2}+x^{2}}}\right) \\
& =\frac{1}{x+\sqrt{a^{2}+x^{2}}} \frac{\sqrt{a^{2}+x^{2}}+x}{\sqrt{a^{2}+x^{2}}}
\end{aligned}
$$

$$
\Rightarrow y_{1} \sqrt{a^{2}+x^{2}}=1 \Rightarrow y_{1}^{2}\left(a^{2}+x^{2}\right)=1
$$

ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$y_{1}{ }^{2}(0+2 x)+\left(a^{2}+x^{2}\right) 2 y_{1} y_{2}=0$
উভয় পক্ষকে $2 y_{1}$ দ্বারা ড্পে করে পাই,
$\left(a^{2}+x^{2}\right) y_{2}+x y_{1}=0$
(Showed)
10.(a) $y=e^{a \sin ^{-1} x}$ रলে, ศেখা যে, $\left(1-x^{2}\right) y_{2}$ $-x y_{1}=a^{2} y$
[य.'০৯; ঢ.'১১,'১৪; সি.'০৯; ব.'১১; কু’১২; র্ৰ.'১৪] প্রমাণ : এখানে, $y=e^{a \sin ^{-1} x}$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$y_{1}=e^{a \sin ^{-1} x} \cdot \frac{a}{\sqrt{1-x^{2}}}$
$\Rightarrow \sqrt{1-x^{2}} \quad y_{1}=a y$
[(1) দ্বারা]
$\Rightarrow\left(1-x^{2}\right) y_{\mathrm{t}}^{2}=a^{2} y^{2}$
ইशাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$\left(1-x^{2}\right) 2 y_{1} y_{2}+y_{1}^{2}(0-2 x)=a^{2}\left(2 y y_{1}\right)$
উভয় পক্ষকে $2 y_{1}$ দ্বারা ভাগ করে পাই,
$\left(1-x^{2}\right) y_{2}-x y_{1}=a^{2} y$
(Showed)
10(b) $y=e^{4 \sin ^{-1} x}$ रলে, দেখাও যে, $\left(1-x^{2}\right) y_{2}$
$-x y_{1}=16 y$
[চ.'০২]
প্রমাণ ঃ এখানে, $y=e^{4 \sin ^{-1} x} \cdots \cdots(1)$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$y_{1}=e^{4 \sin ^{-1} x} \cdot \frac{4}{\sqrt{1-x^{2}}}$
$\Rightarrow \sqrt{1-x^{2}} y_{1}=4 y$
[(1) দ্বারা।]
$\Rightarrow\left(1-x^{2}\right) y_{1}^{2}=16 y^{2}$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$\left(1-x^{2}\right) 2 y_{1} y_{2}+y_{1}^{2}(0-2 x)=16\left(2 y y_{1}\right)$
উভয় পক্ষকে $2 y_{1}$ দ্বারা ভাiগ করে পাই,
$\left(1-x^{2}\right) y_{2}-x y_{1}=16 y$
（Showed）

10（c）$y=e^{\tan ^{-1} x}$ रणে，প্রমাণ बন बে，$\left(1+x^{2}\right) y_{2}$

প্রমাণ \＆এथानে，$y=e^{\tan ^{-1} x}$
ইহাকে x－এর সাপেক্ষে অন্তরীকরণ করে পাই，

$$
y_{1}=e^{\tan ^{-1} x} \cdot \frac{1}{1+x^{2}}=y \cdot \frac{1}{1+x^{2}}
$$

［（1）দ্বারা।］
$\Rightarrow\left(1+x^{2}\right) y_{1}=y$
ইহাকে x－এর সাপেক্ষে অন্তরীকরণ করে পাই，
$\left(1+x^{3}\right) y_{2}+y_{1}(0+2 x)=y_{1}$
$\left(1+x^{2}\right) y_{2}+(2 x-1) y_{1}=0$
（Showed）
10．（d）$y=\tan ^{-1} x$ रनে，প্রমাण बর यে， $\left(1+x_{2}\right) y_{2}+2 x y_{1}=0 \quad$［রা．＇০২；णা．＇০৫；बূ．＇০৫］ প্রমাণ \＆এখানে，$y=\tan ^{-1} x$
ইহাকে x－এর সাপেকেষ অন্তরীকরণ করে পাই，
$y_{1}=\frac{1}{1+x^{2}} \Rightarrow\left(1+x^{2}\right) y_{1}=1$
ইহাকে x－এর সাপেক্巾 অন্তরীকরণ করে পাই，
$\left(1+x^{2}\right) y_{2}+y_{1}(0+2 x)=0$
$\left(1+x_{2}\right) y_{2}+2 x y_{1}=0$
（Showed）
$10(\mathrm{e}) \ln y=a \sin ^{-1} x$ रলে，দেখা৫ যে，（ $1-x^{2}$ ） $y_{2}-x \quad y_{1}-a^{2} y=0$
［ঢ．’○৭］
প্রমাণ \＆এখানে， $\ln y=a \sin ^{-1} x$
ইशাকে x－এর সাপেক্ষে অন্তরীকরণ করে পাই，
$\frac{1}{y} y_{1}=a \frac{1}{\sqrt{1-x^{2}}} \Rightarrow \sqrt{1-x^{2}} y_{1}=a x$
$\Rightarrow\left(1-x^{2}\right) y_{1}^{2}=a^{2} y^{2}$［উভয় পক্ষকে ব斤 করে।］
ইহাকে x－এর সাপেক্ষে অন্তরীকরণ করে পাই，
$\left(1-x^{2}\right) 2 y_{1} y_{2}+y_{1}{ }^{2}(-2 x)=a^{2} .2 y y_{1}$
উভয় পক্ষকে $2 y_{1}$ দারা ভাগ করে পাই，
$\left(1-x^{2}\right) y_{2}-x y_{1}=a^{2} y$
$\left(1-x^{2}\right) y_{2}-x y_{1}-a^{2} y=0$
10（f） $\ln (y)=\tan ^{-1} x \quad$ इबে
দেখা
बে，$\left(1+x^{2}\right) y_{2}+(2 x-1) y_{1}=0$
［র্রা．＇০৫，＇০৮，＇১০；य．＇১০；థू．＇১১；ঢা．，ব．＇১২］ প্रমাণ \＆এখানে， $\ln (y)=\tan ^{-1} x$
ইহাকে x－এর সাপেক্কে অন্তরীকরণ করে পাই，
$\frac{1}{y} y_{1}=\frac{1}{1+x^{2}} \Rightarrow\left(1+x^{2}\right) y_{1}=y$
ইহাকে x－এর সাপেক্ষে অন্তরীকরণ করে পাই， $\left(1+x^{2}\right) y_{2}+y_{1}(0+2 x)=y_{1}$
$\left(1+x^{2}\right) y_{2}+(2 x-1) y_{1}=0$
$10(\mathrm{~g}) y=\sin ^{-1} x \quad$ रलि，প्रমাণ कत्र正，$\left(1-x^{2}\right) y_{2}-x y_{1}=0$
［Mि．＇०১，＇o৫］
প্রমাণ ः এখानে，$y=\sin ^{-1} x$
ইহাকে x－এর সাপেক্ষে অন্তরীকরণ করে পাই，
$y_{1}=\frac{1}{\sqrt{1-x^{2}}} \Rightarrow y_{1} \sqrt{1-x^{2}}=1$
$\Rightarrow\left(1-x^{2}\right) y_{1}^{2}=1 \quad$［উভয় পক্ষকে বর্গ করে।］
ইহাকে x－এর সাপেক্ষে অন্তরীকরণ করে পাই，
$\left(1-x^{2}\right) 2 y_{1} y_{2}+y_{1}(-2 x)=0$
উভয় পক্ষকে $2 y_{1}$ ছারা ভাগ করে পাই，
$\left(1-x^{2}\right) y_{2}-x y_{1}=0$
（Showed）
11．（a）$y=\tan \left(m \tan ^{-1} x\right)$ रमে，দেখাও बে， $\left(1+x^{2}\right) y_{1}=m\left(1+y^{2}\right)$
［६．＇＇১২；য．＇১১；চ．＇১২；ঢ．＇১৩］
প্রমাণ \＆এখানে，$y=\tan \left(m \tan ^{-1} x\right) \cdots$（1）
ইহাকে x－এর সাপেক্ষে অন্তরীকরণ করে পাই，

$$
\begin{align*}
& y_{1}=\sec ^{2}\left(m \tan ^{-1} x\right) \cdot \frac{m}{1+x^{2}} \\
\Rightarrow & \left(1+x^{2}\right) y_{1}=m\left\{1+\tan ^{2}\left(m \tan ^{-1} x\right)\right\} \\
\Rightarrow & \left(1+x^{2}\right) y_{1}=m\left(1+y^{2}\right) \quad \tag{1}
\end{align*}
$$

11（b）$y=\tan \left(m \tan ^{-1} x\right)$ रणে，দেখাও बে， $\left(1+x^{2}\right) y_{2}-2(m y-x) y_{1}=0$

প্রমাণ \＆এখানে，$y=\tan \left(m \tan ^{-1} x\right) \cdots(1)$
ইহাকে x－এর সাপেক্ষে অন্তরীকরণ করে পাই，
$y_{1}=\sec ^{2}\left(m \tan ^{-1} x\right) \cdot \frac{m}{1+x^{2}}$
$\Rightarrow\left(1+x^{2}\right) y_{1}=m\left\{1+\tan ^{2}\left(m \tan ^{-1} x\right)\right\}$
$\Rightarrow\left(1+x^{2}\right) y_{1}=m\left(1+y^{2}\right)$
[(1) দ্木ারা]
ל্রহাকক x-बর সাপেক্ষে জ্রন্তনীকরূণ করে পাই, $\left(1+x^{2}\right) y_{2}+y_{1}(2 x)=m .2 y y_{1}$
$\left(1+x^{2}\right) y_{2}-2(m y-x) y_{1}=0$
11(c) $y=\sin \left(m \sin ^{-1} x\right)$ रूলে, फেখ্যে यে, $\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$
 প্রমাণ : এখানে, $y=\sin \left(m \sin ^{-1} x\right) \cdots$ (1) ইহাক্ক x-बর সাপপক্ষে অন্তরীকরণ ক্রে পাই,
$y_{1}=\cos \left(m \sin ^{-1} x\right) \cdot \frac{m}{\sqrt{1-x^{2}}}$
$y_{1} \sqrt{1-x^{2}}=m \cos \left(m \sin ^{-1} x\right)$
$\Rightarrow y_{1}^{2}\left(1-x^{*}\right)=m^{2} \cos ^{2}\left(m \sin ^{-1} x\right)$
$\Rightarrow y_{1}^{2}\left(1-x^{2}\right)=m^{2}\left\{1-\sin ^{2}\left(m \sin ^{-1} x\right)\right\}$
$\Rightarrow\left(1-x^{2}\right) y_{1}{ }^{2}=m^{2}\left(1-y^{2}\right)$
[(1) দারা।]
ইহাবরে x-এর সাপ্টেক্ক অন্তরীক্রণ করে পাই,
$\left(1-x^{2}\right) 2 y_{1} y_{2}+y_{1}(-2 x)=m^{2}\left(-2 y y_{1}\right)$
ঢ৬ভয় পক্ষকে $2 y$, শারা ডাগ করে পাই,
(1-) v. $-x y_{1}=-m^{2} y$
$\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$ (Showed)
11(d) $y=\cos \left(2 \sin ^{-1} x\right)$ रबে, দেयাে শে, $\left(1-x^{2}\right) y_{2}-x y_{1}+4 y=0 \quad$ [প্র.ভ.Я.'○৬] প্রমাণ : এখানে, $y=\cos \left(2 \sin ^{-1} x\right) \cdots(1)^{*}$ ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$y_{1}=-\sin \left(2 \sin ^{-1} x\right) \cdot \frac{2}{\sqrt{1-x^{2}}}$
$\Rightarrow y_{1} \sqrt{1-x^{2}}=-2 \sin \left(2 \sin ^{-1} x\right)$
$\Rightarrow y_{1}^{2}\left(1-x^{-}\right)=4 \sin ^{-}\left(2 \sin ^{-1} x\right)$
$\Rightarrow y_{1}^{2}\left(1-x^{2}\right)=4\left\{1-\cos ^{2}\left(2 \sin ^{-1} x\right)\right\}$
$\left(1-x^{2}\right) y_{1}^{2}=4\left(1-y^{2}\right)$
[(1) দ্দারা।]
ইহাক x-এর সাপেক্ষে অন্তরীীরণ ক্রেরে পাই,
$\left(1-x^{2}\right) \cdot 2 y_{1} y_{2}+y_{1}{ }^{2}(-2 x)=4\left(-2 y y_{1}\right)$

ডড্য় পক্ষকে $2 y_{1}$ দারা ভাগ করে পাই,
$\left(1-x^{2}\right) y_{2}-x y_{1}=-4 y$
$\left(1-x^{2}\right) y_{2}-x \dot{y}_{1}+4 y=0$
(Showed)
11(e) $y=\left(\sin ^{-1} x\right)^{2}$ रनि, প্রমाण कर

প্রমাণ \& এथानে, $y=\left(\sin ^{-1} x\right)^{2} \quad$ (1)
ইহাকক x-এর নাপেক্কে অন্তরীকন্মণ করে পাই,
$y_{1}=2(\sin x) \cdot \frac{1}{\sqrt{1-x^{2}}}$
$\Rightarrow \sqrt{1-x^{2}} y_{1}=2\left(\sin ^{-1} x\right)$
$\Rightarrow\left(1-x^{2}\right) y_{1}^{2}=4\left(\sin ^{-1} x\right)^{2}=4 y$

(1 x^{2}) $2 y_{1} y+y_{1}^{2}(-2 x)=4 y_{1}$

$\left(1-x^{2}\right) y_{2}-x y_{1}=2$
$\left(1-x^{2}\right) y_{z}-x y_{1}-2=0$
(Showed)
11(f) $y=\frac{1}{2}\left(\sin ^{-1} x\right)^{2}$ रलে, প্রমাণ बन यে, $\left(1-x^{2}\right) y_{2}-x y_{1}-1=0$

প্रমাণ ঃ बभरन, $2 y=\left(\sin ^{-1} x\right)^{-} \cdots(1)$

$2 y_{1}=2\left(\sin ^{-1} x\right) \cdot \frac{1}{\sqrt{1-x^{2}}}$
$\Rightarrow \sqrt{1-x^{2}} \quad y_{1}=\left(\sin ^{-1} x\right)$
$\Rightarrow\left(1-x^{2}\right) y_{1}^{2}=\left(\sin ^{-1} x\right)^{2}=2 y$
ইহাকে x-এর সাপপক্ষ অন্তরীকরণ কন্র পাই,
$\left(1-x^{2}\right) \cdot 2 y_{1} y_{2}+y_{1}{ }^{2}(-2 x)=2 y_{1}$
ঊভয় পক্ষকে $2 y_{1}$ দ্বারা ভাগ করে পাই,

$$
\begin{aligned}
& \left(1-x^{2}\right) y_{2}-x y_{1}=1 \\
& \left(1-x^{2}\right) y_{2}-x y_{1}-1=0
\end{aligned}
$$

(Showed) ${ }^{\text {t }}$
12(a) $\cos \sqrt{y}=x$ হলে, দেখাও শে, $\left(1-x^{2}\right) y_{2}$ $-x y_{1}-2=0$ [य.'০৬,’০৮,’১২; চ.'০৬; রা. ’০৭,'০১; সि. '১০; ব.'১০; णा.'১১]

প্রমাণ $\stackrel{\text { এখানে, } \cos \sqrt{y}=x \cdots \cdots(1) ~}{x}$
ইহাকে x-এর সাপেক্巾 জন্তরীকরণ করে পাই,
$-\sin \sqrt{y} \cdot \frac{1}{2 \sqrt{y}} y_{1}=1$
$\Rightarrow 2 \sqrt{y}=-y_{t} \sin \sqrt{y}$
উভ্য প্কে বf করে পাই,
$4 y=y_{1}{ }^{2} \sin ^{2} \sqrt{y}=y_{1}{ }^{2}\left(1-\cos ^{2} \sqrt{y}\right)$
$\Rightarrow 4 y=y_{1}{ }^{2}\left(1-x^{2}\right)$
[(1) ঘারা।]
ইহাকে x-এর সাপেকে অল্তরীকরণ করে পাই,
$4 y_{1}=2 y_{1} y_{2}\left(1-x^{2}\right)+y_{1}{ }^{2}(-2 x)$
উভয় পককে $2 y_{1}$ দ্যার ভাগ করে পাই,
$2=y_{2}\left(1-x^{2}\right)-x y_{1}$
$\left(1-x^{2}\right) y_{2}-x y_{1}-2=0$ (Showed)
12(b) $x=\sin \sqrt{y}$ रबে, मেখাও बে, $\left(1-x^{2}\right) y_{2}$
$-x y_{1}-2=0 \quad$ [ব.'১২; চা. 'ot; ধূ.' 'ot; চ.'১১]
প্রমাণ \& এখানে, $x=\sin \sqrt{y} \cdots \cdots$ (1)
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$\cos \sqrt{y} \cdot \frac{1}{2 \sqrt{y}} y_{1}=1$
$\Rightarrow 2 \sqrt{y}=y_{1} \cos \sqrt{y}$
উডয় পলককে বগ করে পাই,
$4 \mathrm{y}=y_{1}{ }^{2} \cos ^{2} \sqrt{y}=y_{1}{ }^{2}\left(1-\sin ^{2} \sqrt{y}\right)$
$\Rightarrow 4 y=y_{1}{ }^{2}\left(1-x^{2}\right)$
[(1) ঘারা।]
ইহাকে x-এর সাপেকে অন্তরীকরণ করে পাই,
$4 y_{1}=2 y_{1} y_{2}\left(1-x^{2}\right)+y_{1}{ }^{2}(-2 x)$
উভয় পঙ্মকে $2 y_{1}$ ছারা ভাগ করে পাই,
$2=y_{2}\left(1-x^{2}\right)-x y_{1}$
$\left(1-x^{2}\right) y_{2}-x y_{1}-2=0$ (Showed)
12(c) $y=\frac{\sin x}{\sqrt{x}}$ इबে, ศেখাs যে, $x^{2} y_{2}+x y_{1}$ $+\left(x^{2}-\frac{1}{4}\right) y=0$
[थ्र.Ш.भ.'०8]

প्रमाण : $y=\frac{\sin x}{\sqrt{x}} \Rightarrow \sin x=\sqrt{x} y \ldots$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$\cos x=\sqrt{x} y_{1}+y \cdot \frac{1}{2 \sqrt{x}}$
$\Rightarrow 2 \cos x=\frac{2 x y_{1}+y}{\sqrt{x}}$
$-2 \sin x=\frac{\sqrt{x}\left(2 x y_{2}+2 y_{1}+y_{1}\right)-\left(2 x y_{1}+y\right) \frac{1}{2 \sqrt{x}}}{x}$

$$
\begin{array}{r}
\Rightarrow-2 \sqrt{x} y=\frac{1}{2 x \sqrt{x}}\left[2 x\left(2 x y_{2}+2 y_{1}+y_{1}\right)\right. \\
\left.-2 x y_{1}-y\right]
\end{array}
$$

$\Rightarrow-4 x^{2} y=4 x^{2} y_{2}+6 x y_{1}-2 x y_{1}-y$
$\Rightarrow-4 x^{2} \mathrm{y}=4 x^{2} y_{2}+4 x y_{1}-\mathrm{y}$
$\Rightarrow 4\left(x^{2} y_{2}+x y_{1}+x^{2} y\right)=y$
$\Rightarrow x^{2} y_{2}+x y_{1}+x^{2} y=\frac{y}{4}$
$x^{2} y_{2}+x y_{1}+\left(x^{2}-\frac{1}{4}\right) y=0$
13.(a) $x=a(\theta+\sin \theta)$ в $y=a(1-\cos \theta)$

হলে, $\frac{\theta}{2}$ এর মাব্যমে $\frac{d y}{d x}$ - $\frac{d^{2} y}{d x^{2}}$ निর্য় बর।
সমাধান : $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$

$$
\begin{gathered}
\frac{d x}{d \theta}=a(1+\cos \theta), \frac{d y}{d \theta}=a \sin \theta \\
\frac{d y}{d x}=\frac{d y}{d \theta} \times \frac{d \theta}{d x}=\frac{a \sin \theta}{a(1+\cos \theta)} \\
\Rightarrow \frac{d y}{d x}=\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}}=\tan \frac{\theta}{2} \\
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\tan \frac{\theta}{2}\right)=\frac{d}{d \theta}\left(\tan \frac{\theta}{2}\right) \cdot \frac{d \theta}{d x} \\
=\sec ^{2} \frac{\theta}{2} \cdot \frac{1}{2} \cdot \frac{1}{a(1+\cos \theta)}
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{1}{2} \sec ^{2} \frac{\theta}{2} \cdot \frac{1}{a \cdot 2 \cos ^{2} \frac{\theta}{2}} \\
& =\frac{1}{2} \sec ^{2} \frac{\theta}{2} \cdot \frac{1}{2 a} \sec ^{2} \frac{\theta}{2}=\frac{1}{4 a} \sec ^{4} \frac{\theta}{2}
\end{aligned}
$$

13(b) $2 x=t+t^{-1}$ এবर $2 y=t-t^{-1}$ रबে, দেষাఆ যে, $\frac{d y}{d x}=\frac{t^{2}+1}{t^{2}-1}$ जবए $\frac{d^{2} y}{d x^{2}}=-\frac{8 t^{3}}{\left(t^{2}-1\right)^{3}}$
প্রमाण : এখानে, $2 x=t+t^{-1}=t+\frac{1}{t}=\frac{t^{2}+1}{t}$

$$
2 \frac{d x}{d t}=\frac{t(2 t+0)-\left(t^{2}+1\right) \cdot 1}{t^{2}}=\frac{t^{2}-1}{t^{2}}
$$

এবए $2 y=t-t^{-1}=t-\frac{1}{t}=\frac{t^{2}-1}{t}=\frac{t^{2}-1}{t}$

$$
2 \frac{d y}{d t}=\frac{t(2 t-0)-\left(t^{2}-1\right) \cdot 1}{t^{2}}
$$

$\therefore \frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}=\frac{t^{2}+1}{t^{2}} \times \frac{t^{2}}{t^{2}-1}=\frac{t^{2}+1}{t^{2}-1}$
এখन, $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{t^{2}+1}{t^{2}-1}\right)=\frac{d}{d t}\left(\frac{t^{2}+1}{t^{2}-1}\right) \cdot \frac{d t}{d x}$

$$
=\frac{\left(t^{2}-1\right) \cdot 2 t-\left(t^{2}+1\right) \cdot 2 t}{\left(t^{2}-1\right)^{2}} \times \frac{2 t^{2}}{t^{2}-1}
$$

$$
=\frac{2 t\left(t^{2}-1-t^{2}-1\right)}{\left(t^{2}-1\right)^{2}} \times \frac{2 t^{2}}{t^{2}-1}
$$

$$
\frac{d^{2} y}{d x^{2}}=-\frac{8 t^{2}}{\left(t^{2}-1\right)^{3}}
$$

(a) মনে করি, $y=\ln x$

$$
\begin{aligned}
& y_{1}=\frac{1}{x}=x^{-1}=(-1)^{1-1} x^{-1} \\
& y_{2}=(-1) x^{-2}=(-1)^{2-1} x^{-2} \\
& y_{3}=(-1)(-2) x^{-3}=(-1)^{2}(1.2) x^{-3} \\
&=(-1)^{3-1}\{1 .(3-1)\} x^{-3} \\
& y_{4}=(-1)(-2)(-3) x^{-2}=(-1)^{3}(1.2 .3) x^{-4}
\end{aligned}
$$

$$
=(-1)^{3}\{1 \cdot 2 \cdot(4-1)\} x^{-4}
$$

অনুরূপডাবে,

$$
y_{n}=(-1)^{n-1}\{1 \cdot 2.3 \cdot \cdots \cdots(n-1)\} x^{-n}
$$

$\therefore \ln x$ এর nত্ম অन्णরক সহগ $=\frac{(-1)^{n-1}(n-1)!}{x^{n}}$
14(b) মনে করি, $y=\frac{1}{a-x}=(a-x)^{-1}$

$$
\begin{aligned}
& y_{1}=(-1)(a-x)^{-2}(-1)=1 .(a-x)^{-1-1} \\
y_{2}= & (-2)(a-x)^{-3}(-1)=(1.2)(a-x)^{-2-1} \\
y_{3}= & (1.2)(-3)(x-a)^{-4}(-1) \\
& =(1.2 .3)(a-x)^{-3-1}
\end{aligned}
$$

जनूबূপভাবে, $y_{n}=(1.2 .3 . \cdots \cdots n)(x-a)^{-n-1}$

$$
\frac{1}{a-x} \text { এর nতম অন্তরক সহগ }=\frac{n!}{(a-x)^{n+1}}
$$

14 (c) $\cos ^{3} x=\frac{1}{4}(3 \cos x+\cos 3 x)$

$$
\begin{aligned}
& \frac{d^{n}}{d x^{n}}\left(\cos ^{3} x\right)=\frac{1}{4}\left\{\frac{d^{n}}{d x^{n}}(3 \cos x)+\right. \\
& \left.=\frac{d^{n}}{d x^{n}}(\cos 3 x)\right\} \\
& =\frac{1}{4}\left\{3 \cos \left(\frac{n \pi}{2}+x\right)+3^{n} \cos \left(\frac{n \pi}{2}+3 x\right)\right\} \\
& \begin{array}{l}
14(\mathrm{~d}) \mathrm{e}^{3 x} \sin ^{2} x \\
= \\
\mathrm{e}^{3 x} \frac{1}{2}(1-\cos 2 x) \\
= \\
\frac{1}{2}\left\{\mathrm{e}^{3 x}-\mathrm{e}^{3 x} \cos 2 x\right\} \\
\frac{d^{n}}{d x^{n}}\left(\mathrm{e}^{3 x} \sin ^{2} x\right)=\frac{1}{2}\left\{\frac{d^{n}}{d x^{n}}\left(e^{3 x}\right)-\right. \\
\left.\frac{d^{n}}{d x^{n}}\left(e^{3 x} \cos 2 x\right)\right\} \\
= \\
\frac{1}{2}\left\{3^{n} e^{3 x}-\left(3^{2}+2^{2}\right)^{\frac{n}{2}} e^{3 x}\right. \\
\left.\cos \left(2 x+n \tan ^{-1} \frac{2}{3}\right)\right\}
\end{array}
\end{aligned}
$$

$=\frac{e^{3 x}}{2}\left\{3^{n}-(\sqrt{13})^{n} \cos \left(2 x+n \tan ^{-1} \frac{2}{3}\right)\right\}$

अणिন্রিক্ত প্রশ্ন (সমাধানসহ)

$1 y=x^{2}-2+\frac{1}{x^{2}}$ रून, $\frac{d^{2} y}{d x^{2}}$ जदर $\frac{d^{3} y}{d x^{3}}$ निর্য় কর।
সमाधानः $y=x^{2}-2+\frac{1}{x^{2}}=x^{2}-2+x^{-2}$

$\frac{d y}{d x}=2 x-0+(-2) x^{-3}$
$\frac{d^{2} y}{d x^{2}}=2+(-2)(-3) x^{-4}=2+\frac{6}{x^{4}}$
$\frac{d^{3} y}{d x^{3}}=(-2)(-3)(-4) x^{-5}=-\frac{24}{x^{5}}$
2. $y=a \cos x+b \sin x$ रान, मिशाध बে, $y_{4}-y=0$
প্রমাণ : এचानে, $y=a \cos x+b \sin x$
x-এর সাপেক্ষে পর্যায়াক্মম অল্তরীকরণ কর্রে পাই,

$$
\begin{aligned}
& y_{1}=a(-\sin x)+b \cos x \\
& y_{2}=a(-\cos x)+b(-\sin x) \\
& y_{3}=a \sin x+b(-\cos x) \\
& y_{4}=a \cos x+b \sin x=y \\
& y_{4}-y=0 \text { (Showed) }
\end{aligned}
$$

3. $y=\frac{x}{x+2}$ रলে, দেখা৫ यে, $x y_{1}=y(1-y)$

প্রমাণ ः जখানে, $y=\frac{x}{x+2} \Rightarrow x+2=\frac{x}{y}$
ঊভয় প্শকেে x-এর সাপেক্巾 অন্তরীকরণ করে পাই,

$$
1=\frac{y \cdot 1-x y_{1}}{y^{2}} \Rightarrow y^{2}=y-x y_{1}
$$

$$
\Rightarrow x y_{1}=y-y^{2} \therefore x y_{1}=y(1-y)(\text { Showed })
$$

4.(a) $y=a x^{n+1}+\dot{v} x^{-n}$ হলে, দেখাও যে, $\boldsymbol{x}^{2} y_{2}=\mathbf{n}(\mathrm{n}+1) \boldsymbol{y}$
প্রমাণ \& এथানে, $y=a x^{\mathrm{n}+1}+b x^{-\mathrm{n}}$
x-এর সাপ্পেғ্ғ অन্তরীকরণ করে পাই,

$$
\begin{aligned}
& y_{1}=a(n+1) x^{n}+b(-n) x^{-n-1} \\
& y_{2}=a(n+1) n x^{n-1}+b(-n)(-n-1) x \\
& \text { এVन, } x^{2} \quad y_{2}=n(n+1) a x^{n+1}+n(n+1) b x^{-n} \\
& \Rightarrow x^{2} y_{2}=n(n+1)\left(a x^{n+1}+b x^{-n}\right) \\
& x^{2} y_{2}=n(n+1) y \text { (Showed) }
\end{aligned}
$$

4(b) $y=\sqrt{a x^{2}+b x+c}$ रनে, फেখা® बে, $4 y^{3} y_{2}=4 a c-b^{2}$
প্রমাণ $\&$ बখাनে, $y=\sqrt{a x^{2}+b x+c}$
x-এর সাধেকেকে পর্যায়ক্রমে অন্তরীক্রণ করে পাই,

$$
\begin{aligned}
& y_{1}=\frac{1}{2 \sqrt{a x^{2}+b x+c}}(2 a x+b) \\
& y_{2}=\frac{\sqrt{a x^{2}+b x+c} \cdot(2 a)-\frac{(2 a x+b)^{2}}{2 \sqrt{a x^{2}+b x+c}}}{\left(2 \sqrt{\left.a x^{2}+b x+c\right)^{2}}\right.} \\
& \Rightarrow y_{2}=\frac{4 a\left(a x^{2}+b x+c\right)-4 a x^{2}-4 a b x-b^{2}}{4\left(\sqrt{a x^{2}+b x+c}\right)^{3}} \\
& \Rightarrow y_{2}=\frac{4 a^{2} x^{2}+4 a b x+4 a c-4 a x^{2}-4 a b x-b^{2}}{4 y^{3}} \\
& 4 y^{3} y_{2}=4 a c-b^{2} \quad \text { (Showed) }
\end{aligned}
$$

5(a) $y=\sqrt{\cos 2 x}$ रूना, फেখाध खে, $\left(y y_{k}\right)^{2}=1-y^{4}$

প্রমাণ ঃ এখानে, $y=\sqrt{\cos 2 x} \Rightarrow y^{2}=\cos 2 x$ ঊভয় পঋকে* x-এর সাপেক্কে অন্তরীকরণ করে পাই,

$$
2 y y_{1}=-\sin 2 x .2 \Rightarrow y y_{1}=-\sin 2 x
$$

$\Rightarrow\left(y y_{1}\right)^{2}=\sin ^{2} 2 x \quad$ [উভয় পক্ষকে ব斤 করে।]
$\Rightarrow\left(y y_{1}\right)^{2}=1-\cos ^{2} 2 x$

$$
=1-\left(y^{2}\right)^{2} \quad\left[\cdot y^{2}=\cos 2 x\right]
$$

$$
\left(y y_{1}\right)^{2}=1-y^{4} \quad \text { (Showed) }
$$

5(b) $y=\tan \sqrt{1-x}$ रनে, फেখाs ब্, $2 y_{1} \sqrt{1-x^{2}}+\left(1+y^{2}\right)=0$
প্রমাণ : এখानে, $y=\tan \sqrt{1-x}$
উভয় পক্ষকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
y_{1}=\sec ^{2} \sqrt{1-x} \cdot \frac{1}{2 \sqrt{1-x}}(-1)
$$

$\Rightarrow 2 y_{\mathrm{i}} \sqrt{1-x}=-\left(1+\tan ^{2} \sqrt{1-x}\right)$
$\Rightarrow 2 y_{;} \sqrt{1-x}=-\left(1+y^{2}\right)$
[(1) মারা]

$$
2 y_{1} \sqrt{1-x}+\left(1+y^{2}\right)=0
$$

(Showed)
5 (c) $y=\frac{4}{\sqrt{\sec x}}$ रबে, निษाध यে, $2 \cot x \frac{d y}{d x}+y=0$
প্রমাণ: এथানन, $y=\frac{4}{\sqrt{\sec x}} \Rightarrow y^{2} \sec x=10$
ঊভয় পক্ষকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$y^{2} \sec x \tan x+\sec x .2 y \frac{d y}{d x}=0$
উভয় পক্ষকে $y \sec x$ দ্বারা ভাগ করে পাই,

$$
\begin{gathered}
y \tan x+2 \frac{d y}{d x}=0 \Rightarrow \frac{y}{\cot x}+2 \frac{d y}{d x}=0 \\
2 \cot x \frac{d y}{d x}+y=0 \quad \text { (Showed) }
\end{gathered}
$$

6. $y=(a+b x) e^{2 x}$ रणে, প্রমাণ कर गে, $y_{2}-2 y_{1}-2 \mathrm{be}^{2 x}=0$
প্রমাণ : এখানে, $y=(a+b x) \mathrm{e}^{2} x \cdots \cdots(1)$
ইহাকে x-এর সাকেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
y_{1} & =(a+b x) \cdot \mathrm{e}^{2 x}(2)+\mathrm{e}^{2 x}(0+\mathrm{b}) \\
\Rightarrow y_{1} & =2 \mathrm{y}+\mathrm{b} \mathrm{e}^{2 x}
\end{aligned}
$$

ইহাবে: $x \cdots$-৭র সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
& y_{2}=-2 y_{1}+\mathrm{be}^{2 x} .2 \\
& \quad y_{2}-2 y_{1}-2 \mathrm{be}^{2 x}=0 \quad(\text { Showed })
\end{aligned}
$$

7(a) $y=x^{\mathrm{n}} \ln x$ रলে, দেখা৪ যে, $x y_{1}=n y+x^{n}$
প্রমাণ : এখানে, $y=x^{\mathrm{n}} \ln x \cdots \cdots(1)$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
=x^{n} \frac{1}{x}+\ln x \cdot n x^{n-1}
$$

টভয় পক্ষকে x দ্বারা গুণ করে পাই,

$$
\begin{aligned}
& y_{1}=x^{n}+n x^{n} \ln x=x^{n}+n y \\
& \quad x y_{1}=n y+x^{n}
\end{aligned}
$$

[(1) দ্বারা]
(Showed)
7(b) $y=\sqrt{1+x^{2}} \ln \left(x+\sqrt{1+x^{2}}\right)$ इलে, দেখা যে, $\left(1+x^{2}\right)\left(y_{1}-1\right)=x y$

প্রমাণ : $y=\sqrt{1+x^{2}} \ln \left(x+\sqrt{1+x^{2}}\right) \cdots(1)$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
y_{1}= & \sqrt{1+x^{2}} \frac{1}{x+\sqrt{1+x^{2}}}\left\{1+\frac{2 x}{2 \sqrt{1+x^{2}}}\right\}+ \\
& \ln \left(x+\sqrt{1+x^{2}}\right) \cdot \frac{1}{2 \sqrt{1+x^{2}}}(2 x) \\
= & \frac{\sqrt{1+x^{2}}}{x+\sqrt{1+x^{2}}} \frac{\sqrt{1+x^{2}}+x}{\sqrt{1+x^{2}}}+ \\
& \sqrt{1+x^{2}} \ln \left(x+\sqrt{1+x^{2}}\right) \cdot \frac{x}{1+x^{2}}
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow y_{1}=1+y \cdot \frac{x}{1+x^{2}} \tag{i}
\end{equation*}
$$

$$
\Rightarrow\left(1+x^{2}\right) y_{1}=\left(1+x^{2}\right)+x y
$$

$$
\begin{equation*}
\left(1+x^{2}\right)\left(y_{1}-1\right)=x y \tag{Showed}
\end{equation*}
$$

8. $y=\sqrt{1-x^{2}} \sin ^{-1} x-x$ शनि, দनयाज बে, (1 $\left.-x^{2}\right) y_{2}-x\left(y_{1}-2\right)+y=0$ প্রমাণ ः जथानে, $y=\sqrt{1-x^{2}} \sin ^{-1} x-x \cdots$ (1)
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
& y_{1}=\frac{\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}}+\frac{\sin ^{-1} x}{2 \sqrt{1-x^{2}}}(-2 x)-1 \\
\Rightarrow & y_{1}=1-\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}-1=-\frac{x \sqrt{1-x^{2}} \sin ^{-1} x}{1-x^{2}} \\
\Rightarrow & \left(1-x^{2}\right) y_{1}=-x(y+x) \quad[(1) \text { घारा।] } \\
\Rightarrow & \left(1-x^{2}\right) y_{1}+x y+x^{2}=0
\end{aligned}
$$

ইशাকে x-এর সপেকক্ষে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
& \left(1-x^{2}\right) y_{2}+y_{1}(-2 x)+x y_{1}+y+2 x=0 \\
\Rightarrow & \left(1-x^{2}\right) y_{2}-x y_{1}+y+2 x=0 \\
& \left(1-x^{2}\right) y_{2}-x\left(y_{1}-2\right)+y=0
\end{aligned}
$$

9(a) $y=\sin \sqrt{x}$ रूে, ศেখাও যে,

> প্রমাণ ঃ এখানে, $y=\sin \sqrt{x}$
> ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$y_{1}=\cos \sqrt{x} \cdot \frac{1}{2 \sqrt{x}}$
$\Rightarrow 2 \sqrt{x} y_{1}=\cos \sqrt{x}$
উভয় পক্ষকে বর্গ করে পাই,

$$
\begin{aligned}
& 4 x y_{1}^{2}=\cos ^{2} \sqrt{x}=1-\sin ^{2} \sqrt{x}=1-y^{2} \\
& 4 x y_{1}^{2}+y^{2}=1
\end{aligned}
$$

9(b) $y=\cos \sqrt{x}$ रबে, मেখাও যে, $4 x\left(y_{1}\right)^{2}+y^{2}=1$ প্রমাণ ঃ এখানে, $y=\cos \sqrt{x}$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
& y_{1}=-\sin \sqrt{x} \cdot \frac{1}{2 \sqrt{x}} \\
\Rightarrow & 2 \sqrt{x} y_{1}=-\sin \sqrt{x}
\end{aligned}
$$

উভয় পক্ষকে বগ করে পাই,

$$
\begin{aligned}
& 4 x y_{1}^{2}=\sin ^{2} \sqrt{x}=1-\cos ^{2} \sqrt{x}=1-y^{2} \\
& 4 x y_{1}^{2}+y^{2}=1 \quad \text { (Showed) }
\end{aligned}
$$

10. $y=\left(1-x^{2}\right)^{n}$ হबে, দেখাও যে, $\left(1-x^{2}\right) y_{1}+$ $2 n x y=0$
প্রমাণ : এখানে, $y=\left(1-x^{2}\right)^{n}$
উভয় পক্ষকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
y_{1}=\mathrm{n}\left(1-x^{2}\right)^{\mathrm{n}-1}(-2 x)
$$

উভয় পক্ষকে $\left(1-x^{2}\right)$ দ্বারা গুণ করে পাই,

$$
\begin{aligned}
& y_{1}\left(1-x^{2}\right)=-2 n x\left(1-x^{2}\right)^{n}=-2 n x y \\
& \quad\left(1-x^{2}\right) y_{1}+2 n x y=0 \text { (Showed) }
\end{aligned}
$$

11. $y=\tan x$ इनে, দেখাও যে, $y_{2}=2 y\left(1+y^{2}\right)$

প্রমাণ 8 এখানে, $y=\tan x$

$$
\begin{aligned}
& y_{1}=\frac{d}{d x}(\tan x)=\sec ^{2} x \\
& y_{2}=\frac{d}{d x}\left(\sec ^{2} x\right)=2 \sec x \cdot \sec x \tan x \\
& \\
& =2 \tan x \sec ^{2} x=2 \tan x\left(1+\tan ^{2} x\right)
\end{aligned}
$$

$$
y_{2}=2 y\left(1+y^{2}\right)
$$

(Showed)
12. $y=a x \sin x$ इनে, দেখাও যে, $x^{2} y_{2}-2 x y_{1}+\left(x^{2}+2\right) y=0$

প্রমাণ : $y=a x \sin x \Rightarrow \frac{y}{x}=a \sin x \cdots$
ইशাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$\frac{x y_{1}-y \cdot 1}{x^{2}}=a \cos x$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$\frac{x^{2}\left(x y_{2}+y_{1} \cdot 1-y_{1}\right)-\left(x y_{1}-y\right) \cdot 2 x}{x^{4}}=-a \sin x$
$\Rightarrow \frac{x\left(x^{2} y_{2}-2 x y_{1}+2 y\right)}{x^{4}}=-\frac{y}{x}$
[(1) দ্বারা।]
$\Rightarrow x^{2} y_{2}-2 x y_{1}+2 y=-x^{2} y$
$x^{2} y_{2}-2 x y_{1}+\left(x^{2}+2\right) y=0$
(Showed)
13. $x=\operatorname{sint}$ এবং $y=\sin p t$ হबে, দেখাও যে, $\left(1-x^{2}\right) y_{2}-x y_{1}+p^{2} y=0$.
প্রমাণ ঃ এখানে, $x=\operatorname{sint}$ এবং $y=\sin \mathrm{pt}$

$$
\begin{aligned}
& t=\sin ^{-1} x \text { এবং } p t=\sin ^{-1} y \\
& p \sin ^{-1} x=\sin ^{-1} y
\end{aligned}
$$

ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$p \frac{1}{\sqrt{1-x^{2}}}=\frac{1}{\sqrt{1-y^{2}}} y_{1}$
$\Rightarrow p^{2}\left(1-y^{2}\right)_{n}=\left(1-x^{2}\right) y_{1}{ }^{2}$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই, $p^{2}\left(-2 y y_{1}\right)=\left(1-x^{2}\right) 2 y_{1} y_{2}+(-2 x) y_{1}{ }^{2}$

উভয় পক্ষককে $2 y_{1}$ দ্বারা ভাগ করে পাই,
$-p^{2} y=\left(1-x^{2}\right) y_{2}-x y_{1}$
$\left(1-x^{2}\right) y_{2}-x y_{1}+\mathrm{p}^{2} y=0$.
 কর্ন।
(a) $\frac{1}{x}[6 . \prime \bigcirc ২]$
(b) $\frac{x^{2}+1}{(x-1)(x-2)(x-3)}$
(c) $\sin x \sin 3 x$
(a) মনে করি, $\mathrm{y}=\frac{1}{\mathrm{x}}=\mathrm{x}^{-1}$

$$
\begin{gathered}
y_{1}=(-1) x^{-2}=(-1) \quad x^{-1-1} \\
y_{2}=(-1)(-2) x^{-3}=(-1)^{2}(1.2) x^{-2-1}
\end{gathered}
$$

$y_{3}=(-1)(-2)(-3) x^{-4}=(-1)^{3}(1.2 .3) x^{-3-1}$
जनুরুপভাবে, $y_{n}=(-1)^{n}(1.2 .3 \cdot \cdots \cdots n) x^{-n-1}$
$\frac{1}{x}$ এর nতম অन्णরক সহগ $=\frac{(-1)^{n} n!}{x^{n+1}}$ (Ans.)
14(b) ধরি, $y=\frac{x^{2}+1}{(x-1)(x-2)(x-3)}$

$$
\begin{aligned}
= & \frac{1^{2}+1}{(x-1)(1-2)(1-3)}+\frac{2^{2}+1}{(2-1)(x-2)(2-3)} \\
& +\frac{3^{2}+1}{(3-1)(3-2)(x-3)}
\end{aligned}
$$

$$
=\frac{2}{(x-1)(-1)(-2)}+\frac{5}{(1)(x-2)(-1)}+\frac{10}{(2)(1)(x-3)}
$$

$$
=\frac{1}{x-1}-\frac{5}{x-2}+\frac{5}{x-3}
$$

$$
y_{n}=\frac{d^{n}}{d x^{n}}\left(\frac{1}{x-1}\right)-5 \frac{d^{n}}{d x^{n}}\left(\frac{1}{x-2}\right)+
$$

$$
5 \frac{d^{n}}{d x^{n}}\left(\frac{1}{x-3}\right)
$$

$$
=\frac{(-1)^{n} n!}{(x-1)^{n+1}}-
$$

$$
\frac{5(-1)^{n} n!}{(x-2)^{n+1}}+\frac{5(-1)^{n} n!}{(x-3)^{n+1}}
$$

(c) $\sin x \sin 3 x=\frac{1}{2}(\cos 2 x-\cos 4 x)$

$$
\begin{aligned}
\frac{d^{n}}{d x^{n}}(\sin x \sin 3 x) & =\frac{1}{2}\left\{\frac{d^{n}}{d x^{n}}(\cos 2 x)\right. \\
& \left.-\frac{d^{n}}{d x^{n}}(\cos 4 x)\right\}
\end{aligned}
$$

$$
=\frac{1}{2}\left\{2^{n} \cos \left(\frac{n \pi}{2}+2 x\right)-4^{n} \cos \left(\frac{n \pi}{2}+3 x\right)\right\}
$$

প্রশ্নমালা IX J

1. $y=x^{3}-2 x^{2}+2$ বब্ষরেখার $(2,2)$ বিপ্মুতে ग্সর্শকেন্ন সমীক্নণ নির্ণয় ক্ম।
[ธ்.’०); ण.'०१]

সমাধাन : $y=x^{3}-2 x^{2}+2 \quad \frac{d y}{d x}=3 x^{2}-4 x$
$(2,2)$ বি্দুতে $\frac{d y}{d x}=3.2^{2}-4(2)=12-8=4$
প্রদত্ত বক্ররেথার $(2,2)$ ক্দ্দুতে স্পশকের সমীকরণ $y-2=4(x-2) \Rightarrow 4 x-y-6=0$
2. $x^{2}-y^{2}=7$ বबর্রেখার $(4,-3)$ কিদ্দুতে স্শরক ৩ [ভিলম্বের সমীকর্নণ নির্ণ্য কর। [ঢা.'১২; সি.'J৩] সমাধান : $x^{2}-y^{2}=7$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
2 \mathrm{x}-2 \mathrm{y} \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=\frac{x}{y}
$$

$(4,-3)$ बি্দুতে $\frac{d y}{d x}=\frac{4}{-3}$
প্রদত্ত বক্ররেখার (4-3) ক্দ্দুত স্সর্শকের সমীকরণ $y+3=\frac{4}{-3}(x-4)$
$\Rightarrow 4 \mathrm{x}-16=-3 \mathrm{y}-9 \therefore 4 \mathrm{x}+3 \mathrm{y}-7=0$ এবং অভিলম্মের সমীকর্রণ, $y+3=\frac{3}{4}(x-4)$
$\Rightarrow 4 y+12=3 \mathrm{x}-12 \therefore 3 \mathrm{x}-4 \mathrm{y}-24=0$
3(a) $y(x-2)(x-3)-x+7=0$ বब্ষরেখাটি বে সমস্ত বিদ্দুতে x-অథকে ছেদ করে , ঐ বিদ্দুগুলোতে স্পর্শক ৪ অडিনম্ধের সমীকরণ নির্ণয় কর।
[ঢঢ.'০১; य.'’০; চ.'১০; দি.'১১; 屯.'’৪]
সমাধান ः $y(x-2)(x-3)-x+7=0$
$\Rightarrow \mathrm{y}\left(\mathrm{x}^{2}-5 \mathrm{x}+6\right)-\mathrm{x}+7=0 \cdots$
বক্ররেখাটি x-অক্ষকে যে বিদ্দুতে ছেদ করে তার কোটি $\mathrm{y}=0 \cdot$ (1) $এ \mathrm{y}=0$ বসিয়ে পাই $\mathrm{x}=7$

বক্ররেখাটি x-অঞ্ষকে $(7,0)$ ক্দ্দুতে ছেদ করে।
(1) বক্করেখাকে x-এর সাপেক্ষে অন্তরীকরণ করে भाই, $\left(x^{2}-5 x+6\right) \frac{d y}{d x}+y(2 x-5)-1=0$
$\Rightarrow \frac{d y}{d x}=\frac{1-y(2 x-5)}{x^{2}-5 x+6}$
$(7,0)$ কিদ্দুতে $\frac{d y}{d x}=\frac{1}{49-35+6}=\frac{1}{20}$

निरগ্গয় স্পর্শকের সষ্মককরণ, $y=\frac{1}{20}(x-7)$
$\Rightarrow x-20 y-7=0$

$\Rightarrow 20 x+y \quad 140=0$
3 (b) ঢেशサ যে, $\sqrt{x}+\sqrt{y}=\sqrt{a}$ বক্ররেখার যেকোন স্শ্র্শক জারা স্থানাজ্কের অক্ষ দুইটি থেকে কর্তিত অशশের যোগফল একটি ধ্রুবকৃ।
[ব. '০২; ফ.'০৯; রা.’১৪]
সমাষান ः $\sqrt{x}+\sqrt{y}=\sqrt{a}$
(1) কে x-এর সাপপক্ষে অন্তরীীকরণ কর্রে পাই,

$$
\frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{y}} \frac{d y}{d x}=0 \quad \frac{d y}{d x}=-\frac{\sqrt{y}}{\sqrt{x}}
$$

বক্ররেখার উপর $\left(x_{1}, y_{1}\right)$ যেকোন বিন্দুতে

$$
\begin{aligned}
& \sqrt{x_{1}}+\sqrt{y_{1}}=\sqrt{a} \\
& \text { (2) এবং } \frac{d y}{d x}=-\frac{\sqrt{y_{1}}}{\sqrt{x_{1}}} \\
& \left(x_{1}, y_{1}\right) \text { বিন্দুতে স্পর্শকের সমীকরণ, } \\
& y-y_{1}=-\frac{\sqrt{y_{1}}}{\sqrt{x_{1}}}\left(x-x_{1}\right) \\
& \Rightarrow y \sqrt{x_{1}}-\sqrt{x_{1}} y_{1}=-x \sqrt{y_{1}}+x_{1} \sqrt{y_{1}} \\
& \Rightarrow . x \sqrt{y_{1}}+y \sqrt{x_{1}}=\sqrt{x_{1}} y_{1}+x_{1} \sqrt{y_{1}} \\
& \Rightarrow x \sqrt{y_{1}}+y \sqrt{x_{1}}=\sqrt{x_{1} y_{1}}\left(\sqrt{y_{1}}+\sqrt{x_{1}}\right) \\
& \Rightarrow x \sqrt{y_{1}}+y \sqrt{x_{1}}=\sqrt{x_{1} y_{1}} \sqrt{a} \\
& \text { [(2) দ্বারা] } \\
& \Rightarrow \frac{x}{\sqrt{a} \sqrt{x_{1}}}+\frac{y}{\sqrt{a} \sqrt{y_{1}}}=1 \\
& \text { অক্ষ দুইটি থেকে কর্ত্তি অংকের যোগফশ্ল } \\
& =\sqrt{a} \sqrt{x_{1}}+\sqrt{a} \sqrt{y_{1}}=\sqrt{a}\left(\sqrt{x_{1}}+\sqrt{y_{1}}\right) \\
& =\sqrt{a} \sqrt{a}=a \\
& \text { যেকোন স্পশকের ক্ষেত্রে কর্তিত জ্পশের যোগফল } \\
& =a \text {, যা একটি ধ্রুবক। }
\end{aligned}
$$

4. $y=x^{3}-3 x^{2}+2$ বক্ররেখার যে সক্স বিন্দুতে

[ঢা.'০২; রা.'০৫,'১০; য.'০৯; দি.'১২] সমাধান : $y=x^{3}-3 x^{2}+2$

$$
\frac{d y}{d x}=3 x^{2} \quad 6 x
$$

$$
3 x-6 x=0 \Rightarrow x(x-2)=0
$$

$$
\Rightarrow x=0,2
$$

$$
x=0 \text { रศศ, } y=2
$$

$$
x=2 \text { इলে, } y=8-12+2=-2
$$

নির্ণেয় কিন্দু $(0,2),(2,-2)$

সমাধান : $x^{2}+2 a x+y^{2}=0 \cdots$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
2 \mathrm{x}+2 \mathrm{a}+2 \mathrm{y} \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{x+a}{y}
$$

স্সর্শক x - অক্ষের উপর লম্ব হলে, $\frac{d x}{d y}=0$

$$
-\frac{y}{x+a}=0 \Rightarrow y=0
$$

(1) $\bullet y=0$ বসিয়ে পাই, $x^{2}+2 a x=0$
$\Rightarrow x(x+2 a)=0 \therefore \mathrm{x}=0,-2 a$
निর্ণয় কিন্দু $(0,0),(-2 a, 0)$
5(b) $x^{2}+4 y^{2}=8$ উপবৃত্টের যে সক্ল কিন্দুতে স্সর্শক \boldsymbol{x} - অঞ্ষের উপর बম্ব তাদের স্থানাষ্ক নির্ণয় কর।
[কু., রা. , চ.'০৪; ব. '০৫; य.'০৬; সি.'০৭; দি.'০৯;কু,'১১]
সমাধান ঃ $x^{2}+4 y^{2}=8$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
2 \mathrm{x}+8 \mathrm{y} \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{2 x}{8 y}=-\frac{x}{4 y}
$$

স্পর্শক x - অক্ষের উপর লম্ম হলে, $\frac{d x}{d y}=0$

$$
-\frac{4 y}{x}=0 \Rightarrow y=0
$$

(1) $এ y=0$ বসিয়ে পাই, $x^{2}=8 \quad x= \pm 2 \sqrt{2}$ निর্ণেয় বিস্দু $(2 \sqrt{2}, 0),(-2 \sqrt{2}, 0)$

5(c) $y=x^{2}+\sqrt{1-x^{2}}$ বब্রেয়োর যে সক্ল বিन्দूতে শ্পর্ণক x - অণ্भর উপর बস্ম তাদের স্পানাষ্ক নির্ণয় কর। [ঢা.'০৬,'১০; চ. '০৭,'১১; ব. '০১,'১৪; সি.'’ф̣,'১২; रा. ’১৩; য. '১৩]
সমাধান : $y=x^{2}+\sqrt{1-x^{2}} \quad \cdots$ (1)

$$
\begin{aligned}
& \frac{d y}{d x}=2 x+\frac{1}{2 \sqrt{1-x^{2}}}(-2 x) \\
& =\frac{x\left(2 \sqrt{1-x^{2}}-1\right)}{\sqrt{1-x^{2}}}
\end{aligned}
$$

শর্শ্রक x - অক্ষের উপর নম্ম হলে, $\frac{d x}{d y}=0$

$$
\begin{aligned}
& \frac{\sqrt{1-x^{2}}}{x\left(2 \sqrt{1-x^{2}}-1\right)}=0 \Rightarrow \sqrt{1-x^{2}}=0 \\
& \Rightarrow x^{2}=1 \Rightarrow x= \pm 1 \\
& \mathrm{x}=1 \text { इलে, } y=1^{2}+\sqrt{1-1}=1 \\
& \mathrm{x}=-1 \text { इलে, } y=(-1)^{2}+\sqrt{1-1}=1
\end{aligned}
$$

निণ̛েয় কিস্দू $(1,1),(-1,1)$

 সমাষান : $x^{2}+4 x+y^{2}=0 \quad \cdots$ (1)
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
2 \mathrm{x}+4+2 \mathrm{y} \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{x+2}{y}
$$

স্শর্শক x - অক্ষের উপর লম্ম হলে, $\frac{d x}{d y}=0$

$$
-\frac{y}{x+2}=0 \Rightarrow y=0
$$

(1) $এ y=0$ বসিয়ে পাই, $x^{2}+4 x=0$
$\Rightarrow \mathrm{x}(\mathrm{x}+4)=0 \Rightarrow \mathrm{x}=0,-4$
निর্ণেয় কিন্দू $(0,0),(-4,0)$
5(e) $y=x^{3}-3 x^{2}-2 x+1$ বুরুরেখ়ার बে সমস্ত কিদ্দুত্তে স্সর্শকগুলো অক্巾 দুইটির সাণ্ে সমান সমান কোণ
 '১৩; রা.'০৮,’১২; দি.'১০; ঢা.'১১; চ.'১৩; য.'১২]

সমাধান ः $y=x^{3}-3 x^{2}-2 x+1 \cdots \cdots$ (1)

$$
\frac{d y}{d x}=3 x^{2}-6 x-2
$$

স্শকক অক্ষ দুইটির সাথে সমান সমান কোণ উৎপন্ন করলে, $\frac{d y}{d x}= \pm 1 \quad 3 \mathrm{x}^{2}-6 \mathrm{x}-2= \pm 1$ ' + ' नित़ि, $3 x^{2}-6 x-2=1$
$\Rightarrow 3 \mathrm{x}^{2}-6 \mathrm{x}-3=0 \Rightarrow \mathrm{x}^{2}-2 \mathrm{x}-1=0$ $x=\frac{2 \pm \sqrt{4+4}}{2}=\frac{2 \pm 2 \sqrt{2}}{2}=1 \pm 2 \sqrt{2}$
‘-' निर्यে, $3 x^{2}-6 x-2=-1$
$\Rightarrow 3 \mathrm{x}^{2}-6 \mathrm{x}-1=0$
$x=\frac{6 \pm \sqrt{36-4.3 .(-1)}}{2 \cdot 3}=\frac{6 \pm \sqrt{48}}{6}$
$=\frac{3 \pm 2 \sqrt{3}}{3}$
ব্দ্দুর डूজ $1 \pm \sqrt{2}, \frac{3 \pm 2 \sqrt{3}}{3}$
6. $y=(x+1)(x-1)(x-3)$ বক্রেরেখার মে সব

 সমাষান : $y=(x+1)(x-1)(x-3) \cdots(1)$

$$
\frac{d y}{d x}=(\mathrm{x}+1)(\mathrm{x}-1) \frac{d}{d x}(\mathrm{x}-3)+(\mathrm{x}+1)
$$

$$
(\mathrm{x}-3) \frac{d}{d x}(\mathrm{x}-1)+(\mathrm{x}-1)(\mathrm{x}+3) \frac{d}{d x}(\mathrm{x}+1)
$$

$$
=(x+1)(x-1)+(x+1)(x-3)+
$$

$$
(x-1)(x-3)
$$

যে সব বিদ্দুতে স্পর্ণক x - অক্ষকে ছেদ করে ঐ সব কিদ্দুর y-স্থানাজ্ক = 0
(1) এ $y=0$ বসিয়ে পাই, $x=-1,1,3$

ব্দিগুলো $(-1,0),(1,0),(3,0)$
$(-1,0)$ ক্দিতে স্পর্গকের ঢাল $=(-2)(-4)=8$
$(1,0)$ ক্দিন্দুত স্সর্ণকের ঢাল $=(2)(-2)=-4$
$(3,0)$ বি্দুতত স্শর্শকের ঢাল $=(4)(2)=8$
7.(a) a-এর মান কত হনে, $y=a x(1-x)$ বबুরেখার
 করে। [সি.'০৬,'১০,’>8 ; ব.'০৪,'০৮,'১২ ; চ.'০৬ ;

ヌ．＇০৪，＇০৮ ；दা，＇০৪，＇০৭，’০১ ；ঢা．＇০৮；жূ．＇১২，＇১8］
সমाथान \＆$y=a x(1-x)=a\left(x-\mathrm{x}^{2}\right)$

$$
\frac{d y}{d x}=c(1-2 x)
$$

মूलক্দ্দুত্তে $\frac{d y}{d x}=a(1+0)=a$
কिम्ञू মৃनক্দিন্দুত ঢাन ，$\frac{d y}{d x}=\tan \left(\pm 60^{\circ}\right)$

$$
a=\tan \left(\pm 60^{\circ}\right)= \pm \sqrt{3}
$$

 कर्大ে।

সমाषान \＆$y=c x(1+x)=c\left(x+\mathrm{x}^{2}\right)$

$$
\frac{d y}{d x}=\mathrm{c}(1+2 \mathrm{x})
$$

মूনबি্দুডে $\frac{d y}{d x}=\mathrm{c}(1+0)=\mathrm{c}$
কিন্তু মূলब্দ্মুডে ঢাन ，$\frac{d y}{d x}=\tan \left(\pm 30^{\circ}\right)$

$$
c=\tan \left(\pm 30^{\circ}\right)= \pm \frac{1}{\sqrt{3}}
$$

 সমাభান \＆এथानে $s=a t^{2}+b t+c$
ইহাকে t এর সাপেণ্ষ অস্তরীকরণ করে পাই，

$$
\begin{aligned}
& \frac{d s}{d t}=2 a t+b \\
& \mathrm{t} \text { সেকেকে পর কণাটির বেগ } v=2 a t+b \\
\Rightarrow & v^{2}=4 a^{2} t^{2}+4 a b t+b^{2} \\
\Rightarrow & v^{2}-b^{2}=4 a\left(a t^{2}+b t\right) \\
\Rightarrow & v^{2}-b^{2}=4 a(s-c) \\
& 4 a(s-c)=v^{2}-b^{2}
\end{aligned}
$$

8（b）यमि কোন বৃষ্টের্য ব্যাসাধ্গ সমহারে বৃচ্Aি পায় ，তবে
 সমানুभাতিক হবে।［ ব．＇০৬；চ．＇০৮；मि．＇১১；ন্রা．＇১৪］ প্রমাণ মনে করি，t＇সময়ে প্রদভ বৃד্টের ব্যাসাধ r এবং बै．
ইशাকে t এর সাপেক্ষে অন্তরীকরণ করে পাই，
$\frac{d A}{d t}=\frac{d}{d t}\left(\pi r^{2}\right)=2 r \pi \frac{d r}{d t}$
প্রশ্নমঢে，$\frac{d r}{d t}=$ ধ্রবক $\quad[\because$ ব্যাসাধ সমহারে বৃপ্Aি পায়। ］
$\frac{d A}{d t}=$ ধ্বুক $\times r \quad\left[\because 2 \pi \frac{d r}{d t}\right.$ একটি ध्रुবक $]$
$\Rightarrow \frac{d A}{d t} \propto r$
ক্ষেত্রশ্লের বৃদ্ধিহার তার ব্যাসাধ্ধর সমানুপাতিক।
 সেকেखে $\sqrt{3}$ সে．मि．जবर এत কেন্রষ্ण প্রতি সেকেডে

［বুख্রেট．＇ob］
সমাধান ঃ ধরি，সমবাহू ত্রিভুজটির বাহूর দৈর্ঘ্য x সে．মি． এবए এর কেত্রশস্न A ব斤 সে．মি．। তাহলে，
$\mathrm{A}=\frac{\sqrt{3}}{4} x^{2} \Rightarrow \frac{d A}{d t}=\frac{\sqrt{3}}{4} \times 2 x \frac{d x}{d t}$
প্রপ্নমতে，$\frac{d x}{d t}=\sqrt{3}$ এবং $\frac{d A}{d t}=12$
（i）इতে পাই， $12=\frac{\sqrt{3}}{4} \times 2 x \times \sqrt{3}$
$\Rightarrow 3 x=24 \Rightarrow x=8 \quad$ বाহूন দৈর্ঘ্য 8 সে．মি．।
अणिद्रिক্ ब্রশ্ন（সমাধানসহ）
1（a）$y=x^{3}-2 x^{2}+4 x$ दब বিস্দুতে সার্ণকের্ন সমীকরণ নির্র্য কর।
［4．’○৩］ সমাবাन \＆$y=x^{3}-2 x^{2}+4 x$
$\therefore \frac{d y}{d x}=3 x^{2}-4 x+4$
$(2,5)$ ক্দ্দুতে $\frac{d y}{d x}=3.2^{2}-4(2)+4$

$$
=12-8+4=8
$$

প্রদত্ত বক্ররেথার $(2,5)$ বি্দুতে সস্মরের্ন সমীকরণ $y-5=8(x-2) \Rightarrow 8 x-y-11=0$
（b）$x^{2}-5 x y+y^{2}-5 x+6 y+9=0$ 《ब त্রেখার্গ
 ममाथान $8 x^{2}-5 x y+y^{2}-5 x+6 y+9=0$ ईহাকে x－এর সাপোে জল্তরীকরণ করে পাই，
$2 x-5 x \frac{d y}{d x}-5 y+2 y \frac{d y}{d x}-5+6 \frac{d y}{d x}=0$
$\Rightarrow-(5 x-2 y-6) \frac{d y}{d x}=-(2 x-5 y-5)$
$\Rightarrow \frac{d y}{d x}=\frac{2 x-5 y-5}{5 x-2 y-6}$
$(2,1)$ কিদ্দুতে $\frac{d y}{d x}=\frac{4-5-5}{10-2-6}=\frac{-6}{2}=-3$
প্রদত বকররেখার $(2,1)$ ক্দিদ্দুতে অভিলম্মের সমীকরণ
$. y-1=-\frac{1}{-3}(x-2)$
$\Rightarrow 3 y-3=x-2 \quad x-3 y+1=0$
1（c）$x^{3}-3 x y+y^{3}=3$ बथिवृष्बেন $(1,-1)$ सिमूত্রে

［त्रा．＇०७］
भमाथान $8 x^{3}-3 x y+y^{3}=3$
ইহাকে x－এর সাপেক্ষে অল্তরীকরণ করে পাই，

$$
3 x^{2}-3 x \frac{d y}{d x}-3 y+3 y^{2} \frac{d y}{d x}=0
$$

$\Rightarrow 3\left(y^{2}-x\right) \frac{d y}{d x}=3\left(y-x^{2}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{y-x^{2}}{y^{2}-x}$
$(1,-1)$ বিদ্দুতে $\frac{d y}{d x}=\frac{-1-1}{1-1}$
जबाৎ $\left(\frac{d x}{d y}\right)_{(1 .-1)}=\frac{0}{-2}=0$
 $\left(\frac{d x}{d y}\right)_{(1,-1)}(y+1)=x-1$
$\Rightarrow 0 .(y+1)=x-1 \quad \therefore x-1=0$
1（d）$x^{3}-3 a x y+y^{3}=0$ यब्टर्तেथाब $\left(x_{1}, y_{1}\right)$

［ B, \circ＇० ］
সमाथान $8 x^{3}-3 a x y+y^{3}=0$
ইহাকে x－जর সাপেক্巾ে অল্তরীকক্মণ করে পাই，
$3 x^{2}-3 a x \frac{d y}{d x}-3 a y+3 y^{2} \frac{d y}{d x}=0$
$\Rightarrow 3\left(y^{2}-a x\right) \frac{d y}{d x}=3\left(a y-x^{2}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{a y-x^{2}}{y^{2}-a x}$
$\left(x_{1}, y_{1}\right)$ बि্দিতে $\frac{d y}{d x}=\frac{a y_{1}-x_{1}{ }^{2}}{y_{1}{ }^{2}-a x_{1}}$
প্রদত্ত বক্করেরোর $\left(x_{1}, y_{1}\right)$ বিস্দুতে অভিলম্মের্র
সমীকরণ $y-y_{1}=-\frac{y_{1}{ }^{2}-a x_{1}}{a y_{1}-x_{1}{ }^{2}}\left(x-x_{1}\right)$
$\Rightarrow\left(y-y_{1}\right)\left(a y_{1}-x_{1}^{2}\right)+\left(x-x_{1}\right)\left(y_{1}^{2}-a x_{1}\right)$

［य．＇०১］
প্রমাण $8 y^{2}=4 a x$
ইহাকে x－এর সাপেক্巾ে অল্তরীীকণ করে পাই，

$$
2 y \frac{d y}{d x}=4 a \Rightarrow \frac{d y}{d x}=\frac{2 a}{y}
$$

$\left(x_{1}, y_{1}\right)$ बि্দूতে $\frac{d y}{d x}=\frac{2 a}{y_{1}}$
প্রদত্ত পরাবৃচ্জের $\left(x_{1}, y_{1}\right)$ বিস্দুত্ত স্সর্শকের
সমीকরণ $y-y_{1}=\frac{2 a}{y_{1}}\left(x-x_{1}\right)$
$\Rightarrow y y_{1}-y_{1}^{2}=2 a\left(x-x_{1}\right)$
$\Rightarrow \quad y y_{1}-4 a x_{1}=2 a\left(x-x_{1}\right)$
যেহেতু
$\left(x_{1}, y_{1}\right)$ বি্দু $y^{2}=4 a x$ পরাবৃচ্জের উপর অবश্চিত।

$$
y y_{1}=2 a\left(x+x_{1}\right) \quad \text { (Showed) }
$$

1(f) $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ বब্চরেখার $\left(x_{1}, y_{1}\right)$

সमाथान : $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$
ইহাকে x-এর সাপেক্ষে অল্তরীকরণ করে পাই,

$$
\frac{2}{3} x^{\frac{2}{3}-1}+\frac{2}{3} y^{\frac{2}{3}-1} \frac{d y}{d x}=0
$$

$\Rightarrow x^{-\frac{1}{3}}+y^{-\frac{1}{3}} \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{x^{-\frac{1}{3}}}{y^{-\frac{1}{3}}}$
$\left(x_{1}, y_{1}\right)$ बিদ্দুতে $\frac{d y}{d x}=-\frac{x_{1}^{-\frac{1}{3}}}{y_{1}^{-\frac{1}{3}}}$
প্রদত বক্তরেখার $\left(x_{1}, y_{1}\right)$ বিক্দুত্ত স্পপ্রকের
সমীকরণ $y-y_{1}=-\frac{x_{1}^{-\frac{1}{3}}}{y_{1}^{-\frac{1}{3}}}\left(x-x_{1}\right)$
$\Rightarrow y y_{1}{ }^{-\frac{1}{3}}-y_{1}{ }^{\frac{2}{3}}=-x x_{1}^{-\frac{1}{3}}+x_{1}{ }^{\frac{2}{3}}$
$\Rightarrow x x_{1}^{-\frac{1}{3}}+y y_{1}^{-\frac{1}{3}}=x_{1}^{\frac{2}{3}}+y_{1}{ }^{\frac{2}{3}}=a^{\frac{2}{3}}$ यেহেতু $\left(x_{1}, y_{1}\right)$ बি্দ্মু (1) বক্ররেখার উপর অবস্থিত।

$$
x x_{1}^{-\frac{1}{3}}+y y_{1}^{-\frac{1}{3}}=a^{\frac{2}{3}} \text { (Ans.) }
$$

2(a) $y^{2}-4 x-6 y+20=0$ বब্চরেখার $(3,2)$ বিপ্দুতে স্সর্শক ४ অडিনম্টের সমীক্রণ নির্ণয় কন। [চ.'০২]
সমাथान $8 y^{2}-4 x-6 y+20=0$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$
2 \mathrm{y} \frac{d y}{d x}-4-6 \frac{d y}{d x}=0
$$

$\Rightarrow 2(\dot{y}-3) \frac{d y}{d x}=4 \quad \therefore \frac{d y}{d x}=\frac{2}{y-3}$
$(3,2)$ বিন্দুতে $\frac{d y}{d x}=\frac{2}{2-3}=-2$
প্রদত্ত বক্ররেখার $(3,2)$ বিদ্দুতে স্শর্শকের সমীকরণ
$y-2=-2(x-3) \Rightarrow 2 x+y=8$

এবং অভিলূম্বের সমীকরণ, $y-2=\frac{1}{2}(x-3)$
$\Rightarrow 2 \mathrm{y}-4=\mathrm{x}-3 \therefore \mathrm{x}-2 \mathrm{y}+1=0$
2(b) $y=x^{3}-2 x^{2}+4$ বब্রেোর $(2,4)$ বিদ্দুতে স্চর্গক ४ অডিলম্মের সমীকরণ নির্ণয় কর। [চ.'০৮,’১১] সমाथान \& $y=x^{3}-2 x^{2}+4$

$$
\frac{d y}{d x}=3 x^{2}-4 x
$$

$(2,4)$ बিন্দুতে $\frac{d y}{d x}=3 \times 4-8=4$
প্রদত্ত বক্ররেখার $(2,4)$ बিন্দুতু স্পর্শকের সমীকরণ $y-4=4(x-2)$
$\Rightarrow \mathrm{y}-4=4 \mathrm{x}-8 \therefore 4 \mathrm{x}-\mathrm{y}-4=0$
এবং जडিলম্বের সমীকরণ, $y-4=-\frac{1}{4}(x-2)$
$\Rightarrow 4 y-16=-x+2 \therefore x+4 y-18=0$
2(c) $x^{2}+y^{2}-6 x-10 y+21=0$ বৃজ্েে $(1,2)$

[य.'o৩; র্ञा.’১১]
সমাধান $8 x^{2}+y^{2}-6 x-10 y+21=0$
ইহাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই,
$2 \mathrm{x}+2 \mathrm{y} \frac{d y}{d x}-6-10 \frac{d y}{d x}=0$
$\Rightarrow 2(\mathrm{y}-5) \frac{d y}{d x}=-2(\mathrm{x}-3)$
$\Rightarrow \frac{d y}{d x}=-\frac{x-3}{y-5}$
$(1,2)$ ন্দিতে $\frac{d y}{d x}=-\frac{1-3}{2-5}=-\frac{2}{3}$
প্রদত্ত বক্ররেখার $(1,2)$ বি্দুত্তে স্থর্শকের সমীকরণ $y-2=-\frac{2}{3}(x-1)$
$\Rightarrow 3 y-6=-2 x+2 \therefore 2 x+3 y-8=0$
এবং जডিলদ্মের সমীকরণ, $\dot{y}-2=\frac{3}{2}(x-1)$
$\Rightarrow 2 y-4=3 \mathrm{x}-3 \therefore 3 \mathrm{x}-2 \mathrm{y}+1=0$

2(d) $y=x^{3}-3 x+2$ বब্চরেখার $(2,-2)$ বিস্মুতে
 সमाथांन \& $y=x^{3}-3 x+2 \quad \frac{d y}{d x}=3 x^{2}-3$ $(2,-2)$ बি্দুত্তে $\frac{d y}{d x}=3 \times 4-3=9$

প্রদত্ত বক্ররেখার $(2,-2)$ ক্দ্দুতে স্স্শকের সমীকরণ $y+2=9(x-2)$
$\Rightarrow \mathrm{y}+2=9 \mathrm{x}-18 \therefore 9 \mathrm{x}-\mathrm{y}-20=0$ এবং অভিলম্বের সমীকরণ, $y+2=-\frac{1}{9}(x-2)$
$\Rightarrow 9 \mathrm{y}+18=-\mathrm{x}+2 \therefore \mathrm{x}-9 \mathrm{y}-16=0$
3(a) $y(x-2)(x-3)-x+3=0$ বब্নেোঢি যে
 স্সশকেক্ন সমীক্রণ नির্ণয় কন।
[б.'०৫]
সমाषान \& $y(x-1)(x-2)-x+3=0$
$\Rightarrow \mathrm{y}\left(\mathrm{x}^{2}-3 \mathrm{x}+2\right)-\mathrm{x}+3=0$.
বক্ররেখেটি x-অক্ষকে যে বি্দুতে ছেদ করে তার কোটি $y=0$. (1) $এ y=0$ বসিয়ে পাই $x=3$.

বক্ররেখাটি x-অक্ষকে $(3,0)$ বিদ্দুতে ছেদ করে।
(1) বক্ররেখাকে x-এর সাপেক্ষে অন্তরীকরণ করে পাই, $\left(x^{2}-3 x+2\right) \frac{d y}{d x}+y(2 x-3)-1=0$
$\Rightarrow \frac{d y}{d x}=\frac{1-y(2 x-3)}{x^{2}-3 x+2}$
$(3,0)$ বিদ্দুতে $\frac{d y}{d x}=\frac{1}{9-9+2}=\frac{1}{2}$
निৰ্ণেয় স্সর্গকের সমীকরণ, $y=\frac{1}{2}(x-3)$
$\Rightarrow \mathrm{x}-2 \mathrm{y}-3=0$
3(b) প্রমাণ কর यে, $3 x^{2}+4 x y+5 y^{2}-4=0$ বब্লেখাটি বে সমস্ত বিপ্দুত্তে $3 x+2 y=0$ - ৫ $2 x+5 y=0$ রেখাকে হেদ করে , ী বিদ্দুগুনোতে

প্रমাণ : $3 x^{2}+4 x y+5 y^{2}-4=0 \cdots$ (1)
$3 x+2 y=0 \Rightarrow y=-\frac{3}{2} x$ रতে y-এর মান (1) এ यमिए़ পাই, $3 \mathrm{x}^{2}+4 \mathrm{x}\left(\frac{-3}{2} x\right)+5\left(\frac{-3}{2} x\right)^{2}-4=0$ $\Rightarrow 3 \mathrm{x}^{2}-6 \mathrm{x}^{2}+\frac{45 \mathrm{x}^{2}}{4}-4=0$
$\Rightarrow-12 x^{2}+45 x^{2}=16 \quad x= \pm \frac{4}{\sqrt{33}}$

www.boighar.com

$x=\frac{4}{\sqrt{33}}$ হलে, $y=-\frac{3}{2} \times\left(\frac{4}{\sqrt{33}}\right)=-\frac{6}{\sqrt{33}}$
$\mathrm{x}=-\frac{4}{\sqrt{33}}$ इलि, $y=-\frac{3}{2} \times\left(-\frac{4}{\sqrt{33}}\right)=\frac{6}{\sqrt{33}}$
(1) বক্ররেখাটি $3 x+2 y=0$ রেथাকে $\left(\frac{4}{\sqrt{33}},-\frac{6}{\sqrt{33}}\right)$ В $\left(-\frac{4}{\sqrt{33}}, \frac{6}{\sqrt{33}}\right)$ बिम्দूंढে ছেদ করে।
(1) কে x-এর সাপেকে অল্তরীকরণ করে পাই,
$-3 x^{2}+4 x y+5 y^{2}-4=0$
$6 \mathrm{x}+4 \mathrm{x} \frac{d y}{d x}+4 \mathrm{y}+10 \mathrm{y} \frac{d y}{d x}=0$
$\Rightarrow 2(2 \mathrm{x}+5 \mathrm{y}) \frac{d y}{d x}=-2(3 \mathrm{x}+2 \mathrm{y})$
$\Rightarrow \frac{d y}{d x}=-\frac{3 x+2 y}{2 x+5 y}$
$\left(\frac{4}{\sqrt{33}},-\frac{6}{\sqrt{33}}\right)$ В $\left(-\frac{4}{\sqrt{33}}, \frac{6}{\sqrt{33}}\right)$ ちЈয়
ক্পিদেত $3 \mathrm{x}+2 \mathrm{y}=0$ जब্ৰा $\frac{d y}{d x}=-\frac{3 x+2 y}{2 x+5 y}=0$

आবाর, $2 x+5 y=0 \Rightarrow y=-\frac{2}{5} x$ হতে y - এর
মান (1) সমীকরণে বসিয়ে পাই,

$$
\begin{aligned}
& 3 x^{2}+4 x y+5 y^{2}-4=0 \\
& 3 \mathrm{x}^{2}+4 \mathrm{x}\left(-\frac{2}{5} x\right)+5\left(-\frac{2}{5} x\right)^{2}-4=0 \\
\Rightarrow & 15 \mathrm{x}^{2}-8 \mathrm{x}^{2}+4 \mathrm{x}^{2}-20=0 \\
\Rightarrow & 11 \mathrm{x}^{2}=20 \Rightarrow \mathrm{x}= \pm \frac{2 \sqrt{5}}{\sqrt{11}}
\end{aligned}
$$

$\mathrm{x}=\frac{2 \sqrt{5}}{\sqrt{11}}$ रनि, $y=-\frac{2}{5} \times \frac{2 \sqrt{5}}{\sqrt{11}}=-\frac{4}{\sqrt{55}}$
$\mathrm{x}=-\frac{2 \sqrt{5}}{\sqrt{11}}$ इलि, $y=-\frac{2}{5} \times\left(-\frac{2 \sqrt{5}}{\sqrt{11}}\right)=\frac{4}{\sqrt{55}}$
(1) বক্সরেখাট $2 x+5 y=0$ রেখাকে $\left(\frac{2 \sqrt{5}}{\sqrt{11}}\right.$,-
$\left.\frac{4}{\sqrt{55}}\right)$ ఆ $\left(-\frac{2 \sqrt{5}}{\sqrt{11}}, \frac{4}{\sqrt{55}}\right)$ बিন্দুতে ছেদ করে।
$\left(\frac{2 \sqrt{5}}{\sqrt{11}},-\frac{4}{\sqrt{55}}\right)$ В $\left(-\frac{2 \sqrt{5}}{\sqrt{11}}, \frac{4}{\sqrt{55}}\right)$ উंडয় बिम्দूजে
$2 \mathrm{x}+5 \mathrm{y}=0$ जबाल $\frac{d x}{d y}=-\frac{2 x+5 y}{3 x+2 y}=0$
এ বিদ্দু দুইটিতে অষ্ধিত স্থর্শক x-অক্ষে লম্ম অব্যাৎ y -অক্যে সমান্তরান।

4(a) $y=4 x^{3}+3 x^{2}-6 x+1$ বब্চুরেথার बে সকম
 निर्णय़ क्र।
[ঢা.’০০]
সমाथान $8 y=4 x^{3}+3 x^{2}-6 x+1$

$$
\frac{d y}{d x}=12 x^{2}+6 x-6
$$

স্পর্শক x - অক্ষের সমান্তরাল হলে, $\frac{d y}{d x}=0$

$$
\begin{aligned}
& 12 x^{2}+6 x-6=0 \Rightarrow 2 x^{2}+x-1=0 \\
\Rightarrow & 2 x^{2}+2 x-x-1=0 \\
\Rightarrow & 2 x(x+1)-1(x+1)=0 \\
\Rightarrow & (x+1)(2 x-1)=0 \therefore x=-1, \frac{1}{2} \\
x= & -1 \text { शबে, } y=-4+3+6+1=6 \\
x= & \frac{1}{2} \text { হলে, } y=4 \cdot \frac{1}{8}+3 \cdot \frac{1}{4}-6 \cdot \frac{1}{2}+1 \\
& =\frac{2+3-8}{4}=-\frac{3}{4}
\end{aligned}
$$

ব্দ্দু দুইটি $(-1,6),\left(\frac{1}{2},-\frac{3}{4}\right)$
4(b) $x^{2}+y^{2}-2 x-3=0$ यब্রেথান্ন यে সকब
 निर्ण़ কर्न।
[মা.বো.'০১!; ব.'১৩]

সমाधान \& $x^{2}+y^{2}-2 x-3=0 \cdots \cdots$ (1)
ইशাকে x এর সাপেক্巾 অল্তরীকরণ করে পাই,

$$
2 \mathrm{x}+2 \mathrm{y} \frac{d y}{d x}-2=0 \Rightarrow \frac{d y}{d x}=\frac{1-x}{y}
$$

স্পর্শক x - অক্小ের সমান্তরাল হনে, $\frac{d y}{d x}=0$

$$
\frac{1-x}{y}=0 \Rightarrow x=1
$$

(1) $এ \mathrm{x}=1$ বসিয়ে পाই, $1+y^{2}-2 \cdot 1-3=0$
$\Rightarrow y^{2}=4 \Rightarrow y= \pm 2$
निর্ণেয় কি্দু $(1,2),(1,-2)$
4(c) $y=(x-3)^{2}(x-2)$ यब
 নির্ণয় কর।
[ঢा.'०৫]
সমাধান \& $y=(x-3)^{2}(x-2)$

$$
\begin{aligned}
\frac{d y}{d x} & =(\mathrm{x}-3)^{2} \cdot 1+2(\mathrm{x}-3)(\mathrm{x}-2) \\
& =(\mathrm{x}-3)(\mathrm{x}-3+2 \mathrm{x}-4) \\
& =(\mathrm{x}-3)(3 \mathrm{x}-7)
\end{aligned}
$$

স্রক্রক x - অক্ষের সমান্তরাল হনে, $\frac{d y}{d x}=0$

$$
\begin{gathered}
(x-3)(3 x-7)=0 \Rightarrow x=3, \frac{7}{3} \\
x=3 \text { इलে, } y=(3-3)^{2}(3-2)=0 \\
x=\frac{7}{3} \text { इलে, } y=\left(\frac{7}{3}-3\right)^{2}\left(\frac{7}{3}-2\right) \\
=\frac{4}{9} \times \frac{1}{3}=\frac{4}{27}
\end{gathered}
$$

নির্ণে बি্দু $(3,0),\left(\frac{7}{3}, \frac{4}{27}\right)$
4(d) $y^{3}=x^{2}(2 a-x)$ বबরেেখার যে সকब বিम্দूতে

[Б.'o১]
সমাধান : $y^{3}=x^{2}(2 a-x)$

$$
\begin{aligned}
& 3 \mathrm{y}^{2} \frac{d y}{d x}=\mathrm{x}^{2}(-1)+2 \mathrm{x}(2 a-\mathrm{x}) \\
\Rightarrow & \frac{d y}{d x}=\frac{x(-x+4 a-2 x)}{3 y^{2}}=\frac{x(4 a-3 x)}{2 y}
\end{aligned}
$$

স্শ্রক x - অক্ষের সমান্তরাল হলে, $\frac{d y}{d x}=0$
$\frac{x(4 a-3 x)}{2 y}=0 \Rightarrow \mathrm{x}=0, \frac{4 a}{3}$
$\mathrm{x}=0$ इल., $y^{3}=0 \Rightarrow \mathrm{y}=0$
$\mathrm{x}=\frac{4 a}{3}$ रनि, $y^{3}=\frac{16 a^{2}}{9}\left(2 a-\frac{4 a}{3}\right)$
$\Rightarrow y^{3}=\frac{16 a^{2}}{9} \times \frac{2 a}{3} \therefore \mathrm{y}=\frac{2 a \sqrt[3]{4}}{3}$
নির্ণেয় ब্দ্দু $(0,0),\left(\frac{4}{3} a, \frac{2 \sqrt[3]{4}}{3} a\right)$
5(a) $y=3 x^{2}+2 x-1$ বब্রেেখার $(1,0)$ বিम्দूডে স্শর্রকের ঢা নির্ণয় কর।
[রা.'০১]
সমাধাन : $y=3 x^{2}+2 x-1 \quad \frac{d y}{d x}=6 x+2$
$(1,0)$ बिদ্দুতে $\frac{d y}{d x}=6 \times 1+2=8$
প্রদত্ত বক্ররেখার $(1,0)$ ষি্দুত্তে স্শর্শকের ঢাল 8
5(b) $x^{2}+x y+y^{2}=4$ বब্ররেখার $(2,-2)$ বিস্দুত্তে স্থর্ৰকের ঢাল নির্ণয় ক্ন।
[भि.'○৩]
সमाथान ः $x^{2}+x y+y^{2}=4$
ইহাকে x-এর সাপেক্ষে অল্তরীকরণ করে পাই,

$$
\begin{aligned}
& 2 \mathrm{x}+\mathrm{x} \frac{d y}{d x}+\mathrm{y}+2 \mathrm{y} \frac{d y}{d x}=0 \\
\Rightarrow & (\mathrm{x}+2 \mathrm{y}) \frac{d y}{d x}=-(2 \mathrm{x}+\mathrm{y}) \\
\Rightarrow & \frac{d y}{d x}=-\frac{2 x+y}{x+2 y} \\
& (2,-2) \text { बিন্দूত } \frac{d y}{d x}=-\frac{4-2}{2-4}=1
\end{aligned}
$$

প্রদত্ত বক্ররেখার $(2,-2)$ ক্স্দুতে স্পর্শকের ঢাল 1 .
5(c) $x^{3}-3 x y+y^{3}=3$ বब্করেখাtि $(2,1)$ मिख्यে
 সमाथान \& $x^{3}-3 x y+y^{3}=3$
ইহকে x-এর সাপেক্巾ে অন্তরীকরণ করে পাই,

$$
\begin{aligned}
& 3 \mathrm{x}^{2}-3 \mathrm{x} \frac{d y}{d x}-3 \mathrm{y} \cdot 1+3 \mathrm{y}^{2} \frac{d y}{d x}=0 \\
\Rightarrow & -3\left(\mathrm{x}-\mathrm{y}^{2}\right) \frac{d y}{d x}=-3\left(\mathrm{x}^{2}-\mathrm{y}\right) \\
\Rightarrow & \frac{d y}{d x}=\frac{x^{2}-y}{x-y^{2}} \\
& (2,1) \text { बিন্দুতে } \frac{d y}{d x}=\frac{4-1}{2-1}=3
\end{aligned}
$$

স্শর্শকের ঢাল 3
6(a) a-এর মান <কত হলে, $y=a x(1-x)$ বক্রেেখান
 করে।
[ঢ.’○8]
সমাধান ः $y=a x(1-x)=a\left(x-x^{2}\right)$

$$
\frac{d y}{d x}=c(1-2 \mathrm{x})
$$

মূलক্দ্দুতে $\frac{d y}{d x}=a(1+0)=a$
কিन্ুু মূলক্দ্মুত্ত ঢাল , $\frac{d y}{d x}=\tan \left(\pm 30^{\circ}\right)$

$$
a=\tan \left(\pm 30^{\circ}\right)= \pm \frac{1}{\sqrt{3}}
$$

 2 इয়, তবে a, b, c এর মান निক্য।
[ঢा.o১]
সমাধান $8 y=a x^{2}+b x+c$

$$
\frac{d y}{d x}=2 \mathrm{ax}+\mathrm{b} \therefore \text { মূलब্দ্দুতে } \frac{d y}{d x}=b
$$

কিन्णू মূলক্দিতে ঢাল , $\frac{d y}{d x}=2 \quad \mathrm{~b}=2$ বক্রেরোটি মূলঝ্স্দু এবং $(1,1)$ কিদ্দু দিয়ে যায়।

$$
\begin{aligned}
& 0=a .0+\mathrm{b} .0+c=0 \Rightarrow c=0 \text { এবR } \\
& 1=a+b+c \Rightarrow 1=\mathrm{a}+2+0 \Rightarrow \mathrm{a}=-1 \\
& \mathrm{a}=-1, \mathrm{~b}=2, \mathrm{c}=0
\end{aligned}
$$

7 (a) একটি গতিশীল কণার बোন সরুরেখায় t সময়ে অতिক্রাम্ত দৃরত্प $s=63 t-6 t^{2}-t^{3}$ हाরा প্रকাশিত इয়। 2 সেকেভ শেবে তার বো অবर बামার পুর্বে जতিক্মাन্ত দूরप্木 निর্য় কর্ন।
[כ.'०२; সि.'০৪]

সমাখান $:$ এभाনে $s=63 t-6 t^{2}-t^{3}$
ইহাকে t এর সাপেক্ষে অন্তরীকরণ করে পাই,
$\frac{d s}{d t}=63-12 \mathrm{t}-3 \mathrm{t}^{2}$
t সময় পর কণাটির বেে $=63-12 t-3 t^{2}$
2 সেকেম্ড শেষে কণাটির বেগ $=(63-24-12)$ একক/সেকেম্ড $=27$ একক/সেকেন্ড (Ans.)
आাার কণাটির থেমে যাবে যখন বো $\frac{d s}{d t}=0$
$63-12 t-3 t^{2}=0 \Rightarrow t^{2}+4 t-21=0$
$\Rightarrow(\mathrm{t}-3)(\mathrm{t}+7)=0 \quad \therefore \mathrm{t}=3 \quad[\because t \neq-7]$
থামার পূর্বে কণাটি 3 সেকেল্ড চলেছিন এবহ 3 সেকেল্ অতিক্রান্ত দূরত্ব $s=(189-54-27)$

$$
=108 \text { একক। }
$$

7(b) এবটি কণা সরণরেখায় এমনভাবে চলে যেন $\mathrm{s}=\sqrt{t}$ इয়। দেখাও যে কশাটি্ম प্ররণ ঋণাআ্র অবए বেেের ঘনফণের সাণে সমানুপাতিক।
[गि.'০২]
প্रমान : $\mathrm{s}=\sqrt{t}=t^{\frac{1}{2}} \quad \frac{d s}{d t}=\frac{1}{2} t^{\frac{1}{2}-1}=\frac{1}{2} t^{-\frac{1}{2}}$
এব尺 $\frac{d^{2} s}{d t^{2}}=\frac{1}{2}\left(-\frac{1}{2}\right) t^{-\frac{1}{2}-1}=-\frac{1}{4} t^{-\frac{3}{2}}$
\therefore কণাঢির রেগ $=\frac{1}{2} t^{-\frac{1}{2}}$ এবহ
प্বরণ $=-\frac{1}{4} t^{-\frac{3}{2}}=-2\left(\frac{1}{2} t^{-\frac{1}{2}}\right)^{3}=-2 \times(\text { বেগ })^{3}$
प্ররণ ঋণা|্রক এবং তা বেেের ঘনফলের সমানুপাতিক।
7(c) একটি বস্তুর গতির সমীকনণ $\mathrm{s}=t^{3}+\frac{1}{t^{3}}$ रनে দেখাও যে, এর ত্ররণ সর্বদাই ধনাতক এবৃ $t=10$ হনে এর গতিবেগ নির্র়্ কর।
[চ.'०১]
প্রমাণ : গতির সমীকরণ $\mathrm{s}=t^{3}+\frac{1}{t^{3}}$
t সময়ে গতিবেগ, $\frac{d s}{d t}=3 \mathrm{t}^{2}-\frac{3}{t^{4}}$
यथन $\mathrm{t}=10$, গতিবেগ $=300-\frac{3}{10^{4}}$

$$
=299.99 \text { একক (প্রায়) }
$$

$\mathrm{t}=10$ इलে,
आাবার t সময়ে ज্রুণ, $\frac{d^{2} s}{d t^{2}}=6 \mathrm{t}+\frac{12}{t^{5}}>0$
$[\because t>0]$
प্ররণের মান সব সময় ধনাতাক।

 বেলের घनयলের সাc্পে সমানুপ্তিক।
[ঢा.'০১]
প্রমাণ : এখানে $\mathrm{s}=\sqrt{2 t}=\sqrt{2} t^{\frac{1}{2}}$
কণাটির বেগ $=\frac{d s}{d t}=\sqrt{2} \cdot \frac{1}{2} t^{\frac{1}{2}-1}=\frac{1}{\sqrt{2}} t^{-\frac{1}{2}}$
प्रরণ $=\frac{d^{2} s}{d t^{2}}=-\frac{1}{2 \sqrt{2}} t^{-\frac{3}{2}}=-\left(\frac{1}{\sqrt{2}} t^{-\frac{1}{2}}\right)^{3}$

$$
=-(\text { বেগ })^{3}
$$

কণাটির ত্ররণ বেগের ঘনফেের সাথে সমানুপাতিক।

 বৃচ্চির হার $a / 2 \pi$ यूं / भেবেছ।
[ब्র.ভ.भ.'১৭]
প্রমাণ মনে করি, t সেকেম্ডে প্রদত্ত বৃত্তাকার ঢেট এর ব্যাসাধ r यूট এবং পরিধির S यूট
তাহলে, $S=2 \pi r$
ইহাকে t এর সাপেক্ষে অন্তরীকরণ করে পাই,
$\frac{d S}{d t}=\frac{d}{d t}(2 \pi r)=2 \pi \frac{d r}{d t}$
প্রশ্নমতে, $\frac{d S}{d t}=a \quad[\because$ পরিধির বৃদ্ধির হার ' a ']
$a=2 \pi \frac{d r}{d t} \Rightarrow \frac{d r}{d t}=\frac{a}{2 \pi}$
ক্ষেশ্রফলের-বৃদ্ফিহার $\frac{a}{2 \pi}$ যুট/জেকেন্ড।
7(f) একটি গতিশীন কণার t সময়ে অতিক্রাম্ত দूরত্ব $s=u t+\frac{1}{2} f t^{2}$ সমীক্木ণ ঢারা প্রকাশ করা হয় বেখানে
 $\mathbf{u}+\mathrm{ft}$ এবए प্ররণ f .

প্रমाণ : এখानে $s=u t+\frac{1}{2} f t^{2}$
t সময়ে কণাটির বেগ, $\frac{d s}{d t}=u+f t$ এবр t সময়ে কণাটির ज্ররণ, $\frac{d^{2} s}{d t^{2}}=f$
 बणिब्बान्त मूरण्य $\mathrm{s}=\frac{1}{2} t^{3}+t^{2}+4 t$ মिणात। 5 लেख্লে শেশে কশার্রি বো ৩ দ্ররণ নিি্ত্য ক্ন।
[मि.'०৫] সমाषान 8 এখानে $\mathrm{s}=\frac{1}{2} t^{3}+t^{2}+4 t$

। লেকেঙে কণাটির বেগ, $\frac{d s}{d t}=\frac{3}{2} t^{2}+2 t+4$ এবং t সময়ে কণাটির प্ররণ, $\frac{d^{2} s}{d t^{2}}=3 t+2$ $\therefore 5$ সেকেল শেমে কণাটির বেগ $=\frac{3}{2} .25+10+4$

$$
=51.5 \mathrm{~ms}^{-1}
$$

এবং प্ররণ $=(3 \times 5+2) \mathrm{ms}^{-2}=17 \mathrm{~ms}^{-2}$

প্রশ্নমালা IX K

1. (a) Sol ${ }^{n}: \lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}=\lim _{x \rightarrow 0} \frac{-\sin x}{2 x}$
$=\lim _{x \rightarrow 0} \frac{-\cos x}{2.1}=\frac{-\cos 0}{2}=\frac{-1}{2}$
(b) $\mathrm{Sol}^{\mathrm{n}}$: উপরের সবঞুলি তথ্য সত্য। \therefore Ans. D
(c) Sol ${ }^{\mathrm{n}}: \mathrm{y}-\mathrm{y}_{1}=\mathrm{f}^{\prime}\left(\mathrm{x}_{1}\right)\left(\mathrm{x}-\mathrm{x}_{1}\right) \therefore$ Ans. A
(d) Sol ${ }^{\mathrm{n}}$: বক্রেরেখাটি পরাবৃত্ত নির্দেশ করে।
(e) Sol ${ }^{\mathrm{n}}: \mathrm{f}(\mathrm{x})=\mathrm{y}=\frac{1}{2} \mathrm{x}^{2} \Rightarrow f^{\prime}(x)=\mathrm{x}$

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & \approx \mathrm{f}(1)+\mathrm{f}^{\prime}(1)(\mathrm{x}-1)=\frac{1}{2}+1(\mathrm{x}-1) \\
& =\mathrm{x}-\frac{1}{2}=\mathrm{x}-0 \cdot 5 \therefore \text { Ans. } D
\end{aligned}
$$

(f) $\operatorname{Sol}^{\mathrm{n}}: \delta y=\mathrm{f}(\mathrm{x}+\delta x)-\mathrm{f}(\ddot{\mathrm{x}})$
$=f(2+1)-f(2)$

$$
=\frac{1}{2}\left(3^{2}-2^{2}\right)=\frac{1}{2}(9-4)=\frac{5}{2}=2 \cdot 5
$$

(g) Sol ${ }^{\mathrm{n}}: \mathrm{dx}=\delta x=1$

$$
f^{\prime}(x)=\mathrm{x} \quad \therefore \mathrm{f}^{\prime}(1)=1
$$

$$
\mathrm{dy}=\mathrm{f}^{\prime}(1) \mathrm{dx}=1 \times \mathrm{l}=1 \quad \therefore \text { Ans. } \mathbf{A}
$$

(h) Sol ${ }^{n}: f(x)=3 x^{2}-6 x+4$

চরমবিন্দুর জন্য, $f^{\prime}(x)=6 \mathrm{x}-6=0 \Rightarrow \mathrm{x}=1$ এখन , $f(1)=3-6+4=1 \therefore$ চরबবিन्দू $(1,1)$
(i) Sol ${ }^{\mathrm{n}}: \lim _{x \rightarrow 0} \frac{\sin (2 x)^{2}}{x}=\lim _{x \rightarrow 0} \frac{\sin \left(4 x^{2}\right)}{x}$ $=\lim _{x \rightarrow 0} \frac{\cos \left(4 x^{2}\right) \times 8 x}{1}=\cos 0 \times 8 \times 0=0$ Ans. B
(j) Sol $^{\mathrm{n}}: \frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{x}}\right)=x^{x}\left[\mathrm{x} \frac{d}{d x}(\ln \mathrm{x})+\right.$ $\left.\ln \mathrm{x} \frac{d}{d x}(\mathrm{x})\right]$
$=x^{x}\left[x \times \frac{1}{x}+\ln x .1\right]=x^{x}(1+\ln x)$
Ans. D.
(k) Sol ${ }^{\mathrm{n}}: \mathrm{f}(\mathrm{x})=x+x^{-1} \therefore f^{\prime}(x)=1-x^{-2}$, $f^{\prime \prime}(x)=2 x^{-3}$
$f^{\prime}(x)=0 \Rightarrow 1-\frac{1}{x^{2}}=0 \Rightarrow \mathrm{x}= \pm 1$
$\mathrm{x}=-1$ এর জন্য $f^{\prime \prime}(x)<0$ এবং $\mathrm{f}(\mathrm{x})=-2$
Ans. A.
(l) Sol ${ }^{n}: y=x^{3}-5 x$ रालि $\frac{d^{3} y}{d x^{3}}=3!=6$.
(m) Sol ${ }^{\mathrm{n}}: \mathrm{y}=x+x^{-1} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=1-\frac{1}{\mathrm{x}^{2}}$

রেथाট্রি ঢाল শून्य रनে, $\frac{d y}{d x}=1-\frac{1}{x^{2}}=0$

$$
\Rightarrow \mathrm{x}= \pm 1 \quad \therefore \text { Ans. } \mathbf{B}
$$

2. (a) मেयाఆ बে, $f(x)=x^{3}-3 x^{2}+18 x+15$ এबটি ক্রুবর্ধমান यাएশन।
প্রমাन : দেওয়া आাए, $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}+18 \mathrm{x}+15$
$f^{\prime}(x)=3 \mathrm{x}^{2}-6 \mathrm{x}+18$
$=3\left(x^{2}-2 x+1\right)+15$
$=3(x-1)^{2}+15>0$, সকब $x \in \mathbb{R}$ এरत अनग।
প্রদত যাংশनtি একটি ক্রমববধমান ফাংশन।
(b) मেখাও बে, $x=1$ বিপूธে $f(x)=x^{3}-3 x^{2}+x$ खाएनটি ज্রাস পায়।
প্রমাণ : फেওয়া আছছ, $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}$

$$
f^{\prime}(x)=3 x^{2}-6 x+1
$$

$\therefore f^{\prime}(1)=3 \times 1^{2}-6 \times 1+1=3-6+1$

$$
=-2<0
$$

$x=2$ বিन्দूতে প্রদত खাংশনঢি হ্রাস পায়।

बाবथिजে বृष्ति পায় निर्ণय क्ब।

(a) $f(x)=3 x^{2}-6 x+4,-1 \leq x \leq 2$

সমাथान : मেఆয়া জाए্; $f(x)=3 x^{2}-6 x+4$

$$
\begin{aligned}
& f^{\prime}(x)=6 \mathrm{x}-6=6(\mathrm{x}-1) \\
& f^{\prime}(x)=0 \Rightarrow 6(\mathrm{x}-1)=0 \\
\Rightarrow & \mathrm{x}=1
\end{aligned}
$$

এখানে, $\mathrm{x}=1$ বিন্দুতে $f^{\prime}(x)=0$ এবং বিন্দুচি $-1 \leq \mathrm{x} \leq 2$ ব্যবধিকে $-1 \leq x<1$ जरए $1<x \leq 2$ ব্যবধিতে বিজ্ক করে।
এथंन, $-1 \leq x<1$ এর बनग. $6(\mathrm{x}-1)<0$, কाख़ें $f^{\prime}(x)<0$.
$-1 \leq x<1$ ব্যবধিচে $\mathrm{f}(\mathrm{x})$ यাংশन হ্রাস পায়।
 $f^{\prime}(x)>0$.

(b) $f(x)=(x-2)^{3}(x+1)^{2},-\frac{1}{2} \leq x \leq 3$

সমাथान : দেওয়া बাছে; $f(x)=(x-2)^{3}(x+1)^{2}$

$$
\begin{aligned}
& f^{\prime}(x)= \\
& (x-2)^{3} \times 2(x+1) \\
+ & (x+1)^{2} \times 3(x-2)^{2} \\
= & (x-2)^{2}(x+1)\{2(x-3)+3(x+1) \\
= & (x-2)^{2}(x+1)(2 x-6+3 x+3) \\
= & (x-2)^{2}(x+1)(5 x-3)
\end{aligned}
$$

$$
f^{\prime}(x)=0 \Rightarrow x=-1,3 / 5,2
$$

$\mathrm{x}=-1,3 / 5,2$ বিन्দूशूलि $-1 \leq \mathrm{x} \leq 3$ ব্যবষিকে $-1<x<3 / 5,3 / 5<x<2$ এবং $2<x<3$ ব্যবধিতে বিভ্ক্ করে।
এখन, $-1<\mathrm{x}<3 / 5$ এর बन्ग $\mathrm{f}^{\prime}(x)<0$.
$-1<\mathrm{x}<3 / 5$ ব্যবधিতে $\mathrm{f}(\mathrm{x})$ ফাশশশন হ্রাস পায়। $3 / 5<\mathrm{x}<2$ এর बन्ग $f^{\prime}(x)>0$.
$3 / 5<x<2$ ব্যबধিতে $f(x)$ щাशশन বৃम्बि পায়। $2<\mathrm{x}<3$ এর बन्ग $f^{\prime}(x)>0$.
$3 / 5<x<2$ ব্যবধিতে $f(x)$ ফाशশन বৃम्ধि পाয়।
4. (a) x जर बোन মানের धन्य निচের ষাश৭নभুচো

(i) ধরি, $f(x)=\frac{x^{2}-7 x+6}{x-10}$
[4.’०9]
$\therefore f^{\prime}(x)=\frac{(x-10)(2 x-7)-\left(x^{2}-7 \dot{x}+6\right) .1}{(x-10)^{2}}$
চব্রম মানের बন্য, $f^{\prime}(x)=0$

$$
\frac{(x-10)(2 x-7)-\left(x^{2}-7 x+6\right) \cdot 1}{(x-10)^{2}}=0
$$

$\Rightarrow 2 x^{2}-27 x+70-x^{2}+7 x-6=0$
$\Rightarrow x^{2}-20 x+64=0$
$\Rightarrow(x-4)(x-16)=0 \Rightarrow x=4,16$
$x=4$ ® 16 এর জন্য প্রদজ্ভ ফাংশনের গুরুমান অথ্বা नघूমান थাকবে।
(ii) $x^{4}-8 x^{3}+22 x^{2}-24 x+5$
[玉.'08]
«রि, $f(x)=x^{4}-8 x^{3}+22 x^{2}-24 x+5$
$\therefore f^{\prime}(x)=4 \mathrm{x}^{3}-24 \mathrm{x}^{2}+44 \mathrm{x}-24$
চत্রম মাनের बन्य, $f^{\prime}(x)=0$
$4 x^{3}-24 x^{2}+44 x-24=0$
$\Rightarrow x^{3}-6 x^{2}+11 x-6=0$
$\Rightarrow \mathrm{x}^{2}(\mathrm{x}-1)-5 \mathrm{x}(\mathrm{x}-1)+6(\mathrm{x}-1)=0$
$\Rightarrow(x-1)\left(x^{2}-5 x+6\right)=0$
$\Rightarrow(\mathrm{x}-1)(\mathrm{x}-2)(\mathrm{x}-3)=0$
$x=1,2,3$
$x=1,2$ उ 3 এর জन्य প্রम্ত ফাংশनের গুরুমান অथবা Фঘুমান थাকবে।

4（b）$f(x)=x-x^{2}-x^{3}$ बत्र अশिषियिपू निषয় কর।
সমাধান $8 f(x)=x-x^{2}-x^{3}$
$f^{\prime}(x)=1-2 x-3 x^{2}$
সন্ষিকিস্দুতে ，$f^{\prime}(x)=0$
$1-2 \mathrm{x}-3 \mathrm{x}^{2}=0 \Rightarrow 3 \mathrm{x}^{2}+2 \mathrm{x}-1=0$
$\Rightarrow 3 x^{2}+3 x-x-1=0$
$\Rightarrow 3 x(x+1)-1(x+1)=0$
$\Rightarrow(x+1)(3 x-1)=0$
$x=-1, \frac{1}{3}$
$\mathrm{x}=-1$ इศে，$f(x)=-1-1+1=-1$
$\mathrm{x}=\frac{1}{3}$ रलে，$f(x)=\frac{1}{3}-\frac{1}{9}-\frac{1}{27}$

$$
=\frac{9-3-1}{27}=\frac{5}{27}
$$

निर्ণ্য সন্ফিবিস্দু $(-1,-1),\left(\frac{1}{3}, \frac{5}{27}\right)$

（a）$f(x)=2 x^{3}-9 x^{2}+12 x+5$［চ．＇○8；제．＇১১］ সমাধান $8 f(x)=2 x^{3}-9 x^{2}+12 x+5$
$f^{\prime}(x)=6 x^{2}-18 x+12$ งবः
$f^{\prime \prime}(x)=12 x-18$
চরম মানের জন্য，$f^{\prime}(x)=0$
$\Rightarrow 6 x^{2}-18 x+12=0 \Rightarrow x^{2}-3 x+2=0$
$\Rightarrow(\mathrm{x}-1)(\mathrm{x}-2)=0 \quad \therefore x=1,2$
曰キन，$f^{\prime \prime}(1)=12 \times 1-18=-6<0$
$\mathrm{f}(x)$ 夕রুমান হবে যथন $x=1$ এবং जর মান $=\mathrm{f}(1)=2-9+12+5=19-9=10$ জাবার，$f^{\prime \prime}(2)=12 \times 2-18=24-18=6>0$ ．
$\mathrm{f}(x)$ অঘুমান হবে যथন $x=2$ এবং
जর মান $=f(2)=2 \times 2^{3}-9 \times 2^{2}+12 \times 2+5$

$$
=16-36+24+5=45-36=9
$$

5（b）$f(x)=x^{3}-3 x^{2}-45 x+13$
［রা．＇০৫，＇১০；ব．＇০b；সि．＇obr；চ．＇od，＇’১］
সমाथान \＆$f(x)=x^{3}-3 x^{2}-45 x+13$
$f^{\prime}(x)=3 x^{2}-6 x-45$ जবः
$f^{\prime \prime}(x)=6 x-6$
हরন মাनের জन्য，$f^{\prime}(x)=0$
$\Rightarrow 3 x^{2}-6 x-45=0 \Rightarrow x^{2}-2 x-15=0$
$\Rightarrow(\mathrm{x}-5)(\mathrm{x}+3)=0 \therefore x=5,-3$
बथन，$f^{\prime \prime}(-3)=6 x-3-6=-24<0$
$f(x)$ গুরুমান হবে যখন $x=-3$ এবং बর गif：$=\mathrm{f}(-3)=-27-27+135+13$

$$
=1+8-54=94
$$

खाना，$j "(5)=6 \times 5-6=24>0$

এর मान $=f(5)=125-75-225+13$

$$
=138-300=-162
$$

5（c）$x(12-2 x)^{2}$
［य．＇∞ ］
সমiलनल a ：

$$
=4 x(6-x)^{2}
$$

$(x)=4 x .2(6-x)(-1)+4(6-x)^{2} .1$
$=4(6-x)(-2 x+6-x)$
$=4(6-x)(6-3 x)=12(6-x)(2-x)$
এस $f^{\prime \prime}(x)=12\{(6-x)(-1)+(2-x)(-1)\}$

$$
12(-6+x-2+x)=24(x-4)
$$

চর irब্র জन्य，$f^{\prime}(x)=0$
$\Rightarrow 12(6-x)(2-x)=0 \quad \therefore x=2,6$
এษ：$\quad f^{n}(2)=24(2-4)=-48<0$
$f(x)$ গুরুমান হবে থথন $x=2$ এবং
जর মাब $=f(2)=8(6-2)^{2}=128$
जाइi：$/(6)=24(6-4)>0$
। धघूমান হবে য়লন $x=6$ এবः
जর गifi $=f(6)=8(6-6)^{2}=0$
$5(d) 1+2 \sin x+3 \cos ^{2} x, 0 \leq x \leq \frac{\pi}{2}$
［র．＇os；ঢা．＇ob］
गयफ़ 8 ধরি， $\mathrm{y}=1+2 \sin x+3 \cos ^{2} x$
$\xrightarrow[d]{d} 2 \cos x+6 \cos x(-\sin x)$
（i．）
$=2 \cos x(1-3 \sin x)$ এবং

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =2 \cos x(-3 \cos x)+2(1-3 \sin x)(-\sin x) \\
& =-6 \cos ^{2} x-2 \sin x+6 \sin ^{2} x
\end{aligned}
$$

চत्रम মानের पनग, $\frac{d y}{d x}=0$
$\Rightarrow 2 \cos x(1-3 \sin x)=0$
$\cos \mathrm{x}=0, \sin \mathrm{x}=\frac{1}{3}$
$\cos x=0$ रूে $\sin x=1$ जबং $\frac{d^{2} y}{d x^{2}}=-2+6>0$

जत्र मान $=1+2(1)+3(0)^{2}=3$
जাবার, $\sin x=\frac{1}{3}$ शबে $\cos ^{2} x=1-\frac{1}{9}=\frac{8}{9}$
$\frac{d^{2} y}{d x^{2}}=-6 \cdot \frac{8}{9}-2 \cdot \frac{1}{3}+6 \cdot \frac{1}{9}<0$
भ्रमखठ खाश्यन প্রমমান হবে যथन $\sin x=\frac{1}{3}$ এবং এत্
मान $=1+2 \cdot \frac{1}{3}+3 \cdot \frac{8}{9}=\frac{3+2+8}{3}=\frac{13}{3}$
$5(\mathrm{e}) \mathrm{u}=\frac{4}{x}+\frac{36}{y}$, घथन $x+y=2$
उमाधान $8 \mathrm{u}=\frac{4}{x}+\frac{36}{2-x}$
$\therefore \frac{d u}{d x}=-\frac{4}{x^{2}}-\frac{36}{(2-x)^{2}}(-1)$

$$
=-\frac{4}{x^{2}}+\frac{36}{(2-x)^{2}}
$$

जबए $\frac{d^{2} u}{d x^{2}}=\frac{8}{x^{3}}+\frac{72}{(2-x)^{3}}$
চत्रম মान्नর अना, $\frac{d u}{d x}=0$
$\Rightarrow-\frac{4}{x^{2}}+\frac{36}{(2-x)^{2}}=0$
$\Rightarrow-4\left(4-4 x+x^{2}\right)+36 x^{2}=0$
$\Rightarrow-16+16 x-4 x^{2}+36 x^{2}=0$

$$
\begin{aligned}
\Rightarrow & 32 \mathrm{x}^{2}+16 \mathrm{x}-16=0 \\
\Rightarrow & 2 \mathrm{x}^{2}+\mathrm{x}-1=0 \\
\Rightarrow & (2 \mathrm{x}+1)(\mathrm{x}-1)=0 \therefore \mathrm{x}=1,-\frac{1}{2} \\
& \mathrm{x}=1 \text { এর बन्ग, } \frac{d^{2} u}{d x^{2}}=8+72>0 \\
& \mathrm{x}=1 \text { এর बनग, } u \text { जর बघूমान आाएে। } \\
& \text { नधूमान }=\frac{4}{x}+\frac{36}{2-x}=\frac{4}{1}+\frac{36}{2-1}=40
\end{aligned}
$$

आাবार $\mathrm{x}=-\frac{1}{2}$ এর अलगय,

$$
\frac{d^{2} u}{d x^{2}}=-64+\frac{72}{\left(2+\frac{1}{2}\right)^{3}}=-64+\frac{72 \times 8}{125}<0
$$

$\mathrm{x}=-\frac{1}{2}$ এर घना, u এर भूरुमान आছে।

$$
\text { बूरान }=\frac{4}{-\frac{1}{2}}+\frac{36}{2+\frac{1}{2}}=-8+\frac{72}{5}=\frac{32}{5}
$$

6.(a) দেষা৩ বে, $x+\frac{1}{x}$ এর প্রুমান তার লঘুযান

幺ালা , মনে করি, $f(x)=x+\frac{1}{x}$
$f^{\prime}(x)=1-\frac{1}{x^{2}}$ जবং $f^{\prime \prime}(x)=\frac{2}{x^{3}}$
চরম মानের জनग, $f^{\prime}(x)=0$
$1 \cdots \frac{1}{x^{2}}=0 \Rightarrow x-1=0 \Rightarrow x=-1,1$
. जरन, $I^{\prime \prime}(-1)=\frac{2}{(-1)^{3}}<0$

খজसा: $=f(-1)=-1+\frac{1}{-1}=-2$
लाबाद, $f^{\prime \prime}(1)=\frac{2}{1^{3}}>0$
1 এর बन्य $\mathrm{f}(x)$ এর बমूমান जाएে।

প্র্ম্মোলা IX K

बघूমान $=f(1)=1+\frac{1}{1}=2$
$x+\frac{1}{x}$ এর পুজ্，
6（b）দেখাও মে， $4 e^{x}+9 e^{-x}$ এর बघूমান 12.
 প্রমাণ ：মনে করি， $\mathrm{y}=4 e^{x}+9 e^{-x}$
$\therefore \frac{d y}{d x}=4 e^{x}-9 e^{-x}$ এবং $\frac{d^{2} y}{d x^{2}}=4 e^{x}+9 e^{-x}$ চরম মানের জন্য，$\frac{d y}{d x}=0 \therefore 4 e^{x}-9 e^{-\dot{x}}=0$
$\Rightarrow 4 e^{x}=\frac{9}{e^{x}} \Rightarrow\left(e^{x}\right)^{2}=\frac{9}{4} \quad e^{x}= \pm \frac{3}{2}$
$e^{x}=\frac{3}{2}$ रबन，$\frac{d^{2} y}{d x^{2}}=4 . \frac{3}{2}+9 \times \frac{2}{3}>0$
$\therefore e^{x}=\frac{3}{2}$ এর जना $4 e^{x}+9 e^{-x}$ এर बचूमान जाए। बचूমान $=4 . \frac{3}{2}+9 \times \frac{2}{3}=6+6=12$

প্রমাণ ：মनে কর্নি，$f(x)=\frac{x}{\ln (x)}$
$f^{\prime}(x)=\frac{\ln (x) \cdot 1-x \frac{1}{x}}{\{\ln (x)\}^{2}}=\frac{\ln (x)-1}{\{\ln (x)\}^{2}}$ ，बব？
$f^{\prime \prime}(x)=\frac{\{\ln (x)\}^{2} \cdot \frac{1}{x}-\{\ln (x)-1\} 2 \ln (x) \cdot \frac{1}{x}}{\{\ln (x)\}^{4}}$
$=\frac{\ln (x)\{\ln (x)-2 \ln (x)+2\}}{x\{\ln (x)\}^{4}}=\frac{-\ln (x)+2}{x\{\ln (x)\}^{3}}$
চत্রম মাनের बন্J，$f^{\prime}(x)=0$

$$
\frac{\ln (x)-1}{\{\ln (x)\}^{2}}=0 \Rightarrow \ln (x)=1 \therefore x=\mathrm{e}
$$

এVन，$f^{\prime \prime}(\mathrm{e})=\frac{-1+2}{e(1)^{3}}=\frac{1}{e}>0$ ．
$x=\mathrm{e}$ এর জনা $\mathrm{f}(x)$ এর बঘूমান জাছে।
$\frac{x}{\ln (x)}$ बर बचूमान $=f(e)=\frac{e}{1}=e$
6（d）そেथा৩（x，$\frac{\ln x}{x}$ बর बधूमान $\frac{1}{e}$ ． প্রনাণ ম্মনে করি，$f(x)=\frac{\ln x}{x}$

$$
f^{\prime}(x)=\frac{x \frac{1}{x}-\ln x .1}{x^{2}}=\frac{1-\ln x}{x^{2}} \text { এবং }
$$

$$
f^{\prime \prime}(x)=\frac{x^{2}\left(-\frac{1}{x}\right)-(1-\ln x) \cdot 2 x}{x^{4}}
$$

$$
=\frac{-1-2 x+2 x \ln x}{x^{4}}=\frac{-3+2 \ln x}{x^{3}}
$$

চরম মাन्नর অन্য，$f^{\prime}(x)=0$

$$
\frac{1-\ln x}{x^{2}}=0 \Rightarrow \ln x=1 \quad \therefore x=\mathrm{e}
$$

ज्यत，$f^{\prime \prime}(\mathrm{e})=\frac{-3+2.1}{e^{3}}=\frac{-1}{e^{3}}<0$
$x=$ ：এর জনা $f(x)$ এর পুরুমান आছে।

$$
\frac{x}{\ln (x)} \text { बর 夕ু }
$$

6．（e）पে凶াও वে，$(x)^{\frac{1}{x}}$ এর পুরুমান $(e)^{\frac{1}{e}}$ ． ब्रत्ञाप पारे，$f(x)=(x)^{\frac{1}{x}}$

$$
f^{\prime}(x)=(x)^{\frac{1}{x}}\left[\frac{1}{x} \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}\left(\frac{1}{x}\right)\right]
$$

$=(x)^{\frac{1}{x}}\left[\frac{1}{x} \cdot \frac{1}{x}+\ln x\left(-\frac{1}{x^{2}}\right)\right]$
$=(\because)^{\frac{1}{x}}\left|\frac{1}{x^{2}}-\frac{1}{x^{2}} \ln x\right|=(x)^{\frac{1}{x}}\left(\frac{1-\ln x}{x^{2}}\right)$ जसং $f^{\prime \prime}(x)=(x)^{\frac{1}{x}} \frac{d}{d x}\left(\frac{1-\ln x}{x^{2}}\right)$
$=(x)^{\frac{1}{x}} \frac{x^{2}\left(-\frac{1}{x}\right)-(1-\ln x) \cdot 2 x}{x^{4}}$

$$
+\left(\frac{1-\ln x}{x^{2}}\right)(x)^{\frac{1}{x}}\left(\frac{1-\ln x}{x^{2}}\right)
$$

$=(x)^{\frac{1}{x}} \frac{-x(1+2-2 \ln x)}{x^{4}}+(x)^{\frac{1}{x}} \frac{(1-\ln x)^{2}}{x^{4}}$
$=(x)^{\frac{1}{x}} \frac{-3+2 \ln x}{x^{3}}+(x)^{\frac{1}{x}} \frac{(1-\ln x)^{2}}{x^{4}}$
চরম মানের জন্য, $f^{\prime}(x)=0$
$(x)^{\frac{1}{x}}\left(\frac{1-\ln x}{x^{2}}\right)=0 \Rightarrow \ln x=1 \quad \therefore x=\mathrm{e}$
बशन, $f^{\prime \prime}(\mathrm{e})=(e)^{\frac{1}{e}} \frac{-3+2.1}{e^{3}}+0=(e)^{\frac{1}{e}} \frac{-1}{e^{3}}<0$
$x=\mathrm{e}$ এর জन्य $\mathrm{f}(x)$ এর গুরুমান आছে।
$(x)^{\frac{1}{x}}$ जর भুরুমান $=f(e)=(e)^{\frac{1}{e}}$
7. দেখা यে, $\sin x(1+\cos x)$ গরিষ্ঠ इবে যখन $x=\frac{\pi}{3}$.
প্রমাণ : মনে করি, $f(x)=\sin x(1+\cos x)$

$$
\begin{aligned}
& f^{\prime}(x)=\sin x(-\sin x)+(1+\cos x) \cos x \\
& =-\sin ^{2} x+\cos x+\cos ^{2} x \\
& =\cos x+\cos 2 x
\end{aligned}
$$

এবং $f^{\prime \prime}(x)=-\sin x-2 \sin 2 \mathrm{x}$
চরম মানের জন্য, $f^{\prime}(x)=0$

$$
\cos x+\cos 2 x=0
$$

$\Rightarrow \cos x+2 \cos ^{2} x-1=0$
$\Rightarrow 2 \cos ^{2} x+\cos x-1=0$

$$
\Rightarrow \cos x=\frac{-1 \pm \sqrt{1-4 \cdot 2 \cdot(-1)}}{2 \cdot 2}=\frac{-1 \pm 3}{4}
$$

$$
\cos x=\frac{1}{2}=\cos \frac{\pi}{3} \Rightarrow x=\frac{\pi}{3}
$$

এथन, $f^{\prime \prime}\left(\frac{\pi}{3}\right)=-\sin \frac{\pi}{3}-2 \sin \frac{2 \pi}{3}$

$$
=-\frac{\sqrt{3}}{2}-2 \frac{\sqrt{3}}{2}<0
$$

$\sin x(1+\cos x)$ গরিষ্ঠ হবে যখन $x=\frac{\pi}{3}$
8.(a) দেభাও যে, $f(x)=x^{3}-6 x^{2}+24 x+4$ जর কোন গুরুমান অथবা नघूমান नেই।
[य.,०s,'১১]
প্রगাषः बখাनে $f(x)=x^{3}-6 x^{2}+24 x+4$
$\therefore f^{\prime}(x)=3 x^{2}-12 x+24=3\left(x^{2}-4 x+8\right)=$ $3\left\{(x-2)^{2}+4\right\}$, या x এর কোন বাস্তব মান্রে জন্য শূনা रঢে পারে না।

প্রদত্ত ফাংশনের কোন গুরুমান অথবা অঘুমান नেই।
8(b) रूंत बय, $f(x)=\frac{\sin (x+a)}{\sin (x+b)}$ बर बেान

প্রমள ৪ এখাनে $f(x)=\frac{\sin (x+a)}{\sin (x+b)}$
$\therefore f^{\prime}(x)=\frac{1}{\sin ^{2}(x+b)}[\sin (x+b) \cdot \cos (x+a)$
$-\sin (x+a) \cos (x+b)]$
$-\frac{\sin (x+b-x-a)}{\sin ^{2}(x+b)}=\frac{\cos (b-a)}{\sin ^{2}(x+b)}$, या x जत
बোন যান্ত্ব মান্রে জন্য শূন্য হতে পারে না।
उपও ফাংশনের কোন গুরুমান অথবা পঘুমান নেই।
9. (a) $f(x)=x^{2}$ जর ন্লেষচ্ত্ব ব্যবহার্র করে (2.1)

ज以ाना:

बनে. করি, $x_{0}=2$ जবश $x_{0}+\delta x=2 \cdot 1$
$\delta x=0.1$
जขन, $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2} \Rightarrow f^{\prime}(x)=2 \mathrm{x}$
$f^{\prime}(2)=2 \times 2=4$.
$\mathrm{f}\left(x_{0}+\delta x\right) \approx \mathrm{f}\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \delta x$
$\Rightarrow \mathrm{f}(2 \cdot 1) \approx \mathrm{f}(2)+f^{\prime}(2) \times 0 \cdot 1$
$\Rightarrow(2 \cdot 1)^{2} \approx 2^{2}+4 \times 0 \cdot 1$
$\Rightarrow(2 \cdot 1)^{2} \approx 4+0 \cdot 4$
$(2 \cdot 1)^{2} \approx 4.4$ (Ans.)
(b) $\mathrm{x}=0$ বिम्मूब्र সन्निकটট $\mathrm{f}(x)=\sqrt{1+x}$ жारखनের্র
 छानीप्रषावে बতि尹्हाभन কর্গে $\sqrt{0.9}$ जयए $\sqrt{1.1}$ जत्र आাসन्न মান निर्षय्य क्र।
সयायान: $\mathrm{f}(x)=\sqrt{1+x} \Rightarrow f^{\prime}(x)=\frac{1}{2 \sqrt{1+x}}$
$\mathrm{f}(0)=\sqrt{1+0}=1$ এবং $f(0)=\frac{1}{2}$
$\mathrm{x}=0$ বিদ্দুর সন্নিক্টে $\mathrm{f}(x)=\sqrt{1+x}$ अাংশनের্র নেখকে অসন্নভরে ঐ বিन্দूতে শ্পশ্শকের্র লেখ ঘারা श্হানীয়ডাবে প্রতিছ্ছাপন কওে পাই,

$$
\begin{aligned}
& \mathrm{f}(x) \approx f(0)+f^{\prime}(0)(\mathrm{x}-0) \\
& \text { [} \mathrm{f}(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(\mathrm{x}-x_{0}\right) \text { सूত्ब थारा] } \\
& \Rightarrow \sqrt{1+x} \approx 1+\frac{1}{2} \mathrm{x} \cdots \cdots \\
& \text { (1) } এ x=-1 \text { बमिख़ে পাই, } \\
& \sqrt{1-0 \cdot 1} \approx 1+\frac{1}{2}(-0 \cdot 1) \\
& \Rightarrow \sqrt{0.9} \approx 1-0.05 \Rightarrow \sqrt{0.9} \approx 0.95 \\
& \text { आবার, (1) এ } x=1 \text { বসিয়ে পাई, } \\
& \sqrt{1+0 \cdot 1} \approx 1+\frac{1}{2}(0 \cdot 1) \\
& \Rightarrow \sqrt{1 \cdot 1} \approx 1+0.05 \Rightarrow \sqrt{1 \cdot 1} \approx 1.05 \\
& \sqrt{0.9} \text { এবং } \sqrt{1.1} \text { जর आमन्न मान यथाख्रमম } \\
& 0.95 \text { बवश } 1.05 \text {. }
\end{aligned}
$$

 চिश्ञित । $\mathrm{x}=2$ ४ $\delta x=\mathbf{d x}=1$ रलে δy В dy निर्वः कন।
সมাধাन: निম্লে $\mathrm{f}(x)=\mathrm{y}=x^{2}$ ए্কেচ অক্কন ক্রে जাডে Sy 3 dy চिহ्ञि कরা रলো।

$\mathrm{x}=2$ з $\delta x=\mathrm{dx}=1$ হศে,
$\delta y=f(x+\delta x)-f(x)=f(2+1)-f(2)$

$$
=f(3)-f(2)=3^{2}-2^{2}=9-4=5
$$

जबन, $f(x)=y=x^{2} \Rightarrow f^{\prime}(x)=2 \mathrm{x}$

$$
\mathrm{d} y=f^{\prime}(x) \mathrm{dx}=f^{\prime}(2) \times 1=2 \times 2=4
$$

万िशिज क्न । $\mathrm{x}=3$ त $\delta x=\mathbf{d x}=\mathbf{3}$ रूে δy В dy निर्वय्य क।
সयाधান্: निम্नে $\mathrm{f}(x)=\mathrm{y}=x^{2}$ ক্কেচ অঙ্কन করে তাতে ס)' ज dy চिश्নি করাा गुलো।

$\mathrm{x}=\mathrm{s} \delta \mathrm{x}=\mathrm{dx}=3$ रूে,
$\delta y=f(x+\delta x)-f(x)=f(3+3)-f(3)$

$$
\begin{aligned}
& =f(6)-f(3)=\frac{1}{2}\left(6^{2}-3^{2}\right)=\frac{1}{2}(36-9) \\
& =13 \cdot 5
\end{aligned}
$$

बথन, $\mathrm{f}(x)=\mathrm{y}=\frac{1}{2} x^{2} \Rightarrow f^{\prime}(x)=\mathrm{x}$

$$
\mathrm{d} y=f^{\prime}(x) \mathrm{dx}=f^{\prime}(3) \times 3=3 \times 3=9
$$

11. দেওয়া आছে, $\mathrm{f}(\mathrm{x})=x+\frac{1}{x}$.
(a) $x^{\cos }{ }^{1} x$ এর অন্তরज निर्ণয় कर ![\$'’১৩; य. '১০,'১৪; সি.'০৮; ঢা.'১৩; ন্রা.'১০,'১8; ব.'১০;চ.'১৪]
 ক্রুদ্রতর। [রু.'০৮; ব.'০৯;য. '১০,'১২; চ. '১০;সি.'১০,’১8] (c) $x=1$ বিन्দूর সন্নিকটে $f(x)$ जর যোপাশ্রীী अসন্নমান निर्ণয় কর। $\mathrm{x}=1$ ও $\delta x=\mathrm{dx}=1$ रूে δy ও dy निর্ণয় কর্ন।

সমাধানः (c) দেওয়া আছে, $\mathrm{f}(\mathrm{x})=x+\frac{1}{x}$

$$
\begin{aligned}
\Rightarrow & f^{\prime}(x)=1-\frac{1}{x^{2}} \\
& f(1)=1+1=2, f^{\prime}(1)=1-1=0
\end{aligned}
$$

$\mathrm{x}=1$ বিन्দूর সন্नিক্টে $\mathrm{f}(\mathrm{x})$ এর যোপাশ্রয়ী অসন্नমান, $\mathrm{f}(x) \approx 2+f^{\prime}(1)(\mathrm{x}-1)$
$\left[\mathrm{f}(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(\mathrm{x}-x_{0}\right)\right.$ সूত্র धारा] $\Rightarrow \mathrm{f}(x) \approx 2$ (Ans.)
এখन, $\mathrm{x}=1$ ఆ $\delta x=\mathrm{dx}=1$ रলে,
$\delta y=\mathrm{f}(\mathrm{x}+\delta x)-\mathrm{f}(\mathrm{x})=\mathrm{f}(1+1)-\mathrm{f}(\mathrm{l})$

$$
\begin{aligned}
& =f(2)-f(1)=2+\frac{1}{2}-\left(1+\frac{1}{1}\right) \\
& =2+\frac{1}{2}-2=\frac{1}{2} \text { (Ans.) }
\end{aligned}
$$

जবং $\mathrm{dy}=f^{\prime}(x) \mathrm{dx}=f^{\prime}(1) \times 1=0 \times 1=0$
$12 y(x-2)(x-3)-x+7=0$ आबটট বক্ররেখার সমীক্র.।
(a) মধ্যবর্তী মান উপপাদ্য ও ল্যাগ্যাঞ্রে গড়সান উপপাদ্য বর্ণনা কর।
(b) $y=\sqrt{(4+3 \sin x)}$ रलে, দেथाও वय, $2, \frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right)^{2}+y^{2}=4$ [य.’১৩;ж.'’১,’’8; চ.'১০; ঢा. '০৮; तार.'১२; সि.'১২;मि.'১১]
(c) প্রদত বক্রুরেখার ৷ে সমন্ত বিন্দুত্তে x-অক্ষরে ছেদ

 সমাপাग: (a) মধ্যবর্ত্তী মান উপপাদ্য (Intermediate Value Theorem): यमि $\mathrm{f}(\mathrm{x})$ काংশन $[a, b]$ बद्ध

 $f(c)=d$ रবে।

অাযयাध্রেন গড়্মান "শপাদ্য (Lagrange's Mean Value Theorem) : यमि $f(x)$ жाश्रणन $[a, b]$ यद्ध

 $\mathrm{b}[$ १aন

13. স্অভউইচ উপ্র্য (Sandwich or Princing Theorem) : यमि $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x})$ এবং $\mathrm{h}(\mathrm{x})$ याংxनब्ऱ $\mathrm{g}(\mathrm{x}) \leq \mathrm{f}(\mathrm{x}) \leq \mathrm{h}(\mathrm{x})$ मिद्ध কর্রে এবश $\lim _{x \rightarrow a} g(x)=$ $l=\lim _{1 \rightarrow 1,} h(x)$ श़, उपে $\lim _{x \rightarrow a} f(x)=l$.
(a) $r^{2} \sin ^{-1}(1-x)$ এर অन्ठताज निर्षय़ कर।
[ব.'০৮;मि.'১২; ঢা.’১৪]
(3) $\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}$ जर घान निर्ণग़ कर।
[nt.'০৯; অ.'১১,'১৪; কু.'১০; সি.'০৯; মা.’১৩]
(e) সাভউইচ উপপাদ্যের সাহাভ্যে মান নির্ণগ় কর:
$\lim _{x \rightarrow \infty} \frac{x^{2}\left(2+\sin ^{2} x\right)}{x+100}$

（c）बশ্नমাणा IX A जब $15(\mathrm{~g})$ प्रষ্টবय।

14．$f(x)=17-15 x+9 x^{2}-x^{3}$ जबढि खाएশन ।
（a）ইহার চরম＜ি্দু নির্ণয় কর।（b）ইহ কে小ে ব্যবধিতে క্রাস প্য় এবং কে小ন ব্যবধিতে বৃদ্ধি পায় নির্ণয় কর।（c） ইशান্ন সর্বোচ্চ ও সর্বোনিম্ন মান নির্ণয় কর।

সমাধান：बশ্নমাণা IX K এর উদাহরণ－3 দ্রফ্য্য।

অতিরিক্ত প্রশ্ন（ সমাপানসহ）

1．x এर কোন মানের छना，$x(12-2 x)^{2}$ এत্র भ্রুমান जथবা नधूমান পাওয়া याয়？

মনে কর্তি，$f(x)=x(12-2 x)^{2}$

$$
\begin{aligned}
& f^{\prime}(x)=\mathrm{x} \cdot 2(12-2 \mathrm{x})(-2)+ \\
& \quad(12-2 \mathrm{x})^{2} .1 \\
& =(12-2 \mathrm{x})(-4 \mathrm{x}+12-2 \mathrm{x}) \\
& =12(6-\mathrm{x})(2-\mathrm{x})
\end{aligned}
$$

চরম মানের জন্য，$f^{\prime}(x)=0$
$12(6-\mathrm{x})(2-\mathrm{x})=0 \Rightarrow \mathrm{x}=2,6$
$x=2$ ও 6 এর জन্য প্রদד ফাংশনের পুর্মমান অथবা बঘুমান থাকবে।
2．निচের ফাশশগুলির भুর্মুান ও बधूমান निর্ণ্য কর \＆
（a）$\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-6 x+8$
［ ব．’o৩］
সমাধাन ः ধরি，$f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-6 x+8$
$f^{\prime}(x)=x^{2}+x-6$ এवश $f^{\prime \prime}(x)=2 x+1$
চরম মানের জন্য，$f^{\prime}(x)=0$
$\Rightarrow x^{2}+x-6=0 \Rightarrow(x+3)(x-2)=0$
$x=-3,2$
এथन，$f^{\prime \prime}(-3)=-6+1=-5<0$
$\mathrm{f}(x)$ भুরুমান হবে যেন $x=-3$ এবং
এর মাन $=\mathrm{f}(-3)=-9+\frac{9}{2}+18+8=\frac{43}{2}$
জাবার，$f^{\prime \prime}(2)=4+1=5>0$
$\mathrm{f}(x)$ बघूমান হবে অখন $x=2$ এবং
जर मान $=f(2)=\frac{8}{3}+2-12+8=\frac{2}{3}$
2．（b）$x^{5}-5 x^{4}+5 x^{3}-1$
সমাষাन \＆ধরি，$f(x)=x^{5}-5 x^{4}+5 x^{3}-1$

$$
f^{\prime}(x)=5 x^{4}-20 x^{3}+15 x^{2}
$$

এবং $f^{\prime \prime}(x)=20 \mathrm{x}^{3}-60 \mathrm{x}^{2}+30 \mathrm{x}$
চরম মান্রে জন্য，$f^{\prime}(x)=0$
$\Rightarrow 5 x^{4}-20 x^{3}+15 x^{2}=0$
$\Rightarrow 5 x^{2}\left(x^{2}-4 x+3\right)=0$
$\Rightarrow x^{2}(x-1)(x-3)=0 \therefore x=0,1,3$
অ粦，$f^{\prime \prime}(0)=0, f^{\prime \prime}(1)=20-60+30<0$
ज্ব\％：$f^{\prime \prime}(3)=540-540+90>0$
$\mathrm{f}(x)$ গুরুমান হবে বখন $x=1$ এবং जर মাन $f(1)=1-5+5-1=0$
आাবার， $\mathfrak{f}^{\prime}(x)$ লधूমান হবে ঘখন $x=3$ এবং ज़ মাল $=f(3)=243-405+135-1=-28$

3．দেォル বে，$(1 / x)^{x}$ এর পুরুমান $(e)^{\frac{1}{e}}$ ：
প্রনাণ ：ধরি，$f(x)=\left(\frac{1}{x}\right)^{x}$
$\left.f^{\prime}(x)=\left(\frac{1}{x}\right)^{x} \leq x \frac{d}{d x}\left(\ln \frac{1}{x}\right)+\ln \frac{1}{x} \frac{d}{d x}(x)\right]$
$=\left(\frac{1}{x}\right)^{x}\left[x \frac{d}{d x}(-\ln x)-\ln x \frac{d}{d x}(x)\right]$
$\left.=\left(\frac{1}{x}\right)^{x}\left[x-\frac{1}{x}\right)-\ln x .1\right]=-\left(\frac{1}{x}\right)^{x}(1+\ln x)$
बतर $f^{\prime \prime}(x)=-\left(\frac{1}{x}\right)^{x} \frac{d}{d x}(1+\ln x)-$

$$
(1+\ln x) \frac{d}{d x}\left\{\left(\frac{1}{x}\right)^{x}\right\}
$$

$=-\left(\frac{1}{x}\right) \frac{1}{x}-(1+\ln x)\left\{-\left(\frac{1}{x}\right)^{x}(1+\ln x)\right\}$ $=\left(\frac{1}{x}\right)\left\{-\frac{1}{x}+(1+\ln x)^{2}\right\}$

$$
\begin{aligned}
& \left(\frac{1}{x}\right)^{x}(1+\ln x)=0 \Rightarrow \ln x=-1 \\
& x=e^{\prime-}=\frac{1}{e} \\
& f^{\prime \prime}\left(\frac{1}{e}\right)=(e)^{\frac{1}{e}}(-e+0)=-e .(e)^{\frac{1}{e}}<0 \\
& x=\frac{1}{e} \text { बর बननग } \mathrm{f}(x) \text { এর भूর্गमान षाছে। }
\end{aligned}
$$

$(1 / x)^{x}$ जর भूरूমान $=f\left(\frac{1}{e}\right)=(e)^{\frac{1}{e}}$
4．मেখাও यে，x^{x} অघिষ হবে যখन $x=\frac{1}{e}$ ধ্রমাণ ：ধরি，$f(x)=x^{x}$
$\therefore f^{\prime}(x)=x^{x}\left[x \frac{d}{d x}(\ln x)+\ln x \frac{d}{d x}(x)\right]$
$=x^{x}\left[x \cdot \frac{1}{x}+\ln x .1\right]=x^{x}(1+\ln x)$
जबः $f^{\prime \prime}(x)=x^{x} \frac{d}{d x}(1+\ln x)-$

$$
(1+\ln x) \frac{d}{d x}\left(x^{x}\right)
$$

$=x^{x} \cdot \frac{1}{x}+(1+\ln x)\left\{x^{x}(1+\ln x)\right\}$
$=x^{x}\left\{\frac{1}{x}+(1+\ln x)^{2}\right\}$
চরম মানের জনग，$f^{\prime}(x)=0$

$$
x^{x}(1+\ln x)=0 \Rightarrow \ln x=-1
$$

$\Rightarrow x=e^{-1}=\frac{1}{e}$
এヌन，$f^{\prime \prime}\left(\frac{1}{e}\right)=(e)^{\frac{1}{e}}(e+0)=e .(e)^{\frac{1}{e}}>0$
x^{x} वघिष्ठ रवে যथन $x=\frac{1}{e}$
5．দেখাও यে，$f(x)=x^{3}-6 x^{2}+27 x+5$ बत্র কোন গুর্মুমান অথবা बঘूমান নেই।
थ্रমाष \＆এখानে $f(x)=x^{3}-6 x^{2}+27 x+5$
$\therefore f^{\prime}(x)=3 x^{2}-12 x+27=3\left(x^{2}-4 x+9\right)=$
$3\left\{(x-2)^{2}+5\right\}$ ，या x এর কোন বাग্তব মানের ঘन্য
শূन্য হতে পারে না।
প্রদ区 যাশ্শনের কোন পুরুমান অধ্যা बचুমান নেই।
凶थবা बचूমান नেই।
ধ্রমাণ 8 এঋানে $f(x)=\frac{a x+b}{a x+c}$
$f^{\prime}(x)=\frac{(a x+c) \cdot a-(a x+b) \cdot a}{(a x+c)^{2}}$
$=\frac{(a x+c-a x-b) a}{(a x+c)^{2}}=\frac{(c-b) a}{(a x+c)^{2}}$ ，या x जर
কোন ব｜স্তব মানের জনা শূন্য হতে পারে না।
প্রদঙ ফাশশন্রে কোন গুরুমান অथবা নঘूমান নেই।

समायान ：ज्यान $\mathrm{h}=\mathrm{ut}-\frac{1}{2} \mathrm{gt}^{2}$

$$
\begin{aligned}
& \frac{d l t}{d t}=u-\frac{1}{2} g \cdot 2 t=u-g t \text { এবং } \\
& \frac{d^{2} h}{d t^{2}}=0-g=-g
\end{aligned}
$$

চढग मान्ज जन्ग，$\frac{d h}{d l}=0$
$\Rightarrow u-g l=0 \Rightarrow t=\frac{u}{g}$
এथन，$t=\frac{u}{g}$ এর জनग，$\frac{d^{2} h}{d t^{2}}=-\mathrm{g}<0$
$\mathrm{h}=\mathrm{ut}-\frac{1}{2} \mathrm{gt}^{2}$ द्रब्तम रबে यथन $t=\frac{u}{g}$
इएक्व 引म्ठण $=\mathrm{u} . \frac{u}{g}-\frac{1}{2} \mathrm{~g}\left(\frac{u}{g}\right)^{2}$

$$
=\frac{u^{2}}{g}-\frac{1}{2} \frac{u^{2}}{g}=\frac{u^{2}}{2 g}
$$

8．u ชেণে ষৃমির সাথ্রে α बোেে নিক্পিচ্ত बোন কশা

সसाथानः ध धारे， $\mathrm{h}=\mathrm{u} \sin \alpha . \mathrm{t}-\frac{1}{2} \mathrm{~g} \mathrm{t}{ }^{2}$
$\frac{d h}{d t}=u \sin \alpha-\frac{1}{2} g .2 t=u \sin \alpha-g t$ এबः
$\frac{d^{2} h}{d t^{2}}=0-g=-g$
চরম মানের জন্য, $\frac{d h}{d t}=0$
$\Rightarrow u \sin \alpha-g t=0 \Rightarrow t=\frac{u \sin \alpha}{g}$
এथन, $t=\frac{u \sin \alpha}{g}$ এর জनग, $\frac{d^{2} h}{d t^{2}}=-\mathrm{g}<0$
$u \sin \alpha . \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}$ बृरुম হबে যंधন $t=\frac{u \sin \alpha}{g}$
\therefore বৃহब্ম উচ্চতা $=u \sin \alpha \cdot \frac{u \sin \alpha}{g}$ -

$$
\frac{1}{2} \mathrm{~g}\left(\frac{u \sin \alpha}{g}\right)^{2}
$$

$=\frac{u^{2} \sin ^{2} \alpha}{g}-\frac{1}{2} \frac{u^{2} \sin ^{2} \alpha}{g}=\frac{u^{2} \sin ^{2} \alpha}{2 g}$
ज্ং जেখানে পৌছার সম্য $=\frac{u \sin \alpha}{g}$
 मूरत्र निर्षय़ क्र।

$(3,2)$ बिন্দুর দृরত্ব, $s=\sqrt{(x-3)^{2}+(y-2)^{2}}$
$\begin{aligned} \Rightarrow \mathrm{s} & =\sqrt{(\mathrm{x}-3)^{2}+\mathrm{x}^{4}},\left[\because \mathrm{y}-2=\mathrm{x}^{2}\right] \\ & \frac{\mathrm{ds}}{\mathrm{dx}}=\frac{1}{2} \sqrt{(\mathrm{x}-3)^{2}+\mathrm{x}^{4}}\left\{2(\mathrm{x}-3)+4 \mathrm{x}^{3}\right\}\end{aligned}$
$=\left(2 x^{3}+x-3\right) \sqrt{(x-3)^{2}+x^{4}}$ ब『श $\frac{d^{2} s}{d^{2}}=\left(2 x^{3}+x-3\right)^{2} \sqrt{(x-3)^{2}+x^{4}}+$

$$
(6 x+1) \sqrt{(x-3)^{2}+x^{4}}
$$

$\mathrm{x}=1$ এর बंना, $\frac{\mathrm{ds}}{\mathrm{dx}}=0$ जবং $\frac{\mathrm{d}^{2} \mathrm{~s}}{\mathrm{dx}^{2}}=7 \sqrt{5}>0$

 স্সর্রকে ঢাল, $\frac{d y}{d x}=2 x$ जबः (x, y) ($(3,2)$ বিস্দুগাী র্রোর ঢাল $=\frac{y-2}{x-3}$.
$\therefore(3,2)$ बिम्দू रज্ $\mathrm{y}=\mathrm{x}^{2}+2$ बক্ৰরেখার (x, y)

$$
\begin{aligned}
& 2 x \times \frac{y-2}{x-3}=-1 \Rightarrow 2 x \cdot x^{2}=-(x-3) \\
\Rightarrow & 2 x^{3}+x-3=0 \\
& x=1 \text { ఆ } y=1^{2}+2=3
\end{aligned}
$$

निি मध्यवधी: मृरण्व $=\sqrt{(1-3)^{2}+(3-2)^{2}}=\sqrt{5}$ এकब।

 পারে। কক্ষের্রির দৈর্ষ্য ও•প্রস্থ কত হওয়া দর্রকার।
 खूं उराना,

$$
2(x+y)=800 \Rightarrow x+y=400
$$

$\Rightarrow y=400-x$

$$
=400 x-x^{2}
$$

$$
\frac{d A}{d x}=400-2 \mathrm{x} \text { এবং } \frac{d^{2} A}{d x^{2}}=-2
$$

$$
\Rightarrow x=200
$$

बत्रुख, $\frac{d^{2} y}{d x^{2}}<0, y=400-200=200$
$x=200, y=200$ এর জऩा A এর মাन বৃহজ্ম एग़।

 200 घूँ)
11. এชটি সমবৃত্ভুমিক কোণের মব্যে একটি খiড্ডা বৃত্তাকার f্সিनিভার স্থাপর কর্木া আছে। সিলিভারের ব্রতল बৃহত্ত ইলन দেখাs यে, সিनিজ্ডারের ব্যাসার্ব কোণের ব্যাসার্ব্রে অর্বেক।

সমাধান ঃ মনে করি কোণের উচ্চতা OA＝h， ভুমির ব্যাসার্ধ $\mathrm{OC}=\mathrm{r}$ এ কোণের মধ্যে একটি সিলিন্ডার স্থাপন করা আছে যার ভূমির ব্যাসার্ধ $\mathrm{OP}=\mathrm{x}$ ．

এখন，$\triangle \mathrm{PQC}$ ও $\triangle \mathrm{AOC}$ সদৃশকোণী ত্রিভূজদ্বয় হতে পাই，$\frac{\mathrm{PQ}}{\mathrm{OA}}=\frac{\mathrm{PC}}{\mathrm{OC}} \Rightarrow \frac{\mathrm{PQ}}{\mathrm{OA}}=\frac{\mathrm{OC}-\mathrm{OP}}{\mathrm{OC}}$
$\Rightarrow \frac{\mathrm{PQ}}{\mathrm{h}}=\frac{\mathrm{r}-\mathrm{x}}{\mathrm{r}} \Rightarrow \mathrm{PQ}=\frac{\mathrm{h}(\mathrm{r}-\mathrm{x})}{\mathrm{r}}$
সিলিভারের বক্রতল S रলে，$S=2 \pi x \times P Q$
$\Rightarrow S=2 \pi x \frac{h(r-x)}{r}=\frac{2 \pi h}{r}\left(r x-x^{2}\right)$

$$
\frac{\mathrm{dS}}{\mathrm{dx}}=\frac{2 \pi \mathrm{~h}}{\mathrm{r}}(\mathrm{r}-2 \mathrm{x}), \frac{\mathrm{d}^{2} \mathrm{~S}}{\mathrm{dx}^{2}}=\frac{2 \pi \mathrm{~h}}{\mathrm{r}}(0-2)
$$

এখন গরিষ্ঠ ও লঘিষ্ঠ মানের জন্য，$\frac{\mathrm{dS}}{\mathrm{dx}}=0$
$\Rightarrow \frac{2 \pi h}{r}(r-2 x)=0 \Rightarrow x=\frac{r}{2}$
फর্থাং সিলিল্ডারের ব্যাসার্ধ $=\frac{1}{2}$（কোণের ভূমির ব্যাসার্ব） এत्क্রে，$\frac{\mathrm{d}^{2} \mathrm{~S}}{\mathrm{dx}}=-\frac{4 \pi \mathrm{~h}}{\mathrm{r}}<0$

সিলিম্ডারের ব্র্তন বৃহত্তম হলে，সিলিম্ডারের ব্যাসার্ধ কোণের ব্যাসার্ধের অর্ধেক।

12．একটি আম বাগানে প্রতি একরে 30 টি গাছ আছে এবং প্রতি গাছে গড়ে 400টি আম ধরে। প্রতি একরে צতিরিক্ট একটি গাছের জন্য মোটামোটি 10 位 আমের্র ফল্নন কমে। আমের সর্বোচ্চ ফলন পাওয়ার জন্য প্রতি একর্রে কতটি গাছ থাকা উচিত？
সমাধান ঃ মনে করি，সর্বোচ্চ ফলনের জন্য প্রতি একরে গাছের সংখ্যা $(30+x)$ থাকা প্রয়োভন। তাহলে，প্রতি গাছে আমের সংখ্যা $=(400-10 x)$ ．
আমের ফনन y হনে，$y=(30+x)(400-10 x)$
$\Rightarrow y=1200+100 x-10 x^{2}$

$$
\frac{d y}{d x}=100-20 \mathrm{x} \text { এবং } \frac{d^{2} y}{d x^{2}}=-20
$$

সर्ব্বাए ফলननে জনা，$\frac{d y}{d x}=0 \Rightarrow 100-20 \mathrm{x}=0$

$$
\Rightarrow x=5
$$

बพ्कেজে．$\frac{d^{2} y}{d x^{2}}<0$ ．
$x=5$ रलে अनन সर्বোচ্চ रবে। ऊर्थাৎ आगের সর্বোচ্চ স্শ্লন পাওয়ার জন্য প্রতি একরে $(30+5)$ $=35$ 位扑市 থাবা টচিত।

ভর্তি পরীক্মার MCQ
1．$y=\cos \mathrm{x}+\sin \mathrm{x}$ रणে $\frac{d^{2} y}{d x^{2}}=$ ？［CU 07－08］ Sol $^{n} \cdot \frac{d y}{d x}=-\sin x+\cos x$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=-\cos x-\sin x$
2．कि শर्তে $\frac{d^{n}}{d x^{n}}(c a x+b)^{m}=0$
［SU 08－09；CU 03－04］
Sol＂$n>m$
 कण ？
［CU07－08］
Sol ${ }^{n} \quad y_{n}=n!\quad y_{n+1}=0$
4．$y=e^{u x}$ खাংশনের y_{n} बত হবে？［CU 06－07］ Sol＂$y_{n}=a^{n} e^{a r}$
5．$y=(2 x-5)^{3}$ रूलে $\frac{d^{3} y}{d x^{3}}$ बण ？［IU 02－03］
Sol＂$\frac{d^{3} y}{d x^{3}}={ }^{3} P_{3} \cdot 2^{3}(2 x-5)^{3-3}=6.8=48$
6．$x^{2}+y^{2}=25$ रणে $(3,-4)$ दिभ्मूতে $\frac{d y}{d x}$
不
［DU 01－02；NU 06－07］
Sol＂． $2 \mathrm{x}+2 \mathrm{y} \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{x}{y}$
$(3,-4)$ बिস্দুতে $\frac{d y}{d x}=\frac{3}{4}$
7. $\mathrm{y}=2 \mathrm{x}^{3}+3 \mathrm{x}^{2}-12 \mathrm{x}+7$ বब্প্রেখার মূ्तকিদ্দूতে नडित्र भद्वियाण बए ?
[DU 00-01]
Sol ${ }^{n} \cdot \frac{d y}{d x}=6 \mathrm{x}^{2}+6 \mathrm{x}-12=-12$ (মृ-बকिস্দুতে)
8. $3 x^{2}-7 y^{2}+4 x y-8 x=0$ यब

Sol $^{n} .6 \mathrm{x}-14 \mathrm{y} \frac{d y}{d x}+4 \mathrm{x} \frac{d y}{d x}+4 \mathrm{y}-8=0$
$\Rightarrow-6-14 \frac{d y}{d x}-4 \frac{d y}{d x}+4-8=0$
$\Rightarrow \frac{d y}{d x}=\frac{10}{-18}=-\frac{5}{9}$

 जा श्ञ-
[CU 07-08, 04-05]
Sol ${ }^{n} \cdot \frac{d y}{d x}=\frac{1}{2 \sqrt{x}} \quad \therefore \frac{1}{2 \sqrt{x}}=\tan 45^{\circ}=1$
$\Rightarrow \mathrm{x}=\frac{1}{4}$ जবং $\mathrm{y}=\sqrt{\frac{1}{4}}=\frac{1}{2} \therefore$ बिन्मू $\left(\frac{1}{4}, \frac{1}{2}\right)$
10. $y=x^{2}+1$ इलে কোন বিদ্রুভে $y \cup \frac{d y}{d x}$ এর মান সমान?
[IU 07-08]
Sol ${ }^{n} \cdot \frac{d y}{d x}=2 \mathrm{x} \quad y=\frac{d y}{d x} \Rightarrow x^{2}+1=2 x$ $\Rightarrow(\mathrm{x}-1)^{2}=0 \Rightarrow \mathrm{x}=1, \mathrm{y}=1+1=2$ বিদ্দুটি $(1,2)$
11. बোन গडिশীण বস্তু t সেबেखে $5 t+2 t^{2}$ यूढ
 रবে?
[KU 06- 08]
Sol ${ }^{n} . \mathrm{S}=5 \mathrm{t}+2 \mathrm{t}^{2} \Rightarrow \frac{d s}{d t}=\mathrm{v}=5+4 \mathrm{t}$ 3 সেকেন্ড পর প্তবেগ $=5+12=17 \mathrm{ft} / \mathrm{sec}$

ब्यवशाরিক অनूभीवनी

1. $x=0$ दिम्पूर সন্নিকটে $f(x)=\sin x$ खासनের
 স্রাनীয়াডাবে প্রতিস্থাপन কর।
 ফাশশনের লেখরে অসন্নভাবে ১ বিক্দুতে স্সর্শ<ের লেখ দারা স্শানীয়ছাবে প্রতিস্মাপন।
 बসন্নজাবে ঐ বিস্দूতে স্সর্শক প্রারা স্পানীয়জাবে প্রতিস্মাপন करा⿴ সৃত্র, $f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$
 পেপার (iv) ইর্রেজার (v) শার্পনার (vi) সাল্রেস্টিফিক ক্যালকূলেট্র।

 ఆ YOY' आँकि ।
2. निচের जाলিকাম x এর डিन्न ভিন্ন মানের জন্য $\mathrm{f}(x)=\sin \mathrm{x}$ এর প্রতিরৃभী মান निর্ণ্য করি :

x	0°	$\pm 30^{\circ}$	$\pm 60^{\circ}$	$\pm 90^{\circ}$
y	0	$\pm .5$	$\pm .87$	± 1

 বক্ষাকার্র Cal|s করে $\mathrm{y}=\mathrm{f}(x)=\sin \mathrm{x}$ जर लেখ অজ্কন র্রর।

शिनाय : $\mathrm{f}(x)=\sin \mathrm{x} \Rightarrow f^{\prime}(x)=\cos \mathrm{x}$

$$
f(0)=\sin 0=0, f^{\prime}(0)=\cos 0=1
$$

$f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ হত্ে পাই,
$\sin x \approx 0+1(x-0)=x$
ফ্পাষন \& $\mathrm{x}=0$ বিদ্দুর্র সন্নিকটে $\mathrm{y}=\mathrm{f}(x)=\sin x$ ফাংশনের লেখকে জসন্নডাবে বি বিদ্দুতে স্সর্শ $y=x$ এর जেখ ঘারা স্থানীয়ভাবে প্রতিস্ফাপন করা হন। অন্যড়াবে বणा যায়, x এর মান 0 এর্গ সন্নিকটে হলে $\sin x$ এর পর্রিমাণ x এর কাছাকাছি হাে।

 $d x=\delta x=1$.
পরীफণেন্গ नाম \& $y=x^{2}$ ফाश्यनের জन्ग, $x=2$ বিস্দুচে $\mathrm{d} y$ ও δy निর্ণয় , যেখানে $d x=\delta x=1$ এবং লেখচিতে $\mathrm{d} y$ ज δy প্রमর্শন ।
 মধ্যাকান্ন সম্পর্ক $d y=f^{\prime}(x) d x$ এবং স্যাধীন চলকের
 एूर্র পরিবर्তন $\delta y=\mathrm{f}(\mathrm{x}+\delta x)-\mathrm{f}(\mathrm{x})$
প্রत্রোঘनীয় উপক্নণ 8 (i) পেন্भিন (ii) স্কেন (iii) গ্রাফ भেभার (iv) ইর্রেজার (v) याর্পनाর (vi) চाँদा (vii)

1. একটি ছকं কাগজ্জ স্ফানাজ্কের্গ অক্ষ রেখা $\mathrm{X}^{\prime} \mathrm{OX} \bigcirc$ YOY' đ゙কি 1
2. निচের তালিকায় x এর ভিন্ন ডিন্ন মানের खন্য $\mathrm{f}(x)=x^{2}$ এর প্রতিরূभी মান निर्ণয় করি :

x	0	± 1	± 2	± 3
$\mathrm{f}(x)=x^{2}$	0	1	4	9

3. x - অक्ष ও y - অक्ष বরাবর স্রুর্র্ম বগ্রে 2 বাহू
 স্যাপন করি এবং সর্রূ পেপ্সিজের সাহায্যে স্থাপিত বিস্দুপুणি মুক্ত হল্তে বক্ৰাকারে যোগ করে $\mathrm{y}=\mathrm{f}(x)$ $=x^{2}$ এর ரেখ অঙ্কন করি।

4. $A(2,4)$ বিস্দুতু সর্শক অঙ्कन করি । $x=3$
 বিস্দুতে গেে করে।
হিসাব : $y=x^{2}$ হতে গ্যাই $\frac{\mathrm{dy}}{\mathrm{dx}}=2 x$.
সুতরাং $\mathrm{dy}=2 x \mathrm{dx}=2 \times 2 \times 1=4$
এবং $\delta y=\mathrm{f}^{\prime}(\mathrm{x}+\delta x)-\mathrm{f}(\mathrm{x})$

$$
\begin{aligned}
& =(x+\delta x)^{2}-(x)^{2}=(2+1)^{2}-2^{2} \\
& =9-4=5
\end{aligned}
$$

চিত্র হতে পাই, $\mathrm{AN}=\mathrm{dx}=\delta \mathrm{x}=1, \mathrm{PN}=\mathrm{dy}$ $\mathrm{QN}=\delta y$
य्वाएन्न: $\mathrm{PN}=\mathrm{dy}=4$ आ $\mathrm{QN}=\delta y=5$
ণেষ্িচ্রে भদর্শন কর্গা হল্লে।

निচের যোগষ্ৰगুলির মান निক্য কন :

$$
\begin{aligned}
& \text { 1.(a) } \int \frac{1}{x}\left(x+\frac{1}{x}\right) d x \\
& =\int\left(1+x^{-2}\right) d x=x+\frac{x^{-2+1}}{-2+1}+c \\
& =x-\frac{1}{x}+c
\end{aligned}
$$

$$
\text { 1(b) } \int \frac{\left(e^{x}+1\right)^{2}}{\sqrt{e^{x}}} d x
$$

$$
=\int \frac{e^{2 x}+2 e^{x}+1}{e^{\frac{x}{2}}} d x
$$

$$
=\int\left(e^{2 x-\frac{x}{2}}+2 e^{x-\frac{x}{2}}+e^{-\frac{x}{2}}\right) d x
$$

$$
=\int\left(e^{\frac{3 x}{2}}+2 e^{\frac{x}{2}}+e^{-\frac{x}{2}}\right) d x
$$

$$
=\frac{e^{\frac{3 x}{2}}}{\frac{3}{2}}+2 \frac{e^{\frac{x}{2}}}{\frac{1}{2}}+\frac{e^{-\frac{x}{2}}}{-\frac{1}{2}}+c
$$

$$
=\frac{2}{3} e^{\frac{3 x}{2}}+4 e^{\frac{x}{2}}-2 e^{-\frac{x}{2}}+c
$$

$$
\text { 1(c) } \int\left(1+x^{-1}+x^{-2}\right) d x
$$

$$
=\int\left(1+\frac{1}{x}+x^{-2}\right) d x
$$

$$
=x+\ln x+\frac{x^{-2+1}}{-2+1}+c=x+\ln x-x^{-1}+c
$$

 एव्रकে $\sqrt{\text { मुक्ड क্নতে एग्र। }}$
2.(a) $\int \frac{1}{\sqrt{x}-\sqrt{x-1}} d x$
$=\int \frac{\sqrt{x}+\sqrt{x-1}}{(\sqrt{x}-\sqrt{x-1})(\sqrt{x}+\sqrt{x-1})} d x$
$=\int \frac{\sqrt{x}+\sqrt{x-1}}{x-(x-1)} d x=\int \frac{\sqrt{x}+\sqrt{x-1}}{x-x+1} d x$
$=\int\left\{x^{\frac{1}{2}}+(x-1)^{\frac{1}{2}}\right\} d x$
$=\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}+\frac{(x-1)^{\frac{1}{2}+1}}{\frac{1}{2}+1}+c$
[ঢ.००২] $=\frac{2}{3}\left[x^{3 / 2}+(x-1)^{3 / 2}\right]+c$
2(b) $\int \frac{d x}{\sqrt{.1+1}+\sqrt{x-1}} \quad$ [त्रा.'०२; मि.'’O]
$=\int \frac{\sqrt{x+1}-\sqrt{x-1}}{(\sqrt{x+1}+\sqrt{x-1})(\sqrt{x+1}-\sqrt{x-1})} d x$
$=\int \frac{\sqrt{x+1}-\sqrt{x-1}}{(x+1)-(x-1)} d x$
$\left.=\frac{1}{2} \int\left[\begin{array}{ll}x & 1\end{array}\right)^{1 / 2}-(i+1)^{1 / 2}\right] d x$
$=\frac{1}{2}\left[\frac{(x+1)^{\frac{1}{2}+1}}{\frac{1}{2}+1}-\frac{(x-1)^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right]+\mathrm{c}$
$=\frac{1}{2}\left[\frac{(x+1)^{\frac{3}{2}}}{\frac{3}{2}}-\frac{(x-1)^{\frac{3}{2}}}{\frac{3}{2}}\right]+c$
$=\frac{1}{3}\left[(x+1)^{\frac{3}{2}}-(x-1)^{\frac{2}{2}}\right]+c$ (Ans.)
3.(a) $\int \frac{d x}{1-\sin x}$
[ঢ.'०9]
$=\int \frac{(1+\sin x) d x}{(1-\sin x)(1+\sin x)}$
$=\int \frac{(1+\sin x) d x}{1-\sin ^{2} x}=\left[\frac{(1+\sin x) d x}{\cos ^{2} x}\right.$
$=\int\left(\frac{1}{\cos ^{2} x}+\frac{\sin x}{\cos ^{2} x}\right) d x$
$=\int\left(\sec ^{2} x+\sec x \tan x\right) d x$
$=\tan x+\sec x+c$
3(b) $\int \frac{d x}{1+\sin x}$ [য.'०৭,'১৩; চ.'১০ প্র.ए.भ.'০৩]
$=\int \frac{(1-\sin x) d x}{(1+\sin x)(1-\sin x)}$
$=\int \frac{(1-\sin x) d x}{1-\sin ^{2} x}=\int \frac{(1-\sin x) d x}{\cos ^{2} x}$
$=\int\left(\frac{1}{\cos ^{2} x}-\frac{\sin x}{\cos ^{2} x}\right) d x$
$=\int\left(\sec ^{2} x-\sec x \tan x\right) d x$
$=\tan x-\sec x+c$
3. (c) $\int \frac{d x}{1+\cos 2 x}$
[द্k.'ob]
$=\int \frac{d x}{2 \cos ^{2} x}=\frac{1}{2} \int \sec ^{2} x d x=\frac{1}{2} \tan x+c$
3(d) $\int \sqrt{1+\cos x} d x$
[প্র.Ш.ף.'०8]
$=\int \sqrt{2 \cos ^{2} \frac{x}{2}} d x=\int \sqrt{2} \cos \frac{x}{2} d x$
$=2 \sqrt{2} \int \cos \frac{x}{2} d\left(\frac{x}{2}\right)$
$\left[\quad d\left(\frac{x}{2}\right)=\frac{1}{2} d x\right]$
$=2 \sqrt{2} \sin \frac{x}{2}+c$
3(e) $\int \sqrt{1-\cos 2 x} d x$ [б.'০৫,'০ф; সि.'০৬; ব.'০b]
$=\int \sqrt{2 \sin ^{2} x} d x=\int \sqrt{2} \sin x d x$
$=\sqrt{2}(-\cos x)+c=-\sqrt{2} \cos x+c$
$\mathbf{3}(\mathbf{f}) \int \sqrt{1-\cos 4 x} d x$
[চ.'०9]
$=\int \sqrt{2 \sin ^{2} 2 x} d x=\int \sqrt{2} \sin 2 x d x$
$=\sqrt{2}\left(-\frac{\cos 2 x}{2}\right)+c=-\frac{1}{\sqrt{2}} \cos 2 x+c$
3(g) $\int \sec x(\sec x-\tan x) d x$
[ব.’১৩]
$=\int\left(\sec ^{2} x-\sec x \tan x\right) d x$
$=\tan x-\sec x+c$
4.(a) $\int \sqrt{1-\sin 2 x} d x$
$=\int \sqrt{\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x} d x$
$=\int \sqrt{(\sin x-\cos x)^{2}} d x$
$=\int(\sin x-\cos x) d x$ या $\int(\cos x-\sin x) d x$
$=-\cos x-\sin x+c$ ता $\sin x+\cos x+c$
4.(b) $\int_{j} \frac{-\cos 2 x}{\sqrt{1-\sin 2 x}} d x$
$=\int \frac{\cos ^{2} x-\sin ^{2} x}{\sqrt{\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x}} d x$
$=\int \frac{\cos ^{2} x-\sin ^{2} x}{\sqrt{(\sin x-\cos x)^{2}}} d x$
$=\int \frac{(\cos x-\sin x)(\cos x+\sin x)}{\cos x-\sin x} d x$
या, $\int \frac{(\cos x-\sin x)(\cos x+\sin x)}{\sin x-\cos x} d x$
$=\int(\cos x+\sin x) d x$ दा,$-\int(\cos x+\sin x) d x$
$=\sin x-\cos x$ đi, $-(\sin x-\cos x)$
4(c) $\int(\sin x+\cos x)^{2} d x$
[প.ত.Ч.প. '๖০]
$=\int\left(\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x\right) d x$
$=\int(1+\sin 2 x) d x=x-\frac{1}{2} \cos 2 x+c$
5(a) $\int \sin 5, i \sin 3 x d x$ [7.'ot, '১২;ষ.'JO; ह.'১২]
$=\int \frac{1}{2}\{\cos (5 x-3 x)-\cos (5 x+3 x)\} d x$
$=\frac{1}{2} \int(\cos 2 x-\cos 8 x) d x$
$=\frac{1}{2}\left(\frac{\sin 2 x}{2}-\frac{\sin 8 x}{8}\right)+c$
$=\frac{1}{4} \sin 2 x-\frac{1}{16} \sin 8 x+c$
 $=\int \frac{1}{2}\{\cos (4 x-2 x)-\cos (4 x+2 x)\} d x$
$=\frac{1}{2} \int(\cos 2 x-\cos 6 x) d x$
$=\frac{1}{2}\left(\frac{\sin 2 x}{2}-\frac{\sin 6 x}{6}\right)+c$
$=\frac{1}{4} \sin 2 x-\frac{1}{12} \sin 6 x+c$
5(c) $\int 3 \sin 3 x \cos 4 x d x$ [मि’०২,'০৩; ব:'০৬,'১০]
$=\int \frac{3}{2}\{\sin (4 x+3 x)-\sin (4 x-3 x)\} d x$
$=\frac{3}{2} \int(\sin 7 x-\sin x) d x$
$=\frac{3}{2}\left(-\frac{1}{7} \cos 7 x+\cos x\right)+c$
$=\frac{3}{14}(7 \cos x-\cos 7 x)+c$
5.(d) $\int \sin 3 x \cos 5 x d x \quad$ [बू.'০৬; সি., मि.'১২]
$=\int \frac{1}{2}\{\sin (5 x+3 x)-\sin (5 x-3 x)\} d x$
$=\int \frac{1}{2}(\sin 8 x-\sin 2 x) d x$
$=\frac{1}{2}\left(-\frac{1}{8} \cos 8 x+\frac{1}{2} \cos 2 x\right)+c$
$=\frac{1}{16}(4 \cos 2 x-\cos 8 x)+c$
5(e) $\int 4 \cos 4 x \sin 5 x d x$
[রা.’ov]
$=\int 2\{\sin (5 x+4 x)+\sin (5 x-4 x)\} d x$
$=\int 2(\sin 9 x+\sin x) d x$
$=2\left(-\frac{1}{9} \cos 9 x-\cos x\right)+c$
$=-\frac{2}{9}(\cos 9 x+9 \cos x)+c$
$=\int \frac{5}{2}\{\sin (5 x+4 x)-\sin (5 x-4 x)\} d x$
$=\int \frac{5}{2}(\sin 9 x-\sin x) d x$
$=\frac{5}{2}\left(-\frac{1}{9} \cos 9 x+\cos x\right)+c$
$=\frac{5}{18}(9 \cos x-\cos 9 x)+c$
5(g) $\int \sin p x \cos q x d x,(p>\dot{q})$
[ঢ.'ov; जि.'○৭]
$=\int \frac{1}{2}\{\sin (p+q) x+\sin (p-q) x\} d x$
$=\frac{1}{2}\left\{-\frac{\cos (p+q) x}{p+q}-\frac{\cos (p-q) x}{p-q}\right\}+c$
$=-\frac{1}{2}\left\{\frac{\cos (p+q) x}{p+q}+\frac{\cos (p-q) x}{p-q}\right\}+c$
6.(a) $\int \cos ^{2} x d x$
[T.'ob]
$=\int \frac{1}{2}(1+\cos 2 x) d x=\frac{1}{2}\left\{\int d x+\int \cos 2 x d x\right\}$
$=\frac{1}{2}\left(x+\frac{\sin 2 x}{2}\right)+c$
6(b) $\int \cos ^{2} 2 x d x$
[ঢঢ.’oo]
$=\int \frac{1}{2}(1+\cos 4 x) d x=\frac{1}{2}\left(x+\frac{\sin 4 x}{4}\right)+c$
6(c) $\int(2 \cos x+\sin x) \cos x d x$
[ण丁 '०৫]
$=\int\left(2 \cos ^{2} x+\sin x \cos x\right) d x$
$=\int\left(1+\cos 2 x+\frac{1}{2} \sin 2 x\right) d x$
$=x+\frac{1}{2} \sin 2 x+\frac{1}{2} \cdot\left(-\frac{1}{2} \cos 2 x\right)+c$
$=x+\frac{1}{2} \sin 2 x-\frac{1}{4} \cos 2 x+c$

$$
\begin{aligned}
& \text { 6(d) } \int \sin ^{3} 2 x d x \\
& =\int \frac{1}{4}(3 \sin 2 x-\sin 6 x) d x \\
& =\frac{1}{4}\left\{3 \cdot\left(-\frac{1}{2} \cos 2 x\right)+\frac{1}{6} \cos 6 x\right\}+c \\
& =\frac{1}{8}\left(-3 \cos 2 x+\frac{1}{3} \cos 6 x\right)+c \\
& \text { 6.(e) } \int \sin ^{4} x d x
\end{aligned}
$$

$$
\sin ^{4} x d x=\left(\sin ^{2} x\right)^{2}=\left\{\frac{1}{2}(1-\cos 2 x)\right\}^{2}
$$

$$
=\frac{1}{4}\left\{1-2 \cos x+\cos ^{2} 2 x\right\}
$$

$$
=\frac{1}{4}\left\{1-2 \cos 2 x+\frac{1}{2}(1+\cos 4 x)\right\}
$$

$$
=\frac{1}{4}\left[1-2 \cos 2 x+\frac{1}{2}+\frac{1}{2} \cos 4 x\right]
$$

$$
=\frac{1}{4}\left[\frac{3}{2}-2 \cos 2 x+\frac{1}{2} \cos 4 x\right]
$$

$$
\int \sin ^{4} x d x
$$

$$
=\frac{1}{4}\left(\frac{3}{2} x-2 \cdot \frac{1}{2} \sin 2 x+\frac{1}{2} \cdot \frac{1}{4} \sin 4 x\right)+c
$$

$$
=\frac{1}{4}\left(\frac{3}{2} x-\sin 2 x+\frac{1}{8} \sin 4 x\right)+c
$$

$$
\cos ^{4} x d x=\left(\cos ^{2} x\right)^{2}=\left\{\frac{1}{2}(1+\cos 2 x)\right\}^{2}
$$

$$
=\frac{1}{4}\left\{1+2 \cos 2 x+\cos ^{2} 2 x\right\}
$$

$$
=\frac{1}{4}\left\{1+2 \cos 2 x+\frac{1}{2}(1+\cos 4 x)\right\}
$$

$$
=\frac{1}{4}\left[1+2 \cos 2 x+\frac{1}{2}+\frac{1}{2} \cos 4 x\right]
$$

$$
=\frac{1}{4}\left[\frac{3}{2}+2 \cos 2 x+\frac{1}{2} \cos 4 x\right]
$$

$$
\int \cos ^{4} x d x
$$

[ঢ.'०s] $\left\lvert\,=\int \frac{1}{4}\left(\frac{3}{2}+2 \cos 2 x+\frac{1}{2} \cos 4 x\right) d x\right.$
$=\frac{1}{4}\left(\frac{3}{2} x+2 \cdot \frac{1}{2} \sin 2 x+\frac{1}{2} \cdot \frac{1}{4} \sin 4 x\right)+c$
$=\frac{1}{4}\left(\frac{3}{2} x+\sin 2 x+\frac{1}{8} \sin 4 x\right)+c$ (Ans.)
অতিরিক্ত ্রশ্ল (সমাধানসহ)
निচের যোেল্লি মান নিপ্য় কন 8

2(a) $\int \frac{\cos 2 x-\cos 2 \theta}{\cos x-\cos \theta} d x$

$$
=\int \frac{2 \cos ^{2} x-1-\left(2 \cos ^{2} \theta-1\right)}{\cos x-\cos \theta} d x
$$

$$
=2 \int \frac{\cos ^{2} x-\cos ^{2} \theta}{\cos x-\cos \theta} d x
$$

$$
=2 \int \frac{(\cos x+\cos \theta)(\cos x-\cos \theta)}{\cos x-\cos \theta} d x
$$

$=2 \int(\cos x+\cos \theta) d x$
$=2\left(\int \cos x d x+\cos \theta \int d x\right)$
$=2(\sin x+\cos \theta \cdot x)+c$
$=2(\sin x+x \cos \theta)+c$
2(b) $\int(\sec x+\tan x)^{2} d x$
$=\int\left(\sec ^{2} x+\tan ^{2} x+2 \sec x \tan x\right) d x$
$=\int\left(\sec ^{2} x+\sec ^{2} x-1+2 \sec x \tan x\right) d x$
$=\int\left(2 \sec ^{2} . x-1+2 \sec x \tan x\right) d x$
$=2 \tan x-x+2 \sec x+c$
3(a) $\int \sqrt{1 \pm \sin x} d x$
$=\int \sqrt{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2} \pm 2 \sin \frac{x}{2} \cos \frac{x}{2}} d x$
$=\int \sqrt{\left(\sin \frac{x}{2} \pm \cos \frac{x}{2}\right)^{2}} d x$
$=\int\left(\sin \frac{x}{2} \pm \cos \frac{x}{2}\right) d x$ ev $\int\left(\cos \frac{x}{2} \pm \sin \frac{x}{2}\right) d x$
$=2\left(-\cos \frac{x}{2} \pm \sin \frac{x}{2}\right)+c$
या $2\left(\sin \frac{x}{2} \mp \cos \frac{x}{2}\right)+c$
3(b) $\int \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}} d x$
$=\int \frac{\sin x+\cos x}{\sqrt{\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x}} d x$
$=\int \frac{\sin x+\cos x}{\sqrt{(\sin x+\cos x)^{2}}} d x$
$=\int \frac{\sin x+\cos x}{\sin x+\cos x} d x=\int d x=x+c$
3(c) $\int \frac{\cos x+\sin x}{\cos x-\sin x}(1-\sin 2 x) d x$
$=\int \frac{\cos x+\sin x}{\cos x-\sin x}(\cos x-\sin x)^{2} d x$
$=\int(\cos x+\sin x)(\cos x-\sin x) d x$
$=\int\left(\cos ^{2} x-\sin ^{2} x\right) d x=\int \cos 2 x d x$
$=\frac{1}{2} \sin 2 x+c$
3(d) $\int\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2} d x$
$=\int\left(\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}\right) d x$
$=\int(1+\sin x) d x=x-\cos x+c$
$4 \int \cos ^{3} x d x=\int \frac{1}{4}(3 \cos x+\cos 3 x) d x$

$$
=\frac{1}{4}\left(3 \sin x+\frac{1}{3} \sin 3 x\right)+c
$$

প্রय্ম মাना X B

निচের যোোমপুলি निর্ণ্য কন 8
1.(a) $\int \frac{1}{\sqrt[3]{(1-4 x)}} d x=\int \frac{1}{(1-4 x)^{1 / 3}} d x$
$=\int(1-4 x)^{\frac{1}{3}} d x=\frac{(1-4 x)^{\frac{1}{3}+1}}{\left(-\frac{1}{3}+1\right)(-4)}+c$
$=\frac{(1-4 x)^{\frac{2}{3}}}{\frac{2}{3}(-4)}+c=-\frac{3}{8}(1-4 x)^{\frac{2}{3}}+c$
1(b) $\int \frac{e^{5 x}+e^{3 x}}{e^{x}+e^{-x}} d x$
[ฯ.๖.ๆ. '১২]
$=\int \frac{e^{4 x}\left(e^{x}+e^{-x}\right)}{e^{x}+e^{-x}} d x=\int e^{4 x} d x=\frac{e^{4 x}}{4}+c$
1(c) 《রি, $\mathrm{I}=\int \sin x^{0} d x$
[5.'०8]

এবং $x^{\circ}=\frac{\pi x}{180}=z$
তাহजে $\frac{\pi}{180} d x=d z \Rightarrow d x=\frac{180}{\pi} d z$ এবং $I=\frac{180}{\pi} \int \sin z d z=\frac{180}{\pi}(-\cos z)+c$
$\int \sin x^{\circ} d x=-\frac{180}{\pi} \cos x^{\circ}+c$
2(a) ধরি, $\mathrm{I}=\int \sin 5 \dot{x} d x$
[Hि.'oc]
जবং $5 x=z$ তাহনে $5 d x=d z \Rightarrow d x=\frac{1}{5} d z$
এবং $\mathrm{I}=\frac{1}{5} \int \sin z d z=-\frac{1}{5} \cos z+c$
$\therefore \int \sin 5 x d x=-\frac{1}{5} \cos 5 x+c$
2(b) ধরি , $\mathrm{I}=\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x$
[末.'০০]
এবং $\sqrt{x}=z$. চাহলে $\frac{d x}{2 \sqrt{x}}=d z \Rightarrow \frac{d x}{\sqrt{x}}=2 d z$
बবং $\mathrm{I}=2 \int \cos z d z=2 \sin z+c$

$$
\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x=2 \sin \sqrt{x}+c
$$

2(c) $\int \frac{1}{x^{2}} \sin \frac{1}{x} d x$
[ঢা.'08; য.'○৭]
ষরি, $\frac{1}{x}=z \quad-x^{-2} d x=d z \Rightarrow \frac{1}{x^{2}} d x=-d z$
$\therefore \int \frac{1}{x^{2}} \sin \frac{1}{x} d x=\int \frac{\sin (1 / x)}{x^{2}} d x$
$=-\int \sin z d z=-(-\cos z)+c=\cos \frac{1}{x}+c$
3. (a) ধরি, $\mathrm{I}=\int x e^{x^{2}} d x$
[ব.'০৩]

এবং $x^{2}=z$. ঢাহলে, $2 x d x=d z \Rightarrow x d x=\frac{d z}{2}$ এবং $\mathrm{I}=\frac{1}{2} \int e^{z} d z=\frac{1}{2} e^{z}+c=e^{x^{2}}+c$

3(b) ধরি, $\mathrm{I}=\int x^{2} a^{x^{3}} d x$
[মा.'○১]
এবং $x^{3}=z$. তाइলে, $3 x d x=d z \Rightarrow x d x=\frac{d z}{3}$
ज্রবং $\mathrm{I}=\frac{1}{3} \int a^{z} d z=\frac{a^{z}}{3 \ln a}+c=\frac{a^{x^{3}}}{3 \ln a}+c$
3.(c) $\int e^{x} \tan e^{x} \sec e^{x} d x$
$=\int \sec e^{x} \tan e^{x} d\left(e^{x}\right) \quad\left[\quad d\left(e^{x}\right)=e^{x} \mathrm{~d} x\right]$ $=\sec e^{x}+\mathrm{c}$

3(d) ধরি, $\mathrm{I}=\int e^{2 x} \tan e^{2 x} \sec e^{2 x} d x \quad[$ [.'०१] এবং $e^{2 x}=z$. তাহলে, $2 e^{2 x} d x=d z$ এবং
$\mathrm{I}=\frac{1}{2} \int \sec z \tan z d z=\frac{1}{2} \sec z+c$
$\therefore \int e^{2 x} \tan e^{2 x} \sec e^{2 x} d x=\frac{1}{2} \sec e^{2 x}+c$
4. (a) ধরি, $\mathrm{I}=\int \sin ^{2} x \cos x d x$
[ঢা.’০২]
এবং $\sin x=z$. তাহমে, $\cos x d x=d z$ এবং
$\mathrm{I}=\int z^{2} d z=\frac{1}{3} z^{3}+c=\frac{1}{3} \sin ^{3} x+c$
4(b) ধরি, $\mathrm{I}=\int(1+\cos x)^{3} \sin x d x$
[জ.'○৩]
এবং $1+\cos x=z$. তাহলে, $-\sin x d x=d z$ এবং $\dot{\mathrm{I}}=-\int z^{3} d z=-\frac{z^{4}}{4}+c=-\frac{(1+\cos x)^{4}}{4}+c$

4(c) ধরি, $\mathrm{I}=\int \sin ^{2} \frac{x}{2} \cos \frac{x}{2} d x$
এবং $\sin \frac{x}{2}=z$. তাহजে, $\frac{1}{2} \cos \frac{x}{2} d x=d z$ এবং
$\mathrm{I}=2 \int z^{2} d z=2 \cdot \frac{1}{3} z^{3}+c=\frac{2}{3} \sin ^{3} \frac{x}{2}+c$
4(d) ধরি, $\mathrm{I}=\int \sqrt{1-\sin x} \cos x d x$ [সि.'०১]
এবং $1-\sin x=z$. ঢাহळে, $-\cos d x=d z$ এবং
$\mathrm{I}=-\int z^{\frac{1}{2}} d z=-\frac{z^{\frac{1}{2}+1}}{\frac{1}{2}+1}+c=-\frac{2}{3} z^{\frac{3}{2}}+c$
$\therefore \int \sqrt{1-\sin x} \cos x d x=-\frac{2}{3}(1-\sin x)^{\frac{3}{2}}+c$
4（e） $\int \frac{\cos x d x}{(1-\sin x)^{2}}$
［ রা．＇০৪，सू．＇০৬；ব．＇১১］
धরি， $1-\sin x=z$ ．তाহলে，$-\cos d x=d z$ এবং
$\int \frac{\cos x d x}{(1-\sin x)^{2}}=-\int \frac{d z}{z^{2}}=-\int z^{-2} d z$
$=-\frac{z^{-2+1}}{-2+1}+c=z^{-1}+c=\frac{1}{1-\sin x}+c$

《位， $\tan ^{-1} x^{3}=z$

$$
\begin{aligned}
& \frac{1}{1+\left(x^{3}\right)^{2}} \cdot 3 x^{2} d x=d z \\
\Rightarrow & \frac{x^{2}}{1+x^{6}} d x=\frac{1}{3} d z \\
& \int \frac{x^{2} \tan ^{-1} x^{3}}{1+x^{6}} d x=\frac{1}{3} \int z d z \\
= & \frac{1}{3} \frac{z^{2}}{2}+c=\frac{1}{6}\left(\tan ^{-1} x^{3}\right)^{2}+c \text { (Ans.) }
\end{aligned}
$$

5（a）थधि， $\mathrm{I}=\int \frac{1}{x(1+\ln x)^{3}} d x$
এবং $1+\ln x=z$ ．তাহেে，$\frac{1}{x} \mathrm{~d} x=\mathrm{dz}$ जবং
$\mathrm{I}=\int \frac{1}{z^{3}} d z=\int z^{-3} d z=\frac{z^{-3+1}}{-3+1}+c=-\frac{1}{2 z^{2}}+c$ ．
$\therefore \int \frac{1}{x(\ln x)^{2}} d x=-\frac{1}{2(1+\ln x)^{2}}+c$
$5(b)$ ধরি， $\mathrm{I}=\int \frac{\left(\log _{10} x\right)^{2}}{x} d x$
［প．ভ．9．Ъ०］

जবং $\log _{10} x=z$ ．ঢाइलে，$\frac{1}{x \ln 10} \mathrm{~d} x=\mathrm{dz}$ जবং
$\mathrm{I}=\ln 10 \int z^{2} d z=\ln 10 \cdot \frac{1}{3} z^{3}+c$
$\therefore \int \frac{\left(\log _{10} x\right)^{2}}{x} d x=\frac{\ln 10}{3}\left(\log _{10} x\right)^{3}$
6．（a）《রি， $\mathrm{I}=\int e^{\tan ^{1} x} \cdot \frac{1}{1+x^{2}} d x$
［ঢা．’১১；মা．’১২，＇＞8］
जবং $\tan ^{-1} x=z$ ．णाइजে，$\frac{1}{1+x^{2}} \mathrm{~d} x=\mathrm{d} z$ जবং
$\mathrm{I}=\int e^{z} d z=e^{z}+c=e^{\tan ^{1} x}+c$
6（b） $\int e^{\sin ^{1} x} \cdot \frac{d x}{\sqrt{1-x^{2}}} \quad$［ర．＇०）；9．©．，Y．＇০৬］《রि， $\sin ^{-1} x=z$ ．তाइनে，$\frac{1}{1-x^{2}} \mathrm{~d} x=\mathrm{dz}$ जবং

$$
\begin{aligned}
\int e^{\sin ^{1} x} \cdot \frac{d x}{\sqrt{1-x^{2}}} & =\int e^{z} d z=e^{z}+c \\
& =e^{\sin ^{1} x}+c
\end{aligned}
$$

6（c）《রি， $\mathrm{I}=\int \frac{x}{\sqrt{1-x^{2}}} d x \quad$［य．＇’৬；मि．＇১১；ঢা．＇＞8］
এবং $1-x^{2}=z$ ．তাহजে，$-2 x d x=\mathrm{dz}$ এবং
$\mathrm{I}=-\frac{1}{2} \int \frac{d z}{\sqrt{z}}=-\frac{1}{2} \cdot 2 \sqrt{z}+c$
$\therefore \int \frac{x}{\sqrt{1-x^{2}}} d x=-\sqrt{1-x^{2}}+c$
6（d）«রি， $\mathrm{I}=\int \frac{\tan \left(\sin ^{-1} \mathrm{x}\right)}{\sqrt{1-\mathrm{x}^{2}}} \mathrm{dx}$ এবং

जाइलে，$\frac{1}{\sqrt{1-x^{2}}} d x=d z$ जदং
$\therefore \quad \mathrm{I}=\int \tan z d z=\ln |\sec z|+c$ $=\ln \left|\sec \left(\sin ^{-1} x\right)\right|+c$

7（a）《রি， $\mathrm{I}=\int \frac{\sin x}{3+4 \cos x} d x \quad$［ ঢा．＇०१，ব．＇১৩］ जবং $3+4 \cos x=z$ ．তाइजে，$-4 \sin x d x=\mathrm{dz}$ जबং $\mathrm{I}=-\frac{1}{4} \int \frac{d z}{z}=-\frac{1}{4} \ln |3+4 \cos x|+c$

7（b）《রি， $\mathrm{I}=\int \frac{\sin x}{1+2 \cos x} d x$
［ রান．’৩］
जবং $1+2 \cos x=z$ ．णारलে，$-2 \sin x d x=\mathrm{dz}$
जช゚ $\mathrm{I}=-\frac{1}{2} \int \frac{d z}{z}=-\frac{1}{2} \ln |1+2 \cos x|+c$
7（c） $\int \frac{\sec ^{2} x}{3-4 \tan x} d x=-\frac{1}{4} \int \frac{-4 \sec ^{2} x d x}{3-4 \tan x}$
$=-\frac{1}{4} \ln |3-4 \tan x|+c$
7（d）《র্মি， $\mathrm{I}=\int \frac{d x}{\left(1+x^{2}\right) \tan ^{-1} x}$

এবং $\tan ^{-1} x=z$ ．তাহলে，$\frac{1}{1+x^{2}} d x=d z$ এবং
$\left.\left.\mathrm{I}=\int \frac{d z}{z}=\ln \right\rvert\, z\right\}+c=\ln \left|\tan ^{-1} x\right|+c$
$8 \int \frac{1}{x(1+\ln x)} d x$
［ব．＇ob；\＆．＇’২২］
थधि， $1+\ln x=z$ ．जाइलে，$\frac{1}{x} \mathrm{~d} x=\mathrm{dz}$ जবং

$$
\begin{aligned}
\int \frac{1}{x(1+\ln x)} d x & =\int \frac{d z}{z}=\ln |z|+c \\
& =\ln (1+\ln x)+c
\end{aligned}
$$

9．（a） $\int \frac{e^{3 x}}{e^{3 x}-1} d x=\frac{1}{3} \int \frac{\left(e^{3 x}-0\right) d x}{e^{3 x}-1}$
$=\frac{1}{3} \ln \left|e^{3 x}-1\right|+c$
9（b） $\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x=\int \frac{d\left(e^{x}-e^{-x}\right)}{e^{x}+e^{-x}} \quad$［मि．＇ग०］ $=\ln \left|e^{x}+e^{-x}\right|+c$

9（c） $\int \frac{1}{e^{x}+1} d x=\int \frac{e^{-x}}{e^{-x}\left(e^{x}+1\right)} d x$
［】．＇Jo］
$=\int \frac{e^{-x}}{1+e^{-x}} d x=-\int \frac{\left(0-e^{-x}\right) d x}{1+e^{-x}}$
$=-\ln \left|1+e^{-x}\right|+c$
10．（a）«রি， $\mathrm{I}=\int \frac{1}{\sqrt[3]{1-6 x}} d x$
［थ．，Ш．भ．＇○৫］
এবং $1-6 x=z$ ．তাহলে，$-6 d x=\mathrm{dz}$
$\mathrm{I}=-\frac{1}{6} \int \frac{1}{\sqrt[3]{z}} d z=-\frac{1}{6} \int \frac{d z}{z^{1 / 3}}=-\frac{1}{6} \int z^{-\frac{1}{3}} d z$
$=-\frac{1}{6} \frac{z^{\frac{1}{3}+1}}{-\frac{1}{3}+1}+c=-\frac{1}{6} \frac{z^{2 / 3}}{\frac{2}{3}}+c$
$=-\frac{1}{4}(1-6 x)^{2 / 3}+c$
10 （b）ষরি， $\mathrm{I}=\int \frac{x^{3} d x}{\sqrt{\left(1-2 x^{4}\right)}}$
এヌং $1-2 x^{4}=z$ ．णारलে，$-8 x^{3} d x=\mathrm{dz}$ जヌং
$\mathrm{I}=-\frac{1}{8} \int \frac{d z}{\sqrt{z}}=-\frac{1}{8} \cdot 2 \sqrt{z}+c=-\frac{1}{4} \sqrt{z}+c$
$\therefore \int \frac{x^{3} d x}{\sqrt{\left(1-2 x^{4}\right)}}=-\frac{1}{4} \sqrt{1-2 x^{4}}+c$
10（c） $\int \frac{d x}{\cos ^{2} x \sqrt{\tan x-1}}$
［भि．＇○২］
$=\int \frac{\sec ^{2} x d x}{\sqrt{\tan x-1}}=\int \frac{\left(\sec ^{2} x-0\right) d x}{\sqrt{\tan x-1}}$
$=2 \sqrt{\tan x-1}+c$
$\left[\because \int \frac{1}{\sqrt{x}} d x=2 \sqrt{x}\right]$
10 （d）ধরি， $\mathrm{I}=\int \frac{\cos x}{\sqrt{\sin x}} d x \quad$［ङ．＇oct রा．＇गO］
जবং $\sin x=z$ ．ऊाइলে， $\cos x \mathrm{~d} x=\mathrm{dz}$ जবः
$\mathrm{I}=\int \frac{d z}{\sqrt{z}}=2 \sqrt{z}+c=2 \sqrt{\sin x}+c$

10(e) 《रि, $\mathrm{I}=\int \frac{d x}{x \sqrt{1+\ln x}}$
[\$.'ov]
এবং $1+\ln x=z$. তाइणে, $\frac{1}{x} \mathrm{~d} x$ এবং
$\mathrm{I}=\int \frac{d z}{\sqrt{z}}=2 \sqrt{z}+c=2 \sqrt{1+\ln x}+c$
11(a) $\int \frac{d x}{4 x^{2}+9}=\frac{1}{2} \int \frac{2 x d x}{(2 x)^{2}+3^{2}}$
$=\frac{1}{2} \frac{1}{3} \tan ^{-1} \frac{2 x}{3}+c=\frac{1}{6} \tan ^{-1} \frac{2 x}{3}+c$
11(b) $\int \frac{x d x}{x^{4}+1} d x$
[त्रा.'ob; ব.'J১]
$=\frac{1}{2} \int \frac{2 x d x}{1+\left(x^{2}\right)^{2}}=\frac{1}{2} \cdot \tan ^{-1}\left(x^{2}\right)+c$
11(c) ধরি, $\mathrm{I}=\int \frac{3 x^{2}}{1+x^{6}} d x$
[규.'os, চ.'ob]
এবং $x^{3}=z$. তाइजে, $3 x^{2} d x=\mathrm{dz}$ जবং

$$
\begin{aligned}
& \mathrm{I}=\int \frac{d z}{1+z^{2}}=\tan ^{-1} z+c \\
& \quad \int \frac{3 x^{2}}{1+\dot{x}^{6}} d x=\tan ^{-1}\left(x^{3}\right)+c
\end{aligned}
$$

11(d) ชরि, $\mathrm{I}=\int \frac{e^{x}}{1+e^{2 x}} d x$
[M.'○8]
जবং $e^{x}=\mathrm{z}$. তाइলে, $e^{x} \mathrm{~d} x=\mathrm{dz}$ जবং
$\mathrm{I}=\int \frac{d z}{1+z^{2}}=\tan ^{-1} z+c=\tan ^{-1}\left(e^{x}\right)+c$.
11(e) $\int \frac{5 e^{2 x^{x}}}{1+e^{4 x}} d x=\frac{5}{2} \int \frac{2 e^{2 x} d x}{1+\left(e^{2 x}\right)^{2}}$ [5.'०S,'SS]
$=\frac{5}{2} \tan ^{-1}\left(e^{2 x}\right)+c$

$=\int \frac{e^{x}}{e^{x}\left(e^{x}+e^{-x}\right)} d x=\int \frac{e^{x}}{\left(e^{x}\right)^{2} \mp 1} d x$
«রि, $e^{x}=z$. তाइणে, $e^{x} \mathrm{dr}=\mathrm{dz}$ बवः

$$
\begin{aligned}
\int \frac{1}{e^{x}+e^{-x}} d x & =\int \frac{d z}{1+z^{2}}=\tan ^{-1} z+c \\
& =\tan ^{-1}\left(e^{x}\right)+c
\end{aligned}
$$

12. (a) $\int \frac{d x}{x^{2}-x+1}$
$=\int \frac{d x}{\left(x-\frac{1}{2}\right)^{2}+1-\frac{1}{4}} \int \frac{d x}{\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}}$
$=\int \frac{d\left(x-\frac{1}{2}\right)}{\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(x-\frac{1}{2}\right)^{2}}\left[\because d\left(x-\frac{1}{2}\right)=d x\right]$
[ธ.'০৩]
$=\frac{1}{\sqrt{3} / 2} \tan ^{-1} \frac{x-\frac{1}{2}}{\sqrt{3} / 2}+c$.
$=\frac{2}{\sqrt{3}} \tan ^{-1} \frac{2 x-1}{\sqrt{3}}+c$
12(b) $\int \frac{d x}{\sqrt{x^{2}+4 x+13}}$
[द्रा.’०२]
$=\int \frac{d x}{\sqrt{(x+2)^{2}+13-4}}$
$=\int \frac{d(x+2)}{\sqrt{(x+2)^{2}+3^{2}}}$
$=\ln \left|\sqrt{(x+2)^{2}+3^{2}}+x+2\right|+c$
$=\ln \left|\sqrt{x^{2}+4 x+13}+x+2\right|+c$
13. (c) $\int \frac{d x}{\left(a^{2}+x^{2}\right)^{3 / 2}} \quad$ [ষ.'०२; প্র.उ.Я.'०৬]

ধরি, $x^{2}=a \tan \theta$. তাহলে $d x=a \sec ^{2} \theta d \theta$
$\therefore \int \frac{d x}{\left(a^{2}+x^{2}\right)^{3 / 2}}=\int \frac{a \sec ^{2} \theta d \theta}{\left(a^{2}+a^{2} \tan ^{2} \theta\right)^{3 / 2}}$
$=\int \frac{a \sec ^{2} \theta d \theta}{a^{3}\left(1+\tan ^{2} \theta\right)^{3 / 2}}=\int \frac{\sec ^{2} \theta d \theta}{a^{2} \sec ^{3} \theta}$
$=\frac{1}{a^{2}} \int \cos \theta d \theta=\frac{1}{a^{2}} \sin \theta+c \sqrt{x^{2}+a^{2}}$
$=\frac{x}{a^{2} \sqrt{x^{2}+a^{2}}}+c$
[চিত্র হতে $\tan \theta=\frac{x}{a}$ बবং $\sin \theta=\frac{x}{\sqrt{x^{2}+a^{2}}}$]
12(d) $\int x^{2} \sqrt{1-x^{2}} d x$
《डि, $x=\sin \theta$. তाহबে $d x=\cos \theta d \theta$

$$
\begin{aligned}
& \int x^{2} \sqrt{1-x^{2}} d x \\
= & \int \sin ^{2} \theta \sqrt{1-\sin ^{2} \theta} \cos \theta d \theta \\
= & \int \sin ^{2} \theta \cos ^{2} \theta d \theta=\int \frac{1}{4}(2 \sin \theta \cos \theta)^{2} d \theta \\
= & \int \frac{1}{4} \sin ^{2} 2 \theta d \theta=\int \frac{1}{8}(1-\cos 4 \theta) d \theta \\
= & \frac{1}{8}\left(\theta-\frac{\sin 4 \theta}{4}\right)+c=\frac{1}{8}\left(\theta-\frac{2 \sin 2 \theta \cos 2 \theta}{4}\right)+c \\
= & \frac{1}{8}\left(\theta-\frac{2 \sin \theta \cos \theta \cos 2 \theta}{2}\right)+c \\
= & \frac{1}{8}\left\{\theta-\frac{2 \sin \theta \sqrt{1-\sin ^{2} \theta}\left(1-2 \sin ^{2} \theta\right)}{2}\right\}+c \\
= & \frac{1}{8}\left\{\sin ^{-1} x-x \sqrt{1-x^{2}}\left(1-2 x^{2}\right)\right\}+c
\end{aligned}
$$

13.(a) $\int \frac{d x}{1-x^{2}}=\int \frac{d x}{1^{2}-x^{2}}$
$=\frac{1}{2.1} \ln \left|\frac{1+x}{1-x}\right|+c$
$=\frac{1}{2} \ln \left|\frac{1+x}{1-x}\right|+c$
13(b) $\int \frac{d x}{9-4 x^{2}}=\int \frac{d x}{3^{2}-(2 x)^{2}}$
$=\frac{1}{2} \int \frac{2 d x}{3^{2}-(2 x)^{2}}=\frac{1}{2} \cdot \frac{1}{2 \cdot 3} \ln \left|\frac{3+2 x}{3-2 x}\right|+c$
$=\frac{1}{12} \ln \left|\frac{3+2 x}{3-2 x}\right|+c$
13(c) ধরি, $\mathrm{I}=\int \frac{d x}{9 x^{2}-16}$
[সুত্র প্রয়োগ করে।]
[ব. '০৩]

$$
\begin{align*}
& =\int \frac{e^{x}}{\left(e^{x}\right)^{2}-1} d x=\int \frac{d\left(e^{x}\right)}{\left(e^{x}\right)^{2}-1^{2}} \\
& =\frac{1}{2.1} \ln \left|\frac{e^{x}-1}{e^{x}+1}\right|+c=\frac{1}{2} \ln \left|\frac{e^{x}-1}{e^{x}+1}\right|+c \tag{मि.'১s}
\end{align*}
$$

14.(a) $\int \frac{d x}{\sqrt{25-x^{2}}}=\int \frac{d x}{\sqrt{5^{2}-x^{2}}}$ [मि.'১O; চ.'১৩]

$$
=\sin ^{-1} \frac{x}{5} * c
$$

14(b) $\int \frac{d x}{\sqrt{2-3 x^{2}}}$
[য.'০৫; жू.'০৭,'১০,'১8; ঢা. ,ব. '১২; সি.'১৩]
$=\frac{1}{\sqrt{3}} \int \frac{\sqrt{3} d x}{\sqrt{(\sqrt{2})^{2}-(\sqrt{3} x)^{2}}}=\frac{1}{\sqrt{3}} \sin ^{-1} \frac{\sqrt{3} x}{\sqrt{2}}+c$
$14(c) \int \frac{d x}{\sqrt{5-4 x^{2}}}$
[ব.'০৬,'০১; রা.'০৮;णা.'০১; চ. 'য.'১১]
$=\int \frac{d x}{\sqrt{(\sqrt{5})^{2}-(2 x)^{2}}}$
ধরি, $2 x=z$. তাহ大ে $2 d x=d z$

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{5-4 x^{2}}}=\frac{1}{2} \int \frac{d z}{\sqrt{(\sqrt{5})^{2}-z^{2}}} \\
= & \frac{1}{2} \sin ^{-1} \frac{z}{\sqrt{5}}+c=\frac{1}{2} \sin ^{-1} \frac{2 x}{\sqrt{5}}+c
\end{aligned}
$$

14(d) $\int \frac{d x}{\sqrt{25-16 x^{2}}}$
$=\frac{1}{4} \int \frac{d(4 x)}{\sqrt{5^{2}-(4 x)^{2}}}$
$[\quad d(4 x)=4 d x]$
$=\frac{1}{4} \sin ^{-1} \frac{4 x}{5}+c$.
14(e) $\int \frac{\sin x}{\sqrt{5-\cos ^{2} x}} d x$
$=-\int \frac{-\sin x d x}{\sqrt{(\sqrt{5})^{2}-(\cos x)^{2}}}=-\cos ^{-1}\left(\frac{\cos x}{\sqrt{5}}\right)+c$
$14(\mathrm{f})$ ধরি, $\mathrm{I}=\int \frac{x^{2}}{\sqrt{1-x^{6}}} d x$
[ব.'০৮; য.'১১;দি.'১২]
এবং $x^{3}=z$. তাহলে, $3 x^{2} \mathrm{~d} x=d z$
$\mathrm{I}=\int \frac{x^{2} d x}{\sqrt{1-\left(x^{3}\right)^{2}}}=\frac{1}{3} \int \frac{d z}{\sqrt{1-z^{2}}}=\frac{1}{3} \sin ^{-1} z+c$
$=\frac{1}{3} \sin ^{-1} x^{3}+c$
14.(g) $\int \frac{d x}{\sqrt{2 a x-x^{2}}}$
[य.'०®]
$=\int \frac{d x}{\sqrt{a^{2}-\left(x^{2}-2 a x+a^{2}\right)}}$
$=\int \frac{(1-0) d x}{\sqrt{a^{2}-(x-a)^{2}}}=\sin ^{-1}\left(\frac{x-a-\cdots}{a}\right)+c$

14(h) ধরি, $\mathrm{I}=\int \sqrt{1-9 x^{2}} d x$
এবং $3 x=z$ তাহলে, $3 d x=d z$ এবং

$$
\begin{aligned}
\mathrm{I} & =\int \sqrt{1-(3 x)^{2}} d x=\frac{1}{3} \int \sqrt{1-z^{2}} d z \\
& =\frac{1}{3}\left[\frac{z \sqrt{1-z^{2}}}{2}+\frac{1}{2} \sin ^{-1} z\right]+c \\
& =\frac{1}{3}\left[\frac{3 x \sqrt{1-(3 x)^{2}}}{2}+\frac{1}{2} \sin ^{-1}(3 x)\right]+c \\
& =\frac{1}{6}\left[3 x \sqrt{1-9 x^{2}}+\sin ^{-1}(3 x)\right]+c
\end{aligned}
$$

15. $\int \frac{3 x-2}{\sqrt{3+2 x-4 x^{2}}} d x$
$=\int \frac{-\frac{3}{8}(-8 x+2)+\frac{3}{4}-2}{\sqrt{3+2 x-4 x^{2}}} d x$
$=-\frac{3}{8} \int \frac{(-8 x+2) d x}{\sqrt{3+2 x-4 x^{2}}}$
$-\frac{5}{4} \int \frac{d x}{\sqrt{-\left\{(2 x)^{2}-2.2 x \cdot \frac{1}{2}+\left(\frac{1}{2}\right)^{2}\right\}+3+\frac{1}{4}}}$
$=-\frac{3}{8} \int \frac{d\left(3+2 x-4 x^{2}\right)}{\sqrt{3+2 x-4 x^{2}}}$

$=-\frac{3}{8} \cdot 2 \sqrt{3+2 x-4 x^{2}}$
$-\frac{5}{4} \int \frac{\frac{1}{2} d\left(2 x-\frac{1}{2}\right)}{\sqrt{\left(\frac{\sqrt{13}}{2}\right)^{2}+\left(2 x-\frac{1}{2}\right)^{2}}}$
$=-\frac{3}{4} \sqrt{3+2 x-4 x^{2}}-\frac{5}{8} \sin ^{-1} \frac{2 x-\frac{1}{2}}{\frac{\sqrt{13}}{2}}+\mathrm{c}$
$=-\frac{3}{4} \sqrt{3+2 x-4 x^{2}}-\frac{5}{8} \sin ^{-1} \frac{4 x-1}{\sqrt{13}}+\mathrm{c}$
16.(a) $\int \frac{x+25}{x-25} d x$
[भि.'०9]
$=\int \frac{x-25+50}{x-25} d x=\int\left(\frac{x-25}{x-25}+\frac{50}{x-25}\right) d x$
$=\int\left(1+\frac{50}{x-25}\right) d x=\int d x+50 \int \frac{1}{x-25} d x$
$=x+50 \ln |x-25|+c$
16(b) $\int \frac{x^{2} d x}{x^{2}-4} \quad$ [Hि.'ob; ব.'○8; রा.'○8,'১s]
$=\int \frac{x^{2}-4+4}{x^{2}-4} d x=\int\left(\frac{x^{2}-4}{x^{2}-4}+\frac{4}{x^{2}-4}\right) d x$
$=\int\left(1+\frac{4}{x^{2}-2^{2}}\right) d x$
$=x+\frac{4}{2.2} \ln \left|\frac{x-2}{x+2}\right|+c=x+\ln \left|\frac{x-2}{x+2}\right|+c$
16(c) $\int \frac{x^{2}-1}{x^{2}-4} d x$
[বू.' '০১; সি.'০৫,’১২; য.'০১; ঢা.'১১; ব.’১৩] $=\int \frac{x^{2}-4+3}{x^{2}-4} d x=\int\left(\frac{x^{2}-4}{x^{2}-4}+\frac{3}{x^{2}-4}\right) d x$
$=\int\left(1+\frac{3}{x^{2}-2^{2}}\right) d x=x+\frac{3}{2.2} \ln \left|\frac{x-2}{x+2}\right|+c$
$=x+\frac{3}{4} \ln \left|\frac{x-2}{x+2}\right|+c$
16(d) $\int \frac{x d x}{(1-x)^{2}}=-\int \frac{1-x-1}{(1-x)^{2}} d x$
$=-\int\left\{\frac{1-x}{(1-x)^{2}}-\frac{1}{(1-x)^{2}}\right\} d x$
$=-\int \frac{1}{1-x} d x+\int \frac{1}{(1-x)^{2}} d x$
$=-\int \frac{-d(1-x)}{1-x}-\int \frac{d(1-x)}{(1-x)^{2}}$
$=\ln |1-x|-\left(-\frac{1}{1-x}\right)+c$
$=\ln |1-x|+\frac{1}{1-x}+c$
17(a) $\int \sqrt{\frac{5-x}{5+x}} d x=\int \frac{5-x}{\sqrt{5^{2}-x^{2}}} d x$
$=\int \frac{5}{\sqrt{5^{2}-x^{2}}} d x-\int \frac{x}{\sqrt{25-x^{2}}} d x$
$=\int \frac{5}{\sqrt{5^{2}-x^{2}}} d x+\frac{1}{2} \int \frac{d\left(25-x^{2}\right)}{\sqrt{25-x^{2}}}$
$=5 \sin ^{-1} \frac{x}{5}+\frac{1}{2} .2 \sqrt{25-x^{2}}+c$
$=5 \sin ^{-1} \frac{x}{5}+\sqrt{25-x^{2}}+c$
17(b) $\int x \sqrt{\frac{1-x}{1+x}} d x=\int x \frac{\sqrt{1-x} \times \sqrt{1-x}}{\sqrt{1+x} \times \sqrt{1-x}} d x$
$=\int x \frac{1-x}{\sqrt{1-x^{2}}} d x=\int \frac{x-x^{2}}{\sqrt{1-x^{2}}} d x$
$=\int \frac{\left(1-x^{2}\right)-\frac{1}{2}(-2 x)-1}{\sqrt{1-x^{2}}} d x$
$=\int \frac{1-x^{2}}{\sqrt{1-x^{2}}} d x-\frac{1}{2} \int \frac{(-2 x)}{\sqrt{1-x^{2}}} d x-\int \frac{1}{\sqrt{1-x^{2}}} d x$
$=\int \sqrt{1-x^{2}} d x-\frac{1}{2} \cdot 2 \sqrt{1-x^{2}}-\sin ^{-1} x$
$=\frac{x \sqrt{1-x^{2}}}{2}+\frac{1}{2} \sin ^{-1} x-\sqrt{1-x^{2}}-\sin ^{-1} x+\mathrm{c}$
$=\frac{x \sqrt{1-x^{2}}}{2}-\frac{1}{2} \sin ^{-1} x-\sqrt{1-x^{2}}+\mathrm{c}$ (Ans.)
निय्रম 8 $\int \frac{1}{g(x) \sqrt{\varphi(x)}} d x$ आाকाরের बन्ग,
(a) $g(x) \otimes \varphi(x)$ উভয়ে এबघ্যাত इলে, $\varphi(x)=z^{2}$ ঋप্তত হर्ग।
(b) $g(x)$ এৰघাত ও $\varphi(x)$ पিघাত হनে, $g(x)=$ $\frac{1}{z}$ ধরत্ত হয়।
(c) $g(x)$ प्विघाত ও $\varphi(x)$ এयघाত হनে, $\varphi(x)=$ z^{2} ধরচে एয়।
 ধর্রতে হয়।
(e) $\int \frac{x}{g(x) \sqrt{\varphi(x)}} d x$ এবং $g(x)$ Ө $\varphi(x)$ উভ্তে ফিঘাত হলে, $\varphi(x)=z^{2}$ ধর্রতে হয়।
18.(a) ধরি, $\mathrm{I}=\int \frac{d x}{(x-3) \sqrt{x+1}}$ এবং
[ঢা.’১০; ব.’১৩]
$x+1=z^{2}$. তাহচে $d x=2 z d z$ এবং
$\mathrm{I}=\int \frac{2 z d z}{\left(z^{2}-1-3\right) \sqrt{z^{2}}}$
$\Rightarrow I=\int \frac{2 z d z}{\left(z^{2}-4\right) z}=2 \int \frac{d z}{z^{2}-2^{2}}$
$=2 . \frac{1}{2} \ln \left|\frac{z-2}{z+2}\right|+c=\ln \left|\frac{\sqrt{x+1}-2}{\sqrt{x+1}+2}\right|+c$
18(b) $\int \frac{d x}{(x-1) \sqrt{x^{2}-2 x}}=\int \frac{d(x-1)}{(x-1) \sqrt{(x-1)^{2}-1}}$ $=\sec ^{-1}(x-1)+c$
निয়ম : (a) यमि কোন ब্যাগब $\int \frac{a+b x^{l}}{p+q x^{m}} d x$ जाকার্রে थাকে, যেখানে \boldsymbol{l} Ө \boldsymbol{m} উভয়ে ভ্মাঁশ এবए তাদের হরের্ন ন.সা.গু n इয়, उबে $x=z^{n}$ थর্রতে इয় ।
(b) $\int \frac{d x}{x\left(a+b x^{n}\right)}$ आাকানের যোগজ্রে জন্য, $x^{n}=\frac{1}{z}$ ষরতে হয় ।
(c) $\int \frac{d x}{x \sqrt{a+b x^{n}}}$ आাকারের যোগজ্জে জন্য, $x^{n}=\frac{1}{z^{2}}$ ধরতে হয় ।
(d) $\int \frac{d x}{x^{m}(a+b x)^{n}}$ आাाরেন্র যোগজ্মে घন্য, $a+b x=z x$ ধরতে হয় ।
(e) $\int \frac{d x}{(x-a)^{m}(x-b)^{n}}$ आাকারের যোগब্ের बन्য, $z=\frac{x-b}{x-a}$ ধরুডে হয় ।
19.(a) $\int \frac{\sqrt{x}}{1+\sqrt[3]{x}} d x=\int \frac{x^{1 / 2}}{1+x^{1 / 3}} d x$
[চ.'००]
ধরি, $x=z^{6}$. তাহনে, $d x=6 z^{5} d z$
$\therefore \int \frac{\sqrt{x}}{1+\sqrt[3]{x}} d x=\int \frac{\sqrt{z^{6}} 6 z^{5} d z}{1+\sqrt[3]{z^{6}}}$
$=\int \frac{z^{3} \cdot 6 z^{5} d z}{1+z^{2}}=6 \int \frac{z^{8} d z}{1+z^{2}}$
$=6 \int \frac{1}{z^{2}+1}\left\{z^{6}\left(z^{2}+1\right)-z^{4}\left(z^{2}+1\right)+\right.$

$$
\left.z^{2}\left(z^{2}+1\right)-\left(z^{2}+1\right)+1\right\} d z
$$

$=6 \int\left(z^{6}-z^{4}+z^{2}-1+\frac{1}{1+z^{2}}\right) d z$
$=6\left(\frac{z^{7}}{7}-\frac{z^{5}}{5}+\frac{z^{3}}{3}-z+\tan ^{-1} z\right)+c$
$=\frac{6}{7} x^{\frac{7}{6}}-\frac{6}{5} x^{\frac{5}{6}}+\frac{6}{3} x^{\frac{3}{6}}-6 x^{\frac{1}{6}}+\tan ^{-1} x^{\frac{1}{6}}+c$
19 (b) ধরি, $\mathrm{I}=\int \frac{d x}{x\left(4+5 x^{20}\right)}$ এবং $x^{20}=\frac{1}{z}$
তाइनে, $20 x^{19} d x=-\frac{d z}{z^{2}} \Rightarrow x^{19} d x=-\frac{d z}{20 z^{2}}$ www.boighar.com
এবং $\mathrm{I}=\int \frac{x^{19} d x}{x^{20}\left(4+5 x^{20}\right)}=\int \frac{\frac{-d z}{20 z^{2}}}{\frac{1}{z}\left(4+5 \frac{1}{z}\right)}$
$=-\frac{1}{20} \int \frac{d z}{4 z+5}=-\frac{1}{20} \cdot \frac{1}{4} \int \frac{d(4 z+5)}{4 z+5}$
$=-\frac{1}{80} \ln |4 z+5|+c=-\frac{1}{80} \ln \left|\frac{4}{x^{20}}+5\right|+c$
19. (c) ধরি, $\mathrm{I}=\int \frac{d x}{x \sqrt{x^{4}-1}} \quad$ [क.'o১; রा.' ' ১] $] ~$

এবং $x^{4}=\frac{1}{z^{2}}$. তাহলে, $4 x^{3} d x=-\frac{2 d z}{z^{3}}$ এবং
$\mathrm{I}=\int \frac{x^{3} d x}{x^{4} \sqrt{x^{4}-1}}=\int \frac{-\frac{d z}{2 z^{3}}}{\frac{1}{z^{2}} \sqrt{\frac{1}{z^{2}}-1}}$

$$
\begin{aligned}
& =-\frac{1}{2} \int \frac{d z}{\sqrt{1-z^{2}}}=\frac{1}{2} \cos ^{-1} z+c \\
& =\frac{1}{2} \cos ^{-1}\left(\frac{1}{x^{2}}\right)+c=\frac{1}{2} \sec ^{-1}\left(x^{2}\right)+c
\end{aligned}
$$

$$
\text { (d) 《র্রি, } \mathrm{I}=\int \frac{d x}{(x-1)^{2}(x-2)^{3}} \text { এবং } z=\frac{x-1}{x-2}
$$

$$
\Rightarrow z x-2 z=x-1 \Rightarrow x(1-z)=1-2 z
$$

$$
\Rightarrow \mathrm{x}=\frac{1-2 z}{1-z} \Rightarrow \mathrm{x}-2=\frac{1-2 z}{1-z}-2
$$

$$
\Rightarrow x-2=\frac{1-2 z-2+2 z}{1-z}=-\frac{1}{1-z}
$$

$$
\Rightarrow d x=-\frac{d z}{(1-z)^{2}}
$$

$$
\therefore \mathrm{I}=\int \frac{d x}{\left(\frac{x-1}{x-2}\right)^{2}(x-2)^{5}}=\int \frac{-\frac{d z}{(1-z)^{2}}}{z^{2}: \frac{-1}{(1-z)^{5}}}
$$

$$
=\int \frac{(1-z)^{3} d z}{z^{2}}=\int \frac{\left(1-3 z+3 z^{2}-z^{3}\right) d z}{z^{2}}
$$

$$
=\int\left(\frac{1}{z^{2}}-3 \frac{1}{z}+3-z\right) d z
$$

$$
=-\frac{1}{z}-3 \ln |z|+3 z-\frac{z^{2}}{2}+c
$$

$$
=-\frac{x-2}{x-1}-3 \ln \left|\frac{x-1}{x-2}\right|+3\left(\frac{x-1}{x-2}\right)
$$

$$
-\frac{1}{2}\left(\frac{x-1}{x-2}\right)^{2}
$$

20. (a) $\int \frac{x^{2}+1}{x^{4}+1} d x=\int \frac{x^{2}\left(1+\frac{1}{x^{2}}\right)}{x^{2}\left(x^{2}+\frac{1}{x^{2}}\right)} d x$
$=\int \frac{1+\frac{1}{x^{2}}}{\left(x-\frac{1}{x}\right)^{2}+2} d x=\int \frac{d\left(x-\frac{1}{x}\right)}{\left(x-\frac{1}{x}\right)^{2}+(\sqrt{2})^{2}}$
$=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{x-\frac{1}{x}}{\sqrt{2}}+c=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{x^{2}-1}{\sqrt{2} x}+c$

20(b) $\int \frac{\bar{x}^{2}-1}{x^{4}+1} d x=\int \frac{x^{2}\left(1-\frac{1}{x^{2}}\right)}{x^{2}\left(x^{2}+\frac{1}{x^{2}}\right)} d x$
$=\int \frac{1-\frac{1}{x^{2}}}{\left(x+\frac{1}{x}\right)^{2}-2} d x=\int \frac{d\left(x+\frac{1}{x}\right)}{\left(x+\frac{1}{x}\right)^{2}-(\sqrt{2})^{2}}$
$=\frac{1}{2 \sqrt{2}} \ln \left|\frac{x+\frac{1}{x}-\sqrt{2}}{x+\frac{1}{x}+\sqrt{2}}\right|+c$
$=\frac{1}{2 \sqrt{2}} \ln \left|\frac{x^{2}+1-\sqrt{2} x}{x^{2}+1+\sqrt{2} x}\right|+c$
(c) $\int \frac{x^{2} d x}{x^{4}+a^{4}}=\frac{1}{2} \int \frac{\left(x^{2}+a^{2}\right)+\left(x^{2}-a^{2}\right)}{x^{4}+a^{4}} d x$
$=\frac{1}{2}\left[\int \frac{x^{2}+a^{2}}{x^{4}+a^{4}} d x+\int \frac{x^{2}-a^{2}}{x^{4}+a^{4}} d x\right]$
$=\frac{1}{2}\left[\int \frac{x^{2}\left(1+\frac{a^{2}}{x^{2}}\right)}{x^{2}\left(x^{2}+\frac{a^{4}}{x^{2}}\right)} d x+\int \frac{x^{2}\left(1-\frac{a^{2}}{x^{2}}\right)}{x^{2}\left(x^{2}+\frac{a^{4}}{x^{2}}\right)} d x\right]$
$=\frac{1}{2}\left[\int \frac{d\left(x-\frac{a^{2}}{x}\right)}{\left(x-\frac{a^{2}}{x}\right)^{2}+(\sqrt{2} \cdot a)^{2}}+\right.$ $\left.\int \frac{d\left(x+\frac{a^{2}}{x}\right)}{\left(x+\frac{a^{2}}{x}\right)^{2}-(\sqrt{2} \cdot \dot{a})^{2}}\right]$
$=\frac{1}{2}\left[\frac{1}{\sqrt{2} a} \tan ^{-1} \frac{x-\frac{a^{2}}{x}}{\sqrt{2} a}+\right.$
$\frac{1}{2 . \sqrt{2} a} \ln \left|\frac{x+\frac{a^{2}}{x}-\sqrt{2} a}{x+\frac{a^{2}}{x}+\sqrt{2} a}\right|+c$
$=\frac{\mathcal{F}^{\prime \prime}}{2 \sqrt{2} a}\left[\tan ^{-1} \frac{x^{2}-a^{2}}{\sqrt{2} a x}+\right.$

$$
\frac{1}{2} \ln \left|\frac{x^{2}+a^{2}-\sqrt{2} a x}{x^{2}+a^{2}+\sqrt{2} a x}\right|+c
$$

21(a) $\int \sin ^{2} x \cos ^{2} x d x \quad$ [য. ’ob; রা., ঢा.'১৩]
$=\int \frac{1}{4}(2 \sin x \cos x) d x=\frac{1}{4} \int \sin ^{2} 2 x d x$
$=\frac{1}{8} \int(1-\cos 4 x) d x=\frac{1}{8}\left(x-\frac{1}{4} \sin 4 x\right)+c$
21(b) ধরি, $\mathrm{I}=\int \sin ^{3} x \cos ^{3} x d x$
[य.’०৬]
$=\int \sin ^{3} x\left(1-\sin ^{2} x\right) \cos x d x$ এবং $\sin x \doteq z$.
তাহলে, $\cos x \mathrm{dx}=\mathrm{dz}$ এবং
$\mathrm{I}=\int z^{3}\left(1-z^{2}\right) d z=\int\left(z^{3}-z^{5}\right) d z$
$=\frac{1}{4} z^{4}-\frac{1}{6} z^{6}+c=\frac{1}{4} \sin ^{4} x-\frac{1}{6} \sin ^{6} x+c$
21(c) ধরি, $\mathrm{I}=\int \sin ^{3} x \cos ^{4} x d x$
[রা.'০১]
$=\int\left(1-\cos ^{2} x\right) \cos ^{4} x \sin x d x$ এবং $\cos \mathrm{x}=\mathrm{z}$
जাহলে, $-\sin \mathrm{xdx}=\mathrm{dz}$ এবং
$\mathrm{I}=-\int\left(1-z^{2}\right) z^{4} d z=\int\left(z^{6}-z^{4}\right) d z$ $=\frac{1}{7} z^{7}-\frac{1}{5} z^{5}+c=\frac{1}{7} \cos ^{7} x-\frac{1}{5} \cos ^{5} x+c$
$21(\mathbf{d})$ ধরি, $\mathrm{I}=\int \sin ^{4} x \cos ^{4} x d x$ $\sin ^{4} x \cos ^{4} x=\frac{1}{16}(2 \sin x \cos x)^{4}$

$$
=\frac{1}{16} \sin ^{4} 2 x=\frac{1}{16} \cdot\left\{\frac{1}{2}(1-\cos 4 x)\right\}^{2}
$$

$$
=\frac{1}{64}\left(1-2 \cos 4 x+\cos ^{2} 4 x\right)
$$

$$
=\frac{1}{64}\left\{1-2 \cos 4 x+\frac{1}{2}(1+\cos 8 x)\right\}
$$

$$
=\frac{1}{128}(3-4 \cos 4 x+\cos 8 x)
$$

$$
\therefore \mathrm{I}=\int \frac{1}{128}(3-4 \cos 4 x+\cos 8 x) d x
$$

$$
=\frac{1}{128}\left(3 x-4 \cdot \frac{1}{4} \sin 4 x+\frac{1}{8} \sin 8 x\right)+c
$$

$=\frac{1}{128}\left(3 x-\sin 4 x+\frac{1}{8} \sin 8 x\right)+c$
21(e) $\int \sin ^{2} x \cos 2 x d x$
[চ.'০১; य.'০৫; жू.'০৭; সि.’১১]
$=\int \frac{1}{2}(1-\cos 2 x) \cos 2 x d x$
$=\frac{1}{2} \int\left(\cos 2 x-\cos ^{2} 2 x\right) d x$
$=\frac{1}{2} \int\left\{\cos 2 x-\frac{1}{2}(1+\cos 4 x)\right\} d x$
$=\frac{1}{2}\left\{\frac{1}{2} \sin 2 x-\frac{1}{2}\left(x+\frac{1}{4} \sin 4 x\right)\right\}+c$
$\left.=\frac{1}{4}\left(\sin 2 x-x-\frac{1}{4} \sin 4 x\right)\right\}+c$
21(f) $\int \sin ^{2} x \cos 2 x d x$ [চ.'०২; य.'০৫; दू.'১S]
$=\int \frac{1}{2}(1-\cos 2 x) \cos 2 x d x$
$=\frac{1}{2} \int\left(\cos 2 x-\cos ^{2} 2 x\right) d x$
$=\frac{1}{2} \int\left\{\cos 2 x-\frac{1}{2}(1+\cos 4 x)\right\} d x$
$=\frac{1}{2}\left\{\frac{1}{2} \sin 2 x-\frac{1}{2}\left(x+\frac{1}{4} \sin 4 x\right)\right\}+c$
$=\frac{1}{4}\left(\sin 2 x-x-\frac{1}{4} \sin 4 x\right)+c$
22. (a) $\int \tan ^{2} x d x \quad$ [ण.'०৫,’०৭]
$=\int\left(\sec ^{2} x-1\right) d x=\tan x-x+c$
22(b) ধরি, $\mathrm{I}=\int \frac{\tan ^{2}(\ln x)}{x} d x$
[ব.’০২]
এবং $\ln \mathrm{x}=\mathrm{z} \quad$ ঢाइলে, $\frac{1}{x} d x=d z$ এবং
$\mathrm{I}=\int \tan ^{2} z d z=\int\left(\sec ^{2} z-1\right) d z$
$=\tan z-z+c=\tan (\ln x)-\ln x+c$
22(c) $\int \frac{d x}{\sin x \cos ^{3} x}=\int \frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos ^{3} x} d x$

$$
\begin{aligned}
& =\int\left(\tan x \sec ^{2} x+\frac{2}{2 \sin x \cos x}\right) d x \\
& =\int \tan x \sec ^{2} x d x+2 \int \frac{d x}{\sin 2 x} \\
& =\int \tan x d(\tan x)+\int \sec 2 x d(2 x) \\
& =\frac{1}{2} \tan ^{2} x+\ln \left|\tan \frac{2 x}{2}\right|+c \\
& =\frac{1}{2} \tan ^{2} x+\ln |\tan x|+c
\end{aligned}
$$

23. $\int \frac{1-\tan x}{1+\tan x} d x=\int \frac{\cos x-\sin x}{\cos x+\sin x} d x$
$=\int \frac{d(\sin x+\cos x)}{\sin x+\cos x}=\ln |\sin x+\cos x|+c$
24. (a) ধরি, $\mathrm{I}=\int \frac{\sin 4 x}{\sin ^{4} x+\cos ^{4} x} d x$ बবং $\mathrm{z}=\sin ^{4} x+\cos ^{4} x$ তাহনে, $\mathrm{d} \mathrm{z}=\left(4 \sin ^{3} x \cos x-4 \cos ^{3} x \sin x\right) \mathrm{dx}$ $=4 \sin x \cos x\left(\sin ^{2}-\cos ^{2} x\right) \mathrm{d} \mathrm{x}$ $=-2 \sin 2 x \cos 2 x \mathrm{dx}=-\sin 4 x \mathrm{dx}$ এবং
$\mathrm{I}=\int \frac{-d z}{z}=-\ln |z|+c$

$$
=-\ln \left|\sin ^{4} x+\cos ^{4} x\right|+c
$$

24(b) ধরি, $\mathrm{I}=\int \frac{d x}{1+\cos ^{2} x}$
[রা.'০৬]
$=\int \frac{\sec ^{2} x d x}{\sec ^{2} x\left(1+\cos ^{2} x\right)}=\int \frac{\sec ^{2} x d x}{\sec ^{2} x+1}$
$=\int \frac{\sec ^{2} x d x}{1+\tan ^{2} x+1}$ এবং $z=\tan x \Rightarrow d z=\sec ^{2} x d x$
$\therefore \mathrm{I}=\int \frac{d z}{(\sqrt{2})^{2}+z^{2}}=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{z}{\sqrt{2}}\right)+c$ $=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\tan x}{\sqrt{2}}\right)+c$

24(c) $\int \frac{1-\cos 2 x}{1+\cos 2 x} d x$
[य.'o৩]
$=\int \frac{2 \sin ^{2} x}{2 \cos ^{2} x} d x=\int \tan ^{2} x d x$
$=\int\left(\sec ^{2} x-1\right) d x=\tan x-x+c$
24(d) $\int \frac{1-\cos 5 x}{1+\cos 5 x}$
[য.'০১; সি.'০২]
$=\int \frac{2 \sin ^{2} \frac{5 x}{2}}{2 \cos ^{2} \frac{5 x}{2}} d x=\int \tan ^{2} \frac{5 x}{2} d x$
$=\int\left(\sec ^{2} \frac{5 x}{2}-1\right) d x=\frac{2}{5} \tan \frac{5 x}{2}-x+c$
25(a) ধরি, $\mathrm{I}=\int \frac{d x}{\left(e^{x}-1\right)^{2}}=\int \frac{d x}{\left\{e^{x}\left(1-e^{-x}\right)\right\}^{2}}$
$=\int \frac{d x}{e^{2 x}\left(1-e^{-x}\right)^{2}}=\int \frac{e^{-x} \cdot e^{-x} d x}{\left(1-e^{-x}\right)^{2}}$ এবং
$e^{-x}=z$. তাহলে $-e^{-x} d x=d z$ এবং
$\mathrm{I}=-\int \frac{z d z}{(1-z)^{2}}=\int \frac{(1-z)-1}{(1-z)^{2}} d z$
$=\int\left\{\frac{1}{1-z}-\frac{1}{(1-z)^{2}}\right\} d z$
$=-\int\left\{\frac{1}{1-z}-\frac{1}{(1-z)^{2}}\right\} d(1-z)$
$=-\left\{\ln |1-z|+\frac{1}{1-z}\right\}+c$
$=-\ln \left|1-e^{-x}\right|-\frac{1}{1-e^{-x}}+c$
25(b) $\int \frac{\sin x d x}{\sin (x+a)}=\int \frac{\sin x d x}{\sin x \cos a+\cos x \sin a}$
ধরি, $\sin x=l(\sin x \cos a+\cos x \sin a)+$
$m(\cos x \cos a-\sin x \sin a)+n$
$\Rightarrow \sin x=(l \cos a-m \sin a) \sin x+(l \sin a$ m cosa) $\cos x+n$
উড্যপক্ষে $\sin x, \cos x$ ও ধ্রুবপদ সমীকৃত করে পাই,
$\mathrm{n}=0, l \sin \mathrm{a}+\mathrm{m} \cos \mathrm{a}=0 \Rightarrow \mathrm{~m}=-\frac{l \sin a}{\cos a}$
এবং $l \cos a-m \sin a=1$
$\Rightarrow l \cos a+\frac{l \sin a}{\cos a} \sin \mathrm{a}=1$
$\Rightarrow l\left(\sin ^{2} a+\cos ^{2} a\right)=\cos a \Rightarrow l=\cos a$
$\mathrm{m}=-\frac{\cos a \sin a}{\cos a}=-\sin a$
$\int \frac{\sin x d x}{\sin (x+a)}=\int \frac{\cos a \sin (x+a) d x}{\sin (x+a)}-$
$\int \frac{\sin a(\cos x \cos a-\sin x \sin a)}{\sin x \cos a+\sin a \cos x} d x$
$=\cos a \int d x-\sin a \ln |\sin (x+a)|$
$=x \cos a-\sin a \ln |\sin (x+a)|+c$
25(c) $\int(\sqrt{\tan x}+\sqrt{\cot x}) d x$
$=\int\left(\frac{\sqrt{\sin x}}{\sqrt{\cos x}}+\frac{\sqrt{\cos x}}{\sqrt{\sin x}}\right) d x$
$=\int \frac{\sin x+\cos x}{\sqrt{\sin x \cos x}} d x=\sqrt{2} \int \frac{\sin x+\cos x}{\sqrt{2 \sin x \cos x}} d x$
$=\sqrt{2} \int \frac{\sin x+\cos x}{\sqrt{1-(\sin x-\cos x)^{2}}} d x$
$=\sqrt{2} \int \frac{d(\sin x-\cos x)}{\sqrt{1-(\sin x-\cos x)^{2}}}$
$=\sqrt{2} \sin ^{-1}(\sin x-\cos x)+c$
অতিরিক্র প্রশ্ন (সমাধানসহ)
নিচেন্ন यোগজগুলি নির্ণয় কব্গ:
1(a) $\int\left(e^{\frac{x}{2}}+e^{\frac{x}{2}}\right) d x=\frac{e^{\frac{x}{2}}}{\frac{1}{2}}+\frac{e^{\frac{x}{2}}}{-\frac{1}{2}}+c$
$=2\left(e^{\frac{x}{2}}-e^{\frac{x}{2}}\right)+c$
1(b) $\int a^{4 x} d x=\frac{a^{4 x}}{\ln a} \frac{1}{4}+c=\frac{a^{4 x}}{4 \ln a}+c$
2.(a) ধরি , $\mathrm{I}=\int(2 x+3) \sqrt{x^{2}+3 x} d x$ এবং $x^{2}+3 x=z$. ঢाइलে $\left.2 x+3\right) d x=\mathrm{dz}$
$\therefore \mathrm{I}=\int z^{\frac{1}{2}} d z=\frac{z^{\frac{1}{2}+1}}{\frac{1}{2}+1}+c=\frac{2}{3} z^{3 / 2}+c$

$$
=\frac{2}{3}\left(x^{2}+3 x\right)^{3 / 2}+c
$$

2(b) $\int x^{2} \cos x^{3} d x=\frac{1}{3} \int \cos \left(x^{3}\right)\left(3 x^{2} d x\right)$
$=\frac{1}{3} \sin x^{3}+c$
2(c) $\int \frac{\left(1+\tan \frac{3 x}{2}\right)^{2} d x}{1+\sin 3 x}$
$=\int \frac{\left(1+\tan \frac{3 x}{2}\right)^{2} d x}{1+\frac{2 \tan (3 x / 2)}{1+\tan ^{2}(3 x \backslash 2)}}$
$=\int \frac{\{1+\tan (3 x / 2)\}^{2}\left\{1+\tan ^{2}(3 x \backslash 2)\right\} d x}{1+\tan ^{2}(3 x \backslash 2)+2 \tan (3 x / 2)}$
$=\int \frac{\{1+\tan (3 x / 2)\}^{2}\left\{1+\tan ^{2}(3 x \backslash 2)\right\} d x}{\{1+\tan (3 x / 2)\}^{2}}$
$=\int\left\{1+\tan ^{2}(3 x \backslash 2)\right\} d x=\int \sec ^{2}(3 x \backslash 2) d x$
$=\frac{2}{3} \tan \frac{3 x}{2}+c$
3. $\int \frac{2 x \sin ^{-1} x^{2}}{\sqrt{1-x^{4}}} d x$

ধরি, $\sin ^{-1} x^{2}=z$

$$
\begin{aligned}
& \frac{1}{\sqrt{1-\left(x^{2}\right)^{2}}} \cdot 2 x d x=d z \\
& \Rightarrow \frac{2 x d x}{\sqrt{1-x^{4}}}=d z \\
& \int \frac{2 x \sin ^{-1} x^{2}}{\sqrt{1-x^{4}}} d x=\int z d z \\
& \quad=\frac{z^{2}}{2}+c=\frac{1}{2}\left(\sin ^{-1} x^{2}\right)^{2}+c \text { (Ans.) }
\end{aligned}
$$

4. $\int \frac{1}{x(\ln x)^{2}} d x=\int(\ln x)^{-2} d(\ln x)$
$=\frac{(\ln x)^{-2+1}}{-2+1}+c=-\frac{1}{\ln x}+c$

5(a) $\int \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}} d x=\int \sin ^{-1} x d\left(\sin ^{-1} x\right)$

$$
=\frac{\left(\sin ^{-1} x\right)^{2}}{2}+c
$$

5(b) $\int \frac{1+\tan ^{2} x}{(1+\tan x)^{2}} d x$
[প্র.উ.প.'১৩]
$=\int \frac{\sec ^{2} x}{(1+\tan x)^{2}} d x$
$=\int(1+\tan x)^{-2} d(1+\tan x)$
$=\frac{(1+\tan x)^{-2+1}}{-2+1}+c=-\frac{1}{1+\tan x}+c$
5.(c) ४রি, $\mathrm{I}=\int \frac{\cos 2 x}{(\sqrt{\sin 2 x+3})^{3}} d x$
[প্র.ड.প.’১৫]
এবং $\sin 2 x+3=z$. তাহনে, $2 \cos 2 x d x=d z$ এবং $\mathrm{I}=\frac{1}{2} \int \frac{d z}{z^{3 / 2}}=\frac{1}{2} \int z^{\frac{3}{2}} d z$
$=\frac{1}{2} \frac{z^{-\frac{3}{2}+1}}{-\frac{3}{2}+1}+c=\frac{1}{2} \frac{z^{\frac{1}{2}}}{-\frac{1}{2}} \cdot+c=-\frac{1}{\sqrt{z}}+c$
$=-\frac{1}{\sqrt{\sin 2 x+3}}+c$
6. (a) $\int \operatorname{cosec} \frac{x}{2} d x=\frac{1}{1 / 2} \ln \left|\tan \left(\frac{x / 2}{2}\right)\right|+c$
$=2 \ln \left|\tan \frac{x}{4}\right|+c$
6(b) $\int \sec \sqrt{x} \frac{d x}{\sqrt{x}}=2 \int \sec (\sqrt{x})\left(\frac{1}{2 \sqrt{x}} d x\right)$
$=2 \ln |\sec \sqrt{x}+\tan \sqrt{x}|+c$
6(c) $\int\left(\frac{3}{x-1}-\frac{4}{x-2}\right) d x$
$=3 \ln |x-1|-4 \ln |x-2|+c$
6(d) $\int \frac{\sin x}{1+\cos x} d x=-\int \frac{(-\sin x d x)}{1+\cos x}$
$|=-\ln | 1+\cos x \mid+c$
7. $\int \frac{1}{x \ln x} d x$
$=\int \frac{d(\ln x)}{\ln x}$
$\left[\quad d(\ln x)=\frac{1}{x} \mathrm{~d} x\right]$
$=\ln (\ln x)+c$
8. (a) $\int \frac{d x}{16+x^{2}}=\int \frac{d x}{4^{2}+x^{2}}=\frac{1}{4} \tan ^{-1} \frac{x}{4}+c$

8(b) $\int \frac{4}{16 a^{2}+x^{2}} d x=4 \int \frac{d x}{(4 a)^{2}+x^{2}}$
$=4 \cdot \frac{1}{4 a} \tan ^{-1} \frac{x}{4 a}+c=\frac{1}{a} \tan ^{-1} \frac{x}{4 a}+c$
8 (c) $\int \frac{x^{2} d x}{e^{x^{3}}+e^{-x^{3}}}$
[প্র.ভ.9. 'bヵ,'os]
$=\int \frac{x^{2} e^{x^{3}} d x}{e^{x^{3}}\left(e^{x^{3}}+e^{-x^{3}}\right)}=\int \frac{x^{2} e^{x^{3}} d x}{\left(e^{x^{3}}\right)^{2}+1}$
$=\int \frac{d\left(e^{x^{3}}\right)}{1+\left(e^{x^{3}}\right)^{2}} \cdot \frac{1}{3} \quad\left[\cdots d\left(e^{x^{3}}\right)=e^{x^{3}} 3 x^{2} \mathrm{dx}\right]$
$=\frac{1}{3} \tan ^{-1}\left(e^{x^{3}}\right)+c$
9(a) $\int \frac{d x}{x^{2}+6 x+25}=\int \frac{d x}{(x+3)^{2}+25-9}$
$=\int \frac{d(x+3)}{(x+3)^{2}+4^{2}}=\frac{1}{4} \tan ^{-1} \frac{x+3}{4}+c$
9(b) $\int \frac{d x}{\left(x^{2}+9\right)^{2}}$
$=\frac{1}{18} \int \frac{\left(x^{2}+9\right)-\left(x^{2}-9\right)}{\left(x^{2}+9\right)^{2}} d x$
$=\frac{1}{18}\left\{\int \frac{x^{2}+9}{\left(x^{2}+9\right)^{2}} d x-\int \frac{x^{2}-9}{\left(x^{2}+9\right)^{2}} d x\right\}$
$=\frac{1}{18}\left\{\int \frac{d x}{x^{2}+9}-\int \frac{x^{2}\left(1-\frac{9}{x^{2}}\right)}{x^{2}\left(x+\frac{9}{x}\right)^{2}} d x\right.$

$$
\begin{aligned}
& =\frac{1}{18}\left\{\int \frac{d x}{x^{2}+3^{2}}-\int \frac{d\left(x+\frac{9}{x}\right)}{\left(x+\frac{9}{x}\right)^{2}}\right\} \\
& =\frac{1}{18}\left\{\frac{1}{3} \tan ^{-1} \frac{x}{3}-\left(-\frac{1}{x+\frac{9}{x}}\right)\right\}+c \\
& =\frac{1}{18}\left(\frac{1}{3} \tan ^{-1} \frac{x}{3}+\frac{x}{x^{2}+9}\right)+c
\end{aligned}
$$

বिক্প भশ্凶णि 8 «রি, $x=3 \tan \theta$. তाइनে

$$
\begin{aligned}
& \theta=\tan ^{-1} \frac{x}{3} \text { এবং } d x=3 \sec ^{2} \theta d \theta \\
& \int \frac{d x}{\left(x^{2}+9\right)^{2}}=\int \frac{3 \sec ^{2} \theta d \theta}{\left(9 \tan ^{2} \theta+9\right)^{2}} \\
& =\int \frac{3 \sec ^{2} \theta d \theta}{81\left(\tan ^{2} \theta+1\right)^{2}}=\int \frac{\sec ^{2} \theta d \theta}{27 \sec ^{4} \theta} \\
& =\frac{1}{27} \int \cos ^{2} \theta d \theta=\frac{1}{27} \int \frac{1}{2}(1+\cos 2 \theta) d \theta \\
& =\frac{1}{54}\left(\theta+\frac{1}{2} \sin 2 \theta\right)+c \\
& =\frac{1}{54}\left(\theta+\frac{1}{2} \frac{2 \tan \theta}{1+\tan \theta}\right)+c \\
& =\frac{1}{54}\left(\tan ^{-1} \frac{x}{3}+\frac{x / 3}{1+x^{2} / 9}\right)+c \\
& =\frac{1}{54}\left(\tan ^{-1} \frac{x}{3}+\frac{3 x}{9+x^{2}}\right)+c
\end{aligned}
$$

10. $\int \frac{d x}{x^{2}-3 x+2}$
$=\int \frac{d x}{\left(x-\frac{3}{2}\right)^{2}+2-\frac{9}{4}}=\int \frac{d x}{\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}$
$=\frac{1}{2 \cdot \frac{1}{2}} \ln \left|\frac{x-\frac{3}{2}-\frac{1}{2}}{x-\frac{3}{2}+\frac{1}{2}}\right|+c=\ln \left|\frac{x-2}{x-1}\right|+c$
$11(a) \int \frac{d x}{\sqrt{x+4} \sqrt{x+3}}=\int \frac{d x}{\sqrt{x^{2}+7 x+12}}$
$\left\lvert\,=\int \frac{d x}{\sqrt{\left(x+\frac{7}{2}\right)^{2}+12-\frac{49}{4}}}=\int \frac{d x}{\sqrt{\left(x+\frac{7}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}}\right.$
$=\ln \left|\sqrt{\left(x+\frac{7}{2}\right)^{2}-\left(\frac{1}{2}\right)}+x+\frac{7}{2}\right|+c$
$=\ln \left|\sqrt{x^{2}+7 x+12}+x+\frac{7}{2}\right|+c$
11(b) $\int \sqrt{16-9 x^{2}} d x=\frac{1}{3} \sqrt{(4)^{2}-(3 x)^{2}} d(3 x)$
$=\frac{1}{3}\left[\frac{3 x \sqrt{4^{2}-(3 x)^{2}}}{2}+\frac{4^{2}}{2} \sin ^{-1} \frac{3 x}{4}\right]+c$
$=\frac{x \sqrt{16-9 x^{2}}}{2}+\frac{8}{3} \sin ^{-1} \frac{3 x}{4}+c$ (Ans.)
12 (a) $\int \frac{x d x}{\sqrt{4+x}}=\int \frac{4+x-4}{\sqrt{4+x}} d x$
$=\int\left(\frac{4+x}{\sqrt{4+x}}-\frac{4}{\sqrt{4+x}}\right) d x$
$=\int \sqrt{4+x} d x-4 \int \frac{1}{\sqrt{4+x}} d x$.
$=\frac{(4+x)^{\frac{1}{2}+1}}{\frac{1}{2}+1}-4.2 \sqrt{4+x}+c$
$=\frac{2}{3}(4+x)^{3 / 2}-8 \sqrt{4+x}+c$
12(b) $\int \frac{6 x-10}{(2 x+1)^{2}} d x=\int \frac{3(2 x+1)-13}{(2 x+1)^{2}} d x$
$=\int \frac{3}{2 x+1} d x-\int \frac{13}{(2 x+1)^{2}} d x$
$=\frac{3}{2} \int \frac{d(2 x+1)}{2 x+1}-\frac{13}{2} \int(2 x+1)^{-2} d(2 x+1)$
$=\frac{3}{2} \ln |2 x+1|-\frac{13}{2} \frac{(2 x+1)^{-2+1}}{-2+1}+c$
$=\frac{3}{2} \ln |2 x+1|+\frac{13}{2(2 x+1)}+c$ (Ans.)

$$
\begin{aligned}
& =-\int \frac{4-x}{4-x} d x+4 \int \frac{d x}{4-x} \\
& =-\int d x-4 \int \frac{d(4-x)}{4-x}=-x-4 \ln |4-x|+c
\end{aligned}
$$

13(a) $\int \sqrt{\frac{a+x}{x}} d x=\int \frac{(\sqrt{a+x})^{2}}{\sqrt{x(a+x)}} d x$
$=\int \frac{(a+x) d x}{\sqrt{x^{2}+a x}}=\int \frac{\frac{1}{2}(2 x+a)+\frac{a}{2}}{\sqrt{x^{2}+a x}} d x$
$=\frac{1}{2} \int \frac{(2 x+a)}{\sqrt{x^{2}+a x}} d x+\frac{a}{2} \int \frac{d x}{\sqrt{\left(x+\frac{a}{2}\right)^{2}-\left(\frac{a}{2}\right)^{2}}}$
$=\frac{1}{2} \cdot 2 \sqrt{x^{2}+a x}$
$+\frac{a}{2} \ln \left|\sqrt{\left(x+\frac{a}{2}\right)^{2}-\left(\frac{a}{2}\right)^{2}}+x+\frac{a}{2}\right|+\mathrm{c}$
$=\sqrt{x^{2}+a x}+\frac{a}{2} \ln \left|\sqrt{x^{2}+a x}+x+\frac{a}{2}\right|+\mathrm{c}$
13.(b) ধরি, $\mathrm{I}=\int \frac{\sqrt{x+3}}{x+2} d x$ এবः $x+3=z^{2}$

তাহबে, $d x=2 z d z$ এবং $\mathrm{I}=\int \frac{\sqrt{z^{2}} 2 z d z}{z^{2}-3+2}$
$\Rightarrow \mathrm{I}=\int \frac{2 z^{2} d z}{z^{2}-1}=2 \int \frac{z^{2}-1+1}{z^{2}-1} d z$
$=2 \int d z+2 \int \frac{1}{z^{2}-1} d z$
$=2 z+2 \cdot \frac{1}{2.1} \ln \left|\frac{z-1}{z+1}\right|+c$
$=2 \sqrt{x+3}+\ln \left|\frac{\sqrt{x+3}-1}{\sqrt{x+3}+1}\right|+c$
14(a) ধরি, $\mathrm{I}=\int \frac{d x}{(1-x) \sqrt{1-x^{2}}}$ जবং $1-x=\frac{1}{z}$
তाइलে $\mathrm{z}=\frac{1}{1-x}$ ब्रবং $-\mathrm{dx}=-\frac{1}{z^{2}} \mathrm{dz}$

$$
\mathrm{I}=\int \frac{d z}{z^{2} \cdot \frac{1}{z} \sqrt{1-\left(1-\frac{1}{z}\right)^{2}}}
$$

$=\int \frac{d z}{z \sqrt{1-1+2 \frac{1}{z}-\frac{1}{z^{2}}}}$
$=\int \frac{d z}{\sqrt{2 z-1}}=\frac{1}{2} \int \frac{d(2 z-1)}{\sqrt{2 z-1}}$
$=\frac{1}{2} \cdot 2 \sqrt{2 z-1}+\mathrm{c}$
$=\sqrt{2 \cdot \frac{1}{1-x}-1}+\mathrm{c}=\sqrt{\frac{2-1+x}{1-x}}+\mathrm{c}$
$\therefore \int \frac{d x}{(1-x) \sqrt{1-x^{2}}}=\sqrt{\frac{1+x}{1-x}}+\mathrm{c}$ (Ans.)
14 (b) «রি, $\mathrm{I}=\int \frac{d x}{(2 x+3) \sqrt{x^{2}+3 x+2}}$ এবং
$2 x+3=\frac{1}{z}$ তাহলে $\mathrm{z}=\frac{1}{2 x+3}$ जবং
$2 \mathrm{~d} x=-\frac{1}{z^{2}} \mathrm{~d} \Rightarrow d x=-\frac{d z}{2 z^{2}}$
$\therefore \mathrm{I}=\int \frac{-d z / 2 z^{2}}{\frac{1}{z} \sqrt{\left(\frac{1-3 z}{2 z}\right)^{2}+3 \cdot \frac{1-3 z}{2 z}+2}}$
$=-\int \frac{d z}{2 z \sqrt{\frac{1-6 z+9 z^{2}}{4 z^{2}}+\frac{3-9 z}{2 z}+2}}$
$=-\int \frac{d z}{2 z \sqrt{\frac{1-6 z+9 z^{2}+6 z-18 z^{2}+8 z^{2}}{4 z^{2}}}}$
$=-\int \frac{d z}{\sqrt{1-z^{2}}}=\cos ^{-1} z+c$
$=\cos ^{-1}\left(\frac{1}{2 x+3}\right)+c=\sec ^{-1}(2 x+3)+c$
विকক্冈 भम्बতि : $\int \frac{d x}{(2 x+3) \sqrt{x^{2}+3 x+2}}$
$=\int \frac{d x}{(2 x+3) \sqrt{\frac{1}{4}\left(4 x^{2}+12 x+8\right)}}$
$=\int \frac{d x}{(2 x+3) \frac{1}{2} \sqrt{(2 x+3)^{2}-1}}$
$=\int \frac{d(2 x+3)}{(2 x+3) \sqrt{(2 x+3)^{2}-1}}$
$=\sec ^{-1}(2 x+3)+c$
15 (a) $\int \frac{x^{-3 / 4}}{1+\sqrt{x}} d x$
ধরি, $x=z^{4}$. তাহলে, $d x=4 z^{3} d z$ এবং
$\int \frac{x^{-3 / 4}}{1+\sqrt{x}} d x=\int \frac{\left(z^{4}\right)^{-3 / 4}}{1+\sqrt{z^{4}}} 4 z^{3} d z$
$=\int \frac{z^{-3}}{1+z^{2}} 4 z^{3} d z=4 \int \frac{d z}{1+z^{2}}$
$=4 \tan ^{-1} z+c=4 \tan ^{-1}\left(x^{1 / 4}\right)+c$ (Ans.)
15(b) 《রি, $\mathrm{I}=\int \frac{1+x^{1 / 4}}{1+x^{1 / 2}} d x$ जবং $x=z^{4}$ তাহছে, $d x=4 z^{3} d z$ এবং

$$
\begin{aligned}
& \mathrm{I}= \int \frac{(1+z) 4 z^{3} d z}{1+z^{2}}=4 \int \frac{z^{4}+z^{3}}{1+z^{2}} d z \\
&= 4 \int \frac{z^{2}\left(z^{2}+1\right)-\left(z^{2}+1\right)+z\left(z^{2}+1\right)-z-1}{1+z^{2}} d z \\
&= 4\left\{\int\left(z^{2}-1+z\right) d z-\int \frac{z d z}{z^{2}+1}-\int \frac{d z}{z^{2}+1}\right\} \\
&= 4\left\{\frac{z^{3}}{3}-z+\frac{z^{2}}{2}-\frac{1}{2} \ln \left(z^{2}+1\right)-\tan ^{-1} z\right\}+c \\
&= 4\left\{\frac{x^{3 / 4}}{3}-x^{1 / 4}+\frac{x^{1 / 2}}{2}-\frac{1}{2} \ln \left(x^{1 / 2}+1\right)\right. \\
&\left.\quad-\tan ^{-1} x^{1 / 4}\right\}+c
\end{aligned}
$$

15(c) «রি, $\mathrm{I}=\int \frac{d x}{x\left(x^{3}+2\right)}$ এবং $x^{3}=\frac{1}{z}$
তাহनে, $3 x^{2} d x=-\frac{1}{z^{2}} d z \Rightarrow x^{2} d x=-\frac{d z}{3 z^{2}}$

এবং $\mathrm{I}=\int \frac{x^{2} d x}{x^{3}\left(x^{3}+2\right)}=\int \frac{-\frac{d z}{3 z^{2}}}{\frac{1}{z}\left(\frac{1}{z}+2\right)}$
$=-\frac{1}{3} \int \frac{d z}{1+2 z}=-\frac{1}{3} \cdot \frac{1}{2} \int \frac{d(1+2 z)}{1+2 z}$
$=-\frac{1}{6} \ln |1+2 z|+c=-\frac{1}{6} \ln \left|1+\frac{2}{x^{3}}\right|+c$
15(d) «রি, $\mathrm{I}=\int \frac{d x}{x \sqrt{2+3 \sqrt{x}}}$ এবং $\sqrt{x}=\frac{1}{z^{2}}$
তाशলে, $\frac{1}{2 \sqrt{x}} d x=-\frac{2}{z^{3}} d z \Rightarrow \frac{z^{2}}{2} d x=-\frac{2}{z^{3}} d z$
$\Rightarrow d x=-\frac{4 d z}{z^{5}}$ बবং $I=\int \frac{-\frac{4 d z}{z^{5}}}{\frac{1}{z^{4}} \sqrt{2+\frac{3}{z^{2}}}}$
$=-4 \int \frac{d z}{\sqrt{2 z^{2}+3}}=-4 \int \frac{d z}{\sqrt{2} \sqrt{z^{2}+(\sqrt{3 / 2})^{2}}}$
$=-2 \sqrt{2} \ln \left|z+\sqrt{z^{2}+\frac{3}{2}}\right|+c$
$=-2 \sqrt{2} \ln \left|\frac{1}{x^{1 / 4}}+\sqrt{\frac{1}{x^{1 / 2}}+\frac{3}{2}}\right|+c$
15(e) यরि, $\mathrm{I}=\int \frac{d x}{x+x^{n}}, n \neq 1$ এবং $x^{n-1}=\frac{1}{z}$
তাহলে, $(n-1) x^{n-2} d x=-\frac{d z}{z^{2}}$
$\Rightarrow x^{n-2} d x=\frac{-d z}{(n-1) z^{2}}$
जবং $\mathrm{I}=\int \frac{d x}{x\left(1+x^{n-1}\right)}=\int \frac{x^{n-2} d x}{x^{n-1}\left(1+x^{n-1}\right)}$
$=\int \frac{-\frac{d z}{(n-1) z^{2}}}{\frac{1}{z}\left(1+\frac{1}{z}\right)}=-\frac{1}{n-1} \int \frac{d z}{1+z}$
$=-\frac{1}{n-1} \ln |1+z|+c$
$=-\frac{1}{n-1} \ln \left|1+\frac{1}{x^{n-1}}\right|+c$
16(a) 《রি, $\mathrm{I}=\int \frac{d x}{x \sqrt{x^{3}+4}}$ এবং $x^{3}=\frac{1}{z^{2}}$.
דाइबে, $3 x^{2} d x=-\frac{2 d z}{z^{3}} \Rightarrow x^{2} d x=-\frac{2 d z}{3 z^{3}}$ এবং
$I=\int \frac{x^{2} d x}{x^{3} \sqrt{x^{3}+4}}=\int \frac{-\frac{2 d z}{3 z^{3}}}{\frac{1}{z^{2}} \sqrt{\frac{1}{z^{2}}+4}}$
$=-\frac{2}{3} \int \frac{d z}{\sqrt{1+4 z^{2}}}=-\frac{2}{3} \cdot \frac{1}{2} \int \frac{d z}{\sqrt{\left(\frac{1}{2}\right)^{2}+z^{2}}}$
$=-\frac{1}{3} \ln \left|z+\sqrt{\frac{1}{4}+z^{2}}\right|+c$
$=-\frac{1}{3} \ln \left|\frac{1}{x^{3 / 2}}+\sqrt{\frac{1}{4}+\frac{1}{x^{3}}}\right|+c$
16(b) $\int \frac{d x}{x^{3}(3+5 x)^{2}}$
«রি, $3+5 x=z x \Rightarrow(z-5) \mathrm{x}=3$
$\Rightarrow \mathrm{x}=\frac{3}{z-5}$. דাহनে, $d x=-\frac{3 d z}{(z-5)^{2}}$ এবং
$\int \frac{d x}{x^{3}(3+5 x)^{2}}=\int \frac{\frac{-3 d z}{(z-5)^{2}}}{\frac{27}{(z-5)^{3}}\left(3+5 \frac{3}{z-5}\right)^{2}}$
$=\int \frac{-3(z-5)^{3} d z}{27(3 z-15+15)^{2}}$
$=-\frac{1}{81} \int \frac{\left.z^{3}-15 z^{2}+75 z-125\right) d z}{z^{2}}$
$=-\frac{1}{81} \int\left(z-15+\frac{75}{z}-125 \frac{1}{z^{2}}\right) d z$
$=-\frac{1}{81}\left\{\frac{z^{2}}{2}-15 z+75 \ln |z|-125\left(-\frac{1}{z}\right)\right\}+c$
$=-\frac{1}{81}\left\{\frac{1}{2}\left(\frac{3+5 x}{x}\right)^{2}-15\left(\frac{3+5 x}{x}\right)+\right.$
$\left.75 \ln \left|\frac{3+5 x}{x}\right|+125\left(\frac{x}{3+5 x}\right)\right\}+c$
17(a) $\int \frac{a^{2}+x^{2}}{\left(x^{2}-a^{2}\right)^{2}} d x=\int \frac{x^{2}\left(1+\frac{a^{2}}{x^{2}}\right)}{x^{2}\left(x-\frac{a^{2}}{x}\right)^{2}} d x$
$=\int \frac{d\left(x-\frac{a^{2}}{x}\right)}{\left(x-\frac{a^{2}}{x}\right)^{2}}=-\frac{1}{x-\frac{a^{2}}{x}}+c=-\frac{x}{x^{2}-a^{2}}+c$
17(b) $\int \frac{\left(x^{2}-1\right) d x}{x^{4}+6 x^{3}+7 x^{2}+6 x+1}$
$=\int \frac{\left(1-\frac{1}{x^{2}}\right) d x}{x^{2}+\frac{1}{x^{2}}+6\left(x+\frac{1}{x}\right)+7}$
$=\int \frac{\left(1-\frac{1}{x^{2}}\right) d x}{\left(x+\frac{1}{x}\right)^{2}+6\left(x+\frac{1}{x}\right)+5}$
$=\int \frac{\left(1-\frac{1}{x^{2}}\right) d x}{\left(x+\frac{1}{x}+3\right)^{2}+5-9}=\int \frac{d\left(x+\frac{1}{x}+3\right)}{\left(x+\frac{1}{x}+3\right)^{2}-2^{2}}$
$=\frac{1}{2.2} \ln \left|\frac{x+\frac{1}{x}+3-2}{x+\frac{1}{x}+3-2}\right|+c$
$=\frac{1}{4} \ln \left|\frac{x^{2}+1+x}{x^{2}+1+5 x}\right|+c$
18(a) $\int \cot ^{2} x d x=\int\left(\operatorname{cosec}^{2} x-1\right) d x$
$=-\cot x-x+c$
18(b) $\int \tan ^{2} \frac{x}{2} d x=\int\left(\sec ^{2} \frac{x}{2}-1\right) d x$
$=2 \int \sec ^{2} \frac{x}{2} d\left(\frac{x}{2}\right)-\int d x=2 \tan \frac{x}{2}-x+c$
18 (c) $\int \frac{d x}{\sin x \cos ^{2} x}=\int \frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos ^{2} x} d x$

$$
\begin{aligned}
& =\int \tan x \sec x d x+\int \operatorname{cosec} x d x \\
& =\sec x+\ln (\cos e c x-\cot x)+c
\end{aligned}
$$

$$
\text { 19(a) } \int \frac{d x}{4-5 \sin ^{2} x}=\int \frac{\sec ^{2} x d x}{\sec ^{2} x\left(4-5 \sin ^{2} x\right)}
$$

$$
=\int \frac{\sec ^{2} d x}{4 \sec ^{2} x-5 \tan ^{2} x}
$$

$$
=\int \frac{\sec ^{2} d x}{4\left(1+\tan ^{2} x\right)-5 \tan ^{2} x}=\int \frac{\sec ^{2} d x}{4-\tan ^{2} x}
$$

$$
=\int \frac{d(\tan x)}{2^{2}-(\tan x)^{2}}=\frac{1}{2.2} \ln \left|\frac{2+\tan x}{2-\tan x}\right|+c
$$

$$
=\frac{1}{4} \ln \left|\frac{2+\tan x}{2-\tan x}\right|+c
$$

19(b) $\int \frac{\sin 2 x}{\sin x+\cos x} d x$
$=\int \frac{\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x-1}{\sin x+\cos x} d x$

$$
=\int \frac{(\sin x+\cos x)^{2}-1}{\sin x+\cos x} d x
$$

$$
=\int\left(\sin x+\cos x-\frac{1}{\sin x+\cos x}\right) d x
$$

$$
=\cos x-\sin x-\int \frac{d x}{\sqrt{2}\left(\sin x \cos \frac{\pi}{4}+\cos x \sin \frac{\pi}{4}\right)}
$$

$$
=\cos x-\sin x-\frac{1}{\sqrt{2}} \int \frac{d x}{\sin \left(x+\frac{\pi}{4}\right)}
$$

$=\cos x-\sin x-\frac{1}{\sqrt{2}} \int \operatorname{cosec}\left(x+\frac{\pi}{4}\right) d x$
$=\cos x-\sin x-\frac{1}{\sqrt{2}} \ln \left|\tan \frac{1}{2}\left(x+\frac{\pi}{4}\right)\right|+c$
$=\cos x-\sin x-\frac{1}{\sqrt{2}} \ln \left|\tan \left(\frac{x}{2}+\frac{\pi}{8}\right)\right|+c$
20 «রি, $\mathrm{I}=\int \frac{d x}{\sqrt{x}+\sqrt{1-x}}$ এবং
$x=\sin ^{2} \theta$. তাহनে $d x=2 \sin \theta \cos \theta d \theta$,
$\sin \theta=\sqrt{x} \Rightarrow \theta=\sin ^{-1} \sqrt{x}$ এবং

$$
\begin{aligned}
& I=\int \frac{2 \sin \theta \cos \theta d \theta}{\sqrt{\sin ^{2} \theta}+\sqrt{1-\sin ^{2} \theta}} \\
& =\int \frac{2 \sin \theta \cos \theta d \theta}{\sin \theta+\cos \theta} \\
& =\int \frac{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta-1}{\sin \theta+\cos \theta} d \theta \\
& =\int \frac{(\sin \theta+\cos \theta)^{2}-1}{\sin \theta+\cos \theta} d \theta \\
& =\int\left(\sin \theta+\cos \theta-\frac{1}{\sin x+\cos x}\right) d \theta \\
& =\cos \theta-\sin \theta-\int \frac{d \theta}{\sqrt{2}\left(\sin \theta \cos \frac{\pi}{4}+\cos \theta \sin \frac{\pi}{4}\right)}
\end{aligned}
$$

$$
=\cos \theta-\sin \theta-\frac{1}{\sqrt{2}} \int \frac{d \theta}{\sin \left(\theta+\frac{\pi}{4}\right)}
$$

$$
=\cos \theta-\sin \theta-\frac{1}{\sqrt{2}} \int \operatorname{cosec}\left(\theta+\frac{\pi}{4}\right) d \theta
$$

$$
=\sqrt{1-\sin ^{2} \theta}-\sin \theta-\frac{1}{\sqrt{2}} \ln \left|\tan \frac{1}{2}\left(\theta+\frac{\pi}{4}\right)\right|+c
$$

$$
=\sqrt{1-x}-\sqrt{x}-\frac{1}{\sqrt{2}} \ln \left|\tan \left(\frac{1}{2} \sin ^{1} \sqrt{x}+\frac{\pi}{8}\right)\right|+c
$$

প্রম্নমাणা X C

1 गूख्व (MCQ बत्र क्षख्व) \& $\int x^{m} e^{n x} d x$
$\left\{\frac{1}{n} x^{m}-\frac{1}{n^{2}} \frac{d}{d x}\left(x^{m}\right)+\frac{1}{n^{3}} \frac{d^{2}}{d x^{2}}\left(x^{m}\right)-\right.$
$\left.\left.\frac{1}{n^{4}} \frac{d^{3}}{d x^{3}}\left(x^{m}\right)+\cdots \cdots\right\} e^{n x}\right]$
1.(a) $\int x e^{x} d x$
$=x \int e^{x} d x-\int\left\{\frac{d}{d x}(x) \int e^{x} d x\right\} d x$
$=x e^{x}-\int 1 . e^{x} d x=x e^{x}-e^{x}+c$
(b) $\int x^{2} e^{x} d x$
[\$.'08; সि.'০১]
$=x^{2} \int e^{x} d x-\int\left\{\frac{d}{d x}\left(x^{2}\right) \int e^{x} d x\right\} d x$
$=x^{2} e^{x}-\int(2 x) e^{x} d x$
$=x^{2} e^{x}-2\left[x \int e^{x}-\int\left\{\frac{d}{d x}(x) \int e^{x} d x\right\} d x\right]$
$=x^{2} e^{x}-2\left[x e^{x}-\int 1 . e^{x} d x\right]$
$=x^{2} e^{x}-2 x e^{x}+2 e^{x}+c$
$=\left(x^{2}-2 x+2\right) e^{x}+c$
(c) $\int x^{2} e^{-3 x} d x$
$=x^{2} \int e^{-3 x} d x-\int\left\{\frac{d}{d x}\left(x^{2}\right) \int e^{-3 x} d x\right\} d x$
$=x^{2}\left(-\frac{1}{3}\right) e^{-3 x}-\int(2 x)\left(-\frac{1}{3}\right) e^{-3 x} d x$
$=-\frac{1}{3} x^{2} e^{-3 x}+\frac{2}{3}[x] e^{-3 x}-$
$\left.\int\left\{\frac{d}{d x}(x) \int e^{-3 x} d x\right\} d x\right]$
$=-\frac{1}{3} x^{2} e^{-3 x}+\frac{2}{3}\left[x\left(-\frac{e^{-3 x}}{3}\right)-\int\left(-\frac{e^{-3 x}}{3}\right) d x\right]$
$=-\frac{1}{3} x^{2} e^{-3 x}+\frac{2}{3}\left[\frac{x e^{-3 x}}{3}+\frac{1}{3}\left(-\frac{e^{-3 x}}{3}\right)\right]+c$
$=-\frac{1}{3}\left(x^{2}+\frac{2}{3} x+\frac{2}{9}\right) e^{-3 x}+c$
(d) ধরি, $\mathrm{I}=\int x^{3} e^{x^{2}} d x$ जবং $\mathrm{x}^{2}=\mathrm{z}$. তাহনে $2 x d x=d z \Rightarrow x d x=\frac{1}{2} d z$ এবং

$$
\mathrm{I}=\int x^{2} e^{x^{2}}(x d x)=\frac{1}{2} \int z e^{z} d z
$$

$$
=\frac{1}{2}\left[z \int e^{z} d z-\int\left\{\frac{d}{d z}(z) \int e^{z} d z\right\} d z\right]
$$

$$
=\frac{1}{2}\left[z e^{z}-\int 1 . e^{z} d z\right]=\frac{1}{2}\left(z e^{z}-e^{z}\right)+\mathrm{c}
$$

$$
=\frac{1}{2}\left(x^{2}-1\right) e^{x^{2}}+c
$$

2. भूत्र (MCQ এर बन्ग)\& $\int x^{n} \sin x d x$
$=x^{n}(-\cos x)-\left(n x^{n-1}\right)(-\sin x)+\cdots$
(a) $\int x \sin 3 x d x$
$=x \int \sin 3 x d x-\int\left\{\frac{d}{d x}(x) \int \sin 3 x d x\right\} d x$
$=x\left(-\frac{1}{3} \cos 3 x\right)-\int 1 .\left(-\frac{1}{3} \cos 3 x\right) d x$
$=-\frac{1}{3} x \cos 3 x+\frac{1}{3}\left(\frac{1}{3} \sin 3 x\right)+c$
$=\frac{1}{9} \sin 3 x-\frac{1}{3} x \cos 3 x+c$
(b) $\int x^{3} \cdot \sin x d x$
$=x^{3} \int \sin x d x-\int\left\{\frac{d}{d x}\left(x^{3}\right) \int \sin x d x\right\} d x$
$=x^{3}(-\cos x)-\int 3 x^{2}(-\cos x) d x$
$=-x^{3} \cos x+3\left[x^{2} \int \cos x-\right.$

$$
\left.\int\left\{\frac{d}{d x}\left(x^{2}\right) \int \cos x d x\right\} d x\right]
$$

$=-x^{3} \cos x+3\left[x^{2} \sin x-\int 2 x \sin x d x\right]$
$=-x^{3} \cos x+3\left[x^{2} \sin x-\right.$

$$
\left.2\left\{x(-\cos x)-\int 1(-\cos x) d x\right\}\right]
$$

$=-x^{3} \cos x+3\left[x^{2} \sin x-\right.$

$$
2(-x \cos x+\sin x)]+c
$$

$=-x^{3} \cos x+3 x^{2} \sin x+6 x \cos x-6 \sin x+c$
[MCQ बर ब्विज्ब, $\int x^{3} \sin x d x=x^{3}(-\cos x)$
$-\left(3 x^{2}\right)(-\sin x)+(6 x)(\cos x)-6 \sin x$
$\left.=-x^{3} \cos x+3 x^{2} \sin x+6 x \cos x-6 \sin x+c\right]$
(c) ধরি, $\mathrm{I}=\int e^{2 x} \cos e^{x} d x$ जবং $e^{x}=z$.

তাহমে $e_{-}^{x} d x=d z$ এবং
$\mathrm{I}=\int e^{x} \cos e^{x}\left(e^{x} d x\right)=\int z \cos z d z$
$=z \int \cos z d z-\int\left\{\frac{d}{d z}(z) \int \cos z d z\right\} d z$
$\doteq z \sin z-\int 1 \cdot \sin z d z$
$=z \sin z-(-\cos z)+c$
$=e^{x} \sin e^{x}+\cos e^{x}+c$
(d) 《রि, $\mathrm{I}=\int \sin \sqrt{x} d x$ এবং $\sqrt{x}=z$

তাহনে $\frac{1}{2 \sqrt{x}} d x=d z \Rightarrow d x=2 z d z$ এবং $\mathrm{I}=\int 2 z \sin z d z$
$=2\left[z \int \sin z d z-\int\left\{\frac{d}{d z}(z) \int \sin z d z\right\} d z\right]$
$=2\left[z(-\cos z)-\int 1 \cdot(-\cos z) d z\right]$
$=-2 z \cos z+2 \sin z+c$
$=-2 \sqrt{x} \cos \sqrt{x}+2 \sin \sqrt{x}+c$
3 (a) $\int x \sin ^{2} \frac{x}{2} d x$
[য.বো.’०২]
$=\int x \frac{1}{2}(1-\cos x) d x$
$=\frac{1}{2} \int x d x-\frac{1}{2} \int x \cos x d x$
$=\frac{1}{2} \cdot \frac{x^{2}}{2}-\frac{1}{2}\left[x \int \cos x d x-\int\left\{\frac{d}{d x}(x) \int \cos x d x\right\} d x\right]$
$=\frac{x^{2}}{4}-\frac{1}{2}\left[x \sin x-\int 1 \cdot \sin x d x\right]$
$=\frac{x^{2}}{4}-\frac{1}{2}[x \sin x-(-\cos x)]+c$
$=\frac{x^{2}}{4}-\frac{1}{2} x \sin x-\frac{1}{2} \cos x+c$
(b) $\int x^{2} \cos ^{2} \frac{x}{2} d x=\int x^{2} \frac{1}{2}(1+\cos x) d x$
$=\frac{1}{2}\left[\int x^{2} d x+\int x^{2} \cos x d x\right]$
$=\frac{1}{2}\left[\frac{x^{3}}{3}+x^{2}(\sin x)-(2 x)(-\cos x)+\right.$
(2) $(-\sin x)]+c$
$=\frac{1}{2}\left[\frac{x^{3}}{3}+x^{2} \sin x+2 x \cos x-2 \sin x\right]+c$
(c) $\int x \cos 2 x \cos 3 x d x$
$=\int x \frac{1}{2}(\cos 5 x-\cos x) d x$

$$
\left.\begin{array}{rl}
= & \frac{1}{2}\left[x \int \cos 5 x d x-\int\left\{\frac{d}{d x}(x) \int \cos 5 x d x\right\} d x\right. \\
& \left.+x \int \cos x d x-\int\left\{\frac{d}{d x}(x) \int \cos x d x\right\} d x\right] \\
= & \frac{1}{2}\left[x\left(\frac{\sin 5 x}{5}\right)-\int 1 .\left(\frac{\sin 5 x}{5}\right) d x\right. \\
& \left.\quad+x \sin x-\int 1 \cdot \sin x d x\right]
\end{array}\right\}
$$

4. (a) $\int x \sec ^{2} x d x$
[ঢ.'०>,’s8]
$=x \int \sec ^{2} x d x-\int\left\{\frac{d}{d x}(x) \int \sec ^{2} x d x\right\} d x$
$=x \tan x-\int 1 \cdot \tan x d x$
$=x \tan x+\ln |\cos x|+c$
4.(b) $\int x \sec ^{2} 3 x d x$
[ঢ.’○১]
$=x \int \sec ^{2} 3 x d x-\int\left\{\frac{d}{d x}(x) \int \sec ^{2} 3 x d x\right\} d x$ $=x \frac{\tan 3 x}{3}-\int 1 \cdot \frac{\tan 3 x}{3} d x$
$=\frac{x}{3} \tan 3 x+\frac{1}{9} \ln |\cos 3 x|+c$
(c) $\int x \tan ^{2} x d x \quad$ [রा.'०৫; नि.'
$=\int x\left(\sec ^{2} x-1\right) d x=\int x \sec ^{2} x d x-\int x d x$
$=x \int \sec ^{2} x d x-\int\left\{\frac{d}{d x}(x) \int \sec ^{2} x d x\right\} d x-\frac{x^{2}}{2}$
$==x \tan x-\int 1 \cdot \tan x d x-\frac{x^{2}}{2}$
$=x \tan x+\ln |\cos x|-\frac{x^{2}}{2}+c$
(d) ধরি, $\mathrm{I}=\int \operatorname{cosec}^{3} x d x$
$=\int \operatorname{cosec}^{2} x \operatorname{cosec} x d x$
$=\operatorname{cosec} x \int \operatorname{cosec}{ }^{2} x d x-$
$\int\left\{\frac{d}{d x}(\cos e c x) \int \operatorname{cosec}^{2} x d x\right\} d x$
$=-\operatorname{cosec} x \cot x-\int(-\operatorname{cosec} x \cot x) \cdot(-\cot x) d x$
$-\operatorname{cosec} x \cot x-\int \operatorname{cosec}\left(\cos e c^{2} x-1\right) d x$
$=-\operatorname{cosec} x \cot x-\int \operatorname{cosec}{ }^{3} x d x+\int \cos e c x d x$
$\Rightarrow I=-\operatorname{cosec} x \cot x-\mathrm{I}+\ln \left|\tan \frac{x}{2}\right|+c_{1}$
$\Rightarrow 2 \mathrm{I}=-\operatorname{cosec} x \cot x+\ln \left|\tan \frac{x}{2}\right|+c_{1}$
$\Rightarrow \mathrm{I}=-\frac{1}{2} \operatorname{cosec} x \cot x+\frac{1}{2} \ln \left|\tan \frac{\pi}{2}\right|+\frac{1}{2} c_{1}$
$\Rightarrow \mathrm{I}=-\frac{1}{2} \cos e c x \cot x+\frac{1}{2} \ln \left|\tan \frac{\pi}{2}\right|+c$
5. সूত্র (MCQ এর Еनग)\&
$\int x^{n} \ln x d x=\frac{x^{n+1}}{n+1}\left(\ln x-\frac{1}{n+1}\right)$
(a) $\int x \ln x d x$
[य.'ov; ঢা.'০৬; ব.'০৮]
$=\ln x \int x d x-\int\left\{\frac{d}{d x}(\ln x) \int x d x\right\} d x$
$=\ln x \cdot \frac{x^{2}}{2}-\int \frac{1}{x} \cdot \frac{x^{2}}{2} d x=\frac{x^{2}}{2} \ln x-\frac{1}{2} \int x d x$
$=\frac{x^{2}}{2} \ln x-\frac{1}{2} \cdot \frac{x^{2}}{2}+c=\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}+c$
(b) $\int x^{n} \ln x d x$
[थ.ర.ఫ. ๖७]
$=\ln x \int x^{n} d x-\int\left\{\frac{d}{d x}(\ln x) \int x^{n} d x\right\} d x$
$=\ln x \cdot \frac{x^{n+1}}{n+1}-\int \frac{1}{x} \cdot \frac{x^{n+1}}{n+1} d x$
$=\frac{x^{n+1}}{n+1} \ln x-\frac{1}{n+1} \int x^{n} d x$
$=\frac{x^{n+1}}{n+1} \ln x-\frac{1}{n+1} \cdot \frac{x^{n+1}}{n+1}+c$
$=\frac{x^{n+1}}{n+1} \ln x-\frac{x^{n+1}}{(n+1)^{2}}+c$
(c) $\int x^{2}(\ln x)^{2} d x$
[প., Ј.भ.'०৫]
$=(\ln x)^{2} \int x^{2} d x-\int\left\{\frac{d}{d x}(\ln x)^{2} \int x^{2} d x\right\} d x$
$=(\ln x)^{2} \frac{x^{3}}{3}-\int 2 \ln x \cdot \frac{1}{x} \cdot \frac{x^{3}}{3} d x$
$=\frac{x^{3}}{3}(\ln x)^{2}-\frac{2}{3} \int x^{2} \ln x d x$
$=\frac{x^{3}}{3}(\ln x)^{2}-$
$\frac{2}{3}\left[\ln x \int x^{2} d x-\int\left\{\frac{d}{d x}(\ln x) \int x^{2} d x\right\} d x\right]$
$=\frac{x^{3}}{3}(\ln x)^{2}-\frac{2}{3}\left[\ln x \cdot \frac{x^{3}}{3}-\int \frac{1}{x} \cdot \frac{x^{3}}{3} d x\right]$
$=\frac{x^{3}}{3}(\ln x)^{2}-\frac{2}{3}\left[\frac{x^{3}}{3} \ln x-\frac{1}{3} \int x^{2} d x\right]$
$=\frac{x^{3}}{3}(\ln x)^{2}-\frac{2}{3}\left[\frac{x^{3}}{3} \ln x-\frac{1}{3} \cdot \frac{x^{3}}{3}\right]+c$
$=\frac{x^{3}}{3}(\ln x)^{2}-\frac{2}{3}\left[\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}\right]+c$
$=\frac{x^{3}}{27}\left[9(\ln x)^{2}-6 \ln x+2\right]+c$
(d) $\int(\ln x)^{2} d x \quad$ [ষ.'०৫; চ.'०৭; প.Ч.ף. 'ฎ०]
$=(\ln x)^{2} \int d x-\int\left\{\frac{d}{d x}(\ln x)^{2} \int d x\right\} d x$
$=(\ln x)^{2} \cdot x-\int 2 \ln x \cdot \frac{1}{x} \cdot x d x$
$=x(\ln x)^{2}-2 \int \ln x d x$
$=x(\ln x)^{2}-2\left[\ln x \int d x-\int\left\{\frac{d}{d x}(\ln x) \int d x\right\} d x\right]=$
$x(\ln x)^{2}-2\left[\ln x \cdot x-\int \frac{1}{x} \cdot x d x\right]$
$=x(\ln x)^{2}-2\left[x \ln x-\int d x\right]$
$=x(\ln x)^{2}-2[x \ln x-x]+c$
$=x\left\{(\ln x)^{2}-2 \ln x+2\right\}+c$
(e) सजि, $\mathrm{I}=\int \frac{\ln (\ln x) d x}{x}$ এবং $\ln x=z$.

তাহশে $\frac{1}{x} d x=d z$ जবং $\mathrm{I}=\int \ln z d z$

$$
\begin{aligned}
\Rightarrow \mathrm{I} & =\ln z \int d z-\int\left\{\frac{d}{d z}(\ln z) \int d z\right\} d z \\
& =\ln z \cdot z-\int \frac{1}{z} \cdot z d z=z \ln z-\int d z \\
& =z \ln z-z+c=\ln x\{\ln (\ln x)-1\}+c
\end{aligned}
$$

$$
\text { (f) ধরি, } \mathrm{I}=\int \frac{\ln \sec ^{-1} x}{x \sqrt{x^{2}-1}} d x \quad \text { [ঢ.'ob; সি.'>8] }
$$

$$
\text { এবং } \sec ^{-1} x=z \Rightarrow \frac{d x}{x \sqrt{x^{2}-1}}=d z
$$

$$
\therefore \mathrm{I}=\int \ln z d z
$$

$$
=\ln z \int d z-\int\left\{\frac{d}{d z}(\ln z) \int d z\right\} d z
$$

$$
=\ln z \cdot z-\int \frac{1}{z} \cdot z d z=z \ln z-\int d z
$$

$$
=z \ln z-z+c
$$

$$
=\left\{\ln \left(\sec ^{-1} x\right)-1\right\} \sec ^{-1} x+c
$$

$$
\text { 6.(a) } \int \tan ^{-1} x d x \quad \text { [दू.’০২; ঢ.'’৪; ব.’’০] }
$$

$$
=\tan ^{-1} x \int d x--\int\left\{\frac{d}{d x}\left(\tan ^{-1} x\right) \int d x\right\} d x
$$

$$
=x \tan ^{-1} x-\int \frac{x}{1+x^{2}} d x
$$

$$
=x \tan ^{-1} x-\frac{1}{2} \int \frac{(0+2 x) d x}{1+x^{2}}
$$

$$
=x \tan ^{-1} x-\frac{1}{2} \ln \left(1+x^{2}\right)+c
$$

$$
\text { (b) } \int x \sin ^{-1} x d x
$$

[ঢা:’০৭]

$$
=\sin ^{-1} x \int x d x-\int\left\{\frac{d}{d x}\left(\sin ^{-1} x\right) \int x d x\right\} d x
$$

$$
=\sin ^{-1} x \cdot \frac{x^{2}}{2}-\int \frac{1}{\sqrt{1-x^{2}}} \cdot \frac{x^{2}}{2} d x
$$

$$
=\frac{x^{2}}{2} \sin ^{-1} x+\frac{1}{2} \int \frac{1-x^{2}-1}{\sqrt{1-x^{2}}} d x
$$

$$
=\frac{x^{2}}{2} \sin ^{-1} x+\frac{1}{2}\left[\int \sqrt{1-x^{2}} d x-\int \frac{1}{\sqrt{1-x^{2}}} d x\right]
$$

$$
=\frac{x^{2}}{2} \sin ^{-1} x+\frac{1}{2}\left[\frac{x \sqrt{1-x^{2}}}{2}+\frac{1}{2} \sin ^{-1} x-\right.
$$

$\left.-\sin ^{-1} x\right]+c$
$=\frac{x^{2}}{2} \sin ^{-1} x+\frac{1}{2}\left[\frac{x \sqrt{1-x^{2}}}{2}-\frac{1}{2} \sin ^{-1} x\right]+c$
(c) $\int \sin ^{-1} x d x \quad$ [मि.'०७; य.'ग०; ण.'’ 8]
$=\sin ^{-1} x \int d x-\int\left\{\frac{d}{d x}\left(\sin ^{-1} x\right) \int d x\right\} d x$
$=x \sin ^{-1} x-\int \frac{x}{\sqrt{1-x^{2}}} d x$
$=x \sin ^{-1} x-\left(-\frac{1}{2}\right) \int \frac{(0-2 x) d x}{\sqrt{1-x^{2}}}$
$=x \sin ^{-1} x+\frac{1}{2} \cdot 2 \sqrt{1-x^{2}}+c$
$=x \sin ^{-1} x+\sqrt{1-x^{2}}+c$

$=\cos ^{-1} x \int d x-\int\left\{\frac{d}{d x}\left(\cos ^{-1} x\right) \int d x\right\} d x$
$=x \cos ^{-1} x+\int \frac{x}{\sqrt{1-x^{2}}} d x$
$=x \cos ^{-1} x+\left(-\frac{1}{2}\right) \int \frac{(0-2 x) d x}{\sqrt{1-x^{2}}}$
$=x \cos ^{-1} x-\frac{1}{2} \cdot 2 \sqrt{1-x^{2}}+c$
$=x \cos ^{-1} x-\sqrt{1-x^{2}}+c$
(e) $\int x \sin ^{-1} x^{2} d x$
[ज.'০৫; রা.'০৬; প্র.উ.প. '০৪,'০৬]
$=\sin ^{-1} x^{2} \int x d x-\int\left\{\frac{d}{d x}\left(\sin ^{-1} x^{2}\right) \int x d x\right\} d x$
$=\sin ^{-1} x^{2} \cdot \frac{x^{2}}{2}-\int \frac{2 x}{\sqrt{1-x^{4}}} \cdot \frac{x^{2}}{2} d x$
$=\frac{x^{2}}{2} \sin ^{-1} x^{2}-\int \frac{x^{3}}{\sqrt{1-x^{4}}} d x$
$=\frac{x^{2}}{2} \sin ^{-1} x^{2}-\left(-\frac{1}{4}\right) \int \frac{d\left(1-x^{4}\right)}{\sqrt{1-x^{4}}}$
$=\frac{x^{2}}{2} \sin ^{-1} x^{2}+\frac{1}{4} \cdot 2 \sqrt{1-x^{4}}+c$
$=\frac{x^{2}}{2} \sin ^{-1} x^{2}+\frac{1}{2} \sqrt{1-x^{4}}+c$
6.(f) $\int x \tan ^{-1} x d x$
[य.'০৬;मि. 'o৪,'ot; রা.'০৬ ; ষু.'১০ ; ব.'১১]
$=\tan ^{-1} x \int x d x-\int\left\{\frac{d}{d x}\left(\tan ^{-1} x\right) \int x d x\right\} d x$
$=\tan ^{-1} x \cdot \frac{x^{2}}{2}-\int \frac{1}{1+x^{2}} \cdot \frac{x^{2}}{2} d x$
$=\frac{x^{2}}{2} \tan ^{-1} x-\frac{1}{2} \int \frac{1+x^{2}-1}{1+x^{2}} d x$
$=\frac{x^{2}}{2} \tan ^{\cdots} x-\frac{1}{2} \int\left(1-\frac{1}{1+x^{2}}\right) d x$
$=\frac{x^{2}}{2} \tan ^{-1} x-\frac{1}{2}\left(x-\tan ^{-1} x\right)+c$
$=\frac{1}{2}\left(x^{2}+1\right) \tan ^{-1} x-\frac{1}{2} x+c$ (Ans.)
7.(a) $\int e^{x} \cos x d x \quad$ [णा.'০২;প্র.ভ.প.'০8,'০৬] ধরি, $\mathrm{I}=\int e^{x} \cos x d x$
$=e^{x} \int \cos x d x-\int\left\{\frac{d}{d x}\left(e^{x}\right) \int \cos x d x\right\} d x$
$=e^{x} \sin x-\int e^{x} \sin d x$
$=e^{x} \sin x-e^{x} \int \sin x d x+\int\left\{\frac{d}{d x}\left(e^{x}\right) \int \sin x d x\right\} d x$
$=e^{x} \sin x-e^{x}(-\cos x)+\int e^{x}(-\cos x) d x$
$=e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d x$
$=e^{x} \sin x+e^{x} \cos x-\mathrm{I}+c_{1}$
$\Rightarrow 2 \mathrm{I}=e^{x} \sin x+e^{x} \cos x+c_{1}$
$\Rightarrow \mathrm{I}=\frac{1}{2} e^{x}(\sin x+\cos x)+\frac{1}{2} c_{1}$
$\int e^{x} \cos x d x=\frac{1}{2} e^{x}(\sin x+\cos x)+c$
7(b) $\int e^{x} \sin x d x \quad$ [दू.'০৮,'১৩; মা.'০৯; दরা., मि.'১৪]

बরি, $\mathrm{I}=\int e^{x} \sin x d x$
$=e^{x} \int \sin x d x-\int\left\{\frac{d}{d x}\left(e^{x}\right) \int \sin x d x\right\} d x$
$=e^{x}(-\cos x)-\int e^{x}(-\cos x) d x$
$=-e^{x} \cos x+e^{x} \int \cos x d x-\int\left\{\frac{d}{d x}\left(e^{x}\right) \int \cos x d x\right\} d x$
$=-e^{x} \cos x+e^{x} \sin x-\int e^{x} \sin x d x$
$=e^{x}(\sin x-\cos x)-I+c_{1}$
$\Rightarrow 2 \mathrm{I}=e^{x}(\sin x-\cos x)+c_{1}$
$\Rightarrow \mathrm{I}=\frac{1}{2} e^{x}(\sin x-\cos x)+\frac{1}{2} c_{1}$
$\int e^{x} \sin x d x=\frac{1}{2} e^{x}(\sin x-\cos x)+\mathrm{c}$
7(c) $\int e^{2 x} \sin x d x$ www.boighar.co [险.'०२]
«রি, $\mathrm{I}=\int e^{2 x} \sin x d x$
$=e^{2 x} \int \sin x d x-\int\left\{\frac{d}{d x}\left(e^{2 x}\right) \int \sin x d x\right\} d x$
$=e^{2 x}(-\cos x)-\int 2 e^{2 x}(-\cos x) d x$
$=-e^{2 x} \cos x+2 e^{2 x} \int \cos x d x-$
$2 \int\left\{\frac{d}{d x}\left(e^{2 x}\right) \int \cos x d x\right\} d x$
$=-e^{2 x} \cos x+2 e^{2 x} \sin x-2 \int 2 e^{2 x} \sin x d x$
$=-e^{2 x} \cos x+2 e^{2 x} \sin x-4 \int e^{2 x} \sin x d x$
$=e^{2 x}(2 \sin \dot{x}-\cos x)-4 I+c_{1}$
$\Rightarrow 5 \mathrm{I}=e^{2 x}(2 \sin x-\cos x)+c_{1}$
$\Rightarrow \mathrm{I}=\frac{e^{2 x}}{5}(2 \sin x-\cos x)+\frac{1}{5} c_{1}$
$\therefore \mathrm{I}=\int e^{2 x} \sin \hat{x} d x=\frac{e^{2 x}}{5}(2 \sin x-\cos x)+\mathrm{c}$
7(d) $\int e^{2 x} \cos ^{2} x d x=\int e^{2 x} \frac{1}{2}(1+\cos 2 x) d x$
$=\frac{1}{2}\left[\int e^{2 x} d x+\int e^{2 x} \cos 2 x d x\right]$
$=\frac{1}{2}\left[\frac{1}{2} e^{2 x}+\frac{e^{2 x}}{2^{2}+2^{2}}(2 \cos 2 x+2 \sin 2 x)\right]+c$
$=\frac{1}{2}\left[\frac{1}{2} e^{2 x}+\frac{e^{2 x}}{8}(2 \cos 2 x+2 \sin 2 x)\right]+c$
$=\frac{1}{8}(2+\cos 2 x+\sin 2 x) e^{2 x}+c$
8.(a) $\int e^{x}(\sin x+\cos x) d x$
[मि.'০৫,’’১; ঢা.’১০; థू.’১১]
$=\int e^{x} \sin x d x+\int e^{x} \cos x d x$
$=\int e^{x} \sin x d x+e^{x} \int \cos x d x-$

$$
\int\left\{\frac{d}{d x}\left(e^{x}\right) \int \cos x d x\right\} d x
$$

$=\int e^{x} \sin x d x+e^{x} \sin x-\int e^{x} \sin x d x$
$=e^{x} \sin x+\mathrm{c}$
दिকল্প পচ্মতি:
ধরি, $f(x)=\sin x, \quad f^{\prime}(x)=\cos x$ এবং
$\int e^{x}(\sin x+\cos x) d x=\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x$ $=e^{x} f(x)+c=e^{x} \sin x+c$
8(b) ধরি, $\mathrm{I}=\int e^{x} \sec x(1+\tan x) d x$
[রা.'০৩; য.'১১;চ.'১৩; প্র.ভ.প.'০৪]
এবং $f(x)=\sec x . \quad f^{\prime}(x)=\sec x \tan x$ এব゚
$\mathrm{I}=\int e^{x}(\sec x+\sec x \tan x) d x$
$=\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+c$
$\int e^{x} \sec x(1+\tan x) d x=e^{x} \sec x+c$
8.(c) ধরি, $\mathrm{I}=\int e^{x}\left(\tan ^{-1} x+\frac{1}{1+x^{2}}\right)$ बবং
$f(x)=\tan ^{-1} x \quad f^{\prime}(x)=\frac{1}{1+x^{2}}$ এবং
$\mathrm{I}=\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+c$

$$
\int e^{x}\left(\tan ^{-1} x+\frac{1}{1+x^{2}}\right)=e^{x} \tan ^{-1} x+c
$$

$8(\mathrm{~d}) \int e^{x}\{\tan x-\ln (\cos x)\} d x$

$f(x)=-\ln (\cos x)$
$\therefore f^{\prime}(x)=-\frac{-\sin x}{\cos x}=\tan x$ এবং
$\mathrm{I}=\int e^{x}\{-\ln (\cos x)+\tan x\} d x$
$=\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+c$
$\therefore \int e^{x}\{\tan x+\ln (\sec x)\} d x=-e^{x} \ln (\cos x)+c$
9.(a) $\int \frac{e^{x}}{x}(1+x \ln x) d x$ [ব. '०১; য.'०৭; मि.'১৩] ধরি, $\mathrm{I}=\int \frac{e^{x}}{x}(1+x \ln x) d x=\int e^{x}\left(\frac{1}{x}+\ln x\right) d x$ এবং $f(x)=\ln x$. णाइহনে $f^{\prime}(x)=\frac{1}{x}$ এবং
$\mathrm{I}=\int e^{x}\left(\ln x+\frac{1}{x}\right) d x=\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x$
$=e^{x} f(x)+c=e^{x} \ln x+c$
$\int \frac{e^{x}}{x}(1+x \ln x) d x=e^{x} \ln x+c$
9(b) $\int e^{-2 x}\left(\frac{1}{x}-2 \ln x\right) d x$
[कू..’०२]
$=\int e^{-2 x} \frac{1}{x} d x-2 \int e^{-2 x} \ln x d x$
$=e^{-2 x} \int \frac{1}{x} d x-\int\left\{\frac{d}{d x}\left(e^{-2 x}\right) \int \frac{1}{x} d x\right\} d x$
$-2 \int e^{-2 x} \ln x d x$
$=e^{-2 x} \ln x-\int\left(-2 e^{-2 x}\right) \ln x d x-2 \int e^{-2 x} \ln x d x$
$=e^{-2 x} \ln x+2 \int e^{-2 x} \ln x d x-2 \int e^{-2 x} \ln x d x$
$\therefore \int e^{-2 x}\left(\frac{1}{x}-2 \ln x\right) d x=e^{-2 x} \ln x+\mathrm{c}$
9(c) $\int e^{5 x}\left\{5 \ln x+\frac{1}{x}\right\} d x$
[চ.'০১; প্র.ভ.প.'১১]
$=\int 5 e^{5 x} \ln x d x+\int e^{5 x} \frac{1}{x} d x$
[প্র.ভ.タ. ঐ২] $\mid=\int 5 e^{5 x} \ln x d x+$

$$
\begin{align*}
& \left.e^{5 x} \int \frac{1}{x} d x-\int\left\{\frac{d}{d x}\left(e^{5 x}\right) \int \frac{1}{x} d x\right\} d x \right\rvert\,=\int\left\{\frac{1}{\left(x^{2}-1\right)(1+1)}+\frac{-1}{(-1-1)\left(x^{2}+1\right)}\right\} d x \\
& =\int 5 e^{5 x} \ln x d x+e^{5 x} \ln x-\int 5 e^{5 x} \ln x d x \\
& \int e^{5 x}\left\{5 \ln x+\frac{1}{x}\right\} d x=e^{5 x} \ln x+\mathrm{c} \\
& \text { 10.(a) } \int \frac{d x}{x^{2}+x} \\
& \text { [ব.'০৩] } \\
& =\int \frac{d x}{x(x+1)}=\int\left\{\frac{1}{x(0+1)}+\frac{1}{(x+1)(-1)}\right\} d x \\
& =\int\left(\frac{1}{x}-\frac{1}{x+1}\right) d x=\ln |x|-\ln |x+1|+c \\
& \text { 10(b) } \int \frac{x+35}{x^{2}-25} d x \tag{চ.’o8}\\
& =\int \frac{x+35}{(x-5)(x+5)} d x \\
& =\int\left\{\frac{5+35}{(x-5)(5+5)}+\frac{-5+35}{(-5-5)(x+5)}\right\} d x \\
& =\int\left\{\frac{40}{10(x-5)}-\frac{30}{10(x+5)}\right\} d x \\
& =\int\left\{\frac{4}{x-5}-\frac{3}{x+5}\right\} d x \\
& =4 \ln |x-5|-3 \ln |x+5|+c \\
& \text { 10(c) } \int \frac{2 x-1}{x(x-1)(x-2)} d x \tag{ঢা.’০১}\\
& =\int\left\{\frac{2.0-1}{x(0-1)(0-2)}+\frac{2.1-1}{1(x-1)(1-2)}\right. \\
& \left.+\frac{2.2-1}{2(2-1)(x-2)}\right\} d x \\
& =\int\left\{-\frac{1}{2} \frac{1}{x}-\frac{1}{x-1}+\frac{3}{2(x-2)}\right\} d x \\
& =-\frac{1}{2} \ln |x|-\ln |x-1|+\frac{3}{2} \ln |x-2|+c \\
& \text { 10(d) } \int \frac{x^{2} d x}{x^{4}-1} \\
& \text { [রা.’১১; প্র.U.প.'ゅ১] } \\
& =\int \frac{x^{2} d x}{\left(x^{2}-1\right)\left(x^{2}+1\right)} \\
& =\frac{1}{2} \int \frac{1}{x^{2}-1^{2}} d x+\frac{1}{2} \int \frac{1}{1+x^{2}} d x \\
& =\frac{1}{2} \cdot \frac{1}{2.1} \ln \left|\frac{x-1}{x+1}\right|+\frac{1}{2} \tan ^{-1} x+c \\
& =\frac{1}{4} \ln \left|\frac{x-1}{x+1}\right|+\frac{1}{2} \tan ^{-1} x+c \\
& \text { 10(e) ধরি, } \mathrm{I}=\int \frac{d x}{e^{2 x}-3 e^{x^{\prime}}} \quad \text { [প্র.ভ.श.'०8] } \\
& \text { এবং } e^{x}=z \text {. তাহনে } e^{x} d x=d z \Rightarrow d x=\frac{d z}{z} \text { এবং } \\
& \mathrm{I}=\int \frac{1}{z^{2}-3 z} \frac{d z}{z}=\int \frac{d z}{z^{2}(z-3)} \\
& \text { এখন ধরি, } \frac{1}{z^{2}(z-3)} \equiv \frac{A}{z}+\frac{B}{z^{2}}+\frac{C}{z-3} \\
& \therefore \quad 1 \equiv A z(z-3)+B(z-3)+C z^{2} \cdots(1) \\
& \text { (1) এ } z=3 \text { বসিয়ে পাই, } 1=9 C \Rightarrow C=\frac{1}{9} \\
& \text { (1) এ } z=0 \text { बসिয়ে পাই, } 1=-3 B \Rightarrow B=-\frac{1}{3} \\
& \text { (1) এর উডয়পক্ষ পেকে } z^{2} \text { এর সহগ সমীকৃণ করে শাই, } \\
& 0=A+C \Rightarrow A=-C=-\frac{1}{9} \\
& \therefore \mathrm{I}=\int\left\{-\frac{1}{9} \frac{1}{z}-\frac{1}{3} \frac{1}{z^{2}}+\frac{1}{9(z-3)}\right\} d z \\
& =-\frac{1}{9} \ln |z|-\frac{1}{3}\left(-\frac{1}{z}\right)+\frac{1}{9} \ln |z-3|+c \\
& =\frac{1}{9} \ln \left|\frac{z-3}{z}\right|+\frac{1}{3 z}+c \\
& \therefore \int \frac{d x}{e^{2 x}-3 e^{x}}=\frac{1}{9} \ln \left|\frac{e^{x}-3}{e^{x}}\right|+\frac{1}{3 e^{x}}+c
\end{align*}
$$

> ধরি, $\frac{1}{x^{2}(x-1)} \equiv \frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1}$
> $\Rightarrow 1=A x(x-1)+B(x-1)+C x^{2} \cdots(1)$
> (1) $এ x=0$ বসিয়ে পাই, $1=-B \Rightarrow B=-1$
(1) $এ x=1$ বসিয়ে পাই, $1=C \Rightarrow C=1$
(1) এর উডয়পক্ থেকে x^{2} এর সহগ সমীকৃত করে পাই, $0=A+C \Rightarrow A=-C=-1$
$\int \frac{1}{x^{2}(x-1)} d x=\int\left\{-\frac{1}{x}-\frac{1}{x^{2}}+\frac{1}{x-1}\right\} d z$
$=-\ln |x|-\left(-\frac{1}{x}\right)+\ln |x-1|+c$
$=\ln \left|\frac{x-1}{x}\right|+\frac{1}{x}+c$
12 ধরি, $\mathrm{I}=\int \frac{x+2}{(1-x)\left(x^{2}+4\right)} d x$ এবং
$\frac{x+2}{(1-x)\left(x^{2}+4\right)} \equiv \frac{A}{1-x}+\frac{B x+C}{x^{2}+4}$
$\Rightarrow x+2=A\left(x^{2}+4\right)+(B x+C)(1-x) \cdots(1)$
(1) $এ x=1$ বসিয়ে পাই, $1+2=5 \mathrm{~A} \Rightarrow \mathrm{~A}=\frac{3}{5}$
(1) এর উড্যপক্ষ থেকে x^{2} এর সহগ সমীকৃত করে পাই, $0=A-B \Rightarrow B=A=\frac{3}{5}$
(1) এর উড্যপক্ম থেকে ্রববপদ সমীকৃত করে পাই,

$$
2=4 A+C \Rightarrow C=2-\frac{12}{5}=-\frac{2}{5}
$$

$\therefore \mathrm{I}=\frac{3}{5} \int \frac{1}{1-x} d x+\int \frac{\frac{3}{5} x-\frac{2}{5}}{x^{2}+4} d x$
$=-\frac{3}{5} \ln |1-x|+\frac{3}{10} \int \frac{2 x d x}{x^{2}+4}-\frac{2}{5} \int \frac{d x}{x^{2}+2^{2}}$
$=-\frac{3}{5} \ln |1-x|+\frac{3}{10} \ln \left(x^{2}+4\right)-\frac{2}{5.2} \tan ^{-1} \frac{x}{2}+c$
$=-\frac{3}{5} \ln |1-x|+\frac{3}{10} \ln \left(x^{2}+4\right)-\frac{1}{5} \tan ^{-1} \frac{x}{2}+c$
13(a) $\int \frac{x^{7}}{\left(1-x^{4}\right)^{2}} d x=\int \frac{-x^{3}\left(1-x^{4}\right)+x^{3}}{\left(1-x^{4}\right)^{2}} d x$
$=\int\left\{\frac{-x^{3}}{1-x^{4}}+\frac{x^{3}}{\left(1-x^{4}\right)^{2}}\right\} d x$
$=\frac{1}{4} \int \frac{d\left(1-x^{4}\right)}{1-x^{4}}-\frac{1}{4} \int \frac{d\left(1-x^{4}\right)}{\left(1-x^{4}\right)^{2}}$
$=\frac{1}{4} \ln \left|1-x^{4}\right|-\frac{1}{4}\left(-\frac{1}{1-x^{4}}\right)+c$
$=\frac{1}{4}\left(\ln \left|1-x^{4}\right|+\frac{1}{1-x^{4}}\right)+c$
13(b) ধরি, $\mathrm{I}=\int \frac{(x-2)^{2}}{(x+1)^{2}} d x=\int \frac{x^{2}-4 x+4}{x^{2}+2 x+2} d x$
$=\int \frac{\left(x^{2}+2 x+2\right)-6 x+2}{x^{2}+2 x+2} d x$
$=\int\left\{1-\frac{6 x-2}{(x+1)^{2}}\right\} d x$ Aヌং
$\frac{6 x-2}{(x+1)^{2}} \equiv \frac{A}{x+1}+\frac{B}{(x+1)^{2}}$
$\Rightarrow 6 x-2=A(x+1)+B \cdots(1)$
(1) $\wedge x=-1$ বসিয়ে পাই, $\mathrm{B}=-6-2=-8$
(1) এর উভয়পক্ষ লেকে x এর সহগ সমীকৃত করে পাই, $6=A \Rightarrow A=6$
$\therefore \mathrm{I}=\int\left\{1-\frac{6}{x+1}+\frac{8}{(x+1)^{2}}\right\} d x$
$=x-6 \ln |x+1|-\frac{8}{x+1}+c$
13(c) थরি, $\mathrm{I}=\int \frac{\sin 2 x d x}{3+5 \cos x}=\int \frac{2 \sin x \cos x d x}{3+5 \cos x}$
এবং $\cos x=z$. ঢাহনে $-\sin x d x=d z$ এবং

$$
\begin{aligned}
\mathrm{I} & =\int \frac{-2 z d z}{3+5 z}=-\frac{2}{5} \int \frac{3+5 z-3}{3+5 z} d z \\
& =-\frac{2}{5} \int\left(1-\frac{3}{3+5 z}\right) d z \\
& =-\frac{2}{5}\left(z-\frac{3}{5} \ln |3+5 z|\right)+c \\
& =\frac{2}{25}(3 \ln |3+5 z|-5 z)+c \\
& =\frac{2}{25}(3 \ln |3+5 \cos x|-5 \cos x)+c
\end{aligned}
$$

অতিব্রিক্ত প্রশ্ন (সমাধানসহ)

1. $\int \frac{d x}{\sqrt{x+a}+\sqrt{x+b}}$
$=\int \frac{(\sqrt{x+a}-\sqrt{x+b}) d x}{(\sqrt{x+a}+\sqrt{x+b})(\sqrt{x+a}-\sqrt{x+b})}$
$=\int \frac{(\sqrt{x+a}-\sqrt{x+b}) d x}{(x+a)-(x+b)}$
$=\int \frac{(x+a)^{1 / 2}-(x+b)^{1 / 2}}{a-b} d x$
$=\frac{1}{a-b}\left[\frac{(x+a)^{\frac{1}{2}+1}}{\frac{1}{2}+1}-\frac{(x+b)^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right]+c$
$=\frac{2}{3(a-b)}\left[(x+a)^{3 / 2}-(x+b)^{3 / 2}\right]+c$
2. $\int 3 \sin x \cos x d x$
$=\int \frac{3}{2}(2 \sin x \cos x) d x=\frac{3}{2} \int \sin 2 x d x$
$=\frac{3}{2}\left(-\frac{1}{2} \cos 2 x\right)+c=-\frac{3}{4} \cos 2 x+c$
3. (a) $\int 3 \cos 3 x \cos x d x$
$=\int \frac{3}{2}\{\cos (3 x+x)+\cos (3 x-x)\} d x$
$=\int \frac{3}{2}(\cos 4 x+\cos 2 x) d x$
$=\frac{3}{2}\left(\frac{1}{4} \sin 4 x+\frac{1}{2} \sin 2 x\right)+c$
$=\frac{3}{8}(\sin 4 x+2 \sin 2 x)+c$
3(b) $\int \cos ^{2} \frac{x}{2} d x=\int \frac{1}{2}(1+\cos x) d x$

$$
=\frac{1}{2}(x+\sin x)+c
$$

4(a) $\int \cos x \cos (\sin x) d x$
$=\int \cos (\sin x) d(\sin x)=\cos (\sin x)+c$
4(b) ষরি, $\mathrm{I}=\int\left(e^{x}+\frac{1}{x}\right)\left(e^{x}+\ln x\right) d x$

এবং $e^{x}+\ln x=z$. তাহলে $\left(e^{x}+\frac{1}{x}\right) d x=d z$ এবং
$\mathrm{I}=\int z d z=\frac{1}{2} z^{2}+c=\frac{1}{2}\left(e^{x}+\ln x\right)^{2}+c$
$5 \int e^{3 \cos 2 x} \sin 2 x d x$
$=-\frac{1}{6} \int e^{3 \cos 2 x}(-6 \sin 3 x d x)$
$=-\frac{1}{6} e^{3 \cos 2 x}+c$
6(a) ধরি, $\mathrm{I}=\int \sin ^{3} x \cos x d x$
এবং $\sin x=z$. তাহলে, $\cos x d x=d z$ এব゚
$\mathrm{I}=\int z^{3} d z=\frac{1}{4} z^{4}+c=\frac{1}{4} \sin ^{4} x+c$
6(b) ধরি, $\mathrm{I}=\int \tan ^{3} x \sec ^{2} x d x$ এবং $\tan x=\mathrm{z}$
তাহলে, $\sec ^{2} x \mathrm{~d} x=\mathrm{dz}$ এবং
$\dot{I}=\int z^{3} d z=\frac{z^{3+1}}{3+1}+c=\frac{1}{4} \tan ^{4} x+c$
6(c) $\int \sin ^{2}(3 x+2) d x$
$=\int \frac{1}{2}\{1-\cos 2(3 x+2)\} d x$
$=\frac{1}{2}\left\{\int d x-\int \cos (6 x+4) d x\right\}$
$=\frac{1}{2}\left\{x-\frac{\sin (6 x+4)}{6}\right\}+c$
$=\frac{1}{2} x-\frac{1}{12} \sin (6 x+4)+c$
7.(a) $\int \frac{(\ln x)^{2}}{x} d x=\int(\ln x)^{2} d(\ln x)$
$=\frac{(\ln x)^{2+1}}{2+1}+\bar{c}=\frac{1}{3}(\ln x)^{3}+c$
7(b) $\int \frac{\sqrt{1+\ln x}}{x} d x$
[রা.'os]
$=\frac{(1+\ln x)^{\frac{1}{2}+1}}{\frac{1}{2}+1}+c=\frac{2}{3}(1+\ln x)^{3 / 2}+c$
7(c) $\int \frac{\cos (\ln x)}{x} d x=\int \cos (\ln x) d(\ln x)$

$$
=\sin (\ln x)+c
$$

8. $\int \frac{e^{-x} d x}{\left(5+e^{-x}\right)^{2}}$
$=\int\left(5+e^{-x}\right)^{-2} d\left(5+e^{-x}\right) \cdot(-1)$
$=-\frac{\left(5+e^{-x}\right)^{-2+1}}{-2+1}+c=\frac{1}{5+e^{-x}}+c$
9. $\int \frac{e^{x}(1+x) d x}{\cos ^{2}\left(x e^{x}\right)}$

४রি, $x e^{x}=z \quad e^{x}(x+1) d x=d z$

$$
\int \frac{e^{x}(1+x) d x}{\cos ^{2}\left(x e^{x}\right)}=\int \frac{d z}{\cos ^{2} z}=\int \sec ^{2} z d z
$$

$=\tan z+c=\tan \left(x e^{x}\right)+c$
$10(\mathrm{a})$ ধরি, $\mathrm{I}=\int \frac{\sin (2+5 \ln x)}{x} d x$ बবং
$2+5 \ln x=z$. ঢাহলে, $\frac{5}{x} \mathrm{~d} x=\mathrm{d} z$ जबং
$\mathrm{I}=\frac{1}{5} \int \sin z d z=\frac{1}{5}(-\cos z)+c$
$=-\frac{1}{5} \cos (2+5 \ln x)+c$
10(b) $\int \frac{d x}{\sin (x-a) \sin (x-b)}$
$=\int \frac{\sin \{(x-b)-(x-a)\} d x}{\sin (a-b) \sin (x-a) \sin (x-b)}$
$=\int \frac{\sin (x-b) \cos (x-a)-\cos (x-b) \sin (x-a)\} d x}{\sin (a-b) \sin (x-a) \sin (x-b)}$
$=\frac{1}{\sin (a-b)} \int\{\cot (x-a)-\cot (x-b)\} d x$
$=\frac{\ln |\sin (x-a)|-\ln |\sin (x-b)|}{\sin (a-b)}+c$
$=\frac{1}{\sin (a-b)} \ln \left|\frac{\sin (x-a)}{\sin (x-b)}\right|+c$
11 (a) $\int \frac{\sec ^{2} x d x}{\sqrt{1+\tan x}}=\int \frac{d(1+\tan x)}{\sqrt{1+\tan x}}$
$=2 \sqrt{1+\tan x}+c$
11(b) $\int \frac{d x}{\sqrt{\left(\sin ^{-1} x\right)} \sqrt{1-x^{2}}}=\int \frac{d\left(\sin ^{-1} x\right)}{\sqrt{\left(\sin ^{-1} x\right)}}$

$$
\left[d\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} d x\right]
$$

$=2 \sqrt{\sin ^{-1} x}+c \quad\left\lceil\cdots \int \frac{d x}{\sqrt{x}}=2 \sqrt{x}\right]$
$11(\mathrm{c})$ ধরি, $\mathrm{I}=\int \frac{d x}{\left(1+x^{2}\right) \sqrt{\tan ^{-1} x+3}}$
এবং $\tan ^{-1} x+3=z$. जाइलে, $\frac{d x}{1+x^{2}}=\mathrm{dz}$ এব?
$\mathrm{I}=\int \frac{d z}{\sqrt{z}}=2 \sqrt{z}+c \quad\left[\because \int \frac{1}{\sqrt{x}} d x=2 \sqrt{x}\right]$
$\therefore \int \frac{d x}{\left(1+x^{2}\right) \sqrt{\tan ^{-1} x+3}}=2 \sqrt{\tan ^{-1} x+3}+c$
11(d) $\int \frac{\tan (\ln |x|)}{x} d x=\int \tan (\ln |x|) d(\ln |x|)$
$=\ln \{\sec (\ln |x|)\}+c$
12(a) $\int \frac{\sec ^{2} x d x}{\sqrt{1-\tan ^{2} x}}=\int \frac{d(\tan x)}{\sqrt{1-\tan ^{2} x}}$
$=\sin ^{-1}(\tan x)+c$
12(b) $\int \frac{d x}{\sqrt{15-4 x-4 x^{2}}}$
$=\int \frac{d x}{\sqrt{16-\left\{(2 x)^{2}+2.2 x .1+1^{2}\right\}}}$
$=\frac{1}{2} \int \frac{d(2 x+1)}{\sqrt{4^{2}-(2 x+1)^{2}}}=\frac{1}{2} \sin ^{-1}\left(\frac{2 x+1}{4}\right)+c$

$$
\begin{aligned}
& 12(c) \int \frac{d x}{\sqrt{x(4-x)}}=\int \frac{d x}{\sqrt{4 x-x^{2}}} \\
& =\int \frac{d x}{\sqrt{2^{2}-\left(x^{2}-4 x+2^{2}\right)}} \\
& =\int \frac{d(x-2)}{\sqrt{2^{2}-(x-2)^{2}}}=\sin ^{-1}\left(\frac{x-2}{2}\right)+c \\
& 12(\mathrm{~d}) \int \frac{d x}{\sqrt{a^{2}-b^{2}(1-x)^{2}}} \\
& =-\frac{1}{b} \int \frac{d(b-b x)}{\sqrt{a^{2}-(b-b x)^{2}}} \\
& =-\frac{1}{b} \sin ^{-1}\left(\frac{b-b x}{a}\right)+c
\end{aligned}
$$

12(e) ধরি, $\mathrm{I}=\int \sqrt{\tan x} d x$ এবং $\tan x=\mathrm{z}^{2}$ ঢাহনে, $\sec ^{2} x \mathrm{dx}=2 \mathrm{zdz}$

$$
\Rightarrow \mathrm{dx}=\frac{2 z d z}{1+\tan ^{2} x}=\frac{2 z}{1+z^{4}} \text { बবং }
$$

$$
\mathrm{I}=\int \frac{2 z^{2} d z}{1+z^{4}}=\int \frac{\left(z^{2}+1\right)-\left(z^{2}-1\right)}{1+z^{4}} d z
$$

$$
=\int\left[\frac{z^{2}+1}{z^{4}+1}+\frac{z^{2}-1}{z^{4}+1}\right] d z
$$

$$
=\int\left[\frac{1+\frac{1}{z^{2}}}{z^{2}+\frac{1}{z^{2}}}+\frac{1-\frac{1}{z^{2}}}{z^{2}+\frac{1}{z^{2}}}\right] d z
$$

$$
=\int\left[\frac{1+\frac{1}{z^{2}}}{\left(z-\frac{1}{z}\right)^{2}+2}+\frac{1-\frac{1}{z^{2}}}{\left(z+\frac{1}{z}\right)^{2}-2}\right] d z
$$

$$
=\int \frac{d\left(z-\frac{1}{z}\right)}{\left(z-\frac{1}{z}\right)^{2}+(\sqrt{2})^{2}}+\int \frac{d\left(z+\frac{1}{z}\right)}{\left(z+\frac{1}{z}\right)^{2}-(\sqrt{2})^{2}}
$$

$$
=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{z-\frac{1}{z}}{\sqrt{2}}+\frac{1}{2 \sqrt{2}} \ln \left|\frac{z-\frac{1}{z}-\sqrt{2}}{z-\frac{1}{z}+\sqrt{2}}\right|+c
$$

$$
\left\lvert\, \begin{aligned}
& =\frac{1}{\sqrt{2}} \tan ^{-1} \frac{z^{2}-1}{\sqrt{2} z}+\frac{1}{2 \sqrt{2}} \ln \left|\frac{z^{2}-1-\sqrt{2} z}{z^{2}-1+\sqrt{2} z}\right|+c \\
& =\frac{1}{\sqrt{2}} \tan ^{-1} \frac{\tan x-1}{\sqrt{2 \tan x}}+
\end{aligned}\right.
$$

$$
\frac{1}{2 \sqrt{2}} \ln \left|\frac{\tan x-\sqrt{2 \tan x}-1}{\tan x+\sqrt{2 \tan x}-1}\right|+c
$$

13. थরि, $\mathrm{I}=\int 3 \cos ^{3} x \cos 2 x d x$ $\cos ^{3} x \cos 2 x=\frac{1}{4}(3 \cos x+\cos 3 x) \cos 2 x$
$=\frac{1}{4}[3 \cos x \cos 2 x+\cos 3 x \cos 2 x]$
$=\frac{1}{4}\left[3 \cdot \frac{1}{2}(\cos 3 x+\cos x)+\frac{1}{2}(\cos 5 x+\cos x)\right]=$ $\frac{1}{8}(3 \cos 3 x+4 \cos x+\cos 5 x)$
$\therefore \mathrm{I}=\frac{3}{8} \int(3 \cos 3 x+4 \cos x+\cos 5 x) d x$ $=\frac{3}{8}\left(3 \cdot \frac{1}{3} \sin 3 x+4 \sin x+\frac{1}{5} \sin 5 x\right)+\mathrm{c}$
14(a) ধরি, $\mathrm{I}=\int e^{2 x} \cos x d x$
$=e^{2 x} \int \cos x d x-\int\left\{\frac{d}{d x}\left(e^{2 x}\right) \int \cos x d x\right\} d x$
$=e^{2 x} \sin x-\int 2 e^{2 x} \sin x d x$
$=e^{2 x} \sin x-2 e^{2 x} \int \sin x d x+$ $2 \int\left\{\frac{d}{d x}\left(e^{2 x}\right) \int \sin x d x\right\} d x$
$=e^{2 x} \sin x-2 e^{2 x}(-\cos x)+2 \int 2 e^{2 x}(-\cos x) d x$
$=e^{2 x} \sin x+2 e^{2 x} \cos x-4 \int e^{2 x} \cos x d x$
$=e^{2 x}(\sin x+2 \cos x)-4 \mathrm{I}+c_{1}$
$\Rightarrow 5 \mathrm{I}=e^{2 x}(\sin x+2 \cos x)+c_{1}$
$\Rightarrow \mathrm{I}=\frac{e^{2 x}}{5}(\sin x+2 \cos x)+\frac{1}{5} c_{1}$
$\therefore \mathrm{I}=\int e^{2 x} \sin x d x=\frac{e^{2 x}}{5}(\sin x+2 \cos x)+\mathrm{c}$
14.(b) $\int e^{-3 x} \cos 4 x d x$
$=\frac{e^{-3 x}}{3^{2}+4^{2}}(-3 \cos 4 x+4 \sin 4 x)+c$
[সূত্র প্রয়োগ করে।] $=\frac{e^{-3 x}}{25}(-3 \cos 4 x+4 \sin 4 x)+c$

15(a) ধরি, $\mathrm{I}=\int e^{x} \frac{1+\sin x}{1+\cos x} d x$
$=\int e^{x}\left\{\frac{1}{1+\cos x}+\frac{\sin x}{1+\cos x}\right\} d x$
এবং $f(x)=\frac{\sin x}{1+\cos x}$

$$
f^{\prime}(x)=\frac{(1+\cos x) \cos x-\sin x(0-\sin x)}{(1+\cos x)^{2}}
$$

$$
=\frac{\cos x+\cos ^{2} x+\sin ^{2} x}{(1+\cos x)^{2}}
$$

$$
=\frac{1+\cos x}{(1+\cos x)^{2}}=\frac{1}{1+\cos x} \text { এবং }
$$

$$
\mathrm{I}=\int e^{x}\left\{\frac{\sin x}{1+\cos x}+\frac{1}{1+\cos x}\right\} d x
$$

$$
=\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+c
$$

$$
\therefore \mathrm{I}=\int e^{x} \frac{1+\sin x}{1+\cos x} d x=e^{x} \frac{\sin x}{1+\cos x}+c
$$

15(b) $\int e^{a x}(a \sin b x+b \cos b x) d x$
$=\int a e^{a x} \sin b x d x+\int b e^{a x} \cos b x d x$
$=a \sin b x \int e^{a x} d x-\int\left\{\frac{d}{d x}(a \sin b x) \int e^{a x} d x\right\} d x$

$$
+\int b e^{a x} \cos b x d x
$$

$=a \sin b x \cdot\left(\frac{e^{a x}}{a}\right)-\int(a b \cos b x)\left(\frac{e^{a x}}{a}\right) d x$

$$
+\int b e^{a x} \cos b x d x
$$

$=e^{a x} \sin b x-\int b e^{a x} \cos b x d x$

$$
+\int b e^{a x} \cos b x d x
$$

$\therefore \int e^{a x}(a \sin b x+b \cos b x) d x=e^{a x} \sin b x+c$
16(a) $\int \frac{x-3}{(1-2 x)(1+x)} d x$
$=\int\left[\frac{\frac{1}{2}-3}{(1-2 x)\left(1+\frac{1}{2}\right)}+\frac{-1-3}{\{1-2(-1)\}(1+x)}\right] d x$
$=\int\left[\frac{-\frac{5}{2}}{\frac{3}{2}(1-2 x)}+\frac{-4}{3(1+x)}\right] d x$
$=-\frac{5}{3}\left(-\frac{1}{2}\right) \int \frac{d(1-2 x)}{(1-2 x)}-\frac{4}{3} \int \frac{1}{1+x} d x$
$=\frac{5}{6} \ln |1-2 x|-\frac{4}{3} \ln |1+x|+c$
16(b) $\int \frac{d x}{x^{4}-1}=\int \frac{d x}{\left(x^{2}-1\right)\left(x^{2}+1\right)}$
$=\int\left\{\frac{1}{\left(x^{2}-1\right)(1+1)}+\frac{1}{(-1-1)\left(x^{2}+1\right)}\right\} d x$
$=\frac{1}{2} \int \frac{d x}{x^{2}-1^{2}}-\frac{1}{2} \int \frac{1}{1+x^{2}} d x$
$=\frac{1}{2} \cdot \frac{1}{2.1} \ln \left|\frac{x-1}{x+1}\right|-\frac{1}{2} \tan ^{-1} x+c$
$=\frac{1}{4} \ln \left|\frac{x-1}{x+1}\right|-\frac{1}{2} \tan ^{-1} x+c$
17(a) $\int \frac{1}{x(x+1)^{2}} d x$
ধরি, $\frac{1}{x(x+1)^{2}} \equiv \frac{A}{x}+\frac{B}{x+1}+\frac{C}{(x+1)^{2}}$
$\Rightarrow 1=A(x+1)^{2}+B x(x+1)+\bar{C} x \cdots(1)$
(1) $এ x=0$ বসিয়ে পাই, $1=A \Rightarrow A=1$
(1) a $x=-1$ বगिয়़ পাই, $1=-C \Rightarrow C=-1$
(1) এর উভ্যপক্ থেকে x^{2} এর সহগ সনীকৃত করে পাই
$0=A+B \Rightarrow B=-A=-1$
$\therefore \int \frac{1}{x(x+1)^{2}} d x=\int\left\{\frac{1}{x}-\frac{1}{x+1}-\frac{1}{(x+1)^{2}}\right\} d z$

$$
\begin{aligned}
& =\ln |x|-\ln |x+1|-\left(-\frac{1}{x+1}\right)+c \\
& =\ln \left|\frac{x}{x+1}\right|+\frac{1}{x+1}+c
\end{aligned}
$$

17(b) $\int \frac{3 x+1}{(x+1)^{2}} d x=\int \frac{3(x+1)-2}{(x+1)^{2}} d x$
$=\int\left\{\frac{3(x+1)}{(x+1)^{2}}-\frac{2}{(x+1)^{2}}\right\} d x$
$=\int\left\{\frac{3}{x+1}-\frac{2}{(x+1)^{2}}\right\} d x$
$=3 \ln |x+1|-2\left(-\frac{1}{x+1}\right)+c$
$=3 \ln |x+1|+\frac{2}{x+1}+c$
18. (a) $\int \frac{d x}{x\left(x^{2}+1\right)} \int \frac{\left(x^{2}+1\right)-x^{2} d x}{x\left(x^{2}+1\right)}$
$=\int\left\{\frac{1}{x}-\frac{x}{x^{2}+1}\right\} d x$
$=\int \frac{1}{x} d x-\frac{1}{2} \int \frac{(2 x+0) d x}{x^{2}+1}$
$=\ln |x|-\frac{1}{2} \ln \left(x^{2}+1\right)+c$
18(b) ४রি, $\mathrm{I}=\int \frac{x d x}{(x-1)\left(x^{2}+4\right)}$ এষং
$\frac{x}{(x-1)\left(x^{2}+4\right)} \equiv \frac{A}{x-1}+\frac{B x+C}{x^{2}+4}$
$\Rightarrow x=A\left(x^{2}+4\right)+(B x+C)(x-1) \cdots(1)$
(1) এ $x=1$ বসिয়ে পাই, $1=5 \mathrm{~A} \Rightarrow \mathrm{~A}=\frac{1}{5}$
(1) এর উভযসপক্ষ থেকে \dot{x}^{2} এন্গ সহগ সমীকৃত করে পাই, $0=A+B \Rightarrow B=-A=-\frac{1}{5}$
(1) এর উডয়পক্ণ থেকে ধ্রেপদ সমীক্ত করে পাই,
$0=4 \Lambda-C \rightarrow C=4 A=\frac{4}{5}$
$I=\frac{1}{5} \int \frac{1}{x-1} d x+\int \frac{-\frac{1}{5} x+\frac{4}{5}}{x^{2}+4} d x$
$=\frac{1}{5} \ln |x-1|-\frac{1}{10} \int \frac{2 x d x}{x^{2}+4}+\frac{4}{5} \int \frac{d x}{x^{2}+2^{2}}$
$=\frac{1}{5} \ln |x-1|-\frac{1}{10} \ln \left(x^{2}+4\right)+\frac{4}{5} \cdot \frac{1}{2} \tan ^{-1} \frac{x}{2}+c$
$=\frac{1}{5} \ln |x-1|-\frac{1}{10} \ln \left(x^{2}+4\right)+\frac{2}{5} \tan ^{-1} \frac{x}{2}+c$
19.(a) $\int x e^{-x} d x$
$=x \int e^{-x} d x-\int\left\{\frac{d}{d x}(x) \int e^{-x} d x\right\} d x$
$=-x e^{-x}-\int 1 .\left(-e^{-x}\right) d x=-x e^{x}-e^{-x}+c$
19(b) $\int x e^{a x} d x$
$=x \int e^{a x} d x-\int\left\{\frac{d}{d x}(x) \int e^{a x} d x\right\} d x$
$=x \cdot \frac{1}{a} e^{a x}-\int 1 \cdot\left(\frac{1}{a} e^{a x}\right) d x=\frac{1}{a} x e^{a x}-\frac{1}{a^{2}} e^{a x}+c$
$=\frac{1}{a^{2}}(a x-1) e^{a x}+c$
19(c) $\int x^{3} e^{2 x} d x$
$=x^{3} \int e^{2 x} d x-\int\left\{\frac{d}{d x}\left(x^{3}\right) \int e^{2 x} d x\right\} d x$
$=x^{3}\left(\frac{1}{2} e^{2 x}\right)-\int\left(3 x^{2}\right)\left(\frac{1}{2} e^{2 x}\right) d x$
$=\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2}\left[x^{2} \int e^{2 x}-\int\left\{\frac{d}{d x}\left(x^{2}\right) \int e^{2 x} d x\right\} d x\right]$
$=\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2}\left[x^{2} \cdot \frac{1}{2} e^{2 x}-\int(2 x) \cdot \frac{1}{2} e^{2 x} d x\right]$
$=\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2}\left[\frac{x^{2} e^{2 x}}{2}-\left\{x \int e^{2 x}-\int 1 \cdot \frac{e^{2 x}}{2} d x\right\}\right]$
$=\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2}\left[\frac{x^{2} e^{2 x}}{2}-\left\{x \frac{e^{2 x}}{2}-\frac{e^{2 x}}{4}\right\}\right]+c$
$=\left(\frac{1}{2} x^{3}-\frac{3}{4} x^{2}+\frac{3}{4} x-\frac{3}{8}\right) e^{2 x}+c$

$$
\begin{aligned}
& \int x^{3} e^{2 x} d x=\left\{\frac{1}{2} x^{3}-\frac{1}{2^{2}}\left(3 x^{2}\right)+\frac{1}{2^{3}}(6 x)-\right. \\
& \left.\left.\frac{1}{2^{4}} \cdot 6\right\} e^{2 x}=\left\{\frac{1}{2} x^{3}-\frac{3}{4} x^{2}+\frac{3}{4} x-\frac{3}{8}\right\} e^{2 x}\right\}
\end{aligned}
$$

20. (a) $\int x \sin x d x$
$=x \int \sin x d x-\int\left\{\frac{d}{d x}(x) \int \sin x d x\right\} d x$
$=x(-\cos x)-\int 1 \cdot(-\cos x) d x$
$=-x \cos x+\sin x+c$
21. (b) $\int x \cos x d x$
$=x \int \cos x d x-\int\left\{\frac{d}{d x}(x) \int \cos x d x\right\} d x$
$=x \sin x-\int 1 \cdot \sin x d x$
$=x \sin x+\cos x+c$
20(c) $\int x^{2} \sin x d x$
$=x^{2} \int \sin x d x-\int\left\{\frac{d}{d x}\left(x^{2}\right) \int \sin x d x\right\} d x$
$=x^{2}(-\cos x)-\int 2 x(-\cos x) d x$
$=-x^{2} \cos x+2\left[x \int \cos x-\right.$

$$
\left.\int\left\{\frac{d}{d x}(x) \int \cos x d x\right\} d x\right]
$$

$=-x^{2} \cos x+2\left[x \sin x-\int 1 \cdot \sin x d x\right]$
$=-x^{2} \cos x+2[x \sin x-(-\cos x)]+c$
$=-x^{2} \cos x+2 x \sin x+2 \cos x+c$
20(d) ধরি, $\mathrm{I}=\int \cos \sqrt{x} d x$ এবং $\sqrt{x}=z$
णाइलে $\frac{1}{2 \sqrt{x}} d x=d z \Rightarrow d x=2 z d z$ जब̣?
$\mathrm{I}=\int 2 z \cos z d z$
$=2\left\{z \int \cos z d z-\int\left\{\frac{d}{d z}(z) \int \cos z d z\right\} d z\right\rceil$
$\left.=2[z \sin z)-\int 1 \cdot \sin z d z\right]$
$=2 z \sin z-2(-\cos z)+c$
$=2 \sqrt{x} \sin \sqrt{x}+2 \cos \sqrt{x}+c$
21.(a) $\int x^{2} \cos ^{2} x d x$

21(d) ধরি, $\mathrm{I}=\int \sec ^{3} x d x=\int \sec ^{2} x \sec x d x$ $=\sec x \int \sec ^{2} x d x-\int\left\{\frac{d}{d x}(\sec x) \int \sec ^{2} x d x\right\} d x$ $=\sec x \tan x-\int \sec x \tan x \cdot \tan x d x$
$=\sec x \tan x-\int \sec x\left(\sec ^{2} x-1\right) d x$
$=\sec x \tan x-\int \sec ^{3} x d x+\int \sec x d x$
$\Rightarrow \mathrm{I}=\sec x \tan x-\mathrm{I}+\ln \left\lvert\, \tan \left(\frac{\pi}{4}+\frac{x}{2}\right)+c_{1}\right.$
$\Rightarrow 2 \mathrm{I}=\sec x \tan x+\ln \left\lvert\, \tan \left(\frac{\pi}{4}+\frac{x}{2}\right)+c_{1}\right.$
$\left.\Rightarrow \mathrm{I}=\frac{1}{2} \sec x \tan x+\frac{1}{2} \ln \right\rvert\, \tan \left(\frac{\pi}{4}+\frac{x}{2}\right)+\frac{1}{2} c_{1}$
$\Rightarrow \mathrm{I}=\frac{1}{2} \sec x \tan x+\frac{1}{2} \ln \left|\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\right|+c$
22(a) $\int x^{2} \ln x d x$
$=\ln x \int x^{2} d x-\int\left\{\frac{d}{d x}(\ln x) \int x^{2} d x\right\} d x$
$=\ln x \cdot \frac{x^{3}}{3}-\int \frac{1}{x} \cdot \frac{x^{3}}{3} d x=\frac{x^{3}}{3} \ln x-\frac{1}{3} \int x^{2} d x$
$=\frac{x^{3}}{3} \ln x-\frac{1}{3} \cdot \frac{x^{3}}{3}+c=\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}+c$
22(b) $\int x^{3} \ln x d x$
$=\ln x \int x^{3} d x-\int\left\{\frac{d}{d x}(\ln x) \int x^{3} d x\right\} d x$
$=\ln x \cdot \frac{x^{4}}{4}-\int \frac{1}{x} \cdot \frac{x^{4}}{4} d x=\frac{x^{4}}{4} \ln x-\frac{1}{4} \int x^{3} d x$
$=\frac{x^{4}}{4} \ln x-\frac{1}{4} \cdot \frac{x^{4}}{4}+c=\frac{x^{4}}{4} \ln x-\frac{x^{4}}{16}+c$
22(c) $\int \frac{\ln x}{x^{2}} d x$
$=\ln x \int \frac{1}{x^{2}} d x-\int\left\{\frac{d}{d x}(\ln x) \int \frac{1}{x^{2}} d x\right\} d x$
$=\ln x \cdot\left(-\frac{1}{x}\right)-\int \frac{1}{x} \cdot\left(-\frac{1}{x}\right) d x$
$=-\frac{1}{x} \ln x+\int \frac{1}{x^{2}} d x=-\frac{1}{x} \ln x+\left(-\frac{1}{x}\right)+c$
$=-\frac{1}{x} \ln x-\frac{1}{x}+c$
23(a) $\int 2^{x} \sin x d x=\int e^{x \ln 2} \sin x d x$
$=\frac{e^{x \ln 2}}{(\ln 2)^{2}+1^{2}}[\ln 2 \cdot \sin x-1 \cdot \cos x]+c$
[সूত্র প্রয়োপ করে।]
$=\frac{2^{x}}{(\ln 2)^{2}+1}[\ln 2 \cdot \sin x-\cos x]+c$
23(b) $\int\left(3^{x} e^{x}+\ln x\right) d x$
[প্র.ভ.9.৮8]
$=\int(3 e)^{x} d x+\int \ln x d x$
$=\frac{(3 e)^{x}}{\ln (3 e)}+\frac{1}{x}+\mathrm{c}=\frac{3^{x} e^{x}}{\ln 3+\ln e}+\frac{1}{x}+\mathrm{c}$
$=\frac{3^{x} e^{x}}{\ln 3+1}+\frac{1}{x}+c$
8(c) ধরি, $\mathrm{I}=\int e^{x}\left\{\frac{1}{1-x}+\frac{1}{(x-1)^{2}}\right\} d x$ जবং

$$
f(x)=\frac{1}{1-x}=(1-x)^{-1}
$$

$\therefore f^{\prime}(x)=-(1-x)^{-1-1}(-1)=\frac{1}{(1-x)^{2}}$ এবश
$\mathrm{I}=\int e^{x}\left\{\frac{1}{1-x}+\frac{1}{(1-x)^{2}}\right\} d x$
$=\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+c$
$\therefore \int e^{x}\left\{\frac{1}{1-x}+\frac{1}{(x-1)^{2}}\right\} d x=\frac{e^{x}}{1-x}+c$
24(a) $\int e^{-x}\left\{\frac{1}{x}+\frac{1}{x^{2}}\right\} d x=\int \frac{e^{-x}}{x} d x+\int \frac{e^{-x}}{x^{2}} d x$
$=\frac{1}{x} \int e^{-x} d x-\int\left\{\frac{d}{d x}\left(\frac{1}{x}\right) \int e^{-x} d x\right\} d x+\int \frac{e^{-x}}{x^{2}} d x$
$=\frac{1}{x}\left(-e^{-x}\right)-\int\left(-\frac{1}{x^{2}}\right)\left(-e^{-x}\right) d x+\int \frac{e^{-x}}{x^{2}} d x$
$=-\frac{e^{-x}}{x}-\int \frac{e^{-x}}{x^{2}} d x+\int \frac{e^{-x}}{x^{2}} d x$
$\int e^{-x}\left\{\frac{1}{x}+\frac{1}{x^{2}}\right\} d x=-\frac{e^{-x}}{x}+c$
24(b) $\int e^{x}\{\tan x+\ln (\sec x)\} d x$
[थ..$\pm . \neq$ 'bs]
थরি, $\mathrm{I}=\int e^{x}\{\tan x+\ln (\sec x)\} d x$ जबः $f(x)=\ln (\sec x)$
$\therefore f^{\prime}(x)=\frac{\sec x \tan x}{\sec x}=\tan x$ जबः
$\mathrm{I}=\int e^{x}\{\ln (\sec x)+\tan x\} d x$
$=\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+c$
$\therefore \int e^{x}\{\tan x+\ln (\sec x)\} d x=e^{x} \ln (\sec x)+c$
25(a) ชরি, $\mathrm{I}=\int e^{x} \frac{x^{2}+1}{(x+1)^{2}} d x \quad$ [Я.Ј.श.'०२]
$=\int e^{x} \frac{x^{2}-1+2}{(x+1)^{2}} d x$
$=\int e^{x}\left\{\frac{(x-1)(x+1)}{(x+1)^{2}}+\frac{2}{(x+1)^{2}}\right\} d x$
$=\int e^{x}\left\{\frac{x-1}{x+1}+\frac{2}{(x+1)^{2}}\right\} d x$ जबং $f(x)=\frac{x-1}{x+1}$

$$
f^{\prime}(x)=\frac{(x+1) \cdot 1-(x-1) \cdot 1}{(x+1)^{2}}
$$

$$
=\frac{x+1-x+1}{(x+1)^{2}}=\frac{2}{(x+1)^{2}} \text { এবং }
$$

$\mathrm{I}=\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+c$

$$
\int e^{x} \frac{x^{2}+1}{(x+1)^{2}} d x=e^{x}\left(\frac{x-1}{x+1}\right)+c
$$

25(b) «রি, $\mathrm{I}=\int\left[\frac{1}{\ln x}-\frac{1}{(\ln x)^{2}}\right] d x$ এবং $\ln \mathrm{x}=\mathrm{y}$.
তাহলে, $\mathrm{x}=\mathrm{e}^{\mathrm{y}} \Rightarrow \mathrm{dx}=\mathrm{e}^{\mathrm{y}} \mathrm{dy}$ এবং
$\mathrm{I}=\int e^{y}\left[\frac{1}{y}-\frac{1}{y^{2}}\right] d y=\int e^{y}\left[\frac{1}{y}+D\left(\frac{1}{y}\right)\right] d y$

$$
\left[\because D\left(\frac{1}{y}\right)=\frac{d}{d x}\left(\frac{1}{y}\right)=-\frac{1}{y^{2}}\right]
$$

$$
=\frac{e^{y}}{y}+c=\frac{x}{\ln x}+c
$$

26. $\int \frac{x}{(x-1)^{2}(x+2)} d x$
«রি, $\frac{x}{(x-1)^{2}(x+2)} \equiv \frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x+2}$
$\Rightarrow x=A(x-1)(x+2)+B(x+2)+C(x-1)^{2} \ldots$
(1) $এ x=1$ বসিয়ে পাই, $1=3 \mathrm{~B} \Rightarrow \mathrm{~B}=1 / 3$
(1) এ $x=-2$ বगिয়ে পাই, $-2=9 \mathrm{C} \Rightarrow \mathrm{C}=-2 / 9$
(1) এর্ উড্যপপ্巾 থেকে x^{2} এর সহগ সমীকৃত করে পাই, $0=A+C \Rightarrow A=-C=2 / 9$
$\therefore \int \frac{x}{(x-1)^{2}(x+2)} d x$
$=\int\left\{\frac{2 / 9}{x-1}+\frac{1 / 3}{(x-1)^{2}}+\frac{-2 / 9}{x+2}\right\} d z$
$=\frac{2}{9} \ln |x-1|+\frac{1}{3}\left(-\frac{1}{x-1}\right)-\frac{2}{9} \ln |x+2|+c$
$=\frac{2}{9} \ln \left|\frac{x-1}{x+2}\right|-\frac{1}{3(x-1)}+c$
27(a) धরি, $\mathrm{I}=\int \frac{x^{2}+1}{(x+2)^{2}} d x$
$=\int \frac{x^{2}+4 x+4-(4 x+3)}{(x+2)^{2}} d x$
$=\int\left\{1-\frac{4 x+3}{(x+2)^{2}}\right\} d x$ जदং
$\frac{4 x+3}{(x+2)^{2}} \equiv \frac{A}{x+2}+\frac{B}{(x+2)^{2}}$
$\Rightarrow 4 x+3=A(x+2)+B \cdots(1)$
(1) $এ x=-2$ बসिय্যে পাই, $\mathrm{B}=-8+3=-5$
(1) এর্র উড্যপক্ বেকে x এর সহগ সমীকৃত করে পাই, $4=A \Rightarrow A=4$
$\therefore \mathrm{I}=\int\left(1-\frac{4}{x+2}+\frac{5}{(x+2)^{2}}\right) d x$
$\underset{\mathbf{w}}{\mathbf{w}} \quad=x-4 \ln |x+2|-\frac{5}{x+2}+c$
एढि भর্রীжाর MCQ
27. $\int \frac{d x}{\cos ^{2} x \sqrt{\tan x}}=$? [DU 07-08; NU06-07]

Sol ${ }^{n \cdot}: \mathrm{I}=\int \frac{\sec ^{2} x d x}{\sqrt{\tan x}}=\int \frac{d(\tan x)}{\sqrt{\tan x}}=2 \sqrt{\tan x}$
2. $\int \frac{e^{x}(1+x)}{\cos ^{2}\left(x e^{x}\right)} d x=$? [DU 07-08; NU0708; KU 03-04]
Sol ${ }^{\text {r. }}: 1=\int \sec ^{2}\left(x e^{x}\right) d\left(x e^{x}\right)=\tan \left(x e^{x}\right)$
3. $\int \frac{d x}{x+\sqrt{x}}=$?
[DU 02-03]
Sol $\left.{ }^{n \cdot}: \mathrm{I}=\int \frac{d x}{\sqrt{x}(\sqrt{x}+1)}=2 \int \frac{d(\sqrt{x}+1)}{\sqrt{x}+1}\right)$
$=2 \ln (\sqrt{x}+1)+c$
4. $\int \sin ^{5} x \cos x d x=$?
[DU 98-99]
Sol ${ }^{\text {m. }}: \mathrm{I}=\int \sin ^{5} x d(\sin x)=\frac{1}{6} \sin ^{6} x+c$
5. $\int \frac{d x}{e^{x}+e^{-x}}=$?
[JU 06-07; CU 04-05]
Sol ${ }^{n \cdot}: \mathrm{I}=\int \frac{e^{x} d x}{e^{2 x}+1}=\int \frac{d\left(e^{x}\right)}{1+\left(e^{x}\right)^{2}}$

$$
=\tan ^{-1}\left(e^{x}\right)+\mathrm{c}
$$

6. $\int \sqrt{\frac{1+x}{1-x}} d x=$? \quad [DU 95-96; JU 07 08] Sol $^{n \cdot}: I=\int \frac{1+x}{\sqrt{1-x^{2}}} d x$
$=\int \frac{1}{\sqrt{1-x^{2}}} d x+\left(-\frac{1}{2}\right) \int \frac{d\left(1-x^{2}\right)}{\sqrt{1-x^{2}}}$
$=\sin ^{-1} x-\frac{1}{2} \cdot 2 \sqrt{1-x^{2}}=\sin ^{-1} x-\sqrt{1-x^{2}}$
7. $\int x e^{x} d x=$?

Sol ${ }^{\text {n. }}: \mathrm{I}=(x+1) e^{x}+c$
8. $\int \frac{d x}{a y-b x}=$?
[SU 06-07]

$$
\begin{aligned}
\text { Sol }^{n \cdot}: & \mathrm{I}=-\frac{1}{b} \int \frac{d(a y-b x)}{a y-b x} \\
& =-\frac{1}{6} \ln |a y-b x|+c
\end{aligned}
$$

9. $\int e^{x} \sec x(1+\tan x) d x=$? \quad [RU 06-07]

Sol ". : $\mathrm{I}=\int e^{x}(\sec x+\sec x \tan x) d x$

$$
=\int e^{x}\{\sec x+D(\sec x)\} d x=e^{x} \sec x
$$

10. $\int-\sin \phi d t=$?
[CU 04-05]
Sol ${ }^{n \cdot}: \mathrm{I}=-\sin \phi \int d t=-t \sin \phi+c$
11. $\int \frac{d x}{\sqrt{9-16 x}}=$?
[KU 03-04]
Sol $^{n \cdot}: \mathrm{I}=\frac{1}{4} \int \frac{d(4 x)}{\sqrt{3^{2}-(4 x)^{2}}}=\frac{1}{4} \sin ^{-1} \frac{4 x}{3}$
12. $\int \frac{x e^{x}}{(x+1)^{2}} d x=$? [DU 01-02; CU 02-03;

RU 04-05, 05-06; JU 06-07;BUET 06-07]
Sol ${ }^{\text {n. }}: \mathrm{I}=\int \frac{(x+1-1) e^{x}}{(x+1)^{2}} d x$
$=\int e^{x}\left\{\frac{1}{x+1}-\frac{1}{(x+1)^{2}}\right\} d x$
$=\int e^{x}\left\{\frac{1}{x+1}+D\left(\frac{1}{x+1}\right)\right\} d x=\frac{e^{x}}{x+1}+c$
13. $\int x \cos x d x=$?
[DU 96-97]
$=x \sin x-(1)(-\cos x)=x \sin x+\cos x+c$
14. $\int x \ln (1+2 x) d x=$?
[SU 96-97]
Sol ${ }^{n .}: \mathrm{I}=\ln (1+2 x) \cdot \frac{x^{2}}{2}-\int \frac{2 .}{1+2 x} \cdot \frac{x^{2}}{2} d x$
$=\frac{x^{2}}{2} \ln (1+2 x)-\int \frac{\frac{1}{2} x(2 x+1)-\frac{1}{4}(2 x+1)+\frac{1}{4}}{2 x+1} d x$
$=\frac{x^{2}}{2} \ln (1+2 x)-\int\left(\frac{1}{2} x-\frac{1}{4}+\frac{1}{4} \frac{1}{2 x+1}\right) d x$
$=\frac{x^{2}}{2} \ln (1+2 x)-\left\{\frac{x^{2}}{4}-\frac{1}{4} x+\frac{1}{8} \ln (2 x+1 \mid\}+c\right.$
$=\frac{x^{2}}{2} \ln (1+2 x)-\frac{x^{2}}{4}+\frac{1}{4} x-\frac{1}{8} \ln (2 x+1 \mid+c$
15. $\int \log _{3} x d x=$?
[CU 06-07]
Sol ${ }^{n .}: I=x \log _{3} x-\int \frac{1}{x \ln 3} \cdot x d x$
$=x \log _{3} x-\frac{x}{\ln 3}+c$
অন্তরক ৪ যোগজের মিশ্রিত সমসা
16. $y=x^{2}$ रलে $\int\left(\frac{d y}{d x}\right) d x$ बर मान कण ?
[CU 02-03; IU 05-06]
Sol ${ }^{\prime \prime}: \int\left(\frac{d y}{d x}\right) d x=y+c=x^{2}+c$
17. यमि $\frac{d y}{d x}=2 a$ रয় তাহलে y बর মান কত? [CU 02-03]
Sol ${ }^{n .}: \frac{d y}{d x}=2 a \rightarrow y=\int 2 a d x=2 a x+c$
18. $\int f(x) d x=\cos x+k$ इलে $f(x)$ बत्र মান कण?
[CU 02-03]
Sol $^{n .}: f(x)=\frac{d}{d x}(\cos x+k)=-\sin x$
19. $\frac{d}{d x}\left(\int y d x\right)$ এর মান কত ষখন $y=\sin x$.
[CU 02-03]
Sol ${ }^{\prime \prime}: \frac{d}{d x}\left(\int y d x\right)=y=\sin x$

Gাथশিক ভন্নাংশ
20. $\frac{x+17}{(x-3)(x+2)}=\frac{a}{x-3}+\frac{b}{x+2}$ इলে a ७ b

এর্গ মান ক্ত? [DU 08-09; JU, CU 07-08]
Sol $^{n .}: a=\frac{3+17}{3+2}=4 ; b=\frac{-2+17}{-2-3}=-3$
21. $\frac{x+A}{(x+1)(x-3)} \equiv \frac{B}{x+1}+\frac{1}{x-3}$

Sol ${ }^{n .}: \frac{3+A}{3+1}=1 \Rightarrow A=1$;

$$
B=\frac{-1+A}{-1-3}=\frac{-1+1}{-4}=0
$$

মান नির্ণ্্ম কব্প :
1(a) $\int_{0}^{3}\left(3-2 x+x^{2}\right) d x$
[玉.'’৬,'০৭]
$=\left[3 x-2 \cdot \frac{x^{2}}{2}+\frac{x^{3}}{3}\right]_{0}^{3}=\left\{\left(3.3-3^{2}+\frac{3^{3}}{3}\right)-0\right\}$
$=(9-9+9)=9$
(b) $\int_{0}^{\pi / 2}(\sin \theta+\cos \theta) d x$
[$\mathrm{b},{ }^{\prime} 08$]
$=[-\cos \theta+\sin \theta]_{0}^{\pi / 2}=[-\cos \theta+\sin \theta]_{0}^{\pi / 2}$
$=\left(\sin \frac{\pi}{2}-\cos \frac{\pi}{2}\right)-(\sin 0-\cos 0)$
$=(1-0)-(0-1)=2$
(c) $\int_{0}^{\pi} \frac{1-\cos 2 x}{2} d x=\left[\frac{1}{2}\left(x-\frac{1}{2} \sin 2 x\right)\right]_{0}^{\pi}$ $=\frac{1}{2}\left\{\left(\pi-\frac{1}{2} \sin 2 \pi\right)-\left(0-\frac{1}{2} \sin 2.0\right)\right\}=\frac{\pi}{2}$
(d) $\int_{-\pi / 2}^{\pi / 2} \frac{\sec x+1}{\sec x} d x$
[ষ.'০৬; कू.,'০১]
$=\int_{-\pi / 2}^{\pi / 2}\left(1+\frac{1}{\sec x}\right) d x=\int_{-\pi / 2}^{\pi / 2}(1+\cos x) d x$
$=x[1+\sin x)]_{-\pi / 2}^{\pi / 2}$
$=\frac{\pi}{2}+\sin \frac{\pi}{2}-\left\{-\frac{\pi}{2}+\sin \left(-\frac{\pi}{2}\right)\right\}$
$=\frac{\pi}{2}+1-\left(-\frac{\pi}{2}-1\right)=\frac{\pi}{2}+\frac{\pi}{2}+2=\pi+2$
(e) $\int_{-1}^{1}|x| d x$
[প্র.ভ.প.'०৬]
$=\int_{-1}^{0}|x| d x+\int_{0}^{1}|x| d x=\int_{-1}^{0}(-x) d x+\int_{0}^{1} x d x$
$|\because| x|=x, x \geq 0 ;|x|=-x, x \leq 01$
$=\left[-\frac{x^{2}}{2}\right]_{-1}^{0}+\left[\frac{x^{2}}{2}\right]_{0}^{1}=-0+\frac{1}{2}+\frac{1}{2}-0=1$
2.(a) $\int_{0}^{\pi / 3} \frac{1}{1-\sin x} d x$
[ঢा. '০৯, '১৩; য.'০৯; সি. '১০; ন্না.'১৩]
$=\int_{0}^{\pi / 3} \frac{1+\sin x}{(1-\sin x)(1+\sin x)} d x$
$=\int_{0}^{\pi / 3} \frac{1+\sin x}{1-\sin ^{2} x} d x=\int_{0}^{\pi / 3} \frac{1+\sin x}{\cos ^{2} x} d x$
$=\int_{0}^{\pi / 3}\left\{\frac{1}{\cos ^{2} x}+\frac{\sin x}{\cos ^{2} x}\right\} d x$
$=\int_{0}^{\pi / 3}\left\{\sec ^{2} x+\sec x \tan x\right\} d x$
$=[\tan x+\sec x]_{0}^{\pi / 3}$
$=\tan \frac{\pi}{3}+\sec \frac{\pi}{3}-(\tan 0+\sec 0)$
$=\sqrt{3}+2-0-1=\sqrt{3}+1$
2(b) $\int_{0}^{\pi / 2} \frac{1}{1+\cos x} d x \quad$ [ব.'ob; ঢा., সि.'ss]
$=\int_{0}^{\pi / 2} \frac{1}{2 \cos ^{2} \frac{x}{2}} d x=\frac{1}{2} \int_{0}^{\pi / 2} \sec ^{2} \frac{x}{2} d x$
$=\frac{1}{2}\left[2 \tan \frac{x}{2}\right]_{0}^{\pi / 2}=\tan \frac{\pi}{4}-\tan 0=1$
3. $\int_{0}^{\pi / 4} \frac{\cos 2 \theta}{\cos ^{2} \theta} d \theta$
[ব.'3s]
$=\int_{0}^{\pi / 4} \frac{2 \cos ^{2} \theta-1}{\cos ^{2} \theta} d \theta$
$=\int_{0}^{\pi / 4}\left(2-\sec ^{2} \theta\right) d x=[2 \theta-\tan \theta]_{0}^{\pi / 4}$
$=2 . \frac{\pi}{4}-\tan \frac{\pi}{4}-(2.0-\tan 0)=\frac{\pi}{2}-1$
4(a) $\int_{0}^{\pi / 2} \cos ^{2} x d x$ [Б. '০8; สা. '০৫ ,'০৯; সি.'১১]
$=\int_{0}^{\pi / 2} \frac{1}{2}(1+\cos 2 x) d x=\frac{1}{2}\left[x+\frac{1}{2} \sin 2 x\right]_{0}^{\pi / 2}$
$=\frac{1}{2}\left\{\left(\frac{\pi}{2}+\frac{1}{2} \sin \pi\right)-\left(0+\frac{1}{2} \sin 0\right)\right\}=\frac{\pi}{4}$
4 (b) $=\int_{0}^{\pi / 2} \cos ^{3} x d x \quad$ [সि.'০৬,'०৭; य. '০৭,'০১, '১৩; ব. '০৮; মা.'০৬; দি.'১৩]
$=\int_{0}^{\pi / 2} \frac{1}{4}(3 \cos x+\cos 3 x) d x$
$=\frac{1}{4}\left[3 \sin x+\frac{1}{3} \sin 3 x\right]_{0}^{\pi / 2}$
$=\frac{1}{4}\left(3 \sin \frac{\pi}{2}+\frac{1}{3} \sin \frac{3 \pi}{2}-3 \sin 0-\frac{1}{3} \sin 0\right)$
$=\frac{1}{4}\left(3.1+\frac{1}{3}(-1)-0-0\right)=\frac{1}{4} \times \frac{8}{3}=\frac{2}{3}$
4(c) $\int_{0}^{\pi / 2} \cos ^{4} x d x$
$\cos ^{4} x=\frac{1}{4}\left(2 \cos ^{2} x\right)^{2}=\frac{1}{4}(1+\cos 2 x)^{2}$
$=\frac{1}{4}\left(1+2 \cos 2 x+\cos ^{2} 2 x\right)$
$=\frac{1}{4}\left\{1+2 \cos 2 x+\frac{1}{2}(1+\cos 4 x)\right\}$
$=\frac{1}{4}\left(\frac{3}{2}+2 \cos 2 x+\frac{1}{2} \cos 4 x\right)$
$\int_{0}^{\pi / 2} \cos ^{4} x d x$
$=\frac{1}{4}\left[\frac{3}{2} x+\frac{2}{2} \sin 2 x+\frac{1}{2} \cdot \frac{1}{4} \sin 4 x\right]_{0}^{\pi / 2}$
$=\frac{1}{4}\left(\frac{3}{2} \cdot \frac{\pi}{2}+\sin \pi+\frac{1}{8} \sin 2 \pi-0\right)$
$=\frac{1}{4}\left(\frac{3 \pi}{4}+0\right)=\frac{3 \pi}{16}$
4(d) $\int_{0}^{\pi / 4} \tan ^{2} x d x=\int_{0}^{\pi / 4}\left(\sec ^{2} x-1\right) d x$
$=[\tan x-x]_{0}^{\pi / 4}=\tan \frac{\pi}{4}-\frac{\pi}{4}-(\tan 0-0)$
$=1-\frac{\pi}{4}$
4(e) $\int_{0}^{\pi / 2} \sin ^{2} 2 \theta d \theta$
[মা.বো.'০১]
$=\int_{0}^{\pi / 2} \frac{1}{2}(1-\cos 4 \theta) d \theta=\frac{1}{2}\left[x-\frac{\sin 4 x}{4}\right]_{0}^{\pi / 2}$
$=\frac{1}{2}\left\{\frac{\pi}{2}-\frac{\sin 2 \pi}{4}-\left(0-\frac{\sin 0}{4}\right)\right\}$
$\left\lvert\,=\frac{1}{2}\left\{\frac{\pi}{2}-0-(0-0)\right\}=\frac{\pi}{4}\right.$
5 (a) $\int_{0}^{\pi / 2} \cos ^{5} x \sin x d x$ [ঢ.'ov; मि. '3०; य.'১১]
$=-\int_{0}^{\pi / 2}(\cos x)^{5}(-\sin x) d x$
$=-\left[\frac{1}{6}(\cos x)^{6}\right]_{0}^{\pi / 2}$
$=-\frac{1}{6}\left\{\left(\cos \frac{\pi}{2}\right)^{6}-(\cos 0)^{6}\right\}$
$=-\frac{1}{6}\{0-1\}=\frac{1}{6}$
 $\sin ^{4} x \cos ^{4} x=\frac{1}{16}(2 \sin x \cos x)=\frac{1}{16} \sin ^{4} 2 x$ $=\frac{1}{16} \cdot\left\{\frac{1}{2}(1-\cos 4 x)\right\}^{2}$ $=\frac{1}{64}\left(1-2 \cos 4 x+\cos ^{2} 4 x\right)$ $=\frac{1}{64}\left\{1-2 \cos 4 x+\frac{1}{2}(1+\cos 8 x)\right\}$ $=\frac{1}{128}(3-4 \cos 4 x+\cos 8 x)$
$\therefore \mathrm{I}=\frac{1}{128}\left[3 x-4 \cdot \frac{1}{4} \sin 4 x+\frac{1}{8} \sin 8 x\right]_{0}^{\pi / 4}$
$=\frac{1}{128}\left(\frac{3 \pi}{4}-\sin \pi+\frac{1}{8} \sin 2 \pi-0\right)$

$$
=\frac{1}{128} \times \frac{3 \pi}{4}=\frac{3 \pi}{512}
$$

5(c) $\int_{0}^{\pi / 2} \sin ^{2} x \sin 3 x d x$
[ব.'০(; মা.'○8; ষ.'১8]
$=\int_{0}^{\pi / 2} \frac{1}{2}(1-\cos 2 x) \sin 3 x d x$
$=\int_{0}^{\pi / 2}\left(\frac{1}{2} \sin 3 x-\frac{1}{2} \cos 2 x \sin 3 x\right) d x$
$=\int_{0}^{\pi / 2}\left\{\frac{1}{2} \sin 3 x-\frac{1}{4}(\sin 5 x+\sin x)\right\} d x$

$$
\begin{aligned}
& {\left[-\frac{1}{2} \cdot \frac{1}{3} \cos 3 x-\frac{1}{4}\left(-\frac{1}{5} \cos 5 x-\cos x\right)\right]_{0}^{\pi / 2} } \\
\cdots & -\frac{1}{6}\left(\cos \frac{3 \pi}{2}-\cos 0\right)+\frac{1}{20}\left(\cos \frac{5 \pi}{2}-\cos 0\right) \\
+ & \frac{1}{4}\left(\cos \frac{\pi}{2}-\cos 0\right) \\
& -\frac{1}{6}(0-1) \div \frac{1}{20}(0-1)+\frac{1}{4}(0-1) \\
& \frac{1}{6}-\frac{1}{20}-\frac{1}{4} \quad \frac{10-3-15}{60} \quad \frac{-8}{60} \cdots \frac{-2}{15}
\end{aligned}
$$

（ब）ब $\int_{0}^{\pi} 3 \sqrt{1-\cos x} \sin x d x \quad$ 队为）

$$
z=\cos x \quad d z=-\sin x d x
$$

$$
x=0 \text { 跤 } z=1 \quad x=\pi=-1
$$

$$
-3 \int_{1}^{-1} \sqrt{1-z} d z=:-3\left[-\frac{2}{3}(1-z)^{\frac{3}{2}}\right]_{1}^{-1}
$$

$$
2\left\{(1+1)^{\frac{3}{2}}-(1-1)^{\frac{3}{2}}\right\} \quad 2 \times 2 \sqrt{2}=4 \sqrt{2}
$$

$$
\operatorname{ses} \int_{0}^{\pi / 2}(1+\cos \theta)^{2} \sin \theta d \theta
$$

$z=1+\cos x \quad d z=-\sin x d x$
$x=0 * \pi z=2 \quad x=\frac{\pi}{2} \quad z=1$
$\int_{0}^{\pi / 2}(1+\cos \theta)^{2} \sin \theta d \theta \cdots-\int_{2}^{1} z^{2} d z$
$\left[-\frac{z^{3}}{3}\right]_{2}^{1} \cdots-\left(\frac{1^{3}}{3}-\frac{2^{3}}{3}\right) \cdots-\left(\frac{1}{3}-\frac{8}{3}\right) \cdots \frac{7}{3}$
$\int_{0}^{\pi / 2} \sin x \sin 2 x d x$

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \frac{1}{2}(\cos x-\cos 3 x) d x \\
& \frac{1}{2}\left[\sin x-\frac{1}{3} \sin 3 x\right]_{0}^{\pi / 2} \\
& \frac{1}{2}\left(\sin \frac{\pi}{2}-\frac{1}{3} \sin \frac{3 \pi}{2}-\sin 0+\frac{1}{3} \sin 0\right)
\end{aligned}
$$

$\frac{1}{2}\left\{1-\frac{1}{3}(-1)-0+0\right\} \cdots \frac{1}{2} \times \frac{4}{3}=\frac{2}{3}$
（k）$(\mathrm{y}) \int_{0}^{\pi / 2} \cos 2 x \cos 3 x d x$（\％
$\int_{0}^{\pi / 2} \frac{1}{2}(\cos 5 x+\cos x) d x$
$\frac{1}{2}\left[\frac{1}{5} \sin 5 x+\sin x\right]_{0}^{\pi / 2}$
$\frac{1}{2}\left(\frac{1}{5} \sin \frac{5 \pi}{2}+\sin \frac{\pi}{2}-\frac{1}{5} \sin 0-\sin 0\right)$
$\frac{1}{2}\left(\frac{1}{5} .1+1\right)=\frac{1}{2} \times \frac{6}{5}=\frac{3}{5}$
反， $\int_{0}^{\pi / 2} \sin 2 x \cos x d x$ ，$<$
$\begin{aligned} & \int_{0}^{\pi / 2} \frac{1}{2}(\sin 3 x+\sin x) d x \\ = & \frac{1}{2}\left[-\frac{1}{3} \cos 3 x-\cos x\right]_{0}^{\pi / 2}\end{aligned}$
$\frac{1}{2}\left(-\frac{1}{3} \cos 3 \frac{\pi}{2}-\cos \frac{\pi}{2}+\frac{1}{3} \cos 0+\cos 0\right)$
$\frac{1}{2}\left[-\frac{1}{3}\left(\cos 3 \frac{\pi}{2}-\cos 0\right)-\left(\cos \frac{\pi}{2}-\cos 0\right)\right]$
$\frac{1}{2}\left[-\frac{1}{3}(0-1)-(0-1)\right] \cdots \frac{1}{2}\left(\frac{1}{3}+1\right) \cdots \frac{2}{3}$
7（a）4ब，$k=\int_{0}^{\pi / 2} \sqrt{\cos x} \sin ^{3} x d x$
$\int_{0}^{\pi / 2} \sqrt{\cos x} \sin ^{2} x \sin x d x$
$\int_{0}^{\pi / 2} \sqrt{\cos x}\left(1-\cos ^{2} x\right) \sin x d x$
$z=\cos x \quad d z=-\sin x d x$

$$
x=0 \operatorname{sac} z=1 \quad x=\frac{\pi}{2} \text { बत } z=0
$$

$$
=-\int_{1}^{0} \sqrt{z}\left(1-z^{2}\right) d z
$$

$-\int_{1}^{0}\left(\sqrt{z}-z^{5 / 2}\right) d z=-\left[\frac{z^{3 / 2}}{3 / 2}-\frac{z^{7 / 2}}{7 / 2}\right]_{1}^{0}$
$-\left\{\frac{2}{3}(0-1)-\frac{2}{7}(0-1)\right\}=-\left(-\frac{2}{3}+\frac{2}{7}\right)$
$-\frac{-14+6}{21}=\frac{8}{21}$

$\int_{0}^{\pi / 2} \frac{\cos ^{2} x \cos x d x}{\sqrt{\sin x}}$
$\int_{0}^{\pi / 2} \frac{\left(1-\sin ^{2} x\right) \cos x d x}{\sqrt{\sin x}}$
$z=\sin x \quad d z=\cos x d x$
$x=0 *<z=0 \quad x=\frac{\pi}{2} \quad z=1$
\} $\int_{0}^{1}\left(\frac{1-z^{2}}{\sqrt{z}}\right) d z \quad \int_{0}^{1}\left(\frac{1}{\sqrt{z}}-z^{3 / 2}\right) d z$
$:=\left[2 \sqrt{z}-\frac{z^{5 / 2}}{5 / 2}\right]_{0}^{1} 2(1-0)-\frac{2}{5}(1-0)$
$\because 2-\frac{2}{5}=\frac{8}{5}$
认，（x）\}ी $\quad \int_{0}^{1} \frac{\left(\sin ^{-1} x\right)^{2}}{\sqrt{1-x^{2}}} d x$
$z=\sin ^{-1} x \quad d z=\frac{1}{\sqrt{1-x^{2}}} d x$
$x=0$＊$z=0$ 际 $x=1 \quad z=\frac{\pi}{2}$
$\int_{0}^{\pi / 2} z^{2} d z \cdots\left[\frac{z^{3}}{3}\right]_{0}^{\pi / 2} \cdots \frac{1}{3}\left\{\left(\frac{\pi}{2}\right)^{3}-0\right\}$
$=\frac{\pi^{3}}{24}$

\％$z=\sin ^{-1} x \quad d z=\frac{1}{\sqrt{1-x^{2}}} d x$
$x=0$ अध：$z=0$ ब及 $x=1 \quad z=\frac{\pi}{2}$
$\int_{0}^{1} \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}} d x \quad \int_{0}^{\pi / 2} z d z \cdots\left[\frac{z^{2}}{2}\right]_{0}^{\pi / 2}$

বইঘর．কম
$\therefore=\frac{1}{2}\left\{\left(\frac{\pi}{2}\right)^{2}-0\right\} \cdots \frac{\pi^{2}}{8}$

$$
z=\tan ^{-1} x \quad d z=\frac{1}{1+x^{2}} d x
$$

若：$x=0$ ：$z=0 \quad x=1$ 苋 $z=\frac{\pi}{4}$

$$
\int_{0}^{\pi / 4} z d z:=\left[\frac{z^{2}}{2}\right]_{0}^{\pi / 4} \quad \frac{1}{2} \frac{\pi^{2}}{16}::: \frac{\pi^{2}}{32}
$$

9\｛秋 $\int_{0}^{1} \frac{x d x}{\sqrt{1-x^{2}}}$
M，so Pron

$$
\begin{aligned}
& -\frac{1}{2} \int_{0}^{1} \frac{(-2 x) d x}{\sqrt{1-x^{2}}}::-\frac{1}{2}\left[2 \sqrt{1-x^{2}}\right]_{0}^{1} \\
& -\left(\sqrt{1-1^{2}}-\sqrt{1-0^{2}}\right) \cdots
\end{aligned}
$$

＊is） $\int_{4}^{8} \frac{x d x}{\sqrt{x^{2}-15}}=\frac{1}{2} \int_{4}^{8} \frac{d\left(x^{2}-15\right)}{\sqrt{x^{2}-15}}$
$\frac{1}{2}\left[2 \sqrt{x^{2}-15}\right]_{4}^{8} \quad \sqrt{64-15}-\sqrt{16-15}$

$$
\sqrt{64-15}-\sqrt{16-15} \quad \sqrt{49}-\sqrt{1}
$$

5） $\int_{0}^{2} \frac{x d x}{\sqrt{9-2 x^{2}}}$

$$
\begin{aligned}
& \cdots-\frac{1}{4} \int_{0}^{2} \frac{d\left(9-2 x^{2}\right)}{\sqrt{9-2 x^{2}}}-\frac{1}{4}\left[2 \sqrt{9-2 x^{2}}\right]_{0}^{2} \\
& \quad-\frac{1}{2}(\sqrt{9-8}-\sqrt{9-0}) \cdots-\frac{1}{2}(1-3) \cdots
\end{aligned}
$$

（乡）(x) ，$\}=\int_{0}^{1} \frac{x d x}{\sqrt{4-x^{2}}}$

\％$z=4-x^{2} \quad d z=-2 x d x$

$$
x=0 \text { 米 } z=4 \quad x=1 \quad z=3
$$

$$
\begin{aligned}
& -\frac{1}{2} \int_{4}^{3} \frac{d z}{\sqrt{z}} \cdots:-\frac{1}{2}[2 \sqrt{z}]_{4}^{3} \\
& -(\sqrt{3}-\sqrt{4}) \cdots: 2-\sqrt{3}
\end{aligned}
$$

乡ः $\quad \int_{-2}^{5} \frac{7 x}{\sqrt{x^{2}+3}} d x$

$$
z=x^{2}+3 \quad d z=2 x d x
$$

$$
x=-2 \times z=7 \quad x=5 \quad z=28
$$

$$
\frac{7}{2} \int_{7}^{28} \frac{d z}{\sqrt{z}} \cdots \frac{7}{2}[2 \sqrt{z}]_{7}^{28}
$$

$$
7(\sqrt{28}-\sqrt{7}) \div 7(2 \sqrt{7}-\sqrt{7}) \div 7 \sqrt{7}
$$

\geqslant 认

连 $z=1+3 x . \quad d z=12 x^{3} d x$

$$
x=0 \times z=1 \quad x=1 \quad z=4
$$

$$
\xi \quad \frac{1}{12} \int_{1}^{4} \sqrt{z} d z \cdots \frac{1}{12}\left[\frac{z^{3 / 2}}{3 / 2}\right]_{1}^{4}
$$

$$
\frac{1}{12} \times \frac{2}{3}\left(4^{3 / 2}-1\right) \cdots \frac{1}{18}(8-1) \cdots \frac{7}{18}
$$

$3 k$

$$
\begin{aligned}
& \int_{1}^{2} x^{2} e^{x^{3}} d x \\
& z=x^{3} \quad d z=3 x^{2} d x \cdots x^{2} d x=\frac{1}{3} d z \\
& x=1<z=1 \quad x=2 \text { x: } z=8 \\
& \int_{1}^{2} x^{2} e^{x^{3}} d x \cdots \frac{1}{3} \int_{1}^{8} e^{z} d z \cdots \frac{1}{3}\left[e^{z}\right]_{1}^{8} \\
& \cdots \frac{1}{3}\left(e^{8}-e^{1}\right) \cdots \frac{1}{3}\left(e^{8}-e\right)
\end{aligned}
$$

（6） $\int_{0}^{1} x e^{x^{2}} d x$

$$
z=x^{2} \quad d z=2 x d x \quad x d x=\frac{1}{2} d z
$$

$$
x=0 \times z=0 \quad x=1 \quad z=1
$$

$$
\int_{0}^{1} x e^{x^{2}} d x \quad \frac{1}{2} \int_{0}^{1} e^{z} d z=: \frac{1}{2}\left[e^{z}\right]_{0}^{1}
$$

$\frac{1}{2}\left(e^{1}-e^{0}\right)=\frac{1}{2}(e-1)$
$\left\}\{x) \int_{0}^{\ln 2} \frac{e^{x}}{1+e^{x}} d x\right.$
ख＂
z＝1＋$e^{x} \quad d z=e^{x} d x$

$$
x=0 \quad z=1+e^{0}=1+1=2
$$

$x=\ln 2$ 为 $z=1+e^{\ln 2}=1+2=3$

$$
\int_{0}^{\ln 2} \frac{e^{x}}{1+e^{x}} d x \cdots \int_{2}^{3} \frac{d z}{z} \cdots[\ln z]_{2}^{3}
$$

$\ln 3-\ln 2=\ln \frac{3}{2}$

解：$z=\ln x \quad d z=\frac{d x}{x}$

$$
x=3 \quad z=\ln 3
$$

$\int_{1}^{3} \frac{1}{x} \cos (\ln x) d x \quad \int_{0}^{\ln 3} \cos z d z$
$[\sin z]_{0}^{\ln 3} \ldots \sin (\ln 3)-\sin 0 \div \sin (\ln 3)$
（\}, (\&) $\int_{\pi / 3}^{\pi / 2} \frac{\cos ^{5} x}{\sin ^{7} x} d x$

$\int_{\pi / 3}^{\pi / 2} \cot ^{5} x \operatorname{cosec}^{2} x d x$
骨， $\cot x=z \quad-\operatorname{cosec}{ }^{2} x d x=d z$
为：$x=\frac{\pi}{3} \quad z=\cot \frac{\pi}{3}=\frac{1}{\sqrt{3}}$
$x=\frac{\pi}{2}$ x：$z=\cot \frac{\pi}{2}=0$

$$
\begin{aligned}
& \int_{\pi / 3}^{\pi / 2} \frac{\cos ^{5}-x}{\sin ^{7} x} d x \int_{1 / \sqrt{3}}^{0} z^{5}(-d z) \\
& -\left[\frac{1}{6} z^{6}\right]_{1 / \sqrt{3}}^{0}-\frac{1}{6}\left\{0-\left(\frac{1}{\sqrt{3}}\right)^{6}\right\} \cdots \frac{1}{162}
\end{aligned}
$$

11．（b）《র্刀， $\mathrm{I}=\int_{0}^{\pi / 4} \tan ^{3} x \sec ^{2} x d x \quad$［य．＇০৬； $\left\lvert\,=-\frac{1}{3} x e^{-3 x}-\frac{1}{9} e^{-3 x}=-\frac{1}{9}(3 x+1) e^{-3 x}\right.$

गीমा：$x=0$ रबে $z=\tan 0=0$ जবং

$$
x=\frac{\pi}{4} \text { रबে } z=\tan \frac{\pi}{4}=1
$$

$\therefore \mathrm{I}=\int_{0}^{1} z^{3} d z=\left[\frac{1}{4} z^{4}\right]_{0}^{1}=\frac{1}{4}\left(1^{4}-0^{4}\right)=\frac{1}{4}$
11（c） $\int_{0}^{\pi / 4}\left(\tan ^{3} x+\tan x\right) d x$
［द．＇ob］
$=\int_{0}^{\pi / 4}\left(\tan ^{2} x+1\right) \tan x d x$
$=\int_{0}^{\pi / 4} \sec ^{2} x \tan x d x$
$=\int_{0}^{\pi / 4}(\tan x) d(\tan x)=\left[\frac{1}{2}(\tan x)^{2}\right]_{0}^{\pi / 4}$
$=\frac{1}{2}\left\{\left(\tan \frac{\pi}{4}\right)^{2}-(\tan 0)^{2}\right\}=\frac{1}{2}\left\{(1)^{2}-0\right\}=\frac{1}{2}$
11（d） $\int_{0}^{\pi / 4} \tan ^{2} x \sec ^{2} x d x$［ঢঢ．’०৩，’’৩；ब．．

《রি， $\tan x=z \therefore \sec ^{2} x d x=d z$
गीমा：$x_{0}=0$ रबে $z=\tan 0=0$ जदः

$$
\begin{aligned}
& x=\frac{\pi}{4} \text { इबে } z=\tan \frac{\pi}{4}=1 \\
& \int_{0}^{\pi / 4} \tan ^{2} x \sec ^{2} x d x=\int_{0}^{1} z^{2} d z \\
& \\
& \quad=\left[\frac{1}{3} z^{3}\right]_{0}^{1}=\frac{1}{3}\left(1^{3}-0^{3}\right)=\frac{1}{3}
\end{aligned}
$$

12．（a） $\int x e^{-3 x} d x$
［मि．＇ग०］
$=x \int e^{-3 x} d x-\int\left\{\frac{d}{d x}(x) \int e^{-3 x} d x\right\} d x$
$=x\left(-\frac{1}{3} e^{-3 x}\right)-\int 1 .\left(-\frac{1}{3} e^{-3 x}\right) d x$
$=-x \frac{1}{3} e^{-3 x}+\frac{1}{3}\left(-\frac{1}{3} e^{-3 x}\right)$

$$
\text { 12(b) } \int \ln (2 x) d x \quad \text { [ষ. '০।;ব.'০৪] }
$$

$=\ln (2 x) \int d x-\int\left[\frac{d}{d x}[\ln (2 x)\} \int d x\right] d x$
$=x \ln (2 x)-\int \frac{2}{2 x} \cdot x d x$
$=x \ln (2 x)-\int d x=x \ln (2 x)-x+c$
$\therefore \int_{2}^{4} \ln (2 x) d x=[x \ln (2 x)-x]_{2}^{4}$
$=4 \ln 8-4-(2 \ln 4-2)$
$=4 \ln 2^{3}-4-2 \ln 2^{2}+2$
$=12 \ln 2-2-4 \ln 2=8 \ln 2-2$
12（c） $\int \frac{\ln x}{\sqrt{x}} d x$
［ধ．Ш．тる४］
$=\ln x \int \frac{1}{\sqrt{x}} d x-\int\left[\frac{d}{d x}(\ln x) \int \frac{1}{\sqrt{x}} d x\right] d x$
$=2 \sqrt{x} \ln x-\int \frac{1}{x} \cdot 2 \sqrt{x} d x$
$=2 \sqrt{x} \ln x-2 \int \frac{1}{\sqrt{x}} d x$
$=2 \sqrt{x} \ln x-2.2 \sqrt{x}+c$
$=2 \sqrt{x}(\ln x-2)+c$
$\int_{1}^{4} \frac{\ln x}{\sqrt{x}} d x=[2 \sqrt{x}(\ln x-2)]_{1}^{4}$
$=2 \sqrt{4}(\ln 4-2)-2 \sqrt{1}(\ln 1-2)$
$=4 \ln 2^{2}-8-2(0-2)$
$=8 \ln 2-8+4=8 \ln 2-4$
12（d） $\int x^{2} \cos x d x$
［区．＇०8］
$=x^{2} \int \cos x d x-\int\left\{\frac{d}{d x}\left(x^{2}\right) \int \cos x d x\right\} d x$
$=x^{2} \sin x-\int 2 x \sin x d x$
$=x^{2} \sin x-2\left[x \int \sin x d x-\int 1 .(-\cos x) d x\right]$
$=x^{2} \sin x-2[x(-\cos x)+\sin x]+c$
$=x^{2} \sin x+2 x \cos x-2 \sin x+c$
$\int_{0}^{\pi / 2} x^{2} \cos x d x$
$=\left[x^{2} \sin x+2 x \cos x-2 \sin x\right]_{0}^{\pi / 2}$
$=\left(\frac{\pi}{2}\right)^{2} \sin \frac{\pi}{2}+2 \cdot \frac{\pi}{2} \cos \frac{\pi}{2}-2 \sin \frac{\pi}{2}-0$
$=\frac{\pi^{2}}{4} \cdot 1+2 \cdot \frac{\pi}{2} \cdot 0-2 \cdot 1=\frac{\pi^{2}}{4}-2$
12(e) $\int x \tan ^{-1} x d x$

$=\tan ^{-1} x \int x d x-\int\left\{\frac{d}{d x}\left(\tan ^{-1} x\right) \int x d x\right\} d x$
$=\frac{x^{2}}{2} \tan ^{-1} x-\int \frac{1}{1+x^{2}} \cdot \frac{x^{2}}{2} d x$
$=\frac{x^{2}}{2} \tan ^{-1} x-\frac{1}{2} \int \frac{1+x^{2}-1}{1+x^{2}} d x$
$=\frac{x^{2}}{2} \tan ^{-1} x-\frac{1}{2} \int\left(1-\frac{1}{1+x^{2}}\right) d x$
$=\frac{x^{2}}{2} \tan ^{-1} x-\frac{1}{2}\left(x-\tan ^{-1} x\right)+c$
$=\frac{1}{2}\left\{\left(x^{2}+1\right) \tan ^{-1} x-x\right\}+c$
$\int_{1}^{\sqrt{3}} x \tan ^{-1} x d x=\left[\frac{\left(x^{2}+1\right) \tan ^{-1} x-x}{2}\right]_{1}^{\sqrt{3}}$
$=\frac{(3+1) \tan ^{-1} \sqrt{3}-\sqrt{3}-(1+1) \tan ^{-1} 1+1}{2}$
$=\frac{1}{2}\left(4 \cdot \frac{\pi}{3}-\sqrt{3}-2 \cdot \frac{\pi}{4}+1\right)$
$=\frac{1}{2}\left(\frac{4 \pi}{3}-\frac{\pi}{2}-\sqrt{3}+1\right)$
$\left\lvert\,=\frac{1}{2}\left(\frac{8 \pi-3 \pi}{6}-\sqrt{3}+1\right)=\frac{1}{12}(5 \pi-6 \sqrt{3}+6)\right.$
12(f) 《রि, $\mathrm{I}=\int_{0}^{\pi / 2} e^{x}(\sin x+\cos x) d x$

ज $\begin{aligned} & \text { वर } f(x)=\sin x \ldots f^{\prime}(x)=\cos x\end{aligned}$
$\therefore \mathrm{I}=\int_{0}^{\pi / 2} e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x$
$=\left[e^{x} f(x)\right]_{0}^{\pi / 2}=\left[e^{x} \sin x\right]_{0}^{\pi / 2}$
$=e^{\pi / 2} \sin \frac{\pi}{2}-e^{0} \sin 0=e^{\pi / 2}-0=e^{\pi / 2}$
12(g) $\int \ln x d x$
[थ.ভ.भ. '०৫]
$=\ln x \int d x-\int\left\{\frac{d}{d x}(\ln x) \int d x\right\} d x$
$=x \ln x-\int \frac{1}{x} \cdot x d x=x \ln x-\int d x$
$=x \ln x-x+c=x(\ln x-1)+c$
$\therefore \int_{1}^{0} \ln x d x=[x(\ln x-1)]_{1}^{0}$

$$
=0-1(\ln 1-1)=-1(0-1)=1
$$

12(h) $\int x \sin ^{2} x d x$
[Я.Ш.サ.'०৫]
$=\int \frac{x}{2}(1-\cos 2 x) d x=\frac{1}{2} \int(x-x \cos 2 x) d x$
$=\frac{1}{2} \cdot \frac{x^{2}}{2}-\frac{1}{2}\left[x \int \cos 2 x d x-\int\left\{1 \cdot \frac{1}{2} \sin 2 x d x\right\}\right]$
$=\frac{1}{4} x^{2}-\frac{1}{2}\left[x \cdot \frac{1}{2} \sin 2 x-\frac{1}{2} \int \sin 2 x d x\right]$
$=\frac{1}{4} x^{2}-\frac{1}{4}\left[x \sin 2 x-\left(-\frac{1}{2} \cos 2 x\right)\right]+c$
$=\frac{1}{4}\left(x^{2}-x \sin 2 x-\frac{1}{2} \cos 2 x\right)+c$
$\therefore \int_{0}^{\pi} x \sin ^{2} x d x=\frac{1}{4}\left[x^{2}-x \sin 2 x-\frac{1}{2} \cos 2 x\right]_{0}^{\pi}$
$=\frac{1}{4}\left\{\left(\pi^{2}-\pi \sin 2 \pi-\frac{1}{2} \cos 2 \pi\right)+\frac{1}{2} \cos 0\right\}$
$\left.=\frac{1}{4}\left\{\pi^{2}-0-\frac{1}{2} \cdot 1\right)+\frac{1}{2} \cdot 1\right\}=\frac{1}{4} \pi^{2}$

12(i) $\int x \cot ^{-1} x d x$ [दू<्यেt'os]	$=\frac{e}{2} \cdot \frac{1}{2} \ln e-\frac{1}{4} \mathrm{e}-\frac{1}{2} \times 0+\frac{1}{4}$
$\begin{aligned} & =\cot ^{-1} x \int x d x-\int\left\{\frac{d}{d x}\left(\cot ^{-1} x\right) \int x d x\right\} d x \\ & =\frac{x^{2}}{2} \cot ^{-1} x+\int \frac{1}{1+x^{2}} \cdot \frac{x^{2}}{2} d x \end{aligned}$	$=\frac{e}{4} \cdot 1-\frac{1}{4} e-\frac{1}{2} \times 0+\frac{1}{4}=\frac{1}{4}$
$=\frac{x^{2}}{2} \cot ^{-1} x+\frac{1}{2} \int \frac{1+x^{2}-1}{1+x^{2}} d x$	13(a) $\int_{0}^{1} \frac{x d x}{1+x^{4}}$ [थ.Ш.भ.'○৬]
$=\frac{x^{2}}{2} \cot ^{-1} x+\frac{1}{2} \int\left(1-\frac{1}{1+x^{2}}\right) d x$	$=\frac{1}{2} \int_{0}^{1} \frac{2 x d x}{1+\left(x^{2}\right)^{2}}=\left[\frac{1}{2} \tan ^{-1}\left(x^{2}\right)\right]_{0}^{1}$
$=\frac{x^{2}}{2} \cot ^{-1} x+\frac{1}{2}\left(x+\cot ^{-1} x\right)+c$	$=\frac{1}{2}\left(\tan ^{-1} 1-\tan ^{-1} 0\right)=\frac{1}{2}\left(\frac{\pi}{4}-0\right)=\frac{\pi}{8}$
$=\frac{1}{2}\left\{\left(x^{2}+1\right) \cot ^{-1} x+x\right\}+c$	$\text { 13(b) } \int_{0}^{1} \frac{1+x}{1+x^{2}} d x$
$\int_{1}^{\sqrt{3}} x \cot ^{-1} x d x=\left[\frac{\left(x^{2}+1\right) \cot ^{-1} x+x}{2}\right]_{1}^{\sqrt{3}}$	[द्रा. '০৬, '০৯; ব. '০৭ ; ঢা. ’০৯; कू.,সि.’১২,’১৪] $=\int_{0}^{1}\left(\frac{1}{1+x^{2}}+\frac{x}{1+x^{2}}\right) d x$
$=\frac{(3+1) \cot ^{-1} \sqrt{3}+\sqrt{3}-(1+1) \cot ^{-1} 1-1}{2}$	$=\int_{0}^{1}\left(\frac{1}{1+x^{2}}+\frac{1}{2} \frac{2 x}{1+x^{2}} \frac{1}{d} d x\right.$
$=\frac{1}{2}\left(4 \cdot \frac{\pi}{6}+\sqrt{3}-2 \cdot \frac{\pi}{4}-1\right)$	$=\left[\tan ^{-1} x+\frac{1}{2} \ln \left(1+x^{2}\right)\right]_{0}^{1}$
$=\frac{1}{2}\left(\frac{2 \pi}{3}-\frac{\pi}{2}+\sqrt{3}-\right.$	$=\tan ^{-1} 1+\frac{1}{2} \ln 2-\tan ^{-1} 0-\frac{1}{2} \ln 1$
$=\frac{1}{2}\left(\frac{4 \pi-3 \pi}{6}+\sqrt{3}-1\right)=\frac{1}{12}(\pi+6 \sqrt{3}-6)$	$=\frac{\pi}{4}+\frac{1}{2} \ln 2-0+0=\frac{\pi}{4}+\frac{1}{2} \ln 2$
	13(c) $\int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x$ [ঢा.’०৭]
$=\ln x \int x d x-\int\left\{\frac{d}{d x}(\ln x) \int x d x\right\} d x$	$=-\int_{0}^{\pi} \frac{(-\sin x)}{1^{2}+\cos ^{2} x} d x=-\left[\tan ^{-1}(\cos x)\right]_{0}^{\pi}$
$=\ln x \cdot \frac{n}{2}-\int\left(\frac{1}{x} \times \frac{n}{2}\right) d x$	$\begin{aligned} & =-\left\{\tan ^{-1}(\cos \pi)-\tan ^{-1}(\cos 0)\right\} \\ & =-\left\{\tan ^{-1}(-1)-\tan ^{-1}(1)\right\} \end{aligned}$
$=\ln x \cdot \frac{x^{2}}{2}-\frac{1}{2} \int x d x=\frac{x^{2}}{2} \ln x-\frac{1}{2} \times \frac{x^{2}}{2}+\mathrm{c}$	$=-\left(-\frac{\pi}{4}-\frac{\pi}{4}\right)=\frac{\pi}{2}$
$\int_{1}^{\sqrt{e}} x \ln x d x=\left[\frac{x^{2}}{2} \ln x-\frac{1}{4} x^{2}\right]_{1}^{\sqrt{e}}$	13(d) ধরি, $\mathrm{I}=\int_{0}^{\pi / 4} \frac{\sin 2 \mathrm{x}}{\cos ^{4} \mathrm{x}+\sin ^{4} \mathrm{x}} \mathrm{dx}$ [ধ..б.प.००] $\cos ^{4} x+\sin ^{4} x=\left(\cos ^{2} x\right)^{2}+\left(\sin ^{2} x\right)^{2}$
$=\frac{(\sqrt{e})^{2}}{2} \ln \sqrt{e}-\frac{1}{4}(\sqrt{e})^{2}-\frac{1}{2} \ln 1+\frac{1}{4}$	$=\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x$

$$
\begin{aligned}
& =1-\frac{1}{2}(2 \sin x \cos x)^{2}=1-\frac{1}{2} \sin ^{2} 2 x \\
& =1-\frac{1}{2}\left(1-\cos ^{2} 2 x\right)=\frac{1}{2}\left(1+\cos ^{2} 2 x\right) \\
& \mathrm{I}=2 \int_{0}^{\pi / 4} \frac{\sin 2 x}{1+\cos ^{2} 2 x} d x \\
& =2\left(-\frac{1}{2}\right) \int_{0}^{\pi / 4} \frac{(-2 \sin 2 x)}{1^{2}+(\cos 2 x)^{2}} d x \\
& =-\left[\tan ^{-1}(\cos 2 x)\right]_{0}^{\pi / 4} \\
& =-\left\{\tan ^{-1}\left(\cos \frac{\pi}{2}\right)-\tan ^{-1}(\cos 0)\right\} \\
& =-\left\{\tan ^{-1} 0-\tan ^{-1} 1\right\}=-\left\{0-\frac{\pi}{4}\right\}=\frac{\pi}{4}
\end{aligned}
$$

13(e) $\int_{0}^{1} \frac{d x}{e^{x}+e^{-x}}$

$$
=\int_{0}^{1} \frac{e^{x} d x}{e^{x}\left(e^{x}+e^{-x}\right)}=\int_{0}^{1} \frac{e^{x} d x}{\left(e^{x}\right)^{2}+1}
$$

यरि, $e^{x}=z \quad \therefore e^{x} d x=d z$
সीমा : $x=0$ इणে, $z=e^{0}=1$

$$
\begin{gathered}
x=1 \text { হबে, } z=e^{1}=e \\
\int_{0}^{1} \frac{d x}{e^{x}+e^{-x}}=\int_{1}^{e} \frac{d z}{z^{2}+1}=\left[\tan ^{-1} z\right]_{1}^{e} \\
=\tan ^{-1} e-\tan ^{-1}(1)=\tan ^{-1} e-\frac{\pi}{4}
\end{gathered}
$$

14(a) $\int_{3}^{4} \frac{d x}{25-x^{2}}$
[ব.’১৩]

$$
\begin{aligned}
& =\int_{3}^{4} \frac{d x}{5^{2}-x^{2}}=\left[\frac{1}{2.5} \ln \left|\frac{5+x}{5-x}\right|\right]_{3}^{4} \\
& =\frac{1}{10}\left(\ln \left|\frac{5+4}{5-4}\right|-\ln \left|\frac{5+3}{5-3}\right|\right)
\end{aligned}
$$

$$
=\frac{1}{10}(\ln 9-\ln 4)=\frac{1}{10} \ln \frac{9}{4}=\frac{1}{10} \ln \left(\frac{3}{2}\right)^{2}
$$

$$
=\frac{1}{10} \times 2 \ln \left(\frac{3}{2}\right)=\frac{1}{5} \ln \left(\frac{3}{2}\right)
$$

(b) $\int_{0}^{\pi / 2} \frac{\cos x d x}{9-\sin ^{2} x} d x$ [ज..'oc; गा.'ot; Б., Pि.'oos]

धরি, $\sin x=z . \quad \cos x d x=d z$
नीমा : $x=0$ रलে $z=0$ এবং $x=\frac{\pi}{2}$ रबে $z=1$
$\therefore \int_{0}^{\pi / 2} \frac{\cos x d x}{9-\sin ^{2} x} d x=\int_{0}^{1} \frac{d z}{3^{2}-z^{2}}$
$=\left[\frac{1}{2.3} \ln \left|\frac{3+z}{3-z}\right|\right]_{0}^{1}=\frac{1}{6}\left(\ln \left|\frac{3+1}{3-1}\right|-\ln \left|\frac{3+0}{3-0}\right|\right)$
$=\frac{1}{6}(\ln 2-\ln 1)=\frac{1}{6} \ln 2$
15 (a) $\int_{0}^{1} \frac{d x}{\sqrt{2 x-x^{2}}}=\int_{0}^{1} \frac{d x}{\sqrt{1-\left(x^{2}-2 x+1\right)}}$
$=\int_{0}^{1} \frac{d(x-1)}{\sqrt{1-(x-1)^{2}}}=\left[\sin ^{-1}(x-1)\right]_{0}^{1}$
$=\sin ^{-1}(1-1)-\sin ^{-1}(0-1)=\sin ^{-1} 0+\sin ^{-1} 1$
$=\frac{\pi}{2}$
15 (b) $\int_{1 / 2}^{1} \frac{d x}{x \sqrt{4 x^{2}-1}}$
[थ.ธ.श. '०8]
$=\int_{1 / 2}^{1} \frac{2 d x}{2 x \sqrt{(2 x)^{2}-1}}=\left[\sec ^{-1}(2 x)\right]_{1 / 2}^{1}$
$=\sec ^{-1} 2-\sec ^{-1} 1=\frac{\pi}{3}-0=\frac{\pi}{3}$
15(c) ชরि $\mathrm{I}=\int_{1}^{2} \frac{d x}{x^{2} \sqrt{4-x^{2}}}$
[थ.Ш.サ.'०8]
এヌং $x=2 \cos \theta$. তাহলে $d x=-2 \sin \theta d \theta$
गीमा : $x=1$ रलে $\theta=\cos ^{-1} \frac{1}{2}=\frac{\pi}{3}$ এবং
$x=2$ राে $\theta=\cos ^{-1} 1=0$
$\therefore \mathrm{I}=\int_{\pi / 3}^{0} \frac{-2 \sin \theta d \theta}{4 \cos ^{2} \theta \sqrt{4\left(1-\cos ^{2} \theta\right)}}$
$=\int_{\pi / 3}^{0} \frac{-2 \sin \theta d \theta}{4 \cos ^{2} \theta .2 \sin \theta}=-\frac{1}{4} \int_{\pi / 3}^{0} \sec ^{2} \theta d \theta$
$=-\frac{1}{4}[\tan \theta]_{\pi / 3}^{0}=-\frac{1}{4}\left(\tan 0-\tan \frac{\pi}{3}\right)$
$=-\frac{1}{4}(0-\sqrt{3})=\frac{\sqrt{3}}{4}$

15 (d) $\int_{0}^{\pi / 6} \frac{d x}{1-\tan ^{2} x}$
www.boighar.com
$=\int_{0}^{\pi / 6} \frac{-\cos ^{2} x d x}{\cos ^{2} x-\sin ^{2} x}$
$=\int_{0}^{\pi / 6} \frac{\frac{1}{2}(1+\cos 2 x) d x}{\cos 2 x}=\frac{1}{2} \int_{0}^{\pi / 6}(\sec 2 x+1) d x$
$=\frac{1}{2}\left[\frac{1}{2} \ln |\tan 2 x+\sec 2 x|+x\right]_{0}^{\pi / 6}$
$=\frac{1}{2}\left\{\frac{1}{2} \ln \left|\tan \frac{\pi}{3}+\sec \frac{\pi}{3}\right|+\frac{\pi}{6}-0\right\}$
$=\frac{1}{4} \ln |\sqrt{3}+2|+\frac{\pi}{12}=\frac{1}{4} \ln (\sqrt{3}+2)+\frac{\pi}{12}$
16. (a) यরि $\mathrm{I}=\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x \quad$ [मि. '०१; रा. ’০৫; жু.'০১,’১৩; চ. '০১; য. ,ব. ’১২, मि.’১২,’১৪] এবং $x=a \sin \theta$. তাহলে $d x=a \cos \theta d \theta$ সीমा : $x=0$ रनে $\theta=\sin ^{-1} 0=0$ এবং

$$
x=a \text { रबে } \theta=\sin ^{-1} 1=\frac{\pi}{2}
$$

$\therefore \mathrm{I}=\int_{0}^{\pi / 2} \sqrt{a^{2}\left(1-\sin ^{2} \theta\right)} a \cos \theta d \theta$
$=a^{2} \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta=\frac{a^{2}}{2} \int_{0}^{\pi / 2}(1+\cos 2 \theta) d \theta$
$=\frac{a^{2}}{2}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{0}^{\pi / 2}$
$=\frac{a^{2}}{2}\left\{\left(\frac{\pi}{2}+\frac{1}{2} \sin \pi\right)-\left(0+\frac{1}{2} \sin 0\right)\right\}$
$=\frac{a^{2}}{2} \cdot \frac{\pi}{2}=\frac{1}{4} \pi a^{2}$
16(b) ধরি $\mathrm{I}=\int_{0}^{\sqrt{2}} \frac{x^{2}}{\left(4-x^{2}\right)^{3 / 2}} d x \quad$ [.र.Ш.श, 'b৫] जबए $x=2 \sin \theta$. जाइलে $d x=2 \cos \theta d \theta$
সीया : $x=0$ रणে $\theta=\sin ^{-1} 0=0$ এवए
$x=\sqrt{2}$ रानে $\theta=\sin ^{-1} \frac{1}{\sqrt{2}} \doteqdot \frac{\pi}{4}$
$\therefore I=\int_{0}^{\pi / 4} \frac{4 \sin ^{2} \theta \cdot 2 \cos \theta d \theta}{\left\{4\left(1-\sin ^{2} \theta\right)\right\}^{3 / 2}}$
$=\int_{0}^{\pi / 4} \frac{8 \sin ^{2} \theta \cos \theta d \theta}{8 \cos ^{3} \theta}=\int_{0}^{\pi / 4} \tan ^{2} \theta d \theta$
$=\int_{0}^{\pi / 4}\left(\sec ^{2} \theta-1\right) d \theta=[\tan \theta-\theta]_{0}^{\pi / 4}$
$=\tan \frac{\pi}{4}-\frac{\pi}{4}-(\tan 0-0)=1-\frac{\pi}{4}$
17. थরि, $\mathrm{I}=\int_{0}^{4} y \sqrt{4-y} d y$
[ব.'০৫; র্যা.'০৭;ঢ.'০১,'১২; রা.’১৩; চ.'১০,'১৪]
ब 9 ? $4-y=z^{2} . \therefore-d y=2 z d z$
সीমा : $y=0$ रलে $z=2$ जुং $y=4$ रूে $z=0$

$$
\begin{aligned}
\therefore \mathrm{I} & =\int_{2}^{0}\left(4-z^{2}\right) \sqrt{z^{2}} \cdot(-2 z d z) \\
& =2 \int_{2}^{0}\left(z^{4}-4 z^{2}\right) d z=2\left[\frac{1}{5} z^{5}-\frac{4}{3} z^{3}\right]_{2}^{0} \\
& =2\left(-\frac{1}{5} \times 2^{5}+\frac{4}{3} \times 2^{3}\right)=2^{6}\left(-\frac{1}{5}+\frac{1}{3}\right)=\frac{128}{15}
\end{aligned}
$$

18. $\int_{1}^{15} \frac{x+2}{(x+1)(x+3)} d x$
[थ.ए.ฯ.'১৫]
$=\int_{1}^{15}\left\{\frac{-1+2}{(x+1)(-1+3)}+\frac{-3+2}{(-3+1)(x+3)}\right\} d x$
$=\int_{1}^{15}\left\{\frac{1}{2(x+1)}+\frac{1}{2(x+3)}\right\} d x$
$=\frac{1}{2}[\ln |x+1|+\ln |x+3|]_{1}^{15}$
$=\frac{1}{2}[\ln |(x+1)(x+3)|]_{1}^{15}$
$=\frac{1}{2}\{\ln |(15+1)(15+3)|-\ln |(1+1)(1+3)|\}$
$=\frac{1}{2}\{\ln (16 \times 18)-\ln (2 \times 4)\}$
$=\frac{1}{2} \ln \frac{16 \times 18}{2 \times 4}=\frac{1}{2} \ln 6^{2}=\frac{2}{2} \ln 6=\ln 6$

अতিব্রিক্ত প্রশ্ন (সমাধানসহ)

1. $\int_{0}^{\pi / 2} \sqrt{1+\sin \theta} d \theta$
$=\int_{0}^{\pi / 2} \sqrt{\sin ^{2} \frac{\theta}{2}+\cos ^{2} \frac{\theta}{2}+2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}} d \theta$
$=\int_{0}^{\pi / 2} \sqrt{\left(\sin \frac{\theta}{2}+\cos \frac{\theta}{2}\right)^{2}} d \theta$
$=\int_{0}^{\pi / 2}\left(\sin \frac{\theta}{2}+\cos \frac{\theta}{2}\right) d \theta$
$=\left[-2 \cos \frac{\theta}{2}+2 \sin \frac{\theta}{2}\right]_{0}^{\pi / 2}$
$=2\left\{-\cos \frac{\pi}{4}+\sin \frac{\pi}{4}-(-\cos 0+\sin 0)\right\}$
$=2\left\{-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-(-1+0)\right\}=2$
2. $\int_{\pi / 2}^{\pi / 4} \frac{d x}{\sin x}=\int_{\pi / 2}^{\pi / 4} \operatorname{cosec} x d x$
$=\left[\ln \left|\tan \frac{x}{2}\right|\right]_{\pi / 2}^{\pi / 4}$
$=\ln \left|\tan \frac{\pi}{8}\right|-\ln \left|\tan \frac{\pi}{4}\right|=\ln \left(\tan \frac{\pi}{8}\right)-\ln 1$
$=\ln \left(\tan \frac{\pi}{8}\right)-0=\ln \left(\tan \frac{\pi}{8}\right)$
3. $\int_{0}^{\pi / 2} \sin ^{3} x d x=\int_{0}^{\pi / 2} \frac{1}{4}(3 \sin x-\sin 3 x) d x$
$=\frac{1}{4}\left[-3 \cos x+\frac{1}{3} \cos 3 x\right]_{0}^{\pi / 2}$
$=\frac{1}{4}\left\{-3 \cos \frac{\pi}{2}+\frac{1}{3} \cos \frac{3 \pi}{2}-\left(-3 \cos 0+\frac{1}{3} \cos 0\right)\right\}$
$=\frac{1}{4}\left\{(-0+0)-\left(-3.1+\frac{1}{3}\right)\right\}=\frac{1}{4} \times \frac{8}{3}=\frac{2}{3}$
4(a) $\int_{0}^{\pi / 2} \sin ^{5} x \cos x d x$
$=\int_{0}^{\pi / 2}(\sin x)^{5} d(\sin x)$
$=\left[\frac{1}{6}(\sin x)^{6}\right]_{0}^{\pi / 2}=\frac{1}{6}\left\{\left(\sin \frac{\pi}{2}\right)^{6}-(\sin 0)^{6}\right\}$
$=\frac{1}{6}\{1-0\}=\frac{1}{6}$
4(b) $\int_{0}^{\pi / 4} \cos x \sin ^{3} x d x$
$=\int_{0}^{\pi / 4}(\sin x)^{3} d(\sin x)$
$=\left[\frac{1}{4}(\sin x)^{4}\right]_{0}^{\pi / 4}=\frac{1}{4}\left\{\left(\sin \frac{\pi}{4}\right)^{4}-(\sin 0)^{4}\right\}$
$=\frac{1}{4}\left\{\left(\frac{1}{\sqrt{2}}\right)^{4}-0\right\}=\frac{1}{4} \cdot \frac{1}{4}=\frac{1}{16}$
4. $\int_{0}^{\pi / 6} \sin 3 x \cos 3 x d x$
$=\int_{0}^{\pi / 6} \frac{1}{2} \sin 6 x d x=\frac{1}{2}\left[-\frac{\cos 6 x}{6}\right]_{0}^{\pi / 6}$
$=-\frac{1}{12}(\cos \pi-\cos 0)=-\frac{1}{12}(-1-1)=\frac{1}{6}$
6(a) $\int_{0}^{1} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x=\frac{1}{2} \int_{0}^{1} e^{\sqrt{x}} d(\sqrt{x})$
$=2\left[e^{\sqrt{x}}\right]_{0}^{1}=2\left(e^{\sqrt{1}}-e^{\sqrt{0}}\right)=2(e-1)$
6(b)) $\int_{0}^{2} 2 x \cos \left(1+x^{2}\right) d x$
$=\int_{0}^{2} \cos \left(1+x^{2}\right) d\left(1+x^{2}\right)$
$=\left[\sin \left(1+x^{2}\right)\right]_{0}^{2}=\sin \left(1+2^{2}\right)-\sin \left(1+0^{2}\right)$
$=\sin (5)-\sin (1)$
7(a) ধরি, $\mathrm{I}=\int 2 x^{3} e^{-x^{2}} d x$ এবং $x^{2}=z$.
তাহনে $2 x d x=d z$ এবং
$\mathrm{I}=\int x^{2} e^{-x^{2}}(2 x d x)=\int z e^{-z} d z$
$=z \int e^{-z} d z-\int\left\{\frac{d}{d z}(z) \int e^{-z} d z\right\} d z$
$=z\left(-e^{-z}\right)-\int 1 .\left(-e^{-z}\right) d z$
$=-z e^{-z}+\left(-e^{-z}\right)=-\left(x^{2}+1\right) e^{-x^{2}}$

$$
\begin{aligned}
& \int_{0}^{1} 2 x^{3} e^{-x^{2}} d x=\left[-\left(x^{2}+1\right) e^{-x^{2}}\right]_{0}^{1} \\
& \quad=-(1+1) e^{-1}+(0+1) e^{0}=1-2 e^{-1}
\end{aligned}
$$

7(b) $\int \ln (1+x) d x$
$=\ln (1+x) \int d x-\int\left[\frac{d}{d x}[\ln (1+x)\} \int d x\right] d x$
$=x \ln (1+x)-\int \frac{1}{1+x} \cdot x d x$
$=x \ln (1+x)-\int \frac{1+x-1}{1+x} d x$
$=x \ln (1+x)-\int\left(1-\frac{1}{1+x}\right) d x$
$=x \ln (1+x)-\{x-\ln (1+x)\}+c$
$=(x+1) \ln (1+x)-x+c$
$\int_{0}^{1} \ln (1+x) d x=[(x+1) \ln (1+x)-x]_{0}^{1}$
$=2 \ln 2-1-\ln 1=2 \ln 2-1-0=2 \ln 2-1$
8(a) $\int_{1}^{\sqrt{3}} \frac{3 d x}{1+x^{2}}=3\left[\tan ^{-1} x\right]_{1}^{\sqrt{3}}$
$=3\left(\tan ^{-1} \sqrt{3}-\tan ^{-1} 1\right)=3\left(\frac{\pi}{3}-\frac{\pi}{4}\right)$
$=3 \times \frac{\pi}{12}=\frac{\pi}{4}$
8(b) $\int_{-2}^{2} \frac{d x}{x^{2}+4}=\int_{-2}^{2} \frac{d x}{x^{2}+2^{2}}=\left[\frac{1}{2} \tan ^{-1} \frac{x}{2}\right]_{-2}^{2}$
$=\frac{1}{2}\left\{\tan ^{-1} 1-\tan ^{-1}(-1)\right\}=\frac{1}{2}\left\{\frac{\pi}{4}+\frac{\pi}{4}\right\}=\frac{\pi}{4}$
8(c) $\int_{0}^{a} \frac{d x}{a^{2}+x^{2}}=\left[\frac{1}{a} \tan ^{-1} \frac{x}{a}\right]_{0}^{a}$
$=\frac{1}{a}\left(\tan ^{-1} 1-\tan ^{-1} 0\right)=\frac{1}{a}\left(\frac{\pi}{4}-0\right)=\frac{\pi}{4 a}$
9. $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}=\left[\sin ^{-1} x\right]_{0}^{1}$
$=\sin ^{-1} 1-\sin ^{-1} 0=\frac{\pi}{2}$

10(a) $\int_{0}^{1} x(1-\sqrt{x})^{2} d x=\int_{0}^{1} x(1-2 \sqrt{x}+x) d x$
$=\int_{0}^{1}\left(x-2 x^{\frac{3}{2}}+x^{2}\right) d x=\left[\frac{x^{2}}{2}-2 \frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}+\frac{x^{3}}{3}\right]_{0}^{1}$
$=\left(\frac{1}{2}-2 \times \frac{2}{5}+\frac{1}{3}\right)-0=\frac{15-24+10}{30}=\frac{1}{30}$
(b) $\int_{1}^{2} \frac{\left(x^{2}-1\right)^{2}}{x^{2}} d x=\int_{1}^{2} \frac{x^{4}-2 x^{2}+1}{x^{2}} d x$.
$=\int_{1}^{2}\left(x^{2}-2+\frac{1}{x^{2}}\right) d x=\left[\frac{x^{3}}{3}-2 x-\frac{1}{x}\right]_{1}^{2}$
$=\left(\frac{8}{3}-4-\frac{1}{2}\right)-\left(\frac{1}{3}-2-1\right)$
$=\frac{8}{3}-1-\frac{1}{2}-\frac{1}{3}=\frac{16-6-3-2}{6}=\frac{5}{6}$
(e) $\int_{\pi / 2}^{\pi}(1+\sin 2 \theta) d \theta=\left[\theta-\frac{1}{2} \cos 2 \theta\right]_{\pi / 2}^{\pi}$
$=\left(\pi-\frac{1}{2} \cos 2 \pi\right)-\left(\frac{\pi}{2}-\frac{1}{2} \cos 2 \cdot \frac{\pi}{2}\right)$
$=\pi-\frac{1}{2} \cdot 1-\frac{\pi}{2}+\frac{1}{2}(-1)=\frac{\pi}{2}-1$
11. $\int_{-\pi / 4}^{0} \tan \left(\frac{\pi}{4}+x\right) d x$
$=\left[-\ln \left|\cos \left(\frac{\pi}{4}+x\right)\right|\right]_{-\pi / 4}^{0}$
$=-\ln \left|\cos \frac{\pi}{4}\right|+\ln \left|\cos \left(\frac{\pi}{4}-\frac{\pi}{4}\right)\right|$
$=-\ln \left|\frac{1}{\sqrt{2}}\right|+\ln |\cos 0|=-\ln 2^{-\frac{1}{2}}+\ln 1$
$=\frac{1}{2} \ln 2+0=\frac{1}{2} \ln 2$
12(a) $\int_{0}^{\pi / 2} \sin ^{2} x d x \quad$ [य.'०); द.'০২]
$=\int_{0}^{\pi / 2} \frac{1}{2}(1-\cos 2 x) d x=\frac{1}{2}\left[x-\frac{1}{2} \sin 2 x\right]_{0}^{\pi / 2}$
$=\frac{1}{2}\left\{\left(\frac{\pi}{2}-\frac{1}{2} \sin \pi\right)-\left(0-\frac{1}{2} \sin 0\right)\right\}=\frac{\pi}{4}$
12(b) $\int_{0}^{\pi / 2} \sin ^{5} x \cos ^{4} x d x$
$=\int_{0}^{\pi / 2} \sin ^{4} x \cos ^{4} x \sin x d x$
$=\int_{0}^{\pi / 2}\left(1-\cos ^{2} x\right)^{2} \cos ^{4} x \sin x d x$
মনে করি, $\cos x=\mathrm{z} \quad \therefore-\sin x \mathrm{dx}=\mathrm{dz}$.
$x=0$ रान, $\mathrm{z}=\cos 0=1$;
$x=\frac{\pi}{2}$ शबन, $\mathrm{z}=\cos \frac{\pi}{2}=0$
$\therefore \int_{0}^{\pi / 2} \sin ^{5} x \cos ^{4} x d x=-\int_{1}^{0}\left(1-z^{2}\right)^{2} z^{4} d z$
$=-\int_{1}^{0}\left(1-2 z^{2}+z^{4}\right) z^{4} d z$
$=-\int_{1}^{0}\left(z^{4}-2 z^{6}+z^{8}\right) d z$
$=-\left[\frac{1}{5} z^{5}-2 \cdot \frac{1}{7} z^{7}+\frac{1}{9} z^{9}\right]_{1}^{0}$
$=-\left\{0-\left(\frac{1}{5}-\frac{2}{7}+\frac{1}{9}\right)\right\}=\frac{63-90+35}{315}$
$=\frac{98-90}{315}=\frac{8}{315}$
12(c) «রি, $\mathrm{I}=\int_{0}^{\pi / 2} \frac{\cos x}{(1+\sin x)^{3}} d x$
जবং $z=1+\sin x \quad d z=\cos x d x$
সीমा: $x=0$ रबে $z=1$ এবং $x=\frac{\pi}{2}$ रूে $z=2$
$\therefore \mathrm{I}=\int_{1}^{2} \frac{d z}{z^{3}}=\int_{1}^{2} z^{-3} d z=\left[\frac{z^{-2}}{-2}\right]_{1}^{2}=\left[-\frac{1}{2 z^{2}}\right]_{1}^{2}$

$$
=-\frac{1}{2}\left(\frac{1}{2^{2}}-\frac{1}{1^{2}}\right)=-\frac{1}{2}\left(\frac{1}{4}-1\right)=\frac{3}{8}
$$

13. थरि, $\mathrm{I}=\int_{0}^{1} \frac{\cos ^{-1} x}{\sqrt{1-x^{2}}} d x$
[প্..ธ.भ.’०8]
जবং $z=\cos ^{-1} x \quad d z=-\frac{1}{\sqrt{1-x^{2}}} d x$

गीमा: $x=0$ श्न $z=\frac{\pi}{2}$ এবং $x=1$ इलে $z=0$
$\therefore \mathrm{I}=-\int_{\pi / 2}^{0} z d z=-\left[\frac{z^{2}}{2}\right]_{\pi / 2}^{0}$
$=-\frac{1}{2}\left\{0-\left(\frac{\pi}{2}\right)^{2}\right\}=\frac{\pi^{2}}{8}$
14(a) $\int_{1}^{3} \frac{2 x d x}{1+x^{2}}=\int_{1}^{3} \frac{d\left(1+x^{2}\right)}{1+x^{2}}$
$=\left[\ln \left(1+x^{2}\right)\right]_{1}^{3}=\ln (1+9)-\ln (1+1)$
$=\ln \frac{10}{2}=\ln 5$
14(b) $\int_{0}^{4} \frac{d x}{\sqrt{(2 x+1)}}=\frac{1}{2} \int_{0}^{4} \frac{d(2 x+1)}{\sqrt{(2 x+1)}}$
$=\frac{1}{2}[2 \sqrt{2 x+1}]_{0}^{4}=\sqrt{8+1}-\sqrt{0+1}=3-1=2$
15(a) $\int \ln \left(x^{2}+1\right) d x$
$=\ln \left(x^{2}+1\right) \int d x-\int\left[\frac{d}{d x}\left\{\ln \left(x^{2}+1\right)\right\} \int d x\right] d x$
$=\ln \left(x^{2}+1\right)-\int \frac{2 x}{x^{2}+1} x d x$
$=\operatorname{rln}\left(x^{2}+1\right)-2 \int \frac{x^{2}+1-1}{x^{2}+1} d x$
$=x \ln \left(x^{2}+1\right)-2 \int\left(1-\frac{1}{x^{2}+1}\right) d x$
$=x \ln \left(x^{2}+1\right)-2\left(x-\tan ^{-1} x\right)+c$
$\left.=x \ln \left(x^{2}+1\right)-2 x+2 \tan ^{-1} x\right)+c$

$$
\begin{aligned}
\int_{0}^{1} & \ln \left(x^{2}+1\right) d x=\left[x \ln \left(x^{2}+1\right)-2 x+2 \tan ^{-1} x\right]_{0}^{1} \\
& =\ln 2-2+2 \tan ^{-1} 1-0 \\
& =\ln 2-2+2 \cdot \frac{\pi}{4}=\ln 2-2+\frac{\pi}{2}
\end{aligned}
$$

जヌং $\ln x=y \Rightarrow x=e^{y} \quad d x=e^{y} d y$
$\therefore \int\left\{\frac{1}{\ln x}-\frac{1}{(\ln x)^{2}}\right\} d x=\int\left\{\frac{1}{y}-\frac{1}{y^{2}}\right\} e^{y} d y$
$=\int e^{y}\left\{\frac{1}{y}+D\left(\frac{1}{y}\right)\right\} d y=\frac{e^{y}}{y}+c=\frac{x}{\ln x}$
$\therefore \mathrm{I}=\left[\frac{x}{\ln x}\right]_{2}^{e}=\frac{e}{\ln e}-\frac{2}{\ln 2}=e-\frac{2}{\ln 2}$
16(a) $\int_{0}^{1} \frac{3 d x}{1+x^{2}}=3\left[\tan ^{-1} x\right]_{0}^{1}$
$=3\left(\tan ^{-1} 1-\tan ^{-1} 0\right)=\frac{3 \pi}{4}$
16(b) $\int_{0}^{\pi / 2} \frac{\cos x}{1+\sin ^{2} x} d x=\int_{0}^{\pi / 2} \frac{d(\sin x)}{1^{2}+(\sin x)^{2}}$
$=\left[\tan ^{-1}(\sin x)\right]_{0}^{\pi / 2}=\tan ^{-1}\left(\sin \frac{\pi}{2}\right)-\tan ^{-1}(\sin 0)$
$=\tan ^{-1} 1-\tan ^{-1} 0=\frac{\pi}{4}-0=\frac{\pi}{4}$
17(a) $\int_{-1}^{2} \frac{d x}{x^{2}-9}=\int_{-1}^{2} \frac{d x}{x^{2}-3^{2}}$
$=\left[\frac{1}{2.3} \ln \left|\frac{x-3}{x+3}\right|\right]_{-1}^{2}$
$=\frac{1}{6}\left\{\ln \left|\frac{2-3}{2+3}\right|-\ln \left|\frac{-1-3}{-1+3}\right|\right\}$
$=\frac{1}{6}\left(\ln \frac{1}{5}-\ln 2\right)=\frac{1}{6} \ln \frac{1}{5 \times 2}=\frac{1}{6} \ln (0 \cdot 1)$
17(b) $\int_{0}^{a / 2} \frac{1}{a^{2}-x^{2}} d x=\left[\frac{1}{2 a} \ln \left|\frac{a+x}{a-x}\right|\right]_{0}^{a / 2}$
$=\frac{1}{2 a} \ln \left|\frac{a+\frac{a}{2}}{a-\frac{a}{2}}\right|=\frac{1}{2 a} \ln \left|\frac{3 a}{a}\right|=\frac{1}{2 a} \ln 3^{\circ}$
18(a) $\int_{0}^{a} \frac{d x}{\sqrt{a^{2}-x^{2}}}=\left[\sin ^{-1} \frac{x}{a}\right]_{0}^{a}$
$=\sin ^{-1} \frac{a}{a}-\sin ^{-1} \frac{0}{a}=\sin ^{-1} 1-\sin ^{-1} 0=\frac{\pi-}{2}$
18(b) $\int_{0}^{1} \frac{d x}{\sqrt{4-3 x^{2}}}$
[কূ.বো.'০) ; প্র.ভ.প. bo]
$=\frac{1}{\sqrt{3}} \int_{0}^{1} \frac{\sqrt{3} d x}{\sqrt{2^{2}-(\sqrt{3} x)^{2}}}=\left[\frac{1}{\sqrt{3}} \sin ^{-1} \frac{\sqrt{3} x}{2}\right]_{0}^{1}$
$=\frac{1}{\sqrt{3}}\left(\sin ^{-1} \frac{\sqrt{3}}{2}-\sin ^{-1} 0\right)=\frac{1}{\sqrt{3}}\left(\frac{\pi}{3}-0\right)=\frac{\pi}{3 \sqrt{3}}$
18 (c) ধরি, $\mathrm{I}=\int_{0}^{\pi / 2} \frac{\cos x d x}{\sqrt{4-\sin ^{2} x}}$ এবং
$\sin x=z$. ঢारसে $\cos x d x=d z$
সীমা : $x=0$ रूে $z=0$ এবং $x=\frac{\pi}{2}$ হबে $z=1$
$\therefore \mathrm{I}=\int_{0}^{1} \frac{d z}{\sqrt{2^{2}-z^{2}}}=\left[\sin ^{-1} \frac{x}{2}\right]_{0}^{1}$
$=\sin ^{-1} \frac{1}{2}-\sin ^{-1} 0=\frac{\pi}{2}-0=\frac{\pi}{2}$
18 (d) $\int_{2}^{3} \frac{d x}{(x-1) \sqrt{x^{2}-2 x}} \quad$ [ধ.ভ.প.'०১,'०৩]
$=\int_{2}^{3} \frac{d x}{(x-1) \sqrt{\left(x^{2}-2 x+1\right)-1}}$
$=\int_{2}^{3} \frac{d(x-1)}{(x-1) \sqrt{(x-1)^{2}-1}}$
$=\left[\sec ^{-1}(x-1)\right]_{2}^{3}=\sec ^{-1}(3-1)-\sec ^{-1}(2-1)$
$=\sec ^{-1} 2-\sec ^{-1} 1=\frac{\pi}{3}-0=\frac{\pi}{3}$
19. $\int_{0}^{a} \frac{a^{2}-x^{2}}{\left(a^{2}+x^{2}\right)^{2}} d x$
[Я.ธ.श. '००]
$=\int_{0}^{a} \frac{x^{2}\left(\frac{a^{2}}{x^{2}}-1\right)}{\left\{x\left(\frac{a^{2}}{x}+x\right)\right\}^{2}} d x=\int_{0}^{a} \frac{\left(\frac{a^{2}}{x^{2}}-1\right)}{\frac{\left(\frac{a^{2}}{x}+x\right)^{2}}{x}} d x$
$=\int_{0}^{a} \frac{-\left(-\frac{a^{2}}{x^{2}}+1\right)}{\left(\frac{a^{2}}{x}+x\right)^{2}} d x=-\left[-\frac{1}{\frac{a^{2}}{x}+x}\right]_{0}^{a}$
$=\left[\frac{x}{a^{2}+x^{2}}\right]_{0}^{a}=\frac{a}{a^{2}+a^{2}}-0=\frac{1}{2 a}$
20. $\int_{8}^{27} \frac{d x}{x-x^{1 / 3}}=\int_{8}^{27} \frac{d x}{x\left(1-x^{-2 / 3}\right)}$

ধরি $x^{\frac{2}{3}}=z$. তाइलে $-\frac{2}{3} x^{\frac{5}{3}} d x=d z$
$\Rightarrow-\frac{2}{3} x^{\frac{2}{3}} \frac{d x}{x}=d z \Rightarrow-\frac{2}{3} z \frac{d x}{x}=d z$
$\Rightarrow \frac{d x}{x}=-\frac{3}{2} \frac{d z}{z}$
সীমा : $x=8$ रनে $z=2^{-2}=\frac{1}{4}$ এবং
$x=27$ रलে $z=3^{-2}=\frac{1}{9}$
$\therefore \int_{8}^{27} \frac{d x}{x-x^{1 / 3}}=-\frac{3}{2} \int_{1 / 4}^{1 / 9} \frac{d z}{z(1-z)}$
$=\frac{3}{2} \int_{1 / 4}^{1 / 9}\left\{\frac{1}{z-1}-\frac{1}{z}\right\} d z$
$=\frac{3}{2}[\ln |z-1|-\ln |z|]_{1 / 4}^{1 / 9}=\frac{3}{2}\left[\ln \left|\frac{z-1}{z}\right|\right]_{1 / 4}^{1 / 9}$
$=\frac{3}{2}\left\{\ln \left|\frac{\frac{1}{9}-1}{\frac{1}{9}}\right|-\ln \left|\frac{\frac{1}{4}-1}{\frac{1}{4}}\right|\right\}$
$=\frac{3}{2}\{\ln |-8|-\ln |-3|\}=\frac{3}{2}(\ln 8-\ln 3)$
$=\frac{3}{2} \ln \frac{8}{3}$
21. $\int_{-1}^{1} \frac{1-x}{1+x} d x$
[প্র.ড.প. '৮8]
$=\int_{-1}^{1} \frac{-(1+x)+2}{1+x} d x=\int_{-1}^{1}\left(-1+\frac{2}{1+x}\right) d x$
$=[-x+2 \ln |1+x|]_{-1}^{1}$
$=-1+2 \ln |1+1|-(1+2 \ln |1-1|)$
$=-1+2 \ln 2-1-2 \ln 0$
$=2(\ln 2-1)$

প্রশ্নমাना X E

1(a) Sol ${ }^{\text {n }}: \int \sin a x d x=-\frac{1}{a} \cos a x+c$ Ans. A
(b) Sol ${ }^{\mathrm{n}}: \int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
\therefore Ans. B
(c) Sol $^{\mathrm{n}}$: : ক্যালকুলৌটরের সাহায্যে
$\int_{0}^{\pi / 2} \cos ^{5} x d x=0.533$, या $8 / 15$ এरा गमान :
Ans. D.
 হরে।
এथानে, $\frac{d}{d x}\{F(x)\}=\frac{t-3}{t^{2}+7}=0 \Rightarrow \mathrm{t}=3$
\therefore Ans. D.
(e) $y=\frac{1}{2} x^{2}+1$ পাাবৃঞ্ত ও তার উপকেন্দ্রিক লস্ব দারা বেফিত্ত ক্ষের্রের ক্ষে্র্ন কত ?
Sol ${ }^{n} .: x^{2}=2 y-2=2(y-1)=4 \times \frac{1}{2}(y-1)$
পরাবৃত্তের শীর্ব $(0,1)$, উপबেনन्দ্রিক লম্ব, $y-1=\frac{1}{2}$
$\Rightarrow \mathrm{y}=\frac{3}{2} \quad$ निर्ष्णऱ क्षেত্রফण $=\int_{1}^{3 / 2} x d y$
$=\int_{1}^{3 / 2} \sqrt{2(y-1)} d y=0.666=\frac{2}{3} \quad$ Ans. C
(f) $\mathrm{Sol}^{\mathrm{n}}$: সবЖলি पথ্য সত্য। \therefore Ans. D
(g) Sol ${ }^{\mathrm{n}}: \int \frac{d x}{a y-b x}=-\frac{1}{b} \int \frac{d(a y-b x)}{a y-b x}$
$=-\frac{1}{b} \ln (a y-b x)+\mathrm{c} \therefore$ Ans. \mathbf{A}
(h) Sol $^{\mathrm{n}}: \int \frac{d x}{\sqrt{9-16 x^{2}}}=\frac{1}{4} \int \frac{d(4 x)}{\sqrt{3^{2}-(4 x)^{2}}}$ $=\frac{1}{4} \sin ^{-1} \frac{4 x}{3}+c \therefore$ Ans. \mathbf{B}
(i) Sol $^{\mathrm{n}}: \int_{0}^{1 / a} d\left(\tan ^{-1} a x\right)=\left[\tan ^{-1} a x\right]_{0}^{1 / a}$
(j) $\mathrm{Sol}^{\mathrm{n}}$: বকৗৗশन : $\int_{a}^{b} f(x)=\int_{a+c}^{b+c} f(x-c)$

এथान, $\int_{0}^{4} f(x) d x=\int_{0-1}^{4-1} f(x+1) d x$

$$
=\int_{-1}^{3} f(x+1) d x=6
$$

(k) Sol $^{\mathrm{n}}: \mathrm{pv}=5 \Rightarrow \mathrm{p}=\frac{5}{v}$

$$
\begin{aligned}
\int_{1}^{2} p d v & =\int_{1}^{2} \frac{5}{v} d v=5 \int_{1}^{2} \frac{1}{v} d v \\
& =5(\ln 2-\ln 1)=5 \ln 2
\end{aligned}
$$

(l) Sol ${ }^{\mathrm{n}}$: ধनाज़ক x এর জन্য $\mathrm{F}(\mathrm{x})=\int_{1}^{x} \ln t d t$ रনে $F^{\prime}(x)=\frac{d}{d x}\left(\int_{1}^{1} \ln t d t\right)=\ln \mathrm{x}-\ln 1=\ln \mathrm{x}$
(m) Sol ${ }^{\mathrm{n}}: x^{2}+y^{2}=a^{2}$ ব্ত্তের বেব্র্র户ন $=\pi a^{2}$ $\mathrm{y}=-\sqrt{a^{2}-x^{2}}$ ఆ $\mathrm{y}=0$ घारा आবদ্ধ বেত্রের बেত্রফল $=$ অর্ধবৃত্তের বেত্রকল $=\frac{1}{2} \pi a^{2}$

$$
=\int_{2}^{5} x^{2} d x==\left[\frac{x^{3}}{3}\right]_{2}^{5}=\frac{1}{3}(125-8)=39
$$

2.(a) $y=3 x$ সরুলরেयা , x-অक এবং কোটি $x=2$ पारा সীমাবम क্ষেত্রের কেত্রय্ন निিত্য কর। সমাধান निर्ণেয় কেত্রফন $=$ $y=3 x$ সরুলরেখা, x-जक जবং Y4 $x=0$ ও $x=2$ রেরোদ্য দ্মারা সীমাবদ্ম ক্নেত্রের ক্ষেত্রফন $=\int_{0}^{2} y d x=\int_{0}^{2} 3 x d x$
 $=3\left[\frac{x^{2}}{2}\right]_{0}^{2}=\frac{3}{2}\left(2^{2}-0\right)=6$ वर्भ এकब।

 সমাধান: $3 x+4 y=12$ बर्थाৎ $y=3=\frac{3}{4} x$ সরনরেখা x অক্ষকে $(4,0)$ বিন্দুতত ছেদ করে।
\therefore निर्ণ্য ক্ষেত্রফম $=$ প্রদত্ত রেখা, x-অक্ষ এবং $x=0$ ও $x=4$ त্রোদ্যয় ज্বারা সীমাবদ্জ ক্ষেত্রের ক্ষেত্রকন $=\int_{0}^{4} y d x$
$=\int_{0}^{4}\left(3-\frac{3}{4} x\right) d x$

$=\left[3 x-\frac{3}{4} \cdot \frac{x^{2}}{2}\right]_{0}^{4}=12-\frac{3}{8} \cdot 16=6$ वर्গ একক।
3.(a) $x^{2}+y^{2}=a^{2}$ বৃ区 छारा সीমাবम्ब क্ছেब্রের
 সমাধান $8 x^{2}+y^{2}=a^{2}$ বৃত্তের কেন্দ্র মূঅকিন্দু ও ব্যাসাí a 1

$$
\begin{aligned}
& x^{2}+y^{2}=a^{2} \\
\Rightarrow & y^{2}=a^{2}-x^{2} \\
\Rightarrow & y= \pm \sqrt{a^{2}-x^{2}}
\end{aligned}
$$

ক্ষে OAB এর
क्षिज्রखण =
$y=\sqrt{a^{2}-x^{2}}$
বক্ররেখা, x-অক্ষ এবং $x=0$ ও

$x=\mathrm{a}$ রেখাঘয় দ্বারা সীমাবদ্ধ ক্ষেত্রের ক্ষেত্রেফন $=\int_{0}^{a} y d x$
$=\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x$
$=\left[\frac{x \sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]_{0}^{a}$
$=\frac{a^{2}}{2} \sin ^{-1} 1=\frac{a^{2}}{2} \cdot \frac{\pi}{2}=\frac{a^{2} \pi}{4}$
\therefore বৃত্তের ক্ষেত্রেল $=4 \times$ ক্ষিত্র OAB এর ক্ষেশ্রকন $=4 \times \frac{a^{2} \pi}{4}$ वर्গ একক $=a^{2} \pi$ বर्গ একক।
 निबऱ कर।
[ঢा.०৭]
সমাধান $8 x^{2}+y^{2}=4$ বৃত্তের কেন্দ্র মূলবিন্দু ও ব্যার্সার 2

$$
x^{2}+y^{2}=4
$$

$\Rightarrow y^{2}=4-x^{2}$

ক্ষেত্র OAB এর ক্ষের্র্ন $=y=\sqrt{4-x^{2}}$
বক্ররেখা, x-অक্ষ এবং $x=0$ ও
$x=2$ র্নেখাদ্ময দারা সীমাবদ্ম ক্ষেত্রের ক্ষেত্রফন
$=\int_{0}^{2} y d x=\int_{0}^{2} \sqrt{4-x^{2}} d x=\int_{0}^{2} \sqrt{2^{2}-x^{2}} d x$
$=\left[\frac{x \sqrt{2^{2}-x^{2}}}{2}+\frac{2^{2}}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2}$
$=\frac{4}{2} \sin ^{-1} 1=2 \cdot \frac{\pi}{2}=\pi$
বৃত্তের ক্ষেত্রফল $=4 \times$ ক্ষেত্র $O A B$ এর ক্ষেশ্রষ্ন

3(c) $x^{2}+y^{2}=25$ বৃত এবং $x=3$ সরুরেখা চারা

 সমাধান $8 x^{2}+y^{2}=25$ বৃত্তের কেন্দ্র মৃণকি্দু ও ব্যাসার 51

$$
\begin{aligned}
& x^{2}+y^{2}=25 \\
\Rightarrow & y^{2}=25-x^{2} \\
\Rightarrow & y= \pm \sqrt{25-x^{2}}
\end{aligned}
$$

কেত্র OAB এর
क्षिज्রयन $=y=\sqrt{25-x^{2}}$
বক্ররেখা, x-सक्ম এবং $x=3$ ও $x=5$ রেরোদ্ম্য ঘারা সীমাবम্ब क্ষেত্রের কেত্রखन $=\int_{3}^{5} y d x$
$=\int_{3}^{5} \sqrt{25-x^{2}} d x=\int_{3}^{5} \sqrt{5^{2}-x^{2}} d x$
$=\left[\frac{x \sqrt{5^{2}-x^{2}}}{2}+\frac{5^{2}}{2} \sin ^{-1} \frac{x}{5}\right]_{3}^{5}$

$$
\left\{\begin{array}{l}
=\left(0+\frac{25}{2} \sin ^{-1} 1\right)-\left(\frac{3 \sqrt{25-9}}{2}+\frac{25}{2} \sin ^{-1} \frac{3}{5}\right) \\
=\frac{25}{2} \cdot \frac{\pi}{2}-\frac{3 \times 4}{2}-\frac{25}{2} \sin ^{-1} \frac{3}{5} \\
=\frac{25 \pi}{4}-6-\frac{25}{2} \sin ^{-1} \frac{3}{5}
\end{array}\right.
$$

\therefore निर्षिय क्ञেत্রख্न $=2 \times\left(\frac{25 \pi}{4}-6-\frac{25}{2} \sin ^{-1} \frac{3}{5}\right)$ $=\left(\frac{25 \pi}{2}-12-25 \sin ^{-1} \frac{3}{5}\right)$ वर्গ একक।
3(d) $x^{2}+y^{2}=36$ বृख এयर $x=5$ সরুর্রেষt हाइडा সी
সমাধাन $8 x^{2}+y^{2}=36$ বৃত্তের কেন্দ্র মূনকিস্দू ও ব্যাসার্ধ 61

$$
x^{2}+y^{2}=36
$$

$\Rightarrow y^{2}=36-x^{2}$
$\Rightarrow y= \pm \sqrt{36-x^{2}}$
ক্ষেত্র OAB এর
कের্র্শण $=y=\sqrt{36-x^{2}}$

$=\int_{5}^{6} \sqrt{36-x^{2}} d x=\int_{5}^{6} \sqrt{6^{2}-x^{2}} d x$
$=\left[\frac{x \sqrt{6^{2}-x^{2}}}{2}+\frac{6^{2}}{2} \sin ^{-1} \frac{x}{6}\right]_{5}^{6}$
$=\left(0+\frac{36}{2} \sin ^{-1} 1\right)-\left(\frac{5 \sqrt{36-25}}{2}+\frac{36}{2} \sin ^{-1} \frac{5}{6}\right)$
$=18 \cdot \frac{\pi}{2}-\frac{5 \sqrt{11}}{2}-18 \sin ^{-1} \frac{5}{6}$
$=9 \pi-\frac{5 \sqrt{11}}{2}-18 \sin ^{-1} \frac{5}{6}$
\therefore निर्वैस क्षित्वयण $=2\left[9 \pi-\frac{5 \sqrt{11}}{2}-18 \sin ^{-1} \frac{5}{6}\right]$

$$
=\left(18 \pi-5 \sqrt{11}-36 \sin ^{-1} \frac{5}{6}\right) \text { बर्भ जकब। }
$$

 गমাধান \& $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ উभবৃত্তের কেন্দ্র মূनবিब্দू । $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$\Rightarrow \frac{y^{2}}{b^{2}}=1-\frac{x^{2}}{a^{2}}$

$\Rightarrow y^{2}=\frac{b^{2}}{a^{2}}\left(a^{2}-x^{2}\right) \Rightarrow y= \pm \frac{b}{a} \sqrt{a^{2}-x^{2}}$
ক্ষেত্র OAB এর ক্কের্রষ্ন $=$
 $x=\mathrm{a}$ রেथाদ্য দ্বারা সীমাবদ্ধ ক্কেত্রের ক্ষেশ্রফন $=\int_{0}^{3} y d x=\int_{0}^{a} \frac{b}{a} \sqrt{a^{2}-x^{2}} d x$
$=\frac{b}{a}\left[\frac{x \sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]_{0}^{a}$
$=\frac{b}{a}\left(\frac{a^{2}}{2} \sin ^{-1} 1\right)=\frac{a b}{2} \cdot \frac{\pi}{2}=\frac{a b \pi}{4}$ बर्斤 এकक।
প্রদত্ত উপবৃত্তের ক্নেত্রফন $=4 \times$ ক্ষেত্র OAB এর ক্ষেख্র্ন $=4 \times \frac{a b \pi}{4}=a b \pi$ বগ़ একক ।
5. (a) $y=4 x^{2}$ পরাবৃত্ত এবং $y=4$ সরলরেশা দারা

[द.'os] সমাধান $8 y=4 x^{2}$ পরাবৃত্তের শীর্ষবিি্দু $O(0,0)$. $y=4 x^{2} \Rightarrow x^{2}=\frac{1}{4} y$
$\Rightarrow x= \pm \frac{1}{2} \sqrt{y}$
ক্ষেত্র OAB^{\prime} এর কে্কে $x=\frac{1}{2} \sqrt{y}$ बক্রররেখা, y-অक এবং $y=0$ ও $y=4$ র্রখামs ঘারা সীমারम্ধ ক্ষেতের क्षिखल $=\int_{0}^{4} x d y=\frac{1}{2} \int_{0}^{4} \sqrt{y} d y$
$=\frac{1}{2}\left[\frac{y^{3 / 2}}{3 / 2}\right]_{0}^{4}=\frac{1}{2} \times \frac{2}{3}(4)^{\frac{3}{2}}=\frac{1}{3} \times 8=\frac{8}{3}$ ব'্গดकক
\therefore निर्ণেম ক্ষে্র্ন $=2 \times$ ক্ষেত্র OAB এর ক্ষেত্রষ্ন

$$
=\frac{16}{3} \text { বর্গএকক। }
$$

5(b) $y^{2}=4 x$ পরাবৃত এবश $y=x$ সরगत্রো छারা

[ज.'০৩,’১৩; সি.'০৯; '১১; ব.'১০; চ.,কু.’১৩] সমাধান $\mathrm{s} y=x$ হতে y এর মান $y^{2}=4 x$ সমीকরণণ বসিত্যে পাই, $x^{2}=4 x \Rightarrow \mathrm{x}=0,4$
\therefore निर्वেয় क্ষের্রেण =
$y_{1}=2 \sqrt{x}$ বब্চেো $ও y_{2}=x$
সরুनরেখা এবং $x=0$ ও $x=4$

রেখাদ্ব্য দ্বারা শাবদ্ম ক্ষের্রের ক্ষেত্রফল

$$
\begin{aligned}
& =\int_{0}^{4}\left(y_{1}-y_{2}\right) d x=\int_{0}^{4}(2 \sqrt{x}-x) d x \\
& =\left[2 \frac{x^{3 / 2}}{3 / 2}-\frac{x^{2}}{2}\right]_{0}^{4}=2 \times \frac{2}{3}(4)^{\frac{3}{2}}-\frac{4^{2}}{2} \\
& =\frac{32}{3}-8=\frac{32-24}{3}=\frac{8}{3} \text { यर्গ এकক। }
\end{aligned}
$$

5(c) $y^{2}=4 x$ পরাবৃত্ত এবং $y=2 x$ সরলরেখা মারা সীমাবम्ब ক্ষের্রের কেত্রশ্ল निর্য় কর। [य.'০২; চ.'১০] সমাধান $8 y=2 x$ হরে y এর মান $y^{2}=4 x$ সমীকরণে বসিয়ে পাই, $4 x^{2}=4 x \Rightarrow \mathrm{x}=0,1$ \therefore निर्ণেয क্ষেত্রক্ন $=$ $y_{1}=2 \sqrt{x}$ বब্ন্রেখা ও $y_{2}=2 x$ সরনরেো এবং $x=0$ ఆ $x=1$
 রেখাদ্র দ্মারা অাবদ্ধ ক্ষেত্রের ক্সেক্রক্ন
$=\int_{0}^{1}\left(y_{1}-y_{2}\right) d x=\int_{0}^{2}(2 \sqrt{x}-2 x) d x$ $=\left[2 \times \frac{x^{3 / 2}}{3 / 2}-2 \cdot \frac{x^{2}}{2}\right]_{0}^{1}=2 \times \frac{2}{3}-1$
$=\frac{4}{3}-1=\frac{4-3}{3}=\frac{1}{3}$ वर्গ এक्र।
$5(\mathrm{~d}) y^{2}=16 x$ পরাবৃত্ত এবং $y=x$ সরলরেখা দ্বারা সীমাবদ্ম ক্ষেত্রের ক্ষেত্র্ল্ল নিণ়্ কর।
[সি.'০২] সমাধান : $y=x$ रতে y এর মান $y^{2}=16 x$ সমীকরণে বসিয়ে পাই,
$x^{2}=16 x \Rightarrow \mathrm{x}=0,16$
\therefore नित्वैয় क্ষেত্রফন $=$
$y_{1}=4 \sqrt{x}$ বক্ররেখা ও $y_{2}=x$

সরলরেরা এবং $x=0$ ও $x=16$
রেখাদ্বয় দ্বারা আবদ্ধ ক্ণেত্রের ক্ষেত্রফন

$$
\begin{aligned}
& =\int_{0}^{16}\left(y_{1}-y_{2}\right) d x=\int_{0}^{16}(4 \sqrt{x}-x) d x \\
& =\left[4 \times \frac{x^{3 / 2}}{3 / 2}-\frac{x^{2}}{2}\right]_{0}^{16}=4 \times \frac{2}{3}(16)^{\frac{3}{2}}-\frac{16^{2}}{2} \\
& =\frac{512}{3}-128=\frac{512-384}{3}=\frac{128}{3} \text { ব। बकক । }
\end{aligned}
$$

5(e) $y^{2}=16 x$ পরাবৃ区 এবং এর উপকেস্দ্রিক লম্ব দারা সীমাবস্ষ ক্小েত্রের ক্xেত্রফল নির্বয় কর।
मমাধান $8 y^{2}=16 x \Rightarrow y^{2}=4.4 . x$
পরাবৃত্তের উপকেন্দ্রিক নঙ্মের
সমীক্রণ $x=4$.
$y^{2}=16 x \Rightarrow y= \pm 4 \sqrt{x}$
ক্ষেত্র OAB এর ক্ষেত্রফল =

$y=4 \sqrt{x}$ বক্ররেখা, x-অক্ষ এবং $x=0$ ও $x=4$ রেখাদ্য দ্নারা गীমাবদ্ম ক্ষেত্রের ক্ষেত্রফন
$=\int_{0}^{4} y d x=\int_{0}^{4} 4 \sqrt{x} d x$
$=4\left[\frac{y^{3 / 2}}{3 / 2}\right]_{0}^{4}=4 \times \frac{2}{3}(4)^{\frac{3}{2}}=\frac{8}{3} \times 8=\frac{64}{3}$ বर্গএকक

$$
=\frac{128}{3} \text { বর্গএকক i}
$$

 ক্মেত্রের क্রেশ্রম্ন নিণ্য় কর।
[রা.'०১]
সমাধান \& $y=2 x-x^{2} \cdots(1)$
x-অক্ষের সমীকরণ $y=0 \cdots(2)$
(1) $এ y=0$ বসিয়ে পাই,
$0=2 x-x^{2} \Rightarrow x=0,2$
निर्ণেয় ক্ষেত্রফচ $=$ প্রদত্ত বক্ররেখা, x-অক্ষ এবং $x=0$
ও $x=2$ রেখাদ্ময় দ্বারা সীমাবদ্ম ক্ষেত্রের ক্ষেত্রফল
 $=\int_{0}^{2} y d x=\int_{0}^{2}\left(2 x-x^{2}\right) d x$
$=\left[2 . \frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{2}=4-\frac{8}{3}=\frac{4}{3}$ বर्গ একक
5(b) $y=x^{2}$ বক্ররেখা, x-অक बবং $x=1$ ও $x=7$ র্রেখাঘয় দ্বারা সীমাবम্ষ ক্মেত্রের ক্মেত্রযল্ল নিণয় কর।
[কু.’০২]
সমাধান 8 নির্ণেয় ক্ষেত্রফম = $x=\sqrt{y}$ বক্ররেখা, x-অक্ষ এবং $x=1$ ও $x=4$ রেখান্য় দ্বারা নীমাবদ্ধ ক্ষেত্রের ক্ষেত্রফস
$=\int_{1}^{7} y d x=\int_{1}^{7} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{1}^{7}$

$=\frac{1}{3}(343-1)=144$ दর্গ একক
6(c) $y=x^{2}$ বক্ষরেپা এবং $x-y+2=0$ সরনরেেখা দ্বারা সীমাবम্य ক্ষেত্রের ক্ষেত্রফল নিিয়্ন কর।
[সি.'০৩]
সমাধাन : $y=x^{2} \cdots \cdots$ (1) रতে y এর मान $x-y+2=0$ সমীকরণণ বসিয়ে পাই,
 এবং $y_{1}=x+2, y_{1}=x^{2}$
\therefore निर्ণ্ণ ক্যে ক্রেকল $=\int_{-1}^{2}\left(y_{1}-y_{2}\right) d x$
$=\int_{-1}^{2}\left(x+2-x^{2}\right) d x=\left[\frac{x^{2}}{2}+2 x-\frac{x^{3}}{3}\right]_{-1}^{2}$
$=\frac{4}{2}+4-\frac{8}{3}-\left(\frac{1}{2}-2+\frac{1}{3}\right)=8-\frac{8}{3}-\frac{1}{2}-\frac{1}{3}$
$=\frac{48-16-3-2}{6}=\frac{48-21}{6}=\frac{27}{6}=\frac{9}{2}$ বগাबकক
7.(a) $x^{2}+y^{2}=1$ ७ $y^{2}=1-x$ বब্ৰরেখা দুইঢি
 [ঢ.'os] সমাथान : $y^{2}=1-x=-(x-1)$ रতে y^{2} এর মान $x^{2}+y^{2}=1$ সমীকরণে বসিয়ে পাই, $x^{2}+1-x=1$
$\Rightarrow x(x-1)=0 \Rightarrow x=0,1$
$x=1$ হলে $y=0$ এবং
$x=0$ হলে $y= \pm 1$
বক্ররেলা দুইটির ছেদবিন্দু $(1,0),(0,1),(0,-1)$ এখানে x এর সীমা 0 থেকে 1 जবং $y_{1}=\sqrt{1-x^{2}} \quad y_{1}=\sqrt{1-x}$.
\therefore निर्वেয় क्ञের্র্ন্न $=2 \int_{0}^{1}\left(y_{1}-y_{2}\right) d x$
$=2 \int_{0}^{1}\left(\sqrt{1-x^{2}}-\sqrt{1-x}\right) d x$
$=2\left[\frac{x \sqrt{1-x^{2}}}{2}+\frac{1}{2} \sin ^{-1} x+\frac{2}{3}(1-x)^{3 / 2}\right]_{0}^{1}$
$=2\left(\frac{1}{2} \sin ^{-1} 1-\frac{2}{3}\right)=2\left(\frac{1}{2} \cdot \frac{\pi}{2}-\frac{2}{3}\right)$
$=2\left(\frac{\pi}{4}-\frac{2}{3}\right)$ বर्গ একक
www.boighar.com
7(b) দেঋা ब্যে, $y^{2}=4 a x$ এবर $x^{2}=4 a y$ পরাবৃভ

[भि. '০৪; ঢা. 'ob; דू. 'ob; fि.'o১; প্র.ভ.9.'০৫] প্রমাণ : $x^{2}=4 a y \Rightarrow y=\frac{x^{2}}{4 a}$ रতে y এর মान $y^{2}=4 a x$ সমীকরণণ বসিয়ে পাই, $\left(\frac{x^{2}}{4 a}\right)^{2}=4 a x \Rightarrow x^{4}=64 a^{3} x$
$\Rightarrow x\left(x^{3}-64 a^{3}\right)=0$ $\Rightarrow x=0,4 a$

এখানে x এর সীমা 0 থেকে $4 a$ जবং
$y_{1}=2 \sqrt{a} \sqrt{x}, y_{2}=\frac{1}{4 a} x^{2}$.
\therefore निर्ণে小 क्ञের্রফन $=\int_{0}^{1}\left(y_{1}-y_{2}\right) d x$
$=\int_{0}^{4 a}\left(2 \sqrt{a} \sqrt{x}-\frac{1}{4 a} x^{2}\right) d x$
$=\left[2 \sqrt{a} \frac{2}{3} x^{3 / 2}-\frac{1}{4 a} \cdot \frac{x^{3}}{3}\right]_{0}^{4 a}$
$=\frac{4 \sqrt{a}}{3}(4 a)^{3 / 2}-\frac{1}{12 a} \cdot 64 a^{3}$
$=\frac{4 \sqrt{a}}{3} \times 8 a \sqrt{a}-\frac{16}{3} a^{2}$
$=\frac{32}{3} a^{2}-\frac{16}{3} a^{2}=\frac{16}{3} a^{2}$ বर्গ এकक।

[Б.'oc]
সমাধান 8

निर্ণেয় ক্ষেত্রফন $=y=\sin x$ বক্ররেখা, x-एक্ম এবং x $=0$ ও $x=\frac{\pi}{2}$ রেখাদ্বয় মারা সীমাবদ্ম ক্ষেত্রের ক্ষেত্রফন $\doteq \int_{0}^{\pi / 2} y d x=\int_{0}^{\pi / 2} \sin x d x$
$=[-\cos x]_{0}^{\pi / 2}=-\cos \frac{\pi}{2}+\cos 0=1$ বर्গ একক।
8(b) x - অक এবर $y=\sin x$ বক্রন্রেथার একটি চাপ দারা গठিত ক্মের্রের কেত্রশ্ল নিণয় কর।
সমাধান :

निর্ণ্ণে ক্রেত্রফন $=y=\sin x$ বক্করেখা, x-অশ এবং $x=0$ ও $x=\pi$ রেরোদ্য দ্মারা সীমাবদ্ষ ক্ষেত্রের

क्ञिख्ज $=\int_{0}^{\pi} y d x=\int_{0}^{\pi} \sin x d x$
$=[-\cos x]_{0}^{\pi}=-\cos \pi+\cos 0$
$=1+1=2$ ব可 একক।
9.

চिख্রে， $\mathrm{x}=3$ সর্রनत্রো $x^{2}+y^{2}=25$ বৃত্তকে এবং $y^{2}=x$ পরাবৃতকে ছেদ করেছে ।
（a） $\int_{0}^{4} \sqrt{16-x^{2}} d x$ जর मान निर्ণয় कর।
［मि．’০৯；কু．＇১১；রা．＇১১，’১৪；ঢা．’১＞；य．’’০］
（b）প্রদভ বৃত্ত ও সর্লরে小ে প্বারা সীমাব্ধ wদ্র্রত্র ক্ষেত্রটির

（c）প্রদত পরাানুত্ত ও সরুলরেখার সাথে $y=0$ সর়লর্নেখা বে बেত্র דৈর্নি করে তার এবং রেখাক্কিত এলাকার বেত্রयম্ন নির্ণ্য় কর।
সমাधান：（a）ধশ্নমালা XD এর্ন উদাহর্রণ 5 দ্রষ্টব্য।
（b）অ্রশ্নমালা XE এন্গ 3（c）দ্রষ্টব্য।

（c）निर्फেয় क্ষেত্न $=2 \int_{0}^{3} \sqrt{x} d x=2\left[\frac{x^{3 / 2}}{3 / 2}\right]_{0}^{3}$

$$
=2 \times \frac{2}{3}(3)^{3 / 2}=\frac{4}{3} \times 3 \sqrt{3}=4 \sqrt{3} \text { বर्भ একक। }
$$

র্রেখাক্রিত এলাকান ক্ষে্রকল $=\int_{0}^{3}\left(y_{1}-y_{2}\right) d x$ ，যেখানে $y_{1}=\sqrt{5^{2}-x^{2}}, y_{1}=\sqrt{x}$

$$
\begin{aligned}
& \text { निर्बেয बেত্রেস্न }=\int_{0}^{3}\left(\sqrt{5^{2}-x^{2}}-\sqrt{x}\right) d x \\
& =\left[\frac{x \sqrt{25-x^{2}}}{2}+\frac{25}{2} \sin ^{-1} \frac{x}{5}-\frac{x^{3 / 2}}{3 / 2}\right]_{0}^{3} \\
& =\frac{3 \sqrt{25-3^{2}}}{2}+\frac{25}{2} \sin ^{-1} \frac{3}{5}-2 \sqrt{3} \\
& =\frac{3 \times 4}{2}+\frac{25}{2} \sin ^{-1} \frac{3}{5}-2 \sqrt{3} \\
& =6-2 \sqrt{3}+\frac{25}{2} \sin ^{-1} \frac{3}{5}
\end{aligned}
$$

10．চিত্রে $y=x-2$ সর়লরেখা $y^{2}=x$ পরাবৃত্তকে A ® B বিন্দুতে ছেদ করেছে।

（a） $\int_{0}^{1} \frac{x d x}{\sqrt{4-x^{2}}}$ जর মান निर्ণয় कর।
［मि．’০৯；ঢা．，বা．，কু．＇১০；मि．＇১৩］
（b）$y=x-2$ সর্ললরেথা ও $y^{2}=x$ পরাবৃত্ত পারা অবケ্গ বেত্রের ব্রের্রল নির্ণয় কর।
［DU 12－13，BUET 13－14］
（c）A उ B－বিन्দूগাगী y－অক্কের সমান্তরান র্রেখা পরাবৃজট্টে যथাক্রুম D ও C বিন্দুত্ ছেদ কর্র। ABC उ ADBC ক্ষেত্রের ক্থেত্রयল নির্ণয় কর। সমাধানः（a）«্ন্নমাণা XD এন্ন 9（d）দ্রষ্ব্য।
（b）

$y=x-2 \Rightarrow \mathrm{x}=\mathrm{y}+2$ इতে x बর মাन $y^{2}=x$ সभीকরণে বসিয়ে পাই, $y^{2}=y+2 \Rightarrow y^{2}-y-2=0$ $\Rightarrow(y-2)(y+1)=0$

$$
y=-1,2 \text { जबং } x=1,4
$$

এখানে y এর সীমা -1 পেকে 2 এবং $x_{1}=y+2$, $x_{2}=y^{2}$.

$$
\begin{aligned}
& \text { निर्ণ্ণে क্ষেত্রফ্ন }=\int_{-1}^{2}\left(x_{1}-x_{2}\right) d y \\
& =\int_{-1}^{2}\left(y+2-y^{2}\right) d y=\left[\frac{y^{2}}{2}+2 y-\frac{y^{3}}{3}\right]_{-1}^{2} \\
& =\frac{4}{2}+4-\frac{8}{3}-\left(\frac{1}{2}-2+\frac{1}{3}\right) \\
& =\frac{4}{2}+4-\frac{8}{3}-\frac{1}{2}+2-\frac{1}{3} \\
& =\frac{12+24-16-3+12-2}{6}
\end{aligned}
$$

$$
=\frac{27}{6}=\frac{9}{2} \text { বर्গ जকক। }
$$

(c) এখানে, A ও B বিन्দूর श्रानाক্ক यथाক্রমে $(1,-1)$ ও $(2,4)$.
AOC বেত্রের बেত্রাক্ল $=y=\sqrt{x}$ বক্ষরেখা, x-एक এবং $x=0$ ও $x=1$ রেথোদ্য মারা সীমাবস্ষ কেত্রের ক্ষেক্তের দ্রিক্ণ $=2 \int_{0}^{1} y d x=2 \int_{0}^{1} \sqrt{x} d x$

$$
=2\left[\frac{x^{3 / 2}}{3 / 2}\right]_{0}^{1}=2 \times \frac{2}{3}=\frac{4}{3} \text { वर्भ এক্ক }
$$

এখन, ABC বেত্রের বেত্রফল $=\mathrm{AOB}$ বেত্রের বেত্রফল

- AOC बেख্রের বের্রেম্ল

$$
=\frac{9}{2}-\frac{4}{3}=\frac{27-8}{6}=\frac{19}{6} \text { বर्গ একক। }
$$

এবং ADBC बেত্রের বের্রেফল $=y=\sqrt{x}$ বब্ররেখা,
 ক্ষেত্রের ক্ষেক্রকেের পিক্ণ
$=2 \int_{1}^{4} y d x=2 \int_{1}^{4} \sqrt{x} d x=2\left[\frac{x^{3 / 2}}{3 / 2}\right]_{1}^{4}$
$=2 \times \frac{2}{3}\left(4^{3 / 2}-1\right)=\frac{4}{3} \times(8-1)$
$=\frac{28}{3}$ वर्গ এकক
11. পাশের চিত্রে, $y^{2}=4(x+2)$ यক্ষরেখ্যাটি x
 করে। $A B$ রেথার ঢাল -1 ๑ B বিন্দুর y স্থাनाष्क 6 । সমাধান :

(a) ধরি, AB রেথার সমীকর্রণ $\mathrm{y}=-\mathrm{x}+\mathrm{c}$

এবং B বিन्দूর স্থানাজ্ম (α 6) या (i) तেথা ৩ $y^{2}=4(x+2)$ বক্ররেথার ছেদবিন্দু।
$\therefore 6=-\alpha+c \Rightarrow c=\alpha+6$ এবश
$6^{2}=4(\alpha+2) \Rightarrow \alpha+2=9 \Rightarrow \alpha=7$
$\therefore \quad c=7+6=13$
$\therefore \quad \mathrm{B}$ বিস্দুর স্পানাষ্क $(7,6)$ बবং AB त্রেখার সমীকরণ
$\mathrm{y}=-\dot{\mathrm{x}}+13 \Rightarrow \mathrm{x}+\mathrm{y}=13 \Rightarrow \frac{x}{13}+\frac{y}{13}=1$
$\therefore \quad$ A ব্দ্দুর স্থাनাজ্ק $(13,0)$
(b) প্রদভ ব্ক্র্রো x অक্ষকে C বিन्দूতে ছেদ করে।
$\therefore \mathrm{C}$ बिन्दूर y ग्थानाष्क 0

$$
y^{2}=4(x+2) এ y=0 \text { বসিয়ে পাই, } \mathrm{x}=-2
$$

$\therefore C$ বिन्দूर স্থानाष्क $(-2,0)$
এখন, $\triangle \mathrm{ABC}$ এর কেজ্রফম
$=\frac{1}{2}| | \begin{array}{cccc}13 & 7 & -2 & 13 \\ 0 & 6 & 0 & 0\end{array}| |$
$=\frac{1}{2}|78+12|=\frac{90}{2}=45$ वर्भ बকक।
（c） B रতে AC এর উপর BD লम্ব টাनि।
$\triangle \mathrm{BCD}$ এর ক্ষেজ্রেক্न $=\frac{1}{2}(C A \times B D)$
$=\frac{1}{2} \times|-2-7| \times 6=27$ বর্গ একক্ক।

ज्याর़ा সীমাবम্ब ক্ষেত্রের ক্ষে্র্রক্न $=\int_{-2}^{7} 2 \sqrt{x+2} d x$
$=2\left[\frac{-(x+2)^{3 / 2}}{3 / 2}\right]_{-2}^{7}$
$=\frac{4}{3}\left\{(7+2)^{3 / 2}-(-2+2)^{3 / 2}\right\}$
$=\frac{4}{3} \times 27=36$ वर्ग এकक
দাগাষ্কিত ABC সম্শূর্ণ এলাকার ক্ষেত্রক্ন
$=45+(36-27)=54$ वर्গ बकক।

অতিরিক্ত প্রশ্ন（সমাধানসহ）

1．$y=x^{3}$ বब্ষরেষা，x－षक जবर $y=0, x=1$ ७
 निण亠্য बर।

সমাधान \＆निर्ণ্য ক্ষেত্রফল $=\int_{1}^{3} y d x=\int_{1}^{3} x^{3} d x$ $=\left[\frac{x^{4}}{4}\right]_{1}^{3}=\frac{1}{4}(81-1)=\frac{80}{4}=20$ বर्ग এक्र।

সমाधान \＆निर्ণिय क্ষেত্রফল $=\int_{a}^{b} y d x=\int_{a}^{b} \frac{c^{2}}{x} d x$ $=c^{2}[\ln x]_{a}^{b}=c^{2}(\ln b-\ln a)=c^{2} \ln \frac{b}{a}$

3．দেষাゃ মে，$\sqrt{x}+\sqrt{y}=\sqrt{a}$ অধिবৃব্ত এবং সানাষ্ষ্রে

भ্রমাণ ：$\sqrt{x}+\sqrt{y}=\sqrt{a} \Rightarrow \sqrt{y}=\sqrt{a}-\sqrt{x}$
$\Rightarrow y=(\sqrt{a}-\sqrt{x})^{2}=a-2 \sqrt{a} \sqrt{x}+x$
এখানে x এর সীমা 0 रতে a
\therefore निर्वर्य क्षেত্রেन $=\int_{0}^{a} y d x$
$=\int_{0}^{a}(a-2 \sqrt{a} \sqrt{x}+x) d x$
$=\left[a x-2 \sqrt{a} \cdot \frac{2}{3} x^{3 / 2}+\frac{x^{2}}{2}\right]_{0}^{a}$
$=a^{2}-2 \sqrt{a} \cdot \frac{2}{3} a^{3 / 2}+\frac{a^{2}}{2}$
$=a^{2}-\frac{4}{3} a^{2}+\frac{a^{2}}{2}=\frac{6 a^{2}-8 a^{2}+3 a^{2}}{6}=\frac{a^{2}}{6}$
ব্যবহারিক অনুগীলनী
1．পাচটি কোটি ব্যবशার করে মান নির্ণয় কর $\int_{1.5}^{3.5} \ln x d x, \int_{0}^{1} \frac{1}{1+x} d x$
পরীশশেের নাম ：एয়ীি কোটি ব্যবহার করে $\int_{1.5}^{3.5} \ln x d x$ এর মান निर्ণয়।
মূनত্ख ः মনে করি，ক্ষেত্রক্ন $\mathrm{A}=\int_{1.5}^{3.5} \ln x d x$ भौচठটি কোটির জन्য $\mathrm{A}=$ $\mathrm{h}\left(\frac{y_{0}}{2}+y_{1}+y_{2}+y_{3}+\frac{y_{4}}{2}\right)$ ব্যबशার করে $\int_{1.5}^{3.5} \ln x d x$ जबর মান निর্बয় করি।
প্রয়োबনীয় উপকরণ \＆（i）てপস্সিল（ii）স্কেন（iii）গ্রাফ পেপার（iv）ইরেজার（v）শার্পনার（vi）সায়েল্টিফিক ক্যানকুলেটর।

কার্যপ্মতি：

1． $1.5 \leq x \leq 3.5$ ব্বধিত্ নমদূরবর্তী 5 টि কে小ে $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}$ এর জन্য এই জन्य ব্যবধির निম्নপ্রাশ্ত ও উর্ধ্বপ্রাম্তের বিয্যোছফনকে $(5-1)=4$ घারা ভাগ করে প্রত্যেক ক্রুদ্র অংশের দৈর্ঘ্য h এর মান নির্ণয় করি।
$\therefore \quad \breve{\mathrm{h}}=\frac{3.5-1.5}{4}=0.5$
2. h এর মান হতে $x_{n}=x_{n-1}+h$ সূত্র ব্যবशার করে $x_{1}, x_{2}, x_{3}, x_{4}$ निर्ণীয় করি যেোনে $x_{0}=1 \cdot 5$.
3. $\mathrm{y}=\mathrm{f}(\mathrm{x})=\ln x$ থেबে $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}$ এর মাन निর্ণয় করি:

$x_{0}=1 \cdot 5$	$y_{0}=\ln 1 \cdot 5=0.405$
$x_{1}=\mathrm{x}_{0}+\mathrm{h}=2$	$y_{1}=\ln 2=0.693$
$x_{2}=x_{1}+h=2 \cdot 5$	$y_{2}=\ln 2 \cdot 5=0.916$
$x_{3}=x_{2}+h=3$	$y_{3}=\ln 3=1 \cdot 09$
$x_{4}=x_{3}+h=3 \cdot 5$	$y_{4}=\ln 3 \cdot 5=1.25$

4. x - অक्ष বরাবর ক্দ্রুতম বগ্গে 5 বাহू $=1$ একক ও y - बक्ष বরাবর ফ্র্র্রতম বগেন 10 বাহू $=1$ একক ধরে তানিকাডুক্ত বিন্দুগুলি एক কাগজজ স্থাপন করে नেখচিত্রটি অজ্ণন করি।
5. প্রাশ্ত भাচটি কোটিকে x बক্ষের সহিত ক্কেলের সাহায্যে সংয়ুক্ত করে 4টি দ্রাপিজিয়াম জাকারে প্রকাশ করি।

रिসাब : A $=\mathrm{h}\left(\frac{y_{0}}{2}+y_{1}+y_{2}+y_{3}+\frac{y_{4}}{2}\right)$
$=\dot{0} \cdot 5\left(\frac{0.405}{2}+0.693+0.916+1.09\right.$
$\left.+\frac{1.25}{2}\right)=1.76325$ वर्ब এक्क (প্রায়)।

 হবে এবং A এর মান অধিকততর শুদ্ব হবে।
পরীকণের নাম भ্চচটি बোটি ব্যবशার করে $\int_{0}^{1} \frac{1}{1+x} d x$ এर মাन निर্ণয়। মूलত্बः মरে করি, क্ষেত্রশ্न $\mathrm{A}=\int_{0}^{1} \frac{1}{1+x} d x$ भॅiচটি কোটি जन্য $\mathrm{A}=$ $h\left(\frac{y_{0}}{2}+y_{1}+y_{2}+y_{3}+\frac{y_{4}}{2}\right) \quad$ ब्यवशाর कরে $\int_{0}^{1} \frac{1}{1+x} d x$ এর মান নির্ণয় করি।
প্রয়োজनोয় উপকরণ : (i) বেস্সিন (ii) স্কেন (iii) গ্রাফ পেপার (iv) ইরেজার (v) শাপ্পনার (vi) সায্রেল্টিফিক ক্যানকুলেটর।

কার্যপা্দতি:

1. $0 \leq x \leq 1$ ব্যবধিতে সমদূরবर্তী 5 টि কোটি $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}$ बর জन্য এই জन्य ব্যবধির निম্ম্রাম্ত ও উর্ধ্বপ্রাম্তের বিয়োগফলকেে $(5-1)=4$ দারা ভাগ করে প্রত্যেক স্র্র অংশের দৈর্ঘ্য h এর মান নির্ণয় করি।

$$
h=\frac{1-0}{4}=0.25
$$

2. h जর মান হতে $x_{n}=x_{n-1}+h$ मृত্ত ব্ববशার কত্রে. $x_{1}, x_{2}, x_{3}, x_{4}$ निर्ণয় করি যেখানে $x_{0}=0$.
3. $\mathrm{y}=\mathrm{f}(\mathrm{x})=\frac{1}{1+x}$ থেকে $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}$ এর মান निর্ণ্য়্ করি:

$x_{0}=0$	$y_{0}=\frac{1}{1+0}=1$
$x_{1}=\mathrm{x}_{0}+\mathrm{h}=0.25$	$y_{1}=\frac{1}{1+0.25}=0.8$
$x_{2}=x_{1}+h=0.5$	$y_{2}=\frac{1}{1+0.5}=0.66$
$x_{3}=x_{2}+h=0.75$	$y_{3}=\frac{1}{1+0.75}=0.57$
$x_{4}=x_{3}+h=1$	$y_{4}=\frac{1}{1+1}=0.5$

 তানিকাडूত্ত বিন্দুগুলি ছক কাগ্জ স্মাপন করে নেখচিত্রটি অঙ্কन করি।

5. প্রাচ্চ आচচি কোটিকে x बক্নের সহিত ক্কেলের সাহায্যে সংশুক্ত করে 4টি দ্রাপিজ্য়াম आকারে প্রকাশ করি।
शिসাब : A $=\mathrm{h}\left(\frac{y_{0}}{2}+y_{1}+y_{2}+y_{3}+\frac{y_{4}}{2}\right)$
$=0.25\left(\frac{1}{2}+0.8+0.66+0.57\right.$
$\left.+\frac{0.5}{2}\right)=0.69 .5$ বর্গ একক (প্রায়)।

$\mathrm{A}=\int_{1.5}^{3.5} \ln x d x=0.695$ বर्গ একक (र्राয়)।
মম্তব্য : n এর মান যত বেশি হবে h এর মান তত ক্রুদ্র হবে এবং A এর মান অধিকতর শুদ্ধ হবে।
2. ছয়ীট কোটি ব্যবशার করে মান নির্ণয় কর $\int_{1}^{2} x^{2} d x$
পরীকণের নাম \& एয়টি বোটি ব্যবহার করে $\int_{1}^{2} x^{2} d x$ এর মান निबग़।
มूनত্ত \& মনে করি, て্তে্র্ন্গ $\mathrm{A}=\int_{1}^{2} x^{2} d x$
$\mathrm{h}\left(\frac{y_{0}^{-0}}{2}+y_{1}+y_{2}^{-}+y_{3}+y_{4}+\frac{y_{5}}{2}\right)$ ব্যবशার करরে $\int_{1}^{2} x^{2} d x$ এর মান तिब़्बয় করি।
প্রে্যোজনীয় উপকরণ 8 (i) পেপ্পিন (ii) স্কেন (iii) গ্রাফ পেপার (iv) ইরেজার (v) শাপ্পনার (vi) সায্রেন্টিফিক ক্যানকূলেটর।

কার্যপ্মতি:

1. $1 \leq x \leq 2$ ব্যবধিতে সমদূबবত্তী 5 কে কোটি $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$ এর बन्य बই जन्य ব্যবধिর निম্মभাল্ত ও উর্ধ্বभ্রান্তের বিয়োগফ্নকে $(6-1)=5$ দ্রারা ডাগ করে প্রত্যেক ম্ম্র্র অংশের দৈর্ঘ্য h এর মান নির্ণয় করি।
$\therefore \mathrm{h}=\frac{2-1}{5}=0.2$
2. h এর মান হতে $x_{n}=x_{n-1}+h$ সূত্র ব্যবহার করে $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ निর্ণझ৷ করি মেখানে $x_{0}=1$.
3. $\mathrm{y}=\mathrm{f}(\mathrm{x})=x^{2}$ y. $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$ এর মান निর্ণ্য করি:

$x_{0}=1$	$y_{0}=1^{2}=1$
$x_{1}=\mathrm{x}_{0}+\mathrm{h}=1.2$	$y_{1}=(1.2)^{2}=1.44$
$x_{2}=x_{1}+h=1.4$	$y_{2}=(1 \cdot 4)^{2}=1.96$
$x_{3}=x_{2}+h=1.6$	$y_{3}=(1.6)^{2}=2.56$
$x_{4}=x_{3}+h=1.8$	$y_{4}=(1.8)^{2}=3.24$
$x_{4}=x_{3}+h=2$	$y_{5}=(2)^{2}=4$

x-बक्ष বরাবর ফम্রুত্র র্বগের 10 বাহू $=1$ একক ৩ y
 তাनिকাডুু্ত বিন্দুগুলি एक কাগজ্জ স্থাপন করে নেস্যচিত্রটি অঙ্কন করি।
5. প্রাঅত ছয়টি কোটিকে x অক্ষের সহিত স্কেলের সাহায্যে সংয়ুক্ত করে 5 টি ট্রাপিজ্যিয়ান . জাকারে প্রকাশ <রি।

रिभाव $8 \mathrm{~A}=\mathrm{h}\left(\frac{y_{0}}{2}+y_{1}+y_{2}+y_{3}+y_{4}+\frac{y_{5}}{2}\right)$
$=0 \cdot 2\left(\frac{1}{2}+1 \cdot 44+1.96+2.56+3.24\right.$
$+\frac{4}{2}$) $=2.34$ वर्গ একक (প্রাম্য)।

य্লায্স 8 निর্ণেয্ন ক্ষেত্রকল
$\mathrm{A}=\int_{1}^{2} x^{2} d x=2.34$ বর্গ একক (প্রায়)।
মস্তব্য : n এর মান যত বেশি হবে h এর মান তাত ফ্ফ্র হবে এবং A এর মান অধিকতর শুদ্ষ হবে।
ছয়টি কোটি ব্যবशার করে মান निণয় কর : $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ পরীকণের নাম ছয়টি কোটি ব্যবহার করে $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ এर মान निष্য।
মूनउत্ब \& মनে করি, ক্ষেত্রফল $\mathrm{A}=\int_{0}^{1} \frac{1}{1+x^{2}} d x$

> পঁচটি. ক্োটির জन्य A $\mathrm{h}\left(\frac{y_{0}}{2}+y_{1}+y_{2}+y_{3}+y_{4}+\frac{y_{5}}{2}\right)$ ব্যবহার

করে
$\int_{0}^{1} \frac{1}{1+x^{2}} d x$ এর মান निর্ণয় कরি।
প্রয়োজनीয় উপক্রণ \& (i) পেস্সিল (ii) স্কেন (iii) গ্রাফ পোর (iv) ইর্রেজার (v) - শার্পনার (vi) সার্য়ন্টিফিক ক্যানকূনেটর।

কার্ষপচ্র্তি:

1. $0 \leq x \leq 1$ ব্যবধিতে সমদূরবত্তী 5 টি কোটি $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$ এর জन্য এই জन্য ব্যবধির निম্নপ্রাল্ত ও উর্ষপ্রপ্রে্্তের বিয়োগফনকে $(6-1)=5$ মারা ভাগ করে প্রত্যেক ক্ষু অংশের̆ দৈর্ঘ্য h এর মান নির্ণয় করি।
$\therefore \quad \mathrm{h}=\frac{1-0}{5}=0 \cdot 2$
2. h এর মান হতে $x_{n}=x_{n-1}+h$ সূত্র ব্যবशার করে $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ निर्ণয় করি যেখানে $x_{0}=0$.
3. $\mathrm{y}=\mathrm{f}(\mathrm{x})=\frac{1}{1+x^{2}}$ ชেকে $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$ এর মান নির্ণয় করি:

$x_{0}=0$	$y_{0}=\frac{1}{1+0^{2}}=1$
$x_{1}=\mathrm{x}_{0}+\mathrm{h}=0.2$	$y_{1}=\frac{1}{1+(0.2)^{2}}=0.96$
$x_{2}=x_{1}+h=0.4$	$y_{2}=\frac{1}{1+(0.4)^{2}}=0.86$
$x_{3}=x_{2}+h=0.6$	$y_{3}=\frac{1}{1+(0.6)^{2}}=0.74$
$x_{4}=x_{3}+h=0.8$	$y_{4}=\frac{1}{1+(0.8)^{2}}=0.61$
$x_{4}=x_{3}+h=1$	$y_{5}=\frac{1}{1+(1)^{2}}=0.5$

x - অক্ষ। বরাবর ফ্দ্রেতম বগ্বগে 20 বাহू $=1$ একক ও y

- अক্ষ বরাবর কদ্র্রত্ম বগের 20 বাহू = 1 একক ষরে ত়ালিকাডুক্ত বিস্দুগুলি एক কাগজ্রে স্থাপন করে जেখচিত্রটি অঙ্জন করি।

5. প্রাশ্ত ছয়টি কোটিকে x অক্ষের সহিত. স্কেনের সাহায্যে সংযুক্ত করে 5 টি ট্রাপিজিয়াম জাকারে প্রকাশ করি।

रिभाब \& A $=\mathrm{h}\left(\frac{y_{0}}{2}+y_{1}+y_{2}+y_{3}+y_{4}+\frac{y_{5}}{2}\right)$
$=0 \cdot 2\left(\frac{1}{2}+0.96+0.86+0.74+0.61\right.$
$\left.+\frac{0.5}{2}\right)=0.784$ বর্গ একক (প্রায়)।

$\mathrm{A}=\int_{0}^{1} \frac{1}{1+x^{2}} d x=0.784$ বर्গ একक (প্রায়)।
মস্তব্য : n এর মান যত বেশি হবে h এর মান তত ক্দ্র্র হবে এবং A এর মান অধিকতর শুদ্ব হবে।

उर्डि পরীकার MCQ:

1. $\int_{0}^{1} \frac{d x}{\sqrt{2 x-x^{2}}}$ बर मान कण रबে? [DU 06-07,08-09;NU 06-07; KU 03-04]
A. $\frac{\pi}{2}$
B. 1
C. 0
D. $\frac{\pi}{4}$

Sol ${ }^{n} . \mathrm{I}=\int_{0}^{1} \frac{d x}{\sqrt{1-(x-1)^{2}}}=\left[\sin ^{-1}(x-1)\right]_{0}^{1}=\frac{\pi}{2}$
ক্যাককুলেটরের সাহায্যে Mode radian- এ নিতে रবে। অত:পর ধারাবাহিকভাবে নিম্মোক্ত Button গুলো Press করতে হবে।

Lower Limit বा Upper Limit এর জন্য Integrand সরাসরি অসংঙ্ঞ্য়্রিত হলে Lower Limit বা Upper Limit এর নিকট্ন্তী মান निতে হয়। ভেমন 0 এর পরিবর্ত্তে 0.01 এবং 1 এর পরিবর্তে 0.99 বসানো যেতে পারে। Calculator অনেক problem calculation করতে বেশ সময় নেয়।
$\underset{\mathrm{d} / \mathrm{dx}}{\mathrm{I}}=1.198 \approx \frac{\pi}{2}$

Yx/) " $1.4293 \approx \pi / 2$
2. $\int_{0}^{1} \frac{\cos ^{-1} x d x}{\sqrt{1-x^{2}}}=$?
[DU,NU 05-06]
Sol ${ }^{n}$. $\mathrm{I}=-\left[\frac{1}{2}\left(\cos ^{-1} x\right)^{2}\right]_{0}^{1}=-\frac{1}{2}\left\{0-\left(\frac{\pi}{2}\right)^{2}\right\}$
$=\frac{\pi^{2}}{8} . \quad \mathrm{I}=1.2237 \approx \frac{\pi^{2}}{8}$ (By Calculator) [এখানে Upper Limit 0.99 ধরা হয়েছে।]
3. $\int_{0}^{\pi / 2}(1+\cos x)^{2} \sin x d x=$? [DU 0304; RUU 06-07, 07-08; BUET 08-09] Sol $^{n} \mathrm{I}=-\left[\frac{1}{3}(1+\cos x)^{3}\right]_{0}^{\pi / 2}=-\frac{1}{3}(1-8)$
$=\frac{7}{3} \quad \mathrm{I}=2.333 \approx \frac{7}{3}$ (By Calculator)
4. $\int_{1}^{e} \log _{e} x d x=$? [DU 02-03; NU 0405; 02-03; JU 05-06; BUET 05-06] Sol ${ }^{n} . \mathrm{I}=\left[\left(\log _{e} x-1\right) x\right]_{1}^{e}=\left[\left(\log _{e} x-1\right) x\right]_{1}^{e}=1$
5. $\int_{0}^{1} \frac{\cos ^{-1} x d x}{\sqrt{1-x^{2}}}=$? [CDU 06-07,02-03;

RU 02-03; 06-07; IU 04-05]
Sol ${ }^{n}$. $\mathrm{I}=\left[\frac{1}{2}\left(\sin ^{-1} x\right)^{2}\right]_{0}^{1}=\frac{1}{2}\left\{\left(\frac{\pi}{2}\right)^{2}-0\right\}$
$=\frac{\pi^{2}}{8} . \quad \mathrm{I}=1.02 \approx \frac{\pi^{2}}{8}$ (By Calculator)
[এখানে Upper Limit 0.99 ধরা হয়েছে।]
6. $\int_{1}^{2} \frac{\left(x^{2}-1\right)^{2} d x}{x^{2}}=$? [JU 06-07; SU 04-

05; CU 05-06]
Sol ${ }^{n}$. $\mathrm{I}=0.833 \approx \frac{5}{6}$ (By Calculator)
7. $\int_{0}^{\pi / 2} \cos ^{3} x \sqrt{\sin x} d x=$? [CU 05-06]

Sol ${ }^{n} . \mathrm{I}=0.3809 \approx \frac{8}{21}$ (By Calculator)
8. $\int_{0}^{1} \frac{x d x}{1+x^{4}}=$?
[BUET 06-07]
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{8}$
D. $\frac{2 \pi}{3}$

Sol $^{n} . \mathrm{I}=.392699=\frac{\pi}{8}$ (By Calculator)
9. $\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x=$? [JU 07-08; RU 0607; KU 06-07]
Sol ${ }^{n} \mathrm{I}=\left[\frac{x \sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]_{0}^{a}$
$=\frac{a^{2}}{2} \cdot \frac{\pi}{2}=\frac{\pi}{4} a^{2} \quad \mathrm{a}=2$ \&สে, $\mathrm{I}=3.1416$
(By Calculator) এবং $\frac{\pi}{4} a^{2}=3.1416$

-
10. $y^{2}=4 x$ ७ $y=x$ हात्रा जायम्ब क्नक्वात्र किख्वयन बए?
[DU 05-06, 08-09]
Sol $^{n} \quad x^{2}=4 x \Rightarrow x=0,4$
\therefore क्रिब्बर्न $=\int_{0}^{4}(2 \sqrt{x}-x) d x=\frac{8}{3}$ (By Calculator)
11. $y=3 x$ সর্রगর্রেষা, x जष এবर $x=2$ রেশা षात्रा

Sol ${ }^{n}$. क्सिब्रयन $=\int_{0}^{2} 3 x d x=\left[3 \cdot \frac{x^{2}}{2}\right]_{0}^{2}=6$
 05;CU 02-03]
Sol ${ }^{n} . x^{2}+y^{2}=(\sqrt{a})^{2}$
\therefore क्षिख्রফण $=\pi(\sqrt{a})^{2}=\pi a$

